©゙" doubtnut

PHYSICS

BOOKS - DC PANDEY PHYSICS

(HINGLISH)

REFLECTION OF LIGHT

Example Type 1

1. Two plane mirror M_{1} and M_{2} area inclined
at angle θ as shown. A ray of light 1 , which is
parallel to M_{1} strikes M_{2} and after two
reflection, the ray 2 become parrallel to M_{2}
.Find the angle θ

A. $\theta=60^{\circ}$
B. $\theta=90^{\circ}$
C. $\theta=45^{\circ}$
D. $\theta=120^{\circ}$

Answer: A

- Watch Video Solution

2. Prove that for any value of angle i , rays 1 and 2 are parallel

3. A point source of light S, placed at a distance L in front of the centre of a mirror of
width d,
hangs vertically on a wall. A man walks in front of the
mirror along a line parallel to th mirror at a distance

2L form it as shown. The greatest distance over which
he can see the image of the light source in the
mirror is
(a) $d / 2$ (b) d(c) 2d (d) 3 d .

- Watch Video Solution

Type 2

1. A pole of height 4 m is kept in front of a
vertical plane mirror
of length 2 m . The lower end of the mirror is at
a height of 6 m form the grown
.the horizontal distance between the mirror
and the pole is 2 m . Up to what
minimum and maximum heights a man can
see the image of top of the pole at a
horizontal distance of 4 m (from the mirror O
standing on the same horizontal
line which is passing through the pole and the horizontal point below the

mirror?

- View Text Solution

2. Find the distance of object form a concave morror of focal length 10 cm so that image size is four times the size of the object.

- Watch Video Solution

Example Type 2

1. A plane mirror is lying in $x-y$ plane .Object velocity is
$V_{0}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) m / s$. Find the image velocity.

D Watch Video Solution

Example Type 3

1. An object is falling vertically downwards with
velocity $10 \mathrm{~m} / \mathrm{s}$.In terms of \hat{i} and \hat{j} find the
image velocity. M

A. $(5 \sqrt{3} \hat{i}-5 \hat{j}) m / s$
B. $(5 \sqrt{3} \hat{i}+5 \hat{j}) m / s$
C. $(\sqrt{3} \hat{i}+2 \hat{j}) m / s$
D. none

Answer: B
2. A point object is moving with a speed v
before an arrangement of two mirrors as
shown in
figure. Find the magnitude of velocity of image in
mirror M_{1} with respect to image in mirror M_{2}

D Watch Video Solution
3. An object is placed at a distance of 30 cm
from a concave mirror of
focal length 20 cm .find image distance and its
magnification. Also ,draw the ray
diagram.
A. +2
B. +4
C. $-\frac{1}{2}$
D. -2

Answer: D

D Watch Video Solution

Type 1

1. An object is placed at a distance of 40 cm
from a convex mirror fo focal length 40 cm .

Find image position and its magnification.Also
,draw its ray diagram.

Type 3

1. Find the condition under which a convex mirrior can make a real image .

- Watch Video Solution

Example Type 4

1. An image I is formed of a point object O by a mirror whose principal axis is $A B$ as shown in
figure.

?

(a) State whether it is a convex mirror or a concave mirror .
(b)Draw a ray diagra to laacate the mirror and its focus. Write down the step of construction of the ray diagram. Consider the possible two cases.
(1) When distance of I from $A B$ is more than the distance of O from $A B$ and
(2) When distance of O from $A B$ is more than
the distance of I from $A B$

D Watch Video Solution

Example Type 5

1. Focal length of the mirror shown in figure is

20 cm . Find the image position and its velocity.

A. $\sqrt{272}) m / s$ and $\theta=\tan ^{-1}\left(\frac{5}{8}\right)$
B. $\sqrt{292}) m / s$ and $\theta=\sin ^{-1}\left(\frac{3}{8}\right)$
C. $\sqrt{292}) m / s$ and $\theta=\tan ^{-1}\left(\frac{3}{8}\right)$
D. none

- Watch Video Solution

Example Type 6

1. A square mnap is kept between F and C on
the principal axis of a concave mirror as shown
in figure . Find a rough image of this object.

Example Type 7

1. Focal length of convex mirror M_{1} is 20 cm
and that of concave mirror M_{2} is 30 cm . Find position of second image I_{2}.Take first reflection from M_{1}.

Example Type 8

1.

Focal length of the concave mirror shown in
figure in 20 cm .
$a b=1 \mathrm{~mm}$
and $b c=2 m m$

For the given situation, make its image.

- Watch Video Solution

Example Type 9

distance of 40 cm form a concave mirror of focal length 30 cm . Make image of this object.

D Watch Video Solution

2. A thin rod of length $\left(\frac{f}{3}\right)$ is lying along the principal axis of a concave mirror of focal length f.Image is real , magnified and inverted and one of the end or rod coincides with its image itself. Find length of the image.

Miscellaneousexamples

1. An object is 30.0 cm form a spherical mirror, along the central axis.

The absolute value of lateral magnification is $\frac{1}{2}$, The image produced is inverted . What is the focal length of the mirror?

- Watch Video Solution

2. A concave mirror has a radius of curvature of 24 cm . How far is
an object from the mirror if an image is formed that is:
(a) virtual and 3.0 times the size of the object,
(b) real and 3.0 times the size of the object and
(c) real and $1 / 3$ the size of the object?.

D Watch Video Solution

3. A ray of light is incident on a plane mirror along a vector $\hat{i}+\hat{j}-\hat{k}$.

The normal on incidence point is along $\hat{i}+\hat{j}$.Find a unit vector along the reflected ray.

- Watch Video Solution

4. A gun of mass M fires a bullet of mass m
with a horizontal speed V . The gun is fitted
with a concave mirror of focal length f facing
towards the receding bullet. Find the speed of separation of the bullet and the image just after the gun was fired.

D Watch Video Solution

Exercise 301

1. A man approaches a veritcal plane mirror at speed of two $\mathrm{m} / / \mathrm{s}$. At what rate does he approach his image?
2. In terms of θ find the value of i , show that ray of light retraces its path after third reflection

- Watch Video Solution

1. An object M is placed at a distance of 3 m
from a mirror with its lower end at 2 m from
ground as shown in Fig. There is a person at a
distance of 4 m from object. Find minimum
and maximum height of person to see the image of object
2. Assertion : A convex mirror can never make a
real image
Reason : For all real objects image formed by a convex mirror is virtual
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.
D. (d) If Assertion is false but the Reason is
true.

Answer: D

- Watch Video Solution

2. Assertion : Focal length of a convex mirror is

20 cm . If a real object is placed at distance 20
cm from the mirror, its virtual erect and diminished image will be formed.

Reason : If a virtual object is placed at 20 cm distance, its image is formed at infinity.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: B

3. Assertion : In case of a concave mirror if a point object is moving towards the mirror along its principal axis, then its image will move away from the mirror.

Reason : In case of reflection (along the principal axis of mirror) object and image always travel in opposite directions.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: A

4. Assertion : Real view mirror of vehicles is a
convex mirror.

Reason : It never makes real image of real objects.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.

C. (c) If Assertion is true, but the Reason is

false.

D. (d) If Assertion is false but the Reason is

true.

Answer: B

D Watch Video Solution
5. Assertion : If magnification of real object is
-2. Then, it is definitely a concave mirror.

Reason : Only concave mirror can make real images of real objects.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.

D. (d) If Assertion is false but the Reason is

 true.
Answer: A::B

D Watch Video Solution

6. Assertion : Any ray of light suffers a deviation of $\left(180^{\circ}-2 i\right)$ after one reflection.

Reason : For normal incidence of light deviation is zero.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: C

- Watch Video Solution

7. Assertion : Two plane mirrors kept at right angles deviate any ray of light by 180° after two reflection.

Reason : The above condition is satisfied only for angle of incidence $i=45^{\circ}$.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.
D. (d) If Assertion is false but the Reason is
true.

Answer: C

8. Assertion : In reflection from a denser medium, any ray of light suffers a phase difference of π.

Reason : Denser medium is that medium in which speed of wave is less.
A. (a) If both Assertion and Reason are true and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct explanation of Assertion.
C. (c) If Assertion is true, but the Reason is false.
D. (d) If Assertion is false but the Reason is
true.

Answer: B

9. Assertion : For real objects, image formed by
a convex mirror always lies between pole and focus.

Reason : When object moves from pole to infinity, its image will move from pole to focus.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.
C. (c) If Assertion is true, but the Reason is
false.
D. (d) If Assertion is false but the Reason is
true.

Answer: A::B

- Watch Video Solution

10. Assertion : Light converges on a virtual object.

Reason : Virtual object is always behind a mirror.
A. (a) If both Assertion and Reason are true
and the Reason is correct explanation of
the Assertion.
B. (b) If both Assertion and Reason are true
but Reason is not the correct
explanation of Assertion.

C. (c) If Assertion is true, but the Reason is

false.
D. (d) If Assertion is false but the Reason is
true.

Answer: B

D Watch Video Solution

Exercise Level 1 Objective

1. A plane mirror reflects a beam of light to
form a real image, The incident beam should be
A. parallel
B. convergent
C. divergent
D. not possible

Answer: B

D Watch Video Solution
2. When an object lies at the focus of a concave mirror, them the position of the image formed and its magnification are
A. pole and unity
B. infinity and unity
C. infinity and infinty
D. centre of curvature and unity

Answer: C

D Watch Video Solution
3. Two plane mirror are inclined to each other at 90°. A ray of light is incident on one mirror.

The ray will undergo a total deviation of
A. 180°
B. 90°
C. 45°
D. data insufficient

Answer: A

D Watch Video Solution
4. A concave mirror cannot from
A. virtual image of virtual object
B. virtual image of real object
C. real imge of real object

D. real image of virtual object

Answer: A
5. Two plane mirrors are inclined at 70°. A ray
incident on one mirror at incidence angle θ after reflection falls on the second mirror and is reflected from there parallel to the first mirror, The value of θ is
A. 50°
B. 45°
C. 30°
D. 25°
6. The radius of curvature of a convex mirror is

60 cm . When an object is A, its image is formed
at B. If the size of image is half that of the object, then the distance between A and B is
A. 30 cm
B. 60 cm
C. 45 cm
D. 90 cm

Answer: C

D Watch Video Solution

7. A boy of height 1.5 m with his eye level at
1.4 m stands before a plane mirror of length
0.75 m fixed on the wall. The height of the lower edge of the mirror above the floor is 0.8 m. Then ,
A. the boy will see his full image
B. the boy cannot see his hair
C. the boy cannot see his feet
D. the boy can see neither his hair nor his
feet.

Answer: C

D Watch Video Solution

8. A spherical mirror forms an erect image three times the size of the object, If the distance between the object and the image is

80 cm . The nature and the focal length of the mirror are
A. concave, 30 cm
B. convex, 30cm
C. concave, 15 cm
D. convex, 15 cm

Answer: A
(Watch Video Solution
9. A convex mirror of focal length f produced
an image $(1 / n)^{t h}$ of the size of the object. The distance of the object from the mirror is
A. $n f$
B. f / n
C. $(n+1) f$
D. $(n-1) f$

Answer: D

D Watch Video Solution
10. An object is moving towards a concave mirror of focal length 24 cm . When it is at a distance of 60 cm from the mirror, its speed is
$9 \mathrm{~cm} / \mathrm{s}$. The speed of its image at that instant , is
A. $4 \mathrm{~cm} / s$ towards the mirror
B. $6 \mathrm{~cm} / s$ towards the mirror
C. $4 \mathrm{~cm} / \mathrm{s}$ away from the mirror
D. $6 \mathrm{~cm} / \mathrm{s}$ away from the mirror

Answer: C

- Watch Video Solution

11. All the following statements are correct except (for real objects)
A. the magnification produced by a convex mirror is always less than one
B. a virtual, erect and same sized image can
be obtained using a plane mirror
C. a virtual, erect, magnified image can be

D. a real, invered same sized image can be

formed using a convex mirror

Answer: D

D Watch Video Solution

12. A particle moves perpendicular towards a plane mirror with a constant speed of $4 \mathrm{~cm} / \mathrm{s}$.

What is the speed of the image observed by an observed moving with $2 \mathrm{~cm} / \mathrm{s}$ along the same direction? Mirror is also moving with a
speed of $10 \mathrm{~cm} / \mathrm{s}$ in the opposite direction.
(All speeds are with respect to ground frame of reference)
A. $4 \mathrm{~cm} / \mathrm{s}$
B. $12 \mathrm{~cm} / \mathrm{s}$
C. $14 \mathrm{~cm} / \mathrm{s}$
D. $26 \mathrm{~cm} / \mathrm{s}$

Answer: D

D Watch Video Solution

1. Figure showns two rays P and Q being reflected by aa mirror and going as P^{\prime} and Q^{\prime}. State which type of mirror is this? ItBRgt

- Watch Video Solution

2. A candle 4.85 cm tall is 39.2 cm to the left of
a plane mirror .Where does the mirror from
the image, and what is the height of this
image ?

- Watch Video Solution

3. A plane mirror lies face up, making an angle of 15° with the horizontal .A ray of length shines down vertically on the mirror .What is the angle of incidence? What will be the angle between the reflection ray and the horizontal?
A. 15°
B. 60°
C. 45°

D. 30°

Answer: B

D Watch Video Solution

4. Two plane mirrors are placed parallel to each other and 40 cm apart. An a object is placed 10 cm from one mirror .What is the distance from the object to the image for each of the five images that are closest to the object?

Watch Video Solution

5. If an object is placed between two parallel mirrors ,an infinite number of images result
.Suppose that the mirror are a distance 2 b apart and the object is put at the mid-point between the mirrors ,Find the distance of the image from the object.

- Watch Video Solution

6. Show that a ray of light reflected from a plane mirror rotates througha an angle 2θ when the
mirror is rotated through an angle θ about its
axis perpendicular to both the incident ray
and
the normal to the surface.

- Watch Video Solution

7. Two plane mirrors each 1.6 m long, are facing each other. The distance between the mirrors is

20 cm . A light incident on one end of one of the mirrors at an angle of incidence of 30°.

How many times is the ray reflected before it reaches the other end?

- Watch Video Solution

8. Two plane mirrors are inclined to each other at an angle θ. A ray of light is reflected at one mirror and then at the other. Find the total deviation of the ray.

D Watch Video Solution

9. Assume that a certain spherical mirror has a
focal length of -10.0 cm . Locate and describe the
image for object distances of (a) 25.0 cm (b)
10.0 cm (c) 5.0 cm .

D Watch Video Solution

10. A ball is dropped from rest 3.0 m directly above the vertex of a concave mirror that has a radius
of 1.0 m and lies in a horizontal plane.
(a) Describe the motion of ball's image in the mirror
(b) At what time do the ball and its image coincide?

D Watch Video Solution

11. An object 6.0 mm is placed 16.5 cm to the left of the vertex of a concave spherical mirror having
a radius of curvature of 22.0 cm .
(a) Draw principal ray diagram showing formation of the image.
(b) Determine the position, size, orientation, and nature (real or virtual) of the image.

D Watch Video Solution

12. An object 9.0 mm tall is placed 12.0 cm to
the left of the vertex of a convex spherical mirror
whose radius of curvature has a magnitude of
20.0 cm.
(a) Draw a principal ray diagram showing formation of the image.
(b) Determine the position, size, orientation, and nature (real or virtual) of the image.

- Watch Video Solution

13. How far should an object be from a concave
spherical mirror of radius 36 cm to form a real image one-ninth its size?

- Watch Video Solution

14. An object is placed 42 cm , in front of a concave mirror of focal length 21 cm . Light
from the
concave mirror is reflected onto a small plane mirror 21 cm in front of the concave mirror

Where is the final image?

D Watch Video Solution

15. Prove that for spherical mirrors the product of the distance of the object and the
image to the
principal focus is always equal to the square of the principal focal length.

D Watch Video Solution

16. Convex and concave mirrors have the same
radii of curvature R . The distanc between the
mirrors is $2 R$. At what point on the common
optical axis of the mirrors should a point
source of
light A be placed for the rays to coverage at
the point A after being reflected first on the

convex

and then on the concave mirror?

D Watch Video Solution

17. A spherical mirror is to be used to form on
a screen 5.0 m from the object an image five
times the
size of the object.
(a) Describe the type of mirror required.
(b) Where should the mirror be positioned relative to the object?

- Watch Video Solution

Level 2 Single Correct

1. An insect of negligible mass is sitting on a block of mass M, tied with a spring of force cosntant k. The block performs simple harmonic motion with amplitude A in front of aplane mirror as shown, teh maximum speed
of insect relative to its image will be

A. $A\left(\sqrt{\frac{k}{M}}\right)$
B. $\frac{A(\sqrt{3})}{2}\left(\sqrt{\frac{k}{M}}\right)$
C. $A(\sqrt{3})\left(\sqrt{\frac{k}{M}}\right)$
D. $2 a\left(\sqrt{\frac{M}{k}}\right)$

Answer: C

- Watch Video Solution

2. A plane mirror is falling vertically as ssshown in the figure. If S is a point source of
light, the rate of increase of the length $A B$ is

A. directly proportinal to x
B. constant but not zero
C. inversely proportional to x

D. zero

Answer: D

D Watch Video Solution

3. A point object is placed at a distamce of 10 cm anad its real image is formed at a distance of 20 cm from a concave mirror. If the object is
moved by 0.1 cm towards the mirror. The image will shift by about
A. 0.4 cm away form the mirror
B. 0.4 cm towards the mirror
C. 0.8 cm away from the mirror
D. 0.8 cm towards the mirror

Answer: A

D Watch Video Solution

4. two plane mirror L_{1} and L_{2} are parallel to each other and 3m apart. A person standing x m from the right mirror L_{2} looks into this mirror and sees a series of images, The distance between the first and second image
is 4 m . Then, the value of x is

A. $2 m$
B. $1.5 m$
C. $1 m$

D. $2.5 m$

Answer: C

D Watch Video Solution

5. A piece of wire bent into an L shape with
upright and horizontal portion of equal
lengths 10 cm each is placed with the horizontal portion along the axis of the concave mirror towards pole of mirror whose radius of curvature is 0 cm . If the bend is 20
cm from the pole of the mirror, then the ratio of the lengths of the images of the upright and horizontal portion of the wire is
A. $1: 2$
B. 1:3
C. $1: 1$
D. 2:1

Answer: C

D Watch Video Solution
6. A point object at 15 cm from a concave mirror of radius of curvature 20 cm is made to oscillate along the principal axis with amplitude 2 mm . The amplitude of its image will be
A. $2 m m$
B. 4 mm
C. 8 mm
D. None of these

- Watch Video Solution

7. A ray of light falls on a plane mirror. When the mirror is turned, about an axis at right angle to the plane of the mirror through 20°, the angle between the incident ray and new reflected ray is 45°. Find the angle between the incident ray and original reflected ray.
A. 35° or 50°
B. 25° or 65°
C. 45° or 5°

D. None of these

Answer: D

D Watch Video Solution

8. A person $A B$ of height 170 cm is standing in
front of a plane mirror. His eyes are at height
164 cm . At what distance from P should a hole be made in mirror so that he cannot see his
hair?

A. 167 cm
B. 161 cm
C. 163 cm
D. 165 cm

Answer: A

D Watch Video Solution

9. Two blocks each of mass m lie on a smooth
table. They are attached to two other masses
as shown in the figure. The pulleys and strings
are light. An object O is kept at rest on the
table. The sides $A B \& C D$ of the two blocks are
made reflecting. The acceleration of two images formed in those two reflecting
surfaces w.r.t. each other is:

A. $\frac{5 g}{6}$
B. $\frac{5 g}{3}$
C. $\frac{17 g}{12}$
D. $\frac{17 g}{6}$

Answer: D

- Watch Video Solution

10. Two plane mirrors A and B are aligned parallel to each other as shown in the figure. A
light ray is incident at an angle of 30° at a point just inside one end of A. The number of times the ray undergoes reflections (including
the first one) before it emerges out is

A. 29
B. 30
C. 31
D. 32

Answer: C

Watch Video Solution

11. An object O is just about to strike a perfectly reflecting inclined plane of inclination 37°. Its velocity is $5 \mathrm{~m} / \mathrm{s}$. Find the velocity of its image.

A. $3(\hat{i})+4(\hat{j})$
B. $4(\hat{i})+3(\hat{j})$
C. $4.8(\hat{i})+1.4(\hat{j})$

$$
\text { D. } 1.4(\hat{i})+4.8(\hat{j})
$$

Answer: C

D Watch Video Solution

12. An elevator at rest which is at 10th floor of
a building is having a plane mirror fixed to its
floor. A particle is projected with a speed
$(\sqrt{2}) m / s$ and at 45° with the horizontal as
shown in the figure. At the very instant of
projection, the cable of the elevator breaks and the elevator starts falling freely. what will be the separation between the particles and is image 0.5 s after the instant of projection?

A. $0.5 m$
B. $1 m$
C. $2 m$
D. $1.5 m$

Answer: B

D Watch Video Solution

13. A plane mirror is moving with velocity $4(\hat{i})+5(\hat{j})+8(\hat{k})$. A point object in front of the mirror moves with a velocity $3(\hat{i})+4(\hat{j})+5(\hat{k})$. Here, \hat{k} is along the
normal to the plane mirror and facing towards
the object. The velocity of the image is

$$
\begin{aligned}
& \text { A. }-3(\hat{i})-4(\hat{j})+5(\hat{k}) \\
& \text { В. } 3(\hat{i})+4(\hat{j})+11(\hat{k}) \\
& \text { C. }-4(\hat{i})+5(\hat{j})+11(\hat{k}) \\
& \text { D. } 7(\hat{i})+9(\hat{j})+3(\hat{k})
\end{aligned}
$$

Answer: B

D Watch Video Solution

14. Point $A(0,1 \mathrm{~cm})$ and $B(12 \mathrm{~cm}, 5 \mathrm{~cm})$ are the coordinates of object and image x-axis is the principal axis of the mirror. The, this object image pair is
A. due to a convex mirror of focal length
2.5 cm
B. due to concave mirror having its pole at
($2 \mathrm{~cm}, 0$)
C. due to a concave mirror having its pole
at $(-2 \mathrm{~cm}, 0)$

D. Data is insufficient

Answer: B

- Watch Video Solution

15. Two plane mirrors $A B$ and $A C$ are inclined at
an angle $\theta=20^{\circ}$. A ray of light starting from
point P is incident at point Q on the mirror $A B$,
then at R on mirror $A C$ and again on S on $A B$.

Finally the ray ST goes parallel to mirror AC.

The angle which the ray makes with the
normal at point Q on mirror $A B$ is

A. 20°
B. 30°
C. 40°
D. 60°

- Watch Video Solution

16. A convex mirror of radius of curvature 20 cm is shown in figure. An object O is placed in front of this mirror. Its ray diagram is shown. How many mistakes are there in the ray diagram (AB is principal axis)

A. 3
B. 2
C. 1
D. 0

Answer: B

- Watch Video Solution

Level 2 More Than One Correct

1. The image formed by a concave mirror is twice the size of the object. The focal length of
the mirror is 20 cm . The distance of the object
from the mirror is / are
A. 10 cm
B. 30 cm
C. 25 cm
D. 15 cm

Answer: A
2. Magnitude of focal length of a spherical mirror is f and magnitude of linear magnification is $\frac{1}{2}$
A. If image is inverted, it is a concave mirror
B. If image is erect, it is a convex mirror
C. Object distance from the mirror may be $3 f$
D. Object distance from the mirror may be f.

- Watch Video Solution

3. A point object is moving towards a plane mirror as shown in figure. Choose the correct options.

A. Speed of image is aslo v
B. Image velocity will also make an angle θ
with mirror
C. Relative velocity between object and image is 2 v
D. Relative velocity between object and image is $2 v \sin (\theta)$

Answer: A::B::D

4. $A B$ is the principal axis of a spherical mirror.

I is the point image corresponding to a point object 0 . Choose the correct opritons.

$$
\bullet I
$$

A. Mirror is lying to the right hand side of

0

B. Focus of mirror is lying to the right hand

side of O
C. Centre of curvature of mirror is lying to the right hand side of O
D. Centre of curvature of mirror is lying between I and O

Answer: B::C

D Watch Video Solution

5. A point object is placed on the principal axis of a concave mirror of focal length 20 cm . At this instant object is given a velocity v towards
the axis (event-l) or perpendicular to axis
(event-2). Then, speed of image

A. In event- 1 is 2 v
B. In event- 1 is $4 v$
C. In event- 2 is $2 v$
D. In event- 2 is $4 v$

Answer: A::B::C

D Watch Video Solution

6. A point object is placed at equal distance 3 f
in front of a concave mirror, a convex mirror and plane mirror separately (event-1). Now, the distance is decreased to 1.5 f from all the three mirror (event-2). Magnitude of focal length of convex mirror and concave mirror is f. Then choose the correct options.
A. Maximum distance of object in event-1
from the mirror is from plane mirror
B. Minimum distanc of object in event-1
from the mirrro is from convex mirror.
C. Maximum distance of object in event-2
from the mirror is from concave mirror
D. Minimum distance of object in event-2
from the mirror is from plane mirrror

Answer: A

Level 2 Comprehensive Based

1. A plane mirror $\left(M_{1}\right)$ and a concave mirror
$\left(M_{2}\right)$ of focal length 10 cm are arranged as
shown in figure. An object is kept at origin.
Answers the following questions. (consider image formed by single reflection in all cases).

The coordination of image formed by plane mirror are
A. $(-20 \mathrm{~cm}, 0)$
B. $(10 \mathrm{~cm},-60 \mathrm{~cm})$
C. $(10 \mathrm{~cm},-10 \mathrm{~cm})$
D. $(10 \mathrm{~cm}, 10 \mathrm{~cm})$

Answer: C

D Watch Video Solution

2. A plane mirror $\left(M_{1}\right)$ and a concave mirror
$\left(M_{2}\right)$ of focal length 10 cm are arranged as
shown in figure. An object is kept at origin.

Answers the following questions. (consider image formed by single reflection in all cases).

The coordination of image formed by concave mirror are
A. $(10 \mathrm{~cm},-40 \mathrm{~cm})$
B. $(10 \mathrm{~cm},-60 \mathrm{~cm})$
C. $(10 \mathrm{~cm}, 8 \mathrm{~cm})$
D. None of these

Answer: D

D Watch Video Solution

3. A plane mirror $\left(M_{1}\right)$ and a concave mirror
$\left(M_{2}\right)$ of focal length 10 cm are arranged as
shown in figure. An object is kept at origin.
Answers the following questions. (consider image formed by single reflection in all cases).

If concave mirror is replaced by convex mirror of same focal length then coordinates of image formed by $\left(M_{2}\right)$ will be
A. $(10 \mathrm{~cm}, 12 \mathrm{~cm})$
B. $(10 \mathrm{~cm}, 22 \mathrm{~cm})$
C. $(10 \mathrm{~cm}, 8 \mathrm{~cm})$

D. None of these

Answer: D

D Watch Video Solution

4. A plane mirror $\left(M_{1}\right)$ and a concave mirror
$\left(M_{2}\right)$ of focal length 10 cm are arranged as
shown in figure. An object is kept at origin.

Answers the following questions. (consider image formed by single reflection in all cases).

if concove mirror is replaced by another plane mirror parallel to x-axis, then coordinates of image formed by $\left(M_{2}\right)$ are
A. $(40 \mathrm{~cm}, 20 \mathrm{~cm})$
B. $(20 \mathrm{~cm}, 40 \mathrm{~cm})$
C. $(-20 \mathrm{~cm}, 20 \mathrm{~cm})$

D. None of these

Answer: D

D Watch Video Solution

Subjective

1. A point source of light S is placed at a
distance 10 cm in front of the centre of a
mirror of width 20 cm suspended vertically on
a wall. An insect walks with a speed $10 \mathrm{~cm} / \mathrm{s}$ in
front of the mirror along a line parallel to the mirror at a distance 20 cm from it as shown in
figure. find the maximum time during which the insect can see the image of the source S in the mirror.

- Watch Video Solution

2. Concave mirror forms the real image of a point source lying on the optical axis at a distance of 50 cm from the mirror. The focal length of the mirror is 25 cm . The mirror is cut into and its halves are drawn a distance of 1 cm apart in a direction perpendicular to the optical axis. How will the image formed by the halves of the mirror be arranged?

- Watch Video Solution

3. A point source of light S is placed on the major optical axis of the concave mirror at a distance of 60 cm . At what distance from the concave mirror should a flat mirror be placed for the rays to converge again at the point S having been reflected from the concave mirror and then from the flat one? Will the position of the point where the rays meet change if they are first reflected from the flat mirror? The radius of the concave mirror is 80 cm .

- Watch Video Solution

4. A balloon is moving upwards with a speed of $20 \mathrm{~m} / \mathrm{s}$. When it is at a height of 14 m from
ground in front of a plane mirror in situation
as shown in figure, a boy drops himself from
the balloon. Find the time duration for which
he will see the image of source S placed
symmetrically before plane mirror during free
fall.

(Watch Video Solution
5. A plane mirror and a concave mirror are arranged as shown in figure and O is a point object, Find the position of image formed by two reflection, first one talking place at concave mirror.

- Watch Video Solution

6. Figure shows a torch producting a straight
light beam falling on a plane mirror at an angle 60° The reflected beam makes a spot P on the screen along y-axis . If at $t=0$, mirror starts ratating about the hinge A with an angular velocity $(\omega)=1^{\circ}$ per second clockwise. Find the speed of the spot on
screen after time $t=15 \mathrm{~s}$.

- Watch Video Solution

7. A thief is running away in a car with velocity of $20 \mathrm{~m} / \mathrm{s}$. A police jeep is following him,
which is sighted by thief in his rear view mirror, which is a convex mirror of focal length

10 m . He observes that the image of jeep is moving towards him with a velocity of $1 \mathrm{~cm} / \mathrm{s}$.
if the magnification of mirror for the jeep at
that time is $\frac{1}{10}$. Find
(a) the actual speed of jeep,
(b) rate at which magnification is changing.

Assume the police's jeep is on the axis of the mirror.

- Watch Video Solution

8. A ball swings back and forth in front of a concave mirror. The motion of the ball is described approximately by the equation
$x=f \cos (\omega) t$, where f is the focal length of
the mirror and x is measured along the axis of mirror. The origin is taken at the centre of curvature of the mirror.
(a) Derive an expression for the distance from
the mirror of the image of the swinging ball.
(b) At what point does the ball appear to coincide with its image?
(c) What will be the lateral magnifiaction of
the image of the ball at time $t=\frac{T}{2}$, where T is time period of oscillation?

D Watch Video Solution

9. Show that a parallel bundle of light rays
parallel to the x-axis and incident on a parabolis reflecting surface given by $x=2 b y^{2}$, will pass through a single point called focus of
the reflecting surface. Also, find the focal length.

D Watch Video Solution

