© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - DC PANDEY PHYSICS (HINGLISH)

CAPACITORS

Solved Examples

1. Capacitance of a conductor is $1 \mu F$. What charge is required to raise its potential to 100 V ?
A. $300 \mu C$
B. $200 \mu C$
C. $10 \mu C$
D. $100 \mu C$

Answer: D

- Watch Video Solution

2. Radius of a spherical conductor is $2 m$, This is kept in dielectric medium of dielectric constant $10^{6} N / C$. Find
a. capacitance of the conductor
b. maximum charge which can be stored on this conductor.
3. Two isolated sphereical conductors have radii 5 cm and 10 cm , espctively They have charges of $12 \mu C$ and $-3 \mu C$.

Find the charges after they are connected by a conductng wire. Also find the common potential after resistribution.
A. $3 \mu C 6 \mu C 1.4 \times 10^{5} V$
B. $3 \mu C 16 \mu C 5.4 \times 10^{5} V$
C. $30 \mu C 6 \mu C 5.4 \times 10^{5} V$
D. $3 \mu C 6 \mu C 5.4 \times 10^{5} V$

Answer: D

- Watch Video Solution

4. An insulated conductor initiallly free from charge is charged by repeated contacts with a plate which after each contact is replenished to a charge Q. If q is the charge on the conductor after first operation prove that the maximum charge which can be given to the conductor in this way is $\frac{Q q}{Q-q}$

- Watch Video Solution

5. A conducting sphere S_{1} of radius r is attached to an insulating handle. Another conduction sphere S_{2} of radius
R is mounted on an insulating stand. S_{2} is initially uncharged. S_{1} is given a charge Q brought into contact with S_{2} and removed. S_{1} is recharge such that the charge
on it is again Q and it is again brought into contact with S_{2} and removed. This procedure is repeated n times.
a. Find the electrostatic energy of S_{2} after n such contacts with S_{1}.
b. What is the limiting value of this energy as $n \rightarrow \infty$?

D Watch Video Solution

6. A parallel plate capacitor has capacitance of $1.0 F$. If the plates are 1.0 mm apart, what is the area of the plates?

D Watch Video Solution

7. Two parallel plate vacuum capacitors have areas A_{1} and
A_{2} and equal plate spacing d. Show that when the
capacitors are connected in parallel, the equivalent capacitance is the same as for a single capacitor with plate area $A_{1}+A_{2}$ and spacing d.

D Watch Video Solution

8. a. Two spheres have radii a and b and their centres are at a distance d apart. Show that the capacitance of this
system is
$C=\frac{4 \pi \varepsilon_{0}}{\frac{1}{a}+\frac{1}{b} \pm \frac{2}{d}}$
provided that d is large compared with a and b.
b. Show that as d approaches infinity the above result reduces to that of two islotated spheres inseries.
9. A capacitor is given a charge q. The distance between the plates of the capacitor is d. One of the plates is fixed and the other plate is moved away from the other till the distance between them becomes $2 d$. Find the work done by the external force.

D Watch Video Solution

10. In the circuit shown in figure find

a. the equivalent capacitance
b. the charge stored in each capacitor and
c. the potential difference across each capacitor.
A. $1.2 \mu F 120 \mu C 60 V$ and $40 V$
B. $1.2 \mu F 120 \mu C 60 \mathrm{~V}$ and 20 V
C. $1.2 \mu F 12 \mu C 60 \mathrm{~V}$ and 40 V
D. $12 \mu F 120 \mu C 60 \mathrm{~V}$ and 40 V

Answer: A
11. In the circuit shown in figure find

a. the equivalent capacitance and
b. the charge stored in each capacitor.
12. Find the charges on the three capacitors shown in

- Watch Video Solution

13. Using the concept of energy density, find the total energy stored in a
a. parallel plate capacitor
b. charged spherical conductor.
14. An infinite ladder network is constructed with 1Ω and 2Ω resistors as shown. Find the equivalent resistance

- Watch Video Solution

15. Twelve identical resistances arranged on all edges of a cube. The resistors are all the same. Then find the equivalent resistance between the edges A and B as
shown in figure.

D Watch Video Solution

16. Find the the equivalent resistance between points A

D Watch Video Solution

17. Find the equivalent capacitance between the point A

and B in figure .

equivalent capacitance of the given system is

$$
2 C=\frac{2 C_{1} C_{2}}{C_{1}+C_{2}}
$$

7. Find the equivalent capacitance between the point A and \boldsymbol{B} in figure (31-W5a).

Figure 31-W5
Solution : Let us connect a battery between the points A and B. The charge distribution is shown in figure (31-W5b). Suppose the positive terminal of the battery supplies a charge $+Q$ and the negative terminal a charge $-Q$. The charge Q is divided between plates a and e. A charge Q_{1} goes to the plate a and the rest $Q-Q_{1}$ goes t.a the nlates The nhones
18. An air capacitor is first charged through a battery. The charging battery is then removed and a electric slab of dielectric constant $K=4$ is inserted between the plates. Simultaneously, the distance between the plates is reduced to half, then find change, C, E, V and U.
A. C Increases, E decreases , V decreases, U decreases
B. C Increases, E decreases , V decreases, U increases
C. C decreases, E decreases, V decreases, U decreases
D. C Increases, E increases , V decreases, U decreases

Answer: A
19. Find the electric potential energy of a uniformly charged sphere.

- Watch Video Solution

20. Find the electric potential energy of a unifomly charged then spherical shell.

- Watch Video Solution

21. What charges will flow through A, B and C in the direction shown in the figure when swithc S is closed?

A. $-48 \mu C, 120 \mu C,-72 \mu C$
B. $48 \mu C, 120 \mu C,-72 \mu C$
C. $-48 \mu C, 12 \mu C,-72 \mu C$
D. $-48 \mu C, 120 \mu C, 72 \mu C$

Answer: A
22. Prove that in charging a capacitor half of the energy supplied by the battery is stored in the capacitor and remaining half is lost during charging.

- Watch Video Solution

23. Three capcaitors of capacities $1 \mu F, 2 \mu F$ and $3 \mu F$ are charged by $10 \mathrm{~V}, 20 \mathrm{~V}$ and 30 V respectively. Now positive plates of first two capacitors are connected with the negative plate of third capacitor on one side and negative plates of first wo capacitors are connectes with positive of third capacitor on the other side. Find
a. common potential V
b. final charges on different capacitors.

- Watch Video Solution

24. In the circuit shown in figure switch S is closed at time $t=0$. Find

a. Initial current at $t=0$ and final current at $t=\infty$ in the loop.
b. total charge q flown from the switch.
c. Final charges on capacitors in steady state at time $t=\infty$
d. Loss of energyduring resistribution of charges
e. Individual loss across 1Ω and 2Ω resistance.

- Watch Video Solution

25. Switch S is closed at time $t=0$. in the circuit shown in

figure.
a. Find the time varying quantities in the circuit.
b. Find the their values at time $t=0$
c. Find their vales at time $t=\infty$

Find the time constant of all time varying function
e. Make their exponetial graphs and write their
exponential equations.
f. just write the equations to slove them to find different time varying functions.

D Watch Video Solution

26. In the circuit shown in figure find $V_{a b}$ at $1 s$

$$
\text { a }-1+\left.\right|_{q=2 t} ^{2 \mathrm{~F}}+4 \Omega \quad \text { - }
$$

27. What is capacitance of the capacitor shown in figure?

- Watch Video Solution

28. Find potential difference across the capacitor
(obviously in steady state)

- Watch Video Solution

29. Find the charge stored in the capacitor.

- Watch Video Solution

30. Three parallel metalic plates each of area A are kept as shown in figure and charges q_{1}, q_{2} and q_{3} are given to them. Find the resulting charge distribution on the six
surfaces, neglecting edge effects as usual,

- Watch Video Solution

31. Area of each plate is A. The conducting plates are connected to a battery of emf V volts. Find charges q_{1} to
q_{t}.

- Watch Video Solution

32. In the shown figure shown

a. Find q_{1} and q_{6}
b. total electrostatic potential energy .
33. In the circuit shown in figure-3.240 switch S is closed at time $t=0$. find the current through different wires and charge stored on the capacitor at any time t.

- Watch Video Solution

34. In the circuit shown in figure, find the steady state charges on oth the capacitors.

D Watch Video Solution

35. An isolated parallel plate capacitor has circular plates of radius 4.0 cm . If the gap is filled with a partially conducting material of dielectric constant K and conductivity $5.0 \times 10^{-14} \Omega^{-1} \mathrm{~m}^{-1}$. When the capacitor is charged to a surface charge density of $15 \mu C / \mathrm{cm}^{2}$, the initial current between the plates is $1.0 \mu A$?
a. Determine the value of dielectric constant K.
b. If the total joule heating produced is 7500 J , determine the separation of the capacitor plates.

D Watch Video Solution

36. Three concentric conducting shells A, B and C of radii a, b and c are as shown in figure. A dielectric of dielectric constant K is filled between A and B. Find the
capacitance between A and C .

- Watch Video Solution

Exercise

1. Find the dimensions of capacitance.

D Watch Video Solution

2. No charge will flow when two conductors having the same charge are connected to each other. this statement true or false?

D Watch Video Solution

3. Two conductors of capacitance $1 \mu F$ and $2 \mu F$ are charged to +10 V and -20 V They are now connected by a conducting wire. Find
(a) their common potential
(b) the final charges on them
(c) the loss of energy during, redistribution of charges.
4. A capacitor has a capacitance of $7.28 \mu F$. What amount of charge must be placed on each of its plates to make the potential difference between its plates equAl to 25.0 V ?

D Watch Video Solution

5. A parallel air capacitance $245 \mu F$ has a charge of magnitude $0.48 \mu C$ on each plate. The plates are 0.328 mm apart.
(a) What is the potential difference between the plates?
(b) What is the area of each plate?
(c) What is the surface charge density on each plate?
6. Two parallel plates have equal and opposite charges.

When the space between the plates is evacuted, the electric field is $E_{0}=3.20 \times 10^{5} \mathrm{~V} / \mathrm{m}$. When the space is filled with electric the electric field is $E-2.50 \times 10^{5} \mathrm{~V} / \mathrm{m}$
a. What is the dielectric constant?
b. What is the charge density on each surface of the dielectric?
7. Find charges on different capacitors.

A. $30 \mu C 20 \mu C 10 \mu C$
B. $300 \mu C 200 \mu C 100 \mu C$
C. $30 \mu C 10 \mu C 10 \mu C$
D. $10 \mu C 20 \mu C 10 \mu C$

Answer: A
8. Find the charges on different capacitors.

- Watch Video Solution

9. Assertion : From the relation $C=\frac{q}{V}$ We can say that, if more charge q is given to a conductor, its capacitance should increase.

Reason : Ratio $\frac{q}{V}$ will remain constant for a given conductor.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

- Watch Video Solution

10. Assertion : A parallel plate capacitor is first charged and then distance between the plates is increased. In this process, electric field between the plates remains the same, while potential difference gets decreased.

Reason: $E=\frac{q}{A \varepsilon_{0}}$ and $V=\frac{q}{A d \varepsilon_{0}}$ Since q, remain same, E will remain same while V will decrease.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

- Watch Video Solution

11. Assertion : When an uncharged capacitor is charged by a battery only 50% of the energy supplied is stored in the capacitor.

Reason : Rest 50% is lost.
A. If both Assertion and Reason are true and the

Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: A: B

- Watch Video Solution

12. Assertion: Discharging graphs of two C.R. circuits having the same value of C is shown in figure. From the graph we can say that $\tau_{C_{1}}>\tau_{C_{2}}$

Reason: $R_{1}>R_{2}$
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is
not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

D Watch Video Solution

13. Assertion : In series combination, charges on two capacitors are always equal.

Reason : If charges are same, the total potential difference applied across two capacitors will be distributed in inverse ratio of capacities.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

D Watch Video Solution

14. Assertion : Two capacitors are charged from the same battery nd then connected as shown. A current will flow i ntil clock direction as soon as switch is closed.

Reason: In steady state charges on two capacitors are in the ratio 1:2.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

- Watch Video Solution

15. Assertion: In the circuit shown in figure no charge will stored in the capacitor.

Reason: Current through R_{2} will be zero.
A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

16. Assertion: In the circuit in figure, time constant of charging of capacitor is $\mathrm{s} \frac{C R}{2}$

Reason: In the absence of capcitor in the circuit, two resistors are in parallel with the battery.
A. If both Assertion and Reason are true and the

Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is
not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: D

D Watch Video Solution

17. Assertion: Two capacitors are connected in series with a battery. Energy stored across then is in inverse ratio of their capacity.

$$
\text { Reason: } U=\frac{1}{2} q V \text { or } U \propto q V
$$

A. If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

D Watch Video Solution

18. Assertion: In the circuit shown in figure with a dielectric
slab is inserted in C_{2}, the potential difference across C_{2} will decrease.

Reason: By inserting the slab a current will flow in the circuit in clockwise direction.
A. If both Assertion and Reason are true and the

Reason is correct explanation of the Assertion.
B. If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.
C. If Assertion is true, but the Reason is false.
D. If Assertion is false but the Reason is true.

Answer: B

- Watch Video Solution

19. The separation between the plates of a charged parallel-plate capacitor is increased. The force between the plates
A. increases
B. decreases
C. remains same
D. first increases then decreases

Answer: C

20. If the plates of a capacitor are joined together by as conducting wire, then its capacitance
A. reamains unchanged
B. decreases
C. become zero
D. becomes infinite

Answer: D

D Watch Video Solution

21. Two metal spheres of radii a and b are connected by a thin wire. Their separation is very large compared to their
dimensions. The capacitance of this system is
A. $4 \pi \varepsilon_{0}(a b)$
B. $2 \pi \varepsilon_{0}(a+b)$
C. $4 \pi \varepsilon_{0}(a+b)$
D. $4 \pi \varepsilon_{0}\left(\frac{a^{2}+b^{2}}{2}\right)$

Answer: C

D Watch Video Solution

22. n identical capacitors are connected in parallel to a potential difference V. These capacitors are then reconnected in sereis, their charges being left undisturbed. The potential difference obtained is
A. zero
B. $(n-1) V$
C. $n V$
D. $n^{2} V$

Answer: C

- Watch Video Solution

23. In the circuit shown in figure, the ratio of charge on $5 \mu F$ and $2 \mu F$ capacitor is

A. $\frac{5}{4}$
B. $\frac{5}{3}$
C. $\frac{3}{8}$
D. none of these

Answer: D

- Watch Video Solution

24. In Millikan's oil drop experiment an oil drop of radius r and change Q is held in equilibrium between the plates of a charged parallel plate capacitor when the potential change is V. To keep a drop radius $2 r$ and with a change $2 Q$ is equilibriu between the plates the potential difference V^{\prime} required is:
A. V
B. 2 V
C. 4 V
D. 8 V

Answer: C
25. Two large parallel sheets charged uniformly with surfasce charge density σ and $-\sigma$ are located as shown in the figure. Which one of the following graphs shows the variation of electric field along a line perpendicular to the sheets as one moves from A to B ?

A.

B.

C.

D.

Answer: B

- Watch Video Solution

26. When the switch is closed, the initial current through the 1Ω resistor is

A. $2 A$
B. $4 A$
C. $3 A$
D. 6

Answer: B

- Watch Video Solution

27. A capacitor of capacitance C carrying charge Q is connected to a source of emf E. Finally, the charge on capacitor would be
A. Q
B. $Q+C e$
C. $C E$
D. none of these

Answer: C

- Watch Video Solution

28. In the circuit the potential difference across the capacitor is 10 V . Each resistance is of 3Ω The cell is ideal.

The emf of the cell is

A. 14 V
B. 16 V
C. 18 V
D. 24 V

Answer: A

- Watch Video Solution

29. Four identical capacitors are connected in series with a 10 V battery as shown in the figure. The point N is earthed. The potentials of points A and B are

A. $10 \mathrm{~V}, 0 \mathrm{~V}$
B. $7.5 \mathrm{~V},-2.5 \mathrm{~V}$
C. $5 V,-5 V$
D. $7.5 \mathrm{~V}, 2.5 \mathrm{~V}$

Answer: B

- Watch Video Solution

30. A capacitor of capacity $2 \mu F$ is charged to $100 V$. What is the heat (in mili joule) generated when this capacitor is connected in parallel to n another capacitor of same capacity?
31. A charged capacitor is discharged through a resistance.

The time constant of the circuit is η. Then the value of time constant for the power dissipated through the resistance will be
A. η
B. 2η
C. $\frac{\eta}{2}$
D. zero

Answer: C
32. A capacitor is charged by a cell of emf E the charging battery is then removed. If an identical capacitor is now inserted in the circuit in parallel with the previous capacitor, the potential difference across the new capacitor is
A. $2 E$
B. E
C. $\frac{E}{2}$
D. zero

Answer: C
33. The potential difference $V_{A}-V_{B}$ between points A and B for the circuit segment shown in figure at the given instant is

A. 12 V
B. -12 V
C. 6 V
D. -6 V

Answer: A
34. For the circuit arrangement shown in figure, in the steady state condition charge on the capacitor is

A. $12 \mu C$
B. $14 \mu C$
C. $2 \mu C$
D. $18 \mu C$

Answer: D
35. In the circuit as shown in figure if all the symbols have their usual meanings, then identify the correct statements,

A. $q_{2}=q_{3}, V_{2}=V_{3}$
B. $q_{1}=q_{2}+q_{3}, V_{2}=V_{3}$
C. $q_{1}=q_{2}=q_{3}, V=V_{1}+V_{2}+V_{3}$
D. $q_{1}+q_{2}+q_{3}=0,, V_{2}=V_{3}=V-V-1$

Answer: B

- Watch Video Solution

36. An electron enters the region between the plates of a parallel plate capacitor at an angle θ to the plates. The plate width is l, the plate separation is d. The electron follows the path shown just missing the upper plate.

Neglect gravity. Then,

A. $\tan \theta=2 \frac{d}{l}$
B. $\tan \theta=4 \frac{d}{l}$
C. $\tan \theta=8 \frac{d}{l}$
D. The data given is insufficient to find a relation between d, I and θ

- Watch Video Solution

37. An infinite sheet of charge has a surfaces charge density of $10^{-7} \frac{C}{m^{2}}$. The separation between two equipotential surfce whose potentials differ by 5 V is
A. 0.64 cm
B. 0.88 mm
C. 0.32 cm
D. $5 \times 10^{-7} \mathrm{~m}$

Answer: B
38. Find the equivalent capacitance across A and B for the arrangement shown in figure. All the capacitors are of capacitance C

A. $\frac{3 C}{14}$
B. $\frac{C}{8}$
C. $\frac{3 C}{16}$
D. none of these
39. The equivalent capacitance between X and Y is

A. $\frac{5}{6} \mu F$
B. $\frac{7}{6} \mu F$
C. $\frac{8}{3} \mu F$
D. $1 \mu F$

Answer: C

40. In the arrangement shown in figure dielectric constant
$K_{1}=2$ and $K_{2}=3$. If the capacitance across P and Q
are C_{1} and C_{2} respectively, then C_{1} / C_{2} will be (the gaps
shown are negligible)

A. $1: 1$
B. 2: 3
C. 9:5
D. $25: 24$

Answer: D

41. Six equal capacitors each of capacitance C are connected as shown in the figure. The equivalent capacitance between points A and B is

A. $1.5 C$
B. C
C. $2 C$
D. $0.5 C$

- Watch Video Solution

42. Four ways of making a network of five capacitor of the same value are shown in four choices. Three out of four are identical. The one which is different is

Answer: D

- Watch Video Solution

43. The equivalent capacitance of the arrangement shown in figure, if A is the area of each plate is

A. $C=\frac{\varepsilon_{0} A}{d}\left[\frac{K_{1}}{2}+\frac{K_{2}+K_{3}}{K_{2} K_{3}}\right]$
B. $C=\frac{\varepsilon_{0} A}{d}\left[\frac{K_{1}}{2}+\frac{K_{2} K_{3}}{K_{2}+K_{3}}\right]$
C. $C=\frac{\varepsilon_{0} A}{2 d}\left[K_{1}+\frac{K_{2}+K_{3}}{K_{2}+K_{3}}\right]$
D. $C=\frac{\varepsilon_{0} A}{d}\left[K_{1}+\frac{K_{2} K_{3}}{K_{2}+K_{3}}\right]$

Answer: B

D Watch Video Solution

44. Find equivalent capacitance between points A and B.
[Assume each conducting plate is having same dimensions and neglect the thickness of the plate $\frac{\varepsilon_{0} A}{d}=7 \mu F$ where

A

A. $7 \mu F$
B. $11 \mu F$
C. $12 \mu F$
D. $15 \mu F$

Answer: B

- Watch Video Solution

45. Two metallic plates are kept parallel to one another and charges are given to them as shown in figure. Find the charge on all the four faces.

- Watch Video Solution

46. Charges $2 q$ and $-3 q$ are given to two identical metal plates of area of cross section A. the distance between the plates is d. Find the capacitance and potential
difference between the plates.

- Watch Video Solution

47. Find the charged stored in all the capacitors

48. Find the charge stored in the capacitor.

- Watch Video Solution

49. Find the charge stored in the capacitor.

- Watch Video Solution

50. A $1 \mu F$ capacitor and a $2 \mu F$ capacitor are connected in series across a 1200 V supply line.
a. Find the charge on each capacitor and the voltage across them.
b. The charged capacitors are disconnected from the line
and from each other and reconnected with terminals of like sign together. Find the final charge on each and the voltage across them.

- Watch Video Solution

51. A $100 \mu F$ capacitor is charged to 100 V . After the charging, battery is disconnected. The capacitor is then connected in parallel to another capacitor. The final voltage is 20 V . Calculate cap the capacity of second capacitor.
52. An Uncharged capacitor C is connected to a battery through a resistance R. Show that by the time the capacitor gets fully charged, the energy dissipated in R is the same as the energy stored in C.

- Watch Video Solution

53. How many time constants will elapse before the current in a charging $R-C$ circuit drops to half of its initial value?

- Watch Video Solution

54. A capacitor of capacitance C is given a charge go. At time $t=0$ it is connected to an uncharged capacitor of equal capacitance through a resistance R. Find the charge on the first capacitor and the second capacitor as a function of time t. Also plot the corresponding q-t graphs.

D Watch Video Solution

55. A capacitor of capacitance as C is given a charge Q. At
$t=0$,it is connected to an ideal battery of emf (ε)
through a resistance R. Find the charge on the capacitor
at time t .

D Watch Video Solution

56. Determine the current through the battery in the circuit shown in figure.

(a) immediately after the switch S is closed
(b) after a long time.

- Watch Video Solution

57. For the circuit shown in figure, find
(a) the initial current through each resistor
(b) steady state current through each resistor
(c) final energy stored in the capacitor
(d) time constant of the circuit when switch is opened.

58. Find equivalent capacitance between points A and B,

(a)
59. A $4.00 \mu F$ capacitor and a $6.00 \mu F$ capacitor are connected in parallel across a 660 V supply line
(a) Find the charge on each capacitor and the voltage across each.
(b) The charged capacitors are disconnected from the line and from each other, and reconnected to each other with terminals of unlike sign together. Find the final charge on each and the voltage across each.

D Watch Video Solution

60. A $5.80 \mu F$ parallel-plate air capacitor has a plate separation of 5.00 mm and is charged to a potential
difference of 400 V . Calculate the energy density in the region between the plates, in $\frac{\mathrm{J}}{\mathrm{m}^{3}}$

- Watch Video Solution

61. The dielectric to be used in a parallel-plate capacitor has a dielectric constant of 3.60 and a dielectric strength of $1.60 \times 10^{7} \mathrm{~V} / \mathrm{m}$. The capacitor is to have a capacitance of $1.25 \times 10^{-9} F$ and must be able to withstand a maximum potential difference of 5500 V . What is the minimum area the plates of the capacitor may have?
62. Two condensers are in parallel and the energy of the combination is 0.1 J , when the difference. of potential between terminals is $2 V$. With the same two condensers in series, the energy $1.6 \times 10^{-2} \mathrm{~J}$ for the same difference of potential across the series combination. What are the capacities?

- Watch Video Solution

63. A circuit has section $A B$ as shown in figure. The emf of the source equals $E=10 \mathrm{~V}$, the capacitor capacitances are equal to $C_{1}=1.0 \mu F$ and $C_{2}=2.0 \mu F$, and the potential difference $V_{A}-V_{B}=5.0 V$. Find the voltage
across each capacitor.

D Watch Video Solution

64. Several $10 p F$ capacitors are given, each capable of withstanding 100 V . How would you construct :
(a) a unit possessing a capacitance of $2 p F$ and capable of withstanding 500 V ?
(b) a unit possessing a capacitance of $20 p F$ and capable of withstanding 300 V ?

Watch Video Solution

65. Two, capacitors A and B are connected in series across
a 100 V supply and it is observed that the potential difference across them are 60 V and 40 V . A capacitor of
$2 p . F$ capacitance is now connected in parallel with A and the potential difference across B rises to 90 V . Determine the capacitance of A and B

D Watch Video Solution

66. A $10.0 \mu F$ parallel-plate capacitor with circular plates is connected to a 12.0 V battery.
(a) What is the charge on each plate?
(b) How much charge would be on the plates if their separation were doubled while the capacitor remained connected to the battery?
(c) How much charge would be on the plates if the capacitor were connected to the 12.0 V batter Y after the radius of each plate was doubled without changing their separation?

- Watch Video Solution

67. A $450 \mu F$ capacitor is charged to 295 V . Then, a wire is
connected between the plates. How many joule of thermal
energy are produced as the capacitor discharges if all of the energy th was stored goes into heating the wire?
68. The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and $2.00 \mathrm{~m}^{2}$ in area. A potential difference of $10,000 \mathrm{~V}$ is applied across the capacitor. Compute
(a) the capacitance
(b) the charge on each plate, and
(c) the magnitude of the electric field in the space between them.

D Watch Video Solution

69. Three capacitors having capacitances of $8.4 \mu F, 8.2 \mu F$
and $4.21 \mu F$ are connected in series across a 36 potential
difference.
(a) What is the charge on $4.2 \mu F$ capacitor?
(b) What is the total energy stored in all three capacitors?
(c) The capacitors are disconnected from the potential difference without allowing them to discharge. They are then reconnected in parallel with each other, with the positively charged plates connected together. What is the voltage across each capacitor in the parallel combination?
(d) What is the total energy now stored in the capacitors?

- Watch Video Solution

70. Find the charges on $6 \mu F$ and $4 \mu F$ capacitors

$$
V_{a b}=220 \mathrm{~V}
$$

(a) What is the equivalent capacitance of the network between points a and b ?
(b) Calculate the charge on each capacitor and the potential difference across each capacitor.

D Watch Video Solution

72. Two condensers A and B each having slabs of dielectric constant $K=2$ are connected in series. When they are connected across 230 V supply, potential difference across A is 130 V and that across B is 100 V . If the dielectric in the condenser of smaller capacitance is replaced by one for which $K=5$, what will be the values of potential difference across them?

- Watch Video Solution

73. A capacitor of capacitance $C_{1}=1.0 \mu F$ charged upto a voltage $V=110 \mathrm{~V}$ is connected in parallel to the
terminals of a circuit consisting of two uncharged capacitors connected in series and possessing the capacitance $C_{2}=2.0 \mu F$ and $C_{3}=3.0 \mu F$. What charge will flow through the connecting wires?

- Watch Video Solution

74. In figure the battery has a potential difference of 20 V .

Find

(a) the equivalent capacitance of all the capacitors across
the battery and
(b) the charge stored on that, equivalent capacitance. Find the charge on
(c) capacitor 1 ,
(d) capacitor 2, and
(e) capacitor 3.

D Watch Video Solution

75. In figure, battery B supplies 12 V . Find the charge on each capacitor

(a) first when only switch S 1 is closed and
(b) later when S 2 is also closed.
(Take

$$
C_{1}=1.0 \mu F, C_{2}=2.0 \mu F, C_{3}=3.0 \mu F \quad \text { and }
$$

$\left.C_{4}=4.0 \mu F\right)$

- Watch Video Solution

76. When switch S is thrown to the left in figure, the plates of capacitor 1 acquire a potential difference V_{0}. Capacitors

2 and 3 are initially uncharged. The switch is now thrown to the right. What are the final charges q_{1}, q_{2} and q_{3} on the capacitors?

- Watch Video Solution

77. A parallel-plate capacitor has plates of area A and separation d and is charged to a potential difference V. The charging battery is then disconnected, and the plates are pulled apart until their separation is $2 d$. Derive expression in terms of A, d and V for
(a) the new potential difference
(b) the initial and final stored energies, U_{i} and U_{f} and
(c) the work required to increase the separation of plates from d to $2 d$.

- Watch Video Solution

78. In the circuit shown in figure
$E_{1}, 2 E_{2}=20 V, R_{1}=R_{2}=10 k \Omega$ and $C=1 \mu F$. Find
the current through R_{1}, R_{2} and C when

(a) S has been kept connected to A for a long time.
(b) The switch is suddenly shifted to B.

Watch Video Solution

79.
(a) What is the potential of point a with respect to point b in figure, when switch S is open?
(b) Which point, a or b, is at the higher potential?
(c) What is the final potential of point b with respect to ground when switch S is closed?
(d) How much charge flows through switch S when it is closed?

- Watch Video Solution

80.
(a) What is the potential of point a with respect to point b in figure, when switch S is open?
(b) Which point, a or b, is at the higher potential?
(c) What is the final potential of point b with respect to ground when switch S is closed?
(d) How much charge flows through switch S when it is closed?

- Watch Video Solution

81. In the circuit shown in Figure, the battery is an ideal one, with emf V . The capacitor is initially uncharged. The switch S is closed at time $t=0$.
(a) Find the charge Q on the capacitor at time t.
(b) Find the current in $A B$ at time t. What is its limiting
value as $t \rightarrow \infty$:

- Watch Video Solution

82. Two very large thin conducting plates having same cross sectional area are placed as shown in figure. They are carrying charges Q and $3 Q$, respectively. The variation of electric field as a function at x (for $x=0$ to $x=3 d$)
will be best represented by

(a)

(b)

C.

Answer: C

D Watch Video Solution

83. The electric field on two sides of a thin sheet of charge
is shown in the figure. The charge density on the sheet is

$$
E_{1}=8 \mathrm{~V} / \mathrm{m}\left[\begin{array}{c}
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{array}\right] \xrightarrow{E_{2}=12 \mathrm{~V} / \mathrm{m}}
$$

A. $2 \varepsilon_{0}$
B. $4 \varepsilon_{0}$
C. $10 \varepsilon_{0}$
D. zero

Answer: B

- Watch Video Solution

84. In the circuit shown in figure, the capacitors are initially uncharged. The current through resistor PQ just
after closing the switch is

A. $2 A$ from P to Q
B. $2 A$ from Q to P
C. $6 A$ from P to Q
D. zero

Answer: D

- Watch Video Solution

85. A graph between current and time during charging of a capacitor by a battery in series with a resistor is shown.

The graphs are drawn for two circutis. $R_{1}, R_{2}, C_{1}, C_{2}$ and V_{1}, V_{2} are the values of resistance, capacitance and $E M F$ of the cell in the two circuits. If only two parameters (out of resistance, capacitance, $E M F$) are different in the two circuits. What may be the correct options (s) ?

$$
\text { A. } V_{1}=V_{2}, R_{1}>R_{2}, C_{1}>C_{2}
$$

B. $V_{1}>V_{2}, R_{1}>R_{2}, C_{1}=C_{2}$
C. $V_{1}<V_{2}, R_{1}<R_{2}, C_{1}=C_{2}$
D. $V_{1}<V_{2}, R_{1}=R_{2}, C_{1}, C_{2}$

Answer: C

- Watch Video Solution

86. A capacitor of capacitance C is charge by a battery of emf E and internal resistance r . A resistasnce 2 is also connet in sereis with the capacitor. The amount of heat
liberated inside the battery by the time capacitor is 50% charged is
A. $\frac{3}{8} E^{2} C$
B. $\frac{E^{2} C}{6}$
C. $\frac{E^{2} C}{12}$
D. $\frac{E^{2} C}{24}$

Answer: D

- Watch Video Solution

87. For the circuit shown in the figure determine the charge on capacitor in steady state.

A. $4 \mu \mathrm{C}$
B. $6 \mu C$
C. $1 \mu C$
D. zero

Answer: D

- Watch Video Solution

88. For the circuit shown in the figure, find the charge
stored on capacitor in steady state.

A. $\frac{R C}{R+R_{0}} E$
B. $\frac{R C}{R_{0}} E-E_{0}$
C. zero
D. $\frac{R C}{R+R_{0}}\left(E-E_{0}\right)$
89. Two similar parallel plate capacitors each of capaciti C_{0} are connected in series The combination is connected with a voltage source of V_{0}. Now, seperation between the plates of one capacitor is increased by a distance d and the separation between the plates of another capacitor is decreased by the distance $\frac{d}{2}$. The distance between the plates of each capacitor was d before the chane in sepration. Then select the correct choice.
A. the new capacity of the system will increase
B. the new capacity of the system will decrease
C. the new capacity of the system will remain same
D. data insufficient

Answer: B

- Watch Video Solution

90. The switch shown n the figure is closed at $t=0$. The charge on the capacitor as a function of time is given by

A. $C V\left(1-e^{-\frac{t}{R C}}\right)$
B. $3 C V\left(1-e^{-\frac{t}{R C}}\right)$
C. $C V\left(1-e^{\frac{-3 t}{R C}}\right)$
D. $C V\left(1-e^{-\frac{t}{3 R C}}\right)$

Answer: C

- Watch Video Solution

91. A $2 \mu F$ capacitor C_{1} is charge to a voltage 100 V and a $4 \mu F \cap a c i \rightarrow r$ C_ $_{-} 2$ schar $\geq d \rightarrow a v o<a s \geq 50$ V. The capacitors are then connected in parallel What is the loss of energy due to parallel connection?
A. 1.7 J
B. 0.17 J
C. $1.7 \times 10^{-2} J$
D. $1.7 \times 10^{-3} J$

Answer: D

- Watch Video Solution

92. The figure shows a graph of the current in a charging circuit of a capacitor through a resistor of resistance 10Ω.

A. the initial potential difference across the capacitor is 100 V
B. The capacitor of the capcitor is $\frac{1}{10 \ln 2} F$
C. the total heat produced in the circuit will be $\left(\frac{500}{\ln 2}\right) J$
D. All of the above

- Watch Video Solution

93. Four capacitors are connected inseries a battery of emf 10 V as shown in the figure. The point P is earthed. The potential of point A is equal in magnitude to potetial of points B but opposite in sign is

A. $C_{1}+C_{2}+C_{3}=C_{4}$
B. $\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}=\frac{1}{C_{4}}$
C. $\frac{C_{1} C_{2} C_{3}}{C_{1}^{2}+C_{2}^{2}+C_{3}^{2}}=C_{4}$
D. its is never possible

Answer: B

D Watch Video Solution

94. A capacitor of capacity C is charged to a potential difference V and another capacitor of capacity $2 C$ is charged to a potential difference $4 V$. The charged batteries are disconnected and the two capacitors are connected with reverse polarity (i.e. positive plate of first capacitor is connected to negative plate of second
capacitor). The heat produced during the redistribution of charge between the capacitors will be
A. $\frac{125 C V^{2}}{3}$
B. $\frac{50 C V^{2}}{3}$
C. $2 C V^{2}$
D. $\frac{25 C V^{2}}{3}$

Answer: D

- Watch Video Solution

95. A capacitor of capacitance $2 \mu F$ is charged to a potential difference of 5 V . Now, the charging battery is disconected and the capacitor is connected in parallel to a
resistor of 5Ω and another unknown resistor of resistance
R as shown in figure. If the total heat produced in 5Ω resistance is $10 \mu J$ then the unknown resistance R is equal to

A. 10Ω
B. 15Ω
C. $\frac{10}{3} \Omega$

Answer: C

D Watch Video Solution

96. In the circuit shown in figure switch S is thrown to position 1 at $t=0$. when the current in the resistor is $1 A$, it is shifted to position 2. the total heat generated in the
circuit after shifting to position 2 is

A. zero
B. $625 \mu J$
C. $100 \mu J$
D. none of these

Answer: C
97. The flow of charge through switch S if it is closed is

A. zero
B. $\frac{q}{4}$
C. $2 \frac{q}{3}$
D. $\frac{q}{3}$

- Watch Video Solution

98. Consider the arrangement of three plates X, Y and Z each of the area A and separatioin d. The energy sotred when the plates are fully charged is

A. $\varepsilon_{0} A \frac{V^{2}}{2} d$
B. $\varepsilon_{0} A \frac{V^{2}}{d}$
C. $2 \varepsilon_{0} A \frac{V^{2}}{d}$
D. $3 \varepsilon A \frac{V^{2}}{d}$
99. Consider a capacitor charging circuit. Let Q_{1} be the charge given to the capacitor in time interval of 20 ms and Q_{2} be the charge given in the next time interval of 20 ms . Let $10 \mu C$ charge be deposited in a time interval t_{1} and the next $10 \mu C$ charges is deposited in the next time interval t_{2}. Then
A. $Q_{1}>Q_{2}, t_{1}>t_{2}$
B. $Q_{1}>Q_{2}, t_{1}<t_{2}$
C. $Q_{1}<Q_{2}, t_{1}>t_{2}$
D. $Q_{1}<Q_{2}, t_{1}<t_{2}$

Answer: B

- Watch Video Solution

100. The current in 1Ω resistance and charge stored in the
capacitor are

A. $4 A, 6 \mu C$
B. $7 A, 12 \mu C$
C. $4,12 \mu C$
D. $7 A, 6 \mu C$

- Watch Video Solution

101. A capacitor C is connected to two equal resistances as shown in the figure. Consider the following statemets

i. At the time of charging of capacitor time constant of the circuit is $2 C R$
ii. At the time of discharging of the capacitor the time constant of the circuit is $C R$
iii. At the time of discharging of the capacitor the time constant of the circuit is $2 C R$ iv At the time of charging of the capacitor the time constant of the circuit is $2 C R$
A. statements i and ii only are correct
B. statements ii and iii only are correct
C. statements iii and iv only are correct
D. statements i and iii only are correct

Answer: C

- Watch Video Solution

102. Two capacitors $C_{1}=1 \mu F$ and $C_{2}=3 \mu F$ each are charged to a potential difference of 100 V but with opposite polarity as shown in the figure. When the switch S is closed, the new potential difference between the points a and b is

A. 200 V
B. 100 V
C. 50 V
D. 25 V

Answer: C

- Watch Video Solution

103. Four capacitors are connected as shown in figuere to
a $30 V$ battery. The potential difference between points a
and b

A. 5 V
B. 9 V
C. 10 V
D. 13 V

Answer: D
104. Three uncharged capacitors of capacitance C_{1}, C_{2} and C_{3} are connected to one another as shown in figure.

The potential at O will be

A. 3 V
B. $\frac{49}{11} V$
C. $4 V$
D. $\frac{3}{11} V$

Answer: B

- Watch Video Solution

105. In the circuit shown in figure potential difference between the points A and B in the steady state is

A. zero
B. 6 V
C. $4 V$
D. $\frac{10}{3} V$

Answer: D

- Watch Video Solution

106. Two cellls, two resistance and two capacitors are connected as shown in figure. The charge on $2 \mu F$
capacitors is

A. $30 \mu C$
B. $20 \mu C$
C. $25 \mu C$
D. $48 \mu C$

Answer: A
107. In the circuit shown in figure, the capacitor is charged with a cell of $5 V$.If the switch is closed at $t=0$, then at $t=12 s$, charge on the capacitor is

A. $(0.37) 10 \mu C$
B. $(0.37)^{2} 10 \mu C$
C. $(0.63) 10 \mu C$
D. $(0.63)^{2} 10 \mu C$

Answer: B

- Watch Video Solution

108. The potential difference between points a and b of circuits shown in figure is

A. $\left(\frac{E_{1}+E_{2}}{C_{1}+C_{2}}\right) C_{2}$
B. $\left(\frac{E_{2}-E_{2}}{C_{1}+C_{2}}\right) C_{2}$
C. $\left(\frac{E_{1}+E_{2}}{C_{1}+C_{2}}\right) C_{1}$
D. $\left(\frac{E_{1}-E_{2}}{C_{1}+C_{2}}\right) C_{1}$

Answer: C

- Watch Video Solution

109. A capacitors C_{1} is charged to a potential V and connected to another capacitor in seris with a resistor R as shown. It is observed that heat H_{1} is dissipated across resistance R, tilll the circuit reaches steady state. Same process is repeated using resistance of $2 R$. If H_{2} is heat
dissipated in this case then

A. $\frac{H_{2}}{H_{1}}=1$
B. $\frac{H_{2}}{H_{1}}=4$
C. $\frac{H_{2}}{H_{1}}=\frac{1}{4}$
D. $\frac{H_{2}}{H_{1}}=2$

Answer: A
110. In the circuit diagram the current through the battery immediately after the switch S is closed is

A. zero
B. $\frac{E}{R_{1}}$
C. $\frac{E}{R_{1}+R_{2}}$

$$
\text { D. } \frac{E}{R_{1}}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}
$$

Answer: B

- Watch Video Solution

111. In the circuit shown switch S is closed at $t=0$. Let i_{1} and i_{2} be the current at any finite time t then the ratio $\frac{i_{1}}{i_{2}}$

A. is constant
B. increases with line
C. decrease with time
D. first increases then decreases

Answer: B

- Watch Video Solution

112. A charged capacitor is allowed to dischare through a resistor by closing the key at the instant $t=0$. At the instant $t=(\ln 4) \mu s$, the reading of the ammeter falls half the initial vaslue. The resistance of the ammeter is equal

A. 0.5Ω
B. 1Ω
C. 2Ω
D. 4Ω

Answer: C

- Watch Video Solution

113. Five identical capacitor plates are arranged such that they make four capacitors each of $2 \mu F$. The plates are connected to a source of emf 10 V . The charge on plate C is

A. $+20 \mu C$
B. $+40 \mu C$
C. $+60 \mu C$
D. $+80 \mu C$

- Watch Video Solution

114. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge $+Q$ is now given to its positive plate. The potential difference across the capacitor is now
A. V
B. $V+\frac{Q}{C}$
c. $V+\frac{Q}{2 C}$
D. $V-\frac{Q}{C}$ if $Q<C V$

Answer: C

- Watch Video Solution

115. X and Y are large, parallel conducting plates close to each other. Each face has an area A. X is given a charge Q
. Y is without any charge. Points A, B and C are as shown in the figure.

${ }^{C}$
A. The field at B is $\frac{Q}{2 \varepsilon_{A}}$
B. The field at B is $\frac{Q}{\varepsilon_{0} A}$
C. The fiels at A, B and C are of the same magnitude
D. The fieds at A and C are of the same magnitude, but in opposite directions

Answer: A::C::D

- Watch Video Solution

116. In the circuit shown in the figure, switch S is closed at time $t=0$. Select the correct statements.

A. Rate of increase of charge is same in both the capacitors
B. Ratio of charge stored in capacitors C and $2 C$ at any time t would be 1: 2
C. Time constants of both the capacitors are equal
D. Steady state chares on capacitors C and $2 C$ are in
the ratio of $1: 2$

- Watch Video Solution

117. An electrical circuit is shown in the given figure. The resistance of each voltmeter is infinite and ech ammeter is
100Ω. The charge on the cpacitor of $100 \mu F$ in steady staste is $4 m C$. Chose correct statement(s) regarding the
given circuit.

A. Reading of voltmeter $V_{2} i s 16$
B. Reading of ammeter A_{1} is zero and A_{2} is $\frac{1}{25} A$
C. Reading of voltmeter V_{1} is 40 V
D. Emf of the ideal cell is 66 V

- Watch Video Solution

118. In the circuit shown, A and B are equal resistances.

When S is closed, the capcitor Ccharges from the cell of emf epsilon and reaches a steady state.

A. During charging, more heat is produced in A than in B
B. In stedy state heat is produced at the same rate in A and B
C. In the steady state, energy stored in C is $\frac{1}{4} C \varepsilon^{2}$
D. In the steady state energy stored in C is $\frac{1}{8} C \varepsilon^{2}$

Answer: A::B::D

- Watch Video Solution

119. A parallel plate capacitor is charged from a cell and then isolated from it. The separation between the plates is
A. The force of attraction between the plates will decrease
B. The field in the region between the plates will not change
C. The energy stored in the capacitor will increase
D. The potential difference between the plates will decrease

Answer: B::C

- Watch Video Solution

120. In the circuit shown each capacitor has a capcitance C
.The emf of the celll is E. If the switch S is closed then

A. Positive charge wil flow out of the positive terminal of the cell
B. Positive charge will enter the positive terminal of the cell
C. the amount of the charge flowing through the cell
will be $\frac{1}{3} \mathrm{CE}$
D. the amount of charge flowing through the cell is

$$
\left(\frac{4}{3}\right) C E
$$

Answer: A:D

D Watch Video Solution

121. Two capacitors of $2 \mu F$ and $3 \mu F$ are charged to 150 V and 120 V , respectively. The plates of capacitor are connected as shown in the figure. An uncharged capacitor
of capacity $1.5 \mu F$ falls to the free end of the wire. Then

A. chargeg on $1.5 \mu F$ capacitor is $180 \mu F$
B. charge on $2 \mu F$ capacitor is $120 \mu F$
C. positive chasrge flows through A from right to left
D. positive charge flows through A from left to right

Answer: A::B::D
122. A parallel plate capacitor is charged and then the battery is disconnected. When the plates of the capacitor are brought closer, then
A. energy stored in the capacitor decreases
B. the potential differences between the plates decreases
C. the capacitance increases
D. the electric field between the plates decreases

Answer: A::B::C
123. A capacitor of $2 F$ (practically not possible to have a capacity of $2 F$) is charged by a battery of $6 v$. The battery is removed and circuit is made as shown. Switch is closed at time $t=0$. Choose the correct options.

A. At time $t=0$ current in the circuirt is $2 A$
B. At time $t=(6 \ln 2)$ second, potential difference across capacitor is $3 V$
C. At time $t=(6 \ln 2)$ second potential difference across 1Ω resistance is $1 V$
D. At time $t=(6 \ln 2)$ second, potential difference across 2Ω resistance is $2 V$

Answer: A::B::C::D

- Watch Video Solution

124. given that potential differene across $1 \mu F$ capacitor is 10 V . Then,

A. potential difference across $4 \mu F$ capacitor is 40 V
B. potential difference acros $4 \mu F$ capacitor is 2.5 V
C. potential diference across $3 \mu \mathrm{Fe}$ capacitor is 5 V
D. value of E is 50 V

Answer: B

- Watch Video Solution

125. The capacitor C_{1} in the figure shown initially carries a charge q_{0}. When the switches S_{1} and S_{2} are closed, capacitor C_{1} is connected in series to a resistor R and a second capacitor C_{2} which is initially uncharged.

The charge flown through wires as a function of time is
where $C=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$

$$
\text { A. } q_{0} e^{-\frac{t}{R C}}+\frac{C}{C_{2}} q_{0}
$$

B. $\frac{q_{0} C}{C_{1}} x\left[1-e^{-\frac{t}{R C}}\right]$
C. $q_{0} \frac{C}{C_{1}} e^{-\frac{t}{C R}}$
D. $q_{0} e^{-\frac{t}{R C}}$

Answer: B

D Watch Video Solution

126. The capacitor C_{1} in the figure shown initially carries a charge q_{0}. When the switches S_{1} and S_{2} are closed, capacitor C_{1} is connected in series to a resistor R and a second capacitor C_{2} which is initially uncharged.

the total head dissipated in the circuit during the discharging process of C_{1} is
A. $\frac{q_{0}^{2}}{2 C_{1}^{2}} \times C$
B. $\frac{q_{0}^{2}}{2 C}$
C. $\frac{q_{0}^{2} C_{2}}{2 C_{1}^{2}}$
D. $\frac{q_{0}^{2}}{2 C_{1} C_{2}}$

Answer: A

D Watch Video Solution

127. Figure shows a parallel plate capacitor with plate area
A and plate separation d. A potential difference is being applied between the plates. The battery is then disconnected and a dielectric slab of dieletric constant K is placed in between the plates of the capacitor as shown.

The electric field in the gaps between the plates and the electric slab will be
A. $\frac{\varepsilon_{0} A V}{d}$
B. $\frac{V}{d}$
c. $\frac{K V}{d}$
D. $\frac{V}{d-t}$

Answer: B

- Watch Video Solution

128. Figure shows a parallel plate capacitor with plate area
A and plate separation d. A potential difference is being applied between the plates. The battery is then
disconnected and a dielectric slab of dielectric constant K is placed in between the plates of the capacitor as shown.

The electric field in the dielectric slab is
A. $\frac{V}{K d}$
B. $\frac{K V}{d}$
C. $\frac{V}{d}$
D. $\frac{K V}{t}$
129. Five identical conducting plates, $1,2,3,4$ and 5 are fixed parallel pltes equidistant from each other (see figure). A conductor connects plates 2 and 5 while another conductor joins 1 and 3 . The junction of 1 and 3 and the plate 4 are connected to a source of constant emf V_{0}. Find

(a) the effective capacity of the system between the terminals of source.
(b) the charges on the plates 3 and 5 . Given, $d=$ distance
between any two successive plates and $A=$ area of either face of each plate.

- Watch Video Solution

130. A μF capacitor C_{1} is charged to $V_{0}=120 \mathrm{~V}$. The charging battery is then removed and the capacitor is connected in parallel to an uncharged $+4 \mu F$ capacitor C_{2}

(a) what is the potential difference V across the combination?
(b) what is the stored energy before and after the switch S is closed?

- Watch Video Solution

131. Condensers with capacities $C, 2 C, 3 C$ and $4 C$ are charged to the voltage, $V, 2 V, 3 V$ and $4 V$ correspondingly. The circuit is closed. Find the voltage on all condensers in the equilibrium.

$$
\begin{aligned}
& 4 \mathrm{C}+ \\
& \text { 3C 3V }
\end{aligned}
$$

132. In the circuit shown, a time varying voltage $V=2000 t$ volt is applied where t is in second. At time $t 5 m s$, determine the Current through the resistor $R=4 \Omega$ and through the capacitor $C 300 \mu F$

A. $0.3 A$
B. $0.4 A$
C. $0.5 A$
D. $0.6 A$

- Watch Video Solution

133. A capacitor of capacitance $5 \mu F$ is connected to a source of constant emf of 200 V , Then switch was shifted to contact 2 from contact 1 . Find the amount of heat generated in the 400Ω resistance.

134. Analyse the given circuit in the steady state condition.

Charge on the capacitor is $q_{0}=16 \mu C$. If the e.m.f. of the battery is $6 k$ then find the value of k.

- Watch Video Solution

135. Find the potential difference between points M and N of the system shown in figure, if the emf is equal to $E=110 \mathrm{~V}$ and the capacitance ratio $\frac{C_{1}}{C_{2}} i s 2$.

136. In the given circuit diagram, find the charges which flow through directions 1 and 2 when switch S is closed.

- Watch Video Solution

137. Two capacitors A and B with capacities $3 \mu F$ and $2 \mu F$ are charged to a potential difference of 100 V and 180 V ,
respectively. The plates of the capacitors are connected as show in figure with one wire of each capacitor free. The upper plate of A is positive and that of B is negastive. An uncharged $2 \mu F$ capcitor C with lead wires falls on the free ends to complete the circuit. Calculate a. the final charge on the three capacitors.
b. the amount of electrostatic energy stored in the system before and after completion of the circuit.

138. The capactor C_{1} in the figure initially carries a charge q_{0}. When the i switch S_{1} and S_{2} are closed, capacitor C_{1} is connected to a resistor R and a second capacitor C_{2}, which initially does not carry any charge.
(a) Find the charges deposited on the capacitors in steady state and the current through R as a function of time.
(b) What is heat lost in the resistor after a long time of closing the switch?

139. A leaky parallel plate capacitor is filled completely with a material having dielectric constant $K=5$ and electrical conductivity $\sigma=7.4 \times 10^{-12} \Omega^{-1} m^{-1}$. If the charge on the capacitor at the instant $t=0$ is $q_{0}=8.55 \mu C$, then calculate the leakage current at the instant $t=12 \mathrm{~s}$.

- Watch Video Solution

140. A parallel plate vacuum capacitor with plate area A and separation x has charges $+Q$ and $-Q$ on its plates.

The capacitor is disconnected from the source of charge, so the charge on each plate remains fixed.
(a) What is the total energy stored in the capacitor?
(b) The plates are pulled apart an additional distance dx .

What is the change in the stored energy?
(c) If F is the force with which the plates attract each other, then the change in the stored energy must equal the work $d W=F d x$ done in pulling the plates apart.

Find an expression for F.
(d) Explain why F is not equal to $Q E$, where E is the electric field between the plates.

- Watch Video Solution

141. A spherical capacitor has the inner sphere of radius

2 cm and the outerone of 4 cm . If the inner sphere is earthed and the outer one is charged with a charge of
$2 \mu C$ and isolated. Calculate Itbr. (a) the potential to which
the outer sphere is raised.
(b) the charge retained on the outer surface of the outer sphere.

D Watch Video Solution

142. Calculate the charge on each capacitor and the potential difference across it in the circuits shown in figure for the cases :

(a)
(i) switch S is closed and
(ii) switch S is open.
(iii) In. figure (b), what is the potential of point A when S is open?
143. In the shown network, find the charges on capacitors of capacitances $5 \mu F$ and $3 \mu F$, in steady state.

D Watch Video Solution

144. In the circuit shown,
$E=18 k V, C=10 \mu F, R_{1}=4 M \Omega, R_{2}=6 M \Omega, R_{3}=3 M \Omega$
with c completely uncharged, switch S is suddenly closed
(at $t=0$).

(a) Determine the current through each resistor for $t=0$ and $t=0$
(b) What are the values of V_{2} (potential difference across
R_{2}) at $t=0$ and $t=\infty$?
(c) Plot a graph of the potential difference V_{2} versus t and determine the instantaneous value of V_{2}.
145. The charge on the capacitor is initially zero. Find the charge on the capacitor as a function of time t. All resistors are of equal value R.

D Watch Video Solution

146. The capacitors are initially uncharged. In a certain time the capacitor of capacitance $2 \mu F$ gets a charge of
$20 \mu C$. In that time interval find the heat produced by each resistor individually.

- Watch Video Solution

147. A capacitor of capacitance C has potential difference $\frac{E}{2}$ and another capacitor of capacitance C is uncharged. They are joined to form a closed circuit as shown in the figure.

a. Find the current in the circuit at $t=0$.
b. Find the charge on C as a function of time.

D Watch Video Solution

148. The capacitor shown in figure has been charged to a potential difference of V volt, so that it carries a charge
$C V$ with both the switches S_{1} and S_{2} remaining open.

Switch S_{1} is closed at $t=0$. At $t=R_{1} C$ switch S_{1} is opened and S_{2} is closed. Find the charge on the capacitor
at $t=2 R_{1} C+R_{2} C$.

- Watch Video Solution

149. The switch S is closed at $t=0$. the capacitor C is uncharged but C_{0} has a charge $Q_{0}=2 \mu C$ at $t=0$. If $=100$ Ommega $\quad, \quad C=2 \mu F \quad, \quad C_{0}=2 \mu F, E=4 V$.

Calculate $\mathrm{i}(t)$ in the circuit.

- Watch Video Solution

150. A time varying voltage is applied to the clamps A and
B such that voltage across the capacitor plates is as shown in the figure. Plot the time dependence of voltage
across the terminals of the esistance E and D.

- Watch Video Solution

151. In the above problem if given graph is between $V_{A B}$ and time. Then plot graph between $V_{E D}$ and time.

- Watch Video Solution

152. Initially, the switch is in position 1 for a long time. At $t=0$, the switch is Obtain expressions for V_{C} and V_{R} for
$t>0$

- Watch Video Solution

153. For the arrangement shown in the figure, the switch is closed at $t=0 . C_{2}$ is initially uncharged while C_{1} has a charge of $2 \mu C$

(a) Find the current comingn out of the battery just after the switch is closed.
(b) Find the charge on the capacitors in the steady state condition.

- Watch Video Solution

154. In the given circuit the switch ils closed in the positin

1 at $t=0$ and then moved to 2 after $250 \mu \mathrm{~s}$. Derive and
expression for current as a functioin of time for $t>0$.

Also plot the variation of current with time.

- Watch Video Solution

155. A charged capacitor C_{1} is discharged through a resistance R by putting switch S in position 1 of the circuit as shown in fig.5.201. When the discharge current reduces to i_{0}, the switch is suddenly shifted to position 2. Calculate the amount of heat liberated in resistor R starting form this instant. Also calculate current I through
the circuit as a function of time.

- Watch Video Solution

Objective Type

1. In the circuit shown as potential difference of 60 V is appliled across $A B$. The potential difference between the
points M and N is

A. 10 V
B. 15 V
C. 20 V
D. 30 V

Answer: D

- View Text Solution

