# ©゙" doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - DC PANDEY PHYSICS

## (HINGLISH)

## SOLVED PAPERS 2018

1. A carbon resistor of $(47 \pm 4.7) k \Omega$ is to be marked with rings of different colours for its
identification. The colour code sequence will be

# A. Yellow- Green-Violet-Gold 

B. Yellow-Violet-Orange-Silver
C. Violet-Yellow-Orange-Silver
D. Green-Orange-Violet-Gold

Answer: B

## D Watch Video Solution

2. A set of ' $n$ ' equal resistor, of value of ' $R$ ' each are connected in series to a battery of emf ' $E$ ' and internal resistance ' $R$ '. The current drawn is $I$. Now, the ' $n$ ' resistors are connected in parallel to the same battery.

Then the current drawn from battery becomes
10.1. The value of ' $n$ ' is
A. 20
B. 11
C. 10
D. 9

## Answer: C

## D Watch Video Solution

3. A battery consists of a variable number $n$ of identical cells having internal resistance connected in series. The terminals of the battery are short circuited and the current $I$ measured. Which one of the graph below
shows the correct relationship between $I$ and $n ?$

C.

D.


## Answer: C

## D Watch Video Solution

4. Unpolarised light is incident from air on a
plane surface of a material of refractive index
$\mu$. At a particular angle of incidence $i$, it is
found that the reflected and refracted rays are
perpendicular to each other. Which of the
following options is correct for this situation?

$$
\text { A. } i=\sin ^{-1}\left(\frac{1}{\mu}\right)
$$

B. Reflected light is polarised with its
electric vector perpendicular to the
plane of incidence.
C. Reflected light is polarised with its
electric vector parallel to the plane of incidence.

$$
\text { D. } i=\tan ^{-1}\left(\frac{1}{\mu}\right)
$$

## Answer: B

5. In young's double slit experiment the separation $d$ between the slits is $2 m m$, the wavelength $\lambda$ of the light used is $5896 \AA$ and distance $D$ between the screen and slits is 100 cm . It is found that the angular width of the fringes is $0.20^{\circ}$. To increases the fringe angular width to $0.21^{\circ}$ (with same $\lambda$ and $D$ )
the separtion between the slits needs to be changed to
A. 2.1 mm
B. 1.9 mm

## C. 1.8 mm

D. 1.7 mm

## Answer: B

## - Watch Video Solution

6. An astronomical refracting telescope will
have large angular magnification and high
angular resolution, when it has an objective lens of
A. large focal length and large diameter
B. large focal length and small diamter
C. small focal length and large diameter
D. small focal length and small diameter

## Answer: C

## - Watch Video Solution

7. The ratio of kinetic energy to the total energy of an electron in a Bohr orbit of the hydrogen atom, is
A. 2: -1
B. 1:1
C. 1:1
D. 1: -2

Answer: B

## - Watch Video Solution

8. An electron of mass $m$ with an initial velocity
$\vec{v}=v_{0}{ }^{\wedge}$ (i) $\left(v_{0}>0\right)$ enters an electric field
$\vec{E}=-E_{0} \hat{i}\left(E_{0}=\right.$ cons $\left.\tan t>0\right)$ at $t=0$.
If $\lambda_{0}$ is its de - Broglie wavelength initially, then its de - Broglie wavelength at time $t$ is
A. $\lambda_{0} t$
B. $\lambda_{0}\left(1+\frac{e E_{0}}{m v_{0}} t\right)$
C. $\frac{\lambda_{0}}{\left(1+\frac{e E_{0}}{m v_{0}} t\right)}$
D. $\lambda_{0}$

## Answer: C

9. For a radioactive material, half-life is 10
minutes. If initially there are 600 number of
nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is.
A. 30
B. 10
C. 20
D. 15

Answer: C

- Watch Video Solution

10. When the light of frequency $2 v_{0}$ (where $v_{0}$
is threshold frequency), is incident on a metal
plate, the maximum velocity of electrons
emitted is $v_{1}$. When the frequency of the incident radiation is increased to $5 v_{0}$, the maximum velocity of electrons emitted from
the same plate is $v_{2}$. the ratio of $v_{1}$ to $v_{2}$ is
A. $4: 1$
B. 1: 4
C. $1: 2$

## D. 2:1

## Answer: C

## D Watch Video Solution

11. In the circuit shown in the figure, the input voltage $V_{i}$ is $20 V, V_{B E}=0$ and $V_{C E}=0$. The
values of $I_{B}, I_{C}$ and $\beta$ are given by:

A. $I_{B}=20 \mu A, I_{C}=5 m A, \beta=250$
B. $I_{B}=25 \mu A, I_{C}=5 m A, \beta=200$
C. $I_{B}=40 \mu A, I_{C}=10 m A, \beta=250$
D. $I_{B}=40 \mu A, I_{C}=5 m A, \beta=125$

## Answer: D

## D Watch Video Solution

12. In a $p-n$ junction diode, change in temperature due to heating
A. does not affect resistance of $p-n$
junction
B. affects only forward resistance
C. affects only reverse resistance

# D. affects the overall V-I characteristics of 

p-n junction.

## Answer: D

## D Watch Video Solution

13. In the circuit shown in the figure, the input
voltage $V_{i}$ is $20 \mathrm{~V}, V_{B E}=0$ and $V_{C E}=0$. The
values of $I_{B}, I_{C}$ and $\beta$ are given by

A. $\overline{A . B}+A . B$
B. $A \cdot \bar{B}+\bar{A} \cdot B$
C. $\overline{A . B}$
D. $\overline{A+B}$

## Answer:

14. An $E M$ wave is propagating in a medium whith a velocity $\vec{v}=v \hat{i}$. The instantaneous oscillating electric field of this of em wave is along $+y$ axis. Then the direction of oscillating magnetic field of the $E M$ wave will be along
A. $-y-$ direction
B. $+z-$ direction
C. $-z-$ direction
D. $-x$ - direction

Answer: B

## D Watch Video Solution

15. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is $30^{\circ}$.

One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the
silvered surface) if its angle of incidence on
the prism is
A. $30^{\circ}$
B. $45^{\circ} \mathrm{C}$
C. $60^{\circ} \mathrm{C}$
D. zero

Answer: B
( Watch Video Solution
16. An object is placed at a distance of 40 cm
from a concave mirrorr of focal length 15 cm . If
the object is displaced through a distance of
20 cm towards the mirrorr, the displacement of the image will be
A. 30 cm towards the mirror
B. 36 cm away from the mirror
C. 30 cm away from the mirror
D. 36 cm towards the mirror
17. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance
A. 1.389 H
B. 138.88 H
C. 0.138 H
D. 13.89 H

## Answer: D

## D Watch Video Solution

18. An electron falls from rest through a
vertical distance $h$ in a uniform and vertically
upward directed electric field E . the direction
of electric field is now reversed, keeping its
magnitude the same. A proton is allowed to
fall from rest in it through the same vertical distance h.The time of fall of the electron, in comparison to the time of flal of the proton is
A. 10 times greater
B. 5 times greater
C. smaller
D. equal

## Answer: C

## D View Text Solution

19. The electrostatic force between the metal
plate of an isolated parallel plate capacitro $C$
having charge $Q$ and area $A$, is
A. proportional to the square root of the
distance betweenthe plates
B. linearly proportional to the distance
between the plates
C. independent of the distance between
the paltes
D. inversely proportional to the distance between the plates.

## Answer: C

20. A metallic rod of mass per unit length
$0.5 \mathrm{kgm}^{-1}$ is lying horizontally on a straght inclined plane which makes an angle of $30^{\circ}$ with the horizontal. The rod is not allowed to
slide down by flowing a current throguh it when a magnetic field of induction $0.25 T$ is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
A. 14.76 A
B. 5.98 A
C. 7.14 A
D. 11.32 A

## Answer: D

## D Watch Video Solution

21. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnetic is switched on, then the diamagnetic rod is pushed up,
out of the horizontal magnetic field. Hence the rod gains horizontal potential energy. the work required to do this comes from
A. The lattice structure of the material of the rod
B. the magnetic field
C. the current source
D. the induced electric field du to the
changing magnetic field

## - Watch Video Solution

22. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and
a resistor $50 \Omega$ are connected in series across a source of emf $V=10 \sin 314 t$. The power loss
in the circuit is
A. 2.74 W
B. 0.43 W
C. 0.79 W
D. 1.13 W

## Answer: C

## D Watch Video Solution

23. Current senstivity of moving coil galvanometer is $5 \operatorname{div} / m A$ and its voltage senstivity (angular deflection per unit voltage applied) is $20 \operatorname{div} / V$. The resistance of the galvanometer is
A. $250 \Omega$
B. $25 \Omega$

## C. $40 \Omega$

## D. $500 \Omega$

## Answer: A

## - Watch Video Solution

## Aiims

1. A metal wire has a resistance of $35 \Omega$. If its
length is increased to double by drawing it,
then its new resistance will be
А. $70 \Omega$
B. $140 \Omega$
C. $105 \Omega$
D. $35 \Omega$

Answer: B

## D Watch Video Solution

2. A half ring of radius R has a charge of $\lambda$ per unit length. The electric force on 1C charged placed at the center is
A. zero
B. $\frac{k \lambda}{R}$
C. $\frac{2 k \lambda}{R}$
D. $(k \pi \lambda) R$

Answer: C

## - Watch Video Solution

3. Positive charge $Q$ is distributed uniformly over a circular ring of radius R. A particle having a mass m and a negative charge q , is
placed on its axis at a distance $x$ from the centre. Find the force on the particle.

Assuming $\mathrm{x} \ll \mathrm{R}$, find the time period of oscillation of the particle if it is released from there.
A. $\left[\frac{16 \pi^{3} \varepsilon_{0} R^{3} m}{Q q}\right]^{1 / 2}$
B. $\left[\frac{8 \pi^{2} \varepsilon_{0} R^{3}}{q}\right]^{\frac{1}{2}}$
C. $\left[\frac{2 \pi^{3} \varepsilon R^{3}}{3 q}\right]^{1 / 2}$
D. None of these
4. An infinite number of identical capacitors each of capacitance $1 m F$ are connected as
shown in the figure. Then the equivalent
capacitance between $A$ and $B$ is.

A. $1 \mu F$
B. $2 \mu F$
C. $\frac{1}{2} \mu F$

## D. $\infty$

## Answer: B

## D Watch Video Solution

5. In the circuit in fig. If no current flows
through the galvanometer when the key $k$ is
closed, the bridge is balanced. The balancing
condition for bridge is

A. $\frac{C_{1}}{C_{2}}=\frac{R_{1}}{R_{2}}$
B. $\frac{C_{1}}{C_{2}}=\frac{R_{2}}{R_{1}}$
C. $\left(\frac{C_{1}^{2}}{C_{2}^{2}}=\frac{R_{1}^{2}}{R_{2}^{2}}\right)$
D. $\frac{C_{1}^{2}}{C_{2}^{2}}=\frac{R_{2}}{R_{1}}$

Answer: B

## - Watch Video Solution

6. In a series $C-R$ circuit shown in figureure,
the applied voltage is 10 V and the voltage across capacitor is found to 8 V . The voltage across $R$, and the phase difference between
current and the applied voltage will
respectively be

A. $6 \mathrm{~V}, \tan ^{-1}\left(\frac{4}{3}\right)$
B. $3 V, \tan ^{-1}\left(\frac{3}{4}\right)$
C. $6 V, \tan ^{-1}\left(\frac{5}{3}\right)$
D. None of these

## Answer: A

## - Watch Video Solution

7. A system $S$ consists of two coils $A$ and $B$. The
coil, A carries a steady current I. While the coil
$B$ is suspended nearby as shown in figure.
Now, if the system is heated, so as to raise the temperature of two coils steadily, then

A. the two coils shows attraction
B. the two coils shows repulsion
C. there is no change in the position of the two coils

# D. induced current are not possible in coil 

 BAnswer: A

D Watch Video Solution
8. A long straight wire, carrying current $I$, is bent at its midpoint to form an angle of $45^{\circ}$.

Find the induction of magnetic field at point $P$, distant $R$ from the point of bending (as shown in)

A. $\frac{(\sqrt{2}-1) \mu_{0} l}{4 \pi R}$
B. $\frac{(\sqrt{2}+1) \mu_{0} l}{4 \sqrt{2} \pi R}$

> C. $\frac{\sqrt{2-1} \mu_{0} l}{4 \sqrt{2} \pi R}$
> D. $\frac{(\sqrt{2}+1) \mu_{0} l}{4 \sqrt{2} \pi R}$

## Answer: A

## - Watch Video Solution

9. An element $d \vec{l}=d x \hat{i}$ (where $d x=1 \mathrm{~cm}$ )
is placed at the origin and carries a large current $i=10 A$. What is the magnetic field on the Y -axis at a distance of 0.5 m ?
A. $2 \times 10^{-8} \hat{k} T$
B. $4 \times 10^{-8} \hat{k} T$
C. $-2 \times 10^{-8} \hat{k} T$
D. $-4 \times 10^{-8} \hat{k} T$

Answer: B

D Watch Video Solution
10. The horizontal component of the earth's magnetic field at any place is
11. Consider the following figure, a uniform magnetic field of 0.2 T is directed along the positive X -axis. The magnetic flux through top surface of the figure.

A. zero
B.
C. $0.8 \mathrm{~m}-\mathrm{Wb}$
D. $-1.8 \mathrm{~m}-\mathrm{Wb}$

## Answer: C

## - Watch Video Solution

12. An idal coil of 10 is connected in series with
a resitance of $5 \Omega$ and a battery of 5 V . After 2 s ,
after the connection is made, the current
flowing (in ampere) in the circuit is
A. (1-e)
B.e
C. $e^{-1}$
D. $\left(1-e^{-1}\right)$

## Answer: D

## D Watch Video Solution

13. In the circuit, shown the galvanometer $G$ of resistance $60 \Omega$ is shifted by a resistance $r=0.02$
$\Omega$. The current through R is nearly 1 A . The
value of resistance $R$ (in ohm) is nearly.

A. $1.00 \Omega$
B. $5.00 \Omega$
C. $11.0 \Omega$

D. $6.0 \Omega$

Answer: C

## - Watch Video Solution

14. In a circuit $L, C$ and $R$ are connected in series with an alternating voltage source of frequency $f$. The current lead the voltages by $45^{\circ}$. The value of $C$ is :

$$
\begin{aligned}
& \text { A. } \frac{1}{2 \pi f(2 \pi f L+R)} \\
& \text { B. } \frac{1}{\pi f(2 \pi f L+R)} \\
& \text { C. } \frac{1}{2 \pi f(2 \pi f L-R)} \\
& \text { D. } \frac{1}{\pi f(2 \pi f L-R)}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

15. The log - log graph between the energy $E$
of an electron and its de - Broglie wavelength
$\lambda$ will be

(c) $\log \lambda$
C.

(d) $\log \lambda \underbrace{\longrightarrow}_{\log E}$
D.

## Answer: C

## D Watch Video Solution

16. The half life of a radioactive substance is 20
minutes . The approximate time interval
$\left(t_{2}-t_{1}\right)$ between the time $t_{2}$ when $\frac{2}{3}$ of it
had decayed and time $t_{1}$ when $\frac{1}{3}$ of it had decay is
A. 14 min
B. 20 min
C. 28 min
D. 7 min

Answer: B

D Watch Video Solution
17. The diode used at a constant potential drop of 0.5 V at all currents and maximum power rating of 100 mW . What resistance must be connected in series diode, so that current in circuit is maximum?

A. $200 \Omega$
B. $6.67 \Omega$
C. $5 \Omega$
D. $15 \Omega$

## Answer: C

## D Watch Video Solution

18. An upolarised beam of intensity $2 a^{2}$ passes
through a thin polarioid. Assuming zero absorption in the polariod, the intensity of emergent plane polarised light is
A. $2 a^{2}$
B. $a^{2}$
C. $\sqrt{2} a^{2}$
D. $\frac{a^{2}}{2}$

Answer: B

## D Watch Video Solution

19. A diode detector is used to detect an amplitude modulated wave of $60 \%$ modulation by using a condense of capacity

250 picofarad in parallel with a load resistance
100 kilo ohm find the maximum modulated which could be find the maximum modulated frequency which could be detected by it

A. 10.32 Mhz
B. 10.61 kHz
C. 5.31 MHz

## D. 5.31 kHz

## Answer: B

## D Watch Video Solution

20. Red light of wavelength $5400 \AA$ from a distant source modulated wave of $60 \%$ modulattion by using a condenser of capacity

250 pF in parallel with a load resistnce $100 k \Omega$.

Find the maximum modulated frequency which could be detected by it.
A. 1.89 mm
B. 4 mm
C. 1 mm
D. 3 mm

Answer: A

D View Text Solution
21. A circular loop of radius 0.3 cm lies parallel
to amuch bigger circular loop of radius 20 cm .

The centre of the small loop is on the axis of
the bigger loop. The distance between their centres is 15 cm . If a current of 2.0 A flows through the smaller loop, then the flux linked with bigger loop is
A. $9.1 \times 10^{-11} \mathrm{~Wb}$
B. $6 \times 10^{-11} \mathrm{~Wb}$
C. $3.3 \times 10^{-11} W b$
D. $6.6 \times 10^{-9} \mathrm{~Wb}$

## Answer: A

22. In the adjoining circuit diagram, the readings of ammeter and voltmeter are 2 A and 120 V , respectively. If the value of R is $75 \Omega$, then the voltmeter resistance will be

A. $100 \Omega$
B. $150 \Omega$

## C. $300 \Omega$

D. $75 \Omega$

## Answer: C

## D Watch Video Solution

## Assertion And Reasons

1. Each of these questions contains two
statements Assertion and Reason. Each of
these questions also has four alternative
choices, only one of which is the correct answer. You have to select one of codes (a), (b), (c) and (d) given below.

Assertion: Mass of a body decreases slightly when it is negatively charged.

Reason: Charging is due to transfer of electrons.

## - Watch Video Solution

2. Assertion: A dielectric slabis inserted between plates of an isolated charged
capacitor which remain same.

Reason Charge on an isolated system is conserved.

## D Watch Video Solution

3. Assertion: Terminal voltage of a cell is greater than emf of cell during charging of the cell.

Reason: The emf of a cell is always greater than its terminal voltate.
4. Assertion : Magnetic field interacts with a moving charge and not with a stationary charge.

Reason : A moving charge produces a magnetic field.

## D Watch Video Solution

5. Assertion: Bulb generally get fused when
they are switched on or off.

Reason: When we switch on or off, a circuit current changes in it rapidly.

## D Watch Video Solution

6. Assertion: A convex mirror always make a virtual image.

Reason: The ray always diverge after reflection
from the convex mirror.

D Watch Video Solution

## 7. Assertion: if a glass slab is placed in front of

 one of the slits, then fringe with will decreases.Reason: Glass slab with produce an additional path difference.

## D Watch Video Solution

8. Assertion: If electrons in an atom were stationary, then they would fall into the nucleus.

Reason: Electrostatic force of attraction acts between negatively charged electrons and positive nucleus.

## D Watch Video Solution

9. Radioactive nuclei emit $\beta^{-1}$ particles.

Electrons exist inside the nucleus.

D Watch Video Solution
10. Assertion: Thickness of depletion layer is
fixed in all semiconductor devices.

Reason: No free charge carriers are available in deplection layer.

## - Watch Video Solution

## Jipmer

1. What is the magnetic moment of an electron
orbiting in a circular orbit of radius $r$ with $a$

## speed $v$ ?

A. $e v \frac{r}{2}$
B. evr
C. $\frac{e r}{2 v}$
D. None of these

Answer: A

## - Watch Video Solution

2. If point charges $Q_{1}=2 \times 10^{-7} \mathrm{C}$ and
$Q_{2}=3 \times 10^{-7} \mathrm{C}$ are at 30 cm separation,
then find electrostatic force between them

> A. $2 \times 10^{-3} \mathrm{~N}$
> B. $6 \times 10^{-3} \mathrm{~N}$
> C. $5 \times 10^{-3} \mathrm{~N}$
> D. $1 \times 10^{-3} \mathrm{~N}$

Answer: B

D Watch Video Solution
3. Find $R_{\neq t}$ between A and B.

A. $60 \Omega$
B. $40 \Omega$
C. $70 \Omega$
D. $20 \Omega$

Answer: B
4. Find current (i) in circuit shown in figure.


5 V
A. 0.5 A
B. 0.2 A

## C. 0.041666666666667

D. 0.083333333333333

Answer: A

- Watch Video Solution

5. Find $V_{P}-V_{Q}$ in the circuit shown in figure.

A. 6.68 V
B. 8 V
C. 4.65 V
D. 7 V

## Answer: C

## - Watch Video Solution

6. If a capacitor having capacittance $2 F$ and
plate separation of 0.5 cm will have area
A. $1130 \mathrm{~cm}^{2}$
B. $1130 m^{2}$
C. $1130 \mathrm{~km}^{2}$
D. none of these

## Answer: C

## D Watch Video Solution

## 7. Find the capacitance in shown figure


A. $\frac{2 K A \varepsilon_{0}}{(K+1) d}$
B. $\frac{2 K A \varepsilon_{0}}{d}$

> C. $\frac{(K+1) A \varepsilon_{0}}{2 d}$
> D. $\frac{2 K A \varepsilon_{0}}{\left(K^{2}+1\right) d}$

## Answer: A

## D Watch Video Solution

8. If minimum deviation $=30^{\circ}$, then speed of
light in shown prism will be

$$
\begin{aligned}
& \text { A. } \frac{3}{\sqrt{2}} \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { B. } \frac{1}{\sqrt{2}} \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{2}{\sqrt{3}} \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& \text { D. } \frac{2 K A \varepsilon_{0}}{\left(K^{2}+1\right) d}
\end{aligned}
$$

## Answer: C

## D Watch Video Solution

9. A current $i$ is flowing through the wire of diameter (d) having drift velocity of electrons
$v_{d}$ in it. What will be new drift velocity when diameter of wire is made $d / 4$ ?
A. $4 v_{d}$
B. $\frac{v_{d}}{4}$
C. $16 v_{d}$
D. $\frac{v_{d}}{16}$

Answer: C

- Watch Video Solution

10. Find $i$ in shown figure.

A. 0.2 A
B. 0.1 A
C. 0.3 A
D. 0.4 A

Answer: B

## D Watch Video Solution

11. Which of the following is fusion process?
A. $-(1)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{4} H e$
B. $-(0)^{1} n+{ }_{92}^{235} U \rightarrow{ }_{56}^{92} K r+3{ }_{0}^{1} n$
C. Uranium decay
D. None of the above
12. A electron $e^{-}$is accelerated by V volts experiences a force $F$, when it enters in a uniform magnetic field. What will the force experienced when it is accelerated by 2 V ?
A. $\sqrt{2} F$
B. F
C. 2 F
D. $\frac{F}{2}$

Answer: A

## D Watch Video Solution

13. An atomic power nuclear reactor can deliver $300 M W$. The energy released due to
fission of each nucleus of uranium atom $U^{238}$ is 170 MeV . The number of uranium atoms fissioned per hour will be.

$$
\text { A. } 30 \times 10^{25}
$$

B. $4 \times 10^{22}$

## C. $10 \times 10^{2}$

D. $5 \times 10^{15}$

Answer: B

## D Watch Video Solution

14. In the fusion reaction
$.{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} n$, the masses of deuteron, helium and neutron expressed in amu are $2.015,3.017$ and 1.009 respectively. If 1 kg of deuterium undergoes complete fusion,
find the amount of total energy released. 1 $\mathrm{amu}=931.5 \mathrm{MeV} / c^{2}$.
A. $9.0 \times 10^{13} \mathrm{~J}$
B. $20 \times 10^{5} \mathrm{~J}$
C. $5 \times 10^{16} \mathrm{~J}$
D. $8 \times 10^{5} \mathrm{~J}$

Answer: A

D Watch Video Solution
15. A prism of crown glass with refracting angle of $5^{\circ}$ and mean refractive index $=1.151$ is combined with a flint glass prism of refractive index $=1.65$ to produce deviation. Find the angle of fiint glass.
A. $3.92^{\circ}$
B. $4.68^{\circ}$
C. $5.32^{\circ}$
D. $7.28^{\circ}$
16. Two slits are separated by a distance of
0.5 mm and illuminated with light of
$\lambda=6000 \AA$. If the screen is placed 2.5 m from
the slits. The distance of the third bright image from the centre will be
A. 1.5 mm
B. 3 mm
C. 6 mm

## D. 9 mm

## Answer: D

## D Watch Video Solution

17. Calculate the dispersive power for crown glass from the given data

$$
\mu_{v}=1.523 \text { and } \mu_{r}=1.5145
$$

A. 0.01639
B. 1.05639

## C. 0.05639

D. 2.05639

Answer: A

## D Watch Video Solution

18. The force of attractions between two
charges $8 \mu C$ and $-4 \mu C$ is 0.2 N . Find the distance of separation.
A. 1.2 m
B. 12 m
C. 120 m
D. 0.12 m

Answer: A

D Watch Video Solution
19. In a L-C circuit, angular frequency at
resonance is $\omega$. What will be the new angular
frequency when inductor's inductance is made
two times and capacitor's capacitance is made

## four times?

A. $\frac{\omega}{2} \sqrt{2}$
B. $\frac{\omega}{\sqrt{2}}$
C. $2 \omega$
D. $\frac{2 \omega}{\sqrt{2}}$

Answer: A
( Watch Video Solution
20. Electron revolving with speed $v$ is producing magnetic field $B$ at center. Find relation between radius of path $B$ and $v$ ?

> A. $B \propto v \propto \frac{1}{r}$
> B. $B \propto v \propto \frac{1}{r^{2}}$
> C. $B \propto v^{2} \propto \frac{1}{r}$
> D. $B \propto v^{2} \propto \frac{1}{r^{2}}$

Answer: B

- Watch Video Solution

21. A regular hexagone of side a. A wire of length $24 a$ is coiled on that hexagone. If current in hexagone is $I$, then find the magnetic moment.

A. $6 \sqrt{3} l a^{2}$
B. $3 \sqrt{3} l a^{2}$
C. $\frac{3 \sqrt{3}}{2} l a^{2}$
D. $6 l a^{2}$

Answer: A

## D Watch Video Solution

22. The refractive index of glass is 1.5 . The speed of light in glass is
A. $3 \times 10^{8} \mathrm{~m} / / \mathrm{s}$
B. $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $1 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $4 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: B
(D) Watch Video Solution

