©゙doubtnut

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

WAVE MOTION

Example

1. In a wave motion $y=a \sin (k x-\omega t)$, y can represent:
(a) electric field, (b) magnetic field, (c) displacement , (d) pressure

- Watch Video Solution

2. Show that the equation, $y=a \sin (\omega t-k x)$ satisfies the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=v^{2} \frac{\partial^{2} y}{\partial x^{2}}$. Find speed of wave and the direction in which it is travelling.

- Watch Video Solution

3. A wave travelling along a strong is described by
$y(x, t)=0.005 \sin (80.0 x-3.0 t)$
in which the numerical constants are in SI units $\left(0.005 \mathrm{~m}, 80.0 \mathrm{radm}^{-1}\right.$ and $3.0 \mathrm{rads}^{-1}$). Calculate (a) the amplitude. (b) the wavelength (c) the period and frequency of the wave. Also, calculate the displacement y of the wave at a distance $x=30.0 \mathrm{~cm}$ and time $\mathrm{t}=20 \mathrm{~s}$?

- Watch Video Solution

4. The equation of a wave is
$y=(x, t)=0.05 \sin \left[\frac{\pi}{2}(10 x-40 t)-\frac{\pi}{4}\right] m$
find: (a) the wavelength, the frequency and the wave velocity
(b) the participle velocity and acceleration at $x=0.5$ mand $t=0.05 \mathrm{~s}$.
5. Under what condition, maximum particle velocity is four times the wave velocity corresponding to the equation,

$$
y=A \sin (\omega t-k x)
$$

- Watch Video Solution

6. A transverse sinusoidal wave moves along a string in the positive x direction at a speed of $10 \mathrm{~cm} / \mathrm{s}$. The wavelength of the wave is 0.5 m and its amplitude is 10 cm . At a particular time t ,the snapshot of the wave is shown in figure. The velocity of point P when its displacement is 5 cm is
(a) $\frac{\sqrt{3 \pi}}{50} \hat{j} m / s$
(b) $-\frac{\sqrt{3 \pi}}{50} \hat{j} m / s$
(c) $\frac{\sqrt{3 \pi}}{50} \hat{i} \mathrm{~m} / \mathrm{s}$
(d) $-\frac{\sqrt{3 \pi}}{50} \hat{i} \mathrm{~m} / \mathrm{s}$
7. Equation of a transverse wave travelling in a rope is given by
$y=5 \sin (4.0 t-0.02 x)$
where y and x are expressed in cm and time in seconds. Calculate
(a) the amplitude, frequency,velocity and wavelength of the wave.
(b) the maximum transverse speed and acceleration of a particle in the rope.

Watch Video Solution

8. In the above example, find phase difference $\Delta \Phi$.
(a) of same particle at two different times with interval of 1 s ,
(b) of two different particle located at a distance of 10 cm at same time

- Watch Video Solution

9. Speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$. Find maximum and minimum wavelength of audible sound in air.

(Watch Video Solution

10. One end of 12.0 m long rubber tube with a total mass of 0.9 kg is fastened to a fixed support. A cord attached to the other end passes over a pulley and support an object with a mass of 5.0 kg . The tube is struck a transverse blow at one end. Find the time required for the pulse to reach the other end. $\left(g=9.8 m / s^{2}\right)$

11. A wire of uniform cross-section is stretched between two points 100 cm apart. The wire is fixed at one end and a weight is hung over a pulley at the other end. A weight of 9 kg produces a fundamental frequency of 750 Hz .
(a) What is the velocity of the wave in wire?
(b) If the weight is reduced to 4 kg , what is the velocity of wave?

- Watch Video Solution

12. A streched string is forced to transmit transverse waves by means of an oscillator coupled to one end. The string has a diameter of 4 mm . The amplititude of the oscillation is $10^{-4} \mathrm{~m}$ and the frequency is 10 Hz . Tension in the string is 100 N and mass density of wire is $4.2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Find
(a) the equation of the waves along the string
(b) the energy per unit volume of the wave
(c) the average energy flow per unit time across any section of the string and
(d) power required to drive the oscillator.

- Watch Video Solution

Example Type 1

1. $y(x, t)=\frac{0.8}{\left[(4 x+5 t)^{2}+5\right]}$ represents a moving pulse where x and
y are in metre and t in second. Then, choose the correct alternative(s):
(a) pules is moving in positive x-direction
(b) in $2 s$ it will travel a distance of 2.5 m
(c) its maximum displacement is $0.16 m$
(d) it is a sysmmetric pulse

- Watch Video Solution

Example Type 2

1. At time $t=0, y(x)$ equation of a wave pulse is
$y=\frac{10}{2+(x-4)^{2}}$
and at $t=2 s, y(x)$ equation of the same wave pulse is
$y=\frac{10}{2+(x+4)^{2}}$
Here, y is in mm and x in metres. Find the wave velocity.

- Watch Video Solution

Example Type 3

1. A wave is travelling along positive x - direction with velocity $2 \mathrm{~m} / \mathrm{s}$.

Further, $\quad y(x)$ equationofthewavepseat $\mathrm{t}=0$ is $\mathrm{y}=(10) /\left(2+(2 \mathrm{x}+4)^{\wedge}(2)\right)$
(a)Fromthegiven $\in f$ or mationmakecomp $\leq t e y(x$,
equation. $(b) F \in d \mathrm{y}(\mathrm{x})$ equationatt $=1 \mathrm{~s}{ }^{`}$

- Watch Video Solution

Example Type 4

1. A uniform rope of mass 0.1 kg and length 2.45 m hangs from a ceiling.
(a) Find the speed of transverse wave in the rope at a point 0.5 m distant from the lower end.
(b) Calculate the time taken by a transverse wave to travel the full
length of the rope.

2. Figure shows a snapshot of a sinusoidal travelling wave taken at $t=0.3 \mathrm{~s}$.The wavelength is 7.5 cm and the amplitude is 2 cm . If the crest P was at $x=0$ at $t=0$, write the equation of travelling wave.,

- View Text Solution

Example Type 5

1. For the wave shown in figure, write the equation of this wave if its position is shown at $t=0$. Speed of wave is $v=300 \mathrm{~m} / \mathrm{s}$.

Miscellaneous Examples

1. A block of mass $M=2 \mathrm{~kg}$ is suspended from a string AB of mass 6 kg as shown in figure. A transverse wave pulse of wavelength λ_{0} is
produced at point B. find its wavelength while reaching at point A.

2. A wave moves with speed $300 \mathrm{~m} / \mathrm{s}$ on a wire which is under a tension of 500 N . Find how much tension must be changed to increase the speed to $312 m / s$?

- Watch Video Solution

3. For a wave described by $y=A \sin (\omega t-k x)$, consider the following or not and in what direction and describe whether the particle is speeding up, slowing sown or instantanteously not accelerating?

4. A thin string is held at one end and oscillates so that,
$y(x=0, t)=8 \sin 4 t(c m)$
Neglect the gravitattional force. The dtring's linear mass density is $0.2 \mathrm{~kg} / \mathrm{m}$ and its tension is 1 N . The string passes through a bath filled with 1 kg water. Due to friction heat is transferred to the bath. The heat transfer efficiency is 50%. Calculate how much time passes before the temperature of the bath rises one degree kelvin?

D Watch Video Solution

5. Consider a wave propagating in the negative x-direction whose frequency is 100 Hz . At $t=5 s$, the displacement associated with the wave is given by
$y=0.5 \cos (0.1 x)$
where x and y are measured in centimetres and t in seconds. Obtain the displacement (as a function of x) at $t=10 \mathrm{~s}$. What is the wavelength and velocity associated with the wave?
6. A simple harmonic wave of amplitude 8 units travels along positive x axis. At any given instant of time, for a particle at a distance of 10 cm from the origin, the displacement is +6 units, and for a particle at a distance of 25 cm from the origin, the displacement is +4 units.

Calculate the wavelength.

- Watch Video Solution

7. A wave pulse on a horizontal string is represented by the function
$y(x, t)=\frac{5.0}{1.0+(x-2 t)^{2}}$ (CGS units)
plot this function at $t=0,2.5$ and $5.0 s$.

- Watch Video Solution

8. A uniform circular hoop of string is rotating clockwise in the absence of gravity. The tangential speed is v_{0}. Find the speed of the wave travelling on this string.

- Watch Video Solution

9. A sinusoidal wave trsvelling in the positive direction on a stretched string has amplitude 2.0 cm , wavelength 1.0 cm and velocity $5.0 \mathrm{~m} / \mathrm{s}$. At $x=0$ and $t=0$ it is given that $y=0$ and $\frac{\partial y}{\partial t}<0$. Find the wave function $y(x, t)$.

- Watch Video Solution

Exercise 17.1

1. Prove that the equation $y=a \sin \omega t$ does not satisfy the wave equation and hence it does not represent a wave.

- Watch Video Solution

2. A wave pulse is described by $y(x, t)=a e^{-(b x-c t)}{ }^{\wedge}(2)$, where a, b, and c are positive constants. What is speed of this wave?

- Watch Video Solution

3. you have learnt that a travelling wave in one dimension is represented by a function $y=f(x, t)$ where x and t must appear in the combination $a x \pm b t$ or $x-v t$ or $x+v t$,i.e. $y=f(x \pm v t)$. Is the converse true? Examine if the folliwing function for y can possibly represent a travelling wave
(a) $(x-v t)^{2}$
(b) $\log \left[(x+v t) / x_{0}\right]$
(c) $1 /(x+v t)$
4. The equation of a wave travelling on a string stretched along the X axis is given by
$y=A e^{\left(\frac{-x}{a}+\frac{t}{T}\right)^{2}}$
(a) Write the dimensions of A, a and T .
(b) Find the wave speed.
(c) In which direction is the wave travelling?
(d) Where is the maximum of the pulse located at $t=T$ and at $t=2 T$

- Watch Video Solution

Exercise 17.2

1. Consider the wave $y=(5 \mathrm{~mm}) \sin \left[1 \mathrm{~cm}^{-1} x-\left(60 \mathrm{~s}^{-1}\right) t\right]$. Find (a) the ampitude, (b) the angular wave number, (c) the wavelength, (d) the frequency, (e) the time period and (f) the wave velocity.
2. A wave is described by the equation $y=(1.0 \mathrm{~mm}) \sin \pi\left(\frac{x}{2.0 \mathrm{~cm}}-\frac{t}{0.01 s}\right)$.
(a) Find time period and wavelength.
(b) Find the speed of particle at $x=1.0 \mathrm{~cm}$ and time $t=0.01 \mathrm{~s}$.
(c) What are the speed of the partcle at $x=3.0 \mathrm{~cm}$, 5.0 cm and 7.0 cm at $t=0.01 \mathrm{~s}$?
(d) What are the speeds of the partcle at $x=1.0 \mathrm{~cm}$ at $t=0.011$, 0.012 and $0.013 s$?

- Watch Video Solution

Exercise 17.3

1. The equation of a wave travelling on a string is
$y=(0.10 m m) \sin \left[\left(31.4 m^{-1}\right) x+\left(314 s^{-1}\right) t\right]$
(a) In which direction does the travel?
(b) Find the wave speed, the wavelength and the frequency of the wave.
(c) What is the maximum displacement and the maximum speed of a portion of the string?

- Watch Video Solution

2. The equation for a wave travelling in x -direction On a string is

$$
y=(3.0 \mathrm{~cm}) \sin \left[\left(3.14 \mathrm{~cm} \mathrm{~m}^{-1} x-\left(314 \mathrm{~s}^{-1} t\right]\right.\right.
$$

(a) Find the maximum velocity of a particle of the string.
(b) Find the acceleration of a particle at $x=6.0 \mathrm{~cm}$ at time $t=0.11 \mathrm{~s}$

Watch Video Solution

3. The equation of a travelling wave is
$y(x, t)=0.02 \sin \left(\frac{x}{0.05}+\frac{t}{0.01}\right) m$
Find (a) the wave velocity and
(b) the particle velocity at $x=0.2 m$ and $t=0.3 s$.

Given $\cos \theta=-0.85$, where $\theta=34$ rad
4. A wave of frequency 500 Hz has a wave velocity of $350 \mathrm{~m} / \mathrm{s}$.
(a) Find the distance between two points which are $60 \circ$ out of phase.
(b) Find the phase difference between two displacement at a certain point at time $10^{-3} s$ apart.

- Watch Video Solution

Exercise 17.4

1. Speed of light in vacuum is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Range of wavelength of visible light is $4000 \AA-7000 \AA$. Find the range of frequency of visible light.
2. Speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$. Frequancy of Anoop's voice is 1000 Hz and of Shibham's voice is 2000 Hz . Find the wavelength corresponding to their voice.

- Watch Video Solution

Exercise 17.5

1. Figure shows a string of linear mass density $1.0 \mathrm{gcm}^{-1}$ on which a wave pulse is travelling. Find the time taken by pulse in travelling through a distance of 50 cm on the string. Take $g=10 \mathrm{~ms}^{-2}$

A. 0.5 s
B. 0.0005 s
C. 0.05 s
D. 5 s

Answer: C

- Watch Video Solution

2. A steel wire of length 64 cm weighs $5 g$. If it is stretched by a force of $8 n \mathrm{~N}$ ' what would be the speed of transverse wave passing on it?

D Watch Video Solution

3. Two blocks each having a mass of 3.2 kg are connected by a wire CD and the system is suspended from the ceiling by another wire $A B$. The linear mass density of the wire $A B$ is $10 \mathrm{gm}^{-1}$ and that of $C D$ is $8 \mathrm{gm}^{-1}$.

Find the speed of a transverse wave pulse produced in $A B$ and in CD.

- Watch Video Solution

4. In the arrengement shown in figure, the string has a mass of 4.5 g .

How much time will it take for a transverse disturbance produced at
the floor to reach the pulley? Take $g=10 \mathrm{~ms}^{-2}$.

2.5 cm
 2.0 m
 2 kg

(D) Watch Video Solution

5. A copper wire 2.4 mm in diameter is 3 m long and is used to suspend a 2 kg mass from a beam. If a trasverse disturbance is sent along the
wire by striking it lightly with a pencil, how fast will the disturbance travel? The density of copper is $8920 \mathrm{~kg} / \mathrm{m}^{3}$.

- Watch Video Solution

6. One end of a horizontal rope is attached to a prong of an electrically driven fork that vibrates at 120 Hz . The other end passes over a pulley and supports a 1.50 kg mass. The linear mass density of the rope is $0.0550 \mathrm{~kg} / \mathrm{m}$.
(a) What is the speed of a transverse wave on the rope?
(b) Whatis the wavelength?

How would your answer to parts (a) and (b) change if the mass were increased to 3.00 kg ?

- Watch Video Solution

1. Spherical waves are emitted from a 1.0 W source in an isotropic nonabsorbing medium. What is the wave intesity 1.0 m from the source?

(D) Watch Video Solution

2. A line source emits a cylindrical expanding wave. Assuming the medium absorbs no energy find how the ampitude and intensity of wave depend on the distance from the source?

- Watch Video Solution

3. A certain 120 Hz wave on a string has an amplitude of 0.160 mm .

How much energy exits in an 80 g length of the string?

- Watch Video Solution

4. A taut string for which $\mu=5.00 \times 10^{-2} \mathrm{~kg} / \mathrm{m}$ under a tension of 80.0 N . How much power must be supplied to the string to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm ?

- Watch Video Solution

5. A 200 Hz wave with amplitude 1 mm travels on a long string of linear mass density $6 \mathrm{~g} / \mathrm{m}$ keep under a tension of 60 N .
(a) Find the average power transmitted across a given point on the string.
(b) Find the total energy associated with the wave in a 2.0 m long portion of the string.
6. A trasverse wave of amplitude 0.50 mm and frequency 100 Hz is produced on a wire stretched to a tension of 100 N . If the wave speed is $100 \mathrm{~m} / \mathrm{s}$. What average power is the source transmitting to the wire?

- Watch Video Solution

Level 1 Assertion And Reason

1. Assertion: Mechanical transverse waves can't travel in gaseous medium.

Reason : They do no possess modulus of rigidity.
A. If both Assertion and Reason are true and the Reason is correct
expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

- Watch Video Solution

2. Assertion: Surface waves are neither transverse nor longitudinal.

Reason: In surface wave particles undergo circular motion.
A. If both Assertion and Reason are true and the Reason is correct
expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

3. Assertion: Two equations of wave are $y_{1}=A \sin (\omega t-k x)$ and $y_{2} A \sin (k x-\omega t)$. These two waves have a phase difference of π.

Reason: They are travelling in opposite directions.
A. If both Assertion and Reason are true and the Reason is correct
expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: C

- Watch Video Solution

4. Assertion: Wave speeds is given by $v=f \lambda$. If frequency f is doubled, v will becomes two times.

Reason : For given conditions of medium wave speed remains constant.
A. If both Assertion and Reason are true and the Reason is correct
expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

- Watch Video Solution

5. Assertion : On moon you cannot hear your friend standing at some distance from you.

Reason : There is a vacuum on moon.
A. If both Assertion and Reason are true and the Reason is correct expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A

- Watch Video Solution

6. Assertion : Wave number is the number pf waves per units length.

Reason : Wave number $=\frac{1}{\lambda}$.
A. If both Assertion and Reason are true and the Reason is correct expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A

- Watch Video Solution

7. Assertion : Electromagnetic waves do not require medium for their propagation.

Reason : They can't travel in a medium.
A. If both Assertion and Reason are true and the Reason is correct
expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: C

D Watch Video Solution

8. Assertion : Two strins shown in figure have the same tension. Speed of transverse waves in string-1 will be more.

Reason :
$v \propto \frac{1}{\sqrt{\mu}}$,Here'mu is mass per unit length of string.
A. If both Assertion and Reason are true and the Reason is correct expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

D Watch Video Solution

9. Assertion: $y-x$ graph of a transverse wave on a string is as shown in figure. At potential energy and kinetic energy both are minimum. Reason : At point B kinetic energy and potential energy both are

maximum.
A. If both Assertion and Reason are true and the Reason is correct expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

10. Assertion : $y-x$ graph of a transverse wave on a string is as shown in figure. At the given instant point P is moving downwards. Hence, we can say that wave is moving towards positive \mathfrak{y}-direction.

Reason : Partial velocity is given by
$v p=-v \frac{\partial y}{\partial x}$
A. If both Assertion and Reason are true and the Reason is correct expanation of the Assertion.
B. If both Assertion and Reason are true but the Reason is not correct expanation of the Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

Objective Questions

1. Equation of progressive wave is given by $y=4 \sin \left[\pi\left(\frac{t}{5}-\frac{\pi}{6}\right),+\frac{\pi}{6}\right]$, where x and y are it metres. Then,
A. $v=5 m / s$
B. $\lambda=18 m$
C. $A=0.04 m$
D. $f=50 \mathrm{~Hz}$

Answer: B

1. The equation of a wave is given by $Y=5 \sin 10 \pi(t-0.01 x)$ along the x-axis. (All the quantities are expressed in SI units). The phase difference between the points separated by a distance of $10 m$ along x axis is
A. $\frac{\pi}{2}$
B. π
C. 2π
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

2. The displacement function of a wave travelling along positive x direction is $y=\frac{1}{2+3 x^{2}}$ att=0 and byy $\left.=(1) /(2)+3(\mathrm{x}-2)^{\wedge}(2)\right) a t \mathrm{t}=2 \mathrm{~s}$, wherey and x are in metre. The velocity of the wave is
A. $2 m / s$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $1 \mathrm{~m} / \mathrm{s}$
D. $3 \mathrm{~m} / \mathrm{s}$

Answer: C

(D) Watch Video Solution

3. The angle between wave velocity and particle velocity in a travelling wave be
A. zero
B. $\frac{\pi}{2}$
C. π
D. All of these

Answer: D

- Watch Video Solution

4. A source oscillates with a frequency 25 Hz and the wave propagates with $300 \mathrm{~m} / \mathrm{s}$. Two points A and B are located at distances
$10 m$ and $16 m$ away from the source. The phase difference between
A and B is
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 2π

Answer: C

- Watch Video Solution

5. The equation of a transverse wave propagating in a string is given by $y=0.02 \sin (x+30 t)$
where, x and y are in second.
If linear density of the string is $1.3 \times 10^{-4} \mathrm{~kg} / \mathrm{m}$, then the tension in the string is
A. $0.12 N$
B. 1.2 N
C. 12 N
D. 120 N

Answer: A

- Watch Video Solution

6. A harmonic oscillator vibrates with amplitude of 4 cm and performs

150 oscillations in minute. If intial phase is 45° and it starts moving away from the origin, then the equation of motion is
A. $0.04 \sin \left(\left(5 \pi t+\frac{\pi}{4}\right)\right.$
B. $0.04 \sin \left(\left(5 \pi t-\frac{\pi}{4}\right)\right.$
C. $0.04 \sin \left(\left(4 \pi t+\frac{\pi}{4}\right)\right.$
D. $0.04 \sin \left(\left(4 \pi t-\frac{\pi}{4}\right)\right.$

Answer: A

- Watch Video Solution

Level 1 Subjective

1. A certain transverse wave is described by
$y(x, t)=(6.50 \mathrm{~mm}) \cos 2 \pi\left(\frac{x}{28.0 \mathrm{~cm}}-\frac{t}{0.0360 \mathrm{~s}}\right)$.
Determine the wave's
(a) amplitude , (b) wavelength
(c) frequency, (d) speed of propagation and
(e) direction of propagation.
2. For the wave $y=5 \sin 30 \pi[t-(x / 240)]$, where x and y are in cm and t is in seconds, find the
(a) displacement when $t=0$ and $x=2 \mathrm{~cm}$
(b) wavelength
(c) velocity of the wave and
(d) frequency of the wave

- Watch Video Solution

3. The displacement of a wave disturbance propagating in the positive x-direction is given by
$y=\frac{1}{1+x^{2}}$ at $t=0$ and $y=\frac{1}{1+(x-1)^{2}}$ at $t=2 s$
where, x and y are in meter. The shape of the wave disturbance does not change during the propagation. what is the velocity of the wave?
4. A travelling wave pulse is given by $y=\frac{10}{5+(x+2 t)^{2}}$

Here, x and y are in meter and t in second. In which direction and with what velocity is the pulse propagation. What is the ampitude of pulse?

(D) Watch Video Solution

5. Is their any relationship between wave speed and the maximum partcle speed for a wave travelling on a string? If so, what is it?

- Watch Video Solution

6. Calculate the velocity of a transverse wave along a string of length
$2 m$ and mass 0.06 kg under a tension of 500 N .

- Watch Video Solution

7. Calculate the speed of a transverse wave in a wire of $1.0 \mathrm{~mm}^{2}$ crosssection under a tension of 0.98 N . Density of the material of wire is $9.8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

- Watch Video Solution

8. If at $t=0$, a travelling wave pulse in a string is described by the function,
$y=\frac{10}{\left(x^{2}+2\right)}$
Hence, x and y are in meter and t in second. What will be the wave function representing the pulse at time t, if the pulse is propagating along positive x -axix with speed $2 m / s$?

- Watch Video Solution

9. Consider a sinusoidal travelling wave shown in figure. The wave velocity is $+40 \mathrm{~cm} / \mathrm{s}$.

Find
(a) the frequency
(b) the phase difference between points 2.5 cm apart
(c) how long it takes for the phase at a given position to
(d) the velocity of a particle at P at the instant shown.

- Watch Video Solution

10. The equation of a travelling wave is
$y(x, t)=0.02 \sin \left(\frac{x}{0.05}+\frac{t}{0.01}\right) m$
Find (a) the wave velocity and
(b) the particle velocity at $x=0.2 m$ and $t=0.3 \mathrm{~s}$.
11. Transverse waves on a srting have speed $12.0 \mathrm{~m} / \mathrm{s}$, amplitude 0.05 m and wavelength $0.4 m$. The waves travel in the $+x-$ direction and at $t=0$ the $x=0$ end of the string has zero displacement and is moving upwards.
(a) Write a wave function describing the wave.
(b) Find the transverse displacement of a point at $x=0.25 m$ at time $t=0.15 s$.
(c) How much time must elapse from the instant in part (b) until the point at $x=0.25 m$ has zero dispacement?

- Watch Video Solution

12. A wave is described by the equation
$y=(1.0 \mathrm{~mm}) \sin \pi\left(\frac{x}{2.0 \mathrm{~cm}}-\frac{t}{0.01 \mathrm{~s}}\right)$.
(a) Find time period and wavelength.
(b) Find the speed of particle at $x=1.0 \mathrm{~cm}$ and time $t=0.01 \mathrm{~s}$.
(c) What are the speed of the partcle at $x=3.0 \mathrm{~cm}$, 5.0 cm and 7.0 cm at $t=0.01 \mathrm{~s}$?
(d) What are the speeds of the partcle at $x=1.0 \mathrm{~cm}$ at $t=0.011$, 0.012 and $0.013 s$?

- Watch Video Solution

13. A sinusoidal wave travelling in the positive x-direction has an amplitude of 15.0 cm , a wavelength of 40.0 cm and a frequency of 8.00Hz. Thevertic \leq displacementofthemediumatt $=0$ and $\mathrm{x}=0$ isalso 15.0 cm as shown in figure.
y (cm)

(a) Find the angular wave number k, period T, angular frequency ω and speed v of the wave.
(b) Write a general expression for wave function.

- Watch Video Solution

14. A flexible steel cable of total length L and mass per unit length μ hangs vertically from a support at one end. (a) Show that the speed of a transverse wave down the cable is $v=\sqrt{g(L-x)}$, where x is measured from the support. (b) How long will it takes for a wave to travel down the cable?

- Watch Video Solution

15. A loop of rope is whirled at a high angular velocity ω, so that it becomes a taut circle of radius R. A kink develops in the whirling rope.

(a) Show that the speed of the kink in the rope is $v=\omega R$.
(b) Under what conditions does the kink remains stattionary relative to an observer on the ground?

- Watch Video Solution

16. A non-uniform wire of length l and mass M has a variable linear mass density given by $\mu=k x$, where x is distance from one end of wire and k is a constant. Find the time taken by a pulse starting at one end to reach the other end when the tension in the wire is T.
17. The speed of propagation of a wave in a medium is $300 \mathrm{~m} / \mathrm{s}$. The equation of motion of point at $x=0$ is given by $y=0.04 \sin 600 \pi t($ metre $)$. The displacement of a point $x=75 \mathrm{~cm}$ at $t=0.01 s$ is
A. $0.02 m$
B. $0.04 m$
C. zero
D. 0.028 m

Answer: B

- Watch Video Solution

1. A 200 Hz sinusoidal wave is travelling in the positive x-direction along a string with a linear mass density of $3.5 \times 10^{-3} \mathrm{~kg} / \mathrm{m}$ and a tension of $35 N$. At time $t=0$, the point $x=0$, has maximum displacement in the positive y-direction. Next when this point has zero displacement, the slope of the string is $\pi / 20$. Which of the following expression represent (s) the displacement of string as a function of x (in metre) and t (in second)
A. $y=0.025 \cos (200 \pi t-2 \pi x)$
B. $y=0.5 \cos (200 \pi t-2 \pi x)$
C. $y=0.025 \cos (100 \pi t-10 \pi x)$
D. $y=0.5 \cos (100 \pi t-10 \pi x)$

Answer: A

- Watch Video Solution

2. Vibrations of period 0.25 s propagate along a straight line at a velocity of $48 \mathrm{~cm} / \mathrm{s}$. One second after the the emergence of vibrations at the initial point, displacement of the point, 47 cm from it is found to be 3 cm . [Assume that at initial point particle is in its mean position at $t=0$ and moving upwards]. Then,
A. amplitude of vibrations is 6 cm
B. amplitude of vibrations is $3 \sqrt{2} \mathrm{~cm}$
C. amplitude of vibrations is 3 cm
D. None of these

Answer: A

- Watch Video Solution

3. Transverse waves are generated in two uniform steel wires A and B
by attaching their free ends to a fork of frequency 500 Hz . The diameter
of wire A is half that B and tension in wire A is half the tension in wire
B. What is the ratio of velocities of waves in A and B ?
A. 1:2
B. $\sqrt{2}: 1$
C. 2:1
D. $1: \sqrt{2}$

Answer: B

(D) Watch Video Solution

4. The frequency of A note is 4 times that of B note. The energies of two notes are equal. The amplitude of b notes as compared to that of A note will be
A. double
B. equal
C. four times
D. eight times

Answer: C

- Watch Video Solution

5. If at $t=0$, a travelling wave pulse on a string is described by the function.
$y=\frac{6}{x^{2}+3}$
What will be the waves function representing the pulse at time t, if the pulse is propagating along positive x-axis with speed $4 m / s$?
A. $y=\frac{6}{(x+4 t)^{2}}+3$
B. $y=\frac{6}{(x-4 t)^{2}}+3$
C. $y=\frac{6}{(x-t)^{2}}$
D. $y=\frac{6}{(x-t)^{2}}+12$

Answer: B

- Watch Video Solution

Level 2 More Than One Correct

1. A transverse wave travelling on a stretched string is is represented by
the equation
$y=\frac{2}{(2 x-6.2 t)^{2}}+20$. Then ,
A. velocity of the wave is $3.1 \mathrm{~m} / \mathrm{s}$
B. amplitude of the wave is $0.1 m$
C. frequency of the wave is 20 Hz
D. wavelength of the wave is $1 m$

Answer: A::B

2. For energy density, power and intensity of any wave choose the correct options.
A. $u=$ energy density $=\frac{1}{2} \rho \omega^{2} A^{2}$
B. $P=$ power $=\frac{1}{2} \rho \omega^{2} A^{2} S v$
C. $I=$ intensity $=\frac{1}{2} \rho \omega^{2} A^{2} S v$
D. $I=\frac{P}{S}$

Answer: A: D

- Watch Video Solution

3. For the transverse wave equation $y=A \sin (\pi x+\pi t)$, choose the correct option at $t=0$
A. points at $x=0$ and $x=1$ are at mean positions
B. points at $x=0.5$ and $x=1.5$ have maximum accelerations
C. points at $x=0.5$ and $x=1.5$ are at rest
D. the given wave is travelling in negative x-direction

Answer: A::B::C::D

- Watch Video Solution

4. In the wave equation,
$y=A \frac{\sin (2 \pi)}{a}(x-b t)$
A. speed of wave is a
B. speed of wave is b
C. wavelength of wave is a / b
D. wavelength of wave is a

Answer: B::D

5. In the wave equation,
$y=A \sin (2 \pi)\left(\frac{x}{a}-\frac{b}{t}\right)$
A. speed of wave is a / b
B. speed of wave is b / a
C. wavelength of wave is a
D. Time period of wave is b

Answer: A::C::D

- Watch Video Solution

6. Corresponding to $y-t$ graph of a transverse harmonic wave shown in figure,

Answer: A::D

Level 2 Subjective

1. The figure shows a snap photograph of a vibrating string at $t=0$. The particle P is observed moving up with velocity $20 \sqrt{3} \mathrm{~cm} / \mathrm{s}$. The tangent at P makes an angle 60° with x -axis.

(a) Find the direction in which the wave is moving.
(b) Write the equation of the wave.
(c) The total energy carries by the wave per cycle of the string.

Assuming that the mass per unit length of the string is $50 \mathrm{~g} / \mathrm{m}$.

(D) Watch Video Solution

2. A long string having a cross- sectional area $0.80 \mathrm{~mm}^{2}$ and density $12.5 \mathrm{gcm}^{-3}$ is subjected to a tension of 64 N along the X -axis. One end of this string is attached to a vibrator moving in transverse direction at a frequency fo 20 Hz . At $\mathrm{t}=0$. the source is at a maximujm displacement $y=1.0 \mathrm{~cm}$. (a) Write the equation for the wave. (c) What is the displacement of the particle of the string at $x=50 \mathrm{~cm}$ at time $\mathrm{t}=0.05 \mathrm{~s}$? (d) What is the velocity of this particle at this instant ?

- Watch Video Solution

3. One end of each of two identical springs, each of force constant $0.5 \mathrm{~N} / \mathrm{m}$ are attached on the opposite sides the a wooden block of mass 0.01 kg . The other ends of the spring are connected to separate rigid supports such that the springs are unstrtched and are collinear in a horizontal plane. To the wooden piece is fixed a pointer which touches a vertically moving plane paper. The wooden piece kept on a smooth horizontal table is now displaced by 0.02 m along the line of springs and released. If the speed of paper is $0.1 \mathrm{~m} / \mathrm{s}$, find the
equation of the path traced by the pointer on the paper and the distance between two consecutive maximum on this path.

(D) Watch Video Solution

4. A wave pulse is travelling on a string with a speed v towards the positive X -axis. The shape of the string at $\mathrm{t}=0$ is given by $g(x)=A \sin \left(\frac{x}{a}\right)$, where A and a are constants. (a) What are the dimensions of A and a ? (b) Write the equation of the wave for a general time 1 , if the wave speed is v.
5. Figure shows a plot of the transverse displacement of the particle of a string at $t=0$ through which a travelling wave is passing in the positive in the positive x-direction. The wave speed is $20 \mathrm{~cm} / \mathrm{s}$. Find (a) the amplitude (b) the wavelength (c) the wave number and (d) the frequency of the wave.

- Watch Video Solution

6. Two wires of different densities but same area of cross-section are soldered together at one end and are stretched to a tension T. The velocity of a transverse wave in the first wire is double of that in the second wire. Find the ratio of the first wire to that of the second wire.
7. A sinusoidal transverse wave travel on a string. The string has length 8.00 m and mass 6.00 g . The wave speed is $30.0 \mathrm{~m} / \mathrm{s}$ and the wavelength is 0.200 m . (a) If the wave is to have an average power of 50.0 W , what must be the amplitude of the wave? (b) For the same string, if the ampitude and wavelength are the same as in part (a) what is the average power for the wave if the tension is increased such that the wave speed is doubled?

- Watch Video Solution

Subjective Questions

1. Two long strings A and B, eachhav $\in g l \in$ earmassdensity 1.2 xx $10^{\wedge}(-2) \mathrm{kg} / /$ marestretchedbyd \Leftrightarrow erenttensions 4.8 N and 7.5 N respectively and arekeptparal $\leq l \rightarrow$ eachotherwiththeir \leq ftendsat $\mathrm{x}=0$. Wavepseare \prod ucedonthestr \in gatthe \leq ftendsatt $=0$
onstr $\in g \mathrm{~A}$ and att=20msonstr $\in g \mathrm{~B}$
. When and wherewillthepseonBovertaketônA'?

- View Text Solution

2. A uniform rope with length L and mass m is held at one end and whirled in a horizontal circle with angular velocity ω. You can ignor the force of gravity on the rope. Find the time required for a transverse wave to travel from one end of the rope to the other.

Hint: $\int \frac{d x}{\sqrt{a^{2}-\left(x^{2}\right)}}=\sin ^{-1}\left(\frac{x}{a}\right)$

- View Text Solution

JEE MAINS

1. A transverse periodic wave on a string with a linear mass density of
$0.200 \mathrm{~kg} / \mathrm{m}$ is described by the following equation
$y=0.05 \sin (420 t-21.0 x)$
where x and y are in metres and t is in seconds. Tension in the string is
A. 32 N
B. 42 N
C. 66 N
D. 80 N

Answer: D

- Watch Video Solution

2. A wire of density $9 \mathrm{gm} / \mathrm{cm}^{3}$ is stretched between two clamps 1.00 m apart while subjected to an extension of 0.05 cm . The lowest frequency of transverse vibration in the wire is (Assume Young's modulus $\left.Y=9 \times 10^{10} N / m^{2}\right)$.
A. 35 Hz
B. 45 Hz
C. 75 Hz
D. 90 Hz

Answer: A

- Watch Video Solution

3. A piece of cork is floating on water in a small tank. The cork oscillates up and down vertically when small ripples pass over the surface of water. The velocity of the ripples being $0.21 \mathrm{~ms}^{-1}$, wavelength 15 mm and amplitude 15 mm , the maximum velocity of the piece of cork is

A. $0.44 m s^{-1}$
B. $0.24 m s^{-1}$
C. $2.4 m s^{-1}$
D. $4.4 m s^{-1}$

Answer: A

- Watch Video Solution

4. A person is talking in a small room and the sound intensity level is 60dB everywhere within the room. If there ar eight people talking simultaneously in the room, what is the sound intensity level?
A. 96 dB
B. 69 dB
C. 74 dB
D. 81 dB

Answer: B

- Watch Video Solution

5. The fundamental frequency of a closed organ pipe is same as the first overtone frequency of an open pipe. If the length of open pipe is 50 cm , the length of closed pipe is
A. 25 cm
B. 12.5 cm
C. 100 cm
D. 200 cm

Answer: B

- Watch Video Solution

6. The second overtone of an open pipe A and a closed pipe B have the same frequencies at a given temperature. Both pipes contain air. The ratio of fundamental frequency of A to the fundamental frequency of B is:
A. $3: 5$
B. 5:3
C. 5:6
D. 6:5

Answer: B

- Watch Video Solution

7. A resonance tube is resonated with tuning fork of frequency 256 Hz . If the length of first and second resonating air columns are 32 cm and 100 cm , then end correction will be
A. 1 cm
B. 2 cm
C. 4 cm
D. 6 cm

Answer: B

- Watch Video Solution

8. A tuning fork is frequency 512 Hz is vibrated with a sonometer wire and 6 beats per second are heard. The beat frequency reduces if the tension in the string of slightly increased. The original frequency of vibration of the string is
A. 506 Hz
B. 512 Hz
C. 518 Hz
D. 524 Hz

Answer: A

D Watch Video Solution

9. A closed organ pipe and an pipe of same length produce 4 beats when they are set into vibration simultaneously. If the length of each of them were twice their initial lengths. The number of beats produced will be [Assume same mode of vibration in both cases]
A. 2
B. 4
C. 1
D. 8

Answer: A

10. An engine driver moving towards a wall with velocity of $50 \mathrm{~ms}^{-1}$ emits a note of frequency 1.2 kHz . The frequency of note after reflection from the wall is heard by the engine driver when speed of sound in air is $350 \mathrm{~ms}^{-1}$ is

A. 1 kHz
B. 1.8 kHz
C. 1.6kHz
D. 1.2 kHz
11. Two trains move towards each other with the same speed. Speed of sound is $340 \mathrm{~ms}^{-1}$. Frequency of tone of the whistle of one when heard by the other changes $9 / 8$ times, then the speed of each trains is

A. $10 \mathrm{~ms}^{-1}$
B. $40 \mathrm{~ms}^{-1}$
C. $20 \mathrm{~ms}^{-1}$
D. $15 \mathrm{~ms}^{-1}$

Answer: C

12. A taut string at both ends vibrates in its $n^{\text {th }}$ overtone. The distance between adjacent node and antinode is found to be 'd'. If the length of the string is L, then
A. $L=2 d(n+1)$
B. $L=d(n+1)$
C. $L=2 d n$
D. $L=2 d(n-1)$

Answer: A

- Watch Video Solution

13. A person can hear frequencies only upto 10 kHz . A steel piano pipe wire 50 cm long of mass 5 g is streched with a tension of 400 N . The number of the hightest overtone of the sound produced by this plano wire that the person can hear is
A. 48
B. 50
C. 49
D. 51

Answer: C

- Watch Video Solution

14. A chord attached to a viberating tunning fork divides it into 6loops, when its tension is 36 N . The tensin at which it will viberate in 4loops is
A. 24 N
B. 36 N
C. 64 N
D. 81 N

- Watch Video Solution

15. A string fixed at both ends vibrates in a resonant mode with a separation of 2.0 cm between the consecutive nodes. For the next higher resonants frequecy this separation to 1.6 cm . The length of the string is
A. 4.0 cm
B. 8.0 cm
C. 12.0 cm
D. 16.0 cm

Answer: B

- Watch Video Solution

16. In case of closed organ pipe, which harmonic the $p^{t h}$ overtone will be
A. $2 p+1$
B. $2 p-1$
C. $p+1$
D. $\mathrm{p}-1$

Answer: A

- Watch Video Solution

17. A source frequency f gives 5 beats when sounded with a frequency 200 Hz . The second harmonic of same source gives 10 beats when sounded with a source of frequency 420 Hz . The value of f is
A. 200 Hz
B. 210 Hz
C. 205 Hz
D. 195 Hz

Answer: C

- Watch Video Solution

18. Two open organ pipes of fundamental frequencies n_{1} and n_{2} are joined in series. The fundamental frequency of the new pipe so obtained will be
A. $n_{1}+n_{2}$
B. $\frac{n_{1} n_{2}}{n_{1}+n_{2}}$
C. $\frac{n_{1}+n_{2}}{2}$
D. $\sqrt{\left(n_{1}^{2}+n_{2}^{2}\right)}$

Answer: B

19. Speed of transverse wave in a string of density $100 \mathrm{~kg} / \mathrm{m}^{3}$ and area of cross-section $10 \mathrm{~mm}^{2}$ under a tension of $106^{3} \mathrm{~N}$ is
A. $100 \mathrm{~m} / \mathrm{s}$
B. $1000 \mathrm{~m} / \mathrm{s}$
C. $200 \mathrm{~m} / \mathrm{s}$
D. $2000 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

20. Speed of sound wave in a gas V_{1} and $r m s$ speed of molecules of the gas at the same temperature is v_{2}.
A. $v_{1}=v_{2}$
B. $v_{1}<v_{2}$
C. $v_{1}>v_{2}$
D. $v_{1} \leq v_{2}$

Answer: B

- Watch Video Solution

21. The ratio of intensities between two cohernt sound sources is 4:1.

The difference of loudness is decibel (bD) between maximum and minimum intensitiesm, when they interface in space is
A. 10log2
B. 20log 3
C. 10log3
D. 20log 2
22. A closed organ pipe and an open organ pie of same length produce four bets in their fundamental mode when sounded together, If length of the open organ pipe is increased, then the number of beats will
A. increase
B. decrease
C. remain constant
D. may increase or decrease

Answer: D

- Watch Video Solution

23. The equation of a travelling wave is given as $y=5 \sin 10 \pi(t-Q .01 x)$, along the x -axis. Here, all quantities are in

SI units. The phase difference between the points separated by a distance of 10 m alond x -axis is
A. $\frac{x}{2}$
B. π
C. 2π
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

24. How many time are taken intense is 90 dB sound than 40 dB sound?
A. 5
B. 50
C. 500
D. 10^{5}

- Watch Video Solution

25. The equation of a wave disturbance is given as $y=0.02 \cos \left(\frac{\pi}{2}+50 \pi t\right) \cos (10 \pi x)$, where x an y are in metre and t in second. Choose the wrong statement.
A. Antinode occurs at $x=0.3$
B. The wavelength is 0.2 m
C. The speed of the consituent is $4 \mathrm{~m} / \mathrm{s}$
D. Node occurs at $\mathrm{x}=0.15 \mathrm{~m}$

Answer: C

- Watch Video Solution

26. For a certain organ pipe three successive resonance frequencies are observed at $425 \mathrm{~Hz}, 595 \mathrm{~Hz}$ and 765 Hz respectively. If the speed of sound air is $340 \mathrm{~m} / \mathrm{s}$, then the length of the pipe is
A. 2.0 m
B. 0.4 m
C. 1.0 m
D. 0.2 m

Answer: C

- Watch Video Solution

27. A source of sound of frequency 600 Hz is placed inside of water. The speed of sound is water is $1500 \mathrm{~m} / \mathrm{s}$ and air it is $300 \mathrm{~m} / \mathrm{s}$. The frequency of sound recorded by an observer who is standing in air is

$$
\text { A. } 200 \mathrm{~Hz}
$$

B. 3000 Hz
C. 120 Hz
D. 600 Hz

Answer: D

- Watch Video Solution

28. A heavy rope is suspended from a rigid support. A wave pulse is set up at the lower end, then
A. the pulse will travel with uniform speed
B. the pulse will travel with increasing speed
C. the pulse will travel with decreasing speed
D. the pulse cannot travel through the rope

Answer: B

29. Which of the following is not the standard form of a sine wave?
A. $y=A \sin 2 \pi\left(\frac{t}{T}-\frac{x}{\lambda}\right)$
B. $y=A \sin (v t-k x)$
C. $y=A \sin \omega\left(t-\frac{x}{V}\right)$
D. $y=A \sin k(v t-x)$

Answer: B

- Watch Video Solution

30. The speed of sound wave in a gas, in which two waves of wavelengths 1.0 m and 1.02 m produce 6 beats per second is
A. $350 \mathrm{~m} / \mathrm{s}$
B. $306 \mathrm{~m} / \mathrm{s}$
C. $380 \mathrm{~m} / \mathrm{s}$
D. $410 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

31. A Uniform rope having mass m hags vertically from a rigid support.

A transverse wave pulse is produced at the lower end. The speed v of wave pulse varies with height h from the lower end as
A.
(a)

(b)
B.

(c)

C.
(d)

D.

Answer: C

- Watch Video Solution

32. A string of length L is stretched by $L / 20$ and speed transverse wave alon it is v. The speed of wave ehen it is stretched by $L / 10$ will be (assume that Hooke law is applicable)
A. $2 v$
B. $\frac{v}{\sqrt{2}}$
C. $\sqrt{2} v$
D. $4 v$

Answer: C

33. Two identical sounds s_{1} and s_{2} reach at a point P phase. The resultant loudness at a point P is not higher than the loudness of s_{1}. The value of n is
A. 2
B. 4
C. 5
D. 6

Answer: D

- Watch Video Solution

34. A source of frequency 10 kHz when vibrted over than mouth of a closed organ is in unison at 300K. The beats produced when temperature rises by 1 K
A. 30 Hz
B. 13.33 Hz
C. 16.67 Hz
D. 40 Hz

Answer: C

- Watch Video Solution

35. If λ_{1}, λ_{2} and λ_{3} are the wavelengths of the wave giving resonance with the fundamental, first and second overtones respectively of a closed organ pipe Then the ratio of wavelength λ_{1}, λ_{2} and λ_{3} is
A. 1:2:3
B. $1: \frac{1}{3}: \frac{1}{5}$
C. 1:3:5
D. 5:3:1

Answer: B

- Watch Video Solution

36. An open and a closed pipe have same length ratio of frequencies of their nth overtone is
A. $\frac{n+1}{2 n+1}$
B. $\frac{2(n+1)}{2 n+1}$
C. $\frac{n}{2 n+1}$
D. $\frac{n+1}{2 n}$

Answer: B

- Watch Video Solution

37. A sufficiently long closed organ pipe has a small hole at its bottom. Initially the pipe is empty. What poured into the pipe at a constant rate. The fundamental frequency of the air column in the pite
A. continously increases
B. first incrases and then becomes constant
C. continously decreases
D. first decrease and then become constant

Answer: B

- Watch Video Solution

38. A string 1 has the length, twice the radius,two the tension and twice the density of another string The relation between the fundamental frequecy 1 and 2 is

$$
\text { A. } f_{1}=2 f_{2}
$$

B. $f_{1}=4 f_{2}$
C. $f_{2}=4 f_{1}$
D. $f_{1}=f_{2}$

Answer: C

D Watch Video Solution

39. A wave represented by the equation $y=a \cos (k x-\omega t)$ is superposed with another wave to form a stationary wave such that point $x=0$ is a node. The equation for the other wave is
A. $y_{2}=-a \sin (k x-\omega t)$
B. $y_{2}=-a \cos (k x+\omega t)$
C. $y_{2}=a \sin (k x-\omega t)$
D. $y_{2}=a \cos (k x+\omega t)$
40. A closed organ pipe and an open organ pipe of same length produce 2 beats when they are set into viberations simultaneously in their fundamental mode. The length of open organ pipe is now halved and of closed organ pipe is doubled, the nunber of beats produced wil be
A. 8
B. 7
C. 4
D. 2

Answer: B

(D) Watch Video Solution

41. Velocity of sound in an open organ pipe is $330 \mathrm{~m} / \mathrm{s}$. The frequency of wave is 1.1 kHz and the length of tube is 30 cm . To which harmonic does this frequency corresponds?
A. 2nd
B. 3rd
C. 4th
D. 5th

Answer: A

- Watch Video Solution

42. First overtone frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. Further nth harmonic of closed organ pipe is also equal to the nth harmonic of open pipe, where n and m are
A. 5,4
B. 7,5
C. 9,6
D. 7,3

Answer: C

- Watch Video Solution

43. Two sound waves have intensities of 10 and $500 \mu / \mathrm{cm}^{2}$. How many describe is the second sound louder than the first?
A. 7 dB
B. 1.7 dB
C. 2.7 dB
D. 3.7 dB

Answer: B

D Watch Video Solution

44. In a stationary wave that forms as a result of reflection of wave from an obstacle, the ratio of this amplitude at an antinode to the amplitude at anode is n. The friction of energy reflected is
A. $\left(\frac{n-1}{n^{2}}\right)$
B. $\left(\frac{n-1}{n+1}\right)$
C. $\left(\frac{1}{n}\right)^{2}$
D. $\left(\frac{n}{n+1}\right)^{2}$

Answer: B

45. A travelling wave is partly reflected and partly transmitted from a rigid boundary. Let a_{i}, a_{r} and a_{t} be the amplitude of incident wave, reflected wave and transmitted wave and I_{i}, I_{r} and I_{t} be the corresponding intensities. Then choose the correct alternatives.
A. $\frac{I_{i}}{I_{r}}=\left(\frac{a_{i}}{a_{r}}\right)^{2}$
B. $\frac{I_{i}}{I_{t}}=\left(\frac{a_{i}}{a_{r}}\right)^{2}$
C. $\frac{I_{r}}{I_{t}}=\left(\frac{a_{r}}{a_{t}}\right)^{2}$
D. All the above

Answer: A

(D) Watch Video Solution

46. Equations of a stationery and a travelling waves are $y_{1}=a \sin k x \cos \omega t$ and $y_{2}=a \sin (\omega t-k x)$ The phase differences
between two between $x_{1}=\frac{\pi}{3 k} \quad$ and $\quad x_{2}=\frac{3 \pi}{2 k} \operatorname{are}_{1}$ and ϕ_{2} respectvely for the two waves. The ratio $\frac{\phi_{1}}{\phi_{2}}$ is
A. 1
B. $\frac{5}{6}$
C. $\frac{3}{4}$
D. $\frac{6}{7}$

Answer: D

- Watch Video Solution

47. A steel rod 100 cm long is clamped at its centre. The fundamental frequency of longitudinal vibrations of the rod are given to be 2.53 kHz . What is the speed of sound in steel?
A. $10.06 \mathrm{kms}^{-1}$
B. $5.06 \mathrm{kms}^{-1}$
C. $15.06 \mathrm{kms}^{-1}$
D. $2.42 \mathrm{kms}^{-1}$

Answer: B

- Watch Video Solution

48. A pulse is incident on a rigid wall. The possible from of reflected pulse is

(a)

A.
(b)

(c)
C.
(d)

D.

Answer: C

- Watch Video Solution

49. A uniform wire of density ρ is stretched by $l_{\text {! }}$ under its propotional limit whose original slength is L. What is lowest frequency of transverse viberation set up in the wire assuming Young's modulus of the material to be Y ?
A. $\frac{1}{2 L} \sqrt{\frac{Y l_{1}}{\rho L}}$
B. $\frac{1}{4 L} \sqrt{\frac{Y l}{\rho L_{1}}}$
C. $\frac{1}{2 L} \sqrt{\frac{Y l_{1}}{\rho L_{1}}}$
D. $\frac{1}{L} \sqrt{\frac{Y l_{1}}{\rho L}}$

Answer: A

- Watch Video Solution

50. A taut string for which mass per unit length $\mu=5.0 \times 10^{-2} \mathrm{~kg} / \mathrm{m}$ is under tension of 80 N . How much power in watt upto one decimal point must be supplied to the string to generate sinusoidal wave at a frequency of 6.0 Hz and amplitude of 6.00 cm ?
A. 5.2 W
B. 10.4 W
C. 2.6 W
D. 7.8 W

Answer: A

ONLY ONE OPTION IS CORRECT

1. The frequency of a sonometer wire is f. When the weight producing the tensions are completely immersed in water, the frequency becomes $f / 2$ and on immersing the weight in a certain liquid the frequency becomes $f / 3$. The specific gravity of the liquid is
A. $\frac{4}{3}$
B. $\frac{16}{9}$
C. $\frac{15}{12}$
D. $\frac{32}{27}$

Answer: D

- Watch Video Solution

2. in a plane progaressive harmonic wave particle speed is always less than the wave speed if.
A. amplitude of wave is less than $\frac{\lambda}{2 \pi}$
B. amplitude of wave is greater than $\frac{\lambda}{2 \pi}$
C. amplitude to wave is less than λ
D. amplitude of wave is greater than $\frac{\lambda}{\pi}$

Answer: A

- Watch Video Solution

3. in an experiment it was found that string vibrates in n loops when a mass M is placed on the pan. What mass should be placed on the pan to make it vibrate in 2 n loops with same frequency? (neglect the mass of pan)

$$
\text { A. } 2 M
$$

B. $\frac{M}{4}$
C. $4 M$
D. $\frac{M}{2}$

Answer: B

- Watch Video Solution

4. Two pipes have each of length 2 m , one is closed at on end and the other is open at both ends. The speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$. The frequency at which both can resonate is
A. 340 Hz
B. 510 Hz
C. 42.5 Hz
D. none of these
5. An open organ pipe of length I is sounded together with another open organ pipe of length $I+x$ in their fundamental tones. Speed of sound in air is v , the beat frequency heard will be ($x \ll l$)
A. $\frac{v x}{4 l^{2}}$
B. $\frac{v l^{2}}{2 x}$
C. $\frac{v x}{2 l^{2}}$
D. $\frac{v x^{2}}{2 l}$

Answer: C

- Watch Video Solution

6. Two sound sources are moving in opposite directions with velocities v_{1} and $v_{2}\left(v_{1}>v_{2}\right)$. Both are moving away from a stationary observer.

The frequency of both the sources is 900 Hz . What is the value of $v_{1}-v_{2}$ so that the beat frequency absorbed by the observer is 6 Hz . speed of sound $\mathrm{v}=300 \mathrm{~m} / \mathrm{s}$ given , that v_{1} and $v_{2} \ll v$
A. $1 \mathrm{~m} / \mathrm{s}$
B. $2 \mathrm{~m} / \mathrm{s}$
C. $3 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

7. The frequency changes by 10% as the source approaches a stationary observer with constant speed v_{s}. What would be the percentage change in frequency as the sources recedes the observer with the same speed ? Given, that $v_{s} \ll v(\mathrm{v}=$ speed pf sound in air)
B. 20%
C. 16.7\%
D. 10%

Answer: D

- Watch Video Solution

8. when a source of sound of frequency f crosses stationary observer with a speed $v_{s}(\ll$ speed of sound v$)$, the apparent change in frequency $D e a<a f$ is given by
A. $\frac{2 f v_{s}}{v}$
B. $2 f s v_{s}$
C. $\frac{2 f v_{s}}{v_{s}}$
D. $\frac{f v_{s}}{v}$
9. The maximum pressure variation that the human ear can tolerate in loud sound is about $30 \mathrm{~N} / \mathrm{m}^{2}$. The corresponding maximum displacement for a sound wave in air having a frequency of $10^{3} \mathrm{~Hz}$ is (Take velocity of sound in air as $300 \mathrm{~m} / \mathrm{s}$ and density of air $1.5 \mathrm{~kg} / \mathrm{m}^{3}$)
A. $\frac{2 \pi}{3} \times 10^{-2} m$
B. $\frac{2 \times 10^{-4}}{\pi} m$
C. $\frac{\pi}{3} \times 10^{-2} m$
D. $\frac{10^{-4}}{3 \pi} m$

Answer: D

- Watch Video Solution

10. A transverse wave $y=0.05 \sin (20 \pi x-50 \pi t)$ meters , is propagating along + ve X - axis on a string light insect starts crawling on the string with velocity of $5 \mathrm{~cm} / \mathrm{s}$ at $\mathrm{t}=0$ along the +ve X - axis from point where $x=5 \mathrm{~cm}$. After 5 s the difference in phase of its position is equal to
A. 150π
B. 250π
C. -245π
D. -5π

Answer: B

- Watch Video Solution

11. If l_{1} and l_{2} are the lengths of air column for the first and second resonance when a tuning fork frequency n is sounded on a resonance
tube, there the distance of the antinode from the top end of resonance tube is
A. $2\left(l_{2}-l_{1}\right)$
B. $\frac{1}{2} 2\left(l_{1}-l_{2}\right)$
C. $\frac{l_{2}-3 l_{1}}{2}$
D. $\frac{l_{2}-l_{1}}{2}$

Answer: C

(D) Watch Video Solution

12. A sonometer wire resonates with a given tuning fork forming standing waves with five antinodes between the two bridges when a mass of 9 kg is suspended from the wire. When this same tuning fork forming three antinodes for the same positions of the bridges. the value of M is
A. 12 kg
B. 5 kg
C. 12.5 kg
D. $1 / 25 \mathrm{~kg}$

Answer: A

- Watch Video Solution

13. identical wires A amd B of different materials are hung from then ceilling of a room. The density of wire A is greater than the density of wire B but their lengths are same. Identical wave pulses are produced at the bottom of respective wires. The times taken by the pulse to reach the top is
A. greater for wire A
B. greater for wire B
C. same for both the wires
D. cannot be determind

Answer: C

- Watch Video Solution

14. An open pipe of sufficient length is dipping in water with a speed v vertically. If at any instant I is lengths of tube avoce water. Then the rate at which fundamental frequency of pipe changes, is (speed of sound =c)

A. $c v / 2 l^{2}$
B. $c v / 4 l^{2}$
C. $c / 2 v^{2} l^{2}$
D. $c / 4] v^{2} l^{2}$

Answer: B

- Watch Video Solution

15. A 10 W source of sound of frequency 1000 Hz sends out wave in air. The displacement amplitude a distance of 10 m from the source is (speed of sound in air $=340 \mathrm{~m} / \mathrm{s}$ and density of air $=129 \mathrm{~kg} / \mathrm{m}^{3}$)
A. $0.62 \mu \mathrm{~m}$
B. $4.2 \mu \mathrm{~m}$
C. $1.6 \mu m$
D. $0.96 \mu \mathrm{~m}$

- Watch Video Solution

16. The amplitude of a wave disturbance propagating along positive X axis is given by $=\frac{1}{1+x^{2}}$ at $\mathrm{t}=0$ and $y=\frac{1}{1+(x-2)^{2}}$ at $\mathrm{t}=4 \mathrm{~s}$ where x and y are in metre. The shape of wave diturbance does not change with time. The velocity of the wave is
A. $1 \mathrm{~m} / \mathrm{s}$
B. $0.5 \mathrm{~m} / \mathrm{s}$
C. $2 \mathrm{~m} / \mathrm{s}$
D. $4 \mathrm{~m} / \mathrm{s}$

Answer: B

(D) Watch Video Solution

17. A wave pulse on a string on a string has the dimension shown in figure. The wave speed is $\mathrm{v}=1 \mathrm{~cm} / \mathrm{s}$. If point O is a free end. The shape of wave at time $t=3 \mathrm{~s}$ si

(a)
A.
B.
(b)

C.

(a)

D.

Answer: D
18. om the above problem, shape of the wave at time $t=3 \mathrm{~s}$ if. O is a fixed end will be
(a) \qquad !
A.
B. ${ }_{*}^{\text {(b) }}$
C.

D.

Answer: A

D Watch Video Solution

19. A string of length 0.4 m and mass $10^{-2} \mathrm{~kg}$ is tightly clamped at its ends. The tension in the string is 1.6 N . Identical wave pulses are
produced at one end at equal intervals of time, Δt. The minimum value of Δt which allows constructive interference of successive pulse is
A. 0.05 s
B. 0.10 s
C. 0.20 s
D. 0.40 s

Answer: B

- Watch Video Solution

20. In the figure, the intensity of waves arriving at D from two coherent soucrces s_{1} and $s_{2} i s I_{0}$. The wavelength of the wave is $\lambda=4 m$.

Resultant intensity at D will be

A. $4 l_{0}$
B. l_{0}
C. $2 l_{0}$
D. zero

Answer: C

Watch Video Solution
21. A tuning fork of 512 Hz is used to produce resonance in a resonance tube experiment. The level of water at first resonance is 30.7 cm and at second resonance is 63.2 cm . The error in calculating velocity of sound is (speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$)
A. $204.1 \mathrm{~cm} / \mathrm{s}$
B. $110 \mathrm{~cm} / \mathrm{s}$
C. $58 \mathrm{~cm} / \mathrm{s}$
D. $280 \mathrm{~cm} / \mathrm{s}$

Answer: D

(D) Watch Video Solution

22. the equation for the vibration of a string fixed both ends vibration in its third harmonic is given by
$\mathrm{y}=2 \mathrm{~cm} \sin \left[\left(0.6 \mathrm{~cm}^{-1}\right) \times\right] \cos \left[\left(500 \mathrm{ps}^{-1} t\right]\right.$
A. 24.6 cm
B. 12.5 cm
C. 20.6 cm
D. 15.7 cm

Answer: D

- Watch Video Solution

23. A string is under tension sot that its length uncreased by $\frac{1}{n}$ times its original length. The ratio of fundamental frequency of longitudinal vibrations and transverse vibrations will be
A. 1:n
B. $n^{2}: 1$
C. $\sqrt{n}: 1$
D. $\mathrm{n}: 1$

Answer: C

- Watch Video Solution

24. the frequency of a sonometer wire is 100 Hz . When the weight producing th tensions are completely immersed in water the frequency becomes 80 Hz and on immersing the weight in a certain liquid the frequency becomes 60 Hz . The specific gravity of the liquid is
A. 1.42
B. 1.77
C. 1.82
D. 1.21

Answer: B

(D) Watch Video Solution

25. source and observer both start moving simultaneously from origion one along y - axis with speed of source $=2$ (speed of observer). The graph between the apparent frequency observed by observer (f) and time (t) would be
(a)

A.
B.
(c)

C.
(d)

D.

Answer: B

26. An observer starts moving with uniform acceleration a towards a stationary sound source of frequency f_{o}. As the observer approaches the source ,the apparent frequency f heard by the observer varies with time t as
A.

B.

(c)

C.
D.

Answer: A

27. Speed of sound wave is v. If a reflector moves towards a stationary source emitting waves of frequency f with speed u, the wavelength of reflected waves will be
A. $\frac{v-u}{v+u} f$
B. $\frac{v+u}{v} f$
C. $\frac{v+u}{v-u} f$
D. $\frac{v-u}{v} f$

Answer: C

(D) Watch Video Solution

28. A train is moving with a constant speed along a circular track. The engine of the train emits a sound of frequency f. The frequency heard by the guard at the rear end of the train.
A. is less than f
B. is greater than f
C. is equal to f
D. may be greater than, less than or equal to f depending on the factors like speed of train, length of train and radius of circular track

Answer: C

D Watch Video Solution

29. A conveyor belt moves to the right with speed $v=300 \mathrm{~m} / \mathrm{min}$. A pieman puts pies on the belt at a $30 \mathrm{~m} / \mathrm{min}$ towards a receiver at the other end. The frequency with which they are received by the stationary receiver is
A. $26.67 / \mathrm{min}$
B. $30 / \mathrm{min}$
C. 22.22 / min
D. $24 / \mathrm{min}$

Answer: C

D Watch Video Solution

30. Equation for two waves is given as
$y_{1}=a \sin \left(\omega t+\phi_{1}\right), y_{2}=a \sin \left(\omega t+\phi_{2}\right)$.
If ampitude and time period of resultant wave does not change, then calculate $\left(\phi_{1}-\phi_{2}\right)$.
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{4}$
31. A transever sine wave of amplitude 10 cm and wavelength 200 cm travels from left to right along a long horizontal stretched, string is at the origin and is moving downward. Then the equation of the wave will be (in CGS system)
A. $y=10 \sin (0.01 \pi \times-\pi t)$
B. $y=10 \sin (\pi t-0.01 \pi \times)$
C. $y=10 \sin (0.02 \pi \times-0.01 \pi t)$
D. $y=10 \sin (\pi t-0.02 \pi \times)$

Answer: A

- Watch Video Solution

32. A string of mass $0.2 \mathrm{~kg} / \mathrm{m}$ and length $\mathrm{I}=0.6 \mathrm{~m}$ is fixed at both ends and stretched such that it has a tension of 80 N . The string vibrates in 3 segments with maximum amplitude of 0.5 cm . the maximum transverse velocity amplitude is
A. $1.57 \mathrm{~m} / \mathrm{s}$
B. $6.28 \mathrm{~m} / \mathrm{s}$
C. $3.14 \mathrm{~m} / \mathrm{s}$
D. $9.42 \mathrm{~m} / \mathrm{s}$

Answer: A

(D) Watch Video Solution

33. A string fixed at both is vibrating in the lowest mode of vibration for which a point at quarter of its length from one end is a point of maximum displacement. The frequency of vibration emitted when it
vibrates in the next mode such that this point is again a point of maximum displacement?
A. 400 Hz
B. 200 Hz
C. 600 Hz
D. 300 hz

Answer: D

(D) Watch Video Solution

34. two sound waves moves in the same direction if the average power transmiitted across a cross - section by them are equal while their wavelengths are in the ratio of 1:2. Their pressure amplitudes would be in the ratio of
A. 1
B. 2
C. 4
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

35. the fundamental frequency of a sonometer wire of length is f_{0}.A bridge is now introduced at a distance of Δl from the centre of the wire ($\Delta l \ll l$). The number of beats heard if their fundamental mode are
A. $\frac{8 f_{0} \Delta \mid}{\mid}$
B. $\frac{f_{0} \Delta \mid}{\mid}$
C. $\frac{2 f_{0} \Delta \mid}{\mid}$
D. $\frac{4 f_{0} \Delta \mid}{\mid}$
36. in a sine wave ,positive of different particles at time $t=0$ is shown in figure. The equation for this wave if it is travelling along positive x -axis can be

A. $y=A \sin (\omega t-k x)$
B. $y=A \sin (k x-\omega t)$
C. $y=A \cos (\omega t-k x)$
D. $y=A \cos (k x-\omega t)$

D Watch Video Solution

37. A detector is released from rest over a source of sound of frequency $f_{0}=10^{3} \mathrm{~Hz}$. The frequency observed by the detector at time t is plotted in the graph. The speed of sound in air is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. $330 \mathrm{~m} / \mathrm{s}$
B. $350 \mathrm{~m} / \mathrm{s}$
C. $300 \mathrm{~m} / \mathrm{s}$
D. $310 \mathrm{~m} / \mathrm{s}$

Answer: C

- Watch Video Solution

38. A standing wave is maintained in a homogerneous string of cross sectional area a and density p . It is formed bt yhe superpostions given of two waves travelling in opposite direations given by the equations
A. $\frac{3 \pi s p \omega^{2} a^{2}}{2 k}$
B. $\frac{\pi s p \omega^{2} a^{2}}{2 k}$
C. $\frac{5 \pi s p \omega^{2} a^{2}}{2 k}$
D. $\frac{2 \pi s p \omega^{2} a^{2}}{2 k}$

Answer: C

39. A 100 Hz sinusoidal wave is travelling in the positive x -direction along a string with a linear mass density of $3.5 \times 10^{-3} \mathrm{kgm}^{-1}$ and a tension of 35 N . At time $\mathrm{t}=0$, the point $\mathrm{x}=0$ has zero displacement and the slope of the string is $\pi / 20$ then select the wrong alternative.
A. velcoity of wave is $100 \mathrm{~m} / \mathrm{s}$
B. angular velocity is $(200 \pi) \mathrm{rad} / \mathrm{s}$
C. Amplitude of wave is 0.025 m
D. none of the above

Answer: D

- Watch Video Solution

40. At $\mathrm{t}=0$, observer and source are at same place. Now the source is projected with velocity $60 \sqrt{2} \mathrm{~m} / \mathrm{s}$ at 45°. Natural frequency of source is

1000 Hz .find the frequency heard by the observer at $\mathrm{t}=2 \mathrm{~s}$. Take speed of sound $=340 \mathrm{~m} / \mathrm{s}$
A. 930 Hz
B. 860 Hz
C. 826 Hz
D. 970 Hz

Answer: C

- Watch Video Solution

41. there are three strings RP, Pqand QS as shown. Their mass and length are $\mathrm{RP}=(0.1 \mathrm{~kg}, 2 \mathrm{~m}), \mathrm{PQ}=(0.2 \mathrm{~kg}, 3 \mathrm{~m}), \mathrm{QS}=(0.15 \mathrm{~kg}, 4 \mathrm{~m})$ respectively. All the strings are under the same tension. Wave -1 is incident at P. it is partly reflected (wave -2) adn partly transmitted (wave -3). now wave -3 is incident at Q . it is again partly transmitted (wave -5)[and partly reflected (wave -4). phase difference between
wave -1 and wave

A. 2 is π
B. 4 is zero
C. both (a) and (b) are correct
D.

Answer: C

D Watch Video Solution

42. minimum frequency of audible sound is 20 Hz and maximum frequency is $20,000 \mathrm{~Hz}$. If we compare the sound levels of these two frequencies of same amplitudes, their difference will be
A. 30 dB
B. 60 dB
C. 90 dB
D. 120 dB

Answer: B

(D) Watch Video Solution

43. both the strings, shown in figure are made of same material and have same cross - section. The pulleys are light the wave speed pf a
travsverse wave in the string AB is v_{1} and in CD is v_{2}. The ratio v_{1} / v_{2} is

A. 1
B. 2
C. $\sqrt{2}$
D. $1 \sqrt{2}$

Answer: D
44. A stone in hung in air from a wire which is stretched over a sonometer. The bridges of the sonometer are 40 cm apart when the wire is in unison with a tuning fork of frequency 256 Hz . When the stone is completely immersed in water, the length between the bridges is 22 cm for re-establishing unison. The specific gravity of the material of the stone is
A. $\frac{(40)^{2}}{(40)^{2}+(22)^{2}}$
B. $\frac{(40)^{2}}{(40)^{2}-(22)^{2}}$
C. $\frac{(40)^{2}+(22)^{2}}{(40)^{2}}$
D. $\frac{(40)^{2}-(22)^{2}}{(40)^{2}}$

Answer: B

- Watch Video Solution

45. A heavy but unifrom rope of length L is suspended from a celling. A particle is dropped from the celling at the instant when the bottom end is given a transverse wave pulse. Where will the particle meet the pulse.
A. at a distance $\frac{2 l}{3}$ form the bottom
B. at a distance $\frac{L}{3}$ from the bottom
C. at a distance $\frac{3 L}{4}$ from the bottom
D. none of the above

Answer: B

(Watch Video Solution

46. the same progressive wave is reprsented by two group I and II. Graoup I shows how the displacement 'y' varies with the distance x along the wave at a given time. Graph II shows how y varies with time t at a given point on the wave. The ratio of measurements $A B$ to $C D$,
marked on the curvse m repersents.

(1)

(II)
(a) wave number k
(b) wave speed V
(c) frequency f
(d) angular frequency 0
A. wave number K
B. wave speed V
C. frequecny f
D. angular fequecy ω

Answer: B

- Watch Video Solution

47. A string of length 'L' is fixed at both ends. It is vibrating in its $3 r d$ overtone with maximum amplitude 'a'. The amplitude at a distance $L / 3$
from one end is
A. a
B. 0
C. $\frac{\sqrt{3} a}{2}$
D. $\frac{a}{2}$

Answer: C

- Watch Video Solution

48. A wire having a linear density of $0.05 \mathrm{~g} / \mathrm{cm}$ is stretched between two rigid supports with a tension of $450 N$. It is observed that the wire resonates at a frequency of 420 Hz . The next higher frequency at which the same wire resonates is 490 Hz . Find the length of the wire.
A. 314 cm
B. 254 cm
C. 214 cm
D. 354 cm

Answer: C

- Watch Video Solution

49. A sound signal is sent through a composite tube as shown in the figure. The radius of the semicircular portion of the tube is r, speed of sound in air is v , the source of sound is capable of giving varied frequencies. If n is an integer then frequency for maximum intensity is given by

A. $\frac{n v}{r}$
B. $\frac{n v}{r(\pi-2)}$
C. $\frac{n v}{\pi r}$
D. $\frac{n v}{(r-2) \pi}$

Answer: B

- Watch Video Solution

50. A tube of diameter d and of length I is open a both ends. Its fundamental frequency of resonance is found to be f_{1}. One end of the tube is now closed. The lowest frequency of resonance of this closed tube is now f_{2}. Taking into consideration the end correction, $\frac{f_{2}}{f_{1}}$ is
A. $\frac{(l+0.6 d)}{(l+0.3 d)}$
B. $\frac{(l+0.3 d)}{2(l+0.6 d)}$
C. $\frac{(l+0.6 d)}{2(l+0.3 d)}$
D. $\frac{1(d+0.3 l)}{2(d+0.6 l)}$

Answer: C

- Watch Video Solution

51. two speakers A and B, placed 1 m apart, each produces sound waves of frequnecy 1800 Hz . In phase. A detector moving parallel to line of speakers distant 2.4 m away detects a maximum intensity at O nd then
at P. speed of sound wave is

A. $330 m s^{-1}$
B. $360 \mathrm{~ms}^{-1}$
C. $350 \mathrm{~ms}^{-1}$
D. $340 m s^{-1}$

Answer: B

52. A source of sound of frequency 165 Hz generates sound waves which get fully reflected from a wall. A person standing at the wall starts moving away from the wall. The minimum distance of the point from the wall at which the person hears maximum sound is (velocity of sound $=330 \mathrm{~ms}^{-1}$)
A. 1 m
B. 2 m
C. $1 / 2 \mathrm{~m}$
D. $1 / 4 \mathrm{~m}$

Answer: A

- Watch Video Solution

53. Bullets are fixed at regular intervals of 10 second from a car moving with a speed of $30 \mathrm{~ms}^{-1}$ towards another car approaching with a speed of $60 \mathrm{~m} / \mathrm{s}$. The interval at which the firing can be reported is (Speed of sound $=330 \mathrm{~ms}^{-1}$
A. 7.5 s
B. 8.32 s
C. 6.7 s
D. 12 s

Answer: A

- Watch Video Solution

54. the equation of a wave travelling along the positive x - axis ,as shown in figure at $t=0$ is given by

A. $\sin \left(k x-\omega t+\frac{\pi}{6}\right)$
B. $\sin \left(k x-\omega t-\frac{\pi}{6}\right)$
C. $\sin \left(\omega t-k x+\frac{\pi}{6}\right)$
D. $\sin \left(\omega t-k x-\frac{\pi}{6}\right)$

Answer: D

55. A closed organ pipe of radius r_{1} and an open organ pipe of radius r_{2} and having same length 'L' resonate when excited with a given tuning fork. Closed organ-pipe resonates in its fundamental mode where as open organ pipe resonates in its first overtone, then :-
A. $r_{2}-r_{1}=L$
B. $r_{2}-r_{1}=L / 2$
C. $r_{2}-2 r_{1}=2.5 L$
D. $2 r_{2}-2 r_{1}=2.5 L$

Answer: C

(D) Watch Video Solution

56. A stationary sound sound 's' of frequency 334 Hz and a stationary observer 'O' are placed near a reflecting surface moving away from the source with velocity $2 \mathrm{~m} / \mathrm{s}$ as shown in the figure. If the velocity of the
sound waves is air is $\mathrm{v}=330 \mathrm{~m} / \mathrm{s}$ the apparent frequency of the echo is

" z / s
A. 332 Hz
B. 326 Hz
C. 334 Hz
D. 330 Hz

Answer: D

57. A sounding body emitting a frequency of $150 H_{Z}$ is dropped from a height. During its fall under gravity it crosses a balloon moving upwards with a constant velocity of $2 m / s$ one second after it started to fall . The difference in the frequency observer by the man in balloon just before and just afer crossing the body will be (velocity of sound

$$
\left.=300 \mathrm{~m} / \mathrm{s}, g=10 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

A. 12
B. 6
C. 8
D. 4

Answer: A

- Watch Video Solution

58. A soure of sound of frequency 165 hz is placed in front of a wall at a distance 2 m from it. A dtector is also placed in front of the wall at the same distance from it. Find the minimum distance between the source and detector for which maximum sound is recorded int he detector . the speed of sound is $330 \mathrm{~m} / \mathrm{s}$
A. 4 m
B. 3 m
C. 1 m
D. $2 m$

Answer: B

D Watch Video Solution

59. A closed organ pipe of length L is vibrating on a circle of radius t and centre at O in xy plane. A point source of sound S lies in xy plane at
a distance $2 R$ from the point O and emits sound of a given frequnecy .the ratio of maximum frequncey and minimum frequecny recorded by the detector is $\frac{11}{9}$ and speed of sound is $340 \mathrm{~m} / \mathrm{s}$ the minimum time intervel in seconds between recording a maximum frequency and minimum frequency is (take $\mathrm{R}=17 \mathrm{~m}$)
A. 1:2
B. 1:3
C. 1:1
D. 2:3

Answer: B

(D) Watch Video Solution

60. A sound detector D moves with constant speed on a circle or radius R and centre at O in $x y$ plane. A point source of sound S lines in $x y$ plane at a distance $2 R$ from the point O and emits sound of a given
frequnecy. The ratio of maximum frequency recorded by the detector is $\frac{11}{9}$ and speed of sound is $340 \mathrm{~m} / \mathrm{s}$. the minimum time interval in seconds between reacording a maximum frequency and mimmim frequency is (take $R=17$)

A. 3
B. $\pi / 3$
C. $\pi / 2$
D. $2 \pi / 3$

Answer: A

61. Two notes A and B sounded together produce 2 beats per second. When notes B and C are sounded together 3 beats with per second are produced. The notes A and C separately produce the same number of beats with a standard tuning fork of frequency 456 Hz . The possible frequency of note B is
A. 458.8 Hz
B. 456.5 Hz
C. both are correct
D. both are wrong

Answer: B

- Watch Video Solution

62. An open organ pipe is vibrating in its fifth overtone. The distance between two consecutive pionts where pressure amlitude is $\frac{1}{\sqrt{2}}$ times
pressure amplitude at pressure antinodes, is 40 cm , then the length of open organ pipe is (neglect end connection)
A. 3 cm
B. 3.6 cm
C. 4.2 cm
D. 4.8 cm

Answer: C

(D) Watch Video Solution

More Than One Option is Correct

1. A stationary observer receiver a sound of frequency $f_{0}=2000 \mathrm{~Hz}$
.Sourece is moving with constant velocity on a road at some non-zero prependicular distance from observer. The apparent frequncy f varies with times as show in figure. Speed of sound $=300 \mathrm{~m} / \mathrm{s}$. Choose the

correct alternative(s).

A. Speed of source is $66.7 \mathrm{~m} / \mathrm{s}$
B. f_{m} shown in figure cannot be greather than 2500 Hz
C. Speed of source is $33.33 \mathrm{~m} / \mathrm{s}$
D. f_{m} show is figure cannot be greater than 2250 Hz

Answer: C::D

- View Text Solution

2. The equation $y=4+2 \sin (6 t-3 x)$ represents a wave motion with
A. amplitude 6 units
B. amplitude 2 units
C. wave speed 2 units
D. wave speed $1 / 2$ units

Answer: B::C

- Watch Video Solution

3. Sound wave is travellimg along positive x-direction. Displacement (y) of particles from their mean position at position x is a shown in figure .

Choose the correct alternative(s).

A. Particle located at tE has its velocity in negative x-direction
B. Particle located at D has zero velocity
C. Change in pressure at D is zero
D.

Answer: A::B::C::D

(D) Watch Video Solution

4. A closed organ pipe of length 1.2 m vibrates in its first overtone mode. The pressue variation is maximum at
A. 0.8 m from the open end
B. 0.4 m from the open end
C. closed end
D. 1.0 m from the open end

Answer: B::C

- Watch Video Solution

5. PROGRESSIVE WAVES

A. phase difference between displacement and accleration of particle is zero
B. Phase difference bwteen displacement and acceleration of particle is π
C. phase difference between between displacement and velocity of particle is $\pi / 2$
D. phase difference between velocity and acceleration of particle is
$\pi / 2$

Answer: B::C::D

- Watch Video Solution

6. The equation of a wave distrubance is a given as $y=0.02 \sin \left(\frac{\pi}{2}+50 \pi t\right) \cos (10 \pi x)$, where x and y are in metre and t is in second. Choose the correct statement (s).
A. The wavelength of wave is 0.2 m
B. Displacement node occurs at $\mathrm{x}=0.15 \mathrm{xm}$
C. Displacement antinode occurs at $x=0.3 m$
D. The speed of constitutent wave is $0.2 \mathrm{~m} / \mathrm{s}$

Answer: A::B::C

- Watch Video Solution

7. The figure show an instantaneous profile of a rope carrying a progressive wave moving from left to right, then

A. A is moving downwards
B. A is moving downwards
C. A is moving upwards
D. A is moving upwards

Answer: A::D

D Watch Video Solution

8. The tension in a stretch string fixed at both ends is changed by 2%, the fundamental frequency is founder to get changed by 1.5 Hz . Select the incorrect statement.
A. Wavelength of the string of fundamental frequency does not change.
B. Velocity of propagation of wave changes by 2%.
C. Velocity of propagation of wave changes by 1%.
D. Original frequency is 1500 Hz .
9. The equational of a stationary wave in a string is $y=(4 m m) \sin \left[\left(314 m^{-1} x\right] \cos \omega t\right.$. Select the correct alternative (s).
A. The amplitude of component waves in 2 mm
B. The amplitude of componen wave is 4 mm
C. The smallest possible through of string is 0.5 m
D. The smallest possible length of string is 1.0 m

Answer: A: D

- Watch Video Solution

10. The figure represent a longitudianl waave length travelling in positive x-direction. Then

A. part ABC represent combination
B. part ABC represent rearefraction
C. part CDE represent compression
D. part CDE represent rerefraction

Answer: A:D

- View Text Solution

11. WHICH OF THE FOLLOWING FUNCTIONS OF X AND T REPRESENTS A
A. $Y=S I N(4 T-3 X)$
B. $y=\frac{1}{4+(4 T-3 X)^{2}}$
C. $Y=\frac{1}{4 T+3 X}$
D. $1 /(E 4 T+3 X)^{\prime}$

Answer: A::B

D View Text Solution

12. The equation of a wave travelling on a string is given by $Y(m n)=8$ $\sin \left[\left(5 m^{-1} x-\left(4 s^{-1} t\right]\right.\right.$. Then
A. velocity of wave is $0.8 \mathrm{~m} / \mathrm{s}$
B. the displacement of a particle of the sting at $\mathrm{t}=0$ and $x=\frac{\pi}{30} \mathrm{~m}$ from the mean position is 4 mn
C. the displacement of thean position at $t=0, x=\frac{\pi}{30} \mathrm{~m}$ is $8 \mathrm{~m} / \mathrm{s}$
D. velocity of the wave is $8 \mathrm{~m} / \mathrm{s}$

Answer: A: B

- Watch Video Solution

13. For a certain stretched string, three consecutive resonance frequencies are observed as 105,175 and 245 Hz respectively. Then, the fundamental frequency is
A. The sting is fixed at both ends
B. The string is fixed at one end only
C. The fundamental frequency is 35 Hz
D. The fundamental frequesncy is 52.5 Hz

Answer: B::C

- Watch Video Solution

14. A wave equation which given the dispplacement along the y direction is given by,
$y=10^{-4} \sin (60 t+2 x)$
where x and y are in matre and t is time in second. This represents a wave
A. travelling with a velocity of $30 \mathrm{~m} / \mathrm{s}$ in the negative x -direction
B. of wavelength $(\pi) \mathrm{m}$
C. of frequency $30 /(\pi) \mathrm{Hz}$
D. of amplitube 10^{-4}

Answer: A::B::C::D

- Watch Video Solution

15. An air column in a pipe, when is closed at one end, is in resonance with a vibrating tuning fork of frequency $264 H_{Z}$. If $v=330 \mathrm{~m} / \mathrm{s}$, the
length of the column in cm is (are)
A. 31.25
B. 62.5
C. 93.75
D. 125

Answer: A::C

- Watch Video Solution

16. Velocity of secnod in air is $320 \mathrm{~m} / \mathrm{s}$. Neglecting end correctionss, the air column in the pipe can resonate for sound of frequency
A. 80 Hz
B. 240 Hz
C. 320 Hz
D. 400 Hz

- View Text Solution

17. The plane wave represented by an eqution of the form $y=f(x-v t)$ implies the propagation along the positive x-axis without chang of shape with constant velocity v . Then
A. $\frac{\partial y}{\partial t}=-v\left(\frac{\partial y}{\partial x}\right)$
B. $\frac{\partial y}{\partial t}=-v\left(\frac{\partial^{2} y}{\partial x^{2}}\right)$
c. $\frac{\partial^{2} y}{\partial t^{2}}=-v^{2}\left(\frac{\partial^{2} y}{\partial x^{2}}\right)$
D. $\frac{\partial^{2} y}{\partial t^{2}}=v^{2}\left(\frac{\partial^{2} y}{\partial x^{2}}\right)$

Answer: A: C

- Watch Video Solution

18. S_{1} and S_{2} are two sources of sound emitting sine waves. The two sources are in phase. The sound emitted by the two sources interfers at point F. The waves of wavelength :

A. 1 m will result in constructive interference
B. $\frac{2}{3} \mathrm{~m}$ will result in constructive interference
C. 2 m will result in destructive interference
D. 4 m will result in destructive interference

Answer: A::B::D

- Watch Video Solution

19. Two narrow organ pipes, one open (length l_{1}) and the other cloed (length l_{2}) are sounded in their respective fundamental modes. The
beat frequency heard is 5 Hz . If now the pipes are sounded in their first overtones, then also the beat frequency heard is 5 Hz . Then:
A. $\frac{l_{1}}{l_{2}}=\frac{1}{2}$
B. $\frac{l_{1}}{l_{2}}=\frac{1}{1}$
C. $\frac{l_{1}}{l_{2}}=\frac{3}{2}$
D. $\frac{l_{1}}{l_{2}}=\frac{2}{3}$

Answer: B::C

- Watch Video Solution

20. Given are two tuning forks near one another. One of them is of unknown frequency and the other is of frequency 591 Hz .We can hear beat of maximum intensity I_{0} with frequency 5 Hz . At $\mathrm{t}=0$ we hear a maxima. Then
A. Unknown frequency can be 596 Hz
B. Unknown frequency can be 586 Hz
C. Intersity at time $t=2.7 \mathrm{~s}$ is $/ \mathrm{O}$
D. Intensity at time $t=\frac{27}{20} \mathrm{~s}$ is $\left(\frac{0}{2}\right)$

Answer: A::B::D

- View Text Solution

21. A long itudinal sine wave is travelling in air along positive x direction. Displacement(s) of particles from their mean positions at a particular time t are shown in the figure. Choose the correct options for that instant only

A. Particle located at C has zero velocity .
B. Particle located at C is equal to normal atmospheric direction
C. The pressure at C is equal to normal atmospheric pressure .
D. Particles located near B are under compression.

Answer: A::B::C::D

- Watch Video Solution

22. Two very long string are tial together at the point $x=0$ In region x It 0 , the wave speed is v_{1},while in the regon x gt0, the speed is v_{2}. A sinusoidal wave is incident on the knot from the left(x It 0). Part of the wave is redlected and part is transmitted. For X It O the the displacement of the wave is described by $\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{A} \sin \left(K_{1} x-w t\right)+\mathrm{B} \sin$ $\left(k_{1} x+w t\right)$, while for x gt $\mathrm{O}, \mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{C} \sin \left(K_{1}\right) x-w t$, where $w / k_{1}=v_{1}$ and $w / k_{2}=v_{2}$. Which of the following is/are correct.
A. $\frac{C}{A}=\frac{2 v_{2}}{v_{1}+v_{2}}$
B. $\frac{B}{A}=\frac{v_{2}-v_{1}}{v_{1}+v_{2}}$
C. $B^{2}+\frac{v_{1}}{v_{2}} C^{2}=A^{2}$
D. $A^{\wedge}(2)+\left(v^{\wedge}(1)\right) /\left(v_{-}(2)\right) C^{\wedge}(2)=B^{\wedge}(2)^{\wedge}$

Answer: A::B::C

- View Text Solution

23. Shape of a string transmitting wave along x-axis some instant is shown. Velocity of point $\mathrm{P} v-(4 \pi) \mathrm{cm} / \mathrm{s}(\theta)=\tan ^{-1}(0.004 \mathrm{pi})$

Distance (in cm) \rightarrow
A. Amplitube of wave is 2 mm
B. Velocity of wave is $10 \mathrm{~m} / \mathrm{s}$
C. Maximum acceleration of particle is $80 \pi^{2} \mathrm{~cm} / \mathrm{sec}^{2}$
D. Wave is travelling in negative x-direction

Answer: A::B::C::D

- View Text Solution

Comprehion Type Questions

1. [Q.Nos. 1-2] $y(x, t)$ equation of a lingiutudinal wave is given as
$y=10^{-2} 2(\pi)\left[1000 t+\frac{50}{17} x\right]$ (All Si units
At $\mathrm{t}=0$ Change in pressure is maximum at $\mathrm{x}=$. m.
A. 0.34
B. 0.255
C. 0.085
D. All of these

- Watch Video Solution

2. [Q.Nos. 1-2] $y(x, t)$ equation of a lingiutudinal wave is given as
$y=10^{-2} 2(\pi)\left[1000 t+\frac{50}{17} x\right]$ (All Si units
If density of the gas is $10^{-3} \mathrm{~kg} / \mathrm{m}^{3}$, find the pressure amplitube
A. $200.62 \mathrm{~N} / \mathrm{m}^{2}$
B. $421.24 \mathrm{~N} / \mathrm{m}^{2}$
C. $100.26 \mathrm{~N} / \mathrm{m}^{2}$
D. $21.36 \mathrm{~N} / \mathrm{m}^{2}$

Answer: D

(D) Watch Video Solution

3. [Q. Nos. 3-4] Difference in frequencies between 3rd overtone of closed pipe and 5th haronic of the same pipe is 400 Hz . Futher 3rd hormonic of this closed pipe os equal to 6th hormonic of another open pipe.

Fundamental frequencies of closed pipe and open pipe are
A. $200 \mathrm{~Hz}, 400 \mathrm{~Hz}$
B. $150 \mathrm{~Hz}, 75 \mathrm{~Hz}$
C. $200 \mathrm{~Hz}, 100 \mathrm{hz}$
D. $400 \mathrm{~Hz}, 300 \mathrm{~Hz}$

Answer: C

- Watch Video Solution

4. [Q. Nos. 3-4] Difference in frequencies between 3rd overtone of closed pipe and 5th haronic of the same pipe is 400 Hz . Futher 3rd
hormonic of this closed pipe os equal to 6th hormonic of another open pipe.

If speed sound is $330 \mathrm{~m} / \mathrm{s}$. Then lengths of closed pipe and open pipe are
A. $0.4125 \mathrm{~m}, 0.825 \mathrm{~m}$
B. $3.3 \mathrm{~m}, 1.65 \mathrm{~m}$
C. $0.825 \mathrm{~m}, 0.825 \mathrm{~m}$
D. $1.65 \mathrm{~m}, 0.825 \mathrm{~m}$

Answer: A

- Watch Video Solution

5. In the shown figure answer the following two question.

If P_{i}, P_{r}, P_{t} are powers of incident, reflected and transmitted waves and I_{i}, I_{r}, I_{t} the corresponding intensities , then
A. $P_{i}=P_{r}+P_{t}$
B. $I_{i}=I_{r}+I_{t}$
C. both(a) and (b) are correct
D. both (a) and (b) are wrong

Answer: A

(D) Watch Video Solution

6. In the shown figure answer the following question.

Under what condition 75% of incident energy transmitted?
A. $\frac{v_{1}}{v_{2}}=\frac{1}{2}$
B. $\frac{v_{1}}{v_{2}}=\frac{1}{3}$
C. $\frac{v_{1}}{v_{2}}=\frac{1}{4}$
D. $\frac{v_{1}}{v_{2}}=\frac{2}{3}$

Answer: B

- Watch Video Solution

7. [Q. Nos. 7-8] You have three firks A, B, and C Fork B has a frequency of

440 What A and B are soundedd together a frequency of 3 Hz is heard.
When B and C sounded together, the beat frequency is 4 Hz .
The possible frequencies of C are
A. 437 Hz and 443 Hz
B. 436 Hz and 444 Hz
C. 436 Hz and 445 Hz
D. 437 Hz and 444 Hz

Answer: B

- Watch Video Solution

8. The possible beat frequencies when A and C are sounded together are
A. 2 Hz and 7 HZ
B. 1 Hz and 6 HZ
C. 1 Hz and 7 HZ
D. 2 Hz and 6 HZ

Answer: C

9. A source is approaching towoed a wall as shown in figure .We have three observes O_{1}, O_{2} and O_{3}. observer $O_{-}(2)$ is over the source itself. Let f_{1}, f_{2} and $\mathrm{f}_{-}(3)$ be the beat frequencires heard by O_{1}, O_{2} and O_{3} between direct sound from the source and reflected sound from the

wall .then
A. (a) $f_{-}(3)=0$
B. $f_{1}>f_{2}$
C. both(a) and (b) are wrong
D. both (a) and (b) are correct

Answer: D

10. Given frequency of source $\mathrm{f}=100 \mathrm{~Hz}, v_{s}=20 \mathrm{~m} /$ sand $v=330 \mathrm{~m} / \mathrm{s}$. Thebeatequenciesf_(1) and $\mathrm{f}_{-}(2)$

A. $f_{1}=20 H z$
B. $f_{2}=10 \mathrm{~Hz}$
C. both(a) and (b) are wrong
D. both (a) and (b) are correct

Answer: C

11. The position of a transverse wave travelling in medium along positive x-axis is shown in figure at time $t=0$. Speed of wave is $\mathrm{v}=200$ m/s

Frequency of the wave is

A. $10^{2} \mathrm{~Hz}$
B. $10^{3} \mathrm{~Hz}$
C. $10^{4} \mathrm{~Hz}$
D. $10^{5} \mathrm{~Hz}$

Answer: B

12. A string fastened at both ends has successive resonances with wavelengths of 0.1 m for mth harmonic and 0.08 m for ($\mathrm{m}+1$)th harmonic.

The value of m is
A. 3
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

13. A string fastened at both ends has successive resonances with wavelengths of 0.1 m for mth harmonic and 0.08 m for $(\mathrm{m}+1)$ th harmonic.
the length of the string is
A. 0.2 m
B. 0.4 m
C. 0.6 m
D. 0.8 m

Answer: A

- Watch Video Solution

14. A composite wire is made by joining two uniform wires. If $l_{1}=l_{2}=l$ and $\mu_{1}=\frac{\mu_{2}}{9}=\mu$. Tension in the strings is T, μ is mass per unit length. Then lowest frequency such that the junction is an antinode.

A. $\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
B. $\frac{1}{l} \sqrt{\frac{T}{\mu}}$
c. $\frac{4}{l} \sqrt{\frac{T}{\mu}}$
D. $\frac{2}{l} \sqrt{\frac{T}{\mu}}$

Answer: A

- Watch Video Solution

15. A composite wire is made by joining two uniform wires. If $l_{1}=l_{2}=l$ and $\mu_{1}=\frac{\mu_{2}}{9}=\mu$. Tension in the strings is T, μ is mass per unit length. Then lowest frequency such that the junction is an antinode.

16. The figure represents the instantaneous picture of a transverse harmonic wave travelling along the negative x-axis. Choose the correct alternative(s) realted to the movement of the nine points shown in the figure [more than one option may be correct]

The points moving upward is /are
A. a
B. C
C. f
D. g

Answer: A::D

- Watch Video Solution

17. The figure represents the instantaneous picture of a transverse harmonic wave travelling along the negative x -axis . Choose the correct alternative(s) realted to the movement of the nine points shown in the figure [more than one option may be correct]

The points moving downward is /are
A. 0
B. b
C. d
D. h

Answer: C

- Watch Video Solution

18. The figure represents the instantaneous picture of a transverse harmonic wave travelling along the negative x -axis . Choose the correct alternative(s) realted to the movement of the nine points shown in the figure [more than one option may be correct]

The stationary point is/are
A. o
B. b
C. d
D. h

Answer: B

- Watch Video Solution

19. The figure represents the instantaneous picture of a transverse harmonic wave travelling along the negative x -axis . Choose the correct alternative(s) realted to the movement of the nine points shown in the figure [more than one option may be correct]

The point moving with maximum with speed is/are
A. b
B. C
C. d
D. h

Answer: C::D

Matrix Matching

1. A sound source has frequency f. Source and observer both have same speed.For the apparent frequency observed by observer match the
following.

Watch Video Solution
2. In the equation, $\mathrm{y}=\mathrm{A} \sin 2 \pi(a x+b t+\pi / 4)$ match the following.

Table-1	Table-2
(A) Frequency of wave	(P) a
(B) Wavelength of wave	(Q) b
(C) Phase difference between two	
points $\frac{1}{4 a}$ distance apart	(R) π
(D) Phase difference of a point after a	(S) $\pi / 2$
time interval of $\frac{1}{8 b}$	(T) None

(Watch Video Solution

3. A wave is transmitted from denser to a rarer medium. Then match the following.

Table-1	Table-2
(A) Frequency of wave	(P) will increase
(B) Speed of wave	(Q) will decrease
(C) Wavelength of wave	$\begin{array}{l}\text { (R) will remain } \\ \text { unchanged }\end{array}$
(D) Amplitude of wave	(S) may increase or
decrease	

4. For a closed organ pipe, match the following .

Table-1		Table-2		
(A) Third overtone frequency				
is x times the fundamental				
frequency. Here, x is				
equal to			\quad (P)	3
:---				
(B) Number of nodes in				
second overtone				
(Q)				
(C) Number of antinodes in				
Second overtone				

- Watch Video Solution

5. A siring is suspended from the ceiling. A wave train is produced at the bottem at regular interval. As the wave moves upwards

Table-1
(A) mass per unit length of the (P) increases string
(B) tension in the string
(C) wave speed
(D) wavelength
6. From a single source, two wave trains are sent in two different string. The two wave equations are ((area of corss-section and tension of both string are same $y_{1}=\mathrm{A} \sin \left(w_{1} t-k_{1} x\right)$ and $y_{2}=2 A \sin \left(w_{1} t-k_{2} z\right)$

Suppose $\mathrm{u}=$ energy density, $\mathrm{P}=$ power trasmitted and $\mathrm{I}=$ intensity of the wave, then match the following.

7. Regarding speed of sound ingas, match the following .

- Watch Video Solution

8. Fundamental frequency of a closed of a pipe is 100 and that of an open pipe is 200 Hz . Match following $\left(V_{s}=330 \mathrm{~m} / \mathrm{s}\right)$

9. Speed of longitudinal wave $v \propto \sqrt{E}$. Here, E is the modulus of \begin{tabular}{l}
elesticity. Match the

\qquad| Table-1 | Table-2 |
| :--- | :--- |
| (A) In case of solid i is | (P) Bulk modulus of $\begin{array}{l}\text { elasticity } \\ \text { (B) In case of liquid } \mathrm{E} \text { is }\end{array}$ |
| (Q) Sear modulus of | |
| (C) In casticity of gas E is | (R) Young's modulus of |
| (C) Insticly | |

\hline
\end{tabular}

(D) Watch Video Solution

10. A string fixed at both ends first oscillates in its fundamental mode then in second harmonic mode.Then match the following.

11. Following is given the equation of a travelling wave (all is SI unit)
$y=(0.02) \sin 2 \pi(10 t-5 x)$
Match
of
following.

- Watch Video Solution

12. Following is given the eqution of a stationary wave (all in SI units)

$$
\mathrm{y}=(0.06) \sin (2 \pi x) \cos (5 \pi t)
$$

Table-1	Table-2
(A) Amplitude of	
constituent wave	(P) 0.06
(B) Position of node at $x=\ldots \ldots \mathrm{m}$	(Q) 0.5
(C) Position of antinode at $x=\ldots \ldots . \mathrm{m}$	(R) 0.25
(D) Amplitude at $x=\frac{3}{4} m$	(S) 0.03

Watch Video Solution
13.

Match
the
following.

Table-1	Table-2
(A) In refraction	(P)Speed of wave does not change
(B) In reflection	(Q)Wavelength is decreased
(C) In refraction from rarer	
to denser medium	(R)Frequency does not change
(D) In reflection from a	(S)Phase change of π takes place

- Watch Video Solution

14. In case of mechanical wave a partical oscillates and during sacillation its kinetic energy and potential energy changes.

- View Text Solution

15. In each of the four situations of column-I, a stretched string or an organ pipe is given along with the required data. In case of strings the tension in string is $\mathrm{T}=102.4 \mathrm{~N}$ and the mass per unit length of string is gg / m. Speed of sound in air is $320 \mathrm{~m} / \mathrm{s}$. Neglect end corrections.The frequencies of resonance are given in column-II.Match each situation in
column-I with the possible resonance frequencies given in Column-II.

Column-I

(p) String fixed at both ends

(q) String fixed at one end and
free at other end

(r) Open organ pipe $\left|\left.\right|_{\underline{\Sigma}} ^{0.5 \mathrm{~m}}\right.$
(s) Closed organ pipe $\mid \prod_{ \pm}^{T}$
(4) 800 Hz

- Watch Video Solution

16. A source of sound of frequency 1000 Hzmoves to the right with a speed of $50 \mathrm{~m} / \mathrm{s}$ relative to the ground. To its right is a reflecting surface noving to the left observer to the left of the source in figure. Speed of the sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Fixed

Reflecting Surface

View Text Solution

1. Two wires of same material of radii $2 r$ and r are welded together end to end The combination is used as a sonometer wire and is kept under tension T. The welded point lies midway between the bridges. What wil be the ratio of the number of loops formed in the wires, such that the joint is node when the stationary waves are set up in the wire?

- Watch Video Solution

2. An ambulance blowing a siren of frequency 700 Hz is travelling slowly towards vertical reflecting wall with a speed $2 \mathrm{~m} / \mathrm{s}$. The speed of sound is $350 \mathrm{~m} / \mathrm{s}$. How many beats are heard per sec to the driver of the ambulance?
A. 6
B. 7
C. 8
D. 9

Answer: C

- Watch Video Solution

3. Four souces of sound each of sound level 10 dB are sounded together in phase, the resultant intensity level will be $(110 / n) d B$. Find value of n $\left(\log _{10} 2=0.3\right)$.

- Watch Video Solution

4. A person speacking normally produces a sound intensity of 40 dB AT A IDISTANCE OF 1M. If the threshold intensity for reasonable audiblity is 20dB, the maximum distance at which a person can be heard clearly is (2x) meter . Find the value of x.

- Watch Video Solution

5. A strain of sound waves is propagated along an organ pipe and gets reflected from an open end. If the displacement amplitude of the waves (incident and reflected) are 0.002 cm , the frequency is 1000 Hz and wavelength is 40 cm . Then , the displacement amplitude of vibration at a point at distance 10 cm from the open end, inside the pipe is

- Watch Video Solution

6. A standing wave $y=A \sin \left(\frac{20 \pi x}{3}\right) \cos (1000 \pi t)$ is set up in a taut string where x and y are in meter. The distance between two successive points oscillating with the amplitude $\frac{A}{2}$ can be equal to $(\mathrm{x}) \mathrm{cm}$. Find the value of x.

- Watch Video Solution

7. A string of length 0.4 m and mass $10^{-2} \mathrm{~kg}$ is tightly clamped at its ends. The tension in the string is 1.6 N . identical wave pulses are produced at one end at equal intervals of time Δt. The value of Δt which allows construction tnterference betwenn successive pulses is

- Watch Video Solution

8. Two speakeer connected to the same source of fixed frequency are placed $2 m$ apart in a box. A sensitive microphone placed at a distance of 4 m from the midpoint alon the perpendicular bisector shown maximum response. The box is slowly rotated till the speaker are in line with the microphone, The distance between the midpoint of the speakers and the microphone remains unchanged. Exactly 5 maximum responses (inculuding the initial and last one) and observed in the microphone in doing this. The wavelength of the sound wave is (o.x) meter. Find the value of x.
9. One end of a string of length L is tied to the ceiling of a lift accelerating upwards with an acceleration 2 . The other end o the string is freee. The linear mass density of the string varies linearly from 0 to λ from bottom to top. The acceleration of a wave pulled through out the string is $\frac{p g}{4}$. Find p .

(D) Watch Video Solution

10. $A 400 \mathrm{gm}$ block B is suspended with uniform string S of mass 100 gm and length 20 cm as shown. Variation of tension T with distance x from the end block is hanging is $T=4+4 \mathrm{x}$, where T is (mN) anad x in meters.

Find the value of $\mathrm{K}(\in N / m) .\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$

- View Text Solution

11. A steel wire is rigidly fixed at both ends. Its length mass and crosssectionl area are $1 \mathrm{~m}, 0.1 \mathrm{~kg}$ and $10^{-8} \mathrm{~m}^{2}$ respectively. Tension in the wire is produced by lowering the temperature by $20^{\circ} \mathrm{C}$. If the transerverse waves are some up by plucking the wire at 0.25 m from one end and assuming that the wire viberates with minimum number of loops possble for such a case. The frequency of viberation (in Hz) is found to
be.
1.11.
Find
the
value
of
K.
Given
$\alpha=1.21 \times 10^{-5} \cdot{ }^{\circ} C^{-1} . Y-2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$

Pluck

- View Text Solution

