© 'doubtnut

PHYSICS

BOOKS - NEET PREVIOUS YEAR

(YEARWISE + CHAPTERWISE)

WORK, ENERGY AND POWER

Objective

1. Consider a drop of rain water having mass 1 g
falling from a height of 1 km . It hits the ground
with a speed of $50 \mathrm{~m} / \mathrm{s}$ Take g constant with a
volume $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the
(i) gravitational force and the
(ii) resistive force of air is:
A. (i)-10J,(ii)-8.25J
B. (i)1.25J,(ii)-8.25J
C. (i)100J (ii) 8.75 J
D. (i) 10 J (ii)-8.75 J

Answer: d
2. A body of mass 1 kg begins to move under the action of a time dependent force $\vec{F}=\left(2 t \hat{I}+3 t^{2} \hat{j}\right) N$, where \hat{i} and \hat{j} are unit vectors along x-and y-axes. What power will be developed by the force at the time t ?

$$
\begin{aligned}
& \text { A. }\left(2 t^{2}+4 t^{4}\right) W \\
& \text { B. }\left(2 t^{3}+3 t^{4}\right) W \\
& \text { C. }\left(2 t^{3}+3 t^{5}\right) W \\
& \text { D. }\left(2 t+3 t^{3}\right) W
\end{aligned}
$$

- Watch Video Solution

3. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
A. $\sqrt{2 g R}$
B. $\sqrt{3 g R}$
C. $\sqrt{5 g R}$
D. $\sqrt{g R}$

- Watch Video Solution

4. A paritcal of mass $10 g$ moves along a circle of radius 6.4 cm with a constant tangennitial acceleration. What is the magnitude of this acceleration. What is the magnitude of this acceleration if the kinetic energy of the partical becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion?
A. $0.15 m / s^{2}$

$$
\text { B. } 0.18 m / s^{2}
$$

C. $0.2 m / s^{2}$

$$
\text { D. } 0.1 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer: d

D Watch Video Solution

5. Two identical balls A and B having velocity of $0.5 m / s$ and $-0.3 m / s$ respectively collide elastically in one dimension. The velocities of
B and A after the collision respectively will be
A. $-0.5 m / s$ and $0.3 m / s$
B. $0.5 m / s$ and $-0.3 m / s$
C. $-0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$

D. $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$

Answer: c

- Watch Video Solution

6. A partical moves from a point $(-2 \hat{i}+5 \hat{j})$
to $(4 \hat{i}+3 \hat{j})$ when a force of (4hati +3 hatj) $\mathrm{N}^{\text {` }}$
is applied. How much work has been done by
the force?
A. 8 J
B. 11J
C. 5J
D. 2J

Answer: C

D Watch Video Solution
7. Two similar springs P and Q have spring constant K_{P} and K_{Q} such that $K_{P}>K_{Q}$. They are stretched, first by the same amount (case a), then the same force (case b). The work done by the spring W_{P} and W_{Q} are related as, in case (b), respectively

> А. $W_{P}=W_{Q}, W_{P}>W_{Q}$
> В. $W_{P}=W_{Q}, W_{P}=W_{Q}$
> с. $W_{P}>W_{Q}, W_{Q}>W_{P}$
D. $W_{P}<W_{Q}, W_{Q} t W_{P}$

D Watch Video Solution

8. A block of mass 10 kg , moving in x-direction
with a constant speed of $10 \mathrm{~ms}^{-1}$, is subjected
to a retarding force $F=0.1 \times J / m$ during its
travel from $x=20 \mathrm{~m}$ to 30 m . Its final $K E$ will be
A. 475 J
B. 450 J
C. 275J

D. 250J

Answer: a

- Watch Video Solution

9. A partical of mass m is driven by a machine
that deleveres a constant power k watts. If the partical starts from rest the force on the partical at time t is

$$
\text { A. } \sqrt{\frac{m k}{2}} t^{-1 / 2}
$$

B. $\sqrt{m k} t^{-1 / 2}$
C. $\sqrt{2 m k} t^{-1 / 2}$

$$
\text { D. } \frac{1}{2} \sqrt{m k} t^{-1 / 2}
$$

Answer: a

- Watch Video Solution

10. Two particles of masses m_{1}, m_{2} move with
initial velocities u_{1} and u_{2}. On collision, one of
the particles get excited to higher level, after absording enegry. If final velocities of particles be v_{1} and v_{2} then we must have
A. $m_{1}^{2} u_{1}+m_{2}^{2} u_{2}^{2}-\varepsilon=m_{1}^{2} v_{1}+m_{2}^{2} v_{2}$
B.

$$
\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}-\varepsilon
$$

C.

$$
\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}-\varepsilon=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}
$$

D.

$$
\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}+\varepsilon=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}
$$

Answer: c
11. A mass m moves in a circles on a smooth horizontal plane with velocity v_{0} at a radius R_{0}. The mass is atteched to string which passes through a smooth hole in the plane as shown. The tension in string is increased gradually and finally m moves in a cricle of radius $\frac{R_{0}}{2}$. the final value of the kinetic energy is

> A. $m v_{0}^{2}$
> B. $\frac{1}{4} m v_{0}^{2}$
> C. $2 m v_{0}^{2}$
> D. $\frac{1}{2} m v_{0}^{2}$

Answer: C

D Watch Video Solution

12. A ball is thrown vertically downwards from a
height of 20 m with an intial velocity v_{0}. It collides with the ground, loses 50% of its
energy in collision and rebounds to the same height. The intial velocity v_{0} is (Take, $g=10$ $m s^{-2}$)
A. $14 m s^{-1}$
B. $20 m s^{-1}$
C. $28 m s^{-1}$
D. $10 \mathrm{~ms}^{-1}$

Answer: b
13. The heart of a man pumps 5 liters of blood through the arteries per minute at a pressure of 150 mm of mercury. If the density of mercury be $13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$ then the power of heat in watt is :
A. 1.7
B. 2.35
C. 3
D. 1.5

Answer: a
14. On a friction surface a block a mass M moving at speed v collides elastic with another block of same mass M which is initially at rest .

After collision the first block moves at an angle
θ to its initial direction and has a speed $\frac{v}{3}$. The second block's speed after the collision is
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{3}{4} v$
C. $\frac{3}{\sqrt{2}} v$

$$
\text { D. } \frac{\sqrt{3}}{2} v
$$

Answer: a

- Watch Video Solution

15. A body of mass (4 m) is laying in xy-plane at rest. It suddenly explodes into three pieces. Two pieces each mass (m) move perpedicular to each other with equal speeds (v). Total kinetic energy generated due to explosion is

[^0]B. $\frac{3}{2} m v^{2}$
C. $2 m v^{2}$
D. $4 m v^{2}$

Answer: b

D Watch Video Solution

16. A uniform force of $(3 \hat{i}+\hat{j}) \mathrm{N}$ acts on a particle of mass 2 kg . Hence, the particle is displaced from position $(2 \hat{i}+\hat{k}) \mathrm{m}$ to position
$(4 \hat{i}+3 \hat{j}-\hat{k}) \mathrm{m}$. The work done by the force on the particle is
A. 9J
B. 6J
C. 13J
D. 15J

Answer: a

D Watch Video Solution
17. A body of mass m taken form the earth's
surface to the height is equal to twice the radius (R) of the earth. The change in potential energy of body will be
A. $m g 2 R$
B. $\frac{2}{3} m g R$
C. $3 m g R$
D. $\frac{1}{3} m g R$

Answer: b
18. The potential energy of a particle in a force
field is:
$U=\frac{A}{r^{2}}-\frac{B}{r}$, Where A and B are positive
constants and r is the distance of particle from
the centre of the field. For stable equilibrium the distance of the particle is
A. $B / 2 A$
B. $2 \mathrm{~A} / \mathrm{B}$
C. A / B

D. B / A

Answer: b

- Watch Video Solution

19. The potential energy of a system increased
if work is done
A. by the system against a conservative
force
B. by the system against a non conservative
force
C. upon the system by a conservative force

D. upon the system by a non conservative

force

Answer: a

- Watch Video Solution

20. force F on a partical moving in a straight
line veries with distance d as shown in the
figure. The work done on the partical during its
displacement of $12 m$ is

A. 21J
B. 26J
C. 13J

D. 18J

Answer: c

- Watch Video Solution

21. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $2 m s^{1}$. The mass per unit length of water in the pipe is $100 \mathrm{kgm}^{-1}$. What is the power of the engine?

A. 400 W

B. 200 W

C. 100W
D. 800 W

Answer: d

D Watch Video Solution

22. An ideal spring with spring constant k is
hung from the ceiling and a block of mass M is attached to its lower end. The mass is released
with the spring initially unstretched. Then the maximum extension in the spring is
A. Mg / k
B. $2 \mathrm{Mg} / \mathrm{k}$
C. $4 \mathrm{Mg} / \mathrm{k}$
D. $\mathrm{Mg} / 2 \mathrm{k}$

Answer: b

- Watch Video Solution

23. An engine pumps water continously through a hose. Water leave the hose with a velocity v and m is the mass per unit length of the Water jet. What is the rate at Which kinetic energy is imparted to water?
A. $\frac{1}{2} m v^{3}$
B. $m v^{3}$
C. $\frac{1}{2} m v^{2}$
D. $\frac{1}{2} m^{2} v^{2}$

- Watch Video Solution

24. A body of mass 1 kg is thrown upwards with a velocity $20 \mathrm{~ms}^{-1}$. It momentarily comes to rest after attaining a height of 18 m . How much energy is lost due to air friction? $\left(g=10 m s^{-2}\right)$
A. 20 J
B. 30J
C. 40 J

D. 10J

Answer: a

- Watch Video Solution

25. An explosion blows a rock into three parts.

Two parts go off at right angles to each other .
These two are 1 kg first part moving with a velocity of $12 \mathrm{~ms}^{-1}$ and 2 kg second part moving with a velocity of $8 m s^{-1}$. If the third
part flies off with a velocity of $4 m s^{-1}$. Its mass would be
A. 5 Kg
B. 7 Kg
C. 17 Kg
D. 3 Kg

Answer: a

- Watch Video Solution

26. A shell of mass $200 g$ is ejected from a gun of mass 4 kg by an explosion that generate
$1.05 k J$ of energy. The initial velocity of the shell is
A. $100 m s^{-1}$
B. $80 m s^{-1}$
C. $40 m s^{-1}$

$$
\text { D. } 120 \mathrm{~ms}^{-1}
$$

Answer: a
27. Water falls from a height of 60 m at the rate
$15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to
frictional forces are 10% of energy. How much power is generated to by the turbine? $\left(g=10 \mathrm{~m} / \mathrm{s}^{\wedge}(2)\right)^{\prime}$.
A. 8.1kW
B. 10.2 kW
C. 12.3 kW
D. 7.0kW

D Watch Video Solution

28. 300 J of work is done in slinding a 2 kg block
up an inclined plane of height 10 m . Taking $\mathrm{g}=$
$10 \mathrm{~m} / \mathrm{s}^{2}$, work done against friction is
A. 200J
B. 100J
C. zero
D. 1000J

Answer: b

- Watch Video Solution

29. A body of mass 3 kg is under a constant force which causes a displacement s metre in it, given by the relation $s=\frac{1}{3} t^{2}$, where t is in seconds. Work done by the force in 2 seconds is

> А. $\frac{5}{19} J$
> B. $\frac{3}{8} J$

> C. $\frac{8}{3} J$ D. $\frac{19}{5} J$

Answer: c

D Watch Video Solution

30. A Force F acting on an object varies with
distance x as shown in the here. The force is in
newton and x in metre. The work done by the
force in moving the object from $x=0$ to
$x=6 m$ is

A. 4.5 J
B. 13.5 J
C. 9.0J
D. 18.0J

Answer: b
31. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The velocity of mass $18 \mathrm{kgis} 6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the other mass is
A. 256 J
B. 486J
C. 524J
D. 324J

- Watch Video Solution

32. A particle of mass m 1 is moving with a velocity v_{1} and another particle of mass m_{2} is moving with a velocity v2. Both of them have the same momentum but their different kinetic energies are E 1 and E 2 respectively. If $m_{1}>m_{2}$ then
A. $E_{1}<E_{2}$
B. $\frac{E_{1}}{E_{2}}=\frac{m_{1}}{m_{2}}$
C. $E_{1}>E_{2}$

$$
\text { D. } E_{1}=E_{2}
$$

Answer: a

- Watch Video Solution

33. A ball of mass 2 kg and another of mass 4 kg are dropped together from a 60 feet tall building. After a fall of 30 feet each towards earth, their respective kinetic energies will be the ratio of
A. $\sqrt{2}: 1$
B. 1: 4
C. $1: 2$
D. $1: \sqrt{2}$

Answer: c

D Watch Video Solution

34. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of
time the stone is at lowest position and has a
speed u. Find the magnitude of the change in
its velocity as it reaches a position, where the string is horizontal.

> A. $\sqrt{2\left(u^{2}-g l\right)}$
> B. $\sqrt{u^{2}-g l}$
> C. $u-\sqrt{u^{2}-2 g l}$
D. $\sqrt{2 g l}$

Answer: a

- Watch Video Solution

35. A stationary partical explodes into two partical of a masses m_{1} and m_{2} which move in opposite direction with velocities v_{1} and v_{2}. The ratio of their kinetic energies E_{1} / E_{2} is
A. 1
B. $\frac{m_{1} v_{1}}{m_{2} v_{2}}$
C. $\frac{m_{2}}{m_{1}}$
m_{1}
D. $\frac{m_{1}}{m_{2}}$

Answer: c

D Watch Video Solution
36. If kinetic energy of a body is increased by
300%, then percentage change in momentum will be
A. 1
B. 1.5
C. 2.65
D. 0.732

Answer: a
37. A stone is thrown at an angle of 45° to the horizontal with kinetic energy K. The kinetic energy at the highest point is
A. $\frac{K}{2}$
B. $\frac{K}{\sqrt{2}}$
C. K
D. zero

Answer: a
38. A child is swinging a swing. Minimum and maximum heights fo swing from the earth's
surface are 0.75 m and 2 m respectively. The maximum velocity of this swing is
A. $5 m / s$
B. $10 m / s$
C. $15 m / s$
D. $20 \mathrm{~m} / \mathrm{s}$
39. Two bodies with kinetic energies in the ratio

4:1 are moving with equal linear momentum.
The ratio of their masses is
A. 1:2
B. 1:1
C. $4: 1$
D. 1:4

Answer: d

- Watch Video Solution

40. Two equal masses m_{1} and m_{2} moving along the same straight line with velocites $+3 m / s$ and $-5 m / s$ respectively collide elastically. Their velocities after the collision will be respectively.
A. $+4 m / s$ for both
B. $-3 m / s$ and $+5 m / s$
C. $-4 m / s$ and $+4 m / s$

$$
\text { D. }-5 m / s \text { and }+3 m / s
$$

Answer: d

- Watch Video Solution

41. A foce acts on a 30.g particle in such a way
that the position of the particle as a function of time is given by
$x=3 t-4 t^{2}+t^{3}$, where x is in metre and t in
second. The work done during the first 4 s is
B. 450 mJ
C. 490 mJ
D. 528 mJ

Answer: d

D Watch Video Solution

42. A metal ball of mass 2 kg moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$ has a head on collision with a stationery ball of mass 3 kg . If after the
collision, the two balls move together, the loss
in kinetic energy dur to collision is
A. 140J
B. 100J
C. 60J
D. 40 J

Answer: c
(Watch Video Solution
43. A body of mass m moving with velocity
$3 \mathrm{~km} / \mathrm{h}$ collides with a body of mass 2 m at rest. Now, the coalesced mass starts to move with a velocity
A. $1 \mathrm{~km} / \mathrm{h}$
B. $2 k m / h$
C. $3 \mathrm{~km} / \mathrm{h}$
D. $4 \mathrm{~km} / \mathrm{h}$

Answer: a
44. If the momentum of a body is increased by 50%, then the percentage increase in its kinetic energy is
A. 0.5
B. 1
C. 1.25
D. 2

Answer: c
45. The KE acquired by a mass m in travelling a certain distance s, starting from rest, under the action of a constant force is directly proportional to :
A. m
B. \sqrt{m}
C. $\frac{1}{\sqrt{m}}$
D. independent m

- Watch Video Solution

46. Two masses 1 g and 9 g are moving with equal kinetic energies. The ratio of the magnitudes of their respective linear momenta is
A. $1: 9$
B. 9:1
C. $1: 3$
D. $3: 1$

Answer: c

- Watch Video Solution

47. A force $\vec{F}=\left(7-2 x+3 x^{2}\right) \mathrm{N}$ is applied on a 2 kg mass which displaces it from $\mathrm{x}=0$ to $x=5 \mathrm{~m}$. Work done in joule is -
A. 35
B. 70
C. 135
D. 270

D Watch Video Solution

48. Two identical balls A and B having velocity of $0.5 m / s$ and $-0.3 m / s$ respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
A. $+0.5 m / s$ and $+0.3 m / s$
B. $-0.3 m / s$ and $+0.5 m / s$
C. $+0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$

$$
\text { D. }-0.5 \mathrm{~m} / \mathrm{s} \text { and }+0.3 \mathrm{~m} / \mathrm{s}
$$

Answer: b

D Watch Video Solution

49. The power of a motor pump is 2 kW . How much water per minute the pump can raise to a heiht of 10 m ? (Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 1000 L
B. 1200 L

C. 100L

D. 2000L

Answer: b

- Watch Video Solution

50. A bullet of mass 10 g leaves a rifle at an intial velocity of $1000 \mathrm{~m} / \mathrm{s}$ and strikes the earth at the same level with a velocity of $500 \mathrm{~m} / \mathrm{s}$. The work done in joule to overcome the resistance of air will be
A. 375
B. 3750
C. 5000
D. 500

Answer: b

D Watch Video Solution
51. The coefficient of restitution e for a perfectly elastic collision is
A. 1
B. zero

C. infinite

D. -1

Answer: a

- Watch Video Solution

[^0]: A. $m v^{2}$

