©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

VECTORS

Solved Examples

1. In the shown fig. 5.12 (a) , (b) and (c), find the angle between A and B

(b)
(b)

A. $45,150,35$
B. $45,30,35$
C. $45,150,135$
D. $45,45,35^{`}$

Answer: A
2. What is the angle between a and $-\frac{3}{2} a$.
A. 180
B. 0
C. 120
D. 150

Answer: A

- Watch Video Solution

3. Find $A+B$ and $A-B$ in the diagram shown in figure.

Given
$A=4$ units and $B=3$ units.

A. $\sqrt{ } 30, \sqrt{ } 22$ units
B. $\sqrt{ } 40, \sqrt{ } 28$
C. $\sqrt{ } 37, \sqrt{ } 15$ units
D. $\sqrt{ } 37, \sqrt{ } 13$

Answer: D
4. A force F has magnitude of 15 N . Direction of F is at 37° from nagative x-axis towards posititve y-axis. Represent F in terms of \hat{i} and \widehat{J}.

D Watch Video Solution

5. Find magnitude and directon of a vector,
$A=(6 \hat{i}-8 \hat{j})$.
6. Resolve a weight of 10 N in two directions which are parallel and perpendiular to a slope inclined at 30° to the horizontal.

D Watch Video Solution

7. Resolve horizontally and vertically a force $f=8 \mathrm{~N}$ which makes an angle of 45° with the horizontal.

D Watch Video Solution

8. Obtain the magnitude of $2 A-3 B$ if
$A=\hat{i}+\hat{j}-2 \hat{k}$ and $B=2 \hat{i}-\hat{j}+\hat{k}$.
A. $\sqrt{ } 150$
B. 90
C. $\sqrt{ } 90$
D. $\sqrt{ } 80$

Answer: C

- Watch Video Solution

9. Work done by a force F on a body is $W=F . s$, where s is the displacement of body. Given that under a force $F=(2 \hat{I}+3 \hat{j}+4 \hat{k}) N$ a body is displaced from position vector $r_{1}=(2 \hat{I}+3 \hat{j}+\hat{k}) m$ to the position
vector $r_{2}=(\hat{i}+\hat{j}+\hat{k}) m$. Find the work done by this force.
A. $4 J$
B. 10 J
C. -16 J
D. $-8 J$

Answer: D

- Watch Video Solution

10. Find the angle between two vectors

$$
A=2 \hat{j}+\hat{j}-\hat{k} \text { and } B=\hat{j}-\hat{k} \text { and } B=\hat{i}-\hat{k}
$$

11. Prove that the vectors $A=2 \hat{i}-3 \hat{j}+\hat{k}$ and $B=\hat{i}+\hat{j}+\hat{k}$ are mutually perpendicular.

- Watch Video Solution

12. Show that the vector $A=(\hat{i})-(\hat{j})+2 \hat{k}$ is parallel to a vector $B=3 \hat{i}-3 \widehat{+} 6 \hat{k}$.
13. Let a force F be acting on a body free to rotate about a point O and let r be the position vector of any point P on the line of action of the force. Then torque
(τ) of this force about point O is defined as $\tau=r \times F$
Given,
$F=(2 \hat{i}+3 \hat{j}-\hat{k}) N$ and $r=(\hat{i}-\hat{j}+6 \hat{k}) m$. Find the torque of this force.

- Watch Video Solution

14. Find component of vector $A+B$ along (i) x-axis, (ii) C.

Given $A=\hat{i}-2 \hat{j}, B=2 \hat{j}+3 \hat{k}$ and $C=\hat{i}+\hat{j}$.
15. Find the angle that the vector $A=2 \hat{i}+3 \hat{j}-\hat{k}$ makes with y -axis.

D Watch Video Solution

16. If a and b are the vectors $A B$ and $B C$ determined by the adjacent sides of a ragular hexagon. What are the vectors determined by the other sides taken is order?

D Watch Video Solution

17. if $a \times b=b \times c \neq 0$ with a $\neq-c$ then show that $a+c=k b$, where k is scalar.
18. if $A=2 \hat{i}-3 \hat{j}+7 \hat{k}, B=\hat{i}+2 \hat{j}$ and $C=\hat{j}-\hat{k}$.

Find $A(B \times C)$

- Watch Video Solution

19. Find the resultant of the three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and
$\overrightarrow{O C}$ shown in figure. Radius of the circle is R .

(D) Watch Video Solution
20. Prove that $\mid a \times b^{2}=a^{2} b^{2}-(a . b)^{2}$

- Watch Video Solution

21.

Show
that
the
vectors
$a=3 \hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}-3 \hat{j}+5 \hat{k}$
$c=2 \hat{j}+\hat{j}-4 \hat{k}$ form a right angled triangle.

- Watch Video Solution

22. Let A, B and C be the unit vectors. Suppose that A.B=A.C $=0$ and the angle between B and C is $\frac{\pi}{6}$ then prove that $A= \pm 2(B \times C)$
23. A particle moves on a given straight line with a constant speed v. At a certain time it is at a point P on its straight lline path. 0 is a fixed point. Show than
$\overrightarrow{O P} \times \vec{v}$ is independent of the position P.?

- Watch Video Solution

24. Prove that the mid-point of the hypotenuse of right angled triangle is equidistant from its vertices.

- Watch Video Solution

1. What is the angle between $2 a$ and $4 a$?

D Watch Video Solution

2. What is the angle between 3 a and $-5 a$? What is the ratio of magnitude of two vectors?

D Watch Video Solution

3. Two vectors have magnitudes 6 and 8 units, respectively. Find the magnitude of the resultant vector if the angle between vectors is (a) 60° (b) 90° and (c) 120°.
4. Two vectors A and B have magnitudes 6 units and 8 units respectively. Find $|A-B|$, if the angle between two vectors is .(a) 0° (b) 180° (c) 120°.

D Watch Video Solution

5. For what angle between \vec{a} and \vec{b},
$|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$.

- Watch Video Solution

1. Find magnitude and direction cosines of the vector,
$A=(3 \hat{i}-4 \hat{j}+5 \hat{k})$.

D Watch Video Solution

2. Resolve a force $F=10 \mathrm{~N}$ along x and y -axes. Where this force vector in making an angle of 60° from negative x axis towards nagetive y-axis?

D Watch Video Solution

3. Find magnitude of $A-2 B+3 C$, where, $A=2 \hat{i}+3 \hat{j}, B=\hat{i}+\hat{j}$ and $c=\hat{k}$.

D Watch Video Solution

4. Find angle between A and B where, (a)

$$
\begin{aligned}
& A=2 \hat{i} \text { and } B=-6 \hat{i} \text { (b) } A=6 \hat{j} \text { and } B=-2 \hat{k} \text { (c) } \\
& A=(2 \hat{i}=3 \hat{j}) \text { and } B=4 \hat{k} \quad \text { (d) } A=4 \hat{i} \quad \text { and } \\
& B=(-3 \hat{i}+3 \hat{j}) .
\end{aligned}
$$

D Watch Video Solution

Exercise 53

1. Cross product of two paralle or antiparallel vectors is
a null vector. Is this statement true or false?
2. Find the values of . (a) $(4 \hat{j}) \times(-6 \hat{k})$
$(3 \hat{j}) \cdot(-4 \hat{j})$ (c) $(2 \hat{i})-(-4 \hat{k})$.

- Watch Video Solution

3. Two vectors A and B have magnitudes 2 units and 4 units respectively. Find A. B is angle between these two vectors is (a) 0° (b) 60° (c) 90° (d) 120°.
4. Find $(2 A) \times(-3 B)$, if $A=2 \hat{i}-\hat{j} \quad$ and $B=(\hat{j}+\hat{k})$

D Watch Video Solution

Single Correct

1. which one of the following is a scalar quantity?
A. Dipole moment
B. Electric field
C. Acceleration
D. work

Answer: D

- Watch Video Solution

2. Which one of the following is not the vector quantity?
A. Torque
B. Displacement
C. Velocity
D. Speed

Answer: D
3. Which one is a vector quantity?
A. Time
B. Temperature
C. Magnetic flux
D. Magnetic field intensity

Answer: D

D Watch Video Solution

4. Minimum numbar of vectors of unequal magnitudes which can give zore resultant are
A. two
B. three
C. four
D. more than four

Answer: B

- Watch Video Solution

5. which one of the following statement is false ?
A. A vector cannot be displaced from one point to

another point

B. Distance is a scalar quantity but displacement is a vector quantity
C. Momentum force and torque are vector quantites
D. Mass, speed and energy are scalar quantities

Answer: A
6. what is the dot product of two vectors of magnitudes 3 and 5,if angle between them is 60° ?
A. 5.2
B. 7.5
C. 8.4
D. 8.6

Answer: B

- Watch Video Solution

7. The forces, which meet at one point but their line of action do not lie in one plane,are called
A. non coplanar non concurrent forces
B. non coplanar concurrent forces
C. coplanar concurrent forces
D. coplanar non-concurrent forces

Answer: B

- Watch Video Solution

8. A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector produce $\vec{A} \times \vec{B}$ is
A. along west
B. along east
C. zero
D. vertically downward

Answer: A

- Watch Video Solution

9. The magnitude of the vectors product of two vectors $|\vec{A}|$ and $|\vec{B}|$ may be
A. greater than $A B$
B. equal to $A B$
C. less than $A B$
D. equal to zero

Answer: B::C::D

- Watch Video Solution

10. A force $(3 \hat{i}+4 \hat{j})$ newton acts on a boby and displaces it by $(3 \hat{i}+4 \hat{j})$ metre. The work done by the force is
A. 5 J
B. 25 J
C. 10 J
D. 30 J

Answer: B
11. The torque of force $F=(2 \hat{i}-3 \hat{j}+4 \hat{k})$ newton acting at the point $r=(3 \hat{i}+2 \hat{j}+3 \hat{k})$ metre about origin is (in $\mathrm{N}-\mathrm{m}$)
A. $6 \hat{i}-6 \hat{j}+12 \hat{k}$
B. $17 \hat{i}-6 \hat{j}-13 \hat{k}$
C. $-6 \hat{i}+6 \hat{j}-12 \hat{k}$
D. $-17 \hat{i}+6 \hat{j}+13 \hat{k}$

Answer: B

- Watch Video Solution

12. If a unit vector is represented by $0.5 \hat{i}+0.8 \hat{j}+c \hat{k}$ the value of c is
A. 1
B. $\sqrt{0.11}$
C. $\sqrt{0.01}$
D. 0.39

Answer: B

- Watch Video Solution

13. Two vectors of equal magnitudes have a resultant equle to either of them, than the angel between them will be
A. 30°
B. 120°
C. 60°
D. 150°

Answer: B
14. If a vector $2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to the vector $4 \hat{i}-4 \hat{j}+\alpha \hat{k}$, then the value of α is
A. -1
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

15. The angle between the two vectors $A=3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $B=3 \hat{i}+\hat{j}-5 \hat{k}$ is
A. 60°
B. 45°
C. 90°
D. 30°

Answer: C

- Watch Video Solution

16. Maximum and minimum values of the resultant of two forces acting at a point are 7 N and 3 N respectively. The smaller force will be equal to
A. 5 N
B. 4 N
C. 2 N
D. 1 N

Answer: C

- Watch Video Solution

17. if the vectors $P=\alpha \hat{i}+\alpha j+3 \hat{k}$ and
$Q=\alpha \hat{i}-2 \hat{j}-\hat{k}$ are perpendicular to each other, then the positive value of α is
A. 0 (zero)
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

18. The (x, y, z) co -ordinates of two points A and B are give respectively as $(0,3,-1)$ and $(-2,6,4)$ The displacement vector from A to B is given by

$$
\text { A. }-2 \hat{i}+6 \hat{j}+4 \hat{k}
$$

B. $-2 \hat{i}+3 \hat{j}+3 \hat{k}$
C. $-2 \hat{i}+3 \hat{j}+5 \hat{k}$
D. $2 \hat{i}-3 \hat{j}-5 \hat{k}$

Answer: C

19. A vector is not changed if
A. it is rotated through an arbitrary angle
B. it is multiplied by an arbitrary scalar
C. it is cross multiplied by a unit vector
D. it is displaced paralled to itself

Answer: D

- Watch Video Solution

20. Which of the sets given below may represent the magnitudes of three vectors adding to zero?
A. $2,4,8$
B. 4,8,16
C. $1,2,1$
D. 0.5, 1.2

Answer: C

- Watch Video Solution

21. The resultant of \vec{A} and \vec{B} makes an angle α with \vec{A} and β and \vec{B},
A. α is always less then β
B. $\alpha<\beta$ if $A<B$
C. $\alpha<\beta$ if $A>B$
D. $\alpha<\beta$ if $A=B$

Answer: C

- Watch Video Solution

22. The angles which the vector $A=3 \hat{i}+6 \hat{j}+2 \hat{k}$ makes with the co-ordinate axes are
A. $\cos ^{-1} \cdot \frac{3}{7}, \cos ^{-1}, \frac{6}{7}$ and $\cos ^{-1}, \frac{2}{7}$
B. $\cos ^{-1} \cdot \frac{4}{7}, \cos ^{-1}, \frac{5}{7}$ and $\cos ^{-1}, \frac{3}{7}$
C. $\cos ^{-1} \cdot \frac{3}{7}, \cos ^{-1}, \frac{4}{7}$ and $\cos ^{-1}, \frac{1}{7}$
D. None of these

- Watch Video Solution

23. Unit vector parallel to the resultant of vectors
$A=4 \hat{j}-3 \hat{j}$ and $B=8 \hat{j}+8 \hat{j}$ will be
A. $\frac{24 \hat{i}+5 \hat{j}}{13}$
B. $\frac{12 \hat{i}+5 \hat{j}}{13}$
C. $\frac{6 \hat{i}+5 \hat{j}}{13}$
D. None of these

Answer: B
24. The component of vector $A=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ is

A. $\frac{5}{\sqrt{2}}$
B. $10 \sqrt{2}$
C. $5 \sqrt{2}$
D. 5

Answer: A
25. Two vectors A and B are such that $A+B=C$ and $A^{2}+B^{2}=C^{2}$. If θ is the angle between positive direction of A and B, then the correct statement is
A. $\theta=\pi$
B. $\theta=\frac{2 \pi}{3}$
C. $\theta=0$
D. $\theta=\frac{\pi}{2}$

Answer: D

- Watch Video Solution

26. If $|A \times B|=\sqrt{3} A$. B, then the value of $|\mathrm{A}+\mathrm{B}|$ is
A. $\left(A^{2}+B^{2}+A B\right)^{1 / 2}$
B. $\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}$
C. $(A+B)$
D. $\left(A^{2}+B^{2}+\sqrt{3} A B\right)^{1 / 2}$

Answer: A

D Watch Video Solution

27. If the angle between the vectors A and B is θ, the value of the $\operatorname{product}(B \times A))$. A is equal to
A. $B A^{2} \cos \theta$
B. $B A^{2} \sin \theta$
C. $B A^{2} \sin \theta \cos \theta$
D. zero

Answer: D

- Watch Video Solution

28. Given that $P 12, Q=5$ and $R=13$ also $P+Q=R$, then the angle between P and Q will be
A. π
B. $\frac{\pi}{2}$
C. zero
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

29. Given that $P+Q+R=0$. Two out of the three vectors are equal in magnitude. The magnitude fo the third vector is $s \sqrt{2}$ times that of the other two. Which of the following can be the angles between these vectors?
A. 90°
B. $45^{\circ}, 45^{\circ}, 90^{\circ}$
C. $30^{\circ}, 60^{\circ}, 90^{\circ}$
D. $45^{\circ}, 90^{\circ}, 135^{\circ}$

Answer: A

- Watch Video Solution

30. The angles between $P+Q$ and $P-Q$ will be
A. 90°
B. between 0° and 180°
C. 180° only
D. None of these

- Watch Video Solution

31. The value of n so that vectors $2 \hat{i}+3 \hat{j}-2 \hat{k}, 5 \hat{i}+n \hat{j}+\hat{k}$ and $-\hat{i}+2 \hat{j}+3 \hat{k}$ may be complanar.will be
A. 18
B. 28
C. 9
D. 36

D Watch Video Solution

32. If a and b are two vectors.then the value of $(a+b) \times(a-b)$ is
A. $2(b \times a)$
B. $-2(b \times a)$
C. $b \times a$
D. $a \times b$

Answer: A

- Watch Video Solution

33. The resultant of two forces $3 P$ and $2 P$ is R. If the first
force is doubled then resultant is also doubled.The angle between the two forces is
A. 60°
B. 120°
C. 30°
D. 135°

Answer: B

- Watch Video Solution

34. The resultant of two forces, one double the other in magnitude is perpendicular to the smaller of the two forces. The angle between the two forces is
A. 120°
B. 60°
C. 90°
D. 150°

Answer: A

D Watch Video Solution

35. Three vectors satisfy the relation A.B $=0$ and $A . C=0$
then A is parallel to
A. C
B. B
C. $B \times C$
D. B.C

Answer: C

- Watch Video Solution

36. The sum of two forces at a point is 16 N . if their resultant is normal to the smaller force and has a magnitude of 8 N , then two forces are
A. $6 \mathrm{~N}, 10 \mathrm{~N}$
B. $8 \mathrm{~N}, 8 \mathrm{~N}$
C. $4 \mathrm{~N}, 12 \mathrm{~N}$
D. $2 \mathrm{~N}, 14 \mathrm{~N}$

Answer: A

D Watch Video Solution

37. The sum of two vectors A and B is at right angles to their difference. Then
A. $A=B$
B. $A=2 B$
C. $B=2 A$
D. A and B have the same direction

Answer: A

- Watch Video Solution

38. Let $\vec{C}=\vec{A}+\vec{B}$ then
A. $|C|$ is always grater than $|\mathrm{A}|$
B. it is possibal to have $|\mathrm{C}| \mathrm{It}|\mathrm{A}|$ and $|\mathrm{C}| \mathrm{It}|\mathrm{B}|$
C. C is always equal to $A+B$
D. C is never equla to $A+B$

Answer: B

- Watch Video Solution

39. Let the angle between two nonzero vector \vec{A} and \vec{B} is 120° and its resultant be \vec{C}.
A. C must be equal to $|A-B|$
B. C must be less than $\left|A _B\right|$
C. C must be greater than $|A-B|$
D. C may be equal to $|A-B|$

Answer: C

- Watch Video Solution

Subjective

1. If $a=2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $b=4 \hat{i}+3 \hat{j}+2 \hat{k}$,find the angel between a and b .
2. The vectors \vec{A} has a magnitude of 5 unit \vec{B} has a magnitude of 6 unit and the cross product of \vec{A} and \vec{B} has a magnitude of 15 unit. Find the angle between \vec{A} and \vec{B}.

- Watch Video Solution

3. Suppose \vec{a} is a vector of magnitude 4.5 unit due north. What is the vector (a) $3 \vec{a}$ (b) $-4 \vec{a}$?

- Watch Video Solution

4. Two vectors have magnitudes 3 unit and 4 unit respectively. What should be the angel between them if the magnitude of the resultant is (a). 1 unit (b). 5 unit and (c). 7 unit.

- Watch Video Solution

5. The work done by a force \vec{F} during a displacement \vec{r} is given by $\vec{F} \cdot \vec{r}$. Suppose a force of 12 N acts on a particle in vertically upward directionand the particle is displaced through 2.0 m in vertically downward direction. Find the work done by the force during this displacement.
6. If $\vec{A}, \vec{B}, \vec{C}$ are mutually perpendicular show that $\vec{C} \times(\vec{A} \times \vec{B})=0$. Is the converse true?

D Watch Video Solution

7. Prove that $\vec{A} \cdot(\vec{A} \times \vec{B})=0$

- Watch Video Solution

8. Find the resultant of the three vectors shown in figure (2W1).

- Watch Video Solution

> 9. Given an example for which
> $\vec{A} \cdot \vec{B}=\vec{C} \cdot \vec{B}$ but $\vec{A} \neq \vec{C}$

- Watch Video Solution

10. Obtain the angle between $A+B$ and $A-B$ if $A=2 \hat{i}+3 \hat{j}$ and $B=\hat{i}-2 \hat{j}$.

D Watch Video Solution

11. Deduce the condition for the vectors
$2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $3 \hat{i}-\alpha \hat{j}+b \hat{k}$ to be parallel.

D Watch Video Solution

12. Find the area of the parallelogram whose sides are represented by $2 \hat{i}+4 \hat{j}-6 \hat{k}$ and $\hat{i}+2 \hat{k}$.
13. If vectors A and B be respectively equal to $3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $2 \hat{i}+3 \hat{j}-4 \hat{k}$. Find the unit vector parallel t A + B

- Watch Video Solution

14. if $A=2 \hat{i}-3 \hat{j}+7 \hat{k}, B=\hat{i}+2 \hat{j}$ and $C=\hat{j}-\hat{k}$.

Find $A(B \times C)$

- Watch Video Solution

15. The x and y-components of vector A are $4 m$ and $6 m$ respectively. The x and y-components of vector $A+B$ are 10 m and 9 m respectively. Calculate for the vector B the following:
(a) its x and y-components
(b) its length
(c) the angle it makes with x-axis.

- Watch Video Solution

16. Three vectors which are coplanar with respect to a
certain rectangular co-ordinate system are given by
$a=4 \hat{i}-\hat{j}, b=-3 \hat{i}+2 \hat{j}$ and $c=-3 \hat{j}$

Find
(a) $a+b+c$
(b) $a+b \pm c$
(c) Find the angle between $a+b+c$ and $a+b-c$

- Watch Video Solution

17. Let \vec{A} and \vec{B} be the two vectors of magnitude 10 unit each. If they are inclined to the X -axis at angles 30° and 60° respectively, find the resultant.

D Watch Video Solution

18. The resultant of vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$ is peerpendicular to $\overrightarrow{O A}$. Find the angle $A O B$.

D Watch Video Solution

19. Find the components of a vector $A=2 \hat{i}+3 \hat{j}$ along the directions of $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$.

- Watch Video Solution

20.

If two
vectors
are
$A=2 \hat{i}+\hat{j}-\hat{k}$ and $B=\hat{j}-4 \hat{k} . \quad$ By calculation,
prove $A x x B$ isperpendicular to both A and B.

- Watch Video Solution

21. The resultant of two vector A and B is at right angles to A and its magnitude is half of B. Find the angle between A and B .

D Watch Video Solution

22. Four forces of magnitude $P, 2 P, 3 P$ and $4 P$ act along
the four sides of a square $A B C D$ in cyclic order. Use the vector method to find the magnitude of resultant force.

- Watch Video Solution

23. If $P+Q=R$ and $P-Q=S$, prove that $R^{2}+S^{2}=2\left(P^{2}+Q^{2}\right)$

D Watch Video Solution

24. In an $\Delta A B C$ as showin in Fig. 2. (2) . 71 (a) prove
that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{C}{\sin C}$.
(D) Watch Video Solution

Example

1. check Wether the vector $\left(\frac{\hat{i}}{\sqrt{2}}+\frac{\hat{j}}{\sqrt{2}}\right)$ is a unit vector or not.
A. YES
B. NO
C. Cannot be determined
D. None of the above

Answer: A

- Watch Video Solution

2. Find the unit vector of $4 \hat{i}-3 \hat{j}+\hat{k}$.
A. $\frac{\hat{4}-3 \hat{j}+\hat{k}}{\sqrt{2}}$
B. $\frac{\hat{4}-3 \hat{j}+\hat{k}}{\sqrt{26}}$
C.
$\frac{\hat{4}-4 \hat{j}+\hat{k}}{\sqrt{2}}$
D. $\frac{\hat{2}-3 \hat{j}+\hat{k}}{\sqrt{2}}$

Answer: B

D Watch Video Solution

3. If vector $\hat{i}-3 \hat{j}+5 \hat{k}$ and $\hat{i}-3 \hat{j}-a \hat{k}$ are equal vector then find the volue of a.
A. $a=5$
B. $a=-15$
C. $a=15$
D. $a=-5$

Answer: D

- Watch Video Solution

4. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{I}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel to \vec{A}.

- Watch Video Solution

5. Two forces whose magnitudes are in the ratio $3: 5$ give a resultant of 28 N . If the angle of their inclination
is 60°, find the magnitude of each force.
A. $1 N 2 N$
B. 12 N 20 N
C. $12 N 12 N$
D. $22 N 20 N$

Answer: B

D Watch Video Solution

6. Aboy Walks 4 m east and then 3 m south .Find the displacement of the boy.
A. 7
B. 1
C. 5
D. 12

Answer: C

D Watch Video Solution

7. If $A=B+C$ have scalar magnitudes $o 5,4,3$ units respectively, then find the between A and C.
A. $\cos ^{-1}\left(\frac{2}{5}\right)$
B. $\cos ^{-1}\left(\frac{1}{5}\right)$
C. $\cos ^{-1}\left(\frac{3}{5}\right)$
D. $\sin ^{-1}\left(\frac{3}{5}\right)$

Answer: C

- Watch Video Solution

8. Find the sum of vector A and B as shown in the figure
,also find the direction of sum vector. Given $A=4$ unit
and $B=3$ unit .

A. $\sqrt{35}$ unit , $\alpha=\tan ^{-1}(0.472)=25.3^{\circ}$
B. $\sqrt{25}$ unit , $\alpha=\tan ^{-1}(0.472)=25.3^{\circ}$
C. $\sqrt{37}$ unit , $\alpha=\tan ^{-1}(0.472)=25.3^{\circ}$
D. $\sqrt{37}$ unit , $\alpha=\tan ^{-1}(1)=45^{\circ}$

Answer: C
9. Two equal vector have a resultant equal to either of them, then the angle between them will be:

- Watch Video Solution

10. Find the resultant of three vectors shown in the
figure.

A. $10 m \tan ^{-1}\left(\frac{3}{4}\right)$
B. $100 m \tan ^{-1}\left(\frac{4}{3}\right)$
C. $110 m \tan ^{-1}\left(\frac{4}{3}\right)$
D. $10 m \tan ^{-1}\left(\frac{4}{3}\right)$

Answer: D
11. Find the subraction of vector A and B as shown in the figure, also find the direction of subtraction vector
,Given $A=4$ unit and $b=3$ unit .

A. $=\sqrt{19}$ unit 60
B. $=\sqrt{24}$ unit 45°
C. $=\sqrt{17}$ unit 46.1°
D. $=\sqrt{13}$ unit 46.1°

Answer: D

- Watch Video Solution

12. Obtain the magnitude of $2 A-3 B$ if

$$
A=\hat{i}+\widehat{J}-2 \hat{k} \text { and } b=2 \hat{I}-\hat{j}+\hat{k} .
$$

A. $\sqrt{90}$
B. 90
C. $3 \sqrt{10}$
D. both option A and option C correct

Answer: D

- Watch Video Solution

13. If a and b are the vectors $A B$ and $B C$ determined by the adjacent sides of a regular hexagon. What are the vectors determined by the other sides taken is order?

D Watch Video Solution

14. the initial and final and posdition vector for a particle are(-3) $\hat{i}+(2 m) \hat{j}+(8 m) \hat{k}$ and
$(9 m) \hat{i}+(2 m) \hat{j}+(-8 m) \hat{k}$ respectively ,find the displacement of the particle.

- Watch Video Solution

15. If $|\vec{P}+\vec{Q}|=|\vec{P}-\vec{Q}|$, find the angle between \vec{P} and \vec{Q}.

- Watch Video Solution

16. A vector is given by $\vec{A}=3 \hat{i}+4 \hat{j}+5 \hat{k}$. Find the magnitude of \vec{A}, unit vector along \vec{A} and angles made by \vec{A} with coordinate axes.

- Watch Video Solution

17. Resolve a weight of 10 N in two directions which are parallel and perpendiular to a slope inclined at 30° to the horizontal.

- Watch Video Solution

18. Resolve horizontally and vertically a force $F=8 N$
which makes an angle of 45° with the horizontal.
A. $5 \sqrt{ } 2 \mathrm{~N}$
B. $\sqrt{ } 2 \mathrm{~N}$
C. $5 \sqrt{ } 2 \mathrm{~N}$
D. $4 \sqrt{ } 2 \mathrm{~N}$

Answer: D

- Watch Video Solution

19. Find the resultant of the following forces.
$\left[\sin 37^{\circ}=\frac{3}{5}, \cos 37^{\circ}=\frac{4}{5}, \sin 53^{\circ}=\frac{4}{5}, \cos 53^{\circ}=\frac{3}{5}\right]$

A. The resultant of these is 10 N at 53° with the positive X -axis.
B. The resultant of these is 10 N at 43° with the positive X -axis.
C. The resultant of these is 100 N at 53° with the positive X -axis.
D. The resultant of these is 120 N at 53° with the positive X -axis.

Answer: A

- Watch Video Solution

20. Find the angle that the vector $A=2 \hat{i}+3 \hat{j}-\hat{k}$ makes with y -axis.

$$
\begin{aligned}
& \text { A. } \theta=\cos ^{1}\left(\frac{3}{\sqrt{14}}\right) \\
& \text { B. } \theta=\cos ^{-1}\left(\frac{3}{\sqrt{4}}\right) \\
& \text { C. } \theta=\cos ^{-1}\left(\frac{3}{\sqrt{14}}\right) \\
& \text { D. } \theta=\cos ^{-1}\left(\frac{3}{\sqrt{12}}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

21. If a particle moves from the point $A(1,2,3)$ to the point $B(4,6,9)$, its displacement vector be
A. $3 \vec{i}+4 \vec{j}$
B. $3 \vec{i}+6 \vec{k}$
C. $3 \vec{i}+5 \vec{j}+6 \vec{k}$
D. $3 \vec{i}+4 \vec{j}+6 \vec{k}$

Answer: D

- Watch Video Solution

22. Prove that the quadrilateral formed by joining the mid-points of the pairs of consecutive sides of a quadrilateral is a parallelogram.

D Watch Video Solution

23. Find component of vector $A+B$ along (i) x-axis, (ii) C.

Given $A=\hat{i}-2 \hat{j}, B=2 \hat{i}+3 \hat{k}$ and $C=\hat{i}+\hat{j}$.

D Watch Video Solution

24. Work done by a force F on a body is $\mathrm{W}=\mathrm{F} . \mathrm{s}$, where s is the displacement of body. Given that under a force
$F=(2 \hat{I}+3 \hat{j}+4 \hat{k}) \mathrm{N}$ a body is displaced from position vector $r_{1}=(2 \hat{I}+3 \hat{j}+\hat{k}) \mathrm{m}$ to the position vector $r_{2}=(\hat{i}+\hat{j}+\hat{k}) \mathrm{m}$. Find the work done by this force.

- Watch Video Solution

25. Find the angle between two vector
$A=2 \hat{i}+\hat{j}-\hat{k}$ and $B=\hat{i}-\hat{k}$.

- Watch Video Solution

26. prove that the vectors
$A=2 \hat{i}-3 \hat{j}+\hat{k}$ and $B=\hat{i}+\hat{j}+\hat{k}$ are mutually
perpendicular.

- Watch Video Solution

27. Find the (i) Scalar component and (ii)vector component of $A=3 \hat{i}+4 \hat{j}+5 \hat{k}$ on $B=\hat{i}+\hat{j}+\hat{k}$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 28. Show that the } \\
& a=3 \hat{i}-2 \hat{j}+\hat{k}, b=\hat{i}-3 \hat{j}+5 \hat{k} \\
& c=2 \hat{j}+\hat{j}-4 \hat{k} \text { form a right angled triangle. }
\end{aligned}
$$

29. Prove that the mid-point of the hypotenuse of right angled triangle is equidistant from its vertices.

D Watch Video Solution

30.

Find
the
projection
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

31. Let a force F be acting on a body free to rotate about a point O and let r the position vector of ant point P on the line of aciton of the force. Then torque
(τ) of this force abot point O is defined as $\tau=r \times F$

Given,
$F=(2 \hat{i}+3 \hat{j}-\hat{k}) N$ and $r=(\hat{i}-\hat{j}+6 \hat{k}) m$ Find the torque of this force.

$$
\begin{aligned}
& \text { А. }(-16 \hat{i}+13 \hat{j}+7 \hat{k}) N-m \\
& \text { в. }(-17 \hat{i}-13 \hat{j}-5 \hat{k}) N-m \\
& \text { С. }(-17 \hat{i}+13 \hat{j}+5 \hat{k}) N-m \\
& \text { д. }(-16 \hat{i}+11 \hat{j}+15 \hat{k}) N-m
\end{aligned}
$$

Answer: C

- Watch Video Solution

32. Is the vector $A=(\hat{i})-(\hat{j})+2 \hat{k}$ parallel to a vector $B=3 \hat{i}-3 \hat{j}+6 \hat{k}$.
A. No
B. Yes
C. May be
D. Incomplete Info

Answer: B

- Watch Video Solution

33. Prove that $|a \times b|^{2}=a^{2} b^{2}-(a . b)^{2}$
34. A particle moves on a given straight line with a constant speed v. At a certain time it is at a point P on its straight lline path. 0 is a fixed point. Show than $\overrightarrow{O P} \times \vec{v}$ is independent of the position P.?

D Watch Video Solution

35. if $a \times b=b \times c \neq 0$ with a $\neq-c$ then show that $a+c=k b$, where k is scalar.
36. Let A, B and C be the unit vectors. Suppose that $A . B=A . C=O$ and the angle between B and C is $\frac{\pi}{6}$ then prove that $A= \pm 2(B \times C)$

- Watch Video Solution

37. The diagonals of a parallelogram are $2 \hat{i}$ and $2 \hat{j}$.

What is the area of the parallelogram

- Watch Video Solution

38. If $a=3 \hat{i}+\hat{j}-4 \hat{k}, b=6 \hat{i}+5 \hat{j}-2 \hat{k}$, then find
the area of a triangle whose adjacent sides are
determined by a and b .
A. 12.5 sq unit
B. 11.5sq unit
C. 135sq unit
D. 13.5sq unit

Answer: D

- View Text Solution

39. The adjacent sides of a paralellelogram is given by two vector A and B where
$A=5 \hat{i}-4 \hat{j}+3 \hat{k}$ and $B=3 \hat{i}-2 \hat{j}+\hat{k}$ Calulate the aera of parallelogram .
A. $10 \sqrt{30}$ sq units
B. $100 \sqrt{3}$ sq units
C. $10 \sqrt{3}$ sq units
D. $10 \sqrt{2}$ sq units

Answer: C

- Watch Video Solution

Check Point 21

1. Which is not a vector quantity?
A. Current
B. Displacement
C. Velocity

D. Acceleration

Answer: A

- Watch Video Solution

2. Pressure is
A. Scalar
B. vector
C. both (a) and (b)
D. none of these

Answer: A

D Watch Video Solution

3. Which one of the following is not the vector quantity?
A. Torque
B. Displacement
C. Dipole moment

D. Electric flux

Answer: D

- Watch Video Solution

4. Which of the following is a vector?
A. Pressure
B. Displacement
C. Moment of inertia
D. none of these

Answer: D

5. Suface area is
A. Scalar
B. vector
C. Neither scalar nor vector
D. both (a)and(b)

Answer: A

- View Text Solution

6. Which is a vector quantity?
A. Angular momentum
B. Work
C. Potential energy
D. Electirc current

Answer: A

- Watch Video Solution

7. Which one is a vector quantity?
A. Work
B. momentum
C. time
D. Speed

Answer: B

- Watch Video Solution

8. Which is a vector quantity?
A. Work
B. power
C. Torque
D. Gravitational constant
9. Find the vector that must be added to the vector $\hat{i}-3 \hat{j}+2 \hat{k}$ and $3 \hat{i}+6 \hat{j}-7 \hat{k}$ so that the resultant vector is a unit vector along the y-axis.
A. $-4 \hat{i}-2 \hat{j}+5 \hat{k}$
B. $-4 \hat{i}+2 \hat{j}+5 \hat{k}$
C. $4 \hat{i}-2 \hat{j}+5 \hat{k}$
D. $-4 \hat{i}-2 \hat{j}-5 \hat{k}$

Answer: A

10. A vector multiplied by the number 0 , results into
A. 0
B. A
C. O
D. \widehat{A}

Answer: C

(D) Watch Video Solution
11. Which of the following represents a unit vector?
A. $\frac{|A|}{A}$
B. $\frac{A}{|A|}$
C. $\frac{A}{A}$
D. $\frac{|A|}{|A|}$

Answer: B

D Watch Video Solution

12. Unit vector does not have any
A. direction
B. magnitude
C. unit
D. All of these

Answer: C

- Watch Video Solution

13. If \hat{i} and \hat{j} are unit vectors along X-and Y-axis respective, then what is the magnitude and direction of
$\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$?
A. 2
B. 0
C. $\sqrt{2}$
D. 4

- Watch Video Solution

14. The unit vector along $\hat{i}+\hat{j}$ is
A. \hat{k}
B. $\hat{i}+\hat{\hat{j}}$

Answer: C
15. What happens, when we multiply a vector by (-2)
A. direction reverses and unit charges
B. direction reverses and megnitude is doubled
C. direction remains unchanged and unit chanes
D. none of the above

Answer: B

D Watch Video Solution

1. $\vec{A}+\vec{B}$ can also be written as
A. $A-B$
B. $B-A$
C. $B+A$
D. $B-A$

Answer: C

D Watch Video Solution

2. If $P+Q=0$. Then which of the following is necessarily ture?
A. $P=0$
B. $P=-Q$
C. $Q=0$
D. $P=Q$

Answer: B

- Watch Video Solution

3. Two vector having magnitude 8 and 10 can maximum and minium value of magnitude of their resultant as
A. 12,6
B. 10,3
C. 18,2
D. none of these

Answer: C

- Watch Video Solution

4. $\vec{P}+\vec{Q}$ is a unit vector along x-axis. If $\vec{P}=\hat{i}-\hat{j}+\hat{k}$, then what is \vec{Q} ?
A. $\hat{i}+\hat{j}-\hat{k}$
B. $\hat{j}-\hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $\hat{j}+\hat{k}$

- Watch Video Solution

5. For the resultant of two vectors to be maximum , what must be the angle between them ?

- Watch Video Solution

6. What are the minimum number of froces (all mumerically equal) whose vector sun can be zero ?
A. Two
B. Three
C. Four
D. Any

Answer: B

- Watch Video Solution

7. Given that $P+Q+R=0$. Which of the following statement is true?
A. $|P|+|Q|=|R|$
B. $|P+Q|=|R|$
C. $|P|-|Q|=|R|$
D. $|P-Q|=|R|$

Answer: B

- Watch Video Solution

8. $\vec{A}=2 \hat{i}+\hat{j}, B=3 \hat{j}-\hat{k}$ and $\vec{C}=6 \hat{i}-2 \hat{k}$. value of $\vec{A}-2 \vec{B}+3 \vec{C}$ would be
A. $20 \hat{i}+5 \hat{j}+4 \hat{k}$
B. $20 \hat{i}-5 \hat{j}-4 \hat{k}$
C. $4 \hat{i}+5 \hat{j}+20 \hat{k}$
D. $5 \hat{i}+4 \hat{j}+10 \hat{k}$

Answer: B
9. If $\vec{A}=4 \hat{i}-3 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$ then magnitude and direction of $\vec{A}+\vec{B}$ will be
A. $5, \tan ^{-1}(3 / 4)$
B. $5 \sqrt{5}, \tan ^{-1}(1 / 2)$
C. $10, \tan ^{-1}(5)$
D. $25, \tan ^{-1}(3 / 4)$

Answer: B
10. A truck travelling due to north at $20 \mathrm{~ms}^{-1}$ turns west and travels at the same speed. Find the change in its velocity.
A. $40 m s^{-1} N-W$
B. $20 \sqrt{2} m s^{-1} N-W$
C. $40 m s^{-1} S-W$
D. $20 \sqrt{2} m s^{-1} S-W$

Answer: D
(D) Watch Video Solution
11. Resultant of two vetors A and B is given by $|R|=\{|A|-|B|\}$. angle between A and B will be
A. 90°
B. 180°
C. 0°
D. none of these

Answer: B

- Watch Video Solution

12. If $|A|=2$ and $|B|=4$ and angle between then is 60° then $|A-B|$
A. $\sqrt{13}$
B. $3 \sqrt{3}$
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: D

- Watch Video Solution

13. If A and B are two vectors such that $|A+B|=2|A-B|$. The angle between vectors A and B is
A. 45°
B. 60°
C. 30°
D. data insuffcient

Answer: D

- Watch Video Solution

14. if $P+Q=P-Q$,then
A. $\mathrm{P}=0$
B. $Q=0$
C. $P=1$
D. $|Q|=1$

Answer: B

- Watch Video Solution

15. Position of a particle in a rectangular -co-ordinate
$(3,2,5)$. Then its position vector will be
A. $3 \hat{i}+5 \hat{j}+2 \hat{k}$
B. $3 \hat{i}+2 \hat{j}+5 \hat{k}$
C. $5 \hat{i}+3 \hat{j}+2 \hat{k}$
D. none of these

Answer: B

- Watch Video Solution

16. If a particle moves from point $P(2,3,5)$ to point
$Q(3,4,5)$. Its displacement vector be
A. $\hat{i}+\hat{j}+10 \hat{k}$
B. $\hat{i}+\hat{j}+5 \hat{k}$
C. $\hat{i}+\hat{j}$
D. $2 \hat{i}+4 \hat{j}+6 \hat{k}$

Answer: C

- Watch Video Solution

17. At what angle should the two force vector 2 F and $\sqrt{2} F$ act so that the resultant force is $\sqrt{10} F$?
A. 45°
B. 60°
C. 90°
D. 120°

Answer: A
18. What vector must be added to the two vectors
$\hat{i}-2 \hat{j}+2 \hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$, so that the resultant may be a unit vector along x - axis
A. $5 \hat{i}+\hat{k}$
B. $-5 \hat{i}+3 \hat{j}$
C. $3 \hat{i}+5 \hat{k}$
D. $-3 \hat{i}+2 \hat{k}$

Answer: B

- Watch Video Solution

19. Three vector each of magnitude A are acting at a point such that angle between any two consecuitve vectors in same plane is 60° The magniude of their resultant is
A. 2 A
B. $\sqrt{2} A$
C. $\sqrt{3} A$
D. $\sqrt{6} A$

Answer: A
20. Three forces acting on a body are shown in figure.

To have the resultant force only along the y-directon, the magnitude of the minimum additional force needed si

A. $\frac{\sqrt{3}}{4} N$
B. $\sqrt{3} N$
C. 0.5 N
D. 1.5 N

Answer: C

- Watch Video Solution

Check Point 23

1. The work done by a force $F=(\hat{i}+2 \hat{j}+3 \hat{k}) \mathrm{N}$,to displace a body from position A to position B is [The position vector of A is $r_{1}=(2 \hat{i}+2 \hat{j}+3 \hat{k}) m$]
A. 5 J
B. 3 J
C. 2 J
D. 10 J

Answer: A

- View Text Solution

2. The condition $(a . b)^{2}=a^{2} b^{2}$ is satisfied when
A. a is parallel to b
B. $a \neq b$
C. $a . b=1$
D. $a \perp b$

Answer: A

- Watch Video Solution

3. The modulus of the vector product of two vector is $\frac{1}{\sqrt{3}}$ times their scalar product. The angle between vectors is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$
4. Three vectors satisfy the relation $A . B=0$ and $A . C=0$
then A is parallel to
A. B
B. C
C. B.C
D. $B \times C$

Answer: D

- Watch Video Solution

5. what is the dot product of two vectors of magnitudes 3 and 5,if angle between them is 60° ?
A. 5.2
B. 7.5
C. 8.4
D. 8.6

Answer: B

- Watch Video Solution

6. When A. $B=-|A||B|$, then
A. A and B are perpendicular to each other
B. A and B act in the same direction
$C . A$ and B act in the opposite sirection
D. A and B can act in any in any direction

Answer: C

- Watch Video Solution

7. The vector projection of a vector $3 \hat{i}+4 \hat{k}$ on y-axis is
A. 5
B. 4
C. 3
D. Zero

Answer: D

D Watch Video Solution

8. In a clockwise system :-
A. $\hat{j} \times \hat{k}=\hat{i}$
B. $\hat{k} . \hat{i}=1$
C. $\hat{i} . \hat{i}=0$
D. $\hat{j} \times \hat{j}=1$
9. If $|A \times B|=\sqrt{3} A$. B, then the value of $|\mathrm{A}+\mathrm{B}|$ is
A. $\left(A^{2}+B^{2}+\frac{A B}{\sqrt{3}}\right)^{1 / 2}$
B. $A+B$
C. $\left(A^{2}+B^{2}+\sqrt{3} A B\right)^{1 / 2}$
D. $\left(A^{2}+B^{2}+A B\right)^{1 / 2}$

Answer: D

- Watch Video Solution

10. If $|A|=2,|B|=5$ and $|A \times B|=8$. Angle between A and B is acute, then $(A . B)$ is
A. 6
B. 3
C. 4
D. 7

Answer: A

- Watch Video Solution

11. Find the torque of a force $\vec{F}=-3 \hat{i}+2 \hat{j}+\hat{k}$ acting at the point $\vec{r}=8 \hat{i}+2 \hat{j}+3 \hat{k}$ about origin
A. $14 \hat{i}--38 \hat{j}+16 \hat{k}$
B. $4 \hat{i}+4 \hat{j}+6 \hat{k}$
C. $-14 \hat{i}+38 \hat{j}-16 \hat{k}$
D. $-4 \hat{i}+17 \hat{j}-22 \hat{k}$

Answer: D

- Watch Video Solution

12. What is the unit vector perpendicular to the following vectors $2 \hat{i}+2 \hat{j}-\hat{k}$ and $6 \hat{i}-3 \hat{j}+2 \hat{k}$
A. $\frac{\hat{i}+10 \hat{j}-18 \hat{k}}{5 \sqrt{17}}$
B. $\frac{\hat{i}-10 \hat{j}+18 \hat{k}}{5 \sqrt{17}}$
C. $\frac{\hat{i}-10 \hat{j}-18 \hat{k}}{5 \sqrt{17}}$
D. $\frac{\hat{i}+10 \hat{j}+18 \hat{k}}{5 \sqrt{17}}$

Answer: C

13. The angle between vectors $(A \times B)$ and $(B \times A)$
is
A. Zero
B. π
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

14. What is the value of linear velocity, if $\vec{\omega}=3 \hat{i}-4 \hat{j}+\hat{k}$ and $\vec{r}=5 \hat{i}-6 \hat{j}+6 \hat{k}$?

- Watch Video Solution

15. Find the area of the parallelogram determined
$A=2 \hat{i}+\hat{j}-3 \hat{k}$ and $B=12 \hat{j}-2 \hat{k}$
A. 43
B. 56
C. 38
D. 74

Answer: A

- Watch Video Solution

Chapter Exercises

1. The vector quantily among the following is
A. mass
B. time
C. distance
D. displacement
2. A vetor is added to an equal and oppsite vector of similar nature,forms a
A. unit vector
B. postion vector
C. null vector
D. dislacement vector

Answer: C

- Watch Video Solution

3. Out og the following quantities, which is scalar?
A. Displacement
B. momentum
C. Potential energy
D. Torque

Answer: C

D Watch Video Solution

4. Which of the followingis a unit vector ?
A. $\hat{i}+\hat{j}$
B. $\cos \theta \hat{i}-\sin \theta \hat{j}$
C. $\sin \theta \hat{i}+2 \cos \theta \hat{j}$
D. $\frac{1}{\sqrt{3}}(\hat{i}+\hat{j})$

Answer: B

D Watch Video Solution

5. The component of a vector is
A. always less than its magnitude
B. always greater than its magnitude
C. always equal to its magnitude
D. none of the above

Answer: A

D Watch Video Solution

6. The expression $\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right)$ is a
A. unit vector
B. unll vector
C. vector of magnitude $\sqrt{2}$
D. Scalar

Answer: A
7. Theposition vector of a moving particle at time t is
$r=3 \hat{i}+4 t \hat{j}-t \hat{k}$ Its displacement during the time interval $t=1 \mathrm{~s}$ to $\mathrm{t}=3^{`} \mathrm{~s}$ is
A. $\hat{j}-\hat{k}$
B. $3 \hat{i}+4 \hat{j}-\hat{k}$
C. $9 \hat{i}+36 \hat{j}-27 \hat{k}$
D. None of the above

Answer: D

8. Vector $P=6 \hat{i}+4 \sqrt{2} \hat{j}+4 \sqrt{2} \hat{k}$ makes angle from $Z-$ axas equal to
A. $\cos ^{-1}\left(\frac{\sqrt{2}}{5}\right)$
B. $\cos ^{-1}(2 \sqrt{2})$
C. $\cos ^{-1} \frac{2 \sqrt{2}}{5}$
D. None of these

Answer: C

- Watch Video Solution

9. Given :
$\vec{A}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=-\hat{i}-\hat{j}-\hat{k}$ What is the
angle between $(\vec{A}-\vec{B})$ and \vec{A} ?
A. 0°
B. 180°
C. 90°
D. 60°

Answer: A

- Watch Video Solution

10. Which of the following Statement is true?
A. When the coordiante axes are translated the component of a vector in a plane changes.
B. When the coording axces are rotated though
some angle components of the vector change
but vector 's magnitude remain constant.
C. Sum of a and b is R If the magnitude of a alone is
increased angle between b and R decreases.
D. The cross product of $3 \hat{i}$ and $4 \hat{j}$ is 12 .

Answer: B
11. The component of vector $A=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ is
A. $\frac{5}{\sqrt{2}}$
B. $4 \sqrt{2}$
C. $\frac{\sqrt{2}}{3}$
D. None of these

Answer: A

12. A vector $P=3 \hat{i}-2 \hat{j}+a \hat{k}$ is perpendicular to the vector $Q=2 \hat{i}+\hat{j}-\hat{k}$, The value of a is
A. 2
B. 1
C. 4
D. 3

Answer: C

- Watch Video Solution

13. If three vector along coordinate axis represent the adjacent sides of a cube of length b, then the unit vector along its diaonal passing thourth the origin will be

$$
\begin{aligned}
& \text { A. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{2}} \\
& \text { B. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{36}} \\
& \text { C. } \hat{i}+\hat{j}+\hat{k} \\
& \text { D. } \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}
\end{aligned}
$$

Answer: D

14. The angle between two vectors $-2 \hat{i}+3 \hat{j}+k$ and $\hat{i}+2 \hat{j}-4 \hat{k}$ is
A. 45°
B. 90°
C. 30°
D. 60°

Answer: B

- Watch Video Solution

15. The angle between the vector $2 \hat{i}+\hat{j}+\hat{k}$ and \hat{j} ?
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. None of these

Answer: B

D Watch Video Solution

16. What is the angle between $\hat{i}+\hat{j}+\hat{k}$ and \hat{j} ?
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. none of these

Answer: D

- Watch Video Solution

17. Which of the following is the unit vector perpendicular to \vec{A} and \vec{B} ?

$$
\begin{aligned}
& \text { A. } \frac{\widehat{A} \times \widehat{B}}{A B \sin \theta} \\
& \text { B. } \frac{\widehat{A} \times \widehat{B}}{A B \cos \theta} \\
& \text { C. } \frac{A \times B}{A B \sin \theta} \\
& \text { D. } \frac{A \times B}{A B \cos \theta}
\end{aligned}
$$

Answer: C

18. If $\frac{|a+b|}{|a-b|}=1$, then the angle between a and b is
A. 0°
B. 45°
C. 90°
D. 60°

Answer: C

- Watch Video Solution

19. A man walk 20 m at an angle 60° north of east. How far towards east has he he travellled ?
A. 10 m
B. 20 m
C. $20 \sqrt{3} \mathrm{~m}$
D. $10 \sqrt{3} \mathrm{~m}$

Answer: A

- Watch Video Solution

20. If $A=B$, then which of the following is not correct ?
A. $\widehat{A}=\widehat{B}$
B. $|A|=|B|$
C. $A \widehat{B}=B \widehat{A}$
D. $A+B=\widehat{A}+\widehat{B}$

Answer: D

- Watch Video Solution

21. The area of the parallelogram represented by the vectors $\vec{A}=2 \hat{i}+3 \hat{j}$ and $\vec{B}=\hat{i}+4 \hat{j}$ is
A. 14 unit
B. 7.5 units
C. 10 unit
D. 5 units

Answer: D

- Watch Video Solution

22. The forces, which meet at one point but their line of
action do not lie in one plane,are called
A. non- copanar non-concurrent fores
B. non - copanar concurrent forces
C. coplanar concurrent forces
D. coplanar non- concurrernt forces

- Watch Video Solution

23. If the angle between two vectors A and B is 120°, then its resultant C will be
A. $C=|A-B|$
B. $C<|A-B|$
C. $C>|A-B|$
D. $C=|A+B|$

Answer: C
24. The condition under which the vector $(a+b)$ and ($a-$
b) are parallel is
A. $a \perp b$
B. $|a|=|b|$
C. $a \neq b$
D. $C=|A+B|$

Answer: D

- View Text Solution

25. A body, under the action of a force
$\vec{F}=6 \hat{i}-8 \hat{j}+10 \hat{k}$, acquires an acceleration of
$1 \mathrm{~ms}^{-2}$. The mass of this body must be.
A. 200 kg
B. 20 kg
C. $10 \sqrt{2} \mathrm{~kg}$
D. $6 \mathrm{sqrt}(2) \mathrm{kg}{ }^{`}$

Answer: C

- Watch Video Solution

26. The vector sum of two forces is perpendicular to
their vector differences. In that case, the forces
A. are not equal to each other in magnitude
B. are parallel
C. are perpendicular
D. are rqual to each other in magnitude

Answer: D

- Watch Video Solution

27. The resultant of \vec{a} and \vec{b} makes α with \vec{a} and β with \vec{b}, then (a,b represent magnitudes of respective vectors) :
A. $a p h a<\beta$
B. $\alpha>\beta$ if $A<B$
C. $\alpha<\beta$ if $A=B$
D. $\alpha<\beta$ if $A<B$

Answer: B
28. Two equal vector have a resultant equal to either of
them, then the angle between them will be:
A. 60°
B. $120^{\circ} 0$
C. 90°
D. 0°

Answer: B

- Watch Video Solution

29. If A and B are Two non -zero vector having equal magnitude, the angle between the vector A and $A-B$ is
A. 0°
B. 90°
C. 180°
D. dependent on the orientation of A and B

Answer: D

- Watch Video Solution

30. The angle between $\vec{A}=\hat{i}+\hat{j}$ and $\vec{B}=\hat{i}-\hat{j}$ is
A. 45°
B. 90°
C. -45°
D. 180°

Answer: B

- Watch Video Solution

31. Five equal forces of $10 N$ each are applied at one point and all are lying one plane. If the angles between them are equal, the resultant force will be
A. zero
B. 10 N
C. 20 N
D. $10 \sqrt{2} N$

Answer: A

D Watch Video Solution

32. Two vectors \vec{A} and \vec{B} inclined at an angle θ have a resultant \vec{R} which makes an angle α with \vec{A}. If the directions of \vec{A} and \vec{B} are interchanged, the resultant will have the same
A. magnitude the same
B. direction reverses and megnitude is doubled
C. magnitude as well as direction

D. Neither

Answer: A

D Watch Video Solution

33. What is correct ?
A. $|a-b|=|a|-|b|$
B. $|a-b| \leq|a|-|b|$
C. $|a-b| \geq|a|-|b|$
D. $|a-b|>|a|-|b|$

Answer: C

- Watch Video Solution

34. Resultant of which of a following may be equal to zero?
A. $10 N, 10 N, 10 N$
B. $10 N, 10 N, 25 N$
C. $10 N, 10 N, 35 N$
D. None of these

Answer: A
35. A man first moves 3 m due east, them 6 m due north and finally 7 m due west, then the magnitude of the resultant displacement is (in metre)
A. $\sqrt{16}$
B. $\sqrt{24}$
C. $\sqrt{52}$
D. $\sqrt{94}$

Answer: C

- Watch Video Solution

36. The resultant of two forces $3 P$ and $2 P$ is R. If the first
force is doubled then resultant is also doubled.The angle between the two forces is
A. 60°
B. 120°
C. 90°
D. 180°

Answer: B

- Watch Video Solution

37. Two forces 8 N and 12 act ay 120° The third force required to keep the body in equilbrium is
A. 4 N
B. $4 \sqrt{7} N$
C. 20 N
D. none of these

Answer: B

- Watch Video Solution

38. If $\mathrm{A} . \mathrm{B}=\mathrm{O}$ and $A \times B=1$, then A and B are
A. perpendicular unit vectors
B. paraellel unit vector
C. parallel
D. anti - parallel

Answer: A

- Watch Video Solution

39.

If
$P+Q=R$ and $|P|=|Q|=\sqrt{3}$ and $|R|==3$,
then the angle between P and Q is
A. $\pi / 4$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

D Watch Video Solution

40. The component of a vector r along X -axis will have maximum value if
A. e is along positive Y -axis
B. r is along postive Y-asis
C. x makes an angle of 45° with the X-axis
D. r is along nehnitive Y-axis

Answer: B

- Watch Video Solution

41. Six vector \vec{a} through \vec{f} have the magnitudes and direction indicated in the figure. Which of the following statements is true?

A. $b+e=f$
B. $b+c=f$
C. $d+c=f$
D. $d+e=f$

Answer: D

- Watch Video Solution

42. A paricle starting from the origin $(0,0)$ moves in a
straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 30°
B. 45°
C. 60°
D. 0°

Answer: C

- Watch Video Solution

43. Consider a vector $\vec{F}=4 \hat{i}-3 \hat{j}$. Another vector that is perpendicular to \vec{F} is
A. $4 \hat{i}+3 \hat{j}$
B. $6 \hat{i}$
C. $7 \hat{k}$
D. $3 \hat{i}-4 \hat{j}$

Answer: C

- Watch Video Solution

44. The angle between vectors $(A \times B)$ and $(B \times A)$ is

- Watch Video Solution

45. The angle between vectors $(A \times B)$ and $(B \times A)$
46. Unit vector perpnicular to vector

$$
A=-3 \hat{i}-2 \hat{j}-3 \hat{k} \text { and } 2 \hat{i}+4 \hat{j}+6 \hat{k} \text { oth is }
$$

A. $\frac{3 \hat{i}-2 \hat{k}}{\sqrt{13}}$
B. $\frac{3 \hat{k}-2 \hat{j}}{\sqrt{13}}$
C.
D.

Answer: A
47. Unit vector parallel to the resultant of vector $8 \hat{i}$ and $8 \hat{j}$ will be
A. $(24 \hat{i}+5 \hat{j}) / 13$
B. $(12 \hat{i}+5 \hat{j}) / 13$
c. $(6 \hat{i}+5 \hat{j}) / 13$
D. None of therse

Answer: D

- Watch Video Solution

48. A force of $5 N$ acts on a particle along a direction making an angle of 60° with verticle. Its verticel

components is

A. 10 N
B. 3 N
C. 4 N
D. 2.5 N

Answer: D

D Watch Video Solution

49. If $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=7 \hat{i}+24 \hat{j}$, find a vector having the same magnitude as \vec{B} and parallel and same direction as \vec{A}.
A. $5 \hat{i}+20 \hat{j}$
B. $15 \hat{i}+10 \hat{j}$
C. $20 \hat{i}+15 \hat{j}$
D. $15 \hat{i}+20 \hat{j}$

Answer: D

- Watch Video Solution

50. The vector that must be added to the vector $\hat{i}-3 \hat{j}+2 \hat{k}$ and $3 \hat{i}+6 \hat{j}+7 \hat{k}$ so that the resultant vector is a unit vector along the y -axis is
A. $4 \hat{i}+2 \hat{j}+5 \hat{k}$
B. $-4 \hat{i}+2 \hat{j}+5 \hat{k}$
C. $3 \hat{i}+4 \hat{j}+5 \hat{k}$

D. Null vector

Answer: B

D Watch Video Solution

51. A vector is represented by $3 \hat{i}+\hat{j}+2 \hat{k}$. Its length in
$X Y$ plane is
A. 2
B. $\sqrt{14}$
C. $\sqrt{10}$
D. $\sqrt{5}$

Answer: C

- Watch Video Solution

52. Let $\vec{A}=\hat{i} A \cos \theta+\hat{j} A \sin \theta$, be any vector. Another vector \vec{B} which is normal to \vec{A} is :-
A. $\hat{i} B \cos \theta-\hat{j} B \sin \theta$
B. $\hat{i} B \sin \theta-\hat{j} B \cos \theta$
C. $\hat{i} B \sin \theta+\hat{j} B \cos \theta$
D. $\hat{i} B \sin \theta+\hat{j} B \cos \theta$

- Watch Video Solution

53. If two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}-\lambda \hat{k}$ are
parallel to each other then value of λ be
A. 0
B. 2
C. 3
D. 4

Answer: B
54. What is the angle between $(\vec{P}+\vec{Q})$ and $(\vec{P} \times \vec{Q}) ?$
A. Zero
B. $\frac{\pi}{2}$
C. $\frac{\pi}{4}$
D. π

Answer: B

55. If a unit vector is represented by $0.5 \hat{i}+0.8 \hat{j}+c \hat{k}$, then the value of c is
A. 1
B. $\sqrt{0.11}$
C. $\sqrt{0.01}$
D. $\sqrt{0.39}$

Answer: B

- Watch Video Solution

56. If $A=a_{1} \hat{\mathrm{i}}+b_{1} \hat{\mathrm{j}}$ and $B=a_{2} \hat{\mathrm{i}}+b_{2} \hat{\mathrm{j}} \quad$ the condition that they are perpendicula to each other is
A. $\frac{a_{1}}{b_{1}}=-\frac{b_{2}}{a_{2}}$
B. $a_{1} b_{1}=a_{2} b_{2}$
C. $\frac{a_{1}}{b_{1}}=-\frac{b_{1}}{b_{2}}$
D. None of these

Answer: A

- Watch Video Solution

57. For what value of x, will the two vector $A=2 \hat{i}+2 \hat{j}-x \hat{k}$ and $B=2 \hat{i}-\hat{j}-3 \hat{k}$ are perpendicular to each other ?
A. $x=-2 / 3$
B. $x=-3 / 2$
C. $x=-4 / 3$
D. $x=-2 / 3$

Answer: A

- Watch Video Solution

58. A and B are two vector given by $A=2 \hat{i}+3 \hat{j}$ and $B=2 \hat{i}+4 \hat{j}$ The magnitude to the component of A along B is

Answer: C

- Watch Video Solution

59. The value of x and y for which vector $A=(6 \hat{i}+x \hat{j}-2 \hat{k})$ and $B=(5 \hat{i}+6 \hat{j}-y \hat{k})$ may be parallel are

$$
\begin{aligned}
& \text { А. } x=0, y=\frac{2}{3} \\
& \text { В. } x=\frac{36}{5}, y=\frac{5}{3} \\
& \text { С. } x=\frac{15}{3}, y=\frac{23}{3} \\
& \text { D. } x=\frac{36}{5}, y=\frac{15}{4}
\end{aligned}
$$

Answer: B

60. The angles which the vector $A=3 \hat{i}+6 \hat{j}+2 \hat{k}$ makes with the co-ordinate axes are
A. $\cos ^{-1} \frac{3}{7} \cos ^{-1} \frac{6}{7}$ and $\cos ^{-1} \frac{2}{7}$
B. $\cos ^{-1} \frac{4}{7} \cos ^{-1} \frac{5}{7}$ and $\cos ^{-1} \frac{3}{7}$
C. $\cos ^{-1} \frac{3}{7} \cos ^{-1} \frac{4}{7}$ and $\cos ^{-1} \frac{1}{7}$
D. None of the above

Answer: A

- Watch Video Solution

61. A particle is moving on a circular path with constant speed v then the change in its velocity after it has desceibed an angle of 60° will be
A. $v \sqrt{2}$
B. $\frac{v}{2}$
C. $v \sqrt{3}$
D. v

Answer: D

- Watch Video Solution

62. Find the resultant of the three vectors $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ shown in figure. Radius of the circle is R .

A. 2 R
B. $R(1+\sqrt{2})$
C. $R \sqrt{2}$
D. $R(\sqrt{2}-1)$

Answer: B

- Watch Video Solution

63. Resultant of two vector of equal magnitude A is
A. $\sqrt{3} A a t 60^{\circ}$
B. $\sqrt{2} \operatorname{Aat} 90^{\circ}$
C. 2 Aat 120°
D. $\operatorname{Aat} 180^{\circ}$
64. If $a \hat{i}+b \hat{j}$ is a unit vector and it iws perpendicular to $\hat{i}+\hat{j}$, then value of a and b is
A. 1,0
B. $-2,0$
C. $0.5,-0.5$
D. None of these

Answer: D

- Watch Video Solution

65. If $a+b+c=0$, then $a \times b$ is equal to
A. $b \times c$
B. $c \times b$
C. $a \times c$
D. None of these

Answer: A
(D) Watch Video Solution
66. Consider a force vector $F=\hat{i}+\hat{j}+\hat{k}$ Anorther vectoer perpendicular of F is
A. $4 \hat{i}+3 \hat{j}$
B. $6 \hat{i}$
C. $2 \hat{i}-\hat{j}-\hat{k}$
D. $3 \hat{i}-4 \hat{j}$

Answer: C

- Watch Video Solution

67. A vector perpendicular to both the vector $2 \hat{i}-3 \hat{j}$ and $3 \hat{i}-2 \hat{j}$ is
A. $\hat{j}+5 \hat{k}$
B. $\hat{j}-5 \hat{k}$
C. $6 \hat{k}$
D. $\hat{i}+\hat{j}+\hat{k}$

Answer: C

- Watch Video Solution

68. If $\vec{A}=4 \hat{i}-3 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$ then magnitude and direction of $\vec{A}+\vec{B}$ will be
A. $5, \tan ^{-1}(3 / 4)$
B. $5 \sqrt{5}, \tan ^{-1}(1 / 2)$
C. $10, \tan ^{-1}(5)$
D. $25, \tan ^{-1}(3 / 4)$

- Watch Video Solution

69. When a force F acs on a body of mass m the acceleration product in the body is a. If htree equal forces $F_{1}=F_{2}=F_{3}=F$ act on the same body as
shown in figure the accleration produced is

A. $(\sqrt{2}-1) a$
B. $(\sqrt{2}+1) a$
C. $\sqrt{2} a$
D. a

- Watch Video Solution

70. Obtain the magnitude and direction cosines of vector $(A-B)$,

$$
A=2 \hat{i}+3 \hat{j}+\hat{k}, B=2 \hat{i}+2 \hat{j}+3 \hat{k}
$$

A. $0, \frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}$
B. $0, \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}$
C. $0,0, \frac{1}{\sqrt{5}}$
D. None of these

Answer: A
71. Two vectors having equal magnitudes A make an angle θ with eahc other. Find the magnitude and direction of the resultant.
A. $2 A \cos \frac{\theta}{2}$, along bisector
B. $A \cos \frac{\theta}{2}, \mathrm{At} 45^{\circ}$ from on e vector
C. $2 A \cos \frac{\theta}{2}$, along bisector
D. $A \cos \frac{\theta}{2}$, along bisector

Answer: A

D Watch Video Solution

72. 12 coplanar non collinear forces (all of equal magnitude) maintain a body in equilibrium, then angle between any two adjacent forces is
A. 15°
B. 30°
C. 45°
D. 60°

Answer: B
73. Given that $\vec{A}+\vec{B}+\vec{C}=0$, out of three vectors two are equal in magnitude and the magnitude of third vector is $\sqrt{2}$ times that of either of two having equal magnitude. Then angle between vectors are given by
A. $30^{\circ}, 60^{\circ}, 90^{\circ}$
B. $45^{\circ}, 45^{\circ}, 90^{\circ}$
C. $90^{\circ}, 135^{\circ}, 45^{\circ}$
D. $90^{\circ}, 135^{\circ}, 135^{\circ}$

Answer: D

74. Two vectors A and B are such that $A+B=C$ and $A^{2}+B^{2}=C^{2}$. If θ is the angle between positive direction of A and B, then the correct statement is
A. $\theta=\pi$
B. $\theta=\frac{2 \pi}{3}$
C. $\theta=0$
D. $\theta=\frac{\pi}{2}$

Answer: D

- Watch Video Solution

75. Given $A=3 \hat{i}+4 \hat{j}$ and $B=6 \hat{i}+8 \hat{j}$ which of the following statement is correct ?
A. $A \times B=0$
B. $\frac{|A|}{|B|}=\frac{1}{2}$
C. $|A|=15$
D. $A .|B|=48$

Answer: A,B

- Watch Video Solution

76. If a vector \vec{A} make angles α, β and γ, respectively, with the X, Y and Z axes , then $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=$
A. 0
B. 1
C. 2
D. 3

Answer: C
(D) Watch Video Solution
77. If vector A and B have an angle θ between them, then value of $|\widehat{A}-\widehat{B}|$ will be ,
A. $2 \cos \frac{\theta}{2}$
B. $2 \tan \frac{\theta}{2}$
C. $2 \sin \frac{\theta}{2}$
D. None of these

Answer: C

- Watch Video Solution

78. A particle undergoes three successive displacements given by $s_{1}=\sqrt{2} \mathrm{~m}$ morth - east, $s_{1}=2 \mathrm{~m}$ due south and $s_{3}=4 \mathrm{~m}, 30^{\circ}$ north of west, then mngnitude of net displecement is
A. $\sqrt{14+4 \sqrt{3}}$
B. $\sqrt{14-4 \sqrt{3}}$
C. $\sqrt{4}$
D. None of these

Answer: B

79. The resultant of A and B is R_{1} On reversing the vector B , the resulatnt R_{2} what is the value of $R_{1}^{2}+R_{2}^{2}$?
A. $A^{2}+B^{2}$
B. $A^{2}-B^{2}$
C. $2\left(A^{2}+B^{2}\right)$
D. $2\left(A^{2}-B^{2}\right)$

Answer: C

- Watch Video Solution

80. If the sum of two unit vectors is a unit vector, then magnitude of difference is-
A. $\sqrt{2}$
B. $s q r(3)$
C. $1 / \sqrt{2}$
D. $\sqrt{5}$

Answer: B

- Watch Video Solution

81. The sum of two vectors A and B is at right angles to
their difference. Then
A. $A=B$
B. $A=2 B$
C. $B=2 A$
D. None of these

Answer: A

- Watch Video Solution

82. A vector having magnitude 30 unit makes equal angles with each of X, Y, and Z-axes The components of vector along each of X, Y, and Z-axes are
A. $10 \sqrt{3}$ unit
B. $20 \sqrt{3}$ unit
C. $15 \sqrt{3}$ unit
D. 10 unit

Answer: A
83. $A B C D E F$ is a regular hexagon, Fig. 2 (c) .65. What is the value of
$(\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F} ?$

A. $A O$
B. 2 AO
C. 4 AO
D. 6 AO

Answer: D

- Watch Video Solution

84. If A is a unit vector in a given direction then the value of $\widehat{A} \cdot \frac{d \widehat{A}}{d t}$ is
A. 0
B. 1
C. $\frac{1}{2}$
D. 2

Answer: A

- Watch Video Solution

85. If F_{1} and F_{2} aare two vectors of equal magniudes
F such that $\left|F_{1} . F_{2}\right|=\left|F_{1} \times F_{2}\right|$, then $\left|F_{1}+F_{2}\right|$
equals to
A. $\sqrt{(2+\sqrt{2})} F$
B. $2 F$
C. $F \sqrt{2}$
D. None of these

- Watch Video Solution

86. Figure showns three vectors p, q and r where C is
the mid - point of $A B$ Then which of the following reation is correct ?

A. $p+q=2 r$
B. $p+q=r$
C. $p-q=2 r$
D. $p-q=r$

Answer: A

(D) Watch Video Solution

87. What is the angle between P and the cross product of $(P+Q)$ and $(P-Q)$?
A. 90°
B. $\tan ^{-1}(p / Q)$
C. $\tan ^{-1}(Q / p)$
D. 0°

Answer: A

- Watch Video Solution

88. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R}. If \vec{Q} is doubled then the new resultant vector is perpendicular to \vec{P}. Then magnitude of \vec{R} is :-
A. P
B. $(P+Q)$
C. Q
D. $(P-Q)$

- Watch Video Solution

89. The angle between the vector \vec{A} and \vec{B} is θ. Find the value of triple product $\vec{A} \cdot(\vec{B} \times \vec{A})$.
A. $a^{2} B$
B. zero
C. $A^{2} B \sin \theta$
D. $A^{2} B \cos \theta$

Answer: B

- Watch Video Solution

90. The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12.

If the resultant is at 90° with the force of smaller magnitude, What are the magnitudes of forces?
A. 12,6
B. 14,4
C. 5,13
D. 10,8

Answer: C
91. A vector \vec{a} is turned without a change in its length
through a small angle $d \theta$. Find the value of $|\Delta \vec{a}|$ and Δa.
A. $0, a d t h \eta$
B. $a . d \theta, 0$
C. 0,0
D. None of these

Answer: B
92. A force $F=-K(y \hat{i}+x \hat{j})$ (where K is a positive constant) acts on a particle moving in the $x-y$ plane.

Starting from the origin, the particle is taken along the positive x -axis to the point $(a, 0)$, and then parallel to the y -axis to the point (a, a). The total work done by the force F on the particle is

$$
\text { A. }-2 K a^{2}
$$

B. $2 K a^{2}$
C. $-K a^{2}$
D. $K a^{2}$

Answer: C

93. In the digram shown in figure

A. $X=A+B-C+D$
B. $Y=B+C-A$
C. $Z=B+C$
D. $W=A+B$

Answer: B,C

- View Text Solution

94. If a and b are two vectors.then the value of $(a+b) \times(a-b)$ is
A. $2(b \times a)$
B. $-2(b \times a)$
C. $b \times a$
D. $b \times a$

Answer: A

- Watch Video Solution

95. Given that $\vec{A}+\vec{B}=\vec{C}$ and that \vec{C} is perpendicular to \vec{A} Further if $|\vec{A}|=|\vec{C}|$, then what is the angle between \vec{A} and \vec{B}
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. π

Answer: C

96. The resultant of two forces, one double the other in magnitude, is perpendicular to the smaller of the two forces.The angle between the two forces is
A. 120°
B. 135°
C. 90°
D. 150°

Answer: A

97. If $A+B=C,|A|=2|B|$ and B. $C=0$, then

A. $|A+B|=|A+B|$
B. $|A+C|=B$
C. A. $B<0$
D. A.C may be zero

Answer: C

D Watch Video Solution

98. Two unit vector when added give a unit vector .

Then choose the correct statement.
A. magnitude the their difference is $\sqrt{3}$
B. Mignitude of their difference is 1
C. Angle between the vectors is 90°
D. Angle between the sum and the difference of the two vectors is 90°

Answer: D,A

D Watch Video Solution

99. Which one of the following statement is true?
A. A scalar quantity is the one that is conserved In a
B. A sclar quantity is the onr that can never take nagative values
C. Ascalar quantity is the onr thaat does not vary from one point to another in space
D. A sclar quantity has the same value for observers with different orientaion of the axes.

Answer: D

- Watch Video Solution

100. Figure shows the orientation of two vectors u and v in the $X Y$ plane.
if $\vec{u}=a \hat{i}+b \hat{j}$ and $\vec{v}=p \hat{i}+q \hat{j}$
which of the following is correct?

A. a and p are positivewhile b andq are negative
B. a, p and b are positive while q is negative
C. a, q and b are positve while p is negative
D. a,b,p and q are all positive

- Watch Video Solution

101. The velocity of a particle is $v=6 \hat{i}+2 \hat{j}-2 \hat{k}$ The component of the velocity parallel to vector $a=\hat{i}+\hat{j}+2 \hat{k}$ invector from is
A. $6 \hat{i}+2 \hat{j}+2 \hat{k}$
B. $2 \hat{i}+2 \hat{j}+2 \hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $6 \hat{i}+2 \hat{j}+2 \hat{k}$

- Watch Video Solution

102. The resultant R of vector P and Q is perpendicular to P and $\mathrm{R}=\mathrm{P}$ both, then angle betwwen $|P|$ and $|Q|$ is
A. 45°
B. 135°
C. 120°
D. All of these

Answer: B

- Watch Video Solution

103.

$\hat{i} \times(\hat{i} \times a)+\hat{j} \times(\hat{j} \times a)+\hat{k} \times(\hat{k} \times a)$ is
A. a
B. $a \times \hat{k}$
C. $-2 a$
D. $-a$

Answer: C

- Watch Video Solution

104. What is the angle between \vec{P} and the resultant of $(\vec{P}+\vec{Q})$ and $(\vec{P}-\vec{Q})$?
A. zero
B. $\tan ^{-1}(p / Q)$
C. $\tan ^{-1}(Q / p)$
D. $\tan ^{-1}(P-Q) /(P+Q)$

Answer: A

- Watch Video Solution

105. If a_{1} and a_{2} are two non- collinear unit vectors and if $\left|a_{1}+a_{2}\right|=\sqrt{3}, \quad$,then \quad value of $\left(a_{1}-a_{2}\right) \cdot\left(2 a_{1}-a_{2}\right)$ is
A. 2
B. $\frac{3}{2}$
C. $\frac{1}{2}$
D. 1

Answer: B

D Watch Video Solution

106. Three are N coplancar vectors each of magnitude V

Each vector is inclined to the preceding vector atangle
$\frac{2 \pi}{N}$ What is the magnitude of their resultant ?
A. $\frac{V}{N}$
B. V
C. zero
D. $\frac{N}{V}$

Answer: C

- Watch Video Solution

107. Three equal masses of 1 kg each are placed at the vertices of an equilateral triangle which is at a distance of $s q r(2) \mathrm{m}$ from each of the vertices of the triangle
.The force. In newton, acting on the mass of 2 kg is
A. 2
B. 1
C. 1
D. Zero

Answer: D

- Watch Video Solution

108. At what angle must the two forces ($x+y$) and ($x-y$) act so that the resultant may be $\sqrt{x^{2}+y^{2}}$?
A. $\cos ^{-1}\left[-\frac{x^{2}+y^{2}}{2\left(x^{2}-y^{2}\right)}\right]$
B. $\cos ^{-1}\left[-\frac{-2 x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)}\right]$
C. $\cos ^{-1}\left[-\frac{x^{2}+y^{2}}{\left(x^{2}-y^{2}\right)}\right]$
D. $\cos ^{-1}\left[-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)}\right]$

Answer: A

- Watch Video Solution

Assertion And Reason

1. Assertion - Finite angular disacement is not a vector quantiy.

Reason It does not obey vector laws.
A. If both Assetion and Reason are correct but

Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: A

D View Text Solution

2. Assertion - small displacement is a vector quantity.

Reason Pressure and surface tension are also vector quanities.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but Reason is not the correct explanation of Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: C

D Watch Video Solution

3. Assertion - Vector addition of two vector is always
greater then their vector subtraction.

Reason At $\theta=90^{\circ}$, addition and subreaction of two vector are equal.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: D

4. Assertion - Vector product of two vectors may be greater then, equal to or less than the scaler product . Reason At $\theta=45^{\circ}$ two are equal.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true
5. Assertion: Angle between $\hat{i}+\hat{j}$ and \hat{i} is 45°.

Reason: $\hat{i}+\hat{j}$ is equally inclined to both \hat{i} and \hat{j} and the angle between \hat{i} and \hat{j} is 90°.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: B

- Watch Video Solution

6. Assertion - Component of A along B is equal to component of b along A .

Reason Compoent of A along B is $\mathrm{A} \cos \theta$, Where θ is the angle between two vector .
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: D

(D) View Text Solution

7. Assertion - Component of A along B is equal to component of B along A.

Reason value of component is always less then the magnitude of vector .
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: D

- Watch Video Solution

8. Assertion (A+B).(A-B) is always positve.

Reason this is positive If $|A|>|B|$
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: D

9. Assertion: $\vec{A} \times \vec{B}$ is perpendicualr to both $\vec{A}-\vec{B}$ as well as $\vec{A}+\vec{B}$

Reason: $\vec{A}+\vec{B}$ as well as $\vec{A}-\vec{B}$ lie in the plane containing \vec{A} and \vec{B}, but $\vec{A} \times \vec{B}$ lies perpendicular to the plane containing \vec{A} and \vec{B}.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: A

D Watch Video Solution

10. Assertion If angle between a and b is 30°. Then angle between 2a and $-\frac{b}{2}$ will be 150°

Reason Sign of dot product of two vectors tells you whether angle between two vectors is acute or obtuse.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but Reason is not the correct explanation of Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: B

D View Text Solution

11. Assertion - If $|A|=|B|, \quad$ then
$(A+B),(A-B)$ and $(A \times B) \quad$ araea three mutually perpendicular vectors .

Reason - Dot Produt od a null vector with any other vector is always zero .
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: B

12. Assertion - $(A \times B) \cdot(B \times A)$ is $-a^{2} B^{2} \sin ^{2} \theta$ Here there is the between A and B.

Reason `(AxxB) and (BxxA) are two anti - paralle3l
vectors provided A and B are neither parallel nor anti parallel.
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: B

- View Text Solution

13. Assertion - We can find angle between two vectors by using the relation ,
$\theta=\sin ^{-1}\left(\frac{|A \times B|}{A B}\right)$
Reason $\frac{|A \times B|}{A b}$ si always positive .
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If Asserion is false but Reason is true

Answer: C

- View Text Solution

14. Assertion - If θ be the angle between A and B then
\tan therta $\frac{A \times B}{A B}$
Reason - $A \times B$ is perpendicular to AB .
A. If both Assetion and Reason are correct but Reason is the correct explanation of Assertion.
B. If both Assetion and Reason are correct but

Reason is not the correct explanation of

Assertion.
C. If Asserion is true but Reason is false
D. If both Assertion and Reason are false.

Answer: D

D View Text Solution

Match The Columns

1. For component of a vector $A=(3 \hat{i}+4 \hat{j}-5 \hat{k})$, match the following coOlumns.

Column I
(A) X -axis
(B) Along another vector

$$
(2 \hat{i}+\hat{j}+2 \hat{k})
$$

(C) Along $(6 \hat{i}+8 \hat{j}-10 \hat{k}) \quad$ (r) Zero
(D) Along another vector

$$
(-3 \hat{i}-4 \hat{j}+5 \hat{k})
$$

Column II
(P) 5unit
(Q) 3Unit
(s) None

- Watch Video Solution

2. Two vector A and B have rqual magnitude x.Angle between tjem is 60° Then match the following two
columns.

Column I Column II

(A) $|\mathrm{A}+\mathrm{B}|$
(P) $\frac{\sqrt{3}}{2} x^{2}$
(B) $|A-B|$
(Q) x
(C) $A . B$
(r) $\sqrt{3} x$
(D) $|A \times B|$
(s) None

- View Text Solution

3. Vector A is pointing eastwards and vector B northwards .If $|A|=|B|$ then match the following two columns.

Column I
(A) $(A+B)$
(B) $(A-B)$
(C) $(A \times B)$
(D) $(A \times B) \times(A \times B)$
(s) None
4. A vector has a magnitude x. If it is rotated by an angle θ then magnitude of change in vector is $n x$. Match the following two columns.
Column I
Column II
(A) $\theta=60^{\circ}$
(P) $n=\sqrt{3}$
(B) $\theta=90^{\circ}$
(Q) $n=1$
(C) $\theta=120^{\circ}$
(r) $\quad n=\sqrt{2}$
(D) $\theta=180^{\circ}$
(s) $n=2$

D Watch Video Solution

5. If θ is the angle between two vectors A and B, then match the following two columns.

Column I

Column II

(A) A. $B=|A \times B| \quad$ (P) $\quad \theta=90^{\circ}$
(B) $\quad A \cdot B=B^{2}$
(Q) $\theta=0^{\circ}$ or 180°
(C) $|A+B|=|A-C|$
(r) $A=B$
(D) $|A \times B|=A B$
(s) None
A. $A \rightarrow s, B \rightarrow q, r, C \rightarrow p, D \rightarrow p$
B. $A \rightarrow p, B \rightarrow q, r, C \rightarrow p, D \rightarrow s$
C. $A \rightarrow s, B \rightarrow q, r, C \rightarrow s, D \rightarrow p$
D. $A \rightarrow s, B \rightarrow q, C \rightarrow r, D \rightarrow p$

Answer: A

D Watch Video Solution

Medical Enrances Gallery

1. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vector, the angle between these Vector is
A. 90°
B. 45°
C. 180°
D. 0°

Answer: A

- Watch Video Solution

2. If a vector $2 \hat{i}+3 \hat{j}+8 \hat{k}$ is perpendicular to the vector $4 \hat{i}-4 \hat{j}+\alpha \hat{k}$, then the value of α is
A. $1 / 2$
B. -1
C. $-1 / 2$
D. 1

Answer: C

- Watch Video Solution

3. The angle θ between the vector $p=\hat{i}+\hat{j}+\hat{k}$ and unit vector along X -axis is

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(\frac{1}{\sqrt{3}}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& \text { C. } \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\
& \text { D. } \cos ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$$

Answer: A
4. Consider three vectors $A=\hat{i}+\hat{j}-2 \hat{k}$,
$B=\hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-3 \hat{j}+4 \hat{k} \mathrm{~A}$ vector X of the
from $\alpha A+\beta B(\alpha$ and β are numbers $)$ is
perpendicular to C . The ratio of α and β is
A. 1:1
B. 2:1
C. $-1: 1$
D. 3:1

Answer: A
5. Two equal vector have a resultant equal to either of them, then the angle between them will be:
A. 90°
B. 60°
C. 120°
D. 0°

Answer: C

(D) Watch Video Solution
6. Which of the following is not a cloning vector ?
A. Weight
B. Nuclear spin
C. Momentum
D. Potential enerrgy

Answer: D

D Watch Video Solution

7. The scalar product of two vectors
$A=2 \hat{i}+2 \hat{j}-\hat{k}$ and $B=-\hat{j}+\hat{k}$, is given by
A. $A \cdot B=3$
B. $A \cdot B=4$
C. $A . B=-4$
D. $A \cdot B=-3$

Answer: D

D Watch Video Solution

8. If $A . B=A \times B$, then angle between A and B is
A. 45°
B. 30°
C. 60°
D. 90°
9. A vector \vec{B} which has a magnitude 8.0 is added to a vector \vec{A} which lies along the x -axis. The sum of these two vector is a third vector which lies along the y-axis and has a magnitude that is twice the magnitude of \vec{A}. Find the magnitude of \vec{A}
A. $\frac{6}{\sqrt{5}}$
B. $\frac{12}{\sqrt{5}}$
C. $\frac{16}{\sqrt{5}}$
D. $\frac{8}{\sqrt{5}}$

Answer: D

