©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

ALTERNATING CURRENT

Example

1. Show that average heat produced during a cycle of $A C$
is same as produced by $D C$ with $i=i_{\mathrm{rms}}$.

- Watch Video Solution

2. If the current in an $A C$ circuit is represented by the equation, $i=5 \sin \left(300 t-\frac{\pi}{4}\right)$

Here t is in second and in an ampere, calculate
(a) peak and rms value of current
(b) frequecne of $A C$
(c) average current.

- Watch Video Solution

3. A 100Ω resistasnce is connected in series with a $4 H$ inductor. The voltage across the resistor is

$$
V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} \mathrm{rad} / \mathrm{s}\right) t:
$$

(a) Find the expessinocircuit current
(b) Find the inductive reactance
(c) derive an expression for the voltage across the inductor,

- Watch Video Solution

4. An alternating emf 200 virtual volts at 50 Hz is connected to a circuit resistance 1ω and inductance $0.01 H$
. What is the phase difference between the current and the emf in the circuit? Also, find the virtual current in the circuit.

- Watch Video Solution

5. A resistance and inductance are connected in series across a voltage,

$V=283 \sin 314 t$

The current is found to be $4 \sin (314 t-\pi / 3)$. Find the value of the inductance and resistance.

- Watch Video Solution

6. Find the voltage across the various elements, i.e., resistance, capacitance and inductance which are in series and having values $100 \Omega, 1 \mu F$ and $2.0 H$, respectively. Given emf is
$V=100 \sqrt{2} \sin 1000 t$ volt
7. A $750 \mathrm{~Hz}, 20 \mathrm{~V}$ source is connected to as resistance of 100Ω an inductance of $0.1803 H$ and a capacitance of $10 \mu F$ all in sereis.Calculate the time in which the resistance (thermalcapacity $2 \mathrm{~J} / .^{\circ} \mathrm{C}$) wil get heated by $10^{\circ} C$.

- Watch Video Solution

8. In an $L-C-R$ ereis circuit $R=150 \Omega, L=0.0750 H$
and $C=0.0180 \mu F$. The source has voltage amplitude
$V=150 V$ and a frequencey equal to the resonacne frequency of the circuit.
(a) What is the power factor?
(b) What is the average power delivered by the source?
(c) The capacitor is replaced by one with $C=0.0360 \mu F$ and the source frequency is adjusted to the new resonance value. Then, what is the average power delivered by the source?

- Watch Video Solution

Example Type 1

1. A current of $4 A$ flows in a coil when connected to a
$12 V D C$ source. If the same coil is connected to a $12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{sAC}$ source, a current of 2.4 A flows in the circuit. Determine the inductance of the coil. Also, find the power developed in the circuit if a $2500 \mu F$ capacitor is connected in series with the coil.

- Watch Video Solution

Example Type 2

1.

In the diagram shown in figure, V function is given. Find other four functions of time I, V_{C}, V_{R} and V_{L}. Also, find power consumed in the circuit, V is given in volts and ω in rad/s.

- Watch Video Solution

Example Type 3

1. In the circuit shown in figure

$R_{1}=30 \Omega, R_{2}=40 \Omega, L=0.4 H$ and $C=\frac{1}{3} m F$.
Find seven function of time $I, I_{1}, I_{2}, V_{R_{1}}, V_{L}, V_{R_{2}}$ and V_{C}.
Also total power consumed in the circuit. In the given potential function V is in volts and omega in $\mathrm{rad} / \mathrm{s}$.

- Watch Video Solution

1. An $A C$ circuit consists of a 220Ω resistance andn a $0.7 H$ choke. Find the power obsorbed from 220 V and 50 Hz source connected in this circuti if the resistance and choke are joined
(a) In series
(b) in parallel.

- Watch Video Solution

2. A sinusoidal voltage of frequency 60 Hz and peak value
$150 V$ is applied to a series $L-R$ circuit, where $R=20 \Omega$
and $L=40 \mathrm{mH}$
(a) compute T, ω, X_{L}, Z and ϕ
(b) Compute the amplitudes of current V_{R} and V_{L}

D Watch Video Solution

3. For the circuit shown in figureure, find the instaneous
current through each element.

- Watch Video Solution

4. An $L-C-R$ series circuit with 100Ω resisance is connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°.

When only the inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit

- Watch Video Solution

5. A series $L-C-R$ circuit containing a resistance of 120Ω has resonance frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltages across resistance and inductance are 60 V and 40 V , respectively. Find the values of L and C
.At what angular frequency the current in the circuit lags the voltage by $\pi / 4$?
6. A Choke coil is needed to operate an arc lamp at 160 V
("rms") and 50 Hz . The lamp has an effective resistnce of
5Ω when running at $10 A(\mathrm{rms})$. Calculate the inductance of the choke coil. If the same arc lamp is to be operated on $160 V(D C)$, what additional resistance is required ?

Compare the power loses in both cases.

D Watch Video Solution

Exercise 28.1

1. (a) What is the reactance of a $2.00 H$ inductor at a frequency of 50.0 Hz ?
(b) What is the inductance of an inductor whose reactance
is 2.00Ω at 50.0 Hz ?
(c) What is the reactance of a $2.00 \mu F$ capacitor at a frequency of 50.0 Hz ?
(d) What is the capacitance of a capacitor whose reactance is 2.00Ω at 50.0 Hz ?

D Watch Video Solution

2. An electric lamp which runs at $100 \mathrm{~V} D C$ and consumes

10 A current is connected to $A C$ mains at $150 \mathrm{~V}, 50 \mathrm{~Hz}$ cycles with a choke coil in series. Calculate the inductance and drop of voltage across the choke. Neglect the resistance of choke.
3. A circuit operating at $\frac{360}{2 \pi} H z$ contains a $1 \mu F$ capacitor and a 20Ω. resistor. How large an inductor must be added in series to make the phase angle for the circuit zero?

Calculate the current in the circuit if the applied voltage is 120 V.

- Watch Video Solution

Exercise 28.2

1. If a 0.03 H inductor, a 10Ω resistor and a $2 \mu F$ capacitor are connected in series. At what frequency will they resonate? What will be the phase angle at resonance?
2. An arc lamp consumes 10 A at 40 V . Calculate the power factor when it is connected with a suitable value of choke coil required to run the arc lamp on $A C$ mains of $200 \mathrm{~V}(\mathrm{rms})$ and 50 Hz .

- Watch Video Solution

Level 1 Assertion-Reason

1. Assertion: In an $A C$ circuit, potential difference across
the capacitor may be greater than the applied voltage.
Reason : $V_{C}=I X_{C}$, wheereas $V=I Z$ and X_{C} can be greater than Z also.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A

- Watch Video Solution

2. Assertion : In series $L-C-R$ circuit, voltage will lead the current function for frequency greater than the resonance frequency.

Reason : At resonance frequency, phase difference between current function and voltage function is zero.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

3. Assertion : Resonance frequency will decrease in
$L-C-R$ series circuit if a dielectric slab is inserted in between the plates of the capacitor.

Reason : By doing so, capacity of capacitor will increase.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A
4. Assertion : Average value of current in the given graph is $3 A$.

Reason average value can't be greater than the peak value of any function.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

D Watch Video Solution

5. Assertion : In series $L-C-R$ circuit, if a ferromagnetic rod is inserted inside an inductor, incr current in the circuit may ease or decrease.

Reason : By doing so X_{L} will increase.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A::B

- Watch Video Solution

6. Assertion potential difference across, resistor, capacitor and inductor each is 10 V . Then, voltage function and current functions should be in phase.

Reason At this condition current in the circuit should be maximum.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

7. Assertion At some given instant I_{1} and I_{2} both are $2 A$ each. Then, I at this should be zero.

Reason : There is a phase difference of I_{1} and I_{2} functions.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

D Watch Video Solution

8. Assertion : Peak value of current in $A C$ through a resistance of 10Ω is $2 A$. Then, power consumed by the resistance should be $20 W$.

Reason : Power in $A C$ is $P=I_{\mathrm{rms}}^{2} R$
A. If both Assertion and Reason are true and the

Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is
not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A: B

- Watch Video Solution

9. Assertion : An inductor coil normally produces more current with $D C$ source compared to an AC source of same value of rms voltage.

Reason : In $D C$ source, applied voltage remains constant with time.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

10. Assertion : In an $L-R$ series circuit in $A C$, current in the circuit will decrease with increase in frequency. Reason : Phase difference between current function and voltage function will increase with increase in frequency.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

11. Assertion : In series $L-C-R, A C$ circuit, current and voltage are in same phase at resonance. Reason : In series $L-C-R, A C$ circuit, resonant
frequency does not depend on the value of resistance. Hence, current at resonance does not depend on resistance.
A. If both Assertion and Reason are true and the

Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: C

- Watch Video Solution

Level - 1 Objective

1. The term $\cos \phi$ in an $A C$ circuit is called
A. form factor
B. phase factor
C. power factor
D. quality factor

Answer: C

D Watch Video Solution

2. A $D C$ ammeter cannot measure alternating current
A. $A C$ changes its direction
B. $D C$ instruments will measure the average value
C. $A C$ can damage the $D C$ instrument
D. $A C$ produces more heat

Answer: B

- Watch Video Solution

3. As the frequency of an alternating current increases, the impedance of the circuit
A. increases continuously
B. decreases continuously
C. remains constant
D. none of these

Answer: D

D Watch Video Solution

4. Phasor diagram of a series $A C$ circuit is shown in figure.

Then,

A. The circuit must be containing resistor and capacitor only
B. The circuit must be containing resistor and inductor only
C. The circuit must be containing all three elements L,

C and R
D. The circuit cannot have only capacitor and inductor

Answer: D

- Watch Video Solution

5. The rms value of an alternating current
A. is equal to 0.707 times peak value
B. is equal to 0.636 times peak value
C. is equal sqrt2 times the peak value
D. none of the above

Answer: A

D Watch Video Solution

6. In an $A C$ circuit, the applied potential difference and the current flowing are given by
$V=20 \sin 100 t v o<, I=5 \sin \left(100 t-\frac{\pi}{2}\right) \mathrm{amp}$
The power consumption is equal to
B. 40 W
C. $20 W$
D. zero

Answer: D

D Watch Video Solution

7. The impedasnce of sereis $L-C-R$ circuit in an $A C$ circuit is
A. $\sqrt{R+\left(X_{L}-X_{C}\right)}$
B. $\sqrt{R^{2}+\left(X_{L}^{2}+X_{C}^{2}\right)}$
C. R
D. none of these

Answer: D

- Watch Video Solution

8. If V_{0} and I_{0} are the peak current and voltage across the resistor in a series $L-C-R$ circuit, then the power dissipated in the circuit is (powerfac $\rightarrow r=\cos \theta$)
A. $\frac{V_{0} I_{0}}{2}$
B. $\frac{V_{0} I_{0}}{\sqrt{2}}$
C. $V_{0} I_{0} \cos \theta$
D. $\frac{V_{0} I_{0}}{2} \cos \theta$

- Watch Video Solution

9. A generator produces a time varying voltage given by $V=240 \sin 120 t$, where t is in second. The rms voltage and frequency are
A. 170 V and 19 Hz
B. 240 V and 60 Hz
C. 170 V and 60 Hz
D. 120 V and 19 Hz

Answer: A

10. An $L-C-R$ series circuit has a maximum current of
$5 A$. If $L=0.5 H$ and $C=8 \mu F$, then the angular frequency of $A C$ voltage is
A. $500 \mathrm{rad} / \mathrm{s}$
B. $5000 \mathrm{rad} / \mathrm{s}$
C. $400 \mathrm{rad} / \mathrm{s}$
D. $250 \mathrm{rad} / \mathrm{s}$

Answer: A

Watch Video Solution

11. The current and voltage functions in an $A C$ circuit are
$i=100 \sin 100 t m A, V=100 \sin \left(100 t+\frac{\pi}{2}\right) V$
The power disspitated in the circuit is
A. 10 W
B. 2.5 W
C. $5 W$
D. $5 k W$

Answer: B

D Watch Video Solution

12. A capacitor becomes a perfect insulator is
A. alternating current
B. direct current
C. both a and b
D. none of above

Answer: B

D Watch Video Solution

13. For an alternating voltave $V=10 \cos 100 \pi t$ volt, the instantenous voltage at $t=\frac{1}{600} \mathrm{~s}$ is
A. $1 V$
B. 5 V
C. $5 \sqrt{3} V$
D. 10 V

Answer: C

- Watch Video Solution

14. In a purely resistive $A S$ circuit,
A. voltage leads current
B. voltge lags current
C. voltage and current are in same phase
D. nothing can be said

- Watch Video Solution

15. Identify the graph which correctly reperesents the variation of capacitive reactance X_{C} with frequency

A.

B.

C.

Answer: B

D Watch Video Solution

16. In an $A C$ circuit, the impedance is $\sqrt{3}$ times the reactance, then the phase angle is
A. 60°
B. 30°
C. zero
D. none of these

- Watch Video Solution

17. Voltage applied to an $A C$ circuit and current flowing in it is given by
$V=200 \sqrt{2} \sin \left(\omega t+\frac{\pi}{4}\right)$ and $i=-\sqrt{2} \cos \left(\omega t+\frac{\pi}{4}\right)$
Then, power consumed in the circuited will be
A. 200 W
B. 400 W
C. $200 \sqrt{2} W$
D. none of these

Answer: D

- Watch Video Solution

18. A current of $4 A$ flows in a coil when connected to a $12 V D C$ source. If the same coil is connected to a $12 V, 50 \mathrm{rad} / \mathrm{s} A C$ source, a current of $2.4 A$ flows in the circuit. Determine the inductance of the coil. Also, find the power developed in the circuit if a $2500 \mu F$ capacitor is connected in series with the coil.
A. $\left(\frac{\pi}{\sqrt{3}}\right) H$
B. $\left(\frac{\sqrt{3}}{\pi}\right) H$
C. $\left(\frac{2}{\pi}\right) H$
D. none of these

Answer: B

- Watch Video Solution

19. In the circuit shown in figureure, the reading of the $A C$
ammeter is

A. $20 \sqrt{2} m A$
B. $40 \sqrt{2} m A$
C. $20 m A$
D. 40 mA

Answer: C

D Watch Video Solution

20. An $A C$ voltage is applied acrss a series combination of
L and R. If the voltage drop across the resistor and inductor are 20 V and 15 V respectiely, then applied peak voltage is
A. 25 V
B. 35 V
C. $25 \sqrt{2} V$

Answer: C

- Watch Video Solution

21. For wattless power is an $A C$ circuit, the phase angle between the current and voltagge is
A. 0°
B. 90°
C. 45°
D. not possible
22. The correct variation of resistance R with frequency f is given by

A.
B.

C.

D.

Answer: A

- Watch Video Solution

23. If L and R be the inductance and resistance of the choke coil, then indentify the correct statement
A. L is very high compact to R
B. R is very high compared to L
C. Both L and R are high
D. Both L and R are low

D Watch Video Solution

24. When an $A C$ signal of frequency 1 kHz is applied across a coil of resistance 100Ω, then the applied voltage leads the current by 45°. The inductance of the coil is
A. $16 m H$
B. $12 m H$
C. $8 m H$
D. $4 m H$

Answer: A

25. The frequency of an alternating current is 50 Hz . The minimum time taken by it is reaching from zero to peak value is
A. $5 m s$
B. 10 ms
C. 20 ms
D. 50 ms

Answer: A

- Watch Video Solution

26. The current and voltage functions in an $A C$ circuit are
$i=100 \sin 100 t m A, V=100 \sin \left(100 t+\frac{\pi}{3}\right) V$
The power disspitated in the circuit is
A. zero
B. $100 w$
C. $220 w$
D. $440 w$

Answer: C

- Watch Video Solution

27. In the $A C$ network shown in figureure the rms current flowing through the inductor and capacitor are $0.6 A$ and $0.8 A$, respectively. Then the current coming out of the source is

A. $1.0 A$
B. $1.4 A$
C. $0.2 A$
D. none of the above

Answer: C

D Watch Video Solution

28. The figure represents the voltage applied across a pure inductor. The diagram which correctly represents the
variation of current i with time t is given by

(d)

Answer: C

- Watch Video Solution

29. A steady current of magnitude I and an $A C$ current of peak value I are allowed to pass through identical resistors for the same time. The ratio of heat produced in the two resistors will be
A. 2:1
B. 1: 2
C. $1: 1$

Answer: A

- Watch Video Solution

30. A 50 HzAC source of 20 V is connected across R and
C as shown in figureure.

The voltage across R is $12 V$. The voltage across C is
A. 8 V
B. 16 V
C. 10 V
D. not possible to determine unless value of R and C are given

Answer: B

- Watch Video Solution

Level - 1 Subjective

1. A 300Ω resistor, a $0.250 H$ inductor, and a $8.00 \mu F$
capacitor are in series with an Ac with voltage amplitude

120 V and angular frequency $400 \mathrm{rad} / \mathrm{B}$.
(a) What is the current amplitude?
(b) Wheat is the phase angle of the source voltage with respect to the current? Does the source Lag, or lead the

current?

(c) What are the voltage amplitudes across the resistor, inductor, and capacitor ?

- Watch Video Solution

2. A series circuit has an impedance of 60.0Ω and a power factor of 0.720 at 50.0 Hz . The source voltage lags the current.
(a) What circuit element, an inductor or a capacitor, should be placed in series with the circuit to raise its
power factor?
(b) What size element will raise the power factor to unity?

D Watch Video Solution

3. Voltage and current for a circuit with two elements in series are expressed as
$V(t)=170 \sin \left(6280 t+\frac{\pi}{3}\right) v o<$
$i(t)=8.5 \sin \left(6280 t+\frac{\pi}{2}\right) a m p$
(a) Plot the two waveforms.
(b) Determine the frequency in Hz .
(c) Determine the power factor starting its nature.
(d) What are the values of the elements?
4. A $5.00 H$ inductor with negligible resistance is connected across an $A C$ source. Voltage amplitude is kept constant at 60.0 V but whose frequency can be varied.

Find the current amplitude when the angular frequency is
(a) $100 \mathrm{rad} / \mathrm{s}$
(b) $1000 \mathrm{rad} / \mathrm{s}$
(c) $10000 \mathrm{rad} / \mathrm{s}$

- Watch Video Solution

5. A 100Ω resistasnce is connected in series with a $4 H$ inductor. The voltage across the resistor is

$$
V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} \mathrm{rad} / \mathrm{s}\right) t:
$$

(a) Find the expession of circuit current
(b) Find the inductive reactance
(c) derive an expression for the voltage across the inductor,

- Watch Video Solution

6. An $L-C-R$ series circuit with
$L=0.120 H, R=240 a$, and $C=7.30 \mu F$ carries an rms current of 0.450 A with a frequency of 400 Hz .
(a) What are the phase angle and power factor for this circuit?
(b) What is the impedance of the circuit?
(c) What is the rms voltage of the source?
(d) What average power is delivered by the source?
(e) What is the average rate at which electrical energy is converted to thermal energy in the resistor?
(f) What is the average rate at which electrical energy is dissipated (converted to other forms) in the capacitor?
(g) In the inductor?

D Watch Video Solution

Level- 2 Single Correct

1. A capacitor and resistor are connected with an $A C$
source as shown in figureure. Reactance of capacitor is
$X_{C}=3 \Omega$ and resistance of resistor is 4Ω. Phase difference between current I and
$I_{1} i s\left[\tan ^{-1}\left(\frac{3}{4}\right)=37^{\circ}\right]$

A. 90°
B. zero
C. 53°
D. 37°

Answer: C
2. A circuit contains resistance R and an inductance L in series. An alternating voltage $V=V_{0} \sin \omega t$ is applied across it. The currents in R and L respectively will be

A. $I_{R}=I_{0} \cos \omega t, I_{L}=I_{0} \cos \omega t$
B. $I_{R}=-I_{0} \sin \omega, I_{L}=I_{0} \cos \omega t$
C. $I_{R}=I_{0} \sin \omega, I_{L}=-I_{0} \cos \omega t$
D. none of the above

- Watch Video Solution

3. In the circuit shown in figure the $A C$ source gives a voltage $V=20 \cos (2000 t)$. Neglecting source resistance, the voltmeter and and ammeter readings will be

A. $0 \mathrm{~V}, 2.0 \mathrm{~A}$
B. $0 V, 1.4 A$
C. $5.6 V, 1.4 A$
D. $8 V, 2.0 \mathrm{~A}$

Answer: C

- Watch Video Solution

4. A signal generator supplies a sine wave of $200 \mathrm{~V}, 5 \mathrm{kHz}$ to the circuit shown in the figure. Then, choose the wrong
statement.

A. The current in te resistive brance is $0.2 A$
B. the current in the capacitive branch is $0.126 A$
C. Total line current is $\approx 0.283 A$
D. Current in both the branches is same

Answer: B
5. A complex current wave is given by $i=95+5 \sin 100 \omega t) A$. Its given value over one time period is given as
A. 10 A
B. $5 A$
C. $\sqrt{50} A$
D. 0

Answer: B

- Watch Video Solution

6. An Ac voltage $V=V_{0} \sin 100 t$ is applied to the circuit, the phase difference between current and voltage is found to be $\frac{\pi}{4}$, then

A. $R=100 \Omega, C=1 \mu F$
B. $R=1 \Omega, C=10 \mu F$
C. $R=410 k \Omega, L=1 H$
D. $R=1 k \Omega, L=10 H$

- Watch Video Solution

7. In series $L-C-R$ circuit, voltage drop across resistance is $8 V$, across inductor is 6 V and across capacitor is 12 V . Then,
A. voltage of the source will be leading in the circuit
B. voltage drop across each element will be less than
the applied voltage
C. power factor of the circuit will be $\frac{3}{4}$
D. none of the above

- Watch Video Solution

8. Consider in $L-C-R$ circuit as shown in figureure with an $A C$ source of peak value V_{0} and angular frequency ω. Then the peak value of current through the
$A C$

A.
V_{0}
B. $V_{0}\left[\frac{1}{R^{2}}+\left(\omega C-\frac{1}{\omega L}\right]^{2}\right.$
c. $\frac{V_{0}}{\sqrt{R^{2}+\left(\omega L-\frac{1}{\omega C}\right)^{2}}}$
D. none of these

Answer: B

- Watch Video Solution

9. The adjoining figure shows an $A C$ circuit with resistance R, inductance L and source voltage V_{S}. Then

A. the source voltage $V_{s}=72.8 \mathrm{~V}$
B. the plane angle between current and source voltage

$$
\text { is } \tan ^{-1}\left(\frac{7}{2}\right)
$$

C. both a and b are correct
D. both a and b are wrong

Answer: A

- Watch Video Solution

10. When an alternating voltage of 220 V is applied across a device P, a current of $0.25 A$ flows through the circuit and it leads the applied voltage by a angle $\frac{\pi}{2}$ radian. When the same voltage source is connected across another device Q, the same current is observed in the circuit but in phase with the applied voltage. What is the current when the same source is connected across a series combination of P and Q ?
A. $\frac{1}{4 \sqrt{2}}$ A lagging in phase by $\frac{\pi}{4}$ with voltage
B. $\frac{1}{4 \sqrt{2}}$ A leading in phase by $\frac{\pi}{4}$ with voltage
C. $\frac{1}{\sqrt{2}}$ A leading in phase by $\frac{\pi}{4}$ with voltage
D. $\frac{1}{4 \sqrt{2}}$ A leading in phase in $\frac{\pi}{2}$ with voltage

- Watch Video Solution

11. In a parallel $L-C-R$ circuit as shown in figureure if
I_{R}, I_{L}, I_{C} and I represent the rms values of current flowing through resistor, capacitor and the source, then
choose the appropriate correct answer.

A. $I=I_{R}+I_{L}+I_{C}$
B. $I=I_{R}+I_{L}+I_{C}$
C. I_{L} or I_{C} may be greater than I
D. none of these

Answer: C

- Watch Video Solution

12. In a series $L-C-R$ circuit, currenrt in the circuit is

11 A when the applied voltage is 220 V . voltage across the caspcitor is 200 V . If the value of resistor is 20Ω, then the voltage across the unknown inductor is
A. zero
B. 200 V
C. 20 V
D. none of these

Answer: B

D Watch Video Solution

13. In the circuit shown in figureure, the power consumed is

A. zero
B. $\frac{V_{0}^{2}}{2 R}$
C. $\frac{V_{0}^{2} R}{2\left(R^{2}+\omega^{2} L^{2}\right)}$
D. none of these

Answer: C

- Watch Video Solution

14. In a series $L-C$ circuit, the applied voltage is V_{0}. if omega is very low, then the voltage drop across the
inductor V_{L} and capacitor V_{C} are

A. $V_{L}=\frac{V_{0}}{2}, V_{C}=\frac{V_{0}}{2}$
B. $V_{L}=0, V_{C}=V_{0}$
C. $V_{L}=V_{0}, V_{C}=0$
D. $V_{L}=-V_{C}=\frac{V_{0}}{2}$

Answer: B
15. A coil a capacitor and an $A C$ source of rms voltage 24 V are connected in series. By varying the frequency of the source, a maximum rms current of 6 A is observed. If coil is connected is at DC batteryof emf 12 volt and internal resistance 4Ω, then current through it in steady state is
A. $2.4 A$
B. $1.8 A$
C. $1.5 A$
D. 1.2 A

Answer: C
16. In a series $C-R$ circuit shown in figureure, the applied voltage is 10 V and the voltage across capacitor is found to $8 V$. The voltage across R, and the phase difference between current and the applied voltage will respectively be

A. $6 V, \tan ^{-1}\left(\frac{4}{3}\right)$
B. $3 V, \tan ^{-1}\left(\frac{3}{4}\right)$
C. $6 V, \tan ^{-1}\left(\frac{3}{4}\right)$
D. none of these

Answer: A

D Watch Video Solution

17. An AC voltage source described by $V=10 \cos \left(\frac{\pi}{2}\right) t$ is connected to a $1 \mu F$ capacitor as shown in figureure. The key K is closed at $t=0$. the time $(t>0)$ after which the magntitude of current I reaches its maximum value for
the first time is

A. $1 s$
B. $2 s$
C. $3 s$
D. $4 s$

Answer: A

- Watch Video Solution

18. An $A C$ voltage source $V=V_{0}$ siwtis connected across resistance R and capacitance C as shown in figureure. It is given that $R=\frac{1}{\omega} C$. The peak current is I_{0}. If the angular frequency of the voltage source is changed to $\frac{\omega}{\sqrt{3}}$, then the new peak current in the circuit is

A. $\frac{I_{0}}{2}$
B. $\frac{I_{0}}{\sqrt{2}}$
C. $\frac{I_{0}}{\sqrt{3}}$
D. $\frac{I_{0}}{3}$

Answer: B

- Watch Video Solution

Level- 2More Than One Correct

1. In a $R-L-C$ series circuit shown in readings of voltmeters V_{1} and V_{2} are 100 V and 120 V .

Choose the corredct statement(s).

A. Voltage across resistor, inductor and capacitor are $50 \mathrm{~V}, 86.6 \mathrm{~V}$ and 206.6 V respectively
B. Voltage across resistor, inductor and capacitor are $10 \mathrm{~V}, 90 \mathrm{~V}$ and 30 V respectively
C. Power factor of the circuit is $\frac{5}{13}$
D. Circuit is capacitive in nature

Answer: A::C::D

- Watch Video Solution

2. An alternating current is given by
$I=i_{1} \cos \omega t+i_{2} \sin \omega t$.

The rms current is given by
A. rms value of current is $5 A$
B. mean value of this current in positive one-half period will be $\frac{6}{\pi}$
C. if voltage applied is $V=V_{m} \sin \omega t$, then the circuit may contain resistance and capacitance
D. if voltage applied is $V=V_{m} \cos \omega t$, then the circuit may contain resistance and inductance only

Answer: C::D

- Watch Video Solution

3. A tube light of $60 \mathrm{~V}, 60 \mathrm{~W}$ rating is connected across an
$A C$ source of 100 V and 50 Hz frequency. Then,
A. an inductance of $\frac{2}{5 \pi}$ may be connected in series
B. a capacitor of $\frac{250}{\pi} \mu F$ may be connected in series to
it
C. an inductor of $\frac{4}{5 \pi} H$ may be connected in series
D. a resistance of 40Ω may be connected in series

Answer: C::D

- Watch Video Solution

4. In an $A C$ circuit, the power factor
A. is unity when the circuit contains an ideal resistance only
B. is unity when the circuit contains an ideal inductance only
C. is zero when the circuit contains an ideal resistance only
D. is zero when the circuit contains an ideal inductance only

Answer: A::D

- Watch Video Solution

5. In an $A C$ series circuit, $R=10 \Omega, X_{L}=20 \Omega$ and
$X C=10 \Omega$.Then, choose the correct options
A. Voltage function will lead the current function
B. Total impedance of the circuit is $10 \sqrt{2} \Omega$
C. Phase angle between voltage function and current function is 45°
D. Power factor of circuit is $\frac{1}{\sqrt{2}}$

Answer: A::B::C::D

- Watch Video Solution

6. In the above problem further choose the correct options.
A. The given values are at frequency less than the resonance frequency
B. The given values are at frequency more than the resonance frequency
C. If frequency is increased from the given value, impedance of the circuit will increase
D. If frequency is decreased from the given value, current in the circuit may increase or decrease

Answer: B::C::D

- Watch Video Solution

7. In the circuit shown in figureure,

A. $V_{R}=80 \mathrm{~V}$
B. $X_{C}=50 \Omega$
C. $V_{L}=40 \mathrm{~V}$
D. $V_{0}=100 \mathrm{~V}$

Answer: A::B::C
8. In $L-C-R$ series $A C$ circuit,
A. If R is increased, then current will decrease
B. If L is increased, then current will decrease
C. If C is increased, then current will increase
D. If C is increased, then current will decrease

Answer: A

- Watch Video Solution

1. A student in a lab took a coil and connected it to a
$12 V D C$ source. He measures the steady state current in the circuit to be $4 A$. He then replaced the $12 V D C$ source by a $12 V,(\omega=50 \mathrm{rad} / \mathrm{s}) A C$ source and observes that the reading in the $A C$ ammeter is $2.4 A$. He then decides to connect a $2500 \mu F$ capacitor in series with the coil and calculate the average power developed in the circuit.

Further he also decides to study the variation in current in the circuit (with the capacitor and the battery in series).

The value of resistance of the coil calculated by the student is
A. 3Ω
B. 4Ω
C. 5Ω

Answer: A

- Watch Video Solution

2. A student in a lab took a coil and connected it to a
$12 V D C$ source. He measures the steady state current in
the circuit to be $4 A$. He then replaced the $12 V D C$ source by a $12 V,(\omega=50 \mathrm{rad} / \mathrm{s}) A C$ source and observes that the reading in the $A C$ ammeter is $2.4 A$. He then decides to connect a $2500 \mu F$ capacitor in series with the coil and calculate the average power developed in the circuit.

Further he also decides to study the variation in current in the circuit (with the capacitor and the battery in series).

The power developed in te circuit when the capacitor of $2500 \mu F$ is connected in series with the coil is
A. 28.8 W
B. 23.04 W
C. 17.28 W
D. 9.6 W

Answer: C

D Watch Video Solution

3. A student in a lab took a coil and connected it to a
$12 V D C$ source. He measures the steady state current in the circuit to be $4 A$. He then replaced the $12 V D C$ source
by a $12 V,\left(\omega=50 \frac{r a d}{s}\right) A C$ source and observes that the reading in the $A C$ ammeter is $2.4 A$. He then decides to connect a $2500 \mu F$ capacitor in series with the coil and calculate the average power developed in the circuit.

Further he also decides to study the variation in current in the circuit (with the capacitor and the battery in series).

Which of the following graph roughly matches the variation of current in the circuit (with the coil and capacitor connected in the series) when the angulr frequency is decreased from $50 \mathrm{rad} / \mathrm{s}$ to $25 \mathrm{rad} / \mathrm{s}$?
(a)

A.
(b)

B.

Answer: B

- Watch Video Solution

4. It is known to all of you that the impedance of a circuit is dependent on the frequency of source. In order to study the effect of frequency on the impedance, a student in a lab took 2 impedance boxes P and Q and connected them in series with an $A C$ source of variable frequency. The emf
of the source is constant at $10 V$ Box P contains a capacitance of $1 \mu F$ in series with a resistance of 32Ω. And the box Q has a coil of self-inductance 4.9 mH and a resistance of 68Ω in series. He adjusted the frequency so that the maximum current flows in P and Q. Based on his experimental set up and the reading by him at various moment, answer the following questions.

The angular frequency foer which he detects maximum current in the circuit is
A. $\frac{10^{5}}{7} \mathrm{rad} / \mathrm{s}$
B. $10^{4} \mathrm{rad} / \mathrm{s}$
C. $10^{5} \mathrm{rad} / \mathrm{s}$
D. $\frac{10^{4}}{7} \mathrm{rad} / \mathrm{s}$

Answer: A

D Watch Video Solution

5. It is known to all of you that the impedance of a circuit is dependent on the frequency of source. In order to study the effect of frequency on the impedance, a student in a lab took 2 impedance boxes P and Q and connected them in series with an $A C$ source of variable frequency. The emf of the source is constant at $10 V$ Box P contains a capacitance of $1 \mu F$ in series with a resistance of 32Ω. And the box Q has a coil of self-inductance 4.9 mH and a resistance of 68Ω in series. He adjusted the frequency so that the maximum current flows in P and Q. Based on his experimental set up and the reading by him at various
moment, answer the following questions.
Impedance of box P at the above frequency is
А. 70Ω
B. 77Ω
C. 90Ω
D. 100Ω

Answer: B

- Watch Video Solution

6. It is known to all of you that the impedance of a circuit is dependent on the frequency of source. In order to study the effect of frequency on the impedance, a student in a
lab took 2 impedance boxes P and Q and connected them in series with an $A C$ source of variable frequency. The emf of the source is constant at $10 V$ Box P contains a capacitance of $1 \mu F$ in series with a resistance of 32Ω. And the box Q has a coil of self-inductance 4.9 mH and a resistance of 68Ω in series. He adjusted the frequency so that the maximum current flows in P and Q. Based on his experimental set up and the reading by him at various moment, answer the following questions.

Power factor of the circuit at maximum current is
A. $\frac{1}{2}$
B. 1
C. 0
D. $\frac{1}{\sqrt{2}}$

Answer: B

D Watch Video Solution

Level 2 Subjective

1. A coil is series with a $20 \mu F$ capacitor across a
$230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The current taken by the circuit is $8 A$
and the power consumed is $200 W$. Calculate the inductance of the coil if the current in the circuit is
(a) leading
(b) lagging
2. The current in a certain circuit varies with time as shown in figure. Find the average current and the rms current in terms of I_{0}

- Watch Video Solution

3. Two impedances Z_{1} and Z_{2} when connected separately across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply consume 100 W and 60 W at power factor of 0.5 lagging and 0.6 leading respectively. If these impedances are now connected in series across the same supply, find
(a) total power absorbed and overall power factor
(b) the value of reactance to be added in series so as to raise the overall power factor to unity.

- Watch Video Solution

4. In the figure shown, the reading of voltmeters are

$$
V_{1}=40 \mathrm{~V}, V_{2}=40 \mathrm{~V} \text { and } V_{3}=10 \mathrm{~V} . \text { Find }
$$

(a) the peak value of current
(b) the peak value of emf
(c) the value of L and C.

D Watch Video Solution

5. In the circuit shown in figure power factor of box is 0.5 and power factor of circuit is $\frac{\sqrt{3}}{2}$.Current leading the voltage. Find the effective resistance of the box.

6. A circuit element shown in the figureure as a box is having either a capacitor or an inductor. The power factor of the circuit is 0.8 , while current lags behind the voltage.

Find

(a) the source voltage V,
(b) the nature of the element in box and find its value.
7. The maximum values of the alternating voltages and current are 400 V and 20 A respectively in a circuit connected to 50 Hz supply and these quantities are sinusoidal. The instantaneous values of the voltage and current are $200 \sqrt{2} V$ and $10 A$, respectively. At $t=0$, both are increasing positively.
(a) Write down the expression for voltage and current at time t.
(b) Determine the power consumed in the circuit.
8. An $L-C$ circuit consists of an inductor coil withh
$L=50.0 \mathrm{mH}$ and $20.0 \mu F$ capacitor. There is negligible resistance in the circuit. The circuit is driven by a voltage source with $V=V_{0} \cos \omega t$. If $V_{0}=5.00 \mathrm{mV}$ and the frequency is twice the resonance frequency, determine.
a. the maximum charge on the capacitor.
b. the maximum current in the circuit.
c. the phase relationship between the voltages across the inductor, the capacitor and the sourse.

D Watch Video Solution

9. A coil having a resistance of 5Ω and an inductance of
$0.02 H$ is arranged in parallel with another coil having a
resistance of 1Ω and an inductance of 0.08 H . Calculate the power absorbed when a voltage of 100 V at 50 Hz is applied.

- Watch Video Solution

10. A circuit takes a current of $3 A$ at a power factor of 0.6 lagging when connected. to a $115 \mathrm{~V}-50 \mathrm{~Hz}$ supply. Another circuit takes a current of $5 A$ at a power factor of
0.707 leading when connected to the same supply. If the two circuits are connected in series across a 230 V 50 Hz supply, then calculate
(a) the current
(b) the power consumed and (c) the power factor

- Watch Video Solution

JEE MAIN

1. In the given arrangement, the loop is moved with
consisant velocity in uniform magnetic field B in a restricted a region of width a. The time for which the emf
is induced in the cirucit is

A. $\frac{2 b}{v}$
B. $\frac{2 a}{v}$
C. $\frac{a+b}{v}$
D. $\frac{2(b-a)}{v}$

Answer: B

- Watch Video Solution

2. A uniform magnetic field existsin region given by $\vec{B}=3 \hat{i}+4 \hat{j}+5 \hat{k}$. A rod of length $5 m$ is placed along y axis is moved along x - axis with constant speed $1 \mathrm{~m} / \mathrm{sec}$.

Then the magnitude of induced $e . m . f$ in the rod is:
A. zero
B. 25 V
C. 20 V
D. 15 V

Answer: B
3. A constant force is being applied on a road of length 'I' kept at rest on two parallel conducting rails connected at ends by resistance R in uniform magnitic field B shown.

A. Thepower delivered by force will remain constant with time
B. The power delivered by force will be increasing first and then it will decrease
C. The power delivered by force will be increasing constinously
D. The power delivered by force will be decreasing continously

Answer: C

- Watch Video Solution

4. Figures shows a square loop of side 1 m and resistance
1Ω. The magnetic field on left side of line PQ has a magnitude $B=1.0 \mathrm{~T}$. The work done in pulling the loop out
of the field uniformly in 1 s is

A. 1J
B. 10J
C. 0.1J
D. 100J

Answer: A
5. A wire of fixed length is wound on a solenoid of length l and radius r. Its self-inductance is found to be L. Now, if the same wire is wound on a solenoid of length $l / 2$ and radius r / 2 then the self-inductance will be
A. 2 L
B. L
C. 4 L
D. 8 L

Answer: D
6. In the given circuit, let i_{1} be the current drawn battery at time $t=0$ and i_{2} be steady current at $t=\infty$ then the ratio $\frac{i_{1}}{i_{2}}$ is

A. 0.6
B. 0.8
C. 1.2
D. 1.5

- Watch Video Solution

7. In a series L-R growth circuit, if maximum current and maximum voltage across inductor of inductane 3 mH are 2 A and 6 V respectively, the the time constant of the circuit is
A. 1 ms
B. 2 ms
C. 0.5 ms
D. 0.6 ms

- Watch Video Solution

8. A resistance is connected to a capacitor in AC are the phase differece is $\frac{\pi}{4}$ between current and voltage. Whe the same resistance is connected to an inductor, phase difference becomes $\tan ^{-1}(2)$. Power factor of the circuit when both capacitor and inductor are connect to the resistance will be
A. 1
B. $\frac{1}{\sqrt{2}}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{2}$

D View Text Solution

9. A reacangular loop if size $(2 m \times 1 m)$ is placed in x-y plane. A uniform but time varying magnetic field of strength T where t is the time elsapsed in second exists in sosace. The magnitude of induced emf (in V) at time t is
A. $20=20 i$
B. 20
C. 20 i
D. zero

Answer: D

D Watch Video Solution

10. State wheather the following two statement are true or false
A. TF
B. FF
C. TR
D. FT

Answer: A

- View Text Solution

11. Radius of a circular ring is changing with time and the coil is placed in uniform magnetic field perpendicular to its plane. The variation of ' r ' with time ' t ' is shown in Fig.

Then induced emf e with time t will be best represented by

A.

Answer: B

- Watch Video Solution

12. r.m.s. value of current $i=3+4 \sin$ `(omegat $+\mathrm{pi} / / 3$) is
A. 5 A
B. $\sqrt{2} A$
C. $\frac{5}{\sqrt{2} A}$
D. $\frac{7}{\sqrt{2}} A$

Answer: B

D View Text Solution

13. An AC voltage of $V=220 \sqrt{2} \sin \left(100 \pi t+\frac{\pi}{2}\right) V$ is applied across a DC votlmeter, its reading will be
A. $220 \sqrt{2} V$
B. 110 V
C. 220 V
D. zero

Answer: D

D Watch Video Solution

14. A direct current of 2 A and an alternating current having a maximum value of 2 A flow through two identical resistances. The ratio of heat produced in the two resistances will be
A. 1:1
B. $1: 2$
C. 2:1
D. $4: 1$

Answer: C

D Watch Video Solution

15. By what percentage the impedance in an AC series circuit should be increased so that the power factir changes from $(1 / 2)$ to $(1 / 4)$ (when R is constant)?
A. 2
B. 1
C. 0.6
D. 4

- Watch Video Solution

16. A power transformer (step up) with an $1: 8$ turns ratio has $60 \mathrm{~Hz}, 120 \mathrm{~V}$ across the primary, the load in the secondary is $10^{4} \Omega$.The current in the secondary is
A. 1.2 A
B. 0.96 A
C. 12 mA
D. 96 mA

Answer: D

17. A choke coil has.
A. high inductance and high resistance
B. low inductance and low resistance
C. high inductance and low resistance
D. low inductance and high resistance

Answer: C

- Watch Video Solution

18. Comparing the L-C oscillations with the oscillations of a spring-block system (force constant of spring=k and mass
of block=m), the physical quantity mk is similar to
A. CL
B. $\mathrm{v} \frac{1}{C L}$
C. $\frac{C}{L}$
D. $\frac{L}{C}$

Answer: D

D View Text Solution

19. A capacitor of capacity $2 \mu F$ is changed to a potential different of 12 V . It is then connected across an inductor of inductance 0.6 mH What is the current in the circuit at
a time when the potential difference across the capacitor is 6.0 V ?
A. 3.6A
B. 2.4 A
C. 1.2 A
D. 0.6 A

Answer: D

- Watch Video Solution

20. The power factor of the circuit in fig. is $1 / \sqrt{2}$. The capacitance of the circuit is equal to

A. $400 \mu F$
B. $300 \mu F$
C. $500 \mu F$
D. $200 \mu F$

Answer: C

- Watch Video Solution

21. An ac-circuit having supply voltage E consists of a resistor of resistance 3Ω and an inductor of reactance 4Ω as shown in the figure. The voltage across the resistane at $t=\frac{\pi}{\omega}$ is

A. 6.4 V
B. 10 V
C. zero
D. 4.8 V

Answer: D

D View Text Solution

22. In series $L R$ circuit, $X_{L}=3 R$. Now a capacitor with
$X_{C}=R$ is added in series. The ratio of new to old power factor
A. $\sqrt{3}$
B. 2
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

- Watch Video Solution

23. For L-R circuit, the time constant is equal to
A. twice the ratio of the energy stored in the magnetic
field to the ratio of dissipation of energy in the resistance
B. the ratio of the energy stored in the magnetic field to the ratio of dissipation of energy in the resistance
C. half of the ratio of the energy stored in the magnetic field to the ratio of dissipation of energy in
the resistance
D. square of the ratio of the energy stored in the magnetic field to the ratio of dissipation of energy in the resistance

Answer: A

- Watch Video Solution

24. Dimensions of $\xrightarrow[\text { electric flux }]{\text { magnetic flux }}$ are
A. $\left(L-T^{-1}\right)$
B. $\left(T L^{-1}\right)$
C. $\left(L^{3} r^{2} A^{-2}\right)$
D. $\left(M^{0} L^{0} T^{0}\right)$

Answer: D

- Watch Video Solution

25. A current of $2 A$ is increasing at a rate of $4 A / s$ through a coil of inductance $2 H$. The energy stored in the inductor per unit time is
A. $2 \mathrm{~J} / \mathrm{s}$
B. $1 \mathrm{1} / \mathrm{s}$
C. $16 \mathrm{~J} / \mathrm{s}$
D. $4 \mathrm{~J} / \mathrm{s}$

Answer: C

- Watch Video Solution

26. In an LR circuit, current at $t=0$ is $2 A$. After $2 s$ it reduced to 18 A . The time constant of the circuit is (in second)
A. $\operatorname{In}\left(\frac{10}{9}\right)$
B. 2
C. $\frac{2}{\operatorname{In}\left(\frac{10}{9}\right)}$
D. $2 \operatorname{In}\left(\frac{10}{9}\right)$

Answer: C
27. A coil of inductance 1 H and neligible resistance is connected to a source of supply, whose voltage is given by $\mathrm{V}=4 \mathrm{VOLT}$. If the voltage is applied at $\mathrm{t}=0$, find the energy stored in the coil in 4s
A. 512J
B. 256J
C. 1024J
D. 144J

Answer: A

28. The ratio of time constant during current growth and current decay of the circuit shown in Figure is

A. $1: 1$
B. $3: 2$
C. 2:3
D. 1:3

- View Text Solution

29. In an L-R circuit connected to a battery of constant emf E , switched is closed at time $\mathrm{t}=0$. If denotes the induced emf across inductor and I the current in the circuit at any time t . Then which of the following graphs shown the variation of e with i?
A.

B.

C.

D.

Answer: A

D Watch Video Solution

30. Some magnetic flux is changed from a coil resistance 10Ω. As a result an induced current developed in it. Which
varies with time as shown figure, The magnitude of
changes f in flux through the coil (in webers) is

A. 2
B. 4
C. 6
D. 8
31. Two circular coils A and B are facing each other in shown figure. The current I through A can be alterned

A. there will be repuision between A and B if I is increased
B. there will be attraction between A and B if I is increased
C. there will be neither between A and B if I is increased
D. attraction of repusion between A and B depend on the direction of current, It does not depending wheather the current is increased or decreased

Answer: A

- View Text Solution

32. Two coils are at fixed location: When coil 1 has no corrent and the current in coil 2 increase at the rate of $15.0 \mathrm{As}^{-1}$, the emf in coil 1 is 25 mV , when coil 2 has no current and coil 1 has a current of $3.6 A$, the flux linkange in coil 2 is
A. 16 mWb
B. 10 mWb
C. 4.00 mWb
D. 6.00 mWb

Answer: D

- Watch Video Solution

33. Two identical coaxial circular loops carry a current i each circulating int the same direction. If the loops approch each other the current in
A. the current in each loop will decreases
B. the current in each loop will increases
C. the current in each loop will remain the same
D. the current in one tlop will increase and in the other loop will decrease

Answer: A

D Watch Video Solution

34. Two coil A and B have coefficient of mutual inductance
$\mathrm{M}=2 \mathrm{H}$. The magnetic flux passing through coil A charges by
4 Weber in 10 seconds due to the change in current in B.
Then
A. change in current in B in this time interval is 0.5 A
B. the change in current in B in this time interval is $2 A$
C. the change in current in B in this time interval is 8 A
D. a change in current of 1 A in coil A will produces change in the flux passing through B by 4 Wb

Answer: B

- Watch Video Solution

35. A square coil ABCD lying in $x-y$ plane with its centre at origin. A long straight wire passing through origin carries a current $i=2 t$ in negative z-direction. The

A. clockwise
B. anticlockwise
C. altenating
D. zero

Answer: D
36. A conducting rod AB of length $l=1 m$ is moving at a velocity $v_{A}=4 m / s$ making an angle 30° with its length.

A uniform magnetic field $B=2 T$ exists in a direction perpendicular to the plane of motion. Then

A. $V_{A}-V_{B}=8 V$
B. $V_{A}-V_{B}=4 V$
C. $V_{B}-V_{A}=8 V$
D. $V_{B}-V_{A}=4 V$

Answer: B

D Watch Video Solution

37. A cylindrical space of radius R is filled with a uniform magnetic induction parallel to the axis of the cylinder. If B charges at a constant rate, the graph showin the variation of induced electric field with distance r from the axis of

cylinder is

C.

D.

Answer: A

D Watch Video Solution

38. A semicircle conducting ring of radius R is placed in the xy plane, as shown in Fig. A uniform magnetic field is set
up along the x-axis. No emf, will be induced in the ring if

A. positive x-direction
B. positive y-direction
C. positvie z-direction
D. none of the above

Answer: A

39. A rod of length 10 cm made up of conducting and nonconducting material (shaded part is non-conducting). The rod is rotated with constant angular velocity $10 \mathrm{rad} / \mathrm{s}$ about point O, in constant magnetic field of $2 T$ as shown in the figure. The induced $e m f$ between the point A and B of rod will be:
$x \times 3 \times 1 \times x$
A. 0.029 V
B. 0.1 V
C. 0.051 V
D. 0.064 V

Answer: C

- Watch Video Solution

40. Power factor in series LCR circuit at reasonance is
A. 1
B. $\frac{1}{\sqrt{2}}$
C. zero
D. infinite
41. In the circuit shown in figure value of V_{R} is

A. 400 V
B. 200 V
C. 300 V
D. zero

- Watch Video Solution

42. In the circuit shown in figure current in the circuit is

A. 1.27A
B. 2.23 A
C. 4.26 A
D. 4 A

- Watch Video Solution

43. The power factor of the circuit shown in the figure is

A. 0.4
B. 0.2
C. 0.8
D. 0.6

- Watch Video Solution

44. An inductor coil stores U energy when i current is passed through it and dissipates energy at the rate of P.

The time constant of the circuit, when this coil is connected across a battery of zero internal resistance is
A. $\frac{4 U}{P}$
B. $\frac{U}{P}$
C. $\frac{2 U}{P}$
D. $\frac{2 P}{U}$

Answer: C
45. The dimensions of magnetic flux are
A. $\left[M L T^{-3} A^{2}\right]$
B. $\left[M L^{2} A^{-1}\right]$
C. $\left[M L^{2} T^{2} A\right]$
D. $\left[M L^{2} T A^{-1}\right]$

Answer: B

- Watch Video Solution

46. Two inductors L_{1} and L_{2} are connected in parallel and a time varying current flows as shown.
the ratio of current i_{1} / i_{2}

A. L_{1} / L_{2}
B. L_{2} / L_{1}
C. $L_{1}^{2} /\left(L_{1}+L_{2}\right)^{2}$
D. $L_{2}^{2} /\left(L_{1}+L_{2}\right)^{2}$

Answer: B
(Watch Video Solution
47. A resistance is connected to $a n A C$ source. If a capacitor is induced in the series cirucit, the average power absorbed by the resistance
A. will increase
B. will decrease
C. may increase or decrease
D. will remain constant

Answer: B

48. Which of the following plots may represent is impedence of a series LCR combination?
A.

D.

 logive
Answer: C

- Watch Video Solution

49. An inductor-coil having some resistance is connected
to an AC source. Which of the following quantities have zero average value over a cycle?
A. induced emf in the inductor
B. Current
C. Both a and b
D. Neither a nor b

Answer: C

D Watch Video Solution

50. The variation of induced emf (E) with time (t) in a coil
if a short bar magnet is moved along its axis with a constant velocity is best represent as

A.

Answer: B

- Watch Video Solution

51. An inductor L is allowed to discharge through capacitor
C. The emf induced across the inductance when the capacitor is fully charged is
A. maximum
B. minimum
C. zero
D. infinite

Answer: A

52. The voltage time (V-t) graoh for triangular wave having peak value $\left(V_{0}\right)$ is as shown in fig.

A. $\frac{V_{0}}{3}$
B. $\frac{V_{0}}{2}$
C. $\frac{V_{0}}{\sqrt{2}}$
D. $\frac{V_{0}}{\sqrt{3}}$
53. A rectangular loop os sides of length I an $d b$ is placed in $x-y$ plane. A uniform but it me varying manetic field of strength exists in space. The magnitude of induced e.m.f. at time t is:
A. $20+20 t$
B. 20
C. 20t
D. none of the above

Answer: D

54. In an $L C R$ circuit $R=100 \mathrm{ohm}$. When capacitance C is removed, the current lags behind the voltage by $\pi / 3$.

When inductance L is removed, the current leads the voltage by $\pi / 3$. The impedence of the circuit is
A. 50 ohm
B. 100 ohm
C. 200 ohm
D. 400 ohm

Answer: B
55. Some cases are given below. Identify the case in which emf is induced between O and P in uniform magnetic field

A. In I, III and IV only
B. In Ii, III and IV only
C. In III
D. In all the above

- Watch Video Solution

56. Two coils have self-inductance $L_{1}=4 m H$ and $L_{2}=1 \mathrm{mH}$ respectively. The currents in the two coils are increased at the same rate. At a certain instant of time both coils are given the same power. If I_{1} and I_{2} are the currents in the two coils, at that instant of time respectively, then the value of $\left(I_{1} / I_{2}\right)$ is:
A. $1 / 8$
B. $1 / 4$
C. $1 / 2$
D. 1

Answer: B

- Watch Video Solution

57. For the circuit shown

A. Current in circuit in 10A
B. Voltage across inductor is 100 V
C. Voltage acros capacitor is less than that of supply voltage
D. Voltage across capacitor is more than that of supply voltage

Answer: D

- Watch Video Solution

58. In the series LCR circuit as shown in figure, the heat developed in 80 seconds and amplitude of wattless
current is :

A. $4000 \mathrm{~J}, 5 \mathrm{~A}$
B. 8000J, 3A
C. $4000 \mathrm{~J}, 4 \mathrm{~A}$
D. 8000J,5A

Answer: A
59. The current flowing in a wire fluctuates sinusoidally as shown in the diagram. The root mean square valuie of the

current is

A. $i_{0}\left(\frac{1}{2}+1\right)^{2}$
B. $i_{0}(\sqrt{2}+1)^{t / 2}$
C. $2 \sqrt{2} t_{0}$
D. $i_{0}\left(\frac{2 \sqrt{2}+1}{2}\right)^{t / 2}$

D View Text Solution

60. There is a conducting ring of radius R. Another ring having current i and radius $r(r \ll R)$ is kept on the axis of bigger ring such that its center lies on the axis of bigger ring at a distance x from the center of bigger ring and its plane is perpendicular to that axis. The mutual inductance of the bigger ring due to the smaller ring is
A. $\frac{\mu_{0} \pi R^{2} r^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}}$
B. $\frac{\mu_{0} \pi R^{2} r^{2}}{4\left(R^{2}+x^{2}\right)^{3 / 2}}$
C. $\frac{\mu_{0} \pi R^{2} r^{2}}{16\left(R^{2}+x^{2}\right)^{3 / 2}}$
D. $\frac{\mu_{0} \pi R^{2} r^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}$

Answer: D

D Watch Video Solution

61. At a perpendicular place on the earth, the horizontal component of earth's magnetic field of B , and the angle of dip is θ. A striaght meridian and is moved horizontally perpendicular to its length with a velocity v . The emf induced across the rod is
A. $B v i \sin \theta$
B. $B v i \cos \theta$
C. Bvl tan theta`
D. Bvi

- Watch Video Solution

62. An LC circuit contains a 20 mH inductor and a $50 \mu F$
capacitor with an initial charge of 10 mC . The resistance of the circuit be closed at $\mathrm{t}=0$. The time when the total energy shared equally between the inductor and the capacitor is, approximately.
A. $16 \times 10^{-3} s$
B. $8 \times 10^{-4} s$
C. $3.2 \times 10^{-3} s$
D. $1.25 \times 10-(4) s$

D Watch Video Solution

63. A magnet is taken towards a conducting ring in such a way that a constant current of 10 mA is induced in it. The total resistance of the ring is 0.5Ω. In $5 s$, the magnetic flux through the ring changes by
A. 0.25 mWb
B. 25 mWb
C. 50 mWb
D. 15 mWb

(Watch Video Solution

Examples

1. If the peak value of a current in 50 Hz AC . Cirucit is 7.07 A .

What is the mean value of current over half a cycle and the
value of current $1 / 300$ s after it was zero?

D Watch Video Solution

2. Find the average value in the following cases
(i) $i=4+3 \cos \omega t$
(ii) $5 \sin \omega t+2 \sin 2 \omega t+3 \sin 3 \omega t$
(iv) $V=\cos \omega t+3 \cos 2 \omega t+3 \cos 3 \omega t+2$

(D) Watch Video Solution

3. a) The peak voltage of an AC supply is 300 V . What is the rms voltage?
b) The rms value of current in an AC circuit is 10A. What is the peak current?

- Watch Video Solution

4. If $V=220 \sqrt{2} \sin (314 t-\phi)$ calculat peak and rms value of the voltage (b) average voltage for half time period (c) frequency of ac
5. If the current in an $A C$ circuit is represented by the equation, $i=5 \sin \left(300 t-\frac{\pi}{4}\right)$

Here t is in second and in an ampere, calculate
(a) peak and rms value of current
(b) frequecne of $A C$
(c) average current.

D Watch Video Solution

6. The voltage supplied to a circuit is given by $V=V_{0} t^{\frac{3}{2}}$,
where t is time in second. Find the rms value of voltage for the period, $\mathrm{t}=0$ to $\mathrm{t}=1 \mathrm{~s}$.

D Watch Video Solution

7. Calcualte rms value of current and voltages for the giving cases
i) $\mathrm{I}=4+3 \sin \omega t$
ii) $V=5+2 \cos \omega t$
(iii) $\mathrm{i}=2+3 \sin \omega t=2 \cos \omega t$
iv) $\mathrm{V}=\cos \omega t+2 \cos 2 \omega t$

(D) Watch Video Solution

8. A 200Ω resistor is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC} \mathrm{supply}$.

Calculate rms value of current in the circuit. Also find phase difference between voltage and the current.
9. A $60 \mu F$ capacitor is connected to a $110 \mathrm{~V}, 60 \mathrm{~Hz} \mathrm{AC}$ supply determine the rms value of the curent in the circuit.

D Watch Video Solution

10. An alternating voltage $E=200 \sqrt{2} \sin (100 t)$ is connected to a 1 microfarad capacitor through an AC ammeter. The reading of the ammeter shall be

- Watch Video Solution

11. An ideal inductor of inductance $50 \mu H$ is connected to an AC source of $220 V$, 50 Hz . Find the inductive reactance.

D Watch Video Solution

12. A 44 mH inductor is connected to $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. The rms value of the current in the circuit is

D Watch Video Solution

13. A sinusoidal voltage of frequency 60 Hz and peak value

150 V is applied to a series L-R circuit, where $R=20 \Omega$ and $\mathrm{L}=40 \mathrm{mH}$.
a) Compute T, ’omega, X
14. A 100Ω resistasnce is connected in series with a $4 H$ inductor. The voltage across the resistor is $V_{R}=(2.0 \mathrm{~V}) \sin \left(10^{3} \mathrm{rad} / \mathrm{s}\right) t:$
(a) Find the expession of circuit current
(b) Find the inductive reactance
(c) derive an expression for the voltage across the inductor,

- Watch Video Solution

15. An alternating emf 200 virtual volts at 50 Hz is connected to a circuit resistance 1ω and inductance 0.01 H
. What is the phase difference between the current and
the emf in the circuit? Also, find the virtual current in the circuit.

- Watch Video Solution

16. A resistance and inductance are connected in series
across a voltage,
$V=283 \sin 314 t$
The current is found to be $4 \sin (314 t-\pi / 4)$. Find the value of the inductance and resistance.

- Watch Video Solution

17. A long solenoid connected to a 12 V DC source passes a steady current of 2 A . When the solenoid is connected to
an $A C$ source of 12 V at 50 Hz , the current flowing is 1 A .

Calculate inductance of the solenoid.

D Watch Video Solution

18. A $100 \mu F$ capacitor in series with a 40Ω resistance is connected to $110 \mathrm{~V}, 60 \mathrm{~Hz}$ supply.
(a) what is the maximum current in the circuit ?
(b) what is the time lag between the current maximum and the voltage maximum ?

- Watch Video Solution

19. A circuit conatining of a capacitor and an active resistance $R=110 \Omega$ connected in series is fed and
alternating voltage with amplitude $V_{0}=110 \mathrm{~V}$. In this
case, the amplitude of current is equal to $I_{0}=0.50 \mathrm{~A}$. Find the phase difference between the current and the voltage fed.

- Watch Video Solution

20. An AV voltage source is applied across an R-C circuit.

Angular frequency of the source is ω, resistance is R and capacitance is C. The current registered is I. If now the frequency of source is changed to $\frac{\omega}{2}$ (but maintaining the same voltage), the current in the circuit is found to be two third. calculate the ratio of reactance to resistance at the original frequency ω.
21. A coil of inductance 0.01 H is connected in series with a capacitor of capacitance $25 \mu F$ with an AC source whose emf is given by $\mathrm{E}=310 \sin 314 \mathrm{t}$ (volt). What is the reactance of the circuit ?

- Watch Video Solution

22. A series LCR circuit is connected across a source of emf $\mathrm{E}=20 \sin \left(100 \pi t-\frac{\pi}{6}\right)$. The current from the supply is I $=4 \sin \left(100 \pi t+\frac{\pi}{12}\right)$. Draw the impedance triangle for the circuit.

- Watch Video Solution

23. If the reading of volmeter V_{1} is 30 V , what is the reading of voltmeter V_{2} ?

$$
\text { (1) } \sqrt{2} \sin \omega t
$$

- Watch Video Solution

24. A coil a capacitor and an $A C$ source of rms voltage 24 V are connected in series. By varying the frequency of the source, a maximum rms current of 6 A is observed. If coil is connected is at DC batteryof emf 12 volt and
internal resistance 4Ω, then current through it in steady state is

- Watch Video Solution

25. A coil of inductance 0.4 mH is connected to a capacitor of capacitance 400 pF . To what wavelength is this circuit tuned?

- Watch Video Solution

26. A 200 km telephone wire has capacity of $0.014 \mu \mathrm{Fkm}^{-1}$. If it carries an alternating current of frequency 50 kHz , what should be the value of an
inductance required to be connected in series so that impedance is minimumn ?

- Watch Video Solution

27. Find the voltage across the various elements, i.e., resistance, capacitance and inductance which are in series and having values $1000 \Omega, 1 \mu F$ and 2.0 H respectively. Given emf as,
$\mathrm{V}=100 \mathrm{sqrt2} \sin 1000 \mathrm{t}$ V

- Watch Video Solution

28. Figure here, shows a series L-C-R circuit connected to a variable frequency 230 V source. $\mathrm{L}=5.0 \mathrm{H}, \mathrm{C}=80 \mu \mathrm{~F}$ and $\mathrm{r}=$

40Ω

(a) Determine the source frequency which drives the circuit in resonance.
(b) Obtain the impedance of the circuit and the amplitude of current at the resonating frequency.
(c) Determine the rms potential drops across the three elements of the circuit. show that the potential drop across the L-C combination is zero at the resonating frequency.

29. A box P and a coil Q are connected in series with an ac source of variable freguency The emf of the source is constant at 28 V The frequency is so adjusted that the maximum current flows in P and Q Find
(a) impedance of P and Q at this frequency
(b) voltage across P and Q

- Watch Video Solution

30. (a) In a series L-C-R circuit with an AC source, $R=300 \Omega$,
$\mathrm{C}=20 \mu F, L=1.0 H, V_{0}=50 \sqrt{2} V$ and $f=\frac{50}{\pi} H z$. Find
(i) the rms current in the circuit and (ii) the rms voltage across each element.
(b) Consider the situatiuon of the previous part. find the average electric field energy stored in the capacitor and the average magnetic field energy stored iun the coil .

D Watch Video Solution

31. A series $L-C-R$ circuit containing a resistance of 120Ω has resonance frequency $4 \times 10^{5} \mathrm{rad} / \mathrm{s}$. At resonance the voltages across resistance and inductance are 60 V and 40 V , respectively. Find the values of L and C
.At what angular frequency the current in the circuit lags the voltage by $\pi / 4$?

- Watch Video Solution

32. A capacitor of capacitance 250 pF is connected in parallel with a choke coil having inductance of $1.6 \times 10^{-2} \mathrm{H}$ and resistance 20Ω. Calculate
(a) the resonance frequency and
(b) the circuit impedance at resonance.

- Watch Video Solution

33. For the circuit shown in figureure, find the instaneous current through each element.

- Watch Video Solution

34. AC voltage source (V, ω) is applied across a parallel LC circuit as shown in figure. Find the impedance of the
circuit and phase of current.

- Watch Video Solution

35. Find the current drawn from source in each of the circuits as given below

- Watch Video Solution

36. An LC circuit ($L=0.01 H, C=1 \mu F$) is connected to an $A C$ source of variable frequency. If the frequency is varied from 1 kHz , then show the consequent variation of impedance by a rough sketch.

- Watch Video Solution

37. Inductance (L), capacitance (C) and resistance (R) are constained in a box. When 250 V DC is applied to the
terminals of the box, a current of 1.0A floes in the circuit.
When an AC source of $250 V_{r m s}$ at $2250 \mathrm{radsec}^{-1}$ is connected, a current of $1.25 A_{r m s}$ flows. It is observed that the current rises with frequency and becomes maximum at $4500 \mathrm{rad} \mathrm{sec}^{-1}$. find the values of L,C and R. draw the circuit diagram.

D Watch Video Solution

38. An iron cored coil is connected in series with an electric bulb, with an AC source, as shoen in figure. As the iron piece is taken out of the coil, how will the brightness
of bulb challenge?

- Watch Video Solution

39. A light bulb has the rating 200 W 220V. Find (i) resistance of the bulb filament (ii) rms value of current flowing through the filament.

- Watch Video Solution

40. A series $\mathrm{L}-\mathrm{C}-\mathrm{R}$ circuit with $\mathrm{R}=20 \Omega, \mathrm{~L}=1.5 \mathrm{H}$ and $\mathrm{C}=$
$35 \mu F$ is connected to a variable frequency $200 \mathrm{~V}, \mathrm{AC}$ supply. When the frequency of the supply equals the natural frequency of the circuit, what is the average power transfered to the circuit, what is the average power transfered to the circuit in one complete cycle?

- Watch Video Solution

41. A 100Ω resistor is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply.
(a) What is the rms value of current in the circuit?
(b) What is the net power consumed over a full cycle?
42. A series L-C-R circuit is connected across an AC source $\mathrm{E}=10 \sin \left[100 \pi t-\frac{\pi}{6}\right]$. Current from the supply is $\mathrm{I}=$ $2 \sin \left[100 \pi t+\frac{\pi}{12}\right]$, What is the average power dissipated?

D Watch Video Solution

43. An AC circuit containing 800 mH inductor and a $60 \mu F$
capacitor is in series with 15Ω resistance. They are connected to $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. Obtain average power transferred to each element and total power absorbed.
44. A 60 cycle AC, circuit has a resistance of 200Ω and inductor of 100 mH . What is the power factor? What capacitance placed in the circuit will make the power factor unity?

- Watch Video Solution

45. An $L-C-R$ series circuit with 100Ω resistance is connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°.

When only the inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit
46. A solenoid with inductance $L=7 m H$ and active resistance $R=44 \Omega$ is first connected to a source of direct voltage V_{0} and then to a source of sinusoidal voltage with effective value $V=V_{0}$. At what frequency of the oscillator will be power consumed by the solenoid be $\eta=5.0$ times less than in the former case ?

D Watch Video Solution

47. Consider the following R-L-C circuit in which $\mathrm{R}=12 \Omega$.
$X_{L}=24 \Omega, X_{C}=8 \Omega$. The emf of source is given by $\mathrm{V}=$ $10 \sin (100 \pi t) V$.

Find the energy dissipated in 10 min.

If resistance is removed from the circuit and value of inductance is doubled, express variation of current with time t in the new circuit.

$$
\left[\begin{array}{lll}
k=12 \Omega & \lambda_{2}=21 \Omega & \lambda_{i} \\
\mathcal{M M} & (\Omega \Omega \\
V_{0}=10 \mathrm{~V}
\end{array}\right]
$$

D Watch Video Solution

48. A series circuit consisting of an inductance - free resistance $R=0.16 k \Omega$ and coil with active resistance is connected to the mains with effective voltabe $V=220 \mathrm{~V}$.

Find the heat power generated in the coil if the effective
voltage values across the resistance R and the coil are equal to $V_{1}=80 \mathrm{~V}$ and $V_{2}=180 \mathrm{~V}$ respectively.

- Watch Video Solution

49. A current of $4 A$ flows in a coil when connected to a
$12 V D C$ source. If the same coil is connected to a $12 \mathrm{~V}, 50 \mathrm{rad} / \mathrm{sAC}$ source, a current of 2.4 A flows in the circuit. Determine the inductance of the coil. Also, find the power developed in the circuit if a $2500 \mu F$ capacitor is connected in series with the coil.
50. The series and parallel circuits shown in figure have the same impedance and the same power factor. If $R=3 \Omega$ and $X=4 \Omega$, find the values of R_{1} and X_{1}. Also, find the impedance and power factor.

51. A charged $30 \mu F$ capacitor is connected to a 27 mH inductor. What is the angular frequency of free oscillations of the circuit?

D Watch Video Solution

52. A radio can tune over the frequency range of a portion of MW broadcast band (800 kHz to 1200 kHz). If its LC circuit has an effective inductance of $200 \mu H$, what must be the range of its varialbe capacitor ?

D Watch Video Solution

53. In an $L-C$ circuit, $L=3.3 H$ and $C=840 p F$. At
$t=0$ charge on the capacitor is $105 \mu C$ and maximum.

Compute the following quantities at $t=2.0 \mathrm{~ms}$.
a. The energy stored in the capacitor.
b. The total energy in the circuit,
c. The energy stored in the inductor.

D Watch Video Solution

54. An L-C circuit contains 20 mH inductor and a $50 \mu F$
capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible. Let the instant the circuit is closed be $t=0$. what is the total energy stored initially ? At what
times is the total energy shared equally between the inductor and the capacitor ?

- Watch Video Solution

55. An $A C$ circuit consists of a 220Ω resistance andn a
0.7 H choke. Find the power obsorbed from 220 V and 50 Hz source connected in this circuti if the resistance and choke are joined
(a) In series
(b) in parallel.
56. A Choke coil is needed to operate an arc lamp at 160 V
(rms) and 50 Hz . The lamp has an effective resistnce of 5Ω
when running at $10 A(\mathrm{rms})$. Calculate the inductance of the choke coil. If the same arc lamp is to be operated on $160 V(D C)$, what additional resistance is required ?

Compare the power loses in both cases.

- Watch Video Solution

57. In a step-down transformer having primary to secondary turn ratio $10: 1$, the input voltage applied is 250 V and outout current is 10 A . Assuming 100% efficiency, calculate the
(i) voltage across secondary coil
(ii) current in primary coil
(iii) power output

(D) Watch Video Solution

58. A 10 kW transformer has 20 turns in primary and 100 turns in secondary circuit. A.C. voltage $E_{1}=600 \sin 314 t$ is applied to the primary. Find max. value of flux and max. value of secondary voltage.

- Watch Video Solution

59. (i) The primary of a transformer has 400 turns while the secondary has 2000 turns. If the power output from the secondary at 1100 V is 12.1 kW , calculate the primary
voltage. (ii) If the resistance of the primary is 0.2Ω and that of the secondary is 2.0Ω and the efficiency of the transformer is 90%, calculate the heat losses in the primary and the secondary coils.

- Watch Video Solution

60. An a.c generator consists of a coil of 1000 turns each of area $100 \mathrm{~cm}^{2}$ and rotating at an angular speed of 100 rpm in a uniform magnetic field fo $3.6 \times 10^{2} T$. Find the peak and r.m.s value of e.m.f induced in the coil.
61. The frequency of the sinusoidal wave
$y=0.40 \cos [2000 t+0.80 x]$ would be
A. 1000 Hz
B. 2000 Hz
C. 20 Hz
D. $1000 / \pi \mathrm{Hz}$

Answer: D

- Watch Video Solution

2. The frequency of ac mains in India is
A. 30 cps
B. 50 cps
C. 60 cps
D. 120 cps

Answer: B

D Watch Video Solution

3. 220 volt a.c. is more dangerous than 220 volt d.c why?
A. the AC attracts
B. the DC repels
C. the body offers less resistance to AC
D. peak voltage for AC is much larger than 220 V

- Watch Video Solution

4. Alternating current is transmitted to distant places at
A. at high voltage and low current
B. at high voltage and high current
C. at low voltage and low current
D. at low voltage and high current

Answer: A

Watch Video Solution

5. An AC voltage is given by $\mathrm{E}=\underset{o}{E} \sin 2 \pi \mathrm{t} / \mathrm{T}$

Then , the mean value of volatage calculated over any time interval of T / 2
A. is always zero
B. is never zero
C. is always $(\underset{o}{E} / \pi)$
D. may be zero

Answer: C

D View Text Solution

6. $220 \mathrm{~V}, 50 \mathrm{~Hz}$, AC is applied to a resistor. The instantaneous value of voltage is
A. $220 \sqrt{2} \sin 100 \pi t$
B. $220 \sin 100 \pi t$
C. $220 \sqrt{2} \sin 50 \pi t$
D. $220 \sin 50 \pi t$

Answer: A

- Watch Video Solution

7. The instantaneous current in an AC circuit is $I=\sqrt{2}$ $\sin (50 t+\pi / 4)$. The rms value of current is
A. $\sqrt{2} \mathrm{~A}$
B. 50 A
C. 90 A
D. 1A

Answer: D

D Watch Video Solution

8. The peak value of an alternating current is $5 A$ and its frequency is 60 Hz . Find its rms value. How long will the current take to reach the peak value starting from zero?
A. 3.536 A, 4.167 ms
B. 3.536 A, 15 ms
C. $6.07 \mathrm{~A}, 10 \mathrm{~ms}$
D. $2.536 \mathrm{~A}, 4.167 \mathrm{~ms}$

D Watch Video Solution

9. If an alternating voltage is represented as
$E=141 \sin (628 t)$, then the rms value of the voltage and the frequency are respectively
A. $141 \mathrm{~Hz}, 628 \mathrm{~Hz}$
B. $100 \mathrm{~V}, 50 \mathrm{~Hz}$
C. $100 \mathrm{~V}, 100 \mathrm{~Hz}$
D. $141 \mathrm{~V}, 100 \mathrm{~Hz}$

Answer: C

10. An alternating current in a circuit is given by $\mathrm{I}=20 \sin ($ $100 \pi t+0.05 \pi) \mathrm{A}$. The rms value and the frequency of current respectively are
A. 10 A and 100 Hz
B. 10 A and 50 Hz
C. $10 \sqrt{2} \mathrm{~A}$ and 50 Hz
D. $10 \sqrt{2} \mathrm{~A}$ and 100 Hz

Answer: C

D Watch Video Solution

Check point 7.2

1. Ohm's law expressed as $\mathrm{E}=\mathrm{IR}$
A. can never be applied to AC
B. applies to $A C$ in the same manner as to $D C$
C. always applies to AC circuits when Z is substituted for R
D. tells us that $\underset{e f f}{E}=0.707(\underset{\max }{E})$ for AC

Answer: C
2. An alternating current of rms value 10 A is passed through a 12Ω resistor. The maximum potential difference across the resistor is
A. 20 V
B. 90 V
C. 169.68 V
D. None of these

Answer: C

D Watch Video Solution
3. The reactance of a $25 \mu F$ capacitor at the AC frequency of 4000 Hz is
A. $\frac{5}{\pi} \Omega$
B. $\frac{\sqrt{5}}{} \mathrm{pi} \Omega$
C. 10Ω
D. $\sqrt{10} \Omega$

Answer: A

D Watch Video Solution

4. The capacitance of a pure capacitance is 1 farad. In DC circuits, its effective resistance will be
A. zero
B. infinte
C. 1Ω
D. $\frac{1}{2} \Omega$

Answer: B

- Watch Video Solution

5. In an $A C$ circuit containing only capacitance the current
A. leads the voltafe by 180°
B. remians in phase with the volatage
C. leads the voltage by 90°
D. lags the voltage by 90°

Answer: C

D Watch Video Solution

6. A capacitor becomes a perfect insulator for
A. direct current
B. alternating current
C. direct as well as direct current
D. None of these

Answer: A
7. In an AC circuit , an alternating voltage $\mathrm{e}=200 \sin 100 \mathrm{t} \mathrm{V}$ is connected to a capacitor of capacity $1 \mu F$. The rms value of the current in the circuit is
A. 100 mA
B. 200 mA
C. 20 mA
D. 10 mA

Answer: C

- Watch Video Solution

8. The reactance of a coil when used in the domestic AC power supply $(220 \mathrm{~V}, 50 \mathrm{cycles})$ is 50 ohm . The inductance of the coil is nearly
A. 2.2 H
B. 1.6 H
C. 0.22 H
D. 0.16 H

Answer: D

D Watch Video Solution

9. The unit of inductance is
A. $A(V-s)^{-1}$
B. $J A^{-1}$
C. $V-s A^{-1}$
D. $V-A s^{-1}$

Answer: C

- Watch Video Solution

10. In the case of an inductor
A. voltage lags the current by $\pi / 2$
B. voltage leads the currrent by $\pi / 2$
C. voltage leads the current by $\pi / 3$
D. voltage leads the current by $\pi / 4$

Answer: B

- Watch Video Solution

11. An ideal inductive coil has a resistance of 100Ω When an ac signal of frequency 100 Hz is applied to the coil the voltage leads the current by 45° The inductance of the coil is.
A. $\frac{1}{10} \pi$
B. $\frac{1}{20} \pi$
C. $\frac{1}{40} \pi$
D. $\frac{1}{60} \pi$

Answer: B

- Watch Video Solution

12. Two inductors $\underset{1}{L}$ and $\underset{2}{L}$ are connected in parallel and a time varying current flows as shown in figure. Then the ratio currents $\underset{1}{l} / \underset{2}{l}$ at any time t is

$$
\text { A. } \frac{\begin{array}{l}
L \\
L \\
2
\end{array}}{\substack{1 \\
\hline}}
$$

> B. $\frac{2_{2}^{L}}{\frac{1}{L}}$ C. $\frac{\frac{L}{1}}{\binom{l+l}{1}_{2}^{2}}$ D. $\frac{L_{2}^{L}}{l+l}{ }_{1}^{l}$

Answer: B

- Watch Video Solution

13. An inductance and a resistance are connected in series
with an AC potential . In this circuit
A. the current and the potential difference across the resistance lead the PD across the inductive by phase
angle $\pi / 2$
B. the current and the potential difference across the resistance lag behind PD across the inductance by an angle $\pi / 2$
C. the current and the potential difference across the resistance lag behind in PD across the inductance by an anle π
D. the PD across the resistance lags behind the PD across the inductance by an angle $\pi / 2$ but the current in the resistance leads the PD across inductance by $\pi / 2$
14. If an 8Ω resistance and 6Ω reactance are present in an

AC series circuit then the impedence of the circuit will be
A. 2Ω
B. 14Ω
C. 4Ω
D. 10Ω

Answer: D
15. In an ac circuit, the current lags behind the voltage by $\pi / 3$. The components in the circuit are
A. R and L
B. Land C
C. R and C
D. only R

Answer: A

- Watch Video Solution

16. In an AC circuit, a resistance of Rohm is connected is series with an inductance L. If phase angle between
volage and current be 45°, the value of inductive reactance will be
A. R/4
B. R / 2
C. R
D. cannot be found with the given data

Answer: C

- Watch Video Solution

17. In a circuit containing R and L, as the frequency of the impressed AC increase, the impedance of the circuit
A. decreases
B. increases
C. remains unchanged
D. first increases and then decreases

Answer: B

- Watch Video Solution

18. An $A C$ voltage is applied to a resistance R and an inductance L in series. If R and the inductive reactance are both equal to 3Ω, the phase difference between the applied voltage and the current in the circuit is
B. $\pi / 2$
C. zero
D. $\pi / 6$

Answer: A

D Watch Video Solution

19. In an ac circuit, $L=\frac{0.4}{\pi} H$ and $R=30 \Omega$. If the circuit has an alternating emf of $220 \mathrm{~V}, 50 \mathrm{cps}$, the impedance and the current in the circuit will be :
A. $11.4 \Omega, 17.5 \mathrm{~A}$
B. `30.7 Omega, 6.5 A
C. $40.4 \Omega, 5 \mathrm{~A}$

Answer: D

- Watch Video Solution

20. The instantaneous values of current and voltage in an

AC circuit are given by
$I=6 \sin (100 \pi t+\pi / 4)$
$V=5 \sin (100 \pi t-\pi / 4)$, then
A. current leads the voltage by 45°
B. voltage leads the current by 90°
C. current leads the voltage by 90°
D. voltage leads the current by 45°

Answer: C

- Watch Video Solution

21. In an $\mathrm{L}-\mathrm{C}-\mathrm{R}$ circuit the AC voltage across R, L and C comes out as $10 \mathrm{~V}, 10 \mathrm{~V}$ and 20 V respectively. The voltage across the enter combination will be
A. 30 V
B. $10 \sqrt{3} \mathrm{~V}$
C. 20 V
D. $10 \sqrt{2} \mathrm{~A}$

Answer: D

22. Which increase in frequency of an AC supply, the impedance of an L-C-R series circuit
A. remians constant
B. increases
C. decreases
D. decreases at first, becomes minimum and then increases

Answer: D
23. An sinusoidal voltage of peak value 300 V and an argular frequency $\omega=400 \mathrm{rads}^{-1}$ is applied to series L-CR circuit, in which $\mathrm{R}=3 \Omega, \mathrm{~L}=20 \mathrm{mH}$ and $\mathrm{C}=625 \mu \mathrm{~F}$. The peak current in the circuit is
A. $30 \sqrt{2} \mathrm{~A}$
B. 60 A
C. 100 A
D. $60 \sqrt{2} \mathrm{~A}$

Answer: B
24. The value of current at resonance in a series L-C-R circuit is affected by the value of
A. R only
B. C only
C. L only
D. L, C and R

Answer: A

- Watch Video Solution

25. An $L C R$ circuit is connected to a source of alternating current. At resonance, the applied voltage and the current
flowing through the circuit will have a phase difference of A. zero
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: A

- Watch Video Solution

26. A series L-C-R circuit is operated at resonance. Then
A. voltage across R is minimum
B. impedance is minimum
C. impedance is maximum
D. current amplitude is minimum

Answer: B

- Watch Video Solution

27. An L-C-R series is under resonance. If $\underset{m}{l}$ is current amplitude $\underset{m}{ }$ is voltage amplitude, R is the resonance, Z is the impedance, $\underset{L}{X}$ is the inducitve reactance and $\underset{C}{X}$ is the capacitive reactance, then
A. ${ }_{m}=\operatorname{underser}(m)(V) / \mathrm{Z}$
B. ${ }_{m}^{V /} \underset{L}{X}$
C. ${ }_{m}=\underset{m}{V} / \underset{C}{X}$
D. $\underset{m}{l}=\underset{m}{V} / \mathrm{R}$

Answer: D

D Watch Video Solution

28. In an L-C-R series, AC circuit at resonance
A. the capacitive reactance is more than the inductive
B. the capacitive reactance equals the inductive reactance
C. the capactive reactance is less than the inductive reactance
D. the power dissipated is minimum

D Watch Video Solution

29. An L-C-R series circuit, connected to a source E, is at resonance. Then,
A. the voltage across R is zero
B. the voltage across R equals applied voltage
C. the volatage across C is zero
D. the voltage across C equals applied voltage

Answer: B

30. The reciprocal of impedance is called

A. reactance
B. admittance
C. inductance
D. conductance

Answer: B

- Watch Video Solution

Check point 7.3

1. An electric heater rated 220 V and 550 V is connected to

AC mains. The current drawn by it is
A. 0.8 A
B. 2.5 A
C. 0.4 A
D. 1.25 A

Answer: B

- Watch Video Solution

2. In an AC circuit , $\underset{o}{V}, \underset{o}{I}$ and $\cos \theta$ are voltage amplitude, current amplitude and power factor respectively, the
power consumption is
A. $1 / 2 \underset{o}{V} \underset{o}{I} \cos \theta$
B. $\left(\frac{1}{\sqrt{2}}\right) V_{0} I_{0} \cos \theta$
C. $V_{0} I_{0} \cos \theta$
D. $\left(\frac{1}{\sqrt{2}}\right) V_{0} I_{0} \sin \theta$

Answer: A

- Watch Video Solution

3. The power factor of a circuit is
A. Z / R
B. R / Z
C. R / X
D. X / R

Answer: B

- Watch Video Solution

4. In an $A C$ circuit, V and I are given by $V=100 \sin (100 t) v o<s, I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$.

The power dissipated in circuit is
A. $10^{4} \mathrm{~W}$
B. 10 W
C. 2.5 W
D. 5 W

Answer: C

- Watch Video Solution

5. Power factor is one for
A. pure inductor
B. pure capacitor
C. pure resistor
D. Either an inductor or a capacitor

Answer: C

- Watch Video Solution

6. The average power dissipated in a pure inductor ${ }^{`} L$ carrying an alternating current of rms value I is.
A. $1 / 2 L i^{2}$
B. $1 / 4 L i^{2}$
C. $2 L i^{2}$
D. zero

Answer: D

- Watch Video Solution

7. The average power dissipation in a pure capacitance in
$A C$ circuit is
A. CV
B. zero
C. $1 / C V^{2}$
D. $1 / 4 C V^{2}$

Answer: B

- Watch Video Solution

8. In an $A C$ circuit, the power factor
A. is zero when the circuit contain an ideal resistance
B. is unity when the circuit contains an ideal resistance only
C. is zero when the circuit contains an ideal inductance only
D. is unity when the circuit contains an ideal inductance only

Answer: B::C

- Watch Video Solution

9. The impedance of a circuit consister of 3Ω resistance
and 4Ω reactance. The power factor of the circuit is
A. 0.4
B. 0.6
C. 0.8
D. 1

Answer: B

- Watch Video Solution

10. Power dissipated in an $L-C-R$ series circuit connected to an $A C$ source of $\operatorname{emf} \varepsilon$ is

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon R}{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}} \\
& \text { B. } \sqrt{R^{2}+\frac{L \omega-\frac{1}{(C \omega)^{2}}}{R}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}{R} \\
& \text { D. } \frac{\omega^{2} R}{\sqrt{R^{2}+\left(L \omega+\frac{1}{C \omega}\right)^{2}}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

11. The SI unit of inductance, the henry can be written as:
A. weber/ampere
B. volt-second/ampere
C. joule/(ampere $)^{2}$
D. ohm-second

Answer: B

- Watch Video Solution

12. The energy stored in an inductor of self-inductance L henry carrying a current of I ampere is
A. $1 / 2 L^{2}$ ।
B. $1 / 2 L I^{2}$
C. $L I^{2}$
D. L^{2} ।

Answer: B
13. In an inductor of inductance $L=100 \mathrm{mH}$, a current of
$I=10 A$ is flowing. The energy stored in the inductor is
A. 5 J
B. 10 J
C. 100 J
D. 1000 J

Answer: A

D Watch Video Solution
14. In an L-C circuit
A. the energy stored in L as well as in C is magnetic energy
B. the energy stored in L is magnetic but in C it is electrical
C. the energy stored in L is electrical but in C it is magnetic
D. the energy stores in L as well as C is electrical energy

Answer: B

- Watch Video Solution

15. The equivalent quantity of mass in an inductor circuit is
A. charge
B. potential
C. inductance
D. current

Answer: C

(Watch Video Solution

Check point 7.4

1. A choke coil has.
A. low inductance and low resistance
B. high inductance and high resistance
C. low inductance and high resistance
D. high inductance and low resistance

Answer: D

- Watch Video Solution

2. What is increase in step-down transformer?
A. Voltage
B. Current
C. Power
D. Current density

D Watch Video Solution

3. A transformer works on the principle of
A. self-induction
B. electrical inertia
C. mutual induction
D. magnetic effect of the electrical current

Answer: C

- Watch Video Solution

4. Quantity that remains unchanged in a transformer is
A. voltage
B. Current
C. frequency
D. None of these

Answer: C

- Watch Video Solution

5. The ratio of secondary to the primary turns in a transformer is $3: 2$. If the power output be P, then the input power neglecting all loses must be equal to

A. 0.70833333333333

B. 1.5 P
C. P
D. $(2 / 5) \mathrm{P}$

Answer: C

- Watch Video Solution

6. The transformation ratio in the step -up transformer is
A. 1
B. greater than one
C. less than one
D. the ratio greater or less than one depends on the other factors

Answer: B

D Watch Video Solution

7. In a transformer, the number of turns in primary and secondary are 500 and 2000 respectively. If current in primary is $48 A$, the current in the secondary is
A. 12A
B. 24 A
C. 48 A
D. 144 A

D Watch Video Solution

8. The core used in a transformer and other electromagnetic devices is laminated so that
A. ratio of voltage in the primary and secondary may be increased
B. energy loss due to eddy currents may be minimised
C. the weight of the transformer may be reduced
D. residual magnetism in the core may be reduced
9. which of ther following is constructed on the principle of electromagnetic induction?
A. Galvanometer
B. Electric motor
C. Generator
D. Voltmeter

Answer: C

10. when the speed of a dc motor increase the armature current
A. increases
B. decreases does not change
C. increases and decreases continuosly
D. increases and decreases continuously

Answer: B

Taking it together

1. The resistance of a coil for $D C$ is 5Ω. In case of $A C$, the resistance will
A. remain 5Ω
B. decrease
C. increase
D. be zero

Answer: C

- Watch Video Solution

2. In the non-resonant circuit, what will be the nature of the circuit for frequencies heigher than the resonant

frequency?

A. Resistive
B. Capacitive
C. inductance
D. None of these

Answer: C

D Watch Video Solution

3. A choke coil has.
A. high inductance and low resistance
B. low inductance and high resistance
C. high inductance and high resistance
D. low inductance and low resistance

Answer: A

D Watch Video Solution

4. A circuits contains a capacitor and inductance each with negligible resistance. The capacitor is initially charged and the charging battery is disconnected. At subsequent time , the charge on the capacitor will
A. increase exponentially
B. decrease exponentially
C. decrease linearly
D. remain constant

Answer: C

- View Text Solution

5. A choke coil is preferred to a resistance for reducing current in an ac circuit because .
A. choke coil is cheap
B. there is no wastage of power
C. choke is compact in size
D. choke is a good absorber of heat
6. The frequency for which a $5 \mu \mathrm{~F}$ capacitor has a reactance of $\frac{1}{1000} \Omega$ is given by
A. $\frac{100}{\pi} \mathrm{MHz}$
B. $\frac{1000}{\pi} \mathrm{MHz}$
C. $\frac{1}{1000} H z$
D. 1000 Hz

Answer: A

- Watch Video Solution

7. What will be the approximate resistance offered by a capacitor of $10 \mu \mathrm{~F}$ and frequency 100 Hz ?
A. 160Ω
B. 1600Ω
C. 16Ω
D. None of these

Answer: A

- Watch Video Solution

8. Which of the following curves correctly represent the variation of capacitve reactance $(\underset{C}{X})$ with frequency (f) ?
(a)
A.
$f \rightarrow$

(c)

(d)
D.

Answer: C

- Watch Video Solution

9. L, C and R represent the physical quantities, inductance,
capacitance and resistance respectively. The combinations
which does not have the dimensions of frequency are
A. 1/RC
B. R / L
C. $1 / \sqrt{L} C$
D. C / L

Answer: D

- Watch Video Solution

10. An AC source is connected to a capacitor. The current in the current is I. Now a dielectric slab is inserted into the capacitor, then the new current is
A. equal I
B. more than I
C. less than I
D. may be more than or less than I

Answer: B

- Watch Video Solution

11. An alternating voltage is connected in series with a resistance R and inductance L if the potential drop across the resistance is 200 V and across the inductance is 150 V , then the applied voltage is
B. 250 V
C. 500 V
D. 300 V

Answer: B

- Watch Video Solution

12. An $L-R$ circuit has $R=10 \Omega$ and $L=2 H$. If $120 \mathrm{~V}, 60 \mathrm{~Hz} \mathrm{AC}$ voltage is applied, then current in the circuit will be
A. 0.32 A
B. 0.16 A
C. 0.45 A
D. 0.80 A

Answer: B

D Watch Video Solution

13. A complex current wave is given by
$i=95+5 \sin 100 \omega t A$. Its given value over one time period is given as
A. 10A
B. 5 A
C. $\sqrt{50} \mathrm{~A}$
D. 0

- Watch Video Solution

14. If the rms current in a 50 Hz ac circuit is 5 A , the value of the current $1 / 300$ second after its value becomes zero is
A. $5 \sqrt{2} \mathrm{~A}$
B. $5 \sqrt{\frac{3}{2}} \mathrm{~A}$
C. $\frac{5}{6}$ A
D. $\frac{5}{\sqrt{2}} \mathrm{~A}$

Answer: B
15. The peak value of an alternating emf E given by
$\mathrm{E}=\underset{o}{E} \cos \omega \mathrm{t}$
is 10 V and frequency is 50 Hz . At time $\mathrm{t}=(1 / 600) \mathrm{s}$, the instantaneous value of emf is
A. 10 V
B. $5 \sqrt{3} \vee$
C. 5 V
D. 1 V

Answer: B
16. Current and voltage in AC are $\mathrm{I}={ }_{o} I \sin (\omega \mathrm{t}+\pi / 4)$, Then
A. $\underset{L}{X}$ gt $\underset{C}{X}$
B. $R=0$
C. Both are correct
D. Both are wrong

Answer: C

- View Text Solution

17. A 10 ohm resistance, $5 m H$ coil and $10 \mu F$ capacitor are joined in series. When a suitable frequency alternating current source is joined to this combination, the circuit
resonates. If the resistance is halved, the resonance frequency
A. is halved
B. is doubled
C. remains unchanged
D. in quadrupled

Answer: C

D Watch Video Solution

18. The resonant frequency of a circuit is f. If the capacitance is made 4 times the initial values, then the resonant frequecy will become
A. $f / 2$
B. $2 f$
C. f
D. $\mathrm{f} / 4$

Answer: A

- Watch Video Solution

19. An alternating emf is applied across a parallel combination of a resistance R, capacitance C and an inductance L. If $\underset{R}{I}, \underset{L}{I}$ and $\underset{C}{I}$ are the currents through R,L and C respectively, the phase relationship among $\underset{R}{I}$,
underset $(\mathrm{L})(\mathrm{I})$ and underset(C$)(\mathrm{I})^{\prime}$ and source emf E , is given by

Answer: C

- Watch Video Solution

20. An AC supply gives $30 \underset{r m s}{V}$ which passes 10Ω resistance.

The power dissipated in it is
A. $90 \sqrt{2} \mathrm{~W}$
B. 90 W
C. $45 \sqrt{2} \mathrm{~W}$
D. 45 W

Answer: B

- Watch Video Solution

21. An alternating potential $\mathrm{V}=\underset{o}{V} \sin \omega t$ is applied across a circuit. As a result the current.
$\mathrm{I}=\underset{o}{I} \sin \left(\omega t-\frac{\pi}{2}\right)$ flows in it. The power consecutive in the circuit per cycle is
A. zero
B. $0.5 V_{0}$ and I_{0}
C. $0.707 V_{0}$ and I_{0}
D. $1.414 V_{0}$ and I_{0}

Answer: A

- Watch Video Solution

22. A direct current of 2 A and an alternating current having a maximum value of 2 A flow through two identical
resistances. The ratio of heat produced in the two resistances will be

A. 0.042361111111111

B. 0.043055555555556
C. 0.084027777777778
D. 0.16736111111111

Answer: C

- Watch Video Solution

23. In a heating arrangement, an alternating current having a peak value of 28 A is used. To produce the same
heat energy, If the constant current is used, its magnitude must be
A. about 1A
B. about 28 A
C. about 20 A
D. Cannot say

Answer: C

- Watch Video Solution

24. A lamp consumes only 50% of peak power in an a.c. circuit. What is the phase difference between the applied voltage and the circuit current
A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 2$

Answer: B

- Watch Video Solution

25. $110 \underset{r m s}{V}$ is applied across a series circuit having resistance 11Ω and independence 22Ω. The power consumed is
A. 275 W
B. 366 W
C. 550 W
D. 1100 W

Answer: A

D Watch Video Solution

26. A 20volts $A C$ is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the voltage across the resistance is 12 V , the voltage across the coil is
A. 16 V
B. 10 V
C. 8 V
D. 6 V

Answer: A

D Watch Video Solution

27. To reduce the resonant frequency in an $L C R$ series circuit with a generator
A. the generator frequency should be reduced
B. another capacitor should be added in parallel to the first
C. the iron core of the inductor should be removed
D. dielectric in the capacitor should be removed

Answer: B

- Watch Video Solution

28. The output current versus time curve of a rectifire is shown in the figure. The voltage value of output current in
this case is

A. 0
B. $\frac{I_{O}}{2}$
C. $\frac{2 I_{0}}{\pi}$
D. I_{0}

Answer: C

D Watch Video Solution

29. An alternating voltage is given by: $e=e_{1} \sin \omega t+e_{2} \cos \omega t$. Then the root mean square value of voltage is given by:
A. $\sqrt{e_{1}^{2}+e_{2}^{2}}$
B. $\sqrt{e_{2} e_{2}}$
C. $\frac{\sqrt{e_{1} e_{2}}}{2}$
D. $\frac{\sqrt{e_{1}^{2}+e_{2}^{2}}}{2}$

Answer: D

- Watch Video Solution

30. Voltage and current in an ac circuit are given by
$V=5 \sin \left(100 \pi t-\frac{\pi}{6}\right)$ and $I=4 \sin \left(100 \pi t+\frac{\pi}{6}\right)$
A. voltage leads the current by 30°
B. current leads the voltage by 30°
C. current leads the voltage by 60°
D. voltage leads the current by 60°

- Watch Video Solution

31. An alternating voltage $E=200 \sqrt{2} \sin (100 t)$ is connected to a 1 microfarad capacitor through an AC ammeter. The reading of the ammeter shall be
A. 10 mA
B. 20 mA
C. 40 mA
D. 80 mA

Answer: B

- Watch Video Solution

32. A coil having an inductance of $1 / \pi$ henry is connected in series with a resistance of 300Ω. If 20 volt from a 200 cycle source are impressed across the combination, the value of the phase angle between the voltage and the current is :
A. 5/4.
B. $4 / 5$.
C. 3/4.
D. $4 / 3$.

Answer: D
33. A condenser of capacity $20 \mu \mathrm{~F}$ is first charged and then discharged through a 10 mH inductance. Neglecting the resistance of the coil, the frequency of the resulting vibrations will be
A. 364 cycles/s
B. 35.6 cycles $/ \mathrm{s}$
C. 365×10^{3} cycles $/ \mathrm{s}$
D. 3.56 cycles $/ \mathrm{s}$

Answer: A
34. An dielectric current has both $D C$ and $A C$ components .

DC component of BA and AC component is given as $\mathrm{I}=$ 6 sinomegat. Sounderset(rms)(I) value of resulatant current is
A. 8.05 A
B. 9.05 A
C. 11.58 A
D. 13.58 A

Answer: B
35. Which of the shown graphs may represent the reactance of a series L-C combination?
A.

Reactance
\therefore

B.
(c)

C.
Reactance
(d)

D.

Answer: D
36. Two coils have a mutual inductance 0.005 H . The alternating current charges in the first coil according to equation $I=\underset{o}{I} \sin \omega \mathrm{t}$, where $\underset{o}{I}=10 \mathrm{~A}$ amd $\omega=100 \pi \mathrm{rads}^{-1}$.

The maximum value of emf in the second coil is (in volt)
A. 2π
B. 5π
C. π
D. 4π

Answer: B
37. Two identical heaters rated $220 \mathrm{~V}, 1000 \mathrm{~W}$ are paced in series with each other across 220 V line , then the combined power is
A. 2000 W
B. 1000 W
C. 500 W
D. 250 W

Answer: C

- Watch Video Solution

38. In an $L R$-circuit, the inductive reactance is equal to the resistance R of the circuit. An e.m.f $E=E_{0} \cos (\omega t)$ applied to the circuit. The power consumed in the circuit is
A. $\frac{E_{0}^{2}}{\sqrt{2 R}}$
B. $\frac{E_{0}^{2}}{4 R}$
C. $\frac{E_{0}^{2}}{2 R}$
D. $\frac{E_{0}^{2}}{8 R}$

Answer: B

- Watch Video Solution

39. A choke coil and capacitor are connected in series and the current through the combination is maximum for $A C$ of frequency n . If they are connected in parallel, at what frequency is the current through the combination minimum?
A. n
B. $\mathrm{n} / 2$
C. 2 n
D. None of these

Answer: A
40. In a transformer, the coefficient of mutual inductance between the primary and the secondary coil is 0.2 henry. When the current changes by 5 ampere//second in the primary, the induced e.m.f. in the secondary will be
A. 5 V
B. 1 V
C. 25 V
D. 10 V

Answer: B
41. In a transformer, number of turns in the primary coil are 140 and that in the secondry coil are 280 . If current i primary ciol is 4A, then that in the secondary coil is
A. 4 A
B. 2 A
C. 6 A
D. 10 A

Answer: B

- Watch Video Solution

42. A circuit contains resistance R and an inductance L in series. An alternating voltage $V=V_{0} \sin \omega t$ is applied across it. The currents in R and L respectively will be

A. $I_{R}=I_{O} \cos \omega t, I_{L}=I_{0} \cos \omega t$
B. $I_{R}=-I_{0} \sin \omega t, I_{L} \cos \omega t$
C. $I_{R}=I_{0} \sin \omega t, I_{L}=-I_{0} \cos \omega t$
D. none of the above

D Watch Video Solution

43. A transfomer has 500 primary tunrs and 10 secondary turns. If the secondary has a resistive load respectively, are
A. $0.16 A, 3.2 \times 10^{-3} A$
B. $3.2 \times 10^{-3} \mathrm{~A}, 0.16 \mathrm{~A}$
C. $0.16 A, 0.16 A$
D. $3.2 \times 10^{-3} A, 3.2 \times 10^{-3} \mathrm{~A}$

Answer: B
44. A 50 HzAC source of 20 V is connected across R and C as shown in figureure.

The voltage across R is $12 V$. The voltage across C is
A. 8 V
B. 16 V
C. 10 V
D. not possible to determine unless value of R and C are given

Answer: B

D Watch Video Solution

45. In an circuit, V and I are given by $V=150 \sin (150 t) V$
and $I=150 \sin \left(150 t+\frac{\pi}{3}\right) A$. The power dissipated in the circuit is
A. 106 W
B. 150 W
C. 5625 W
D. zero

Answer: C

46. In the series LCR circuit shown the impedance is

A. 200Ω
B. 100Ω
C. 300Ω
D. 500Ω

- Watch Video Solution

47. An alternating current I in an inductance coil varies with time t according to the graph as shown: Which one of the following graph gives the variation of voltage with time?

(a)

A.
B.
(b)

C.

D.
(d)

Answer: B

- Watch Video Solution

48. A resistor and a capacitor are connected in series with an a.c. source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V , applied voltage is
A. 13 V
B. 17 V
C. 5 V
D. 12 V

Answer: A

- Watch Video Solution

49. When a voltage measuring device is connected to a.c. mains the meter shows the steady input voltage of 220 V .

This means
A. input voltage cannot be AC voltage, but a DC voltage
B. maximum input voltage is 220 V
C. the meter reads not v but $<v^{2}>$ and is calibrated to read $\sqrt{<v^{2}>}$
D. the pointer of the meter is stuck by some mechanical defect.

Answer: C
50. The r.m.s. voltage of the wave form shown is

A. 10 V
B. 7 V
C. 6.37 V
D. none of the above

Answer: A
51. Using an ac voltmeter, the potential difference in the electrical line in a house is read to be 234 V . If the line freqency is known to be 50 cycles per second, the equation for the line voltage is
A. $165 \sin (200 \pi t)$
B. $234 \sin (100 \pi t)$
C. $331 \sin (100 \pi t)$
D. $440 \sin (200 \pi t)$

Answer: C

52. The output of a step-down transformer is measured to be $24 V$ when connected to a 12 watt light bulb. The value of the peak current is
A. $\frac{1}{\sqrt{2}} A$
B. $\sqrt{2} A$
C. 2A
D. $2 \sqrt{2} A$

Answer: A
53. The rms value of an ac of 50 Hz is 10 A . The time taken by an alternating current in reaching from zero to maximum value and the peak value will be
A. $2 \times 10^{-2} s$ and 14.14 A
B. $1 \times 10^{-2} s$ and $7.07 A$
C. $5 \times 10^{-3} s$ and $7.07 A$
D. $5 \times 10^{-3} s$ and 14.14 A

Answer: D

54. A constant voltage at different frequencies is applied across a capacitance. C as shown in the figure. Which of the following graphs correctly depicts the varitaion of current with frequency?

(a) $\xrightarrow{\text { A }}{ }^{(1)}$

D.

Answer: B

- View Text Solution

55. The voltage across a pure inductor is represented by the following diagram. Which one of the following
diagrams will represent the current

A.

B.

C.

D.

D Watch Video Solution

56. An inductance of 1 mH a condenser of $10 \mu F$ and a resistance of 50Ω are connected in series. The reactances of inductor and condensers are same. The reactance of either of them will be
A. 100Ω
B. 30Ω
C. 3.2Ω
D. 10Ω

Answer: D

- Watch Video Solution

57. An $A C$ source of variable frequency f is connected to an $L C R$ series circuit. Which one of the graphs in figure represents the variation of current of current I in the circuit with frequecy f ?

A.

B.
C.

Answer: C

- Watch Video Solution

58. The armature of a $D C$ motor has 20Ω resistance. It draws a current of 1.5 A when run by $200 \mathrm{~V} D C$ supply The value of back emf induced in it will be
A. 150 V
B. 170 V
C. 180 V
D. 190 V

- Watch Video Solution

59. A group of electric lamps having a total power rating of 1000 watt is supplied by an $A C$ voltage $E=200 \sin \left(310 t+60^{\circ}\right)$. Then the r.m.s value of the circuit current is
A. 0.41666666666667
B. $5 \sqrt{2} \mathrm{~A}$
C. 20 A
D. $10 \sqrt{2} \mathrm{~A}$

- Watch Video Solution

60. An alternating voltage $\mathrm{V}=140 \sin 50 \mathrm{t}$ is applied to a resistor of resistance 10Ω. This voltage produces $\triangle H$ heat in the resistor in time Δt. To produce the same heat in the same time, rquired DC current is

$$
\begin{aligned}
& \text { A. } \frac{5}{\sqrt{2}} \\
& \text { B. } \frac{10}{\sqrt{2}} \mathrm{~A}
\end{aligned}
$$

C. 0.20833333333333
D. None of these

Answer: A

61. An alternating voltage $\mathrm{V}=140 \sin 50 \mathrm{t}$ is applied to a resistor of resistance 10Ω. This voltage produces $\triangle H$ heat in the resistor in time $\triangle t$. To produce the same heat in the same time, rquired DC current is
A. 14 A
B. About 20 A
C. about 10 A
D. None of these

Answer: C

D Watch Video Solution

62. In a certain circuit current changes with time according
to $i=2 \sqrt{t}$ RMS value of current between $\mathrm{t}=2 \mathrm{~s}$ to $\mathrm{t}=4 \mathrm{~s}$ will be
A. 3 A
B. $3 \sqrt{3} \mathrm{~A}$
C. $2 \sqrt{3}$
D. $\sqrt{3} \mathrm{~A}$

Answer: C

63. The power factor of an R-L circuit is $1 / \sqrt{2}$ if the frequency of $A C$ is doubled, what will be the power
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{\sqrt{7}}$
C. $\frac{1}{\sqrt{7}}$
D. $\frac{1}{\sqrt{11}}$

Answer: B

D Watch Video Solution

64. When a DC voltage of 200 V is applied to a coil of self inductance $(2 / \sqrt{3} / \pi) \mathrm{H}$ a current of 1 A flows through it .

But by replacing DC source with AC source of 200 V , the current in the coil is reduced to 0.5 A . Then the frequency of $A C$ supply is
A. 30 Hz
B. 60 Hz
C. 75 Hz
D. 50 Hz

Answer: D

- Watch Video Solution

65. One $10 \mathrm{~V}, 60 \mathrm{~W}$ bulb is to be connected to 100 V line.

The required inductance coil has self-inductance of value
$(f=50 H z)$
A. 0.052 H
B. 2.42 H
C. 16.2 H
D. 16.2 mH

Answer: A

- Watch Video Solution

66. The reading of ammeter in the circuit shown will be

A. 2 A
B. 2.4 A
C. Zero
D. 1.7 A

Answer: C
67. In series LCR circuit voltage drop across resistance is

8 V , across inductor is 6 V and across capacitor is 12 V . Then
A. voltage of the source will be leading in the circuit
B. voltage drop across each element will be less than
the applied voltage
C. Power factor of the circuit will be $3 / 4$
D. None of the above

Answer: D

- Watch Video Solution

68. In a series L-C-R circuit shown in the figure, what is the resonance frequency and the current at the resonating frequency?
A. 0°
B. 30°
C. 45°
D. 60°

Answer: A

- Watch Video Solution

69. For the series $L C R$ circuit shown in the figure, what is the resonance frequency and the amplitude of the current at the resonating frequency

A. $2500 \mathrm{rads}^{-1}$ and 5sqrt 2A
B. $2500 \mathrm{rads}^{-1}$ and 5 A
C. $2500 \mathrm{rads}^{-1}$ and $\frac{5}{\sqrt{2}} \mathrm{~A}$
D. $25 \mathrm{rads} \mathrm{s}^{-1}$ and $5 \sqrt{2} \mathrm{~A}$

Answer: B
70. The figure shows variation of $\mathrm{R}, \underset{L}{X}$ and $\underset{C}{X}$ with frequency f in a series L, C, R circuit. Then, for what frequency point, the circuit is inductive?

A. A
B. B
C. C
D. All points

Answer: C

- Watch Video Solution

71. In the given figure , a series L-C-R circuit is connected to a variable frequency source of 230 V . The impedance and amplitude of the current at the resonating frequency will be

A. 20Ω and 4.2 A
B. 30Ω and 6.9 A
C. 25Ω and 5.8 A
D. 40Ω and 5.75 A

Answer: D

- Watch Video Solution

72. In figure which voltmeter reads zero when ω is equal to the resonant frequency of series $L C R$ circuit

A. ${ }_{1}^{V}$
B. ${ }_{2}$
C. ${ }_{3}$
D. None of these

Answer: B
73. An R-L-C circuit containing a 52Ω resistor, a 230 mH inductor, and a $8.8 \mu \mathrm{~F}$ capacitor is driven by an AC voltage source that has an amplitude of 150 V and frequency $\mathrm{f}=80$ Hz . How much average power is dissipated by this circuit?
A. 78.6 W
B. Zero
C. 19.6 W
D. 24.8 W

Answer: A
74. The natural frequency of the circuit shown in the figure is

A. $\frac{1}{2} \pi \sqrt{L} C$
B. $\frac{1}{2} \pi \sqrt{2} L C$
C. $\frac{2}{2} \pi \sqrt{L} C$
D. None of these

Answer: A
75. In the circuit shown, what is the energy stored in the coil at steady state?

A. 21.3 J
B. 42.6 J
C. Zero
D. 213 J

- Watch Video Solution

76. A loss-free transformer having 100 turns in primary is used to transmit 10 KW of power . The input voltage is 200

V and power is transmitted at 5 KV . The current in the primary and secondary of the transformer are
A. 2 A and 50 A
B. 50 A and 2 A
C. 25 A and 4 A
D. 12.5 A and 8 A

- Watch Video Solution

77. For series L-C-R circuit shown in the figure, the readings of V and ${ }_{3}^{V}$ are same and each equal to 100 V . Then

A. the reading $\underset{2}{V}$ is 200 V
B. the reading of V is 0
C. the circuit is in resonant mode and resonant
D. the inductive and capacitive reactance are equal

Answer: A::C::D

D Watch Video Solution

78. In the given figure, which voltmeter will read zero voltage at resonant frequency?

A. ${ }_{1}^{V}$
B. V
C. ${ }_{3}$
D. V 4

Answer: D

- Watch Video Solution

79. A signal generator supplies a sine wave of $200 \mathrm{~V}, 5 \mathrm{kHz}$ to the circuit shown in the figureure. Then, choose the
wrong statement.

A. The current in the resistive branch is 0.2 A
B. The current in the capacitive branch is 0.126 A
C. Total line current is $\approx 0.283 \mathrm{~A}$
D. Current in both the branches is same

Answer: A::C::D
80. An AC source is $120 \mathrm{~V}-60 \mathrm{~Hz}$. The value of voltage after

1/720 s from start will be
A. 20.2 V
B. 42.4 V
C. 84.8 V
D. 106.8 V

Answer: C

- Watch Video Solution

81. A pure resistive circuit element X when connected to an
ac supply of peak voltage 400 V gives a peak current of 5 A which is in phase with the voltage. A second circuit element Y , when connected to the same ac supply also gives the same value of peak current but the current lags behind by 90°. If the series combination of X and Y is connected to the same supply, what will be the rms value of current?

$$
\begin{aligned}
& \text { A. } \frac{10}{\sqrt{2}} \mathrm{~A} \\
& \text { B. } \frac{5}{\sqrt{2}} \mathrm{~A} \\
& \text { C. } 5 / 2 \mathrm{~A} \\
& \text { D. } 5 \mathrm{~A}
\end{aligned}
$$

- Watch Video Solution

82. A coil a capacitor and an $A C$ source of rms voltage

24 V are connected in series. By varying the frequency of the source, a maximum rms current of 6 A is observed. If coil is connected is at DC batteryof emf 12 volt and internal resistance 4Ω, then current through it in steady state is
A. 2.4 A
B. 1.8 A
C. 1.5 A
D. 1.2 A

Answer: C

- Watch Video Solution

83. In the L-C-R circuit as shown in figure,

A. Current will lead the voltage
B. Runs value of current is 20 A
C. Power factor of the circuit is $\frac{1}{\sqrt{2}}$
D. Voltage drop across resistance is 200 V

Answer: A::B::C::D

D Watch Video Solution

84. In the circuit shown below, what will be the reading of the voltmeter and ammeter?

[^0]
B. 800 V and 2 A

C. $220 \mathrm{~V}, 2 \mathrm{~A}$
D. $220 \mathrm{~V}, 2.2 \mathrm{~A}$

Answer: D

- Watch Video Solution

85. In the circuit shown in figure neglecting source resistance the voltmeter and ammeter reading will
respectively, will be

A. $0 \vee, 3 \mathrm{~A}$
B. $150 \mathrm{~V}, 3 \mathrm{~A}$
C. 150 V, 6 A
D. $0 \mathrm{~V}, 8 \mathrm{~A}$

Answer: D

- Watch Video Solution

86. The following series L-C-R circuit, when driven by an emf source of angular frequency 70 kilo-radians per second, the circuit effectively behaves like

A. purely resistive circuit
B. series R-L circuit
C. series R-C circuit
D. series L-C circuit with $R=0$

Answer: B

87. In the circuit shown in the figure, the alternating currents through inductor and capacitor are 1.2 and 1.0 A respectively. The current drawn from the generator is

A. 0.4 A
B. 0.2 A
C. 1.0 A
D. 1.2 A

Answer: B

- Watch Video Solution

88. In the adjoining $A C$ circuit the voltmeter whose reading will be zero at resonance is

A. ${ }_{1}$
B. ${ }_{2}$
C. ${ }_{3}$
D. V

Answer: D

- Watch Video Solution

89. An alternating current generator has an internal resistance $\underset{g}{R}$ and an internal reactance $\underset{g}{X}$. It is used to supply power to a passive load consisting of a resistance $\underset{g}{R}$ and a reactance $\underset{L}{X}$. For maximum power to be delivered from the generator to the load, the value of $\underset{L}{X}$ is equal to
A. zero
B. ${ }_{g}$
C.
D. R

Answer: C

- Watch Video Solution

90. Which of the following combinations should be selected for better turning of an LCR circuit used for communication ?
A. $\mathrm{R}=20 \Omega, \mathrm{~L}=1.5 \mathrm{~h}, \mathrm{C}=35 \mu \mathrm{~F}$
B. $\mathrm{R}=25 \Omega, \mathrm{~L}=2.5 \mathrm{H}, \mathrm{C}=45 \mu \mathrm{~F}$
C. $\mathrm{R}=15 \Omega, \mathrm{~L}=3.5 \mathrm{H}, \mathrm{C}=30 \mu \mathrm{~F}$
D. $\mathrm{R}=25 \Omega, \mathrm{~L}=3.5 \mathrm{H}, \mathrm{C}=45 \mu \mathrm{~F}$

Answer: C

- Watch Video Solution

91. For the circuit as shown in the figure the current through the inductor is 1.6 A , while the current through the condenser is 0.4 A . Then, the current drawn from the source is

A. $I=2 \sqrt{2} A$
B. $\mathrm{I}=1.65 \mathrm{~A}$
C. $I=1.2 \mathrm{~A}$
D. $\mathrm{I}=2.0 \mathrm{~A}$

Answer: C

- Watch Video Solution

92. In the circuit shown in figure, the supply has a constant rms value V but variable frequency f. The frequency at which the voltage drop across R is maximum
is

A. 100 Hz
B. 500 Hz
C. 300 Hz
D. None of these

Answer: B
93. When an AC voltage, of variable frequency is applied to series L-C-R circuit , the current in the circuit is the same at

4 kHz and 9 kHz . The current in the circuit is maximum at
A. 5 kHz
B. 6.5 kHz
C. 4.2 kHz
D. 6 kHz

Answer: D

94. In the given AC circuit

A. current ${ }_{2}$ and V are is same value
B. current ${ }_{2}$ leads I by 90°
C. current I leads I_{2} by θ It 90°
D. current I leads I by θ It 90°

Answer: A
95. An ideal resistance R, ideal inductance L, ideal
capacitance C and AC voltmeters $\underset{1}{V}, \underset{2}{V},{ }_{3}^{V}$ and $\underset{4}{V}$ are connected to an AC source as shown. At resonance

A. Reading in $\underset{3}{V}$ = reading in $\underset{1}{V}$
B. Reading in $V_{1}^{V}=$ reading in $\underset{2}{V}$
C. Reading in $\underset{2}{V}=$ reading in $\underset{4}{V}$
D. Reading in $\underset{2}{V}$ = reading in $\underset{3}{V}$

Answer: D

- Watch Video Solution

96. An AC voltage source of variable angular frequency (ω)
and fixed amplitude V_{0} is connected in series with a capacitance C and an electric bulb of resistance R (inductance zero). When (ω) is increased
A. The bulb glows dimmer
B. The bulb glows brighter
C. Total impedance of the circuit is unchanged
D. Total impedance of the circuit increases

- Watch Video Solution

97. The reading of ammeter and voltmeter in the following circuit are respectively

A. 2 A , 200 V
B. $1.5 \mathrm{~A}, 100 \mathrm{~V}$
C. 2.7 A, 220 V
D. $22 \mathrm{~A}, 220 \mathrm{~V}$

- Watch Video Solution

98. In the circuit below, the $A C$ source the voltage $V=20 \cos (\omega t)$ volts with $\omega=2000 \mathrm{rad} / \mathrm{sec}$. The amplitude of the current will be nearest to

A. 2:0
B. 3.3 A
C. $2 \sqrt{5} \mathrm{~A}$
D. $\sqrt{5} \mathrm{~A}$

Answer: A

- Watch Video Solution

99. In a series L-C-R circuit the voltage across resistance,
capacitance and inductance is 10 V each. If the capacitance is short circuited, the voltage across the inductance will be
A. $10 / \sqrt{2} \mathrm{~V}$
B. 10 V
C. $10 \sqrt{2} \mathrm{~V}$
D. 20 V

D Watch Video Solution

100. In the circuit shown, rms circuit is 11 A . The potential difference across the inductor is

A. 220 V
B. 0 V
C. 300 V
D. 200 V

Answer: D

D Watch Video Solution

101. A inductor of reactance 1Ω and a resistor of 2Ω are connected in series to the terminals of a 6 V (rms) a.c.
source. The power dissipated in the circuit is
A. 8 W
B. 12 W
C. 14.4 W
D. 18 W

- Watch Video Solution

102. An AC circuit consists of a resistance and a choke coil in series. The resistance is of 220Ω and choke coils is of 0.7 H . The power abosorbed from 220 V and 50 Hz , source connected with the circuit , is
A. 55 W
B. 110 W
C. 220 W
D. 440 W

- Watch Video Solution

103. In the series L-C-R circuit , the voltmeter and ammeter readings are respectively

A. $V=200 \mathrm{~V}, \mathrm{I}=4 \mathrm{~A}$
B. $V=150, I=2 \mathrm{~A}$
C. $V=100, I=5 \mathrm{~A}$
D. $\mathrm{V}=100 \mathrm{~V}, \mathrm{I}=2 \mathrm{~A}$

Answer: D

D Watch Video Solution

104. Current in resistance is 1 A , then

A. $V=5 \mathrm{~V}$
B. impedance of network is 5Ω
C. power factor of given circuit is (0.6) lagging (current is lagging)
D. All the above

Answer: D

- Watch Video Solution

105. Which of the following statements is correct regarding the AC circuit shown in the adjacent figure?

A. The rms value of current through the circuit is $\underset{r m s}{i}=$ $5 \sqrt{2} \mathrm{~A}$
B. The phase difference between source emf and
current is $=\cos ^{-1}(1 / 3)$
C. Avereage power dissipated in the circuit is 500 W
D. None of the above

Answer: D
106. An $L-C-R$ series circuit with 100Ω resistance is connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°.

When only the inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit
A. 50 W
B. 100 W
C. 200 W
D. 400 W

- Watch Video Solution

107. A virtual current of $4 A$ and 50 Hz flows in an $A C$ circuit contaning a coil. The power consumed in the coil is
$240 W$.If the virtual voltage across the coil is 100 v then its inductance will be
A. $1 / 3 \pi$
B. $1 / 5 \pi \mathrm{H}$
C. $1 / 7 \pi \mathrm{H}$
D. $1 / 9 \pi \mathrm{H}$

- Watch Video Solution

108. An inductance L , a capacitor of $20 \mu \mathrm{~F}$ and a resistor of 10Ω are connected in series with an AC source of frequency 50 Hz . If the current is in phase with the voltage, then the inductance of the inductor is
A. 2.00 H
B. 0.51 H
C. 1.5 H
D. 0.99 H

Answer: B
109. An LCR series circuit consists of a resistance of a 10Ω a capacitance of reactance 60Ω and an inductor coil The circuit is found to resonate when put across a $300 \mathrm{~V}, 100$ Hz supply The inductance of the coil is $($ taken $\pi=3)$.
A. 0.1 H
B. 0.01 H
C. 0.2 H
D. 0.02 H

Answer: A

- Watch Video Solution

110. A capacitor of capacitance $1 \mu F$ is charged to a potential of $1 V$, it is connected in parallel to an inductor of inductance $10^{-3} H$. The maximum current that will flow in the circuit has the value
A. $\sqrt{1000} \mathrm{~mA}$
B. 1A.
C. 1 mA
D. 1000 mA

Answer: A
111. An inductor L and a capacitor C are connected in the circuit as shown in the figure. The frequency of the power supply is equal to the resonant frequency of the circuit.

Which ammeter will read zero ampere

A. ${ }_{1}^{A}$
B. A

2
C. A

3
D. None of these

Answer: C

- Watch Video Solution

112. In the series L-C-R circuit , the voltmeter and ammeter readings are

A. $V=100 \mathrm{~V}, \mathrm{I}=2 \mathrm{~A}$
B. $V=100 \mathrm{~V}, \mathrm{I}=5 \mathrm{~A}$
C. $V=1000 \mathrm{~V}, \mathrm{I}=2 \mathrm{~A}$
D. $V=300 \mathrm{~V}, \mathrm{I}=1 \mathrm{~A}$

Answer: A

D Watch Video Solution

113. Which of the following options is correct with respect to the circuit diagram given below?

A. $R=400 \Omega, C=0.5 \mu \mathrm{~F}$
B. $\mathrm{R}=500 \Omega, \mathrm{C}=1 \mu \mathrm{~F}$
C. $\mathrm{R}=500 \Omega, \mathrm{C}=1 \mu \mathrm{~F}$
D. $\mathrm{R}=400 \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}$

Answer: B

D Watch Video Solution

114. When 100 V DC is applied across a solenoid, a current of 1.0 A flows in it. When 100 V AC is applied across the same coil. The current drops to $0.5 A$. If the frequency of the ac source is 50 Hz , the impedance and inductance of the solenoid are
A. 200Ω and 0.55 H
B. 100Ω and 0.86 H
C. 200Ω and 1.0 H
D. 1100Ω and 0.93 H

Answer: A

- Watch Video Solution

115. An ideal choke takes a current of 10 A when connected to an ac supply of 125 V and 50 Hz . A pure resistor under the same conditions takes a current of 12.5 A. If the two are connected to an ac supply of 100 V and 40 Hz , then the
current in series combination of above resistor and inductor is
A. 10A.
B. 5 A .
C. $5 \sqrt{2} \mathrm{~A}$
D. $10 \sqrt{2} \mathrm{~A}$

Answer: C

- Watch Video Solution

116. An AC source is connected with a resistance (R) and an unchanged capacitance C, in series. The potential difference across the resistor is in phase with the initial
potential difference across the capacitor for the first time at the instant (assume that at $\mathrm{t}=0$, emf is zero)
A. $\frac{\pi}{\Omega}$
B. $2 \frac{\pi}{\Omega}$
C. $\frac{\pi}{2} \Omega$
D. $3 \frac{\pi}{2} \Omega$

Answer: D

- Watch Video Solution

117. Current through an $A C$ series $L-C-R$ circuit is $2 A$ if operated at resonance frequency, and 1 A if operated at 50% less than resonant frequency. The current (in A) if
the frequency is 100% more than the resonant frequency, is
A. $\sqrt{2}$
B. 1
C. $\sqrt{3}$
D. Data insufficient

Answer: B

- Watch Video Solution

118. For an $A C$ circuit containing only, the applied $A C$ voltage waveform is shown in figure.

For this situation, mark the correct stament(s).

A. As V increases from a to b, the charging of capacitor rakes place
B. As V increases from a to b ,the current is circuit decreases from maximum to zero value
C. As V decreases from b to c, the capacitor discharges
D. As V decreases from b to c charging of capacitor takes plaece
119. An Ac voltage $V=V_{0} \sin 100 t$ is applied to the circuit, the phase difference between current and voltage is found to be $\frac{\pi}{4}$, then

A. $\mathrm{R}=100 \Omega, \mathrm{C}=\mu \mathrm{F}$
B. $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$
C. $\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{L}={ }^{\mathrm{H}} \mathrm{H}$
D. $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{L}=10 \mathrm{H}$.

Answer: B

D Watch Video Solution

120. In the given $A C$ circuit, when switch S is at position 1 , the source emf leads current by $\frac{\pi}{6}$. Now, if the switch is at position 2, then

A. current leads the source emf by $\frac{\pi}{4}$
B. current leads source emf by $\frac{\pi}{3}$
C. source emf leads current by $\frac{\pi}{4}$
D. source emf leads current by $\frac{\pi}{3}$

Answer: A

- Watch Video Solution

121. An ac ammeter is used to measure currnet in a circuit.

When a given direct current passes through the circuit.

The ac ammeter reads 3 A . When another alternating current passes through the circuit, the ac ammeter reads

4A. Then find the reading of this ammeter (inA), if dc and ac flow through the circuit simultaneously.
A. 3 A
B. 4 A .
C. 7 A
D. 5 A

Answer: D

D Watch Video Solution

122. An LC circuit contains a 20 mH inductor and a $50 \mu F$ capacitor with an initial charge of 10 mC . The resistance of the circuit is negligible. Let the instant at which the circuit
which is closed be $\mathrm{t}=0$. At what time the energy stored is completely magnetic ?
A. 3 A
B. $t=0$
C. $t=1.54 m s$
D. $t=3.14 m s$

- Watch Video Solution

123. The diagram shows a capacitor C and a resistor R connected in series to an $A C$ source. V_{1} and V_{2} are voltmeters and A is ammeter

Now, consider the following statemensts :
(I) Reading in A and V_{2} are always in phase.
(II) Reading in V_{1} is ahead in phase with reading in V_{2},
(III) Reading in A and V_{1} are always in phase. Which of these statements are/is correct
A. I only
B. II only
C. I and II only
D. II and III only

Answer: B

- Watch Video Solution

124. When an alternating voltage of 220 V is applied across
a device P, a current of $0.25 A$ flows through the circuit and it leads the applied voltage by a angle $\frac{\pi}{2}$ radian.

When the same voltage source is connected across another device Q, the same current is observed in the circuit but in phase with the applied voltage. What is the current when the same source is connected across a series combination of P and Q ?
A. $\frac{1}{4 \sqrt{2}}$ A lagging in phase by $\frac{\pi}{4}$ with voltage
B. $\frac{1}{4 \sqrt{2}}$ A leading in phase by $\frac{\pi}{4}$ with voltage
C. $\frac{1}{\sqrt{2}}$ A leading in phase by $\frac{\pi}{4}$ with voltage
D. $\frac{1}{\sqrt{2}}$ A leading in phase by $\pi / 6$ with voltage

Answer: B

D Watch Video Solution

125. In the circuit shown in figure, the AC source gives a voltage $V=20 \cos (2000 t)$. Neglecting source resistance, the voltmeter and ammeter readings will be
(approximately)

A. $4 \mathrm{~V}, 2.0 \mathrm{~A}$
B. $0 \mathrm{~V}, 2 \mathrm{~A}$
C. 0 V, 1.4 A
D. $8 \mathrm{~V}, 2.0 \mathrm{~A}$

Answer: C
126. A fully charged capacitor C with initial charge $\underset{o}{q}$ is connected to a coil of self-inductance L at $t=0$. The time at which the energy is stored equally between the electric and the magnetic fields is
A. $\pi \sqrt{L} C$
B. $\pi / 4 \sqrt{L} C$
C. $2 \pi \sqrt{L} C$
D. $\sqrt{L} C$

Answer: B

- Watch Video Solution

127. A circuit draws 330 W from a $110 \mathrm{~V}, 60 \mathrm{~Hz} \mathrm{AC}$ line. The power factor is 0.6 and the current lags the voltage. The capacitance of a series capacitor that will result in a power factor of unity is equal to
A. $31 \mu \mathrm{~F}$
B. $54 \mu \mathrm{~F}$
C. $151 \mu \mathrm{~F}$
D. $201 \mu \mathrm{~F}$

Answer: B
128. An are lamp requires a direct current of 10 A at 80 V to function. If it is connected to a $220 \mathrm{~V}(\mathrm{rms}), 50 \mathrm{~Hz} \mathrm{AC}$ supply, the series inductor needed for it to work is close to:
A. 0.08 H
B. 0.044 H
C. 0.065 H
D. 80 H

D Watch Video Solution

129. In the circuit shown in figureure the $A C$ source gives
a voltage $V=20 \cos (2000 t)$. Neglecting source
resistance, the voltmeter and and ammeter readings will be

A. $0 \mathrm{~V}, 0.47 \mathrm{~A}$
B. $1.68 \mathrm{~V}, 0.47 \mathrm{~A}$
C. $0 \mathrm{~V}, 1.4 \mathrm{~A}$
D. $5.6 \mathrm{~V}, 1.4 \mathrm{~A}$

Answer: C::D
130. An inductor $\left.X_{L}=2 \Omega\right)$, a capacitor $\left(X_{C}=8 \Omega\right)$ and a resistance ($\mathrm{R}=8 \Omega$) are connected in series with an AC source. The voltage output of $A C$ source is given by $\mathrm{V}=10$ $\cos (100 \pi t)$

The instantaneous potential difference between points A and B, when the applied voltage is $3 / 5$ th of the maximum value of applied voltage is

A. 0 V
B. 6 V
C. 8 V
D. None of these

Answer: B

- Watch Video Solution

131. Two identical incandescent light bulbs are connected as shown in figure. When the circuit is an AC voltage source of frequency f, which of the following observations
will be correct.

A. Both bulbs will glow alternatively
B. Both bulbs will glow with same brightness provided

$$
\mathrm{f}=1 / 2 \pi \frac{\sqrt{1}}{L} C
$$

C. Bulb $\underset{1}{b}$ will light up initially and goes OFF, bulb $\underset{2}{b}$ will be ON constantly
D. Bulb b will blink and bulb b will be ON constantly 1 2

D Watch Video Solution

132. A series $R-C$ circuit is connected to AC voltage source .

Consider two cases, (A) when C is without a dielectric medium and (B) when C is filled with dielectric of constant
4. The current ${ }_{R}^{I}$ through the resistor and voltage ${ }_{C}^{V}$ across the capacitor are compared in the two cases. Which of the following is/are true

D Watch Video Solution

133. In the given circuit, the AC source has
$(\omega)=100 \mathrm{rad} / \mathrm{s}$. Considering the inductor and capacitor
to be ideal, the correct choice(s) is (are)

A. The current through the circuit, I is 0.3 A
B. The current through the circuit, I is $0.3 \sqrt{2} \mathrm{~A}$
C. The voltage across 100Ω resistor $=10 \sqrt{2} \mathrm{~V}$
D. The voltage across 50Ω resistor $=10 \mathrm{~V}$

Answer: A::C::D
134. At time $t=0$, terminal A in the circuit shown in the figure is connected to B by a key and alternating current $\mathrm{I}(\mathrm{t})=\underset{o}{I} \cos (\omega \mathrm{t})$, with $\underset{o}{I}=1 \mathrm{~A}$ and $\omega=500 \mathrm{rads}^{-1}$ starts flowing in it with the initial direction shown in the figure .

At $t=7 \pi / 6 \omega$, the keys is switched from B to D. Now onwards only A and D are connected. A total charge Q flows from the battery to charge the capacitor fully. If $\mathrm{C}=$ $20 \mu, \mathrm{R}=10 \Omega$ and the battery is deal with emf of 50 V , identify the correct statement(s).

A. Magnitude of the maximum charge on the capacitor

$$
\text { before } t=7 \pi / 6 \omega \text { is } 1 \times 10^{-3} \mathrm{C}
$$

B. The current in the left part of the circuit just before $\mathrm{t}=7 \pi / 6 \omega$ is clockwise
C. Immediately after A is connected to D. The current in R is 10 A
D. $\mathrm{Q}=2 \times 10^{-3} \mathrm{C}$

Answer: C::D

- Watch Video Solution

135. A L-C-R circuit is equivalent to a damped pendulum . In an L-C-R circuit the capacitor is charged to $\underset{o}{Q}$ and then
connected to the L and R as shown below.
If a student plots graph of the square of maximum charge on the capacitor with time (t) for two different values L and $\underset{2}{L}(\underset{1}{L \mathrm{gt}} \underset{2}{ } \operatorname{of} \mathrm{~L})$, then which of the following represents this graph correctly (plots are schematic and not drawn to scale)

A.
(b) ${ }^{Q_{\max }^{2}} \underset{L_{1}}{ } \mathrm{~L}$
B.
C.

D.

Answer: A

- Watch Video Solution

Assertion and Reason

1. These question consists of two statements each linked as Assertion and Reason. While answering these question
you are required to choose any one of the following five responses.

Assertion: Average value of current in half the cycle an AC circuit can't be zero.

Reason: For positive half cycle average value of current is
2 $\frac{2}{\pi} i_{0}$, where i_{0} is the peak value current. In time interval from t_{1} to t_{2} average value of current will be zero.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

D Watch Video Solution

2. Assertion: Current versus time graph is as shown in figure, rms value of current is 4A.

Reason: For a constant current, rms current is equal to that constant values.

Reason: For a constant current, rms current is equal to
that constant value.

A. If both Assertion and Reason are true and Reason is
the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is
not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

D View Text Solution

3. Assertion: Inductive reactance of an inductor in $D C$ circuit is zero.

Reason: Angular frequency of DC circuit is zero.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

D Watch Video Solution

4. Assertion: If an inductor coil is connected to DC source,
the current supplied by it is I_{1}. If the same coil is connected with an AC source of same voltage. Then current is I_{2}, then $I_{2}<I_{1}$.

Reason: In AC circuit, inductor coil offers more resistance.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: A

D Watch Video Solution

5. Assertion: In an AC, only capacitor circuit has instantaneous power equal to zero at any instant of time. Reason: Phase difference current function and voltage function is 90°.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: D

- Watch Video Solution

6. Assertion: A capacitor is not connected in a DC circuit.

Reason: In DC circuit, current through capacitor circuit becomes zero in stady state.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: D

- Watch Video Solution

7. Assertion: In series, L-C-R voltage across capacitor is always less than the applied voltage.

Reason: In series L-C-R circuit, $V=\sqrt{\left(V^{2}+\left(V_{L}^{2}-V_{C}^{2}\right)\right)}$
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: D

- Watch Video Solution

8. Assertion: When a ferromagnetic rod is inserted inside an inductor, then current in L-C-R, alternating circuit will decrease.

Reason: By inserting the ferromagnetic rod inside the
inductor, coefficient of self induction and hence the net impedance will increases.
A. If both Assertion and Reason are true and Reason is
the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is
not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If both Assertion and Reason are false.
9. Assertion: At resonance, power factor of L-C-R series circuit is 1.

Reason: At resonance, $X_{C}=X_{L}$
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.
10. Assertion: At frequency greater than resonance frequency circuit is inductive in nature.

Reason: $X_{L} \propto \omega$
A. If both Assertion and Reason are true and Reason is
the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: A
11. Assertion: In L-C-R series AC circut, $X_{L}=X_{C}=R$ at a given frequency. When frequency is doubled, the impedance of the circuit is $\frac{\sqrt{13}}{2}$ R.

Reason: The given frequency is resonancle frequency.
A. If both Assertion and Reason are true and Reason is
the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: B
12. Assertion: Averae power in an AC circuit is given by

$$
P=I_{r m s}^{2} R
$$

Reason: In one full cycle, net power is dissipated only along a resistor.
A. If both Assertion and Reason are true and Reason is
the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.
13. Assertion: In one complete cycle, power is consumed only across a resistance in series L-C-R circuit.

Reason: Average power consumed across an inductor or a capacitor is zero.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

D Watch Video Solution

14. Assertion: At resonance, power factor of series L-C-R circuit is zero.

Reason: At resonance, current function and voltage functions are in same phase.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: D

D Watch Video Solution

15. Assertion: An $A C$ can be transmitted over long distances without much power loss.

Reason: An AC can be stepped up or down with the help of a transformer.
A. If both Assertion and Reason are true and Reason is the correct explanation of Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true but Reason is false.
D. If Assertion is false but Reason is true.

Answer: B

D Watch Video Solution

Match the Columns

1. Angular frequency ω in an $A C$, L-C-R series circuit is gradually increased. Then, match the following two
columns.

	Column I		Column II
A.	Capacitive reactance	(p)	will continuously increase
B.	Inductive reactance	(q)	will continuously decrease
C.	Resistance	(r)	will remain constant
D.	Total impedance	(s)	will first decrease then increase

- Watch Video Solution

2. Match the following two columns for L-C-R series AC circuit.

Column I

A. At resonance frequency	(p)	Power factor $=0$	
B.	No resistance in the circuit	(q)	Power factor $=1$
C.	Only resistance in the circuit	(r)	Circuit is capacitor
D.	Frequency greater than the resonance frequency	(s)	Circuit is inductive

- Watch Video Solution

3. In a series L-C-R, AC circuit assuming that symbols have their usual meanings match the following two columns.

Column I
 Column II

A. \quad If R is decreased	(p) I will decrease
B. \quad If ω is decreased	(q) I will increase
C. If X_{L} is increased	(r) I will first decrease,
then increase	

D. If Z is increased \quad (s) Can't say

D Watch Video Solution

4. In an AC, series L-C-R circuit, $R=X_{L}=X_{C}$ and applied

AC , voltage is V . Then match the following two columns.

A.	V_{R}	(p)	zero
B.	V_{C}	(q)	V
C.	$V_{R L}$	(r)	$\sqrt{2} V$
D.	$V_{C L}$	(s)	$2 V$

- Watch Video Solution

5. In an AC series $L-C-R$ circuit, applied voltage is

$$
V=\left(100 \sqrt{2} \sin \left(\omega t+45^{\circ}\right)\right) \mathrm{V}
$$

Given that, $R=30 \Omega, X_{L}=50 \Omega$ and $X_{C}=10 \Omega$ Now match the following two columns.

Column I

Column II

A. Current in the circuit
(p) 120 SI unit.
B. Power dissipated in the circuit
(q) 60 SI units
C. Potential difference across
(r) 2 Sl units resistance
D. Potential difference across
(s) None inductance

Medical Entrance s gallery

1. A filament bulb $(500 \mathrm{~W}, 100 \mathrm{~V})$ is to be used in a 230 V main supply. When a resistance R is connected in series, it works perfectly and the bulb consumers 500 W . The value of R is
A. 230Ω
B. 46Ω
C. 25Ω
D. 13Ω

Answer: C
2. Which of the following combinations should be selected for better turning of an LCR circuit used for communication?
A. $R=20 \Omega$, L=1.5 H, $C=35 \mu F$
B. $R=25 \Omega$, $\mathrm{L}=2.5 \mathrm{H}, C=45 \mu F$.
C. $R=15 \Omega, \mathrm{~L}=3.5 \mathrm{H}, C=30 \mu F$
D. $R=25 \Omega, \mathrm{~L}=1 / 5 \mathrm{H}, C=45 \mu F$

Answer: B
3. The potential differences across the resistance, capacitance and inductance are $80 \mathrm{~V}, 40 \mathrm{~V}$ and 100 V respectively in an $L-C-R$ circuit. The power factor of this circuit is
A. 0.4
B. 0.5
C. 0.8
D. 1

Answer: C

D Watch Video Solution

4. A 100Ω resistance and a capacitor of 100Ω reactance are connected in series across a 220 V source. When the capacitor is 50% charged, the peak value of the displacement current is
A. 2.2 A
B. 0.45833333333333
C. 4.4 A
D. $11 \sqrt{2} \mathrm{~A}$

Answer: A

D Watch Video Solution

5. A small signal voltage $V(t)=V_{0} \sin \omega t$ is applied across an ideal capacitor C :
A. over a full cycle the capacitor C does not consume any energy from the voltage source.
B. current $\mathrm{I}(\mathrm{t})$ is in phase with voltage $\mathrm{V}(\mathrm{t})$
C. current $I(t)$ leads voltage $\mathrm{V}(\mathrm{t})$ by 180°
D. current $\mathrm{I}(\mathrm{t})$, lags voltage $\mathrm{V}(\mathrm{t})$ by 90°.

Answer: A

- Watch Video Solution

6. An inductor 20 mH , a capacitor $50 \mu F$ and a resistor 40Ω are connected in series across of emf $V=10 \sin 340 t$. The power loss in $A . C$. circuit is
A. 0.67 W
B. 0.76 W
C. 0.89 W
D. 0.51 W

Answer: D

7. A transformer is used to light a 100 W and 110 V lamp from a 220 V mains. If the main current is $0.5 A$, the Efficiency of the transformer is approximately:
A. 96%
B. 90%
C. 99%
D. 95%

Answer: B
(Watch Video Solution
8. An alternating voltage given as, $V=100 \sqrt{2} \sin 100 t \mathrm{~V}$ is applied to a capacitor of $1 \mu F$. The current reading of the ammeter will be equal to mA.
A. 20
B. 10
C. 40
D. 80

Answer: B

- Watch Video Solution

9. An inductor coil is connected to a 12 V battery and drawing a current 24 A . This coil is connected to capacitor and an AC source of rms voltage rating 24 V in the series connection. The rms current through the circuit would found to be
A. 48 A
B. 36 A
C. 0
D. 24 A

Answer: A
10. A resistance R draws power P when connected to an
$A C$ source. If an inductance is now placed in series with the resistance, such that the impedence of the circuit becomes Z, the power drawn will be
A. $P\left(\frac{R}{Z}\right)^{2}$
B. $P \sqrt{\frac{R}{Z}}$
C. $P\left(\frac{R}{Z}\right)$
D. P

Answer: A

11. A condenser of $250 \mu F$ is connected in parallel to a coil of inductance 0.16 mH while its effective resistance is 20Ω.

Determine the resonant frequency
A. $9 \times 10^{4} \mathrm{~Hz}$
B. $16 \times 10^{7} \mathrm{~Hz}$
C. $8 \times 10^{5} \mathrm{~Hz}$
D. $9 \times 10^{3} \mathrm{~Hz}$

Answer: C

12. The electric current in AC circuit is given by the relation
$i=3 \sin \omega t+4 \cos \omega t$. The rms value of the current in the circuit in ampere is
A. $\frac{5}{\sqrt{2}}$
B. $5 \sqrt{2}$
C. $\frac{\sqrt{2}}{5}$
D. $\frac{1}{\sqrt{2}}$

Answer: A
13. In an LCR series circuit the capacitance is changed from C to $4 C$ For the same resonant fequency the inductance should be changed from L to .
A. 2 L
B. $\frac{L}{2}$
C. 4 L
D. $\frac{L}{4}$

Answer: D

- Watch Video Solution

14. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current lead the voltages by 45°. The value of C is :
A. $\frac{1}{\pi f(2 \pi f L+R)}$
B. $\frac{1}{\pi f(2 \pi f L-R)}$
C. $\frac{1}{2 \pi f(2 \pi f L-R)}$
D. $\frac{1}{2 \pi f(2 \pi f L+R)}$

Answer: D

- Watch Video Solution

15. The average power is dissipated in a pure inductor is
A. $\frac{V I^{2}}{4}$
B. $\frac{1}{2} V I$
C. zero
D. $V I^{2}$

Answer: C

- Watch Video Solution

16. A transformer having efficiency of 90% is working on 200 V and $3 k W$ power supply. If the current in the secondary coil is $6 A$, the voltage across the secondary coil and current in the primary coil respectively are A. $300 \mathrm{~V}, 15 \mathrm{~A}$
B. $450 \mathrm{~V}, 15 \mathrm{~A}$
C. $450 \mathrm{~V}, 13.5 \mathrm{~A}$
D. 600 V, 15 A

Answer: B

- Watch Video Solution

17. A dynamo converts
A. mechanical energy into thermal energy
B. electrical energy into thermal energy
C. thermal energy into electrical energy
D. mechanical energy into electrical energy

- Watch Video Solution

18. Transformer is used to
A. convert AC to DC voltage
B. convert DC to AC voltage
C. obtain desired DC power
D. obtain desired AC voltage and current

Answer: D

Watch Video Solution

19. A step up transformer operates on a 230 V line and a load current of 2 ampere. The ratio of the primary and secondary windings is $1: 25$. What is the current in the primary?
A. 12.5 A
B. 50 A
C. 8.8 A
D. 25 A

Answer: B
20. A step-down transformer has 50 turns on secondary and 1000 turns on primary winding. If a transformer is connected to $220 \mathrm{~V}, 1 \mathrm{~A}$ C AC source, then what is output current of the transformer ?
A. $\frac{1}{20} A$
B. 20 A
C. 100 A
D. 0.083333333333333

Answer: B

- Watch Video Solution

21. In an $A C$ circuit, V and I are given by $V=100 \sin (100 t) v o<s, I=100 \sin \left(100 t+\frac{\pi}{3}\right) m A$. The power dissipated in circuit is
A. 100 W
B. 10 W
C. 5 W
D. 2.5 W

Answer: D

- Watch Video Solution

22. The average power dissipated in $A C$ circuit is $2 W$. If a current flowing throuh a circuit is 2 A , impedance is 1Ω, then what is the power factor of the circuit?
A. 0.5
B. 1
C. Zero
D. $\frac{1}{\sqrt{2}}$

Answer: A

D Watch Video Solution
23. In an L-C-R series circuit, the potential difference between the terminals of the inductance is 60 V , between the terminals of the capacitor is 30 V and that across the resistance is 40 V . Then, the supply voltage will be equal to
A. 10 V
B. 50 V
C. 70 V
D. 130 V

Answer: B
24. An alternating emf given by equation
$e=300 \sin (100 \pi) t V$
is applied to a resistance 100Ω. The rms current through the circuit is (in amperes).
A. $\frac{3}{\sqrt{2}}$
B. $\frac{9}{\sqrt{2}}$
C. 3
D. $\frac{6}{\sqrt{2}}$

Answer: A

- Watch Video Solution

25. A series L-C-R circuit contains inductance 5 mH , capacitor $2 \mu F$ and resistance 10Ω. If a frequency $A C$ source is varied, then what is the frequency at which maximum power is dissipated?
A. $\frac{10^{5}}{\pi} \mathrm{~Hz}$
B. $\frac{10^{5}}{\pi} \mathrm{~Hz}$
C. $\frac{2}{3} \times 10^{5} \mathrm{~Hz}$
D. $\frac{5}{\pi} \times 10^{3} \mathrm{~Hz}$

Answer: D

- Watch Video Solution

26. The alternating current in a circuit is given by $I=50 \sin 314 t$. The peak value and frequency of the current are
A. $I_{0}=25$ A and $\mathrm{f}=100 \mathrm{~Hz}$
B. $I_{0}=50 \mathrm{~A}$ and $\mathrm{f}=50 \mathrm{~Hz}$
C. $I_{0}=50 \mathrm{~A}$ and $\mathrm{f}=100 \mathrm{~Hz}$
D. $I_{0}=25 \mathrm{~A}$ and $\mathrm{f}=50 \mathrm{~Hz}$

Answer: B

- Watch Video Solution

27. A 50 Hz AC signal is applied in a circuit of inductance of $(1 / \pi) \mathrm{H}$ and resistance 2100Ω. The impedance offered by the circuit is
A. 1500Ω
B. 1700Ω
C. 2102Ω
D. 2500Ω

Answer: C

28. If the alternating current $\mathrm{I}=I_{1} \cos \omega t+I_{2} \sin \omega t$, then the rms current is given by
A. $\frac{I_{1}+I_{2}}{\sqrt{2}}$
B. $\frac{\left|I_{1}+I_{2}\right|}{\sqrt{2}}$
C. $\sqrt{\frac{I_{1}^{2}+I_{2}^{2}}{2}}$
D. $\sqrt{\frac{I_{1}^{2}+I_{2}^{2}}{\sqrt{2}}}$

Answer: C

- Watch Video Solution

29. A 0.01 H inductor and $\sqrt{3} \pi \Omega$ resistance are connected in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ AC source. The phase
difference between the current and emf is
A. $\frac{\pi}{2} r a d$
B. $\frac{\pi}{6} \mathrm{rad}$
C. $\frac{\pi}{3} \mathrm{rad}$
D. *-

Answer: B

- Watch Video Solution

30. A coil of self-inductance L is connected in series with a bulb B and an $A C$ source. Brightness of the bulb decreases when
A. frequency of the AC source is decreased
B. number of turns in hte coil is reduced
C. a capacitance of reactance $X_{C}=X_{L}$ is included in the same circuit.
D. an iron rod is inserted in the coil

Answer: D

- Watch Video Solution

31. For a transformer, the turns ratio is 3 and its efficiency
is 0.75 . The current flowing in the primary coil is 2 A and the voltage applied to it is 100 V . Then the voltage and the
current flowing in the secondary coild are. \qquad respectively.
A. $150 \mathrm{~V}, 1.5 \mathrm{~A}$
B. $300 \mathrm{~V}, 0.5 \mathrm{~A}$
C. $300 \mathrm{~V}, 1.5 \mathrm{~A}$
D. $150 \mathrm{~V}, 0.5 \mathrm{~A}$

Answer: B

- Watch Video Solution

32. In R-L-C series circuit, the potential difference across each element is 20 V . Now the value of hte resistance alone is doubled, then PD across R, L and C respectively.
A. $20 \mathrm{~V}, 10 \mathrm{~V}, 10 \mathrm{~V}$
B. $20 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}$
C. $20 \mathrm{~V}, 40 \mathrm{~V}, 40 \mathrm{~V}$
D. $10 \mathrm{~V}, 20 \mathrm{~V}, 20 \mathrm{~V}$

Answer: A

- Watch Video Solution

33. A series combination of resistor (R), capacitor (C) is connected to an AC source of angular frequency ω. Keeping the voltage same, If the frequency is changed to $\frac{\Omega}{3}$, the current becomes half of the original current. Then,
the ratio of the capacitance reactance and resistance at the former frequency is
A. $\sqrt{0.6}$
B. $\sqrt{3}$
C. $\sqrt{2}$
D. $\sqrt{6}$

Answer: A

- Watch Video Solution

34. If both the resistance and the inductance in an LR AC series circuit are doubled the new impedance will be
A. halved
B. fourfold
C. doubled
D. quadrupted

Answer: C

- Watch Video Solution

35. A L-C-R circuit with $\mathrm{L}=1.00 \mathrm{mH}, \mathrm{C}=10 \mu F$ and $R=50 \Omega$, is driven with 5V AC voltage. At resonance, the current through the circuit is
A. 0.2 A
B. 0.25 A
C. 0.15 A
D. 0.1 A

Answer: D

D Watch Video Solution

36. For a series $\mathrm{L}-\mathrm{C}-\mathrm{R}$ circuit with $\mathrm{L}=1.00 \mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}$ and $R=50 \Omega$, is driven with 5 V AC voltage. At resosance, the current through the circuit is
A. 0.2 A
B. 0.25 A
C. 0.15 A
D. 0.1 A

D Watch Video Solution

37. An air core coil and an electric bulb are connected in series with an AC source. If an iron rod is put in the coil, then the intensity of light of the bulb will
A. remains same
B. increases
C. decrease
D. first decrease then increase

Answer: C

38. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is
A. zero
B. $\frac{\omega L}{R}$
C. $\frac{R}{\sqrt{R^{2}+\Omega^{2} L^{2}}}$
D. $R / \omega L$

Answer: C
39. The self-inductance of a choke coil is 10 mH . When it is connected with a $10 V D C$ source, then the loss of power is 20 watt. When it is connected with 10 volt $A C$ source loss of power is 10 watt. The frequency of $A C$ source will be
A. 80 Hz
B. 100 Hz
C. 120 Hz
D. 220 Hz

Answer: A
40. If the power factor is $1 / 2$ in a series $R L$ circuit with $R=100 \Omega$. If $A C$ mains, $50 H z$ is used then L is
A. $\pi \mathrm{H}$
B. $\frac{\sqrt{3}}{\pi} H$
C. $\frac{\pi}{\sqrt{3}} H$
D. $\frac{\sqrt{2}}{\pi} \mathrm{H}$

Answer: B

D Watch Video Solution

41. In an electrical circuit R, L, C and an $A C$ voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage
and the current in the circuit is $\pi / 3$. If instead, C is removed from the circuit, difference the phase difference is again $\pi / 3$. The power factor of the circuit is
A. $1 / 2$
B. $1 / \sqrt{2}$
C. 1
D. $\sqrt{3} / 2$

Answer: C

- Watch Video Solution

42. The current (I) in the inductance is varying with time according to the plot shown in figure.

Which one of the following is the correct variation of voltage with time in the coil?
(a) $\overbrace{T / 2}^{V} \rightarrow$
A.
(b)

B.
(c) $\overbrace{T / 2} \overbrace{T}$
C.
D.
(d)

- Watch Video Solution

43. A transformer of 100 \% efficiency has 200 turns in the primary and 40,000 turns in the secondary. It is connected to a 200 V a.c. mains and the secondary feeds to a $100 k \Omega$ resistance. Calculate the output potential difference per turn and the power delivered to the load.
A. 1.1 V
B. 25 V
C. 18 V
D. 11 V

Answer: A

44. A step-down transformer is used on a 1000 V line to deliver 20 A at 120 V at the secondary coil. If the efficiency of the transformer is 80% the current drawn from the line is.
A. 3 A
B. 30 A
C. 0.3 A
D. 2.4 V

Answer: A
45. An electric motor runs a D. C. source of e.m.f. 200 V and draws a current of 10 A . If the efficiency is 40%, then ressistance of the armature is:
A. 2Ω
B. 8Ω
C. 12Ω
D. 16Ω

Answer: C

- Watch Video Solution

46. When an ac source of emfe $=E_{0} \sin (100 t)$ is connected across a circuit, the phase difference between emf e and currnet I in the circuit is observed to be $(\pi) /(4)$ as shown in fig. If the circuit consists possibly only of R-C or R-C of L-R series, find the relationship find the relationship between the two elements.

A. $R=1 k \Omega, \mathrm{C}=10 \mu F$
B. $\mathrm{R}=1 k \Omega, C=1 \mu F$
C. $R=1 k \Omega, \mathrm{~L}=10 \mathrm{H}$
D. $R=1 \Omega \mathrm{~L}=1 \mathrm{H}$

Answer: C

- Watch Video Solution

47. A series circuit connected across a $200 \mathrm{~V}, 60 \mathrm{~Hz}$ line consists of a capacitive reactance 30Ω non inductive resistor of 44Ω and a coil of inductive reactance 90Ω and resistance 36Ω as shown in the diagram
$X_{C}=30 \Omega$
200 V
60 Hz

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=90 \Omega \\
& \mathrm{R}_{2}=36 \Omega
\end{aligned}
$$

The power dissipated in the inductance coil is
A. 320 W
B. 176 W
C. 144 W
D. 0

Answer: A

- Watch Video Solution

48. A generator at a utility company produces 100 A of current at 4000 V . The voltage is stepped up to 240000 V by a transformer before it is sent on a high voltage transmission line. The current in transmission line is
A. 3.67 A
B. 2.67 A
C. 1.67 A
D. 2.40 A

Answer: C
49. The r.m.s current in an $A C$ circuit is $2 A$. If the wattless
current be $\sqrt{3} A$, what is the power factor?
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{1}{\sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

Others

1. Two identical conductors P and Q are placed on two friction less rails R and S in a uniform magnetic field directed into the plane. If P is moved in the direction shown in figure with a constant speed, then $\operatorname{rod} Q$

A. will be attracted towards P
B. will be repelied away from P
C. will remian stationary
D. mary be repelled or attracted towards P

Answer: A

- Watch Video Solution

2. A conducting circular loop of raidus and resistance R is kept on a horiozntel plane. A vertical time varing magnetic field $B=2 t$ is switched on at time $t=0$. Then
A. power generated in the coil at any time t is constant
B. flow of charge passed through any section between time
C. total charge passed through any section between time $\left(t=0\right.$ to $=2 i s\left(\frac{4 \pi a^{2}}{R}\right)$.

D. All of the above

Answer: D

- Watch Video Solution

3. A conducting rod $P Q$ of length $l=1.0 m$ is moving with a uniform speed $v 2.0 \mathrm{~m} / \mathrm{s}$ in a uniform magnetic field $B=4.0 T$ directed into the paper.

A capacitor of capacity $C=10 \mu F$ is connected as shown
in figure. Then

A. $q_{A}=+80 \mu C$ and $q_{B}=-80 \mu C$
B. $q_{A}=-80 \mu C$ and $q_{B}=+80 \mu C$
C. $q_{A}=0=q_{B}$
D. charge stored in the capacitor increases expontially
with time

Answer: A
4. A square coil $A C D E$ with its plane vertically is released from rest in a horizontal uniform magnetic field \vec{B} of length $2 L$. The accelaration of the coilis

A. less than g for all the time till thr elooop crosses the magnetic field completely
B. less than g when it enters thte field and greter than
when it comes out of the field
C. g all the time
D. less than g when it enters and comes out of the field but equal to g when it is within the field

Answer: D

- Watch Video Solution

5. An equilateral triangular loop $A D C$ having some resistance is pulled with a constant velocity v out of a uniform magnetic field directed inot the paper. At time $t=0$, side $D C$ of the loop at is at edge of the magnetic
field.

The induced current (i) versus time (t) graph will be as
A.

B.

D.

Answer: B

- Watch Video Solution

6. Two conducting rings P and Q of radius r and $3 r$ move in opposite directions with velocities $2 v$ and v respectively on a conducting surface S. There is a uniform magnetic field of magnitude B perpendicular to the plane of the rings.

The potential difference between the highest points of the two rings a

A. zero
B. 2 Brv
C. 6 Brv
D. $10 \mathrm{Br} v$

Answer: D

7. In the given circuit find the ratio of i_{1} to i_{2}. Where is the initial (at $\mathrm{t}=0$) current, and i_{2} is steady state $($ att $=\infty)$ current the battery

A. 0.2
B. 0.8
C. 1.2
D. 1.5
8. In the circuit shown if Fig. the switch S is closed at time $\mathrm{t}=0$. The current through the capacitor and inductor will be equal at time t equal (given $R=\sqrt{L / C}$

A. CR
B. $C R \ln (2)$
c. $\frac{L}{\operatorname{RIn}(2)}$
D. LR

Answer: B

- Watch Video Solution

9. In L-C oscillatios of a circuit, which of the following is true at $t=3 T / 4$ ($\mathrm{T}=$ time period of the oscillation). Assume that at $\mathrm{t}=0$, the capacitor is fully charged?
A. Energy stored in then inductor is zer, while in
capacitor is maximum
B. Energy in the inductor and capacitor is shared equally
C. Energy in the inductor is maximum while in the capacitor is zero
D. none of the above

Answer: C

D View Text Solution

10. A cirular loop of radius 1 m is kept in a magnetic field of strength 2 T (plane of loop is perpendicular to direction of magnetic field). Resistance of the loop wire is $\frac{2}{\pi} \Omega / \mathrm{m}$. A conductor of legth $2 m$ in sliding with a speed 1 ms as shown in figure. Find the instantaneous force acting on
the road (assume rod has negligible resistance).

A. 8 N
B. 16 N
C. 32 N
D. 64 N

Answer: B
11. Find $V_{A}-V_{B}$ in steady state

A. 8 V
B. 16V
C. 24 V
D. none of the above

Answer: C
12. An alternating voltage, of angular frequency ω is induced in electric circuit consisting of inductance L and capacitance C, connected in parallel. Then across the inductance coil
A. current is maximum when $\omega^{2}=\frac{1}{L C}$
B. current is minimum when $\omega^{2}=\frac{1}{L C}$
C. voltage is minimum when $\omega^{2}=\frac{1}{L C}$
D. voltage is maximum when $\omega^{2}=\frac{1}{L C}$

Answer: BD

- Watch Video Solution

13. An rms voltage of 110 V is applied across a series circuit having a resistance 11Ω and an impedance 22Ω. The power consumed is
A. 275 W
B. 366 W
C. 550 W
D. 1100 W

Answer: A

- Watch Video Solution

14. The current through an inductor of $1 H$ is given by $i=31 \sin t$. Find the voltage across the inductor.
A. $3 \sin t+3 \cos t$
B. $3 \cos t+3 \sin t$
C. $3 \sin t+3 t \cos t$
D. $3 t \cos t+\sin t$

Answer: C

- Watch Video Solution

15. The electric current in a circuit is given by
i=3t

Here, t is in second and I in ampere. The rms current for the period to $=0$ to $\mathrm{t}=1 \mathrm{~s}$ is
A. 3 A
B. S
C. \sqrt{A}
D. $3 \sqrt{3} A$

Answer: C

- View Text Solution

16. At a certain frequency ω_{1}, the reactance of a certain capacitor equals that of a certain inductor. If the
frequency is changed to $\omega_{2}=2 \omega_{1}$, the raito of reactance of the inductor to that of the capacitor is:
A. $4: 1$
B. $\sqrt{2}: 1$
C. $1: 2 \sqrt{2}$
D. 1: 2

Answer: A

- Watch Video Solution

17. Choose the correct statement.
A. The diamension of $\frac{\omega L}{R}$ are same as that of strain
B. The diamensions of $\frac{1}{\sqrt{L} C}$ are same as that of angular velocity
C. The dimension of LCR are same as that of time
D. none of the above

Answer: C

D Watch Video Solution

18. An alternating voltage given by $V=300 \sqrt{2} \sin (50 t)$
(in volts) is connected across a $1 \mu F$ capacitor through an
$A C$ ammeter. The reading of the computer will be
A. 10 mA
B. 40 mA
C. 100 mA
D. 15 mA

Answer: D

D Watch Video Solution

19. What will be the reading if the voltmeter across in resistance and ammetere in the cirucit shown in the
figure?

A. $300 \mathrm{~V}, 2 \mathrm{~A}$
B. $800 \mathrm{~V}, 2 \mathrm{~A}$
C. $100 \mathrm{~V}, 2 \mathrm{~A}$
D. $200 \mathrm{~V}, 2 \mathrm{~A}$

Answer: D
20. In the circuit shown in the figure The steady state currents i_{1} and i_{2} in the coils after the switch S is closed are

$$
\text { A. } i_{1}=\frac{E L_{2}}{R\left(L_{1}+L_{2}\right)}
$$

$$
\text { B. } i_{1}=\frac{E L_{1}}{R\left(L_{1}+L_{2}\right)}
$$

$$
\text { C. } i_{2}=\frac{E L_{2}}{R\left(L_{1}+L_{2}\right)}
$$

$$
\text { D. } i_{2}=\frac{E \sqrt{L_{1} L_{2}}}{R L_{2}}
$$

Answer: A

- Watch Video Solution

21. A rectangle loop with a sliding connector of length $l=1.0 m$ is situated in a uniform magnetic field $B=2 T$ perpendicular to the plane of loop. Resistance of connector is $r=2 \Omega$. Two resistance of 6Ω and 3Ω are connected as shown in figure. the external force required to keep the connector moving with a constant velocity
$v=2 m / s$ is

A. 6 N
B. 4 N
C. 2 N
D. 1 N

Answer: C

- Watch Video Solution

22. A metal rod of resistance 20Ω is fixed along a diameter of a conducting ring of radius $0.1 m$ and lies on $x-y$ plane. There is a magnetic field $\vec{B}=(50 T) \vec{k}$. The ring rotates with an angular velocity $\omega=20 \mathrm{rads}^{-1}$ about its axis. An external resistance of 10Ω is connected across the center of the ring and rim. The current external resistance is
A. $\frac{1}{4} A$
B. $\frac{1}{2} A$
C. $\frac{1}{3} A$
D. ZERO

Answer: C
23. In an $L R$ circuit connected to a battery, the rate at which energy is stored in the inductor is plotted against time during the growth of current in the circuit. Which of the following best represents the resulting curve?
A.

B.

C.

Answer: A

- Watch Video Solution

24. Two concentric and coplanar coils have radii a and $b(\gg a)$ as shows in Fig. Resistance of the inner coil is R. Current in the outer coil is increased from 0 to i, then
the total charge circulating the inner coil is

A. $\frac{\mu_{0} i a^{2}}{2 R b}$
B. $\frac{\mu_{0} i b}{2 R}$
C. $\frac{\mu_{0} i}{2 a} \frac{\pi b^{2}}{R}$
D. $\frac{\mu_{0} i B}{2 \pi R}$

Answer: A
25. A current i_{0} is flowing through an $L-R$ circuit of time constant t_{0}. The source of the current is switched off at time $t=0$. Let r be the value of $(-d i / d t)$ at time $t=0$.Assuming this rate to be constant, the current will reduce to zero in a time interval of
A. t_{0}
B. $e t_{0}$
C. $\frac{t_{0}}{e}$
D. $\left(1-\frac{1}{e}\right) t_{0}$

Answer: A

- Watch Video Solution

26. A metal disc of radius a rotates with a constant angular velocity ω about its axis. The potential difference between the center and the rim of the disc is $(\mathrm{m}=$ mass of electron, $\mathrm{e}=$ charge on electro $)$
A. $\frac{m \omega^{2} a^{2}}{e}$
B. $\frac{1}{2} \frac{m \omega^{2} a^{2}}{e}$
C. $\frac{m \omega^{2} a^{2}}{2 m}$
D. $\frac{m \omega^{2} a^{2}}{m}$

Answer: A
27. The radius of the circular conducting loop shown in is
R. magnetic field is decreasing at a constant rate α. Resisitance per unit length of the loop is ρ.

Then, the current in wire $A B$ is ($A B$ is one of the diameters)

A. $\frac{R \alpha}{2 \rho}$ from Ato B
B. $\frac{R \alpha}{2 \rho}$ fromBtoA
C. $\frac{2 R \alpha}{\rho}$ fromAtoB
D. zero

Answer: D

D Watch Video Solution

28. A long conducting wire $A H$ is moved over a conducting triangular wire $C D E$ with a constant velocity v in a uniform magnetic field \vec{B} directed into the plane of the paper. Resistance per unit length of each wire is ρ.

Then

A. a constant clockwise induced current will flow in
closed loop
B. an increasing anticlockwise indiced current will flow in the closed loop
C. a decreasing anticlockwise induced current will flow in the closed loop
D. a constant anticlockwise induced current will flow in

the closed loop

Answer: D

D Watch Video Solution

29. A horizontal wire is free to slide on the verticle rails of a conducting frame as shown in figure. The wire has a mass m and length l and the resistance of the circuit is R.

If a uniform magnetic field B is directed perpendicular to the frame, the terminal speed of the wire as it falls under
the force of gravity is

\times	\times	\times	\times	\times	\times
\times	\times	\times	\times	\times	\times
\times	\times	\times	X	\times	
\times	\times	\vec{B}	x	\times	\times
\times	\times	x	\times	\times	x
x	x	x	x	x	x
\times	K			\times	x
x	X	x	x	x	x

A. $\frac{m g R}{B I}$
B. $\frac{m g i}{B R}$
C. $\frac{B^{2} I^{2}}{m g R}$
D. $\frac{m g r}{B^{2} I^{2}}$

- Watch Video Solution

30. A horizontal wire is free to slide on the verticle rails of a conducting frame as shown in figure. The wire has a mass m and length l and the resistance of the circuit is R.

If a uniform magnetic field B is directed perpendicular to
the frame, the terminal speed of the wire as it falls under
the force of gravity is

In the above problem if $m=1 \mathrm{~kg}$ and teminal velocity
attained by its is $4 \mathrm{~m} / \mathrm{s}$ after falling a height of 1 m , the energy dissipated as heat till then is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 10J
B. 2J
C. epsilonJ
D. 12J

Answer: B

- Watch Video Solution

31. In a problem number 34 energy dissipated in resistance per unit time, once the terminal speed is attained is
A. 20J
B. 10 J
C. 40 J
D. ZERO

D View Text Solution

32. A non-conducting ring having q uniformly distributed over its circumference is placed on a rough horizontal surface. A vertical time varying magnetic field $B=4 t^{2}$ is switched on at time $t=0$. Mass of the ring is m and radius is R.

The ring starts rotating after 2 s , the coefficient of friction between the ring and the table is
A. $\frac{4 q m R}{g}$
B. $\frac{2 q m R}{g}$
C. $\frac{8 q R}{m g}$
D. $\frac{q R}{2 m g}$

Answer: C

- Watch Video Solution

33. A conducting wire frame is placed in a magnetic field which is directed into the paper. The magnetic field is increasing at a constant rate. The direction of induced current in wire $A B$ and $C D$ are
(
A. B to A and D to C
B. A to B and C to D
C. A to B and D to C
D. B to A and C to D

Answer: A

- Watch Video Solution

34. In the circuit shown in Fig. A conducting wire HE is moved with a constant speed v towards left. The complete circuit is placed in a uniform magnetic field \vec{B} perpendicular to the plane of circuit inwards. The current
in HKDE is

A. clockwise
B. anticlockwise
C. altenating
D. ZERO

Answer: D

D Watch Video Solution
35. In the circuit shown in figure switch S is closed at time $t=0$. The charge which passes through the battery in one time constant is

A. $\frac{e R^{2} E}{L}$
B. $E\left(\frac{L}{R}\right)$
C. $\frac{E L}{e R^{2}}$
D. $\frac{e L}{R}$

- Watch Video Solution

36. In the circuit shown in the figure, the jockey J is being pulled towards right, so that the resistance in the circuit is increasing. It's a value at some instant is 5Ω. The current in the circuit at this instant will be

A. 4 A
B. less than 4A
C. more than 4 A
D. may be less than or more than 4A depending on the value of L

Answer: C

D Watch Video Solution

37. A copper rod of mass m slides under gravity on two smooth parallel rails l distance apart set at angle θ to the horizontal. At the bottom, the rails are joined by a resistance R.

There is a uniform magnetic field perpendicular to the plane of the rails. the terminal valocity of the rod is
A. $\frac{m g R \cos \theta}{B^{2} I^{2}}$
B. $\frac{m g R \sin \theta}{B^{2} I^{2}}$
C. $\frac{m g R \tan \theta}{B^{2} I^{2}}$
D. $\frac{m g R \cos \theta}{B^{2} I^{2}}$

- Watch Video Solution

38. A square loop of side a is placed in the same plane as a long straight wire carrying a current i. The centre of the loop is at a distance r from wire where $r \gg a$. The loop is moved away from the wire with a constant velocity v.

The induced $e . m . f$ in the loop is

A. $\frac{\mu_{0} i v}{2 \pi}$
B. $\frac{\mu_{0} i a v}{2 \pi r}$
C. $\frac{\mu_{0} i a^{2} v}{2 \pi r^{2}}$
D. $\frac{\mu_{0} i a^{3} v}{2 \pi r^{3}}$

- Watch Video Solution

39. The magnetic field I nan reigion is given by $B=B_{0} \frac{X}{a} K$. A Squrae edges along the x and y axis. The loop is moved with a constant velocity. The emf induced
in the loop is

-)

A. $B_{0} v_{0} d$
B. $\frac{B_{0} v_{0} d^{2}}{2 a}$
C. $\frac{B_{0} v_{0} d^{3}}{a^{2}}$
D. $\frac{B_{0} v_{0} d^{2}}{a}$

Answer: D

- View Text Solution

40. When the current in the portion of the circuit shown in the figure is $2 A$ and increasing at the rate of $1 A / s$, the measured potential difference $V_{a}-V_{b}=8 V$.However when the current is $2 A$ and decreasing at the rate of $1 A / s$, the measured potential difference $V_{a}-V_{b}=4 V$
.The values of R and L are:

A. 3Ω and $2 H$, respectively
B. 2Ω and 3 H , respectively
C. 3Ω and 2 H , respectively
D.

- Watch Video Solution

41. When 100 V DC is applied across a solenoid, a current of 1.0 A flows in it. When 100 V AC is applied across the same coil. The current drops to 0.5 A . If the frequency of the ac source is 50 Hz , the impedance and inductance of the solenoid are
A. $100 \Omega, 0.75 H$
B. $100 \Omega, 0.60 H$
C. $200 \Omega, 0.55 H$
D. $200 \Omega, 0.75 H$

- Watch Video Solution

42. In a series LCR the voltage across resistance, capacitance and inductance is 10 V each. If the capacitance is shor t circulated, the voltage across the inducatance will be
A. $\frac{10}{\sqrt{2}} V$
B. 10 V
C. $10 \sqrt{2} V$
D. 20 V
43. The voltage over a cycle varies as

$$
\begin{aligned}
V & =V_{0} \sin \omega t \text { for } 0 \leq t \leq \frac{\pi}{\omega} \\
& =-V_{0} \sin \omega t \text { for } \frac{\pi}{\omega} \leq t \leq \frac{2 \pi}{\omega}
\end{aligned}
$$

The average value of the voltage one cycle is

> A. $\frac{V_{0}}{\sqrt{2}}$
> B. $\left(\frac{2}{\pi}\right) V_{0}$
> с. $\left(\frac{2}{\pi}\right) V_{0}$
D. ZERO

Answer: B
44. Choose the correct statement.
A. The peak voltage across the inductor can be greater than the peak voltage of the source in an LCR circuit.
B. In a circuit containing a capacitor and an AC source
the current is zero a the instant the source voltage
is maximum
C. An AC source is connected to a capacitor. The rms
current in the circuit gelts increased if a dielectric
slab is iserted into the capacitor.
D. none of the above

- Watch Video Solution

45. An AC source producing emf $V=V_{0}$ "["sin omega
$\mathrm{t}+\sin$ 2omegat"]" is connected in series with a capacitor and a resistor. The current found in the circuit is
A. $i_{1}-i_{2}$
B. $i_{1}<i_{2}$
C. $i_{1}>i_{2}$
D. i_{1} may be less than, equal to or greater than i_{2}

Answer: B

46. An alternating current is given by
$I=i_{1} \cos \omega t+i_{2} \sin \omega t$.
The rms current is given by
A. $\frac{7}{\sqrt{2}} A$
B. $\frac{1}{\sqrt{2}} A$
C. $\frac{5}{\sqrt{2}} A$
D. information is insufficient to find the rms current

Answer: C

- View Text Solution

47. For a resistance R and capacitance C in series the impedence is twice that of a parallel combinations of the
same elements. The frequency of the applied emf shall be
A. $\frac{2 \pi}{R C}$
B. $\frac{1}{2 \pi R C}$
C. $\frac{2 \pi}{\sqrt{R} C}$
D. $\frac{1}{2 \pi \sqrt{R} C}$

Answer: B

D Watch Video Solution

48. A coil a capacitor and an $A C$ source of rms voltage
$24 V$ are connected in series. By varying the frequency of the source, a maximum rms current of 6 A is observed. If coil is connected is at DC batteryof emf 12 volt and
internal resistance 4Ω, then current through it in steady state is
A. 2.0 A
B. 1.5 A
C. 3.0A
D. 2.5 A

Answer: B

- Watch Video Solution

49. A dc ammeter and a hot wire ammeter are connected
to a circuit in series. When a direct current is passed through circuit, the dc ammeter shows 6 A . When ac
current flows through circuit, the ac ammeter shows 8A.

What will be reading of each ammeter if dc and ac current flow simulataneously through the circuit?
A. the DC ammeter will shown zero current
B. the DC ammeter will shown 6A current
C. the AC ammeter will shown 14A current
D. the AC ammeter will shown zero current

Answer: B

D Watch Video Solution

50. Figures shows a parallel LCR circuit connected to a 200V, AC source. $\mathrm{L}=5 \mathrm{H}, C=80 \mu F$ and $R=40 \Omega$. At
resonance let I_{1} and i_{2} be the rs currents through L,C and R. Then

A. $i_{1}=i_{2}$ and $i_{1}>i_{2}$
B. $i_{1}=0=i_{2}$
C. $i_{1}=i_{2}$ and $i_{1}<i_{2}$
D. $i_{1}=i_{2}$ and $i_{1}>i_{2}$

Answer: C

(D) View Text Solution

51. A 120 V , 620 W lamps is run froma $240 \mathrm{~V}, 50 \mathrm{~Hz}$ mains supply sing a capacitor connected connected in series with the lamp and supply. What is the teoretical value of the capacitor required to operate the lamp at its normal rating?
A. $3.8 \mu F$
B. $6.6 \mu F$
C. $0.7 \mu F$

- Watch Video Solution

52. In the above question size element will raise the power factor to unity?
A. an inductor should be placed in series
B. a capacitor should be placed in series
C. a resistance should be placed in series
D. an inductor or a resistance should be placed in series

D View Text Solution

53. In the circuit shown in the figure $\left.X_{L}=\frac{X_{C}}{2}\right)=R$ the peck value current i_{0} is
A. An inductor of 0.103 H
B. An inductor of 0.25 H
C. A resistance of $6 . \Omega$
D. A resistance of 100Ω

Answer: A
54. A series circuit has an impendence of 50.0Ω and a power factor of 0.63 to 60 Hz . The voltage lags the current.

To raise the power factor of the circuit

A. $\frac{\sqrt{5} V_{0}}{2 E}$
B. $\frac{V_{0}}{2 \sqrt{2} R}$
C. $\frac{V_{0}}{2 R}$
D. $\frac{V_{0}}{2 \sqrt{3} R}$

Answer: A

D View Text Solution

55. A metal rod moves at a constant velocity in a direction perpendicular to its length. A constant, uniform magnetic field exists in space in a direction perpendicular to the rod as well as its velocity. Select the correct statements(s) from the following
A. The entire rod is at same electric potential
B. There is an electric field in the rod
C. The electric potential is highest at the center of the rod and decreases towards its ends
D. The electric potential is lowest at the center of the rod and increases towards its ends

Answer: B

- Watch Video Solution

56. $A B$ and $C D$ are fixed conducting smooth rails placed in a vertical plane and joined by a constant current source at its upper end. $P Q$ is a conducting rod which is free to slide on the rails. A horizontal uniform magnetic field
exists in space as shown in figure. If the $\operatorname{rod} P Q$ is released from rest then,

A. The rod PQ may move downward with ocnstant acceleration
B. The rod PQ may move upward with constant acceleration
C. The rod wil move downward with decreasing acceleration and finally acquire a constant velocity
D. either a or b

Answer: D

D Watch Video Solution

57. In a cylindrical region uniform magnetic field which is perpendicular to the plane of the figure is in increasing with time and a conducting rod $P Q$ is placed in the
region.If C is the centre of the circle then

A. P wil be at thigher potential than Q
B. Q will be at higher potential than P
C. Both P and Q will be at zero potential
D. No potential difference will be developed across the rod

- Watch Video Solution

58. A uniform magnetic field of induction B is confined to a cyclindrical region of radius R. The magnetic field is increasing at a constant rate of $d B / d t$ (tesla/ second). A charge e of mass m, placed at the point P on the
periphery of the fixed experiences an acceleration :

A. $\frac{1}{2} \frac{e R}{m} \frac{d B}{d t}$ toward left
B. $\frac{1}{2} \frac{e R}{m} \frac{d B}{d t}$ toward right
C. $\frac{e R}{m} \frac{d B}{d t}$ toward left
D. zero

- Watch Video Solution

59. In the given LC circuit, if initially capacitor C has charge Q on it and $2 C$ has charge 2 Q . The polar ar as shown in figure. Then after closing switch S and $\mathrm{t}=\mathrm{O}$

A. energy will get equally distributed in both the
capacitors ust after closing the switch
B. initial rate of groqth of current in inductor will be 2Q/3CL
C. maximum energy in the inductor will be $3 Q^{2} / 2 C$
D. none of these

Answer: C

D View Text Solution

60. Two inductors coils of self inductance 3 H and 6 H respectively are connected with a resistance 10Ω and a battery 10 V as shown is figure. The ratio of total energy
stored at steady state in the inductors to that of heat developed in resistance in10second at hte steady state is (neglect mutual inductance between L_{1} and L_{2}

A. $\frac{1}{10}$
B. $\frac{1}{100}$
C. $\frac{1}{1000}$
D. 1

Answer: B

D View Text Solution

61. Power factor of an L-R series circuit is 0.6 and that of a C-R series circuit is 0.5 . If the element (L. C, and R) of the two circuits are joined in series the power factor of this circuit is found to be 1 . The ratio of the resistance in the LR circuit to the resistance in the C-R circuit is
62. In the circuit diagram show,
$X_{C}=100 \Omega, X_{L}=200 \Omega, \& R=100 \Omega$

A. $\frac{6}{5}$
B. $\frac{5}{6}$
C. $\frac{4}{3 \sqrt{3}}$
D. $\frac{3 \sqrt{3}}{4}$

Answer: A
63. An inductor L, a resistanc eR and two identical bulbs
B_{1} and B_{2} are connected to a battery through a switch S
as shown in the figure. The resistance of coil having inductance L is also R. Which of the following statement gives the corrrect description of the happenings when the switch S is closed?

A. B_{2} lights earlier than B_{1} and finally both the bulbs shine equally bright.
B. B_{1} light up earlier and finally both the bulbs acquire equal brightnesss,
C. B_{2} lights up earlier and finally B_{1} shines brighter than B_{2}
D. B_{2} lights up together with equal brightness all the time.

Answer: A

- Watch Video Solution

64. A Capacitor and a coil in series are connected to a 6volt ac source. By varying the frequency of the source, maximum current of 600 mA is observed. If the same coil is
now connected toa cell of emf 6volt dc and internal resistance of $20 h m$, the current h through it will be
A. 0.5 A
B. 0.6 A
C. 1.0 A
D. 2.0 A

Answer: A

- Watch Video Solution

65. In the shown AC circuit phase different between
current I_{1} and I_{2} is

A. $\frac{\pi}{2}-\tan ^{-1} \cdot \frac{x_{L}}{R}$
B. $\tan ^{-1}-\frac{X_{L}-X_{C}}{R}$
C. $\frac{\pi}{2}+\tan ^{-1} \cdot \frac{x_{L}}{R}$
D. $\tan ^{-1}$. $\frac{X_{L}-X_{C}}{R}+\frac{\pi}{2}$

Answer: C
66. Electric circuit is composed of three conducting rods
MO, ON and PQ as shown in the figure. The resistance of the rods per unit length is known to be 1 . The rod PQ slides as shown in the figure. At $t=0$, $\operatorname{rod} P Q$ is at O. The whole system is embledded ina uniform magnetic field B, which is directed perpendicularly into page. The induced electric current is:

A. Proportional to time t
B. Inversibly proportional to time t
C. Proportional to square at time t
D. Independent of time t

Answer: D

- Watch Video Solution

67. In the circuit as shown in the figure, switch S is added at $\mathrm{t}=0$. Then:

A. after a long time interval potential differences across capacitor and inductor will be equal
B. after a long time interval charge on a capacitor will be EC
C. after a long time interval curent in the inductory will be E / R
D. after a long time interval current through battery
willl be same as the curren through it initially

Answer: D

- Watch Video Solution

68. A pure resistive circuit element X when connected to
an sinusoidal $A C$ supply peak voltage 200 V gives a peak current of $5 A$ which is in phase with the voltage. A second circuit element Y, when connected to the same $A C$ supply also gives the same value of peak currrent but the current lags behind by 90°. If the series combination of X and Y is connected to the same supply. the rms value of current is

$$
\begin{aligned}
& \text { A. } \frac{10}{\sqrt{2}} a m p \\
& \text { B. } \frac{5}{\sqrt{2}} a m p
\end{aligned}
$$

C. $\left(\frac{5}{2}\right) a m p$
D. 5 amp

Answer: C

- Watch Video Solution

69. A current is made of two components a $d c$ component
$i_{1}=3 A$ and an $a c$ component $i_{2}=4 \sqrt{2} \sin \omega t$. Find the reading of hot wire ammeter?
A. 4 amp
B. $4 \sqrt{2} a m p$
C. $(3+4 \sqrt{2}) a m p$
D. 5 amp

D Watch Video Solution

70. The self inductance of a choke coil is 10 mH . When it is connected witrh a 10 V dc source loss of power is 10 watt.

The frequency of a csource will be:
A. 50 Hz
B. 60 Hz
C. 80 Hz
D. 100 Hz

Answer: C

71. Two capacitors 2 C and 4 C initially charged to potential difference of V_{0} and $3 V_{0}$ with the potential as show are connected to an inductor of inductance L. Initial curren tin the inductor is zer. Now the swtich ' S ' is closed. The maxmimum current in the circuit is

A. $\frac{V_{0}}{8} \sqrt{\frac{C}{3 L}}$
B. $\left(8 V_{0}\right) \sqrt{\frac{C}{3 L}}$
C. $\frac{V_{0}}{4} \sqrt{\frac{C}{3 L}}$
D. $4 V_{0} \sqrt{\frac{C}{3 L}}$

Answer: B

- Watch Video Solution

72. In the circuit shown in figure switch S is closed at time $t=0$, which statement is true after one time constant of L-R
circuit?

A. charge passes through inductor $\frac{2 L \varepsilon}{R}\left(1-e^{-1}\right)$
B. current through battery $\frac{\varepsilon}{2 R}\left(1-e^{-1}\right)$
C. charge passes through inductor $\frac{L \varepsilon}{R^{2}}\left(e^{-1}\right)$
D. Current through battery is $\frac{2 \varepsilon}{R}$

Answer: C
73. A rectangular frame $A B C D$, made of a uniform metal
wire, has a straight connection between E and F made of the samae wire, as shown in fig. AEFD is a square of side 1 m , and $\mathrm{EB}=\mathrm{FC}=0.5 \mathrm{~m}$. The entire circuit is placed in steadily increasing, uniform magnetic field directed into the plane of the paper and normal to it. The rate of change of the magnetic field is $1 T / s$. The resistance per unit length of the wire is $1 \omega / m$. Find the magnitude and directions of the currents in the segments $A E, B E$ and $E F$.

A. 2
B. 4
C. 43468
D. 43471

Answer: D

- Watch Video Solution

74. In the circuit shown. Initially the capacitor is uncharged. The switch S is closed at time $t=0$. Then

A. $\left(V_{a}-V_{b}\right)$ is increasing with time
B. $\left(V_{a}-V_{b}\right)$ is deceasing with time
C.
D.

Answer: D
75. Three identical large plates are fixed at separation of d from each other as shown in figure. The area of each plate is A. Plate 1 is given charge $+Q$ while plates 2 and 3 are neutral and are connected to each other through coil of inductances L and switch S. If resistance of all connected wires is neglected the maximum current flow through coil after closing switch is $\left(C=\varepsilon e_{0} \frac{A}{d}\right)$ (neglect fringe effect)

A. $\frac{Q}{\sqrt{L} C}$
B. $\frac{Q}{2 \sqrt{L} C}$
C. (${ }^{\prime}$ _(a)-V_(b))=ZERO
D. $\frac{Q}{2 \sqrt{L} C}$

Answer: C

- Watch Video Solution

76. Two long rails are hporizontal and parallel to each. On one end, the rails are connected by a resistance R and on the other end a cpacitor of capacitance C is connected as shown in the figure. A connecter of mass m and length I can slide on the rails without friction. Uniform magnetic
field B , perpendicular to he plane of hte gigure exists in space. A constant horizontal force F starts acting on hte connector. What is the acceleration of connector when its veleocity is $\frac{3}{4}$ of its terminal velocity?

A. $\frac{3 F}{4\left(m+C B^{2} I^{2}\right)}$
B. $\frac{F}{\left(m+C B^{2} I^{2}\right)}$
C. $\frac{F}{4\left(m+C B^{2} I^{2}\right)}$
D. $\frac{4 F}{3\left(m+C B^{2} I^{2}\right)}$

Answer: B

- View Text Solution

77. A conducting rod with resistance r per unit length is moving inside a vertical magnetic field B with spee v on two smooth horizontal parallel ideal conducting rails. The end of the rails are connected to a resistor R. the separation between the rails is d. The rod maintains a
tilted angle θ to the rail. Find the external force F required to keep the rod moving

A. $F=\frac{B^{2} d^{2} v}{R+d r}$
B. $F=\frac{B^{2} d^{2} v}{(R+d r) / \sin \theta}$
C. $F=\frac{B^{2} d^{2} v \sin \theta}{(R+d r) / \sin \theta}$
D. $F=\frac{B^{2} d^{2} v \cos \theta}{(R+d r) / \cos \theta}$

Answer: C

78. In the circuit shown, the capacitor initially charged with a 12 V batteryy, when switch S_{1} is open and switch S_{2} is closed. The maximum value of current in the circuit when
S_{2} is opened and S_{2} is closed is

A. $10^{-6} A$
B. $7.2 \mu \mathrm{~A}$

C. $720 \mu A$

D. $360 \mu \mathrm{~A}$

Answer: C

- Watch Video Solution

79. In the figures shown current in the long straight wire varies as $I=I_{0}\left(\frac{t_{0}-t}{t_{0}}\right.$ where I_{0} is the initial current The
charge flown through resistance in the time t_{0} is

A. $\frac{\mu_{0}}{2 \pi} \frac{l b l_{0}}{R}$
B. $\frac{\mu_{0}}{2 \pi} \frac{l l_{0}}{R} I n\left(\frac{b}{a}\right)$
C. $\frac{\mu_{0}}{2 \pi} \frac{l l_{0}}{R} \operatorname{In}\left(\frac{a+b}{a}\right)$
D. $\frac{\mu_{0}}{2 \pi} \frac{a l_{0}}{R} \operatorname{In}\left(\frac{b}{l}\right)$

Answer: C

- Watch Video Solution

80. Consider the shown circuit. The net current supplied as
a function of time is

A. $(2 \sqrt{2} \sin 100 t) A$
B. $2 \sin \left(100 t+45^{\circ}\right) A$
C. $\left(2 \sqrt{2} \sin \left(100 t+45^{\circ}\right) A\right.$
D. None of these

- Watch Video Solution

81. A^{\prime} is first connected with X for $2 \times 10^{-3} s$ with capacitor initially being uncharged. Then, the switch is thrown to Y at $\mathrm{t}=0$. The time interval after which the potential difference across the capacitor becomes 3.15 V is approximately

A. $\frac{\pi}{3} \times 10^{-4} s$
B. $\frac{2 \pi}{3} \times 10^{-4} s$
C. $\pi \times 10^{-4} s$
D. $\frac{\pi}{2} \times 10^{-4} s$

Answer: B

D Watch Video Solution

82. In case of $A C$ circuits the relation $V=i Z$, where Z is impedance, can directly applied to
A. peak valuie of voltage an dcurren t
B. rms values of voltage and current
C. instantaneous values of voltage and current
D. steady state values of voltage and current

Answer: A: B

- Watch Video Solution

83. A conducting rod of length I is hinged at point O. It is a free to rotate in a verical plane. There exists a uniform magnetic field B in horizontal direction. The rod is released from the position shown. The potential difference
between the two ends of the rod is proportional to

A. $l^{3 / 2}$
B. l^{2}
C. $\sin \theta$
D. $(\sin \theta)^{1 / 2}$

Answer: A::D
84. Two straight conducting rails form a right angle where their ends are joined. A conducting bar in contact with the rails starts at the vertex at time $\mathrm{t}=0$ and moves with constant velocity v along them as shown in Fig. A magnetic field \vec{B} is directed into the page. the induced emf in the circuit at any time t is proportional to

$$
x \quad x \quad x \quad x
$$

A. t 。
B. t
C. Voltage of source will lead the current through
D. v^{2}

Answer: B::D

- Watch Video Solution

85. An LC cirucit has capacitance $C_{1}=C$ and inductance
$L_{1}=L . A \sec$ ond \circ uithas $\mathrm{C}_{-}(2)=\mathrm{C} / / 2 \quad$ and $\quad \mathrm{L}_{-}(2)=2 \mathrm{~L}$ and athird \circ uithas $\mathrm{C}_{-}(3)=2 \mathrm{C}$ and $\mathrm{L}_{-}(3)=(\mathrm{L}) /(2)^{\prime}$. All the three capacitors are charged to the same potential V and then made to oscilate. Then
A. angular frequency of oscillation is same for all the three circuits
B. angular frequency of oscillation is different for all three circuits
C. maximum current is greatest in second circuit
D. mamimum current is greatest in third circuit

Answer: A::D

- Watch Video Solution

86. Current growth in two L-R circuits (b) and (c) as shown in figure (a). Let L_{1}, L_{2}, R_{1} and R_{1} be the corresponding
values in two circuits. Then

(a)

(b)

(c)
A. $R_{1}>R_{2}$
B. $R_{1}=R_{2}$
C. $L_{1}>L_{2}$
D. $L_{1}<L_{2}$

Answer: B::D

- Watch Video Solution

87. Two parallel long straight conductors lie on a smooth horizontal surface. Two other parallel conductor rest on them at right angles so as from B exits vertical. A uniform magnetic field B exists a vertical direction. Now all the four conductors stock moving outwards with a constant velocity v. The induced emf e and induced current i will vary wide time t as

B.

Answer: A::D

- Watch Video Solution

88. the uniform magnetic field perpendicular to the plane of a conducting ring of radius a change at the rate of α, then
A. all the points ont the ring are the same potential
B. the emf induced in the ring is $\pi a^{2} \alpha$
C. electric field intensity E at anny point on the ring is
zero
D. $\left.E=\frac{a \alpha}{2}\right)$

Answer: A::B::D

- Watch Video Solution

89. Figure shown plane figure made of a conductor located in a magnetic field along the inward normal to the plane of the figure. The magnetic field starts diminishing. Then
the induced current

A. at point P is clockwise
B. at point Q is anticlockwise
C. at point Q is clockwise
D. at point Q is clockwise
90. A capacitor is charged to a potential of V_{0}. It is connected with an inductor through a switch S. The switch
is closed at time $\mathrm{t}=0$. Which of the following statement(s) is/are correct?

A. The maximum current in the circuit is $V_{0} \sqrt{\frac{C}{L}}$
B. Potential across capacitor becomes zero for the first time at $t=\pi \sqrt{L C}$
C. Energy stored in the inductor at time $t=\frac{\pi}{2} \sqrt{L C}$ is $\frac{1}{4} C V_{0}^{2}$
D. Maximum energy stored in the inductor $\frac{1}{2} C V_{0}^{2}$

Answer: A::D

- Watch Video Solution

91. A conducting rod $A C$ of length $4 l$ is rotate about a point O in a uniform magnetic field \vec{B} directed into the
paper. $A O=l$ and $O C=3 l$. Then

\times	x	\times	\times	\times	x
\times	\times	0	\times	\times	$\vec{B} \times$
					C
	\times	\times	\times	\times	
\times	\times	\times	\times	\times	\times

A. $V_{A}-V_{0}=\frac{B \omega l^{2}}{2}$
B. $V_{0}-V_{C}=\frac{9}{2} B \omega l^{2}$
C. $V_{A}-V_{C}=4 B \omega l^{2}$
D. $V_{C}-V_{0}=\frac{9}{2} B \omega l^{2}$

Answer: B::C
92. A square coil AECD of side 0.1 m is placed in a magnetic field $B=2 t^{2}$. Here, t is in seconds and B is Tesla. The magnetic field is into the paper. At time $t=2 s$, induced field in $D C$ in

A. $0.05 \mathrm{v} / \mathrm{M}$
B. along DC
C. alond CD

Answer: B::D

D Watch Video Solution

93. Which of the following statement(s) is/are correct regarding the electic field produced by the changing magnetic field?
A. It is conservative in nature
B. It is non conservative in nature
C. Potential can be defined corresponding to this field
D. The lines of this field are closed curves

D Watch Video Solution

94. Magnetic flux passing through a coil varies with time
as, $\phi=\left(2 t^{2}-4\right)$ weber, Resistance of the coil is 10Ω.
A. At time $t=2 \mathrm{~s}$, induced current in the coil is 0.8 A
B. Induced current increases lineralu with time
C. From $t=0$ to $t=2 s, 0.8 C$ charge has flown in the coil
D. in the above time interval net flow of charge is zero

Answer: A::B::C

95. In the L-R circuit as shown in figure, potential difference across the resistance at some instant is 4 V . Then

A. current is increasing at a rate of $8 \mathrm{~A} / \mathrm{s}$ at this instant
B. power supplied by the battery at this instant is 20 W
C. power stored in the magnetic field at this instant is

16W
D. current in the circuit at this instant is 1 A

D Watch Video Solution

96. In LCR circuit as shown in figure

A. current will lead the voltage
B. rms value of current is 20A
C. power factor of circuit is $\frac{1}{\sqrt{2}}$
D. voltage drop across resistance is 100 V

Answer: A::C

- Watch Video Solution

97. In LCR circuit during resonance

A. power factor is zero
B. power factor is one
C. power developed acrtoss resistance is zero
D. power developed across capacitance is zero

Answer: B::D

98. In an L-R circuit, if an iron core is inserted inside the coil
A. steady state current will increase
B. steady state current will remain unchanged
C. time constant will increase
D. time constant will increase

Answer: B::D

- Watch Video Solution

99. A V-shaped conducting wire is moved inside a magnetic field as shown in figure. Magnetic fiel d is perpendicular to paper inwards. Then

A. $V_{a}=V_{c}$
B. $V_{a}>V_{c}$
C. $V_{a}>V_{b}$
D. $V_{c}>V_{b}$

D Watch Video Solution

100. Current in R_{3}

A. just after closing the switch is zero
B. long after closing the switch is zero
C. just after closing the switch is $\frac{E}{R_{3}}$
D. long after clolsing the switch is $\frac{E}{R_{3}}$

Answer: A: B

- Watch Video Solution

101. Current (i) passing through a coil varies with time t as
$i=2 t^{2}$. At 1 s total flux passing through the coil is 10 Wb .
Then
A. self inductance of the coil is 10 H
B. self inductance of the coil is 5 H
C. induced emf across the coil at 1second is 20 V
D. induced emf across the coil at 1second is 10 V

D Watch Video Solution

102. A capacitor of capacity $2 \mu F$ is charged to a potential difference of 12 V . It is then connected across an inductor of inductance 0.2 mH . At an instant when potential difference across the capacitor is 6 v
A. current in the circuit is 1.04 A
B. magnetic energy in the magnetic field is $108 \mu J$
C. current in the circuit is 1.04 A
D. angular frequency of the circuit is $5 \times 10^{4} \frac{\mathrm{rad}}{\mathrm{s}}$

- View Text Solution

103. Uniform magnetic field $\mathrm{B}=10 \mathrm{~T}$ is acting in a region of length $\mathrm{L}=2 \mathrm{~m}$ as shown. A squre loop of side $\frac{L}{2}$ enters in it with constant acceleration $\alpha=1 \mathrm{~m} / \mathrm{s}^{2}$. Resistance per unit length of the square frame is ' $10 \mathrm{mega} / / \mathrm{m}$. At, $\mathrm{t}=1 \mathrm{~s}$
A. induced current in the square frame is clockwise
B. induced current in the frame is 2.5 A
C. magnetic froce on the frame is 25 N
D. magnetic torque on the frame is zero

Answer: B::C::D

104. Self inductance of a soleniod can be increased by
A. increaing the current passing through the solenoid
B. decreasing the current passing through the solenoid
C. inserting an iron core in the solenoid
D. incresing number of turns per unit length

Answer: C::D

- Watch Video Solution

105. Comparing the L-C oscillations with the oscillations of a spring-block system
A. L is equivalent to m
B. C is equivalent to K
C. current is equivalent to speed
D. rate of change of current is equivalent to accelerate

Answer: A::C::D

D Watch Video Solution

106. A signal geberatir supplies a sine wave if 20 V , 5 to the circuit shown in the figure. Then.

A. the current in the resistive branch is 0.2 A
B. the current in the capacitive branch is 0.126 A
C. total line current is $=0.24 \mathrm{~A}$
D. current in both the branches is same

Answer: A::B::C

107. In the circuit shown in the figure, if both the bulbs
B_{1} and B_{2} are identical

A. their brightness will be the same
B. B_{2} will be greater than B_{1}
C. as frequency of supply volatage is increased brightness of bulb B_{1} will increase and that of B decrease
D. Brightness of both bulbs is independent o frequency

Answer: B::C

- View Text Solution

108. In a series LCR circuit with an AC so $\left(E_{r m s}=50 \mathrm{~V}\right)$
and $f=50 / \pi \mathrm{Hz}), \mathrm{R}=30 \mathrm{C}=0.02 \mathrm{mF}$, $\mathrm{L}=1.0 \mathrm{H}$, which of the follwing is correct
A. the rms current in the circuit is 0.1 A
B. the rms potential difference acrosss the capacitor is

50V

C. the rms potential difference acrosss the capacitor is 50V
D. the rms current in the circuit is 0.14 A

Answer: A::B

- View Text Solution

109. A circuit is set up by connecting $\mathrm{L}=100 \mathrm{mH}, \mathrm{C}=5 \mu F$ and $R=100 \Omega$ in series. An alternating emf of $150{ }^{\text {® }}$ sqrt(2)V,(500)/(pi) Hz is applied across this series combination. Which of the following is correct:
A. the impedence of the circuit is 1.41Ω
B. the average power dissipated across resistance is

225W
C. the average power dissipated across inuctor is zero
D. the average power dissipated across capacitor is
zero

Answer: A::B::C::D

- Watch Video Solution

110. A circuit containing an inductance and a resistance connected in series, has an AC source of $200 \mathrm{~V}, 50 \mathrm{~Hz}$ connected across it. An AC current of 10A rms flows
through th ecircuit and the power loss is measured to be 1W.
A. The inductance of the circuit is $\frac{\sqrt{3}}{10 \pi} H$
B. The frequency of the $A C$ when the phase difference between the current and emf becomes $\frac{\pi}{4}$, with the above components is $\frac{50}{\sqrt{3}} \mathrm{~Hz}$
C. The frequency of the $A C$ when the phase difference between the current and emf becomes $\pi / 3$, with the above components is $\frac{25}{\sqrt{3}} \mathrm{~Hz}$
D. The frequency of the $A C$ when the phase difference between the current and emf becomes $\pi / 4$, with the above components is $\frac{25}{\sqrt{3}} \mathrm{~Hz}$.

- Watch Video Solution

111. In the given circuit, then AC source has $\omega=50 \mathrm{rad} / \mathrm{s}$

Considering the indcutor and capacitor and capacitor to be ideal, the correct choice(s) is (are):

A. The voltage across 100Ω resistor $20 \sqrt{2} V$
B. The voltage across 50Ω resistor $20 \sqrt{2} V$
C. The current through the circuit, l is $\frac{2}{\sqrt{10}} A$
D. The current through the circuit, I is 1.2 A

Answer: A::B::C

- Watch Video Solution

112. The given arrangement carries a capacitor with capacitance 40 mF and two inductors
$L_{1}=25 \mathrm{H}$ and $L_{2}=100 \mathrm{H}$. If the capacitor initially
carries a charge of 10 mC , then

A. the maximum current through the inductor L_{1} when
key K_{1} is closed is 20 mA
B. the maximum current through the inductor L_{2} when
key K_{2} is closed is 5 mA
C. the maximum current through the inductor L_{2} when both the keys are closed is $\sqrt{5} A$ D.

- View Text Solution

113. In the given circuit, the AC source has $\omega=50 \mathrm{rad} / \mathrm{s}$.

Considering the inductor and capacitor to be ideal, the correct choice (s) is (are):

A. The voltage across 100Ω resistor $20 \sqrt{2} V$
B. The voltage across 50Ω resistor $20 \sqrt{2} V$
C. The curren through the circuit, $\frac{2}{\sqrt{10}} \mathrm{~A}$
D. The current through the circuit, I is 1.2 A

Answer: A::B::C

- Watch Video Solution

114. A series RLC circuit is driven by a generator at frequency 1000 Hz . The inductance is 90.0 mH , capacitance is $0.5 \mu F$ and the phase constant has magnitude of 60° $\left(\right.$ Take $\left.^{2}=10\right)$
A. Here current leads the voltage in phase
B. Here voltage leads the current in phase
C. Resistance of circuit is $\frac{80 \pi}{\sqrt{3}} \Omega$
D. At resonance $\frac{\sqrt{2}}{3} \times 10^{4} \mathrm{rad} / \mathrm{sec}$

Answer: B::C::D

D Watch Video Solution

115. The radius of circular loop is 'a'. Magnetic field is incerasing at a constant rate a. Magnetic field of a confined with the axis of the loop. Resistance per unit length of the wire of loop is ρ. Choose the correct
option(s):

A. Current in the loop PQRS $\frac{a \alpha}{2 \rho}$ anticlockwise
B. Current in the loop PQRS is $\frac{a \alpha}{h o}$ clockwise
C. Current in the wire PR is zero
D. Current in the wire PR is $\frac{\pi a \alpha}{2 \rho}$

- Watch Video Solution

116. In the circuit diagram shown in figure, initially switch S is opened and the circuit is in steady state. At time $t=0$, the switch S is closed and the new steady state is reached after some time. Choose the correct option(s)

A. Current in the indcutor when the circuit reaches the new steady state is 4A.
B. The net change in the magnitic flux is the inductor is
1.5 Wb
C. The net change in the magnetic flux in the conductor is 9volt when the circuit reaches the new steady state.
D. The charge stored in the capacitor in the new steady state is 1.2 mC

Answer: A::B

- View Text Solution

117. Resistor, inductor and capacitor are connected in parallel to an AC source of emf $V=100 \sin \omega t$ if
$R=2 \Omega, X_{L}=2 \Omega$ and $X_{C}=4 \Omega$, , then choose correct option:

A. rms current through the source will be 50A
B. power factor of the circuit is $\frac{2}{\sqrt{5}}$)
C. Voltage of source will lead the current through source by $\tan ^{-1}\left(\frac{1}{2}\right)$
D. Impendance of parallel combination is $\frac{4}{\sqrt{5}} \Omega$

Answer: B::C::D

- Watch Video Solution

118. A capacitor of capacitnace C is charged to a potential difference V and then disconnected from the battery. Now
it is connected to an inductor of inductance L at $t=0$. Then

A. Energy stored in capacitor and inductor will be equal
at time $t=\frac{\pi}{2} \sqrt{L} C$
B. Potential difference across inductor will be $\frac{V}{2}$ at time $t=\frac{\pi}{3} \sqrt{L} C$
C. The rate of increase of energy in magnetic field will
be maximum at $\frac{\pi}{4} \sqrt{L} C$
D. When the potentail difference across the capacitor

$$
\sqrt{\left(\frac{3 C}{L}\right)}
$$

Answer: $\mathrm{B}:: \mathrm{C}:: \mathrm{D}$

D View Text Solution

In given LR circuit the switch S is closed at time $t=0$ then
A. The ratio of induced emfs in the inductors of inductances L and 2 L will be correct
B. The ratio of indued emfs in the inductor of inductances L and 2 L will decrease with time
C. The potential difference $V_{A}-V_{B}$ increase with time
D. The potential difference $V_{A}-V_{B}$ will be constant

Answer: A::D

- Watch Video Solution

120. A capacitor in an LC oscillation has a maximum potential difference of 1.5 and a maximum energy $360 \mu J$.

At a certain instant $t=t_{0}$, the potential difference across the capacitor is V volt?
A. The value of capacitance is
B. The value of capacitance is
C. The value of V is 5 volt
D. The value of V is 10 volt

Answer: B::C

D View Text Solution

121. In the circuit shown in figure switch S is closed at time
$t=0$

Current I from the battery at time t is given by
A. $3\left(1-e^{-2 t}\right)$
B. $\left.3+e^{-2 t}\right)$
C. ${ }^{3} 3\left(1-e^{\wedge}(-t / 9)\right)$
D. $3-e^{-2 t}$

Answer: D

122. In the circuit shown in figure switch S is closed at time $\mathrm{t}=0$

Potential difference across 3Ω resistance at time t is given by
A. $9 e^{-21}$
B. $6 e^{-2 t}$
C. $3 e^{-2 t}$
D. $18\left(1-e^{-t / 9}\right)$

Answer: B

- Watch Video Solution

123. In the circuit shown in figure switch S is closed at time
$\mathrm{t}=0$

At what time current through 3Ω resistance and 1 H inductor are equal?
A. $\operatorname{In} \sqrt{\frac{5}{3}}$
B. $\operatorname{In}\left(\frac{8}{3}\right)$
C. $\operatorname{In}\left(\frac{5}{3}\right)$
D. $\operatorname{In} \sqrt{\frac{8}{3}}$

Answer: A

- Watch Video Solution

124. In the circuit shown in figure switch S is closed at time $\mathrm{t}=0$

Takin left to right current through the indcutor as apositive current, current through inductor varies with time as
(a)

A.
(b)

B.

Answer: B

- Watch Video Solution

125. In an $L C$ circuit shows in Fig. $C=1 F, L=4 H$. At time $t=0$, charge in the capacitor is $4 C$ and it is decreasing at the rate of $\sqrt{5} C s^{-1}$. Choose the corrent
statement.

A. 6 C
B. 8 C
C. 10 C
D. 12 C

Answer: A
126. In an $L C$ circuit shows in Fig. $C=1 F, L=4 H$. At time $t=0$, charge in the capacitor is $4 C$ and it is decreasing at the rate of $\sqrt{5} \mathrm{Cs}^{-1}$. Choose the corrent statement.

A. $2 \sin ^{-1}\left(\frac{2}{3}\right)$
B. $2 \cos ^{-1}\left(\frac{2}{3}\right)$
C. ${ }^{\prime} 2 \tan ^{\wedge}(-1)((2) /(3))$

D. None of these

Answer: D

- Watch Video Solution

127. In an L-C circuit shown in figure

$$
\mathrm{C}=1 \mathrm{~F}, \mathrm{~L}=4 \mathrm{H}
$$

At time $\mathrm{t}=0$, charge in the capacitor is 4 C and it is decreasing at a rate of $\sqrt{5} C / s$

Choose the correct option

A. maximum current in the circuit is 4 A
B. When current is half its maximum value, charge in capacitor is less than is maximum value
C. Both a and b are correct
D. Both a and b are wrong

Answer: B

- Watch Video Solution

128. In the circuit shown in figure:
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega \quad$ and $\quad C=\frac{\sqrt{3}}{2} m F$.
Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is I_{2} and the main current is I

Phase difference between I_{1} and I_{2} is
A. 0°
B. 90°
C. 180°
D. 60°

Answer: B
129. In the circuit shown in figure :
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega \quad$ and $\quad C=\frac{\sqrt{3}}{2} m F$.
Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is I_{2} and the main current is I

At some instant current in $L-R_{1}$ circuit is $10 A$. At the same instant current in $C-R_{2}$ branch will be
A. $5 A$
B. $5 \sqrt{2} A$
C. $5 \sqrt{6} A$
D. $5 \sqrt{3} A$

Answer: D

- Watch Video Solution

130. In the circuit shown in figure :
$R=10 \Omega, L=\frac{\sqrt{3}}{10} H, R_{2}=20 \Omega \quad$ and $\quad C=\frac{\sqrt{3}}{2} m F$.
Current in $L-R_{1}$ circuit is I_{1} in $C-R_{1}$ circuit is I_{2} and the main current is I

Phase difference between I_{1} and I_{2} is
A. 20 A
B. $10 \sqrt{2} A$
C. $20 \sqrt{2} A$
D. 25 A

Answer: B
131. In the circuit shown in figure q varies with time t as
$q=\left(t^{2}=16\right)$. Here q is in coulomb and t in second.

Find $V_{a b}=\left(V_{a}-V_{b}\right) a t t=3 s$
A. -24.5 V
B. 18.5 V
C. -25.5 V
D. 22.5 V

Answer: D

132. In the circuit shown in figure q varies with time t as
$q=\left(t^{2}=16\right)$. Here q is in coulomb and t in second.

Find $V_{a b}$ at $t=5 s$
A. 50 V
B. 35.5 V
C. 46.5 V
D. 40.2 V

Answer: C
133. In the figure shown, a conducting wire $P Q$ of length $\mathrm{I}=1 \mathrm{~m}$, is moved in a uniform magnetic field $\mathrm{B}=4 \mathrm{~T}$ with constant velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$ towards right. Given $R=2 \Omega, C=1 F$ and $L=4 H$.

Currents through resistor, capacitor and inductor at any time t are l_{1}, I_{2} and I_{3} respectively. Current through wire $P Q$ is I.

At $\mathrm{I}=2 \mathrm{~s}$, the value of I_{3} is
A. 0
B. $2 A$
C. $4 A$
D. $6 A$

Answer: C

D View Text Solution

134. In the figure shown, a conducting wire $P Q$ of length
$\mathrm{I}=1 \mathrm{~m}$, is moved in a uniform magnetic field $\mathrm{B}=4 \mathrm{~T}$ with constant velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$ towards right. Given $R=2 \Omega, C=1 F$ and $L=4 H$.

Currents through resistor, capacitor and inductor at any time t are l_{1}, I_{2} and I_{3} respectively. Current through wire $P Q$ is I.

Find the force required to move the wire with the given constant velocity of $2 \mathrm{~m} / \mathrm{s}$ at $\mathrm{t}=2 \mathrm{~s}$
A. $8 N$
B. $16 N$
C. $24 N$
D. 32 N

Answer: D

- Watch Video Solution

135. In the figure shown, a conducting wire PQ of length
$\mathrm{l}=1 \mathrm{~m}$, is moved in a uniform magnetic field $\mathrm{B}=4 \mathrm{~T}$ with constant velocity $\mathrm{v}=2 \mathrm{~m} / \mathrm{s}$ towards right. Given $R=2 \Omega, C=1 F$ and $L=4 H$.

Currents through resistor, capacitor and inductor at any time t are l_{1}, I_{2} and I_{3} respectively. Current through wire
$P Q$ is I.

At $t=2 s$, suppose P is the initial power generated by the applied force. P_{1} the power generated by the applied for,
P_{1} the power stored in magnetic field of inductor and P_{2}
the power dissipated in resistance. The
A. $P=72 J / s$
B. $P_{1}=40 \mathrm{~J} / \mathrm{s}$
C. $P_{2}=32 \mathrm{~J} / \mathrm{s}$
D. None of these

Answer: C

- View Text Solution

136. The current in ampere through an inductor is
i($10+20 \mathrm{t})$
Here t is in second. The induced emf in the inductor 4 V .

The self inductance of the indicator is, $\mathrm{L} \mathrm{H}$,
A. 0.2
B. 0.4
C. 0.1
D. 1.0

Answer: A

Watch Video Solution

137. The current in ampere through an inductor is
i(10+20t)
Here t is in second. The induced emf in the inductor 4 V .
Total flux linked with the inductor at $\mathrm{t}=2$ is
A. 10 Wb
B. 20 Wb
C. 30 Wb
D. 40 Wb

Answer: A

- Watch Video Solution

138. In the figure shown $C_{1}=1 F, C_{2}=2 F$ and $L=5 H$
. Initially C_{1} is charged 50 V and C_{2} to 10 V . Switch S is closed at time $\mathrm{t}=\mathrm{D}$. Suppose at some instant charge on C_{1} is 20 C with the same polarties as shown in the figure

Energy stored in capacitor C_{2} at this instant will
A. 10 J
B. 15 J
C. 25 J
D. 40 J

Answer: C

- Watch Video Solution

139. In the figure shown $C_{1}=1 F, C_{2}=2 F$ and $L=5 H$
. Initially C_{1} is charged 50 V and C_{2} to 10 V . Switch S is closed at time t=D. Suppose at some instant charge on C_{1} is 20C with the same polarties as shown in the figure

`Current in the circuit at this instant will be
A. $10 \sqrt{2} A$
B. $15 \sqrt{2} A$
C. 10 A
D. 20 A

Answer: B

- Watch Video Solution

140. In the figure shown $C_{1}=1 F, C_{2}=2 F$ and $L=5 H$
. Initially C_{1} is charged 50 V and C_{2} to 10 V . Switch S is closed at time $\mathrm{t}=\mathrm{D}$. Suppose at some instant charge on C_{1} is 10 C with the same polarities as shown in the figure

Maximum current in the circuit will be
A. $4 \sqrt{30} A$
B. $16 \sqrt{2} A$
C. $20 \sqrt{3} A$
D. $12 \sqrt{6} A$

Answer: A

- Watch Video Solution

141. In an L-C -R series circuit connected to an AC source
$V=V_{0} \sin \left(100 \pi(t)+\frac{\pi}{6}\right)$
$V_{R}=40 V, V_{L}=40$ and $V_{C}=10 V$, resistance $R=4 \Omega$

Choose the correct option
A. $10 \sqrt{2} A$
B. $15 \sqrt{2} A$
C. $20 \sqrt{2} A$
D. $25 \sqrt{2} A$

- Watch Video Solution

142. In an L-C -R search circuit connected to an AC source

$$
V=V_{0} \sin \left(100 \pi+\frac{\pi}{6}\right)
$$

$$
V_{R}=40 \mathrm{~V}, V_{L}=40 \text { and } V_{C}=10 \mathrm{~V} \text {, resistance } R=4 \Omega
$$

Choose the correct option
A. $L=\frac{1}{25 \pi} H$
B. $C=\frac{1}{50 \pi}$
C. both (a) and (b) are correct
D. Both a and b are wrong

Answer: A

143. The potential difference across a $2 H$ inductor as a function of time is shown in figure. At time $t=0$, current is zero

Current $t=2$ second is

A. $1 A$
B. $3 A$
C. $4 A$
D. $5 A$

- Watch Video Solution

144. The potentiak difference across a 2 H inductor as a function of time is shown in the figure. At time $\mathrm{t}=0$, current is zero.

Current versus time graph across the inductor will be
(a)

B.
(b)

C.

(d)

Answer: B

- Watch Video Solution

145. A conducting bar is slid at a constant velocity v along
two conducting rods. The rods ar seprated by a distance I
and connected across a resistor R. The entire apparatus is placed in an external magnetic field B directed into the page

Which of the following represents the current i generated by the apparantus?

(c)

C.

Answer: A

D Watch Video Solution

146. A conducting bar is slid at a constant velocity v along two conducting rods. The rods ar seprated by a distance I and connected across a resistor R. The entire apparatus is placed in an external magnetic field B directed into the page

An increase in which of the following would NOT increase the current generated by the apparatus?
A. v
B. I
C. R
D. B

Answer: C
147. A conducting bar is slid at a constant velocity v along two conducting rods. The rods ar seprated by a distance I and connected across a resistor R. The entire apparatus is placed in an external magnetic field B directed into the page

The induced current in the above circuit is:
A. sinusoidal
B. clockwise
C. counterclockwise
D. there is not enough information to determine the direction and nature of the current

Answer: C

- Watch Video Solution

148. In the figure shown a uniform conducing rod of mass
m and length I is suspended invertical plane by two conducing springs of spring constant k each. Upper end of springs are connected to each other by a capacitor of capacitance C. A uniform horizontal magnetic field $\left(B_{0}\right)$ perpendicular to plane of springs in space initially rod is in equillibrium. If the rod is pulled down and released, it performs SHM. (Assume resistance of springs and rod are

Non conducting roof

Find the period of oscillation of rod.
A. $2 \pi \sqrt{\frac{m}{K}}$
B. $2 \pi \sqrt{\frac{B_{0}^{2} l^{2} C}{K}}$
C. $2 \pi \sqrt{\frac{m+B_{0}^{2} l^{2} C}{K}}$

D. None of these

Answer: D

- Watch Video Solution

149. In the figure shown a uniform conducing rod of mass
m and length I is suspended invertical plane by two conducing springs of spring constant k each. Upper end of springs are connected to each other by a capacitor of capacitance C. A uniform horizontal magnetic field $\left(B_{0}\right)$ perpendicular to plane of springs in space initially rod is in equillibrium. If the rod is pulled down and released, it performs SHM. (Assume resistance of springs and rod are negligible)

Non conducting roof

Choose the correct options from the followng:
A. Electrical energy stored in capacitor is maximum
B. Electrical energy stored in capacitor is maximum when rod is at its mean position
C. Current in rod in maximum at mean position of rod
D. None of the above

Answer: B

D View Text Solution

150. A uniform conducting ring of mass $\pi \mathrm{kg}$ and radius 1 m is kept on smooth horizontal table. A uniform but time varying magnetic field $B=\left(\hat{i}+t^{2} \hat{j}\right) T$ is present in the region, where t is time in seconds. Resistance of ring is $2(\Omega)$. Then

Time (in second) at which ring start toppling is
A. $\frac{10}{\pi} s$
B. $\frac{20}{\pi} s$
C. $\frac{5}{\pi} s$
D. $\frac{25}{\pi} s$

Answer: A
151. A uniform conducting ring of mass $\pi \mathrm{kg}$ and radius 1 m is kept on smooth horizontal table. A uniform but time varying magnetic field $B=\left(\hat{i}+t^{2} \hat{j}\right) T$ is present in the region, where t is time in seconds. Resistance of ring is $2(\Omega)$. Then

Heat generated (in kJ) through the ring till the instant when ring start toppling is
A. $\frac{1}{3 \pi} k J$
B. $\frac{2}{\pi} k J$
C. $\frac{2}{3 \pi} k J$
D. $\frac{1}{\pi} k J$

Answer: C

- Watch Video Solution

152. Comparing L-C oscillation with the oscillation if spring-block-system, match the following table.

Comparing L-C oscillations with the oscillations of springblock sytem, match the following table
Table-1
(LC oscillations)
Table-2
(Spring-block oscillations)
(A) L
(P) k
(B) C
(Q) m
(C) i
(R) v
(D) $\frac{d i}{d t}$
(S) $\quad x$
(T) None

D View Text Solution

153. During current growth in L-R circuit, match the following table,

Table-1		Table-2
(A) V_{L}	(P) Graph-1	
(B) V_{R}	(Q) Graph-2	
(C) Net emf of the circuit	(R) Graph-3	
(D) Current in the circuit	(S) None	

Watch Video Solution

154. Match the following
Table-1
Table-2
(A) L
(P) $\left[M^{0} L^{0} T^{-2}\right]$
(B) Magnetic Flux
(Q) $\left[M L^{2} T^{-2} A^{-1}\right]$
(C) $L C$
(R) $\left[M L^{2} T^{-2} A^{-2}\right]$
(D) $C R^{2}$
(S) None

- View Text Solution

155. In the circuit diagram shown in Figure $\mathrm{E}=18 \mathrm{~V}$, $\mathrm{L}=2 \mathrm{H}$, $R_{1}=3 \Omega, R_{2}=6 \Omega$. Switch S is closed at $\mathrm{t}=0$ Match the

following:

- Watch Video Solution

156. Instantaneous voltage and instantaneoss current in an L-R circuit in AC is $\mathrm{V}=100 \sin$ (100)t and
$i=10 \sin (100 t-\pi / 4)$. Match the following table,
(A) R
(P) $\frac{1}{10 \sqrt{2}}$ SI units
(B) X_{L}
(Q) $5 \sqrt{2} \mathrm{SI}$ unit
(C) L
(R) $10 \sqrt{2}$ SI units
(D) Average power in one cycle (S) None

- Watch Video Solution

157. In the figure $V_{a b}$ versus time graph along an inductor is shown. Match the following

Table-1 Table-2
(A) At P, if current is from (P) increasing b to a it must be
(B) At Q, if current is from (Q) decreasing a to bit must be
(C) At R, if current is from (R) constant a to b it must be

- Watch Video Solution

158. Magnetic flux in a circular coil of resistance 10Ω changes with time as shown in figure. \otimes direction indicates a direction perpendicular to paper inwards.

Match the following table.

D Watch Video Solution

159. In L-C-R series circuit suppose ω_{r} is resonance frequency, then match the following table,
Table-1
Table-2
(A) If $\omega>\omega_{r} \quad(P) \quad$ Current will lead the voltage
(B) If $\omega=\omega_{r} \quad(Q)$ Voltage will lead the current
(C) If $\omega=2 \omega_{r} \quad(R) \quad X_{L}=2 X_{C}$
(D) If $\omega<\omega_{r}$ (S) Current and voltage are in phase
(T) None

- Watch Video Solution

160. Three coils are placed infront of each other as shown
currents in 1 and 2 are in same direction while that in 3 is
in opposite direction. Match the following table

Table-1
(A) When current in 1 is (P) current in 1 will increased
(B) When current in 2 is increased
(C) When current in 3 is increased
increase
current in 2 will
(Q) increase
current in 3 will
(R) increase
(S) None

- Watch Video Solution

161. A square loop is placed near a long straight current
carrying wire as shown. Match the following table.

- Watch Video Solution

162. In the circuit shown the cell is ideal. The codil has an inductance of 2 H and will blow when the current through it reaches $5 a$. The switch is closed at $t=0$. Find the time (in
second) n when fuse will blow.

- Watch Video Solution

163. A coil =of inductance $L=50 \mu H$ and resistance $=0.5 \Omega$ is connected to a battery of emf $=5$ A. A resistance of 10Ω is connected parallel to the coil. Now at some instant the connection of the battery is switched off. Then the amount of heat generated in the coil after switching off the battery is (0.02)x in mJ . Find valuie of x .
164. An L-C circuit contains a 0.60 H inductor and a $25 \mu F$ capacitor is $3.0 \times 10^{-5} \mathrm{C}$?

D View Text Solution

165. A capacitor of capacity $2 \mu F$ is changed to a potential different of 12 V . It is then connected across an inductor of inductance 0.6 mH What is the current in the circuit at a time when the potential difference across the capacitor is 6.0 V ?
166. When an AC voltage, of variable frequency is applied to series L-C-R circuit, the current in the cirucit is the same at 4 kHz . The current in the ciruit is maximum at $(\mathrm{x}) \mathrm{kHz}$.

Find the value of x

D View Text Solution

167. An ideal choke takes a current of 8 A when connectd to an $A C$ source of 100 V and 50 Hz . A pure resistor under the same condition strikes a current of 10 A . If two are connected in series to an AC supply of 100 V and 40 Hz , then the current in the series combination of above resistor and inductor $\sqrt{10 x} \mathrm{~A}$. Find value of x
168. An AC circuit consists of a resistance and a choke coil in series. The resistance is of 220Ω and choke coils is of 0.7 H. The power abosorbed from 220 V and 50 Hz , source connected with the circuit , is

D Watch Video Solution

169. Two coils have a mutual inductance 0.005 H . The
current changes in the first coil according to the equation
$I=I_{0} \sin \omega t$ where $I_{0}=10 A$ and $\omega=100 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf wiin second coil is ($\mathrm{pi} / / \mathrm{x})^{\text {' }}$ volts.

Find the value of x.
170. In a certain circuit current changes with time accroding to $i=2 \sqrt{t}$. r.m.s. value of current between $t=2$ to $t=4 s$ will be

- Watch Video Solution

171. An $L-C-R$ series circuit with 100Ω resistance is connected to an $A C$ source of 200 V and angular frequency $300 \mathrm{rad} / \mathrm{s}$. When only the capacitance is removed, the current lags behind the voltage by 60°. When only the inductance is removed the current leads the voltage by 60°. Calculate the current and the power dissipated in the $L-C-R$ circuit
172. A block of mass 300 g is attached to the ceiling by
spring that has a force constant $\mathrm{k}=200 \mathrm{~N} / \mathrm{m}$ conducting massless rod is rigidly attached to the block and can slide without friction alon vertical parallel rails which are a distance $\mathrm{L}=1 \mathrm{~cm}$ apart. A capacitor of known $\mathrm{C}=500 \mu F$ attached to the rails by the wire and the entire system is kept in magnetic field $B=20 \mathrm{~cm}$ perpendicular to plane of paper inwards. Neglect the self inductance to plane of paper inwards. Negect self inductance and electrical resistance of all wire and rod. In ' ω ' is angular frequency (in rad/sec) vertical oscillaitons of block ithen $\frac{\omega}{10}$ is equal

D View Text Solution

173. An uncharged capacity ER $C=100 \mu F$ with a resistor is connected with $A C$ source as shown in the figure If $R=$ is
50Ω and switch S is closed at $\mathrm{t}=0$ maximum value of
$\left(v_{A}-V_{9} B\right)$ is k volt. Calculate K

- View Text Solution

174. A conducting light string is wound on the rim of a metal ring of radius r and mass m. The free end of the string is fixed to the ceiling. A vertical infinite smooth conducting plane is always tangent to the ring as shown in the figure. A uniform magnetic field Bis applied
perpendicular to the plane of the ring. The ring is always inside the magnetic field. The plane and the strip are connected by a resistance R. When the ring is released, find

a. the curent in the resistance R as as function of time.
b. the terminal velocity of the ring.
175. The circuit shows a resistance, $R=0.01 \Omega$ and inductance $\mathrm{L}=3 \mathrm{mH}$ connected to a conducting rod PQ of length l=wm which can slide on a perfectly conducting circular arc of radius I with its center at P. Assume that friction and gravity are absent and a constant uniform magnetic field $b=0.1 T$ exists as shown in the figure. At $t=0$, the circuit is seitched on a simultaneously an external torque is applied on the rod so that it rotates about P with a constant angular velocity $\omega 2 \mathrm{rad} / \mathrm{sec}$. Find the
magnitude of this torque (inN-m) at $\mathrm{t}=(0.3 \ln 2)$ second.

- View Text Solution

176. The circuit shows a resistance, $R=0.01 \Omega$ and inductance $\mathrm{L}=3 \mathrm{mH}$ connected toa conducting rod PQ of length I=wm which can slide on a perfectly conducting circular arc of radius I with its center at P. Assume that
friction and gravity are absent and a constant uniform magnetic field $b=0.1 T$ exists as shown in the figure. At $t=0$, the circuitt ois seitched on a simultaneously an external torque is applied on the rod so that it rotates about P with a constant angular velocity $\omega 2 \mathrm{rad} / \mathrm{sec}$. Find the magnitude of this torque (inN-m) at $\mathrm{t}=(0.3 \ln 2$) second.

177. A square loop of side and a straight infinity conducor are placed in the same plane with two sides of the square parallel to the conductor. The resistance of the loop is R.

The loop is turned through 180° about the axis. The electric charge that flows in the square loop is
$\frac{\mu_{0} I_{a}}{2 \pi R} 1 m\left|\frac{n a+b}{b}\right|$. Find the value of n .

- Watch Video Solution

178. In a series $L C R$ circuit the frequency of a $10 V, A C$ voltage soure is adjusted in such a fashion that the reactance of the inductor meausers 15Ω and that of the capacitor 11Ω. If $R=3 \Omega$, the potentail difference across the series combination of L and C will be:

- Watch Video Solution

[^0]: A. $200 \mathrm{~V}, 1 \mathrm{~A}$

