©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS

(HINGLISH)

SOUND WAVES

Example

1. Corresponding to displacement equation,
$y=A \sin (k x+\omega t)$
of a longitudinal wave make its pressure and density wave also. Bulk modulus of the medium is B and density is p.

- Watch Video Solution

2. (a) what is the displacemant amplitude for a sound wave having a frequency of 100 Hz and
a pressure amplitude of 10 pa ? (b) The displacement amplitude of a sound wave of frequency 300 Hz is $10^{-7} \mathrm{~m}$. what is the pressure amplitude of this wave ? speed of
sound in airb is 340 ml s and density of a ir is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

D Watch Video Solution

3. Calculate the speed of longitudinal waves in
the following gases at $0^{\circ} C$ and
$1 \operatorname{atm}\left(=10^{5} \mathrm{pa}\right):$
(a) oxygen for which the bulk modulus is
1.41×10^{5} pa and density is $1.43 \mathrm{~kg} / \mathrm{m}^{3}$.
(b) helium for which the bulk modulus is
1.7×10^{5} pa and density is $0.18 \mathrm{~kg} / \mathrm{m}^{3}$.

Watch Video Solution

4. Find speed of sound in hydrogen gas at 27°
. Ratio C_{p} / C_{V} for H_{2} is 1.4 . Gas constant
$R=8.31 J / m o l-K$.

D Watch Video Solution

5. At what temperature will the speed of sound in hydrogen be the same aas in oxygen at 100° ? Molar Masses of oxygen and hydrogen are in the ratio $16: 1$.

- Watch Video Solution

6. For a person with normal hearing, the faintest sound that can be at a frequency of 400 Hz has pressure amplitude of about $6.0 \times 10^{-5} \mathrm{~Pa}$. Calculate the corresponding intensity in W / m^{2}. Take speed of sound in air as $344 \mathrm{~m} / \mathrm{s}$ and density of air $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
7. Find intersity of sound in $d B$ if its intensity in $W a / m^{2}$ is 10^{-10}.

D Watch Video Solution

8. A point source of sound emits a constant power with intensity inversely proportinal to the square of the distance from the source . By how many decible does the sound intensity level drops when you move from point P_{1} to
P_{2} ? Distance of P_{2} from the source is two times the distance of source from P_{1}.

D Watch Video Solution

9. Two sound sources S_{1} and S_{2} emit pure sinussoidal waves in phase. If the speed of sound is $350 \mathrm{~m} / \mathrm{s}$, then

(a) for what frequencies does constructive interference occur at point P ?
(b) for what frequencies does destructive interference occur at point P ?

- Watch Video Solution

10. Third overtone of a closed organ pipe is in
unison with fourth harmonic of an open organ
pipi. Find the ratio of the lengths of the pipes.

D Watch Video Solution

11. An open organ pipe has a fundamental frequency of 300 HZ . The first overtone of a closed organ pipe has the same frequency as the first overtone of this open pipe. How long is each pipe? (Speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$)

Watch Video Solution

12. A cylindrical tube, open at both ends, has a
fundamental frequency f in air. The tube is dipped vertically in water so that half of its
length is in water. The fundamental frequency
of the air column is now
(a) $f / 2$
(b) $3 f / 4$
(C) f
(d) $2 f$

D Watch Video Solution

13. A closed organ pipe of length L and an open organ pipe contain gass of densities ρ_{1} and ρ_{2}, respectively. The compressibility of
gass are equal in both the pipes. Both the pipes are vibrating in their first overtone with same frequency. The length of the open orange pipe is
(a) $\frac{L}{3}$
$4 l$
$\overline{3}$
(c) $\frac{4 l}{3} \sqrt{\frac{\rho_{1}}{\rho_{2}}}$
(d) $\frac{4 l}{3} \sqrt{\frac{\rho_{2}}{\rho_{1}}}$
14. Two tuning forks A and B produce 6 beats per second. Frequency of A is $300 H_{Z}$. When
B is slightly loaded with wax, beat frequency decreases . Find original frequency of B.

- Watch Video Solution

15. The string of a violin a note of $400 \mathrm{H}_{Z}$ at its
correct tension. The string is bit taut and produces 5 beats per second with a tuning
fork of frequency $400 H_{Z}$. Find frequency of the note emitted by this taut string .

D Watch Video Solution

16. Two tuning forks P and Q when set
vibrating, give 4 beats per second. If a prong of the fork P is filed, the beats are reduced to

2 per second. If a prong of the fork P is filed,
the beats are reduced to 2 per second.

Determine the original frequency of P, if that of Q is $250 H_{Z}$
17. A car approaching a crossing C at a speed of $20 \mathrm{~m} / \mathrm{s}$ sounds a horn of frequency $500 \mathrm{H}_{Z}$ when 80 m from the crossing . Speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$. What frequency is heard by an observer (at rest) 60 m from the crossing on the straight road which crosses car road at right angles?

- Watch Video Solution

18. A siren emitting a sound of frequency
$1000 H_{Z}$ moves away from you towards a cliff at a speed of $10 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sounds, you
hear coming directly from the sirven ?
(b) What is the frequency of sounds you hear reflected off the cliff. Speed of sound in air is $330 m / s ?$

D Watch Video Solution

19. A whistle of frequency $540 \mathrm{H}_{Z}$ rotates in a circle of radius $2 m$ at a linear speed of $30 \mathrm{~m} / \mathrm{s}$.

What is the lowest and highest frequency heard by an observer a long distance away at rest with respect to the centre of circle ? Take speed of sound of sound in air as $330 \mathrm{~m} / \mathrm{s}$.

Can the apparent frequency be ever equal to actual ?

- Watch Video Solution

20. Two tuning forks with natural frequencies
$340 H_{Z}$ each move relative to a stationary
observer. One forks moves away from the oberver while the other moves towards him at
the same speed. The observer hearts beats of
frequency $3 H_{Z}$. Find the speed the of the tuning fork (velocity of sound in air is $340 \mathrm{~m} / \mathrm{s})$.

- Watch Video Solution

1. The first overtone of an open orgen pipe beats with the first ouertone of a closed orgen
pipe with a beat frequency of $2.2 H_{Z}$. The fundamental frequency of the closed organ pipe is $110 H_{Z}$. Find the lengths of the pipes. Speed of sound in air $u=330 m / s$.

D Watch Video Solution

2. A vibrating string of certain length l under a tension T resonates with a mode
corresponding to the first overtone (third harmonic) of an air column of length 75 cm inside a tube closed at one end. The string also generates 4 beats $/ s$ with a tuning fork of frequency n. Now when the tension of the string is slightly increased the number of beats reduces to 2 per second. Assuming the velocity of sound in air to $340 \mathrm{~m} / \mathrm{s}$, the frequency n the tuning fork in H_{Z} is
(a) 344
(b) 336
(c) 117.3
(d) 109.3

- Watch Video Solution

3. Two identical straight wires are stretched so
as to products 6 beats /s when vibrating simultaneously. On changing the tension slightly in one of them, the beat frequency remains unchanged. Denoting by T_{2}, T_{2} the higher and the lower initial tension in the strings, then it could be said that that while making the above changes in tension
(a) T_{2} was decreased
(b) T_{2} was decreased
(c) T_{1} was decreased
(d) T_{1} was decreased

D Watch Video Solution

4. A sonometer wire under tension of $64 N$ uibrating in its fundamental mode is in resonance with a uibrating tuning fork. The
uibrating portion of the sonemether wire has
a length of 10 cm and mass of 1 g . The
uibrating tuning fork is now moved away from
the uibrating wire with a constant speed and
an observer standing near the sonometer hears one beat per second. Calculate the speed with which the tuning fork is moved, if speed of sound in air is $300 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

Example Type 2

1. A siren emitting a sound of frequency $1000 H_{Z}$ moves away from you towards a cliff at a speed of $10 \mathrm{~m} / \mathrm{s}$.
(a) What is the frequency of the sound you hear coming directly from the sirven ?
(b) What is the frequency of sounds you hear reflected off the cliffb ?
(c) What beat frequency would you hear ? Take the speed of sound in air as $330 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

2. A sound wave of frequency f travels
horizontally to the right. It is teflected from a
larger vertical plane surface moving to left
with a speed v. the speed of sound in medium
is c
(a) The number of waves striking the surface per second is $\frac{f(c+v)}{c}$
(b) The wavelength of reflected wave is $\frac{c(c-v)}{f(c+v)}$
(c) The frequency of the reflected wave is $f((c+v))$
$(c+v)$
(d) The number of beats heard by a stationary
listener to the left of the reflecting surface is $\frac{v f}{c-v}$

Type 2

1. A source of sound of frequency f is approaching towards a wall with speed v_{s}.

Speed of sorce is v. Three obseruers O_{1}, O_{2} and O_{3} are at different locations as shows.

Find the beat frequency as obserued by three

D View Text Solution

Example Type 3

1. A tuning fork of $512 H_{Z}$ is used to produce
resonance in a resonance tube expertiment.

The level of water at first resonance is 30.7 cm and at second resonance is 63.2 cm . The error in calculating velocity of sound is
(a) $204.1 \mathrm{~cm} / \mathrm{s}$
(b) $110 \mathrm{~cm} / \mathrm{s}$
(c) $58 \mathrm{~cm} / \mathrm{s}$
(d) $280 \mathrm{~cm} / \mathrm{s}$

D Watch Video Solution

2. In the experinment for the determinnation
of the speed of sound in air using the
resonance column method, the length of the air column that resonates in the fu ndamental mode, with a tuning fork is $0.1 m$. When this length is changed to $0.35 m$, the same tuning fork resonates with the first overtone.

Calculate the end correction.
(a) 0.012 m
(b) 0.0025 m
(c) 0.05 m
(d) 0.024 m

D Watch Video Solution
3. A student is performing the experiment of resonance column. The diameter of the column tube is 4 cm . The frequence of the tuning fork is $512 H_{Z}$. The air temperature is $38^{\circ} \mathrm{C}$ in which the speed of sound is $336 \mathrm{~m} / \mathrm{s}$.

The zero of first meter scale coincide with theb top nend of the resonance column tube . When the first resonance occurs, the reading of the water level in the column is
(a) 14.0 cm
(b) 15.2 cm
(c) 16.4 cm
(d) 17.6 cm

- Watch Video Solution

Example Type 4

1. A source of frequency f is moving towards
the observer along the line $S O$ with a constant velocity v_{s} as shown in figure. Plot f^{\prime}
versus t graph . Where f^{\prime} is the changed frequency observed by the observer.
$s \quad v_{s} \quad 0$
2. A whistle emitting a sound of frequency
$440 h_{z}$ is tied to a string of $1.5 m$ length and roated with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$ in
the horizontal plane. Calculate the range of frequencies heard by an observer stationed at a larger distance from the whistle .(Speed of sound $=330 m / s)$.

- Watch Video Solution

Type 5

1. Repeat example -11 if source does not move along the line $S O$.

D View Text Solution

2. Three sound sources A, B and C have frequencies 400,401 and $402 H_{Z}$, respectively.

Cacluated the number of beats noted per second.

D View Text Solution

Miscellaneous Examples

1. The water level in a vertical glass tube 1.0 m
long can be adjusted to any position in the tube.A tuning fork vibrating at $660 H_{Z}$ is held
just over the open top end of the tube. At
what positions of the water level wil ther be in resonance? Speed of sound is $330 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

2. A tube $1.0 m$ long is closed at one end. A stretched wire is placed near the open end.

The wire is 0.3 m long and a mass of 0.01 kg . It
is held fixed at both ends and vibrates in its
fundamental mode. It sets the air column in
the tube into vibration at its fundamental
frequency by resonance. Find
(a) the frequency of oscillation of the air column and
(b) the tension in the wire.

Speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

3. Two coherent narrow slits emitting sound of wavelength λ in the same phase are placed parallet to each other at a small separation of 2λ. The sound is delected by maving a delector on the screen at a distance
$D(\gg \lambda)$ from the slit S_{1} as shows in figure. Find the distance y such that the intensity at P is equal to intensity at O.

D Watch Video Solution

4. A fighter plane moving in a vertical loop with constant speed of radius R. The center
of the loop is as a height h directly overhead of an observer standing on the ground. The observer receives maximum frequency of the sound produced by the plane when it is nearest to him . Find the speed of the plane.

Velocity of sound in air is v.

- Watch Video Solution

5. A source of sound of frequency $1000 H_{Z}$ moves unifornly along a straight line with velocity 0.8 times velocity of sound . An
observer is located at a distance $l=250 \mathrm{~m}$
from this line. Find
(a) the frequency of the sound at instant when the source is closest to the observer.
(b) the distance of the source when he observer no change in the frequency.

D Watch Video Solution

6. The air column in a pipe closed at one end is
made to vibrate in its second overtone by a
tuning fork of frequency 440 Hz . The speed of
sound in air is $330 \mathrm{~ms}^{-1}$. End corrections may
be neglected. Let P_{0} denote the mean
pressure at any point in the pipe, and ΔP the maximum amplitude of pressure variation.
(a) What the length L of the air column.
(b) What is the amplitude of pressure variation at the middle of the column?
(c) What are the maximum and minimum pressures at the open end of the pipe?
(d) What are the maximum and minimum pressures at the closed end of the pipe?
7. At a distance $20 m$ from a point source of sound the loudness level is $30 d B$. Neglecting the damping, find
(a) the loundness at 10 m from the source
(b) the distance from the source at which sound is not heard.

D Watch Video Solution

8. A boat is travelling in a river with a speed
$10 \mathrm{~m} / \mathrm{s}$ along the stream flowing with a speed
$2 m / s$. From this boat, a sound transmitter is
lowered into the river throught a rigid
support. The wavelength of the sound emitted
from the transmitter inside the water is
14.45 mm . Aassume that attenuation of
sound in water and air is neglisible.
(a) What will be the frequency delected by a receiver kept inside the river downstream ?
(b) The transmitter and the reciver are now pulled up into air. The air is blowing with a speed $5 m / s$ in the direction opposite the river stream. Determine the frequency of the sound delected by the reciver.
(Temperature of the air and water $=20^{\circ} C$,
Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$, Gas constant, $\quad R=8.31 \mathrm{~J} / \mathrm{mol}-K \quad, \quad$ Mean molecular mass of air $=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}$, C_{p} / C_{V} for air $=1.4$
(D) Watch Video Solution

Level 1 Assertion And Reason

1. Assertion : A closed pipe and an open organ
pipe are of same length. Then, neither of their
frequencies can be same.

Reason : In the above case fundamental frequency of closed organ pipe will be two times the fundamental frequency of open organ pipe.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: C

2. Assertion : A sound source is approaching towards a stationary observer along the tine joining them. Then, apparent frequency to the observer will go on increasing.

Reason : If there is no relative motion between
source and observer, apparent frequency is equal to the actual frequency.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: D

3. Assertion : In longitudinal wave pressure is maximum at a point where displacement is zero .

Reason : There is a phase difference of $\frac{\pi}{2}$ between $y(x, t)$ and $\Delta P(x, t)$ equation in case of longitudinal wave.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: D

D Watch Video Solution

4. Assertion : A train is approachinng towards
a hill . The driver of the train will hear beats.
Reason : Apparent frequency of reflected sound observerd by driver will be more than
the frequency of direct sound observered by him.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: A

D Watch Video Solution
5. Assertion : Sound level increases linearly with intensity of sound.

Reason : If intensity of sound is doubled, sound level increases approximately $3 d B$.
A. If both Asseration and Reason are true an dthe Reason is correct explanation of the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct
explanation of Asseration.

C. If Asseration is true, but the Reason is

false.
D. If Asseration is false but the Reason is
true.

Answer: D

D Watch Video Solution

6. Assertion : Speed of sound in gass is independent of pressure of gas.

Reason : With increase in temperature of gas speed of sound will increase.
A. If both Asseration and Reason are true an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.

D. If Asseration is false but the Reason is

 true.
Answer: D

- Watch Video Solution

7. Assertion : Beat frequency between two tuning forks a and B is $4 H_{Z}$. Frequency of A
is greater then the frequency of B. When a is
loaded with wax, beat frequency may increase or decrease.

Reason : When a tuning fork is loaded with wax, its frequency decreases.
A. If both Asseration and Reason are true an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.

D. If Asseration is false but the Reason is

 true.Answer: B

D Watch Video Solution

8. Assertion : Two successive frequency of an organ pipe are $450 H_{Z}$ and $750 H_{Z}$. Then, this pipe is a closed pipe.

Reason : Fundamental frequency of this pipe is
$150 h_{Z}$.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct
explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: B

D Watch Video Solution

9. Assertion : Fundamental frequency of a narrow pipe is more.

Reason : According to laplace end correction if radius of pipe is lass, frequency should be more.
A. If both Asseration and Reason are true an dthe Reason is correct explanation of
the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct
explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: A

D Watch Video Solution
10. Assertion : In the experiment of finding speed of sound by resonance tube method, as
the level of water is lowered, wavelength increases.

Reason : By lowering the water level number of loops increases.
A. If both Asseration and Reason are true
an dthe Reason is correct explanation of the Asseration.
B. If both Asseration and Reason are true
but Reason is not the correct explanation of Asseration.
C. If Asseration is true, but the Reason is
false.
D. If Asseration is false but the Reason is
true.

Answer: D

D Watch Video Solution

Level 1 Objective

1. Velocity of sound in vacuum is
A. equal to $330 m / s$
B. grater then $330 m / s$
C. less then $330 m / s$

D. None of these

Answer: D

2. Longitudinal waves are possible in

A. solids
B. liquids
C. gases

D. All of these

Answer: D

3. If the fundamental frequency of a pipe closed at one is $512 H_{Z}$. The frequency of a pipe of the same dimension but open at both ends will be
A. $1024 h_{Z}$
B. $512 H_{Z}$
C. $256 H_{Z}$
D. $128 H_{Z}$

Answer: A
4. The temperature at which the velocity of sound in oxygen will be same as that of nitrogen at $15^{\circ} \mathrm{C}$ is
A. $112^{\circ} C$
B. $72^{\circ} \mathrm{C}$
C. $56^{\circ} C$
D. $17^{\circ} \mathrm{C}$

Answer: C
5. A closed organ pipe is excited to vibrate in the third overtone. If is obertone that there are
A. three nodes and three antinodes
B. three nodes and four antinodes
C. four nodes and three antinodes
D. four nodes and four antinodes

Answer: D
6. When temperature is increases, the frequency of organ pipe
A. increases
B. becreases
C. remains same
D. Nothing can be said

Answer: A
7. When a sound wave travels from water to air , it
A. bends towards normal
B. bends away from normal
C. may bend in any direction
D. date insufficient

Answer: A

- Watch Video Solution

8. A closed organ pipe and an open organ pipe are tuned to the same fundamental frequency.

The ratio of their lengths is
A. 1: 2
B. $2: 1$
C. $1: 4$
D. $4: 1$

Answer: A
9. A sonometer wire under a tension of 10 kg weight is in unsion with a tuning fork of frequency $320 H_{Z}$. To make the wire vibrate in unsion with a tuning fork of frequency $256 h_{Z}$, the tension should be altered by
A. 3.6 kg decreased
B. 3.6 kg increased
C. 6.4 kg decreased
D. 6.4 kg increased

Answer: A

D Watch Video Solution

10. A tuning fork of frequency $256 h_{Z}$ is moving towards a well with a velocity of $5 \mathrm{~m} / \mathrm{s}$. If the
speed of sound is $330 \mathrm{~m} / \mathrm{s}$, then the number of beats heard per second by a stationary observer lying between tuning fork and the well is
A. 2
B. 4
C. zero
D. 8

Answer: C

D Watch Video Solution

11. Two sound waves of wavelength $1 m$ and $1.01 m$ in a gas produce 10 beats in 3 s . The velocity of sound in the gas is
A. $330 m / s$
B. $337 m / s$
C. $360 \mathrm{~m} / \mathrm{s}$
D. $300 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

12. when a source is going away from a stationary observer with the velocity equal to
that of sound in air , then the frequency heard
by observer is n times the original frequency.

The value of n is
A. 0.5
B. 0.25
C. 1.0
D. No sound is heard

Answer: A
(Watch Video Solution
13. When interference is produced by two progressive waves of equal frequencies, then
the maximum intensity of the resulting sound are N times the intensity of each of the component waves. The value of N is
A. 1
B. 2
C. 4
D. 8

Answer: C
14. A tuning fork of frequency $500 \mathrm{H}_{Z}$ is sounded on a resonance tube. The first and second resonances are obtined at 17 cm and 52 cm . The velocity of sound is
A. $170 \mathrm{~m} / \mathrm{s}$
B. $350 \mathrm{~m} / \mathrm{s}$
C. $520 \mathrm{~m} / \mathrm{s}$
D. $850 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

15. A vehicle, with a horn of frequency n is moving with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in a direction prependicular to the straight line joining the observer and the vehicle . The observer perceives the sound to have a grequency $\left(n+n_{1}\right)$. If the sound velocity in air is $330 m / s$, then
A. $n_{1}=10 n$
B. $n_{1}=0$
C. $n_{1}=0.1 n$
D. $n_{1}=-0.1 n$

Answer: B

D Watch Video Solution

16. How many frequencies below $1 k H_{Z}$ of natural oscillations of air column will be
produced if a pipe of length $1 m$ is closed at one end? [velocity of sound in air is $340 \mathrm{~m} / \mathrm{s}$]
A. 3
B. 6
C. 4
D. 8

Answer: B
(Watch Video Solution
17. a sound source emits frequency of $180 h_{Z}$
when moving towards a rigid wall with speed
$5 \mathrm{~m} / \mathrm{s}$ and an observer is moving away from with speed $5 \mathrm{~m} / \mathrm{s}$. Both source and observer moves on a straight line which is perpendicular to the wall. The number of beatd per second heard by the observer will be [speed of sound $=335 \mathrm{~m} / \mathrm{s}$]
A. 5 beats $/ s$
B. 10beats /s
C. 6beats /s
D. 8beats $/ s$

Answer: A

D Watch Video Solution

18. Two sound waves of wavelengths λ_{1} and
$\lambda_{2}\left(\lambda_{2}>\lambda_{1}\right)$ produces nbeats $/ s$, the speed of sound is

$$
\begin{aligned}
& \text { A. } \frac{n \lambda_{1} \lambda_{2}}{\lambda_{2}-\lambda_{1}} \\
& \text { B. } n\left(\frac{1}{\lambda_{1}}-\frac{1}{\lambda_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } n\left(\lambda_{2}-\lambda_{1}\right) \\
& \text { D. } n\left(\lambda_{2}+\lambda_{1}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

19. A, B and C are three tuning forks.

Frequency of A is $350 H_{Z}$. Beats produced by
A and B are $5 / s$ and by B and C are $4 / s$.
When a wax is put on A beat frequency between A and B is $2 H_{Z}$ and between a and
C is $6 H_{z}$. Then, frequency of B and C respectively, are
A. $355 H_{Z}, 349 h_{Z}$
B. $345 H_{Z}, 341 H_{Z}$
C. $355 H_{Z}, 341 H_{Z}$
D. $345 H_{Z}, 349 H_{Z}$

Answer: A::B::C::D

- Watch Video Solution

20. The first resonance length of a resonance tube is 40 cm and the second resonance
length is 122 cm . The third resonance length of the tube will be
A. 200 cm
B. 202 cm
C. 203 cm
D. 204 cm

Answer: D

21. Two identical wires are streched by the same tension of 100 N and each emits a note of frequency $200 H_{Z}$. If the tension in one wire is increased by $1 N$, then the beat frequency is
A. $2 H_{Z}$
B. $\frac{1}{2} H_{Z}$
C. $1 H_{Z}$
D. None of these

Answer: C

D Watch Video Solution

22. A tuning fork of frequency 340 Hz is excited
and held above a cylindrical tube of length

120 cm . It is slowly filled with water. The minimum height of water column required for resonance to be first heard(Velocity of sound

$$
\left.=340 \mathrm{~ms}^{-1}\right) \text { is. }
$$

A. 25 cm
B. 95 cm
C. 75 cm
D. 45 cm

Answer: D

- Watch Video Solution

23. In a closed end pipe of length 105 cm , standing waves are set up corresponding to the third overtone. What distance from the
closed end, amongst the following is a pressure node?
A. 20 cm
B. 60 cm
C. 85 cm
D. 45 cm

Answer: D
(Watch Video Solution
24. Oxygen is 16 times heavier than hydrogen.

At NTP equal volumn of hydrogen and oxygen are mixed. The ratio of speed of sound in the mixture to that in hydrogen is
A. $\sqrt{8}$
B. $\sqrt{\frac{1}{8}}$
C. $\sqrt{\frac{2}{17}}$
D. $\sqrt{\frac{32}{17}}$

Answer: C

25. A train is moving towards a stationary observer. Which of the following curve best represents the frequency recived by observer f aas afunction of time?
A. `(\#3DCP_V03_C19_E01_035_Q01.png" width="30\%"> B. `(\#3DCP_V03_C19_E01_035_Q02.png"
width="30\%">

C. ` (\#3DCP_V03_C19_E01_035_Q03.png"

 width="30\%">
D. `(\#3DCP_V03_C19_E01_035_Q04.png"

width="30\%">

Answer: B

D Watch Video Solution

26. A closed organ pipe and an open organ pipe of same length produce 4 beats when they are set into vibrations simultaneously. If
the length of each of them were twice their initial lengths, the number of beats produced will be
A. 2
B. 4
C. 1
D. 8

Answer: A

D Watch Video Solution
27. One train is approaching an observer at rest and another train is receding from him with the same velocity $4 m / s$. Both trains blow whistles of same frequency of $243 \mathrm{H}_{Z}$.

The beat frequency in H_{Z} as heard by observer is (speed of sound in air $=320 \mathrm{~m} / \mathrm{s}$)
A. 10
B. 6
C. 4
D. 1

Answer: B

- Watch Video Solution

28. Speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$. A pipe closed at one end has a length of 1 m and there is another pipe open at both ends having a length of 1.6 m . Neglecting end corrections, both the air columns in the pipes can resonate for sound of frequency
A. $80 H_{Z}$
B. $240 h_{Z}$
C. $320 h_{Z}$
D. $400 H_{Z}$

Answer: D

- Watch Video Solution

29. Four sources of sound each of sound level
$10 d B$ are sounded together in phase, the resultant intensity level will be $\left(\log _{10} 2=0.3\right)$
A. $40 d B$
B. $26 d B$
C. $22 d B$
D. $13 d B$

Answer: C

D Watch Video Solution

30. A longitudinal sound wave given by $p=2.5 \sin . \frac{\pi}{2}(x-600 t)\left(p\right.$ is in $N / m^{2}, \mathrm{x}$ is in metal and t is in second) is sent down a
closed a orgain pipe. If the pipe vibrates in its second overtone, the length of the pipe is
A. $6 m$
B. $8 m$
C. $5 m$
D. 10 m

Answer: C
(Watch Video Solution
31. Sound waves of frequency $600 H_{Z}$ fall normally on perfectly reflecting wall. The distance from the wall at which the air particles have the maximum amplitude of vibration is (speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$)
A. 13.75 cm
B. 40.25 cm
C. 70.5 cm
D. 60.75 cm

- Watch Video Solution

32. The wavelength of two sound waves are

49 cm and 50 cm , respectively. If the room temprature is $30^{\circ} \mathrm{C}$, then the number of beats producted by them is approximatelt (velocity of sound in air at $30^{\circ} \mathrm{C}=332 \mathrm{~m} / \mathrm{s}$)
A. 6
B. 10
C. 13

D. 18

Answer: C

D Watch Video Solution

33. Two persons A and B, each carring a source of frequency $300 H_{Z}$, are standing a
few metre apart. A starts moving towards B
with velocity $30 \mathrm{~m} / \mathrm{s}$. If speed of sound is
$300 m / s$, which of the following is true?
A. (a) Number of beats heard by A is heigher than that heard by B
B. (b) The number of beats heard by B are $30 H_{Z}$
C. Both (a) and (b) are correct
D. Both (a) and (b) are wrong

Answer: D

D Watch Video Solution

34. A fixed source of sound emitting a certain
frequency appears as f_{a} when the observer is
approaching the source with v_{0} and f_{r} when
the observer recedes from the source with the
same speed. The frequency of source is

$$
\begin{aligned}
& \text { A. } \frac{f_{r}+f_{a}}{2} \\
& \text { B. } \frac{f_{r}-f_{a}}{2} \\
& \text { C. } \sqrt{f_{a} f_{r}} \\
& \text { D. } \frac{2 f_{r} f_{a}}{f_{a}+f_{a}}
\end{aligned}
$$

Level 1 Subjective

1. Dentermine the speed of sound waves in
water, and find the wavelength of a wave
having a frequency of $242 \mathrm{H}_{Z}$. Take
$B_{\text {water }}=2 \times 10^{9} \mathrm{~Pa}$.
A. $5.84 m$
B. $11.68 m$
C. $1414 m$
D. none

Answer: A

- Watch Video Solution

2. If the source and reciver are at rest realative
to each other but the wave medium is moving
realative to them, will the reciver delect wavelength or frequency shift.
3. Using the fact that hydrogen gas consister of diatomic molecules with
$M=2 k g / K-m o l$. Find the speed of sound in hydrogen at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

4. About how many times more intense will
the normal ear perceiver a sound of $10^{6} \mathrm{~W} / \mathrm{m}^{2}$ than one of $10^{9} \mathrm{~W} / \mathrm{m}^{2}$?
5. A $300 \mathrm{H}_{Z}$ source, an observer and a wind are moving as shows in the figure with respect to
the ground. What frequency is heard by observer ? Take speed of sound in air = $340 \mathrm{~m} / \mathrm{s}$.

$$
\stackrel{20 \mathrm{~m} / \mathrm{s}}{\stackrel{\text { observer }}{ }} \longrightarrow 5 \mathrm{~m} / \mathrm{s} \xrightarrow[10 \mathrm{~m} / \mathrm{s}]{\text { source }}
$$

- Watch Video Solution

6. A person standing between two parallel hills
fires a gun. He hears the first echo after $\frac{3}{2} \mathrm{~s}$, and a second echo after $\frac{5}{2}$ s. If speed of sound is $332 \mathrm{~m} / \mathrm{s}$, Calculate the distance between the hills. When will he hear the third echo?

- Watch Video Solution

7. Helium is a monatomic gas that has a density of $0.179 \mathrm{~kg} / \mathrm{m}^{3}$ at a pressure of 76 cm of mercury and a temperature of $0^{\circ} \mathrm{C}$. Find
the speed of compressional waves (sound) in helium at this temperature and pressure.

D Watch Video Solution

8. (a) In a liquid with density $1300 \mathrm{~kg} / \mathrm{m}^{3}$, longitudinal waves frequency $400 H_{Z}$ are found to have wavelength 8.00 m . Calculate the bulk modulus of the liquid. (b) A metal bar with a length of 1.50 m has density $6400 \mathrm{~kg} / \mathrm{m}^{3}$. Longitudinal sound waves take $3.90 \times 10^{-4} \mathrm{~s}$ to travel from one end of the
bar to the other. What is young's modulus for this metal?

- Watch Video Solution

9. What must be the stress (F / A) in a stretched wire of a material whose Young's modulus is Y for the speed of Ionitudinal waves equal to 30 times the speed of transverese waves?
10. A gas is a mixture of two parts by volume of hyprogen and part by volume of nitrogen at $S T P$. If the velocity of sound in hydrogen at $0^{\circ} C$ is $1300 \mathrm{~m} / \mathrm{s}$. Find the velocity of sound in the gaseous mixure at $27^{\circ} \mathrm{C}$.

D Watch Video Solution

11. The explosion of a fire cracker in the air at
the a heigth of 40 m produced a 100 dB sound
level at ground below. What is the

Assuming that it radiates as a point source.

D Watch Video Solution

12. (a) What is the intensity of a $60 d B$ sound ?
(b) If the sound level is $60 d B$ close to a speaker that has an area of $120 \mathrm{~cm}^{2}$. What is the acoustic power output of the speaker?

- Watch Video Solution

13. (a) By what factor must the sound intensity
be increased the sound intensity level by $13.0 d B$? (b) Explain why you do not need to know the original sound intersity?

- Watch Video Solution

14. The speed of a certain compressional wave in air at standard temperature and pressure is $330 \mathrm{~m} / \mathrm{s}$. A point source of frequency $300 H_{Z}$ radiates energy uniformly in all directions at
the rate of 5 Watt. (a) What is the intensity of
the wave at a distance of $20 m$ from the
source? (b) What is the amplitude of the wave there? [Density of air at $S T P=1.29 \mathrm{~kg} / \mathrm{m}^{3}$]
A. $1.15 \times 10^{6} m$
B. $1.15 \times 10^{-6} m$
C. $1.15 \times 10^{-6} \mathrm{~cm}$
D. none

Answer: B

15. What is the amplitude of motion for the air in the path of a $60 d B, 800 H_{Z}$ sound wave?

Assume that $\quad \rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3} \quad$ and $v=330 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

16. A rock band give rise to an average sound level of $102 d B$ at a distance of $20 m$ from the center of the band. As an approximation, assume that the band radiates sound equally
into a sphere. What is the sound power output of the band?

D Watch Video Solution

17. If it wave possible to generate a sinusoidal $300 H_{Z}$ sound wave in air that has a displacement amplitude of 0.200 mm . What would be the sound level ? (Assume $v=330 \mathrm{~m} / \mathrm{s}$ and $\left.\rho_{a i r}=1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)$
18. (a) A longitudinal wave propagating in a water-filled pipe has intensity $3.00 \times 10^{-6} W / m^{2}$ and frequency $3400 H_{Z}$.

Find the amplitude A and wavelength λ of the wave. Water has density $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and bulk modulus $2.18 \times 10^{9} \mathrm{~Pa}$. (b) If the pipe is filled with air at pressure $1.00 \times 10^{5} \mathrm{~Pa}$ and density $1.20 \mathrm{~kg} / \mathrm{m}^{3}$, What will be the amplitude A and wavelength λ of a longitudinal wave the same intensity and frequency as in part (a) ? (c) In
which fluid is the amplitude larger, water or air? What is the ratio of the two amplitude ?

Why is this ratio so different from/ Conider air as diatomic.

- Watch Video Solution

19. For a person with normal hearing, the faintest sound that can be heard at a frequency of 400 Hz has a pressure amplitude of about $6.0 \times 10^{-5} \mathrm{~Pa}$. Calculate the corresponding intensity and sound intensity lavel at $20^{\circ} \mathrm{C}$. (Assume $v=330 \mathrm{~m} / \mathrm{s}$ and $\left.\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

Watch Video Solution

20. find the fundamental frequency and the frequency of the first two overtones of a pipe 45.0 cm long. (a) If the pipe is open at both ends. (b) If the pipe is closed at one end. Use $v=344 m / s$.

D Watch Video Solution

21. Write the equation for the fundamental standing sound waves in a tube that is open
at both ends. If the tube is 80 cm long speed of
wave is $330 m / s$. Represent the amplitude of the wave at an antinode by A.

D Watch Video Solution

22. A long glass tube is held vertically, dipping
into water, while a tuning fork of frequency
$512 H_{Z}$ is respeatedly struck and held over the open end. Strong resonance is obtained, when
the length of the tube above the surface of water is 50 cm and again 84 cm , but not at any
intermediate point. Find the speed of sound of sound in air and next length of the air column for resonance.

D Watch Video Solution

23. A wire of length 40 cm which has a mass of

4 g oscillates in its second harmonic and sets
the air column in the tube to vibrations in its
funrations in its fundamental mode as shows
in figure. Assuming the speed of sound in air
as $340 \mathrm{~m} / \mathrm{s}$. Find the tension in the wire.

40 cm

24. In a resonance tube experiment to determine the speed of sound in air, a pipe of diameter 5 cm is used. The column in pipe resonates with a tuning fork of frequency $480 \mathrm{H}_{Z}$ when the minimum length of the air column is 16 cm . Find the speed in air column at room temperature.
25. On a day when the speed is $345 m / s$, the fundamental frequency of a closed organ pipe is $220 H_{Z}$. (a) How long is this closed pipe?

The second overtone of this pipe has the same wavelength as the third harmonic of an open pipe. How long is the open pipe?

D Watch Video Solution

26. A closed organ pipe is sounded near a guitar, causing one of the string to vibrate with large ampulitude. We vary the tension of
the string until we find the maximum amplitude. The string is 80% aas long as the closed pipe. If both the pipe and the string vibrate at their fundamental frequency, calculate the ratio of the wave speed on the string to the speed of sound in air. s

- Watch Video Solution

27. A police siren emits a sinusoidal wave with
frequency $f_{S}=300 H_{z}$. The speed of the sound is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of
the waves if siren is at rest in the air . (b) If the siren is moving at $30 \mathrm{~m} / \mathrm{s}$, Find the wavelength of the waves ahead of and behind the source.

D Watch Video Solution

28. Two identical violin strings, when in true and stretched with same tension , have a fundamental frequency of $440 \cdot 0 H_{Z}$. One of the string is retuned by adjusting its tension .

When this is done, 1.5 beats per second are
heard when both strings are plucked simultaneously. (a) What are the possible fundamental frequencies of the retuned string? (b) by what fractional amount was the string tension changed if it was (i) increased
(ii) decreased?

D Watch Video Solution

29. A swimming duck paddles the water with
its feet once every 1.6 s , producing surface
waves with this period. The duck is moving at
constant speed in a pond where the speed of
surface waves is $0.32 m / s$, and the crests of
the waves ahead of the duck are spaced $0.12 m$
apart. (a) What is the duck's speed? (b) How far apart are the crests behind the duck?

D Watch Video Solution

30. A railroad train is travelling at $30.0 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by
the train whistle is $262 H_{Z}$. What frequency is
heard by a passenger on a train moving in the
opposite direction to the first at $18.0 \mathrm{~m} / \mathrm{s}$ and
(a) approaching the first? (b) receding from the first? Speed of sound in air $=340 m / s$.

- Watch Video Solution

31. A boy is walking away from a well at a speed of $1.0 \mathrm{~m} / \mathrm{s}$ in a direction at right angles
to the wall. As he walks, he below a whistle steadily. An observer towards whom the boy is
walking hears 4.0 beats per second. If the
speed of sound is $340 \mathrm{~m} / \mathrm{s}$, what is the frequency of the whistle?

D Watch Video Solution

32. A tuning fork P of unknows frequency gives 7 beats in 2 seconds with another tuning fork Q. When Q runs towards a wall with a speed of $5 \mathrm{~m} / \mathrm{s}$ it gives 5 beats per second with its echo. On loading P with wax, it gives 5
beats per second with Q. What is the
frequency of P ? Assume speed of sound $=$ $332 m / s$.

D Watch Video Solution

33. A stationary observer receives sonic oscillations from two tuning forks one of which approaches and the other recedes with
the same velocity. As this takes place, the observer hears the beats of frequency $f=2.0 H_{Z}$. Find the velocity of each tuning fork if their oscillation frequency is
$f_{o}=680 H_{Z}$ and the velocity of sound in air is $v=340 m / s$.

D Watch Video Solution

34. Sound waves from a tuning fork A reacha point P by two separate paths $A B P$ and
$A C P$. When $A C P$ is greater than $A B P$ by
11.5 cm , there is silence at p. When the difference is 23 cm the sound becomes loudest at P and 34.5 cm there is silence again and so
on. Calculate the minimum frequency of the
fork if the velocity of sound is taken to be $331.2 m / s$.

D Watch Video Solution

35. Two loudspeakers S_{1} and S_{2} each emit sounds of frequency $220 H_{Z}$ uniformly in all directions. S_{1} has an acoustic output of $1.2 \times 10^{-3} W$ and S_{2} has $1.8 \times 10^{-3} W . S_{1}$ and S_{2} vibrate in phase.Consider a point P such that $S_{1} P=0.75 m$ and $S_{2} p=3 m$. How are the phases arriving at P related? What is
the intensity at P when both S_{1} and S_{2} are on
? Speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

36. A source of sound emitting waves at
$360 H_{Z}$ is placed in front of a vertical wall, at a
distance $2 m$ from it. A detector is also placed
in front of the wall at the same distance from
it. Find the minimum distance between the
source and the detestor for which the detector detects a maximum of sound. Take
speed of sound in air $=360 \mathrm{~m} / \mathrm{s}$. Assume that there is not phase change in reflected wave.

- Watch Video Solution

37. The atomic mass of iodine is $127 \mathrm{~g} / \mathrm{mol}$. A standing wave in iodine vapour at $400 k$ has
nodes that are $6: 77 \mathrm{~cm}$ apart when the frequency is $1000 H_{Z}$. At this temperature, is iodine vapour monatomic or daiatomic.

D Watch Video Solution

38. A tuning fork whose natural frequency is
$440 H_{Z}$ is placed just above the open end of a
tube that contains water. The water is slowly drained from the tube while the tuning fork remains in place and is kapt vibrating. The sound is found to be echanced when the air
column is 60 cm long and when it is 100 cm long. Find the speed of sound in air.

D Watch Video Solution

39. A piano wire A vibrates at a fundamental frequency of $600 H_{Z}$. A second identical wire B produces 6 beats per second with it when the tension in A is slightly increased. Find the ratio of the tension in A to the tension in B.

D Watch Video Solution

40. A tuning fork of frequency $256 H_{Z}$ produces 4 beats per second with a wire of legth 25 cm vibrating in its fundamental mode.

The beat frequency decrease when the length is slightly shortened. What could be the minimum length by which the wire be shortened so that it produces no beats with the tuning fork?

D Watch Video Solution

41. Show that when the speed of the source and the observer are small compared to the speed of sound in the medium, the change in frequency becomes independent of the fact whether the source is moving or the observer.

- Watch Video Solution

42. A sound source moves with a speed of $80 \mathrm{~m} / \mathrm{s}$ relative to still air toward a stationary
listener. The frequency of sound is $200 \mathrm{H}_{Z}$ and
speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. (a) Find the wavelength of the sound between the source and the listener. (b) Find the frequency heard by the listener.

D Watch Video Solution

43. A railroad train is travelling at $30 \mathrm{~m} / \mathrm{s}$ in
still air. The frequency of the note emitted by
the node emitted by the locomotive whistle is
$500 H_{Z}$. What is the wavelength of the sound waves: (a) in front of the locomotive?

What is the frequency of the sound heard by a stationary listener (b) behind the locomotive?
(c) in front of the locomotive ?

Speed of sound in air $344 \mathrm{~m} / \mathrm{s}$. (d) behind the locomotive?

- Watch Video Solution

44. For a certain organ pipe, three successive resonance frequencies are observer at 425,595 and $765 H_{Z}$ respectively. Taking the speed of sound in air to be $340 \mathrm{~m} / \mathrm{s}$, (a) explain
whether the pipe is closed at one or open at boyh ends. (b) determine the fundamental frequency and length of the pipe.

D Watch Video Solution

45. Two tuning forks A and B sounded together give 8 beats per second. With an air resonance tube closed at one end, the two
forks give resonances when the two air columns are 32 cm and 33 cm respectively.

Calculate the frequenciec of forks.

Watch Video Solution

Subjective Questions

1. A uniform tube of length 60 cm stands vertically with its lower end dipping into water
. First two air column lengths above water are

15 cm , when the tube resonds to a vibrating fork of frequency $500 H_{Z}$. Find the lowest frequency to the tube will respond when it is open at both ends.

Level 2 Single Correct

1. A plane weve of sound travelling in air is incident upon a plane water surface. The angle of incidence is 60°. If velocity of sound in air and water are $330 \mathrm{~m} / \mathrm{s}$ and $1400 \mathrm{~m} / \mathrm{s}$, then the wave undergoes
A. refraction only

B. reflection only

C. Both reflection and refraction

D. neither reflection nor refraction

Answer: B

- Watch Video Solution

2. An organ pipe of $(3.9 \pi) m$ long, open at both ends is driver to third harmonic standing
wave. If the amplitude of pressure oscillation
is 1% of mean atmospheric pressure $\left[p_{o}=10^{5} \mathrm{~N} / \mathrm{m}^{2}\right]$. The [Given, velocity of

$$
\left.=1.3 \mathrm{~kg} / \mathrm{m}^{3}\right]
$$

A. 2.5 cm
B. 5 cm
C. 1 cm
D. 2 cm

Answer: A
(Watch Video Solution
3. A plance sound waves passes from medium

1 into medium 2 . The speed of sound in medium 1 is $200 \mathrm{~m} / \mathrm{s}$ and in medium 2 is $100 \mathrm{~m} / \mathrm{s}$. The ratio of amplitude of the transmitted waves to that of incident waves is
A. $\frac{3}{4}$
B. $\frac{4}{5}$
C. $\frac{5}{6}$
D. $\frac{2}{3}$

- Watch Video Solution

4. A sounding body emitting a frequency of $150 H_{Z}$ is dropped from a height. During its fall under gravity it crosses a balloon moving upwards with a constant velocity of $2 m / s$ one second after it started to fall . The difference in the frequency observer by the man in balloon just before and just afer crossing the body will be (velocity of sound $=300 \mathrm{~m} / \mathrm{s}$, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
A. 12
B. 6
C. 8
D. 4

Answer: A

D Watch Video Solution

5. A closed organ pipe has length L. The air in
it is vibrating in third overtone with maximum
amplitude. The amplitude at distance $\frac{L}{7}$ from closed of the pipe is
A. 0
B. a
C. $\frac{a}{2}$
D. Date insufficient

Answer: B

- Watch Video Solution

6. S_{1} and S_{2} are two coherent sources of sound having no intial phase difference. The velocity of sound is $330 \mathrm{~m} / \mathrm{s}$. No maximum will be formed on the line passing through S_{2} and prependicular to the line joining S_{1} and S_{2}. If the frequency of both the sources is

A. $330 H_{Z}$
B. $120 H_{Z}$
C. $100 H_{Z}$
D. $220 H_{Z}$

Answer: C

D Watch Video Solution

7. A source is moving with constant speed $v_{s}=20 \mathrm{~m} / \mathrm{s}$ towards a stationary observer due east of the source. Wind is blowing at the
speed of $20 \mathrm{~m} / \mathrm{s}$ at 60° north of east. The
source has frequency $500 H_{Z}$. Speed of sound
$=300 \mathrm{~m} / \mathrm{s}$. The frequency resgistered by the observer is approximately
A. $541 H_{Z}$
B. $552 H_{Z}$
C. $534 H_{Z}$
D. $512 H_{Z}$

Answer: C

8. A car travelling towards a hill at $10 \mathrm{~m} / \mathrm{s}$ sound its horn which a frequency $500 H_{Z}$. This
is heard in a second car travelling behind the
first car in the same direction with speed
$20 \mathrm{~m} / \mathrm{s}$. The sound can also be heard in the second car by reflections of sound the hill. The beat frequency heard by the driver of the sound car will be (speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$)
A. $31 H_{Z}$
B. $24 H_{Z}$
C. $21 H_{Z}$
D. $34 H_{Z}$

Answer: A

D Watch Video Solution

9. Two sounding bolies are producing progressive waves given by $y_{1}=2 \sin (400 \pi t)$ and $y_{2}=\sin (404 \pi t)$ where t is in second,
which superpose near the ears of a persion.

The person will hear
A. 2 beats $/ s$ with intensity ratio $9 / 4$
between maximum and minima

B. 2 beats / s with intensity ratio 9 between

maximum and minima
C. 4beats /s with intensity ratio 16
between maximum and minima
D. 4beats /s with intensity ratio $16 / 9$

Answer: B

D Watch Video Solution

10. The air in a closed tube 34 cm long is vibrating with two nodes and two antinodes and its temprature is $51^{\circ} \mathrm{C}$. What is the wavelength of the waves produced in air outside the tube, when the temperature of air is $16^{\circ} C$?
A. 42.8 cm
B. 68 cm
C. 17 cm
D. 102 cm

Answer: A

D Watch Video Solution

11. A police car moving at $22 m / s$, chase a motoclist. The police man has horn at $176 H_{Z}$,

While both of them move towards a stationary siran of frequency $165 H_{Z}$. Calulate the speed
of the motorcyclist, if he does not observer any beats. (velocity of sound in air $=330 \mathrm{~m} / \mathrm{s}$)

$\xrightarrow[176 \mathrm{~Hz}]{\text { Police car }} 22 \mathrm{~m} / \mathrm{s}$

Motorcycle
$\xrightarrow[V]{\text { Motorcycle }}$

Stationary
siren $(165 \mathrm{~Hz})$
A. $33 m / s$
B. $22 m / s$
C. zero
D. $11 m / s$

Answer: B
12. A closed organ pipe resonates in its
fundamental mode at a frequency of $200 H_{Z}$ with O_{2} in the pipe at a certain temperature. If the pipe now contains 2 moles of O_{2} and 3 moles of ozone, then what will be fundamental frequency of same pipe at same temperature?
A. $268.23 H_{Z}$
B. $175.4 H_{Z}$
C. $149.45 H_{Z}$

D. none of these

Answer: B

D Watch Video Solution

13. A detector is released from rest over a source of sound of frequency $f_{o}=10^{3} H_{Z}$.

The frequency observer by the decector at
time t is plotted in the graph. The speed of
sound in air $\left(g=10 m / s^{2}\right)$

A. $330 m / s$
B. $350 \mathrm{~m} / \mathrm{s}$
C. $300 \mathrm{~m} / \mathrm{s}$
D. $310 \mathrm{~m} / \mathrm{s}$
14. Sound waves are trqvelling along positive x

- direction. Displacement of particle at any
time t is as shows in figure. Select the wrong
statement.

A. Particle located at E has its velocity in negative $x-$ direction
B. Particle locted at D has zero velocity
C. Both (a) and (b) are correct
D. Both (a) and (b) are wrong

Answer: C

- Watch Video Solution

Single Correct Option

1. Most people interpret a $9.0 d B$ increase in sound intensity level as a doubling in loudness. By what factor must the sound intensity be increase to double the loudness?
A. $1 m / s$
B. $2 m / s$
C. $3 m / s$
D. $4 m / s$

Answer: B

Level 2 More Than One Correct

1. An air column in a pipe, when is closed at one end, is in resonance with a vibrating tuning fork of frequency $264 H_{Z}$. If $v=330 \mathrm{~m} / \mathrm{s}$, the length of the column in cm is (are)
A. 31.25
B. 62.50
C. 93.75

D. 125

Answer: A::C

- Watch Video Solution

2. Choose the correct options for longitudinal

wave
A. maximum pressure variation is $B A K$

B. maximum displacement variation is

$\rho A K$
C. pressure equation and displacement equation are phase D. all of the above

Answer: D

D Watch Video Solution

3. Second overtons frequency of a pipe and fourth harmonic frequency of an pipe are same. Then, choose the correct options.
A. Fundamental frequency of closed pipe is
more than the fundamental frequency of
open pipe
B. First overtone frequency of closed pipe
is more than the first overtone
frequency of open pipe
C. Fifteenth harmonic frequency of closed
pipe is equal to twelfth harmonic frequency of open pipe

D. Tenth haromic frequency of closed pipe

is equal to eigth harmonic fequency of open pipe

Answer: B::C::D

D Watch Video Solution

4. For fundamental frequency f of a closed pipe, choose the correct options.
A. If radius of pipe is increased, f will decrease
B. If temperature is increased, f will increase
C. If modecular mass of the gas filled in the pipe is increased, f will decrease.
D. If pressure of gas (filled in the pipe) is
increased without change in
tempreature, f will remain unchanged

- Watch Video Solution

5. A source is approaching towards an observer with constant speed along the line joining them. After crossing the observer, source recedes from observer with same speed. Let f is apparent frequency heard by observer. Then,
A. f will keep on increasing during approaching
B. f will keep on decreasing during
receding
C. f will remain constant during
apporaching
D. f will remain constant during receding

Answer: C::D

(Watch Video Solution

More Than One Correct Options

1. Which of the following is//are correct?
A.
B.
C.
D.

Answer: C::D

D View Text Solution

1. A man of mass 50 kg is runing on a plank of mass 150 kg with speed of $8 \mathrm{~m} / \mathrm{s}$ relative to plank as shows in the figure (both were initially at rest and velocity of man with respect to ground any how remains constant).

Plank is placed on smooth horizontal surface.

The man, while runing, whistle with frequency
$f_{o} . A$ detected (D) placed on plank detects
frequency. The man jumps off with same velocity (w.r.t. to groung) from point D and
slides on the smooth horizontal surface
[Assume coefficient of friction between man
and horizontal is zero]. The speed of sound in
still medium is $330 \mathrm{~m} / \mathrm{s}$. Answer the following
questions on the basis of above situations.

The frequency of sound detected by detector
D, before man jumps of the plank is

$$
\begin{aligned}
& \text { A. } \frac{332}{324} f_{o} \\
& \text { B. } \frac{330}{322} f_{o} \\
& \text { C. } \frac{328}{336} f_{o}
\end{aligned}
$$

$$
\text { D. } \frac{330}{338} f_{o}
$$

Answer: A

D Watch Video Solution

Comprehension Based Questions

1. A man of mass 50 kg is runing on a plank of
mass 150 kg with speed of $8 \mathrm{~m} / \mathrm{s}$ relative to
plank as shows in the figure (both were initially at rest and velocity of man with
respect to ground any how remains constant).

Plank is placed on smooth horizontal surface.

The man, while runing, whistle with frequency $f_{o} . A$ detected (D) placed on plank detects
frequency. The man jumps off with same
velocity (w.r.t. to groung) from point D and
slides on the smooth horizontal surface
[Assume coefficient of friction between man
and horizontal is zero]. The speed of sound in
still medium is $330 \mathrm{~m} / \mathrm{s}$. Answer the following questions on the basis of above situations.

The frequency of sound detected by D, after man jumps off the plank is

$$
\begin{aligned}
& \text { A. } \frac{332}{324} f_{o} \\
& \text { B. } \frac{330}{322} f_{o} \\
& \text { C. } \frac{328}{336} f_{o} \\
& \text { D. } \frac{330}{338} f_{o}
\end{aligned}
$$

Answer: C

- View Text Solution

2. A man of mass 50 kg is runing on a plank of mass 150 kg with speed of $8 \mathrm{~m} / \mathrm{s}$ relative to plank as shows in the figure (both were initially at rest and velocity of man with respect to ground any how remains constant).

Plank is placed on smooth horizontal surface.
The man, while runing, whistle with frequency $f_{o} . A$ detected (D) placed on plank detects frequency. The man jumps off with same velocity (w.r.t. to groung) from point D and
slides on the smooth horizontal surface
[Assume coefficient of friction between man
and horizontal is zero]. The speed of sound in
still medium is $330 \mathrm{~m} / \mathrm{s}$. Answer the following questions on the basis of above situations.

Choose the correct plot between the frequency the frequency detected by detector usrsus position of the man relative to detector.
A.

B.
C.
D.

Answer: A

D View Text Solution

Level 2 Subjective

1. A window whose area is $2 m^{2}$ opens on a street where the street noise results at the window an intensity level of $60 d B$. How much acoustic power energy from the street will it collect in a day?

D Watch Video Solution

2. A point A is located at a distance $r=1.5 m$
from a point source of sound of frequency $600 H_{Z}$. The power of the source is $0.8 W$.

Speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. Find at the point A, (a)
the pressure oscillation amplitude $(\Delta p)_{m}$
the displacement oscillation amplitude A.

D Watch Video Solution

3. A flute which we treat as a pipe open at both ends is 60 cm long. (a) What is the fundamental frequency when all the holes are covered? (b) How far from the mouthpieces
should a hole be uncovered for the
fundamental frequency to be $330 H_{Z}$? Take speed of sound in air as $340 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

4. A source S and a detector D high frequency waves are a distance d apart on the ground.

The direct wave from S is found to be in phase at D with the wave from S that is reflected from horizontal layer at an altitude H. The incident and reflected rayes make the same angle with the reflecting layer. When the layer
rises a distance h, no signal is detected at D.

Negle ct absorption in the atmosphere and find the relation between $\mathrm{d}, \mathrm{h}, H$ and the wavelength λ of the waves.

5. Two sound speakers are driver in phase by
an audio amplifier at frequency $600 H_{Z}$. The
speed of sound is $340 \mathrm{~m} / \mathrm{s}$. The speakers are
on the y - axis, one at $y=+1.0 m$ and the other at $y=-1.0 m$. A listener begins at $y=0$ and walks along a line parallel to the y axis at a very large distance x away.
(a) At what angle θ (between the line from the origin to the listener at the x - axis) will she first hear a minimum sound intensity?
(b) At what angle will she first hear a maximum
(afer $\theta=o^{\circ}$) sound intensity?
(c) How many maxima can she possible hear if she keeps walking in the same direction?

D Watch Video Solution

6. Two speakers separeted by some distance emit sound of the same frequency. At some
point P the intensity due to each speaker separately is I_{o}. The path difference from P to one of the speakers is $\frac{1}{2} \lambda$ greater than that from P to the other speaker. What is the intensity at P if
(a) the speakers are coherent and in phase,
(b) the speakers are incoherent, and
(c) the speakers are coherent but have a phase different of 180° ?

D Watch Video Solution

7. Two loudspeakers radiate in phase at $170 H_{Z}$
. An observer sits at $8 m$ from one speaker and
$11 m$ from the other. The intensity level from either speaker acting alone is $60 d B$. The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
(a) Find the observer intensity when both speakers are on together.
(b) Find the observer intensity level when both speakers are no together but one has its leads reversed so that the speakers are 180° out of phase.
(c) Find the observer intensity level when both speakers are on and in phase but the frequency is $85 H_{Z}$.

- Watch Video Solution

8. Two identical speakers emit sound waves of
frequency $680 H_{Z}$ uniformly in all directions with a total audio output of $1 m W$ each. The speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. A point P is a distance 2.00 m from one speaker and 3.00 m
from the other.
(a) Finf the intensity I_{1} and I_{2} from rach speaker at point p separately.
(b) If the speakers are driven coherently and in phase, what is the intensity at point p ?
(c) If they driven coherently but of phase by 180°, what is the intensity at point P ?
(d) If the speakers are incoherent, what is the intensity at point p ?

- Watch Video Solution

9. A train of length l is moving with a constant speed v along a circular track of radius R. The engine of the train emits a sound of frequency f. Find the frequency heard by a guard at the rear end of the train.
10. A $3 m$ long organ pipe open at both ends is driven to third harmonic standing wave. If the ampulitude of pressure oscillations is 1 per cent of mean atmospheric pressure $\left(p_{o}=10^{5} \mathrm{Nm}^{2}\right)$. Find the ampulited of particle displacement and density oscillations.

Speed of sound $v=332 m / s$ and density of air $\rho=1.03 \mathrm{~kg} / \mathrm{m}^{3}$.

- Watch Video Solution

11. A siren creates a sound level of $60 H_{Z}$ at a
location 500 m from the speaker. The siren is powered by a batter that delivers a total energy of 1.0 kJ . Assuming that the efficiency of siren is 30%, determine the total time the siren can sound.

- Watch Video Solution

12. A cylinder of length $1 m$ is divided by a thin perfectly flexible diaphragm in the middle. It is
closed by similar flexible diaphragams at the ends. The two chambers into which it is divided contain hydrogen and oxygen. The two diaphragms are set in vibrations of same frequency. What is the minimum frequency of these diaphragms for which the middle diaphragm will be motionless? Velocity of sound in hydrogen is $1100 \mathrm{~m} / \mathrm{s}$ and that in oxygen is $300 \mathrm{~m} / \mathrm{s}$.
13. A conveyor belt moves to the right with speed $v=300 m / s$. A very fast pieman puts
pies on the belt at a rate of 20 per minute and they are recived at the other end by a pieeater.
(a) If the pieman is stationary find the spacing
x betweenthe pies and the frequency with which they are recived by the stationary pieeater.
(b) the pieman now walks with speed $30 n / \min$ towards the reciver while continuing to put pies on the recived by the stationary pieeater.

- Watch Video Solution

14. A point sound source is situated in a medium of dulk modulus $1.6 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. An observer standing at a distance 10 m from the source writes down the equeation for the wave as $y=A \sin (15 \pi x-6000 \pi t)$. Here y and x are in meter and t is in second. The maximum pressure ampulitude received to the observer's ear is (24π) pa, then find.
(a) the density of the medium,
(b) the displacement ampulitude A of the
wave recived by the observer and
(c) the power of the sound source.

D Watch Video Solution

15. Two sources of sound S_{1} and S_{2} vibrate at same frequency and are in phase. The intensity of sound detected at a point P as shown in the figure is I_{0}. (a) If θ equals 45°, what will be the intensity of sound detected at this point if one of the sources is switched off ? (b) What
will be the answer of the previous part if
$\theta=60^{\circ}$?

D Watch Video Solution

16. Two narrow cylindrical pipes A and B have the same length. Pipe A is open at both ends and is filled with a monoatomic gas of molar mass M_{A}. Pipe B is open at one end and closed at the other end, and is filled with a diatomic gas of molar mass M_{B}. Both gases are at the same temperature.
(a) If the frequency of the second harmonic of the fundamental mode in pipe A is equal to the frequency of the third harmonic of the fundamental mode in pipe B, determine the value of M_{B} / M_{B}.
(b) Now the open end of pipe B is also closed
(so that the pipe is closed at both ends). Find the ratio of the fundamental frequency in pipe
A to that in pipe B.
17. A boat is travelling in a river with a speed
$2 m / s$. From this boat, a sound transmitter is
lowered into the river through a rigid support.

The wavelength of the sound emitted from the
transmitter inside the water is 14.45 mm .

Assume that attenuation of sound in water and air is negligible.
(a) What will be the frequency detected by a receiver kept inside the river downstream?
(b) The transmitter and the receiver are now pulled up into air. the air is blowing with a speed $5 m / s$ in the direction opposite the
river stream. Determine the frequency of the sound detected by the receiver.
(Temperature of the air and water $=20^{\circ} C$, Density of river water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, Bulk modulus of the water $=2.088 \times 10^{9} \mathrm{~Pa}$, gas constant $R=8.31 \mathrm{~J} / \mathrm{mol}-K$,

Mean molecular mass of air
$=28.8 \times 10^{-3} \mathrm{~kg} / \mathrm{mol}, \quad C_{P} / C_{V} \quad$ for \quad air $=1.4)$

- Watch Video Solution

18. A string 25 cm long and having a mass of
2.5 gm is under tension. A pipe closed at one
end is 40 cm long. When the string is set
vibrating in its first overtone and the air in the
pipe in its fundamental frequency, 8 beats per second are heard. It is observed that decreasing the tension in the string decreases beat frequency. If the speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$, find the tension in the string.
19. A source of sound of frequency 1000 Hz moves to the right with a speed of $32 \frac{\mathrm{~m}}{\mathrm{~s}}$ relative to the ground. To its right there is a reflecting surface moving to the left with a speed of $64 \frac{\mathrm{~m}}{\mathrm{~s}}$ relative to the ground. Take the speed of $64 \frac{\mathrm{~m}}{\mathrm{~s}}$. Relative to the ground. Take the speed of sound in air to be $332 \frac{m}{s}$ and find
(a) The wavelength of the sound emitted in air by the source,
(b) the number of waves per second arriving at the reflecting surface,
(c) The speed of the reflected waves and
(d) The wavelength of the reflected waves.

D Watch Video Solution

Exercise 191

1. Calculate the bulk modulus of air from the
following data about a sound wave of wavelength 35 cm travelling in air. The pressure at a point varies between
$\left(1.0 \times 10^{5} \pm 14\right) \mathrm{Pa}$ and the particles of the
air vibrate in simple harmonic motion of amplitude` $5.5 \times 10^{\wedge}-5 \mathrm{~m}$.

D Watch Video Solution

2. Find the minimum and maximum wavelengths of sound in water that is in the audible range ($20-20000 \mathrm{~Hz}$) for an average human ear. Speed of sound in water $=1450 \mathrm{~ms}^{-1}$.
3. A typical loud sound wave with a frequency
of $1 K h_{Z}$ has a pressure amplitude of about 10
Pa
(a) At $t=0$, the pressure is a maximum at some point X_{1}. What is the displacement at that point at $t=0$?
(b) What is the maximum value of the displacement at any time and place/ Take the density of air to be $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ and speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$.
4. The pressure variation in a sound wave in air is given by
$\Delta p=12 \sin (8.18 X-2700 t+\pi / 4) N / m^{2}$
find the displacement amplitude. Density of air
$=1.29 \mathrm{~kg} / \mathrm{m}^{3}$.

- Watch Video Solution

Exercise 192

1. At what temperature will the speed of sound be double of its value at $0^{\circ} C$?

D Watch Video Solution

2. Calculate the difference in the speeds of sound in air at $-3^{\circ} c, 60 \mathrm{~cm}$ pressure of mercury and $30^{\circ} \mathrm{c}, 75 \mathrm{~cm}$ pressure of mercury.

The speed of sound in air at $0^{\circ} C$ is $332 \mathrm{~m} / \mathrm{s}$.
3. In a liquid with density $900 \mathrm{~kg} / \mathrm{m}^{3}$, lonfitudinal waves with frequency $250 \mathrm{H}_{Z}$ are found to have wavelength 8.0 m . Calculate the bulk modulus of the liquid.

- Watch Video Solution

4. Calculate the speed of sound in oxygen at $273 K$.
5. A sound wave in air has a frequency of $300 H_{Z}$ and a displacement ampulitude of $6.0 \times 10^{-3} \mathrm{~mm}$. For this sound waves calculate the (a) Pressure ampulitude
intensity (c) Sound intensity level (in dB)
Speed of sound $=344 m / s$ and density of air $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$.

D Watch Video Solution

2. Most people interpret a $9.0 d B$ increase in sound intensity level as a doubling in loudness. By what factor must the sound intensity be increase to double the loudness?

D Watch Video Solution

3. A baby's mouth is 30 cm from her father's
ear and 3.0 m from her mother's ear. What is
the difference between the sound intensity
levels heard by the father and by the mother.
4. The faintest sound that can be heard has a pressure ampulitude of about
$2 \times 10^{-5} N / m^{2}$ and the loudest that can be heard without pain has a pressure ampulited of about $28 \mathrm{~N} / \mathrm{m}^{2}$. Dentermine in each (a) the intensity of the sound both in w / m^{2} and in
$d B$ and (b) the ampulited of the oscillations if
the frequency is $500 H_{Z}$. Assume an air density of $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ and a velocity of sound is $345 m / s$.

Watch Video Solution

Exercise 194

1. Two sound waves emerging from a source reach a point simultaneously along two paths.

When the path difference is 12 cm or 36 cm ,
then there is a silence at that point. If the speed of sound in air be $330 \mathrm{~m} / \mathrm{s}$, then calculate maximum possible frequency of the source.
2. A wave of frequency 500 Hz has a wave velocity of $350 \mathrm{~m} / \mathrm{s}$.
(a) Find the distance between two points which are $60 \circ$ out of phase.
(b) Find the phase difference between two displacement at a certain point at time $10^{-3} s$ apart.

- Watch Video Solution

1. An open pipe is suddenly closed at one end with the result that the frequency of third harmonic of the closed pipe is found to be higher by 100 Hz then the fundamental frequency of the open pipe. The fundamental frequency of the open pipe is

D Watch Video Solution

2. An organ pipe P_{1} open at one end vibrating in its first harmonic and another pipe P_{2} open
at ends vibrating in its third harmonic are in resonance with a given tuning fork. The ratio of the length of P_{1} to that P_{2} is

D Watch Video Solution

3. A tube, closed at one end and containing air, produces, when excited, the fundamental note of frequency 512 Hz . If the tube is open at both ands the fundamental frequency that can be excited is (in Hz)
4. The fundamental frequency of a closed pipe is $220 H_{Z}$.
(a) Find the length of this pipe.
(b) The second overtone of this pipe has the
same frequency as the third harmonic of an open pipe. Find the length of this open pipe.

Take speed of sound in air $345 m / s$.

D Watch Video Solution

5. An organ pipe has two successive harmonics
with frequencies 400 and $560 H_{Z}$. The second
of sound in air is $344 \mathrm{~m} / \mathrm{s}$.
(a) Is the an open or a closed pipe?
(b) What two harmonics are three?
(c) What is the length of the pipe?

D Watch Video Solution

Introductory Exercise

1. Standing sound waves are produced in a pipe that is $0.8 m$ long, open at one end, and closed at th other. For the fundamental and first two overtone, where along the pipe
(measured from the closed end) are
(a) the displacemental antinodes
(b) the pressure antinodes.

D View Text Solution

1. A tuning fork produces 4 beats per second
with another tuning fork of frequency 256 Hz .
The first one is now loaded with a little wax and the beat frequency is found to increase to

6 per second. What was the original frequency of the tuning fork?

- Watch Video Solution

2. A tuning fork of unknows frequency makes
three beats per second with a standard fork of
frequency $384 H_{Z}$. The beat frequency
decreases when a small piece of wax is put on
a prong of the first fork. What is the frequency of this fork?

- Watch Video Solution

Exercise 197

1. A whistle giving out $450 H_{Z}$ approaches a stationary observer at a speed of $33 m / s$. The frequency heard the observer (in H_{Z}) is
(speed of sound $=330 \mathrm{~m} / \mathrm{s}$)
A. 409
B. 429
C. 517
D. 500

Answer: D

D Watch Video Solution

2. A train moves towards a stationary observer with speed $34 m / s$. The train sounds a whistle and its frequency registered by the observer is
f_{1}. If the train's speed is reduced to $17 \mathrm{~m} / \mathrm{s}$,
the frequency registered is f_{2}. If the speed of sound of $340 \mathrm{~m} / \mathrm{s}$, then the ratio f_{1} / f_{2} is
A. $18 / 19$
B. $1 / 2$
C. 2
D. $19 / 18$

Answer: D

- Watch Video Solution

3. A siren placed at a railway platform is emitting sound of frequency $5 k \mathrm{~Hz}$. A passenger sitting in a moving train A records a frequency of 5.5 kHz while the train approaches the siren. During his return journey in a different train B he records a frequency of 6.0 kHz while approaching the same siren. the ratio the velocity of $\operatorname{train} B$ to that of $\operatorname{train} A$ is
A. $242 / 252$
B. 2
C. $5 / 6$
D. $11 / 6$

Answer: B

- Watch Video Solution

4. A train is moving on a straight track with speed $20 \mathrm{~ms}^{-1}$. It is blowing its whistle at the frequency of 1000 Hz . The percentage change in the frequency heard by a person standing
near the track as the train passes him is (speed of sound $=320 \mathrm{~ms}^{-1}$) close to :
A. 12%
B. 6%
C. 18%
D. 24%

Answer: A
(Watch Video Solution

