© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS

(HINGLISH)

SEMICONDUCTORS AND ELECTRONIC

DEVICES

Only One Option Is Correct

1. A P-type semiconductor can be obtained by adding
A. arsenic to pure silicon
B. gallium to pure silicon
C. antimony to pure germanium
D. phosphorous to pure germanium

Answer: B

(Watch Video Solution
2. The valance of the impurity atom that is to be added to germanium crystal so as to make it a N-type semiconductor, is
A. 6
B. 5
C. 4
D. 3

Answer: B
3. A piece of copper and the other of germanium are cooled from the room temperature to 80 K , then which of the following would be wrong statements?
A. Resistance of each increases
B. Resistance of each decreases
C. Resistance of copper increases while
that of germanium decreases
D. Resistance of copper decreases while
that of germanium increases

Answer: D

D Watch Video Solution

4. In an insulator, the forbidden energy gap
between the valence band and conduction
band is of the order of
A. 1 MeV
B. 0.1 MeV
C. 1 eV
D. 5 eV

Answer: D

D Watch Video Solution

5. The energy band gap of Si is
A. 0.70 eV
B. 1.1 eV
C. between 0.70 eV to 1.1 eV
D. 5 eV
6. In an semiconductor the separation between conduction band and valence band is of the order of
A. 100 eV
B. 10 eV
C. 1 eV
D. zero
7. A piece of semiconductors is connected in sereis in an electric circuit. On increasing the temperautre, the current in the circuit will
A. decrease
B. remain uncharged
C. increase
D. stop flowing

- Watch Video Solution

8. Intrinsic semiconductor is electrically neutral. Extrinsic semiconductor having large number of current carriers would be
A. positively charged
B. negatively charged
C. positively charged or negatively charged
depending upon the type of impurity
that has been added

D. electrically neutral

Answer: D

D Watch Video Solution

9. Mobilities of electrons and holes in a sample
of intrinsic germanium at room temperature
are $0.36 m^{2} / V s$ and $0.17 m^{2} / V s$. The electron
and hole densities are each equal to
$2.5 \times 10^{19} \mathrm{~m}^{-3}$. The electrical conductivity of germanium is.
A. $0.47 S / m$
B. $5.18 S / m$
C. $2.12 S / m$
D. $1.09 S / m$

Answer: C

D Watch Video Solution
10. In the circuit given below, the value of the
current is

A. zero
B. $10^{-2} A$
C. $10^{2} A$
D. $10^{-3} \mathrm{~A}$

Answer: B

D Watch Video Solution
11. What is the current in the circuit shown below?

A. zero
B. $10^{-2} A$
C. $1 A$
D. 0.10 A

Answer: A
12. In a p-n junction depletion region has a thickness of the order of
A. 1 cm
B. 1 mm
C. $10^{-6} m$
D. $10^{-12} \mathrm{~cm}$

Answer: C
13. For the given circuit of $P N$-junction diode, which of the following statements is correct?

A. In forward biasing the voltage across R is V
B. In forward biasing the voltage across R
is V
C. In reverse biasing the voltage across R is

V

D. In reverse biasing the voltage across R is

2V

Answer: A

D Watch Video Solution
14. The diode shown in the circuit is a silicon diode. The potential difference between the
points A and B will be

A. 6 V
B. 0.6 V
C. 0.7 V
D. zero

Answer: A

- Watch Video Solution

15. The current through an ideal $P N$-junction
shown in the following circuit diagram will be

A. zero

B. 1 mA

C. 10 mA

D. 30 mA

Answer: A

D Watch Video Solution

16. In the given figure, which of the diodes are forward biased?

17.

$+10 \mathrm{~V}$

$+5 \mathrm{~V}$
3.

4.

$$
-12 \mathrm{~V}
$$

5.

A. 1, 2, 3
B. $2,4,5$

C. 1, 3, 4

D. 2, 3, 4

Answer: B

D Watch Video Solution

17. The equivalent resistance of the circuit across $A B$ is given by

A. 4Ω
B. 13Ω
C. 4Ω or 13Ω
D. 4Ω or zero

Answer: C

18. The width of depletion region in $p-n$
junction diode is 500 nm and an intrinsic electric field of $6 \times 10^{5} \mathrm{Vm}^{-1}$ is also found to exist in it. What is the kinetic energy which a conduction electron must have in order to diffuse from the n-side to p-side?
A. 0.30 V
B. 0.40 V
C. 3 V
D. 4 V

Answer: A

- Watch Video Solution

19. The Boolen expression for the circuit given

in figure is

A. $Y=A+\bar{B}$
B. $Y=\overline{A+B}$
c. $Y=(\bar{A}+B)$

D. $Y=A+B$

Answer: C

D Watch Video Solution

20. The Boolen expression for the circuit given
in figure is

$$
\text { A. } Y=\bar{A} \cdot B+C
$$

$$
\text { B. } Y=\bar{A} \cdot(\bar{B}+\bar{C})
$$

C. $Y=\bar{A} \cdot(B+\bar{C})$
D. $Y=\bar{A} \cdot(B+C)$

Answer: D

D Watch Video Solution

21. In the case of constant α and β of a transistor

$$
\text { A. } \alpha=\beta
$$

B. $\beta<1, \alpha>1$
C. $\alpha \beta=1$
D. $\beta>1, \alpha<1$

Answer: D

- Watch Video Solution

22. The symbol given in figure represents

A. n-p-n transistor
B. p-n-p transistor
C. forward biased p-n junction diode
D. reverse biased n-p junction diode
23. In a transistor circuit shown here the base
current is $35 \mu A$. The value of the resistor R_{b} is

A. $124 k \Omega$
B. $257 k \Omega$

C. $352 k \Omega$

D. None of these

Answer: B

D Watch Video Solution

24. In a common base transistor circuit, the
current gain is 0.98 . On changing the emitter
current by 5.00 mA , the change in collector
current is
A. 0.196 mA
B. 2.45 mA
C. 4.9 mA
D. 5.1 mA

Answer: C

D Watch Video Solution

25. The transfer ration of a transistor is 50 . The input resistance of the transistor when used in the common -emitter configuration is $1 k \Omega$.

The peak value for an $A . C$. input voltage of 0.01 V peak is
A. $100 \mu \mathrm{~A}$
B. $0.01 \mu A$
C. $0.25 \mu A$
D. $500 \mu \mathrm{~A}$

Answer: D
(Watch Video Solution
26. To use a transistor as an amplifier
A. both junctions are forward biased
B. both junctions are reverse biased
C. the emitter base junction is forward biased and the collector base junction is
reverse biased
D. no biasing voltages are required

Answer: C

D Watch Video Solution
27. A transistor has three impurity regions, emitter, base and collector. Arrange them in order of increasing doping levels.
A. emitter, base and collector
B. collector, base and emitter
C. base, emitter and collector
D. base, collector and emitter

Answer: D
28. What is β value for transistor whose $\alpha=0.98$?
A. 29
B. 38
C. 49
D. 56

Answer: C

- Watch Video Solution

29. When the emitter current of a transistor is
changed by 1 mA , its collector current changes
by 0.990 mA . In the common base circuit, current gain for the transistor is
A. 0.099
B. 1.01
C. 1.001
D. 0.99
30. Choose the corrector relation between the transistor parameters α and β.
A. $\beta=\frac{\alpha+1}{\alpha}$
B. $\beta=\frac{\alpha-1}{\alpha}$
C. $\beta=\frac{\alpha}{1-\alpha}$
D. $\beta=\frac{\alpha}{1+\alpha}$

Answer: C

31. In a transistor, the current amplification
factor α is 0.9. The transistor is connected in
common base configuration. The change in
collector current when base current changes
by 4 mA is
A. 4 mA
B. 12 mA
C. 24 mA
D. 36 mA

Answer: D

- Watch Video Solution

32. Given below are four logic gates symbol (figure). Those for OR, NOR and NAND are respectively
A. $1,4,3$
B. 4, 1, 2
C. 1, 3, 4
D. 4, 2, 1

Answer: C

- Watch Video Solution

33. The combination of gates shown here are equivalent to

A. OR gate and an AND gate respectively

B. AND gate and a NOT gate respectively

C. AND gate and an OR gate respectively
D. OR gate and a NOT gate respectively

Answer: A

D Watch Video Solution

34. Give Boolean expression and Truth table for NOR gate.

$$
\text { A. } C=A+B
$$

$$
\text { B. } C=\overline{A+B}
$$

C. $C=A . B$
D. $C=\overline{A . B}$

Answer: B

D Watch Video Solution

35. To get an output of 1 form the circuit shown in figure the input must be :-

A. $A=0, B=1, C=0$
B. $A=1, B=0, C=0$
C. $A=1, B=0, C=1$
D. $A=1, B=1, C=0$

Answer: C

D Watch Video Solution
36. The combination of the gates shown in the
figure produces

A. NOR gate
B. OR gate
C. AND gate
D. XOR gate
37. The following truth table corresponds to
the logic gate
$\left|\begin{array}{ccc}A & B & X \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$
A. NAND

B. OR

C. AND
D. XOR

Answer: B
(Watch Video Solution
38. The symbol represents :-

D Watch Video Solution
39. The conductivity of a semiconductor increases with increase in temperature because
A. number density of free current carriers increases
B. relaxation time increases
C. both number density of carriers and
relaxation time decreases but effect of
decrease in relaxation time is much less
than increase in number density.
D. number density of current carriers
increases, relaxation time decreases but
effect of decrease in relaxation time is
much less than increase in number density

Answer: D

40. In figure , assuming the diodes to be ideal ,

A. D_{1} is forward biased, D_{2} is reverse
biased and hence current flows from A to B
B. D_{2} is forward biased, D_{1} is reverse biased and hence no current flows from

C. D_{1} and D_{2} are both forward biased and

 hence current flows from A to BD. D_{1} and D_{2} are both reverse biased and

hence no current flows from A to B and
vice-versa

Answer: B

D Watch Video Solution

41. Hole is
A. an anti-particle of electron
B. a vacancy created when an electron
leaves a covalent bond
C. absence of free electrons
D. an artificially created particle

Answer: B

- Watch Video Solution

42. A 220 V AC supply is connected between points A and B. What will be the potential difference V across the capacitor ?

A. 220 V
B. 110 V
C. OW
D. $220 \sqrt{2} V$

Answer: D

D Watch Video Solution

43. In a common emitter transistor, the current gain is 80 . What is the change in collector current, when the change in base current is $250 \mu A$?
A. $80 \times 250 \mu A$
B. $(250-80) \mu A$
C. $(250+80) \mu A$

D. $250 \mu A$

Answer: A

D Watch Video Solution

44. In the following circuit of $P N$ junction
diodes D_{1}, D_{2} and D_{3} are ideal then i is

A. E / R
B. $E / 2 R$
C. $2 E / 3 R$
D. zero

Answer: A

Watch Video Solution

45. The adjoining diagram shows the biasing of an npn-transistor in common emitter configuration used in an amplifer. The design of the transistor is such that 98% of the charge carries passing through the emitter reach the collector. If base current changes from $50 \mu A$ to $100 \mu A$, then the corresponding change in the voltage across the load
resistance R_{L} will be

A. 0.25 V
B. 0.5 V
C. 24.5 V
D. 49.0 V

Answer: C

D View Text Solution
46. Two ideal diodes D_{1} and D_{2} are connected with the battery of 5 volt as shown in figure.

Then the current through diode D_{1} is

A. 12.5 mA
B. 25 mA

C. zero

D. 50 mA

Answer: B

D Watch Video Solution

47. Write the truth table for the circuit given
in Fig., consisting of NOR gates only. Identify
the logic operations (OR, AND, NOT) performed
by two circuits.

A. NOT
B. AND
C. OR
D. None of these

Answer: A

- Watch Video Solution

48. In half - wave rectification, what is the output frequency, if the
input frequency is 50 Hz ? What is the output
frequency of a full - wave rectifier
for the same input frequency?
A. 25 Hz
B. 50 Hz
C. 75 Hz
D. 100 Hz

D Watch Video Solution

49. The circuit shown in the figure acts as

A. OR gate
B. AND gate
C. NOT gate
D. NAND gate

- Watch Video Solution

50. The current gain for common emitter amplifier is 69 . If the emitter current is 7.0 mA , find (i) base current and (ii) collector current.
A. 4 mA
B. 4.4 mA
C. 3.8 mA
D. zero

- Watch Video Solution

51. In the figure, D is an ideal diode and an alternating voltage of peak value 10 volts si connected as input V_{1}. Which of the following figures represents the correct waveform of output voltage V_{0} ?

Answer: D

D View Text Solution

52. Regarding transistor what is not correct.
A. For transistor to act as an amplifier, EB junction should be forward biased and

CB junction should be reverse biased
B. $l_{E}=l_{B}+l_{C}$ in any configuration and
for any transistor
C. $\alpha=\frac{\beta}{1+\beta} \quad$ where $\quad \alpha \quad$ and $\beta \quad$ are
transistor parameters
D. $\beta=\frac{\alpha}{1+\alpha}$

Answer: D
53. The truth table for the circuit shown in the
figure is

A. | B. $\left\|\begin{array}{lll}A & B & Y \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right\|$ |
| :--- |
| $A=B$ |\(\left|\begin{array}{lll}1 \& 1 \& 0

0 \& 0 \& 1

1 \& 0 \& 0

0 \& 1 \& 1\end{array}\right|\)

$$
\begin{aligned}
& \text { C. }\left|\begin{array}{lll}
A & B & Y \\
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \\
& \text { D. }\left|\begin{array}{lll}
A & B & Y \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right|
\end{aligned}
$$

Answer: D

- Watch Video Solution

54. The diode D shown in the circuit is governed by the V -I relation $V=(0.7+100 I)$

Volt. The current supplied by the battery is

A. 0.3 A
B. 0.2 A
C. 0.15 A
D. 0.1 A

Answer: D

D View Text Solution
55. A sample of n-type silicon
A. Contains an excess of free electrons
therefore it is negatively charged
B. Contains an excess of free electrons and
it is electrically neutral
C. Predominantly contains trivalent
impurities
D. Contains only pentavalent element

Answer: B

- Watch Video Solution

More Than One Option Is Correct

1. When an electric field is applied across a semiconductor,
A. electrons move from lower energy level
to higher energy level in the conduction
band
B. electrons move from higher energy level
to lower energy level in the conduction
band
C. holes in the valence band move from
higher energy level to lower energy level
D. holes in the valence band move from
lower energy level to higher energy level

Answer: A::C

D Watch Video Solution

2. Consider an n-p-n transistor with its base emitter junction forward biased and collector base junction reverse biased. Which of the following statements are true?
A. Electrons crossover from emittor
statements are true?
B. Holes move from base to collector
C. Electrons move from emittor to base
D. Electrons from emitter move out of base
without going to the collector

Answer: A::C

- Watch Video Solution

3. In an n-p-n transistor circuit, the collector currents is 10 mA . If 95 per cent of the electrons emitted reach the collector, which of the following statements are true?
A. The emitter current will be 8 mA
B. The emitter current will be 10.53 mA
C. The base current will be 0.53 mA

D. The base current will be 2 mA

Answer: B::C

D Watch Video Solution

