đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

MEASUREMENT AND ERRORS

Example

1. Let us use a centimeter scale (on which only
centimeter scales are there) to measure a length

AB.

A B

From the figure, we can see that length $A B$ is more than 7 cm and less than 8 cm . In this case, Least Count $(L C)$ of this centimeter scale is 1 cm , as it can measure accurately, upto centimeters only. If we note down the length (I) of line $A B$ as $I=7 \mathrm{~cm}$ then maximum uncertainly or maximum possible error in I can be $1 \mathrm{~cm}(=\mathrm{LC})$, because this scale can measure accurately only upto 1 cm .
2. Let us now use a millimeter scale (on which millimeter marks are there). This is also our normal meter scale which we use in our routine life. From the figure, we can see that length $A B$ is more than 3.3 cm and less than 3.4 cm . If we note down the length,

$l=A B=3.4 \mathrm{~cm}$.

Then, this measurement has two significant
figures 3 and 4 in which 3 is absolutely correct and 4 is reasonably correct (doubtful). Least count of this scale is 0.1 cm because this scale can measure accurately only upto 0.1 cm . Futher, maximum uncertainly or maximum possible error in I can also be 0.1 cm .

- Watch Video Solution

3. $1.2+3.45+6.789=11.439 \approx 11.4$

Here, the least number of significant digits after the decimal is one. Hence, the result will be 11.4.
(when rounded off to smallest number of decimal places).

D Watch Video Solution

4. $12.63-10.2=2.34 \approx 2.4$

D Watch Video Solution

5.1.2 $\times 36.72=44.064 \approx 44$

The least number of significant digits in the measured values are two. Hence, the result when
rounded off to two significant digits become 44.

Therefore, the answer is 44 .

D Watch Video Solution

$$
\text { 6. } \frac{1101 m s^{-1}}{10.2 m s^{-1}}=107.94117647 \approx 108
$$

Watch Video Solution

7. Find, volume of a cube of side $a=$ $1.4 \times\left(10^{-2}\right) \mathrm{m}$.
8. Radius of a wire is 2.50 mm . The length of the wire is 50.0 cm . If mass of wire was measured as

25 g , then find the density of wire in correct significant figures.
[Given, $\pi=3.14$, exact]

D Watch Video Solution

9. The diameter of a wire as measured by screw gauge was found to be 2.620, 2.625, 2.630, 2.628 and 2.626 cm . Calculate
(a) mean value of diameter (b) absolute error in each measurement
(c) mean absolute error (d) fractional error
(e) percentage error (d) (f) Express the result in
terms of percentage error

D Watch Video Solution

10. The volumes of two bodies are measured to
be
$V_{1}=(10.2 \pm 0.02) \mathrm{cm}^{3}$ and $V_{2}=(6.4 \pm 0.01) \mathrm{cm}^{3}$
. Calculate sum and difference in volumes with error limits.

(D) Watch Video Solution

11. The mass and density of a solid sphere are measured to be
$(12.4 \pm 0.1) \mathrm{kg}$ and $(4.6 \pm 0.2) \mathrm{kg} / \mathrm{m}^{3}$.

Calculate the volume of the sphere with error limits.

D Watch Video Solution

12. Calculate percentage error in determination of time period of a pendulum.
$T=2 \pi \frac{\sqrt{l}}{g}$
where, I and g are measured with $\pm 1 \%$ and $\pm 2 \%$.

D Watch Video Solution

13. Round off 0.07284 to four, three and two significant digits.

Watch Video Solution

14. Round off 231.45 to four, three and two significant digits.

D Watch Video Solution

15. Three measurements are $a=483, b=73.67$ and
$\mathrm{c}=15.67$. Find the value $\frac{a b}{c}$ to correct significant figures.
16. Three measurements are, $a=25.6, b=21.1$ and
$c=2.43$. Find the value $a-b-c$ to correct significant figures.

D Watch Video Solution

17. A thin wire has a length of 21.7 cm and radius
0.46 mm . Calculate the volume of the wire to
correct significant figures.
18. The radius of a sphere is measured to be
$(1.2 \pm 0.2) \mathrm{cm}$. Calculate its volume with error limits.

D Watch Video Solution

19. Calculate equivalent resistance of two resistors $\quad R_{1}$ and $R_{2} \quad$ in parallel where, $R_{1}=(6 \pm 0.2)$ ohm and $R_{2}=(3 \pm 0.1)$ ohm
20. If we measure a length $I=6.24 \mathrm{~cm}$ with the help of a vernier callipers, then
(a) What is least count of vernier callipers?
(b) How many significant figures are there in the measured length?
(c) Which digits are absolutely correct and which is/are doubtful?
21. If we measure a length $\mathrm{I}=3.267 \mathrm{~cm}$ with the help of a screw gauge, then
(a) What is maximum uncertainty or maximum possible error in I?
(b)How many significant figures are there in the measured length ?
(c) Which digits are absolutely correct and which is/are doubtful?

Watch Video Solution

1. Count total number of significant figures in the following measurements:
(a) 4.080 cm (b) 0.079 cm (c) 950
(d) 10.00 cm (e) 4.07080 (f) 7.090×10^{5}

D Watch Video Solution

Exercise 23

1. Round off the following numbers to three
significant figures:
(a)24572 (b)24.937 (c) 36.350 (d) 42.450×10^{9}

(D) Watch Video Solution

2. Round 742396 to four, three and two significant digits.

D Watch Video Solution

Exercise 24

1. Round to the appropriate number of significant digits
(a) $13.214+234.6+7.0350+6.38$
(b) $1247+134.5+450+78$

D Watch Video Solution

2. Simplify and round to the appropriate number of significant digits
(a) $16.235 \times 0.217 \times 5$
(b) 0.00435×4.6

D Watch Video Solution

1. The number of significant figures in 3400 is

A. 3
B. 1
C. 4
D. 2

Answer: D

(D) Watch Video Solution

2. The significant figures in the number 6.0023

 areA. 2
B. 5
C. 4
D. 3

Answer: B

D Watch Video Solution
3. The length and breadth of a metal sheet are
3.124 m and 3.002 m respectively. The area of this
sheet upto correct significant figure is
A. $9.378 m^{2}$
B. $9.37 m^{2}$
C. $9.4 m^{2}$
D. None of these

Answer: A
4. The length, breadth and thickness of a block are given by $\mathrm{l}=12 \mathrm{~cm}, \mathrm{~b}=6 \mathrm{~cm}$ and $\mathrm{t}=2.45 \mathrm{~cm}$. The volume of the block according to the idea of significant figures should be
A. $1 \times 10^{2} \mathrm{~cm}^{3}$
B. $2 \times\left(10^{2}\right) \mathrm{cm}^{3}$
C. $1.763 \times\left(10^{2}\right) \mathrm{cm}^{3}$
D. None of these

Answer: B

5. If error in measurement of radius of a sphere is 1%, what will be the error in measurement of

volume?

A. 0.01
B. $\frac{1}{3} \%$
C. 0.03
D. None of these

Answer: C
6. The density of a cube is measured by measuring its mass and length of its sides. If the maximum error in the measurement of mass and length are 4% and 3% respectively, the maximum error in the measurement of density will be
A. 0.07
B. 0.09
C. 0.12
D. 0.13

Answer: D

D Watch Video Solution

7. Percentage error in the measurement of mass
and speed are 2% and 3% respectively. The error
in the measurement of kinetic energy obtained
by measuring mass and speed will be
A. 0.12
B. 0.1
C. 0.08

D. 0.05

Answer: C

D Watch Video Solution

8. A force F is applied on a square plate of side L.

If the percentage error in the determination of L is 2% and that in F is 4%. What is the permissible error in pressure?
A. 0.08
B. 0.06
C. 0.04

D. 0.02

Answer: A

D Watch Video Solution

9. The heat generated in a circuit is dependent upon the resistance, current and time for which the current is flown. If the error in measuring the above are $1 \%, 2 \%$ and 1% respectively, then maximum error in measuring the heat is

A. 0.08

B. 0.06
C. 0.18
D. 0.12

Answer: B

D Watch Video Solution

10. Let g be the acceleration due to gravity at the earth's surface and K the rotational kinetic energy of the earth. Suppose the earth's radius
decreases by 2\%. Keeping all other quantities constant, then
A. g increases by 2% and K increases by 2%
B. g increases by 4% and K increases by 4%
C. g decreases by 4% and K decreases by 2%
D. g decreases by 2% and K decreases by 4%

Answer: B

11. A physical quantity A is dependent on other four physical quantities p, q, r and s as given by
$A=\frac{\sqrt{p q}}{r^{2} s^{3}}$. The percentage error of measurement in p,q,r and s are $1 \%, 3 \%, 0.5 \%$ and 0.33\% respectively, then the maximum percentage error in A is
A. 0.02
B. 0
C. 0.04
D. 0.03

- Watch Video Solution

12. The length of a simple pendulum is about 100 cm known to have an accuracy of 1 mm . Its period of oscillation is 2 s determined by measuring the time for 100 oscillations using a clock of 0.1 s resolution. What is the accuracy in the determined value of g ?
A. 0.002
B. 0.005
C. 0.001
```
D. 0.02
```


Answer: A

D Watch Video Solution

13. The mass of a ball is 1.76 kg . The mass of 25
such balls is
A. $0.44 \times 10^{3} \mathrm{~kg}$
B. 44.0 kg
C. 44 kg

D. 44.00 kg

Answer: B

D Watch Video Solution

14. The least count of a stop watch is 0.2 s , The time of 20 oscillations of a pendulum is measured to be 25 s . The percentage error in the time period is
A. 1.2%
B. 0.8%
C. 1.8%

D. None of these

Answer: B

D Watch Video Solution

Subjective

1. Write down the number of significant figures
in the following (a) 6428 (b) 62.00 (c) 0.00628 cm
(d) 1200 N
2. Write the number of significant digits in the following
(a) 1001 (b) 100.1 (c) 100.10 (d) 0.001001

D Watch Video Solution
3. State the number of significant figures in the following
(a) $0.007 \mathrm{~m}^{2}$ (b) $2.64 \times 10^{24} \mathrm{~kg}$ (c) $0.2370 \mathrm{~g} / \mathrm{cm}^{-3}$
4. Round the following numbers to 2 significant digits
(a)3472 (b)84.16 (c)2.55 (d)28.5
(D) Watch Video Solution
5. Perform the following operations (a)703
$+7+0.66$ (b) 2.21×0.3 (c) 12.4 xx 84
(D) Watch Video Solution

6. Add $6.75 \times\left(10^{3}\right) \mathrm{cm}$ to $4.52 \times\left(10^{2}\right) \mathrm{cm}$ with

 regard to significant figures.
D Watch Video Solution

7. Evaluate $\frac{25.2 \times 1374}{33.3}$. All the digits in this expression are significant.

D Watch Video Solution

8. Solve with due regards to significant figures
$4.0 \times\left(10^{-4}\right)-2.5 \times 10^{-6}$.

- Watch Video Solution

9. The mass of a box measured by a grocer's balance is 2.300 kg . Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is
(a) the total mass of the box, (b) the difference in the masses of the pieces to correct significant figures?
10. A thin wire has length of 21.7 cm and radius
0.46 mm . Calculate the volume of the wire to correct significant figures?

D Watch Video Solution

11. A cube has a side of length 2.342 m . Find volume and surface area in correct significant figures.
12. Find density when a mass of 9.23 kg occupies a volume of $1.1 \mathrm{~m}^{3}$. Take care of significant figures.

D Watch Video Solution

13. Length, breadth and thickness of a rectangular slab are $4.234 \mathrm{~m}, 1.005 \mathrm{~m}$ and 2.01 m respectively. Find volume of the slab to correct significant figures.
14. The radius of a sphere is measured to be $(2.1 \pm 0.5) \mathrm{cm}$. Calculate its surface area with error limits .

- Watch Video Solution

15. The temperature of two bodies measured by a thermometer are $(2.1 \pm 0.5)^{\circ} C$ and
$(50 \pm 0.5)^{\circ} C$. Calculate the temperature difference with error limits.
16. The resistance $R=\frac{V}{I}$, where $V=(100 \pm 5.0) V$ and $I=(10 \pm 0.2) A$. Find the percentage error in R.
A. 0.7%
B. 0.5%
C. 5%
D. 7%

Answer: D

- Watch Video Solution

17. Find the percentage error in specific resistance given by $\rho=\frac{\pi r^{2} R}{l}$ where r is the radius having value $(0.2 \pm 0.02) \mathrm{cm}, \mathrm{R}$ is the resistance of $(60 \pm 2) \mathrm{ohm}$ and I is the length of $(150 \pm 0.1) \mathrm{cm}$.

D Watch Video Solution

18. A physical quantity ρ is related to four
variables α, β, γ and η as
$\rho=\frac{\left(\alpha^{3}\right)\left(\beta^{2}\right)}{\eta \sqrt{\gamma}}$
The percentage errors of measurements in
α, β, γ and η are $1 \%, 3 \%, 4 \%$ and 2% respectively. Find the percentage error in ρ.

D Watch Video Solution

19. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{L / g}$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g ?

