©゙doubtnut

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

UNIT AND DIMENSIONS

Example

1. Find the dimensional formula of the following question :
(a) Density (b) Velocity (c) Acceleration (d) Momentum (e) Force
(f) Work of energy (g) Power (h) Pressure
2. Find the dimensional formula of the following question :
(a) Surface tension T
(b) Universal constant of gravitation , G
(c) Impulse ,J
(d) Torque τ

The equation involving these equations are :
$T=F i l F=\frac{G m_{1} m_{2}}{r^{2}}, J=F \times t$ and $\tau=F \times 1$

- Watch Video Solution

3. The value of gravitation is $G=6.67 \times 10^{-11} N-\frac{m^{2}}{k} g^{2}$ in SL units. Convert it into CGS system of units .
4. Show that the expression of the time period T of a simple pendulum of length I given by $T=2 \pi \sqrt{\frac{l}{g}}$ is dimensionally currect

- Watch Video Solution

5. The velocity v of the a particle depends upen the time t according to the equation $v=a+b t+\frac{c}{d+1}$ Write the dimension of a, b, c and d.

- Watch Video Solution

6. The frequency (f) of a stretched string depends upen the
tension F (dimensions of form) of the string and the mass per unit length mu of string .Derive the formula for frequency
7. Find the dimensional formula of
(a) coefficient of viscosity η (b)charge q
(c) potention V (d) capacitance C and
(e) resistance R

Some of the equations containing these quantities are
$F=-\eta A\left[\frac{\Delta u}{\Delta}\right], q=I t . U=V I t, q=C V$ and $V=I R$
where A denotes the v the velocity,I is the length, I the electric
current, t the time and U the energy .

- Watch Video Solution

8. Write the dimensions of a and b in the relation, $P=\frac{b-x^{2}}{a t}$, where P
is power, x is distance and t is time

- Watch Video Solution

9. The contripetal force F acting on a particle moving uniformly in a circle may depend upon mass (m), velocity (v) and redio (r) of the circle. Derive the formula for F using the method of dimensions.

- Watch Video Solution

10. If velocity, time and force were chosen as basic quantities, find the dimensions of mass and energy.
11. Force acting on a perticle is 5 N . If units of length and time are double and unit of mass is holved then find the numerical value of force in the new system of unit .

- Watch Video Solution

12. Can pressure (p) , density (p) and velocity (v) be taken as fundunental quantities?

- Watch Video Solution

Single Correct

1. The dimensional formula for Planck's constant and angular
A. $\left[M L^{3} T^{-2}\right]$ and $\left[M L T^{-1}\right]$
B. $\left[M L^{2} T^{-1}\right]$ and $\left[M L^{2} T^{-1}\right]$
C. $\left[M L^{2} T^{1}\right]$ and $\left[M L^{3} T^{-2}\right]$
D. $\left[M L T^{-1}\right]$ and $\left[M L T^{-2}\right]$

Answer: B

- Watch Video Solution

2. Dimension of velocity gradient is
A. $\left[M^{0} L^{0} T^{-1}\right]$
B. $\left[M L^{-1} T^{-1}\right]$
C. $\left[M^{0} L T^{-1}\right]$
D. $\left[M L^{0} T^{-1}\right]$

- Watch Video Solution

3. Which of the following is the dimension of the coefficient of frintion?
A. $\left[M^{2} L^{2} T\right]$
B. $\left[M^{0} L^{0} T^{0}\right]$
C. $\left[M L^{2} T^{-2}\right]$
D. $\left[M^{2} L^{2} T^{-2}\right]$

Answer: B

- Watch Video Solution

4. Which of the following sets have different dimensions ?
A. Pressure ,Young's modulus, Stress
B. Enf potential difference.Electric potential
C. Heat, Work done .Energy
D. Dipole moment .Electric flux .Electric field

Answer: D

- Watch Video Solution

5. The viscous force F on a sphere of radius a moving in a medium with velocity v is given by $F=6 \pi n o v$. The dimension of eta are
A. $\left[M L^{-3}\right]$
B. $\left[M L T^{-2}\right]$
C. $\left[M T^{-1}\right]$
D. $\left[M L^{-1 T^{-1}}\right]$

Answer: D

- Watch Video Solution

6. A force is given by
$F=a t+b t^{2}$
where t is the time. The dimensions of a and b are
A. $\left[M L T^{-4}\right]$ and $[M L T]$
B. $\left[M L T^{-1}\right]$ and $\left[M L T^{0}\right]$
C. $\left[M L T^{-3}\right]$ and $\left[M L T^{-4}\right]$
D. $\left[M L T^{-3}\right]$ and $\left[M L T^{0}\right]$

Answer: C

- Watch Video Solution

7. The physical quanitity the dimensions $\left[M^{-2} L^{-3} T^{0} A^{2}\right]$ is
A. resistance
B. resistivity
C. electrical conductivity
D. electronmotive force

Answer: C

- Watch Video Solution

8. The dimensional formula for planck's magnetic flux is
A. $\left[M L^{2} T^{-2} A^{-1}\right]$
B. $\left[M L^{2} T^{-2} A^{-2}\right]$
C. $\left[M^{2} L^{-2} T^{-1} A^{-2}\right]$
D. $\left[M L^{2} T^{-1} A^{2}\right]$

Answer: A

- Watch Video Solution

9. Chooce the wrong statement.
A. All quantities may be represented dimensionally in terms of the base quantities
B. A base quantity cannot be represented in terms of the rest of the base quantity
C. The dimension of a base quantity in other base quantities is always zero
D. The dimension of a derived quantities is never seen in any base quantity

Answer: D

D Watch Video Solution

10. If unit of length and time is doubled the numerical value of g
(acceleration due to gravity) will be
A. doubled
B. halved
C. four time
D. same

- Watch Video Solution

11. Using mass (M), length $(L), \operatorname{time}(T)$ and current (A) as fundamental quantites the demension of permeability is
A. $\left[M^{-1} L T^{-2} A\right]$
B. $\left[M L^{-2} T^{-2} A^{-1}\right]$
C. $\left[M L T^{-2} A^{-2}\right]$
D. $\left[M L T^{-1} A^{-1}\right]$

Answer: C

12. The equation of a wave is given by
$y=a \sin \omega\left[\frac{x}{v}-k\right]$
where ω is angular velocity and v is the linear velocity. The dimensions of k will be
A. $\left[T^{2}\right]$
B. $\left[T^{-1}\right]$
C. $[T]$
D. $[L T]$

Answer: C

- Watch Video Solution

13. If the energy (E) ,velocity (v) and force (F) be taken as
fundamental quantities, then the dimension of mass will be
A. $\left[F v^{-2}\right]$
B. $\left[F v^{-1}\right]$
C. $\left[E v^{-2}\right]$
D. $\left[E v^{2}\right]$

Answer: C

D Watch Video Solution

14. Ifforce F, length L and time T are taken as fundemental unit, the dimensional formula mass will be
A. $\left[F L^{-1} T^{2}\right]$
B. $\left[F L T^{-2}\right]$
C. $\left[F L^{-1} T^{-1}\right]$
D. $\left[F L^{-5} T^{2}\right]$

- Watch Video Solution

15. The ratio of the dimensions of plank's constant and that of the moment of inertia is the dimension of
A. frequency
B. velocity
C. angular momention
D. time

Answer: A

16. Given that $y=A \sin \left[\left(\frac{2 \pi}{\lambda}(c t-x)\right)\right]$ where y and x are measured in metres ,Which of the following statements is true ?
A. The unit of λ is same as that of x and A
B. The unit of λ is same as that of x but not of A
C. The unit of c is same as that of $\frac{2 \pi}{\lambda}$
D. The unit of $(a-x)$ is same as that of $\frac{2 \pi}{\lambda}$

Answer: A

- Watch Video Solution

17. Which of the following sets cannot enter into the list of fundamental quatities in any system of units?
A. length , mass and density
B. length , time and velocity
C. mass, time and velocity
D. length , time and mass

Answer: B

- Watch Video Solution

18. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of capacitance and magteic induction respectively. When are the dimensions of F in MESQ system ?
A. $\left[M^{-3} L^{-1} T^{3} Q^{4}\right]$
B. $\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
C. $\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
D. $\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$

- Watch Video Solution

19. A quantity X is given by $\varepsilon_{p} L \frac{\delta V}{\delta t}$, where ε_{p} is the permitivity of free space , L is a length, δV is a potential diffrence and δt is a time interval. The dimensional formula for X is the seme as that of
A. resistance
B. charge
C. voltage
D. current

Answer: D

20. In the relaction $p=\frac{a}{\beta} e^{\frac{a Z}{k \theta}}, \mathrm{p}$ is pressure Z is distance k is Boltamann constant and θ is the teperations. The dimensional formula of β will be
A. $\left[M^{0} L^{2} T^{0}\right]$
B. $\left[M L^{2} T\right]$
C. $\left[M L^{0} T^{-1}\right]$
D. $\left[M^{0} L^{2} T^{-1}\right]$

Answer: A

- Watch Video Solution

More Than One Correct

1. The dimensions of the quantities in one (or more) of the following pairs are the same . Identify the pair(s)
A. Torque and work
B. Angure momentum and work
C. Energy and Young 's module
D. Light year and wevelength

Answer: A: B

- Watch Video Solution

2. The pairs of physical quantities that have the same demensions is (are)
A. Reyaold number and coefficient of friction
B. Curie and frequency of a light wave
C. Latent beat and gravitational potential
D. Planck's constant and torque

Answer: A::B::C

- Watch Video Solution

3. The $S I$ unit of inductance, the henry can be written as
A. weber/ampers
B. volt -second /ampere
C. joule $/(\text { ampere })^{2}$
D. ohm - second

- Watch Video Solution

4. Let $\left[\varepsilon_{0}\right]$ denote the dimensional formula of the permittivity of the vacuum, and $\left[\mu_{0}\right]$ that of the permeability of the vacuum. If $M=$ mass $, L=\leq n>h, T=$ time and $I=e \leq$ ctriccurrent
A. $\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{2} I\right]$
B. $\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{4} I^{2}\right]$
C. $\left[\mu_{0}\right]=\left[M L T^{-2} I^{-2}\right]$
D. $\left[\mu_{0}\right]=\left[M L^{2} T^{-1} I\right]$

Answer: B::C

- Watch Video Solution

5. L,C and R represent the physical quantities inductance, capacitance and resistance respectively. Which of the following combinations have dimensions of frequency?
A. $\frac{t}{R C}$
B. $\frac{R}{L}$
C. $\frac{1}{\sqrt{L C}}$
D. $\frac{c}{L}$

Answer: A::B::C

- Watch Video Solution

Subjective

1. In the expression $y=a \sin (\omega t+\theta), y$ is the displacement and t is the time. Write the dimension of a, ω and θ.

- Watch Video Solution

2. Young 's modulus of steel is $2.0 \times 10^{11} \mathrm{Nm} /(2)$. Express it is $\frac{\text { dyne }}{c} m^{2}$.

- Watch Video Solution

3. Surface tension of water in the CGS cm is 72 dyme/cm. What is its velue in SI units ?

- Watch Video Solution

4. The relation between theenergyEand the freqency vof a photon is repressed by the equation $E=h v$, where h is plank's Writen down $s_{t}=u+\frac{a}{2}(2 t-1)$, where u is initial of h and its dimensions.

- Watch Video Solution

5. Check the correctness of the relation $s_{t}=u+\frac{a}{2}(2 t-1)$ where u is initial velocity a is acceleration and s_{t} is the diplacement of the body in $t^{\text {th }}$ second.

D Watch Video Solution

6. Give the MKS units for each of the following question .
(a) Young's modulus (b) Magnetic induction (c) power of a lena
7. A gas bubble, from an explosing under water, oscillates with a period T proportional in $P^{0} D^{0} E^{0}$, where p is the static prossure, d is the density of water and E is the total energy of the explosion. Find the value of a, b and c.

- Watch Video Solution

8. Show dimensionmally that the expression , $T=\frac{M g L}{\pi r^{2}}$ is dimensiomally current, where T is Young 's modulas of the length of the wire, Mg is the weight applied in the wire and L is the increase in the length of the wire .

- Watch Video Solution

9. The energy E of an oscillating body is simple harmonic motion depends on its mass m, frequency n and amplitude a using the method of dimensional analysis find the relation between $\mathrm{E}, \mathrm{m}, \mathrm{n}$ and a .

- Watch Video Solution

10. $\frac{a}{t^{2}}=F v=\frac{\beta}{x^{2}} \quad$ Find dimension formula for $[a]$ and $[\beta]$ (beret $=$ time, $F=$ force, $v=$ velocity, $x=$ distance $)$

- Watch Video Solution

11. For a moles of gas ,Van der Weals equation is $\left(p=\frac{a}{V^{-2}}\right)(V-b)=n R T$ Itbr. Find the dimensions of a
a and b, where $p=$ pressure of gas, $V=$ volume of gas and $T=$ temperatureofgas.

- Watch Video Solution

12. In the formula, $p=\frac{n R T}{V-b} \frac{e^{a}}{R T V}$ find the dimensions of a and b, where $p=$ pressure , $n=$ number of moles,$T=$ temperture ,
$\mathrm{V}=$ volume and $\mathrm{E}=$ universal gas constant .

- Watch Video Solution

13. Write the dimensions of the following in the terms of mass, time, length and charge
(a) Megnetic flux (b) Rigulity modus.

- Watch Video Solution

14. Let x and a stand for distance . Is $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\frac{1}{a} \sin ^{-1}\left(\frac{a}{x}\right)$ dimensionally current ?

- Watch Video Solution

15. In the equation $\int \frac{d x}{\sqrt{2 a x-x^{2}}}=a^{2} \sin ^{-1}\left[\frac{x}{a}-1\right]$. Find the value of n.

- Watch Video Solution

16. Taking force F, length L and time T to be the fundemental equations, find the dimensions of
(a) density (b) pressure (c) momentun and (d) energy

Assertion And Reason

1. Assertion Velocity, volume and acceleration can be taken as fundemental quantities because

Reason: All the three are independent from each other .
A. If both Assertion and Reson are true and the Resion is correct explanation of the Assertion
B. If both Assertion and Reason are true but the correct explenation ofAssertion.
C. If Assertion is true, but the Reason is false .
D. If both Assertion and Reason are wrong.

Answer: D

- Watch Video Solution

2. Assertion if two physical quantities have same dimension, then they can be certainly added or subtracted because

Reason if the dimension of both the quantities are same then both the physical quantities should be similar .
A. If both Assertion and Reson are true and the Resion is correct explanation of the Assertion
B. If both Assertion and Reason are true but the correct explenation ofAssertion.
C. If Assertion is true, but the Reason is false .
D. If both Assertion and Reason are wrong.

Answer: A

- Watch Video Solution

