©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

(HINGLISH)

CENTRE OF MASS

Illustration

1. Four particles of masses $1 k g, 2 k g, 3 k g$ and $4 k g$ are placed the four vertices A, B, C and
D, respectively, of a square of side $1 m$. Find the position of centre of mass of the particles.

D View Text Solution

2. Consider a two particle system with the particles having masses m_{1} and m_{2}. If the
first particles pushed towards the centre of mass through a distance d, by what distance should the second particle be moved so as the keep the centre of mass at the same position?

D Watch Video Solution

3. Find the centre of mass of as uniform L shaped lamina (a thin flat plate) with dimensions as shown in figure. The mass of
lamina is 3 kg .

- View Text Solution

4. Find the position of centre of mass of the uniform lamina shown in figure.

Fior 111 つ

D Watch Video Solution

5. Figure shows a uniform disc of radius R, from which a hole of radius $\frac{R}{2}$ has been cut out from left of the centre and is placed on the
right of the centre of the disc. Find the CM of
the resulting disc.

- Watch Video Solution

6. A projectile is fired at a speed of $100 \mathrm{~m} / \mathrm{s}$ at an angel of 37^{0} above the horizontal. At the
highest point, the projectile breaks into two parts of mass ratio $1: 3$ the smaller coming to rest. Find the distance from the launching point to the where the heavier piece lands.

D Watch Video Solution

7. Two balls with masses $m_{1}=3$ and $m_{2}=5$
kg have initial velocities $v_{1}=v_{2}=5 \mathrm{~m} / \mathrm{s}$ in the directions shown in figure. They collide at
the origin.
a. find the velocioty of the CM $3 s$ before the collision.
b. Find the position of the CM $2 s$ after the collision.

8. Two masses $n m$ and m, start simultaneously
from the intersection of two straight lines with
velocities v and $n v$ respectively. It is observed
that the path of their centre of mass is a straight line bisecting the angle between the given straight lines. Find the magnitude of the velocity of centre of mass. [Here $\theta=$ angle between the lines]

- View Text Solution

9. Two blocks A and B each of equal masses m are released from the top of a smooth fixed wedge as shown in the figure. Find the magnitude of the acceleration of the centre of mass of the two blocks.

10. Two particles of masses $2 k g$ and $4 k g$ are approaching towards each other with accelerations $1 m / s^{2}$ and $2 m / s^{2}$, respectively, on a smooth horizontal surface. Then find the acceleration of centre of mass of the system and direction of acceleration of $C M$.

D View Text Solution

11. A pulley fixed to the ceiling carried a thread with bodies of masses m_{1} and m_{2} attached to
its ends. The mases of the pulley and the thread are negligible and friction is absent.

Find the acceleration of the centre of mass of this system.

12. A log of wood of length l and mass M is
floating on the surface of a river perpendicular to the banks. One end of the log touches the banks. A man of mass m standing at the other end walks towards the bank. Calculate the displacement of the log when he reaches nearer end of the log

D View Text Solution

13. A plank of mas M and length L is at rest on
as frictionless floor. The top surface of the
plank has friction. At one end of it a man of mass m is standing as shown in figure. If the man walks towards the other end the find the distance, which the plank moves a till the man reaches the centre of the plank. b. till the man reaches the other end of the plank.

- View Text Solution

14. An explosion blows a rock into three parts.

Two pieces go off at right angles to each other, 1.0 kg piece with velocity of $12 \mathrm{~m} / \mathrm{s}$ and other,
1.0 kg piece with a velocity of $12 \mathrm{~m} / \mathrm{s}$ and other 2.0 kg piece with a velocity of $8 \mathrm{~m} / \mathrm{s}$. If
the third piece flies off with a velocity of $40 \mathrm{~m} / \mathrm{s}$ compute the mass of the third piece.

D View Text Solution

15. A uniform of mass m and length L is tied to
a vertical shaft. It rotates in horizontal plane
about the vertical axis at angular velocity ω.

How much horizontal force does the shaft exert on the rod?

D View Text Solution

16. Two balls A and B of equal masses are projected upward simultaneously, one from
the ground with speed $50 \mathrm{~ms}^{-1}$ and other
from height 40 m above the first ball high
tower with initial speed $30 m s^{-1}$. Find the maximum height attained by their centre of
mass.

(D) View Text Solution
17. A body of mass explodes at rest break up into three parts.If two parts having equal masses fly off perpendicularly to each other with a velocity of $18 \mathrm{~m} / \mathrm{s}$, then calculate the velocilty of the third part which has a mass 3 times the mass of each part.

D Watch Video Solution

18. A man of mass m moves on a plank of mass
M with a constant veloicty u with respect to
the plank, as shown in figure.
a.lf the plank rest on smooth horizontal
surface, determine the velocity of the plank.
b If the man travels a distasnce L with respect
to the plank, find the distance travelled by the
plank with respect to te ground.

19. A shell is fired from a cannon with a speed
of $100 \mathrm{~m} / \mathrm{s}$ at an angle 60° with the horizontal (positive x-direction). At the highest point of its trajectory, the shell explodes in to two equal fragments. One of the fragments moves is the speed of the other fragment at the time of explosion.
20. A man of mass m runs without sliding from rest from one end of a boat of mass M and length l with an acceleration a relative to the boat. If the friction between water and boat is neglected find the

a. acceleration of CM of the system $(M+m)$
b. acceleration of the man and boat
c. position of man at the time when he reaches
to other end of the boat

d. frictional force

e. work done by friction on boat.
f. total work done by friction.
g. velocities of man and boat when the man reaches other end of the boat.
h. work down by man

D Watch Video Solution

21. Two trucks of mass M each are moving in opposite direction on adjacent parallel tracks
with same velocity u. One is carrying potatoes
and other is carrying onions, a bag of potatoes
has a mass m_{1} and a bag of onions has a mass
m_{2} (included i the mass of truck M). When
trucks get close to each other while passing the drivers exchange a bag with the other one by throwing the other one. Find the final velocities of the trucks after exchange of the bags.

22. A flat car of mass m is at rest on a frictionless floor with a child of mass m standing at its edge. If the child jumps off from the car towards right with an initial velocity u, with respect to the car, find the velocity of the car after its jump.

D Watch Video Solution

23. Two blocks of masses m_{1} and m_{2} interconnect with a spring of stiffness K, are kept on as smooth horizontal surface. Find out the ratio of velocity, displacement, kinetic energy and acceleration block with mass m_{1} of block with mass m_{2}.

D Watch Video Solution

24. Two identical buggies move one after the other due to inertia (without friction) with the same velocity v_{0}. A man of mass m rides the
rear buggy. At a certain moment the man jumps into the front buggy with a velocity u relative to his buggy. Knowing that the mass of each buggy is equal to M, find the velocities with which the buggies will move after that.

- Watch Video Solution

25. A flat car of mass M with a child of mass m
is moving with a velocity v_{1}. The child jumps in
the direction of motion of car with a velocity u
with respect to the car. Find the final velocities of the child and that of the car after jump.

D Watch Video Solution

26. A light spring of constant k is kept compressed between two blocks of masses m and M on a smooth horizontal surface. When released, the block acquire velocities in opposite directions. The spring loses contact with the blocks when it acquires natural length. if the spring was initially compressed
through a distance x, find the final speeds of the two blocks.

D Watch Video Solution

27. A block of mass m is connected to another
block of mass M by a massless spring of spring constant k. the blocks are kept of a smooth horizontal plane and are at rest. The spring is unstretched when a constant force F starts acting on the block of mass M of pull it.

Find the maximum extension of the spring

D Watch Video Solution

28. Two small discs of masses m_{1} and m_{2} are
connected by a weightless spring resting on a smooth horizontal plance. The discs are set in motion with initial velocities v_{1} and v_{2} whose directions are mutually perpendicular and in
the same horizontal plane. Find the total
energy E of hte system with reference to the frame fixed to the centre of mass.

D Watch Video Solution

29. Two smooth blocks of mases m_{1} and m_{2} attached with an ideal spring of stiffness k and kept on hrozontal surface. If m_{1} is projected with a horizontal velocity v_{0}. Find the
maximum compression of the spring.

- Watch Video Solution

30. A block of mass m is pushed with a velocity
v_{0} along the surface of a trolley car of mass M.
If the horizontal ground is smooth and the coefficient of kinetic friction between the block
of plank is μ. Find the minimum distance of relative sliding between the block and plank.

- Watch Video Solution

31. A smooth wedge of mass M rests on a smooth horizontal surface. A block of mass m
is projected from its lowermost point with
velocity v_{0}. What is the maximum height reached by the block?

- Watch Video Solution

32. The hero of a stunt film fires $50 g$ bullets
form a machine gun, each at a speed of $1.0 \mathrm{~km} / \mathrm{s}$. If he fires 20 bullets in 4 s , what average force does he exert against the machine gun during this period?

- Watch Video Solution

33. A block of mass m and α pan of equal mass
are connected by a string going over a smooth
light pulley as shown in figure. Initially the system is at rest when a particle of mass m
falls on the pan and sticks to it. If the particle strikes the pan with a speed v find the speed with which the system moves just after the collision.

D Watch Video Solution

34. Two identical blocks A and B connected by massless string, are placed on a frictionless horizontal plane. A bullet having the same mass, moving with speed u strikes block B from behind as shown. If the bullet gets
embedded into block B then find

a. the velocity of A, B, C after collision.
b. impulse on A due to tension in the string,
c. impulse on C due to normal force of collision,
d. impulse on B due to normal force of collision.
35. A ball of mass $1 k g$ is attached to an inextensible string. The ball is released from the position shown in figure. Find the impulse imparted by the string to the ball immediately
after the string becomes taut.

36. Two particles A and B of equal mass m are attached by a string of length $2 l$ and initially placed over a smooth horizontal table in the positoin shown in fig. particle B is projected across the table with speed u perpendicular to
$A B$ as shown in the figure. find the velocities of each particle after the string becomes taut
and the magnitude of the impulse tension.

D Watch Video Solution
37. A sphere of mass m slides with velocity v on as frictionless surface towards a smooth inclined wall as shown in figure. If the collision with the wall is perfectly elastic find a. the impulse imparted by the wall on the sphere b the impulse imparted by the floor on the sphere.

38. A mass m rests on a horizontal table. It is attached to a light inextensible string which passes over a smooth pulley and carries a mass m at the other end. If the mass m is raised vertically through a distance h and is
then dropped, what is the speed with which
the mass $2 m$ begins to rise?

39. Two particles of masses m_{1} and m_{2} are connected by a light and inextensible string which passes over a fixed pulley. Initially, the particle m_{1} moves with velocity v_{0} when the string is not taut. Neglecting friction in all contacting surface, find the velocities of the particles m_{1} and m_{2} just after the string is taut.

40. A ball is projected from a given point with
velocity u at some angle with the horizontal and after hitting a vertical wall returns to the same point. Show that the distance of the point from the wall must be less than $e u^{2}$ $\overline{(1+e) g}$, where e is the coefficient of restitution.

D Watch Video Solution

41. What will be the angle of reflection in case of an inelastic collision and $v=$?

- Watch Video Solution

42. If a ball strikes with a velocity u_{1} at the wall
which itself is approaching it with a velocity u_{2}
then find the velocity of the ball after collision with the wall.

D Watch Video Solution
43. A ball drops from a ceiling of a room and after rebounding twice from the floor reaches
a height equal to half that of the ceiling. Show
that the coefficient of restitution is $\sqrt{\frac{1}{2}}$

- Watch Video Solution

44. A ball of mass m hits the floor with a speed
v_{0} making an angle of incidence α with the normal. The coefficient of restitution is e. find the speed of the reflected ball and the angle of reflection of the ball.

- Watch Video Solution

45. Two identical balls are approaching towards each other on a straight line with velocity $2 m / s$ and $4 m / s$, respectiely. Find the final velocities after elastic collision between them.
$m \longrightarrow 2 \mathrm{~m} / \mathrm{s}$
$4 \mathrm{~m} / \mathrm{s}$
m
A. fig
B.
C.

D.

D Watch Video Solution

46. Three balls A, B and C of same mass m are placed on a frictionless horizontal plane in
a straight line as shown. Ball A is moved with
velocity u towards the middle ball B. If all the
collisions are elastic, find the final velocities of
all the balls.

- Watch Video Solution

47. Four identical balls A, B, C and D are placed in a line on frictionless horizontal surface. A and D are moved with the same speed u towards the middle as shown. Assuming elastic collisions, find the final
velocities.

D Watch Video Solution

48. Two particles of masses m and $2 m$ moving in opposite directions collide elastically with velocity $2 v$ and v, respectiely. Find their velocities after collision.

49. A ball of mass m moving at speed v makes
a head on collision with an identical ball at rest. The kinetic energy of the balls after the collision is $3 / 4$ th of the original. Find the coefficient of restitution.
50. A ball is moving with velocity $2 m / s$ towards a heavy wall moving towards the ball with speed $1 m / s$ as shown in figure.

Assuming collision to be elastic, find the velocity of ball immediately after the collision.

$2 \mathrm{~m} / \mathrm{s}$
 $1 \mathrm{~m} / \mathrm{s}$

51. Two balls of masses $2 k g$ and $4 k g$ are moved towards each other with velocities $4 m / s$ and
$2 m / s$, respectively, on a frictionless surface.

After colliding, the $2 k g$ ball returns back with velocity $2 m / s$. then find
a. velocity of the 4 kg after collision
b. coefficient of restitution e,
c. impulse of deformation J_{D}
d. maximum potential energy of deformation,
e. impulse of reformation J_{R}

- Watch Video Solution

52. Two point prticles A and B are placed in line on frictionless horizontal plane. If particle
A (mass 1 kg) is move with velocity $10 \mathrm{~m} / \mathrm{s}$ towards stationary particle B (mass 2 kg) and after collision the two move at an angle of 45°
with the initial direction of motion, then find
a. velocites of A and B just after collision.
b. coefficient of restitution
53. A bullet of mass 50 g is fired rom below into the bob of mass 450 g of a long simple pendulum as hown in figure. The bullet premains inside the bob and the bob rises thrugh a height of 1.8 m . Find the speed of the
bullet. Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

- 1
$1 \uparrow$
- Watch Video Solution

54. A small ball of mass m collides with as
rough wall having coefficient of friction μ at an
angle θ with the normal to the wall. If after
collision the ball moves with angle α with the normal to the wall and the coefficient of restitution is e, then find the reflected velocity
v of the ball just after collision.

D Watch Video Solution

55. Two equal spheres of mass m are in contact on a smooth horizontal table. A third identical sphere impinges symmetrically on the
and is reduced to rest. Prove that $e=\frac{2}{3}$ and find the loss in $K E$.

D Watch Video Solution

56. A particle (a mud pallet, say) of mass m strikes a smooth stationary wedge of mass M with as velocity v_{0} at an angle θ with horizontal. If the collision is perfectly inelastic, find the
a. velocity of the wedge just after the collision.
b. Chane in $K E$ of the system $(M+m)$ in
collision.

- Watch Video Solution

57. A ball of mass m moving horizotally which
velocity u hits a wedge of mass M. The wedge is situated on a smooth horizontal source. If after striking with wedge the ball starts
moving in vertical direction and the wedge starts moving in horizotal plane. calculate a. the velocity of wedge V.
b. the velocity (v) at which the ball moves in
vertical direction.
c. the impulse imparted by the ball on the wedge.
d. the coefficient of restitution $e=$?

58. A smooth wedge of mass M is kept at rest on a smooth horizontal surface. Inclined face
of the wedge make an angle θ with the horizontal . A particle of mass m collides normal to inclined face of wedge. If speed of the particle just before collision is u and coefficient of restitution is e then find velocity of wedge after collision .
59. A flatcar of mass m_{0} starts moving to the
right due to a constant horizontal force
F (figure). Sand spills on the flatcar from a stationary hopper. The velocity of loading is
constant and equal to $\mu k g / s$. Find the time dependence of the velocity and the acceleration of the flatcar in the process of
loading. The friction is negligibly small.

60. A cart loaded with sand moves along a horizontal plane due to a constant force F coinciding in direction with the cart's velocity vector. In the process, sand spills through a hole in the bottom with a constant rate $\mu k g / s$
. Find the acceleration and the velocity of the
cart at the moment t, if at the initial moment
$t=0$ the cart with loaded sand had the mass
m_{0} and its velocity was equal to zero. The friction is to be neglected.
61. A rocket with an initial mass of 1000 kg , is
launched vertically upward from rest under
gravity. The rocket burns fuel at the rate of
10 kg per second. The burnt matter is ejected
vertically downwards with a speed of $2000 \mathrm{~m} / \mathrm{s}$
relative to the rocket. Find the velocity of the rocket after 1 min of start.

- Watch Video Solution

Solved Examples

1. A body of mass 1 kg initially at rest, explodes
and breaks into three fragments of masses in
the ratio $1: 1$: 3 . The two pieces of equal mass
fly off perpendicular to each other with a speed of $15 \mathrm{~ms}^{-1}$ each. What is the velocity of the heavier fragment?

D Watch Video Solution

2. A wedge of mass m_{2} is kept on a spring
balance. A small block of mass m_{1} can move along the frictionless incline of the wedge.

What is the reading of the balance while the block slides? Ignore the recoil of the wedge.

- Watch Video Solution

3. A spring is connected with plank and other end of spring is connected with a block of mass m. initially spring is stretched by a distance x_{0} and block is connected with a thread which is connected to other end of the plank as shown. If thread is cut, what will be maximum speed of the plank.

D View Text Solution
4. A wedge having a vertical slot in it is placed on smooth horizontal surface as shown in the
figure. Two blocks are arranged as shown in the figure. The system is released from rest calculate the speed of the wedge when block 1 comes down a distance h.

5. A rope thrown over a pulley has a on one of
its ends and a counterbalancing mass M on
its other end. The man whose mass is m, climbs upwards by $\vec{\triangle} r$ relative to the ladder and then stops. Ignoring masses of the pulley and the rope, as well as the friction the pulley axis, find the displacement of the centre of mass of this system.
6. A block of mass m is relesed from rest from
a height h onto a smooth sledge of mass M
fitted with an ideal spring of stiffness k.

D View Text Solution

7. A particle of mass m_{1} is projected to the right with speed v_{1} onto a smooth wedge of
mass m_{2} which is simulateoulsy projected due the left with a speed v_{2}. If the particle attains the highest point of the wedge, find h.

- View Text Solution

8. A small ball of mass m is projected with a minimum horizontal velocity v_{0} on a smooth
wedge of mass M so that it will reach the highest point of the wedge. Find the value of v_{0}

- View Text Solution

9. A bead of mass m kept at the top of a smooth hemispherical wedge of mass M and radius R, is gently pushed towards right. As a
result, the wedge slides due left Find the
a. speed of the wedge
b. magnitude of velocity of the beard relative to the wedge.

D View Text Solution
10. There are two pendulums with bobs having indencital size and mass. The pendulum A is released from rest in the position as shown in the figure. If the maximum angle formed by cord $B O^{\prime}$ with vertical in the subsequent motion of sphere B is equal to the angle θ_{0} If
the coefficient of restitution between sphere
A and sphere B is l. find

a. the velocities of sphere A and sphere B just after collisions
b. the ratio of lengths of pendulums l_{B} / l_{A}.

D View Text Solution

11. An empty luggage carrier A of mass
$M=40 \mathrm{~kg}$ slide without friction on horizontal
floor hits with a velocity $v_{0}=5 m s^{-1}$ an
identical carrier B containing $\mathrm{m}=15 \mathrm{mg}$
suitacase. The impact causes the suitcase to
slide on the floor of carrier B and collide with
the left wall of carrier B. knowing that the coefficient of restitution between the two
carriers is 0.80 and that the coefficient of restitution between the suitcase and the wall of carriere B is $2 / 9$. Assume no friction any where. Find

a. the velocities of carrier A and carrier B just after collision.
b. the velocity of carrier B after the suitcase its the wall for the first time is

D View Text Solution

12. A ball of mass m is pushed with a horizontal velocity v_{0} from one end of a sledge of mass M and length l. if the ball stops after is first collision with the sledge, find the
speeds of the ball ad sledge after the second collision of the ball with the sledge.

D View Text Solution

13. Two spherical bodies of mass m_{1} and m_{2}
fall freely through a distance h. before the body m_{2} collides with the ground. If the coefficient of restitution of all collisions is e,
find the velocity of m_{1} just after it collides with
m_{2}

- Watch Video Solution

1. Two children A and B of same mass
(including their caps) M are sitting On a see-
saw as shown in Fig. Initially, the beam is
horizontal. At once, child B throws away his
cap (mass $\frac{M}{25}$) which falls at point Q, midpoint of the left half of the beam, due to this the balance of beam is disturbed. To balance it again what is the mass in required to be put at point P on the right half of the
beam?

- Watch Video Solution

2. Figure shows a fixed wedge on which two blocks of masses $2 k g$ and $3 k g$ are placed on its smooth inclined surfaces. When the two blocks are released from rest, find the acceleration of
centre of mass of the two blocks.

- Watch Video Solution

3. Consider a rectangular plate of dimensions
$a \times b$. If this plate is considered to be made up
of four rectangles of dimensions $\frac{a}{2} \times \frac{b}{2}$ and we now remove one out of four rectangles.

Find the position where the centre of mass of
the remaining system will lie?

- Watch Video Solution

4. There are two masses m_{1} and m_{2}, placed at
a distance l apart, let the centre of mass of this system is at a point named C. If m_{1} is
displaced by l_{1} towards C and m_{2} is displaced by l_{2} away from C, find the distance from (C) where the new centre of mass will be located.

D Watch Video Solution

5. Let there are three equal masses situated at
the vertices of an equilateral triangle, as
shown in Fig. Now particle A starts with a
velocity v_{1} towards line $A B$, particle B starts
with the velocity v_{2}, towards line $B C$ and particle C starts with velocity v_{3} towards line
$C A$. Find the displacement of the centre of mass of the three particles A, B and C after time t. What would it be if $v_{1}=v_{2}=v_{3}$?

6. Figure shows a flat car of mass M on a frictionless road. A small massless wedge is fitted on it as shown. A small ball of mass m is released from the top of the wedge, it slides over it and falls in the hole at distance l from the initial position of the ball. Find the distance the flat car moves till the ball gets
into the hole.

- Watch Video Solution

7. Figure shows two blocks of masses 5 kg and
$2 k g$ placed on a frictionless surface and connected with a spring. An external kick gives
a velocity of $14 m / s$ to the heavier block in the direction of lighter one. Deduce (a) velocity gained by the centre of mass and (b) the separate velocities of the two blocks in the centre of mass coordinates just after the kick.

- Watch Video Solution

8. Two blocks of masses m_{1} and m_{2}, connected by a weightless spring of stiffness k rest on a
smooth horizontal plane as shown in Fig. Block
2 is shifted a small distance x to the left and then released. Find the velocity of centre of mass of the system after block 1 breaks off the wall.

- View Text Solution

9. Mr. Verma (50kg) and Mr. Mathur (60kg) are sitting at the two extremes of a 4 m long boat
(40 kg) standing still in water. To discuss a mechanics problem, they come to the middle of the boat. Neglecting frictioin with water how far does the boat move on the water during the process?

D Watch Video Solution

10. A cart of mass M is at rest on a frictionless
horizontal surface and a pendulum bob of mass m hangs from the roof of the cart figure.

The string breaks, the bob falls on the floor,
makes several collision on the floor and finally
lands up in a small slot made in the floor. The
horizontal distance between the string and the slot is L. Find the displacement of the cart during this process

D Watch Video Solution

11. Find the displacement of the wedge when m comes out of the wedge. There is no friction
anywhere.

D View Text Solution

12. A block of mass m is initially lying on a wedge of mass M with an angle of inclination
θ as shown in figure. Calculate the displacement of the wedge when the block is
released and reaches to the bottom of the wedge.

D Watch Video Solution

13. Calculate the displacement of the wedge when the hall reaches at the bottom of the
groove,

- Watch Video Solution

14. A block is released on the convex surface of
a hemispherical wedge as shown in Fig.
Determine the displacement of the wedge
when the block reaches the angular position θ

- Watch Video Solution

15. Two masses, m_{1} and m_{2}, are moving with
velocities v_{1} and v_{2}. Find their total kinetic energy in the reference frame of centre of mass.
16. Figure shows the system is at rest initially with $x=0$, A man and a woman both are initially at the extreme carrier of the platform.

The man and the woman start to move towards each other. Obtain an expression for the displacement s of the platform when the two meet in terms of the displacement x_{1} of
the man relative to the platform.

(D) Watch Video Solution

17. A 30 kg projectile moving horizontally with a velocity $\vec{v}_{0}=(120 \mathrm{~m} / \mathrm{s}) \hat{i}$ explodes into two fragments A and B of masses $12 k g$ and $8 k g$, respectively. Taking point of explosion as origin
and knowing that $3 s$ later position of fragment
a is $(300 m, 24 m,-48 m)$, determine the position of fragment B at the instant.

D View Text Solution

18. Two $20 k g$ cannon balls are chained together and fired horizontally with a velocity of $200 \mathrm{~m} / \mathrm{s}$ from the top of a 30 m wall. The chain breaks during the flight of the cannon balls and one of them strikes the ground at $t=2 s$, at a distance of $250 m$ from the foot fo
the wall, and $5 m$ to the right of line of fire determine the position of the other cannon ball at that instant Neglect the resistance of air.

19. A juggler juggles three balls in a continuous cycle. Any one ball is in contact with his hand for one-fifth of the time. Describe the motion of the centre of mass of the three balls. What average force does the juggler exert on one ball while he is touching it?

D Watch Video Solution

20. A cannon and a supply of cannon balls are
inside a sealed rail road car. The cannon fires
to the right, the car recoils to the left. The canon balls remain in the car after hitting the far wall. Show that no matter how the cannon balls are fired, the rail road car cannot travel more than L. assuming it starts from rest.

D Watch Video Solution

1. A bomb, initially at rest, explodes into several
pieces. (a) Is linear momentum of the system conserved? (b) Is kinetic energy of the system conserved? Explain.

- Watch Video Solution

2. You are standing perfectly still and then you
take a step forward. Before the step your momentum was zero, but afterward you have
some momentum. Is the principle of conservation of momentum violated in this case?

- Watch Video Solution

3. Does the centre of mass of a rocket in free space accelerate? Explain. Can the speed of a rocket exceed the exhaust speed of the fuel?

Explain.

- Watch Video Solution

4. Discuss the possibility of conservation of
linear momentum of a block moving on a rough inclined plane if $\mu=\tan \theta$

- Watch Video Solution

5. A shell is fired from a cannon with a speed of
$100 \mathrm{~m} / \mathrm{s}$ at an angle 30° with the vertical (y -
direction). At the highest point of its trajectory, the shell explodes into two fragments of masses in the ratio 1:2. The lighter fragment moves vertically upwards with an initial speed of $200 \mathrm{~m} / \mathrm{s}$. What is the speed of the heavier fragment at the time of explosion?

D Watch Video Solution

6. Figure shows a block A of mass $6 m$ having a smooth semicircular groove of radius a placed
on a smooth horizontal surface. A block B of mass m is released from a position in groove where its radius is horizontal. Find the speed of the bigger block when the smaller block reaches its bottom most position.

D Watch Video Solution

7. Two friends A and B (each weighing 40 kg) are sitting on a frictionless platform some distance d apart. A rolls a ball of mass 4 kg on the platform towards B which B catches. Then
B rolls the ball towards A and A catches it.
The ball keeps on moving back and forth between A and B. The ball has a fixed speed of $5 \mathrm{~m} / \mathrm{s}$ on the platform.
a. Find the speed of A after he rolls the ball for
the first time.
b. Find the speed of A after he catches the ball for the first time.
c. Find the speed of A and B after the ball has made five round trips and is held by A.
d. How many times can A roll the ball?
e. Where is the centre of mass of the system
$A+B+$ ball at. the end of the nth trip?

D View Text Solution

8. A smooth wedge of mass M rests on a smooth horizontal surface. A block of mass m
is projected from its lowermost point with
velocity v_{0}. What is the maximum height
reached by the block?

- Watch Video Solution

9. Two identical buggies 1 and 2 with one man in each move along parallel rails. When the
buggies are opposite to each other, the men jump in a direction perpendicular to the direction of motion of buggies, so as to exchange their places. As a consequence, buggy 1 stops and buggy 2 keeps moving in the same direction with its final velocity v. Find the initial velocities v_{1} and v_{2} of buggies. Mass of each buggy (without man) equals M mass of each man is ignore frictional effects anywhere and the buggies are constrained to
move along the rails only.

- View Text Solution

10. In Fig. a man stands on a boat floating in
still water. The mass of the man and the boat
is 60 kg and 120 kg , respectively.

a. If the man walks to the front of the boat and stops. what is the separation between the boat and the pier now?
b. If the man moves at a constant speed of
$3 m / s$ relative to the boat, what is the total
kinetic energy of the system (boat + man)?

Compare this energy with the kinetic energy of the system if the boat was tied to the pier.

D View Text Solution

11. Two blocks of masses $m_{1}=2 k g$ and
$m_{2}=5 \mathrm{~kg}$ are moving in the same direction along a frictionless surface with speeds
$10 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$, respectively, m_{2} being ahead of m_{1}. An ideal spring with $k=1120 N / m$ is attached to the back side of m_{2}. Find the maximum compression of the spring when the blocks collide. What are the final velocities of the blocks when they
separate?

D View Text Solution

12. An 80 kg boy and his 40 kg sister, both wearing roller blades, face each other at rest.

The girl pushes the boy hard, sending him backward with velocity $3.0 \mathrm{~m} / \mathrm{s}$ towards the west. Ignore friction, (a) Describe the subsequent motion of the girl. (b) How much chemical energy is converted into mechanical
energy in the girl's muscles? (c) Is the momentum of the boy-girl system conserved in the pushing apart process? How can it he with no motion beforehand and plenty of motion afterward?

- Watch Video Solution

13. Two blocks of masses M and $3 M$ are placed
on a horizontal, frictionless surface. A light
spring is attached to one of them and the
blocks are pushed together with the spring
between them. A cord initially holding the blocks together is burned, after that, the block of mass $3 M$ moves to the right with a speed of
$2.00 \mathrm{~m} / \mathrm{s}$. (a) What is the velocity of the block
of mass M. (b) Find the system's original elastic potential energy, taking $M=0.350 \mathrm{~kg}$.
(c) Is the original energy in the spring or in the
cord? Explain your answer. (d) Is momentum of
the system conserved in the bursting apart process? How can it be with large forces acting? How can it be with no motion
beforehand and plenty of motion afterward?

(a)

(b)

D View Text Solution

14. A pendulum bob of mass $10^{-2} \mathrm{~kg}$ is raised to a height $5 \times 10^{-2} \mathrm{~m}$ and then released. At the bottom of its swing, it picks up a mass
$10^{-3} \mathrm{~kg}$. To what height will the combined mass rise?

D Watch Video Solution

15. A rifle man, who together with his rifle has a mass of 100 kg , stands on a smooth surface and fires 10 shots horizontally. Each bullet has a mass 10 g and a muzzle velocity of $800 \mathrm{~ms}^{-1}$
. The velocity which the rifle man attains after firing 10 shots is
16. A projectile of mass 50 kg is shot vertically upwards with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$.

After $5 s$, it explodes into two fragments, one of which having a mass of 20 kg travels vertically up with a velocity of $150 \mathrm{~m} / \mathrm{s}$:
a. What is the velocity of the other fragment that instant?
b. Calculate the sum of momentum of fragment $3 s$ after the explosion. What would
have been the momentum of the projectile at this instant if there had hem explosion?

- Watch Video Solution

17. a. A rail road flat car of mass M can roll without friction along a straight horizontal track. Initially, a man of mass m is standing on the car which is moving to the right with speed v_{0}. What is the change in velocity of the car if the man runs to the left so that his speed relative to the car is $v_{r e l}$ just before he jumps off at the left end?
b. If there are n men each of mass m on the car, should they all run and jump off together
or should they run and jump one by one in order to give a greater velocity to the car?

- Watch Video Solution

18. a. A rail road car of mass M is moving
without friction on a straight horizontal track with a velocity ct. A man of mass m lands on it
normally from a helicopter. What will be the new velocity of the car? Itbgt b. If now the man begins to run on it with speed um with respect to car in a direction opposite to motion of the car, what will be the new velocity of the car?

- Watch Video Solution

19. A shell of mass $2 k g$ moving at a rate of
$4 m / s$ suddenly explodes into two equal fragments. The fragments go in directions inclined with the original line of motion with
equal velocities, If the explosion imparts $48 J$ of translational kinetic energy to the fragments, find the velocity and direction of each fragment.

D View Text Solution

20. A mud ball at rest explodes into three fragmennts of masses in the ragio $1: 2: 1$. the two equal masses move with velocities $2 \hat{i}+5 \hat{j}-6 \hat{k}$ and $-4 \hat{i}+3 \hat{j}+2 \hat{k}$. Find the
velocity of the find mass.

D Watch Video Solution

21. A hemisphere of radius R and of mass $4 m$
is free to Slide with its base on a smooth horizontal table. A particle mass m is placed on the top of the hemisphere. Find the angular
velocity of the particle relative to hemisphere at an angular displacement θ when velocity of hemisphere has become v.

- View Text Solution

22. A gun (mass $=M$) fires a bullet (mass
$=m)$ with speed v_{r} relative to barrel of the
gun which is inclined at an angle of 60° with
horizontal. The gun is placed over a smooth
horizontal surface. Find the recoil speed of gun.

D View Text Solution

23. Two trolleys A and B are free to move on a level frictionless track, and are initially stationary. A man on trolley A throws a bag of
mass 10 kg with a horizontal velocity of $4 m s^{-1}$
with respect to himself on to trolley B of mass

100 kg . The combined mass of trolley A
(excluding bag) and the man is 140 km . Find the ratio of velocities of trolleys A and B, just after the bag lands on trolley B.

- View Text Solution

1. A ball is dropped on a floor from a height h.

If the coefficient of restitution is e, find the
height to which the ball will rise after touching the floor and the time it will take to come to rest again.

- Watch Video Solution

2. An elevator platform is going up at a speed of $20 \mathrm{~m} / \mathrm{s}$ and during its upward motion a small ball of $50 g$ mass, falling in downward
direction, strikes the platform at speed $5 \mathrm{~m} / \mathrm{s}$.

Find the speed with which the ball rebounds.

D Watch Video Solution

3. A ball of mass m is distributed from the top
of a fixed smooth circular tube in a vertical
plane and falls impinging on a ball of mass $2 m$
at the bottom. The coefficient of restitution is
1
$\frac{1}{2}$. Find the heights to which the balls rise after a second impact.
4. A particle of mass 1 kg is attached to a string of length 5 m . The string is attached to a fixed point O. It is released from the position as shown in Fig. Calculate

a. the impulse developed in the string when it becomes taut,
b. the velocity of the particle just after the
string becomes taut,
c. the impulse developed in this string $P Q$ at this instant.

D View Text Solution

5. A heavy ball of mass $2 M$ moving with a velocity v_{0} collides elastically head on with a cradle of three identical ball each of mass M as shown in figure. Determine the velocity of
each ball after collision.

D View Text Solution
6. In Fig. there are n identical suspended with wires of equal length. The spheres are almost in contact with each other. Sphere 1 is pulled aside and released. If sphere 1 strikes sphere 2
with velocity u. find an expression for velocity v_{n} of the $n t h$ sphere immediately after being
struck by the one adjacent to it. The coefficient of restitution for all the impacts is e.

D View Text Solution
7. A smooth sphere of mass m is moving on a horizontal plane with a velocity $3 \hat{i}+\hat{j}$ when it collides with a vertical wall which is parallel to
the \hat{j} vector. If the coefficient of restitution between the sphere and the wall is $1 / 2$. find a. the velocity of the sphere after impact,
b. the loss in kinetic energy caused by the impact.
c. the impulse that acts on the sphere.

D View Text Solution

8. Two smooth spheres. A and B. having equal
radii, lie on a horizontal table. A is of mass m
and B is of mass $3 m$. The spheres are projected towards each other with velocity
vector $5 \hat{i}+2 \hat{j}$ and $2 \hat{i}-\hat{j}$, respectively, and when they collide the lige joining their centres
is parallel to the vector \hat{i}. If the coefficient of restitution between A and B is $1 / 3$, find the velocities after impact and the loss in kinetic energy caused by the collision. Find also the magnitude of the impulses that act at the instant of impact.
9. A block m_{1} strikes a stationary block m_{3} inelastically. Another block m_{2} is kept on m_{3}.

Neglecting the friction between all contacting surfaces, calculate the fractional decrease in
$K E$ of the system in collision.

- View Text Solution

10. A mass m_{1} moves with a great velocity. It strikes another mass m_{2} at rest in head-on collision. It comes back along its path with low speed after collision. Then find out whether $m_{1}<m_{2}$ or $m_{1}>m_{2}$.

D Watch Video Solution

11. A ball of mass 4 kg moving with a velocity of
$12 m / s$ impinges directly on another ball of mass $8 k g$ moving with velocity of $4 m / s$ in the same direction. Find their velocities after
impact and calculate the loss of $K E$ due to impact if $e=0.5$.

D Watch Video Solution

12. A bullet of mass $2 g$ travelling at a speed of
$500 \mathrm{~m} / \mathrm{s}$ is fired into a ballistic pendulum of mass 1.0 kg suspended from a cord 1.0 m long.

The bullet penetrates the pendulum and emerges with a velocity of $100 \mathrm{~m} / \mathrm{s}$. Through what vertical height will the pendulum rise?
13. A 3.00 kg steel hall strikes the wall with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with the
surface. It bounces off with the same speed and angle. If the ball is in contact with the wall
for $0.200 s$, what is the average force exerted by the wall on the ball?

- Watch Video Solution

14. A spherical imperfectly elastic ball strikes a plane with velocity $8 \mathrm{~m} / \mathrm{s}$ at an angle of 30°
with the plane. Determine the magnitude and direction of the velocity after impact if $e=0.5$ (neglect gravity).

15. Three balls of masses m_{1}, m_{2} and m_{3} are
lying in a straight line. The first ball is moved
with a certain velocity so that it strikes the second ball directly and itself comes to rest.

The second ball collides with the third and is itself reduced to rest. If e is the coefficient of restitution for each ball, write down the relation of m_{3} in terms of m_{1} and m_{2}.

D Watch Video Solution

16. Two identical balls A and B lie on a smooth
horizontal surface, which gradually merges
into a curve to a height $3.2 m$. Ball A is given a
velocity of $10 \mathrm{~m} / \mathrm{s}$, to collide head-on with ball
B, which then takes up the curved path. What is the minimum coefficient of restitution, e, for
the collision between A and B in order that ball B reaches the highest point C of the

curve.

D Watch Video Solution

17. A smooth ball of mass m is suspended from
a light string of length $1 m$. Another ball of mass $2 m$ strikes the ball of mass in horizontally with a speed of $u=\sqrt{35} \mathrm{~m} / \mathrm{s}$.

The coefficient of restitution for the collision is
e. The string becomes loose, when it makes an
angle of 30° with the horizontal, find the value of e.

18. Three particles A, B and C of respective masses m_{1}, m_{2} and m_{3} lie on a smooth horizontal surface, and an fastened to two light inextensible strings as shown in Fig. The particle A is imparted an impulse J along $\overrightarrow{B A}$
. Find the initial speed of each particle.

19. A ball moving along a straight line collides
elastically with another stationary ball of the
same mass. At the moment of collision, the
angle between the straight line passing through the centres of the balls and the direction of tr initial motion of the striking ball
is θ, find the fraction of the kinetic energy of the striking ball converted into potential energy at the moment of the maximum
deformation.

D View Text Solution

20. A machine gun can fire bullets of 50 grams at a Speed of $2000 \mathrm{~ms}^{-1}$, the man holding the
gun can exert an average force of $200 N$ against the gun. Calculate the maximum number of bullets which he can fire per minute.

D Watch Video Solution

21. A plate of mass M is held at rest by firing bullets from below. Each bullet has a mass m,
velocity u (up) just before hitting and stops after hitting the plate for a moment and falls.

Determine the number of bullets striking the
plate Fig. per unit time

- Watch Video Solution

22. A steel ball is suspended by a light in extensible string of length I from a fixed point
O. When the ball is in equilibrium it just touches a vertical wall as shown in the figure.

The ball is first taken aside such that string becomes horizontal and then released from rest. If coefficient of restitution is e, then find the maximum deflection of the string after $n t h$ collision.

23. A smooth ball is released from rest from a height h as shown in figure. It slides down the first inclined plane and collides with the second inclined plane.
a. If $e=0$, find the speed of the ball just after leaving the inclined plane 1.
b. If the particle mioves horizontally just after
the collision find e.

D View Text Solution

24. A small particle of mass m is released from a height h on a large smooth sphere kept on a
perfectly smooth surface as shown in the figure. Collision between particle and sphere is perfectly inelastic. Determine the velocities of particle and sphere after collision.

Subjective

1. Two identical smooth balls are projected from points O and A on the horizontal ground with same speed of projection. The angle of projection in each case is 30°. The distance between O and A is 100 m . The balls collide in mid-air and return to their respective points of projection. If the coefficient of restitution is
0.7 , find the speed of projection of either ball
(in m / s) correct to nearest integer. (Take

$$
\left.g=10 m s^{-2} \text { and } \sqrt{3}=1.7\right)
$$

D View Text Solution

2. A stationary light, smooth pulley can rotate without friction about a fixed horizontal axis. A
light rope passes over the pulley. One end of the rope supports a ladder with man and the
other end supports a counterweight of mass
M. Mass of the man is m. initially, the centre of mass of the counterweight is at a height h from that of man as shown in Fig.

If the man starts to climb up the ladder slowly, calculate work done by him to reach his centre of mass in level with that of the
counterweight.

- View Text Solution

3. Two blocks A and B are joined by means of a slacked string passing over a massless pulley as shown in Figure. The system is released from rest and it becomes taut when B falls a distance 0.5 m .
a. Find the common velocity of the two blocks
just after the string becomes taut.
b. Find the magnitude of impulse on the pulley by the clamp during the small interval while
string becomes taut.
2 kg

D View Text Solution

4. Two blocks A and B of masses m and $2 m$, respectively are connected by a spring of force
constant k. The masses are moving to the right with uniform velocity v each, the heavier mass leading the lighter one. The spring is in the natural length during this motion. Block B collides head on with a third block C of mass m, at rest, the collision being completely inelastic. Calculate the maximum compression of the spring.

D View Text Solution

5. Two small spheres A and B of equal radius
but different masses of $3 m$ and $2 m$ are moving towards each other and impinge directly. The speeds of A and B before collision are, respectively, $4 u$ and u. The collision is such that B experiences an impulse of magnitude 6 mcu , where c is a constant.

Determine
a. the coefficient of restitution,
b. the limits for the value of c for which such
collision is possible.

View Text Solution

6. Four railroad cars, each of mass 2.50×10^{4}
kg , are coupled together and coasting along horizontal tracks at speed v_{I} towards the south. A very strong movie actor, riding on the second car, uncouples the front car and gives it a big push, increasing its speed to $4.00 \mathrm{~m} / \mathrm{s}$ southward. The remaining three cars continue moving south, now at $2.00 \mathrm{~m} / \mathrm{s}$. (a) Find the initial speed of the cars. (b) How much work did the actor do?
7. A particle of mass m is made to move with uniform speed u along the perimeter of a regular polygon of n sides. What is the magnitude of impulse applied by the particle at each corner of the polygon?

D Watch Video Solution

8. A smooth ball of mass 1 kg is projected with
velocity $7 \mathrm{~m} / \mathrm{s}$ horizontal from a tower of
height 3.5 m . It collides elastically with a wedge
of mass 3 kg and inclination of 45° kept on ground. The ball collides with the wedge at a height of $1 m$ above the ground. Find the velocity of the wedge and the ball after collision. (Neglect friction at any contact.)

D View Text Solution

9. A small ball is projected from point P towards a vertical wall as shown in Fig. It hits the wall when its velocity is horizontal. Ball reaches point P after one bounce on the floor.

The coefficient of restitution assuming it to be same for two collisions is $n / 2$. All surfaces are
smooth. Find the value of n.

- View Text Solution

10. A small steel ball A is suspended by an inextensible thread of length $l=1.5 \mathrm{~m}$ from O . Another identical ball is thrown vertically
downwards such that its surface remains just in contact with thread during downward motion and collides elastically with the suspended ball. If the suspended ball just completes vertical circle after collision, calculate the velocity (in cm / s) of the falling ball just before collision $\left(g=10 m s^{-2}\right)$.

D View Text Solution

11. A tennis ball with (small) mass m_{2} rests on
the top of a basketball of mass m_{1} which is at a
height h above the ground, and the bottom of
the tennis ball is at height $h+d$ above the ground. The balls are dropped. To what height does the tennis ball bounce with respect to ground? (Assume all collisions to be elastic
and $m_{1} \gg m_{2}$)

D Watch Video Solution
12. A ball of mass m hits a wedge of mass M vertically with speed u, which is placed, on a smooth horizontal surface. Find the maximum compression in the spring, if the collision is perfectly elastic and no friction any where. Spring constant of spring is K.

13. A ball of mass m moving with constant horizontal velocity u strikes a stationary wedge of mass M on its inclined surface as shown in the figure. After collision, the ball starts moving up the inclined plane. The wedge is placed on frictionless horizontal surface.
a. Calculate the velocity of wedge immediately after collision.
b. Calculate the maximum height the ball can
ascend on the wedge.

- View Text Solution

14. A ball of mass m collides with a stationary wedge of mass M, perpendicular to its inclined face, inclined at an angle as shown in the figure. If the coefficient of restitution between the wedge and ball is e, calculate the
ratio of modulus of velocity of the ball immediately after and before collision. Also calculate the velocity of wedge just after collision.

D View Text Solution

15. A small bucket of mass M is attached to a
long inextensible cord of length L. The bucket
is released from rest when the cord is in a
horizontal position. In its lowest position the
bucket scoops up m of water, what is the height of the swing above the lowest position?

D Watch Video Solution

16. Two wooden plank of mass
$M_{1}=1 \mathrm{~kg}, M_{2}=2.98 \mathrm{~kg}$ smooth surface. A
bullet of mass $m=20 \mathrm{gm}$ strikes the block M_{1}
and pierces through it, then strikes the plank
B and sticks to its. Consequently both the planks move with equal velocities. Find the percentage change in speed of the bullet when it escapes from the first block.

D Watch Video Solution

17. In the diagram shown, no friction at any contact surface. Initially, the spring has no deformation. What will be the maximum deformation in the spring ? Consider all the
strings to be sufficiency large. Consider the spring constant to be K.

D View Text Solution

18. Two blocks A and B of mass m and $2 m$ respectively are moving towards a massive (mass $\gg 2 m$) cliff with velocities $2 v$ and v respectively. The cliff moves with a velocity v. If the coefficient of restitution of collision at the
surface of the cliff is $e=1 / 2$, find the:

a. velocity of the block B just after colliding with the cliff.
b. work done by the cliff during collision.
c. maximum compression of the spring of stiffness k which is fitted with the block B.

- View Text Solution

19. A boy throws a ball with initial speed $\sqrt{a g}$ at an angle θ to the horizontal. It strikes a smooth vertical wall and returns to his hand.

Show that if the boy is standing at a distance
'a' from the wall, the coefficient of restitution between the ball and the wall equals $\frac{1}{(4 \sin 2 \theta-1)}$. Also show that θ cannot be less than 15°.

D View Text Solution

20. A ball falls freely form a height onto and smooth inclined plane forming an angle a with
the horizontal. Find the ratio of the distance between the points at which the jumping ball strikes the inclined plane. Assume the impacts to be elastic.

- View Text Solution

21. A ball is projected form a point A on a smooth inclined plane which makes an angle a to the horizontal. The velocity of projection
makes an angle θ with the plane upwards. If on
the second bounce the ball is moving perpendicular to the plane, find e in terms of α and θ. Here e is the coefficient of restitution between the ball and the plane.

D View Text Solution

22. A small ball of mass m is connected by an inextensible massless string of length with an another ball of mass $M=4 m$. They are released with zero tension in the string from a
height h as shown in the figure. Find the time when the string becomes taut for the first time after the mass M collides with the ground. Take all collisions to be elastic.

23. Two balls A and B each of mass m are placed on a smooth ground as shown in the figure. Another ball C of mass M arranged to the right of ball B as shown. If a velocity v_{1} is given to ball A in rightward direction, consider two cases. Case-I $M>m$ and case-II $M<m$.

Take all the collisions perfectly elastic ($e=1$),
find the number of collision in case-I and case-
II.

- View Text Solution

Single Correct

1. An object initially at rest explodes into three
fragments A, B and C. The momentum of A is $p \hat{i}$ and that of B is $\sqrt{3} p \hat{j}$
where p is $a+v e$ number. The momentum of
C will be
A. $(1+\sqrt{3}) p$ in a direction making angle 120° with that of A
B. $(1+\sqrt{3}) p$ in a direction making angle
150° with that of B
C. $2 p$ in as direction making angle 150°
with that A
D. $2 p$ in a direction making angle 150° with
that of B.

Answer: D

2. A ball collides impinges directly on a similar ball at rest. The first ball is brought to rest after the impact. If half of the kinetic energy is
lost by impact, the value of coefficient of restitution (e) is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{\sqrt{3}} \\
& \text { C. } \frac{1}{\sqrt{2}} \\
& \text { D. } \frac{\sqrt{3}}{2}
\end{aligned}
$$

- Watch Video Solution

3. A $20 g$ bullet pierces through a plate of mass
$M_{1}=1 \mathrm{~kg}$ and then comes to rest inside a second plate of mass $M_{2}=2.98 \mathrm{~kg}$ as shown in Fig. It is found that the two plates, initially at rest, now move with equal velocities. Find the percentage loss in the initial velocity of the bullet when it is between M_{1} and M_{2}. Neglect any loss of material of the plates due to the
action of bullet.

A. 50%
B. 25%
C. 100%
D. 75%

Answer: B

D Watch Video Solution

4. A particle of mass m is moving horizontally
with a constant velocity v towards a rigid wall
that is moving in opposite direction with a constant speed u. Assuming elastic impact between the particle and wall, the work done by the wall in reflecting the particle is equal to

$$
\text { A. }\left(\frac{1}{2}\right) m(u+v)^{2}
$$

B. $\left(\frac{1}{2}\right) m(u+v)$
C. $\left(\frac{1}{2}\right) \mathrm{mu} v$
D. none of these

Answer: D

D Watch Video Solution

5. Two identical balls A and B are released
from the position shown in Fig. They collide elastically with each other on the horizontal portion. The ratio of heights attained by A and
B after collision is (neglect friction)

A. $1: 4$
B. 2: 1
C. $4: 13$
D. 2: 5

Answer: C
6. Block A of mass $M=2 k g$ is connected to another block B of mass $m=1 \mathrm{~kg}$ with a string and a spring of force constant $k=600 N / m$ as shown in Fig. Initially, spring is compressed to 10 cm and whole system is moving on a smooth surface with a velocity $v=1 m / s$. At any time, thread is burnt, the velocity of block A, when B is having maximum velocity w.r.t. ground, is

A. zero
B. $1 m / S$
C. $3 m / s$
D. none of these

Answer: C

D View Text Solution

7. Two identical blocks, each having mass M, are placed as shown in figure. These two blocks
A and B are smoothly conjugated, so that
when another block C of mass m passes from A to B there is no jerk. All the surfaces are frictionless, and all three blocks are free to move. Block C is released from rest, then

A. when in is at the highest position on B
B. when in is at the lowest position and moving left.

C. when in is at C

D. when in is at lowest position and moving

right.

Answer: B

D Watch Video Solution

8. A bob of mass $10 m$ is suspended through an inextensible string of length l. When the bob is at rest in equilibrium position, two particles, each of mass m, strike it as shown in Fig. The
particles stick after collision. Choose the correct statement from the following:

A. Impulse in the string due to tension is

2 mu
B. Velocity of the system just after collision
is $v=\frac{u \sqrt{3}}{14}$
C. Loss of energuy is $\frac{137}{28} \mathrm{mu}^{2}$
D. Loss of energy is $\frac{137}{56} m u^{2}$

Answer: A

D Watch Video Solution

9. In Fig., a hollow tube of mass M is free in
horizontal direction. The system is released from rest. There is no friction present. The tube and blocks are taken as system.
i. Momentum of the system is conserved in x -
direction.
ii. Speed of A w.r.t. $M=$ speed of B w.r.t. M.
iii. Trajectory of centre of mass is X-constant. iv. Centre of mass has finite acceleration.

Evaluate the above statements and choose the correct option from the following:

A. Statements i, ii are true and iii, iv are
false.
B. Statements i, ii are false and iii, iv are true.
C. All statements are true.
D. All statements are false.

Answer: C

10. A particle of mass m travelling with velocity
v and kinetic energy E collides elastically to
another particle of mass $n m$, at rest. What is
the fraction of total energy retained by the
particle of mass m ?
A. $\left(\frac{n+1}{n}\right)^{2}$
B. $\left(\frac{n+1}{(n-1)^{2}}\right)$
C. $\left(\frac{n-1}{n+1}\right)^{2}$
D. none of these
11. A ball of mass ' m ' moving with speed ' u ' undergoes a head-on elastic collision with a ball of mass ' nm ' initially at rest. Find the fraction of the incident energy transferred to the second ball.

$$
\begin{aligned}
& \text { A. } \frac{n}{1+n} \\
& \text { B. } \frac{n}{(1+n)^{2}} \\
& \text { C. } \frac{2 n}{(1+n)^{2}}
\end{aligned}
$$

$$
\text { D. } \frac{4 n}{(1+n)^{2}}
$$

Answer: D

D Watch Video Solution

12. A trolley was moving horizontally on a smooth ground with velocity v with respect to
the earth. Suddenly a man starts running from rear end of the trolley with a velocity $(3 / 2) v$ with respect to the trolley. After reaching the other end, the man turns back and continues
running with a velocity $(3 / 2) v$ with respect to trolley in opposite direction. If the length of the trolley is L, find the displacement of the man with respect to earth when he reaches the starting point on the trolley. Mass of the trolley is equal to the mass of the man.

> A. $\frac{4}{3} L$
> B. $\frac{2}{3} L$
> C. $\frac{5 L}{3}$
D. 1.5 L

- Watch Video Solution

13. In a figure shown mass of A and B is equal
to M each. Friction between B and lowermost
surface is negligible. Initially both the blocks are at rest. The dimensions of the block A are
very small. A constant horizontal force F is applied on the blocks B and both the blocks start moving together without any relative motion. Suddenly, the block B encounters a fixed obstacle and comes to rest. The block A continues to slide on the block B. The block A
just manages to reach the opposite end of the
bolck B. What is the coefficient of friction
between the two blocks? (Required length are
shown in figure)

A. $\frac{F}{M} g$
B. $2 \frac{F}{M} g$
C. $\frac{F}{2} M g$
D. none of these

Answer: A

D Watch Video Solution

14. Two blocks of masses in and $4 m$ lie on a
smooth horizontal surface connected with a
spring in its natural length. Mass m is given
velocity v_{0} through an impulse as shown in Fig.

Which of the following is not true about subsequent motion?

A. Kinetic energy is maximum in ground
frame and centre of mass (CM) frame
simultaneously
B. Value of maximum and minimum kinetic
energy is same in CM and ground frame
C. Minimum kinetic energy is zero in CM
frame but non-zero in ground frame.
D. Maximum and minimum kinetic energy of
m in ground frame is, respectively $\frac{1}{2} m v_{0}^{2}$
and zero.

Answer: B

D Watch Video Solution

15. A vessel at rest explodes breaking it into
three pieces. Two pieces having equal mass fly off perpendicular to one another with the same speed of $30 \mathrm{~m} / \mathrm{s}$. The third piece has
three times the mass of each of the other two
pieces. What is the direction (w.r.t. the pieces
having equal masses) and magnitude of its
velocity immediately after the explosion?
A. $10 \sqrt{2}, 135^{\circ}$
B. $10 \sqrt{2}, 90^{\circ}$
C. $10 \sqrt{2}, 60^{\circ}$
D. $10 \sqrt{2}, 30^{\circ}$

Answer: A

D View Text Solution

16. A stationary body of mass 3 kg explodes into three equal pieces. Two of the pieces fly off at right angles to each other. One with a
velocity of $2 \hat{i} \mathrm{~m} / \mathrm{s}$ and the other withl velocity of $3 \hat{i} \mathrm{~m} / \mathrm{s}$. If the explosion takes place in 10^{-5} the average force acting on the third piece in newtons
A. $(2 \hat{i}+3 \hat{j}) \times 10^{-5}$
B. $-(2 \hat{i}+3 \hat{j}) \times 10^{5}$
C. $(3 \hat{j}+2 \hat{j}) \times 10^{5}$
D. $-(2 \hat{i}+3 \hat{j}) \times 10^{5}$

Answer: B
17. A ball of mass in collides horizontally with a stationary wedge on a rough horizontal surface, in the two orientations as shown. Neglect friction between the ball and the wedge. The students comment on the system of ball and wedge in these situations

Saurav:

Momentum of the system in x-direction will change by significant amount in both the
cases. Rahul: There are no impulsive external
forces in x-direction in both cases, hence the total momentum of the system in x-direction can be treated as conserved in both cases.
A. Saurav is incorrect and Rahul is correct
B. Saurav is correct and Rahul is incorrect
C. Both are correct
D. Both are incorrect

Answer: D
18. A body is hanging from a rigid support. by an inextensible string of length '1'. It is
struck inelastically by an identical body of mass in with horizontal velocity $v=\sqrt{2 g l}$ the tension in the string increases just after the striking by
A. $m g$
B. $3 m g$
C. $2 m g$
D. none of these

Answer: C

D Watch Video Solution

19. A ball is let fall from a height h_{0}. There are
n collisions with the earth. If the velocity of
rebound after n collisions is v_{n} and the ball rises to a height h_{n} then coefficient of restitution e is given by

$$
\begin{aligned}
& \text { A. } e^{n}=\sqrt{\frac{h_{n}}{h_{0}}} \\
& \text { B. } e^{n}=\sqrt{\frac{h_{0}}{h_{n}}}
\end{aligned}
$$

C. ne $=\sqrt{\frac{h_{0}}{h_{0}}}$
D. $\sqrt{\mathrm{ne}}=\sqrt{\frac{h_{n}}{h_{0}}}$

Answer: A

D Watch Video Solution

20. A body X with a momentum p collides with another identical stationary body Y one dimensionally. During the collision, Y gives an impulse J to body X. Then coefficient of restitution is

> A. $\frac{2 J}{p}-1$
> B. $\frac{J}{P}+1$
> C. $\frac{J}{P}-1$
> D. $\frac{J}{2 P}-1$

Answer: A

D Watch Video Solution

21. A pendulum consists of a wooden bob of mass in and of length l. A bullet of mass m_{1} is fired towards the pendulum with a speed v_{1}.

The bullet emerges out of the bob with a speed $\left(v_{1}\right) / 3$ and the bob just completes motion along a vertical circle. Then v_{1} is

$$
\begin{aligned}
& \text { A. }\left(\frac{m}{m_{1}}\right) \sqrt{5 g l} \\
& \text { B. } \frac{3}{2}\left(\frac{m}{m_{1}}\right) \sqrt{5 g l} \\
& \text { C. } \frac{2}{3}\left(\frac{m_{1}}{m}\right) \sqrt{5 g l} \\
& \text { D. }\left(\frac{m_{1}}{m}\right) \sqrt{g l}
\end{aligned}
$$

Answer: B

22. Two pendulums each of length l are initially
situated as shown in Fig. The first pendulum is
released and strikes the second. Assume that
the collision is completely inelastic and neglect
the mass of the string and any frictional effects. How high does the centre of mass rise
after the collision?

A. $d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]^{2}$
B. $d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]$
C. $d\left[\frac{\left(m_{1}+m_{2}\right)}{m_{2}}\right]^{2}$
D. $\left[\frac{m_{2}}{\left(m_{1}+m_{2}\right)}\right]^{2}$

Answer: A

D Watch Video Solution

23. A wooden block of mass $10 g$ is dropped from the top of a tower $100 m$ high. Simultaneously, a bullet of mass $10 g$ is fired from the foot of the tower vertically upwards with a velocity of $100 \mathrm{~m} / \mathrm{s}$. If the bullet is embedded in it, how high will the block rise
above the top of tower before it starts falling?
$\left(g=10 m / s^{2}\right)$

A. $75 m$
B. $85 m$
C. 80 m
D. 10 m

Answer: A

D Watch Video Solution

24. A machinist starts with three identical square plates but cuts one corner from one of them, two corners from the second and three corners from the third. Rank the three according to the x-coordinate of their centre
of mass, from smallest to largest.

A. $3,1,2$
B. $1,3,2$
C. $3,2,1$
D. 1 and 3 tie, then 2

Answer: B
25. A particle of mass $2 m$ is projected at an
angle of 45° with horizontal with a velocity of
$20 \sqrt{2} m / s$. After $1 s$ explosion takes place and the particle is broken into two equal pieces. As
a result of explosion one part comes to rest.
Find the maximum height attained by the other part. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. 50 m
B. $25 m$
C. $40 m$
D. 35 m

Answer: D

- Watch Video Solution

26. A smooth sphere is moving on a horizontal
surface with velocity vector $2 \hat{i}+2 \hat{j}$ immediately before it hits a vertical wall. The wall is parallel to \hat{j} vector and the coefficient of restitution between the sphere and the wall is $e=1 / 2$. The velocity vector of the sphere after it hits the wall is
A. $\hat{i}-\hat{j}$
B. $-\hat{i}+2 \hat{j}$
C. $-\hat{i}-\hat{j}$
D. $2 \hat{i}-\hat{j}$

Answer: B

D View Text Solution

27. Two equal spheres A and B lie on a smooth
horizontal circular groove at opposite ends of
a diameter. At time $t=0, \mathrm{~A}$ is projected along
the groove and it first impinges on B at time
$t=T_{1}$ and again at time $t=T_{2}$. If e is the coefficient of restitution, the ratio T_{2} / T_{1} is

A. $\frac{2}{e}$

$$
\begin{aligned}
& \text { B. } \frac{(2+e)}{2} \\
& \text { C. } \frac{2(e+1)}{e} \\
& \text { D. } \frac{(2+e)}{e}
\end{aligned}
$$

Answer: D

D View Text Solution

28. A block ' A ' of mass m_{1} hits horizontally the rear side of a spring (ideal) attached to a block B of mass m_{2} resting on a smooth horizontal surface. After hitting, ' A ' gets
attached to the spring.

Some statements are given at any moment of time:
i. If velocity of A is greater than B, then kinetic energy of the system will be decreasing.
ii. If velocity of A is greater than B, then kinetic energy of the system will be increasing.
iii. If velocity of A is greater than B, then momentum of the system will be decreasing.
iv. If velocity of A is greater than B, then
momentum of the system will be increasing.

Now select correct alternative:
A. only iv
B. only i
C. ii and iv
D. i and ii

Answer: B
29. A particle of mass $4 m$ is projected from the ground at some angle with horizontal. Its
horizontal range is R. At the highest point of its path it breaks into two pieces of masses m and $3 m$, respectively, such that the smaller mass comes to rest. The larger mass finally falls at a distance x from the point of projection, where x is equal to
A. $\frac{2 R}{3}$
B. $\frac{7 R}{6}$
C. $\frac{5 R}{4}$

D. none of these

Answer: B

D Watch Video Solution

30. A block of mass M is tied to one end of a massless rope. The other end of the rope is in the hands of a man of mass $2 M$ as shown in

Fig. The block and the man art resting on a rough wedge of mass M. The whole system is resting on a smooth horizontal surface. The
man starts walking towards right while holding the rope in his hands. Pulley is massless and frictionless. Find the displacement of the wedge when the block meets the pulley. Assume wedge is sufficiently long so that man does not fall down.

A. $\frac{1}{2} m$ towards right
B. $\frac{1}{2} m$ towards left
C. The wedge does not move at all
D. $1 m$ towards left

Answer: B

D View Text Solution

31. A particle of mass m_{1} moving with velocity v in a positive direction collides elastically with a mass m_{2} moving in opposite direction also at velocity v . If $m_{2} \gg m_{1}$, then
A. the velocity of m_{1} immediately after collision is nearly $3 v$
B. the change in momentum of m_{1} is nearly
$4 m_{1} v$
C. the change in kinetic energy of m_{1} is
nearly $4 m v_{2}$
D. all of the above

Answer: D

32. A strip of wood of mass M and length l is

placed on a smooth horizontal surface. An insect of mass m starts at one end of the strip and walks to the other end in time t, moving with a constant speed. The speed of the insect as seen from the ground is

$$
\begin{aligned}
& \text { A. } \frac{l}{t}\left(\frac{M}{M+m}\right) \\
& \text { B. } \frac{l}{t}\left(\frac{m}{M+m}\right) \\
& \text { C. } \frac{l}{t}\left(\frac{M}{m}\right) \\
& \text { D. } \frac{l}{t}\left(\frac{m}{M}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

33. The system in Fig. is released from rest
from the position shown. After blocks have moved distance $H / 3$. collar B is removed and block A and C continue to move. The speed of
C just before it strikes the ground is

A. $\frac{4}{3} \sqrt{g H}$
B. $2 \frac{\sqrt{g H}}{3}$
C. $\frac{\sqrt{(13 g H)}}{3}$
D. $2 \sqrt{2 g H}$

- View Text Solution

34. A car of mass m is initially at rest on the boat of mass M tied to the wall of dock through a massless, inextensible string. The car accelerates from rest to velocity v_{0} in times to. At $t=t_{0}$ the car applies brake and comes to rest relative to the boat in negligible time.

Neglect friction between the boat and water:
the time ' t ' at which boat will strike the wall is

A. $\frac{L(M+m)}{m v_{0}}$
B. $t_{0}+\frac{L(M+m)}{m v_{0}}$
C. $t_{0}+\frac{L(M+m)}{M v_{0}}$
D. none of these

Answer: B

- Watch Video Solution

35. A partical of mass m moving with velocity
$1 m / s$ collides perfectly elastically with another particle of mass $2 m$. If the incident particle is deflected by 90°. The heavy mass
will make and angle θ with the initial direction of m equal to:
A. 60°
B. 45°
C. 15°

D. 30°

Answer: D

D Watch Video Solution

36. A canon shell moving along a straight line bursts into two parts. Just after the burst one part moves with momentum $20 N s$ making an angle 30° with the original line of motion. The minimum momentum of the other part of shell
just after the burst is
A. $0 N S$
B. 5 Ns
C. 10 Ns
D. $17.32 N s$

Answer: C

D Watch Video Solution

37. Figure shows a hollow cube of side ' a ' and
volume ' V '. There is a small chamber of
volume $V / 4$ in the cube as shown. The
chamber is completely filled by in kg of water.

Water leaks through a hole H and spreads in
the whole cube. Then the work done by gravity in this process assuming that the complete water finally lies at the bottom of the cube is

A. $\frac{1}{2} m g a$
B. $\frac{3}{8} m g a$
C. $\frac{5}{8} m g a$
D. $\frac{1}{8} m g a$

Answer: C

D Watch Video Solution

38. Two men ' A ' and ' B ' are standing on a plank. ' B ' is at the middle of the plank and ' A ' is at the left end of the plank. Lower surface of the plank is smooth. System is
initially at rest and masses are as shown in Fig.
' A ' and ' B ' start moving such that the position of ' B ' remains fixed with respect to ground, then ' A ' meets ' B '. Then the point where A meets B is located at

A. the middle of the plank
B. 30 cm from the left of the plank
C. the right end of the plank

D. none of these

Answer: C

D Watch Video Solution

39. A gun which fires small balls of mass $20 g$ is
firing 20balls per second on the smooth horizontal table surface $A B C D$. If the collision is perfectly elastic and balls are striking at the centre of table with a speed of $5 \mathrm{~m} / \mathrm{s}$ at an angle of 60° with the vertical just
before collision, then force exerted by one of
the legs on ground is (assume total weight of
the table is 0.2 kg)

A. 0.5 N
B. $1 N$
C. 0.25 N
D. 0.75 N

- Watch Video Solution

40. Figure shows the velocity-time graph for two masses R and S that collided elastically.

Which of the following statements is true?

i. R and S moved in the same direction after the collision.
ii. The velocities of R and S were equal at the
mid time of the collision.
iii. The mass of R was greater than mass of S.

Which of the following is true?
A. i only
B. ii only
C. i and ii only
D. i,ii, and iii

Answer: D

- Watch Video Solution

41. A system of two blocks A and B are connected by an inextensible massless string as shown in Fig. The pulley is massless and frictionless. Initially, the system is at rest. A bullet of mass m moving with a velocity u as shown hits block If and gets embedded into it.

The impulse imparted by tension force to the
block of mass $3 m$ is

A. $\frac{5 \mathrm{mu}}{4}$
B. $\frac{4 \mathrm{mu}}{5}$
C. $\frac{2 \mathrm{mu}}{5}$
D. $\frac{3 \mathrm{mu}}{5}$

Answer: D

D Watch Video Solution

42. A stationary body explodes in to four identical fragments such that three of them fly mutually perpendicular to each other, each with same $K E\left(E_{0}\right)$. The energy of explosion will be
A. $6 E_{0}$
B. $\frac{4 E_{0}}{3}$
C. $4 E_{0}$
D. $8 E_{0}$

Answer: A

D Watch Video Solution

43. A man stands at one end of the open truck which can run on frictionless horizontal rails. Initially, the man and the truck are at rest. Man
now walks to the other end and stops. Then which of the following is true?
A. The truck moves opposite to direction of
motion of the man even after the man
ceases to walk.
B. The centre of mass of the man and the
truck remains at the same point throughout the man's walk
C. The kinetic energy of the man and the
truck are exactly equal throughout the
man's walk.
D. The truck does not move at all during the man's walk.

Answer: B

D Watch Video Solution

44. Figure shows a thin uniform rod 50 cm long
and has a mass of 100 g . A hollow metal ball is
filled with air and has a diameter 10 cm and total mass $50 g$ is fixed to one end of the rod.

At what point along its length will the ball and rod balance horizontally?

A. 20 cm from the centre of the rod
B. 10 cm from the centre of the rod
C. at the centre of the rod
D. where the ball is attached to the rod

Answer: B
45. A hockey player receives a corner shot at a speed of $15 \mathrm{~m} / \mathrm{s}$ at angle 30° with y-axis and then shoots the ball along x-axis with the speed $30 \mathrm{~m} / \mathrm{s}$. If the mass of the ball is 150 g and it remains in contact with the hockey stick
for $0.01 s$, the force exerted on the ball along x
-axis is

A. $281 N$
B. 187.5 N
C. 562.5 N
D. 375 N

Answer: C

- Watch Video Solution

46. A ball is dropped from a height of $45 m$
from the ground. The coefficient of restitution between the ball and the ground is $\frac{2}{3}$. What is the distance travelled by the ball in 4 th second of its motion. Assume negligible time is spent in rebounding. Let $g=10 \mathrm{~ms}^{2}$
A. $5 m$
B. 20 m
C. $15 m$

D. 10 m

Answer: C

D Watch Video Solution

47. P and Q are two identical masses at rest
suspended by an inextensible string passing over a smooth frictionless pulley. Mass P is given a downward push with a speed v as shown in Fig. It collides elastically with the floor and rebounds immediately. What
happens immediately after collision?

d. 10 m

A. P and Q both move upwards with equal speeds.
B. P and Q both move upwards with different speeds
C. P moves upwards and Q moves
downwards with equal speeds.
D. Both P and Q are at rest.

Answer: A

-

48. A bag of mass M hangs by a long massless
rope. A bullet of mass in, moving horizontally
with velocity u, is caught in the bag. Then for
the combined (bag + bullet) system, just after collision
A. momentum is muM/($M+m)$
B. kinetic energy is $\mathrm{mu}^{2} / 2$
C. momentum is $\mathrm{mu}(M+m) / M$
D. kinetic energy is $m^{2} u^{2} / 2(M+m)$

- Watch Video Solution

49. A man stands at one end of a boat which is stationary in water. Neglect water resistance.

The man now moves to the other end of the boat and again becomes stationary. The centre of mass of the 'man plus boat' system will remain stationary with respect to water
A. only when the man is stationary initially
B. only if the man moves without acceleration on the boat
C. only if the man and the boat have equal

masses

D. in all cases

Answer: D
50. Two particles are shown in figure. At $t=0$
a constant force $F=6 N$ starts acting on 3 kg .
Find the velocity of circle of mass of these particle at $t=5 s$.

A. $5 m / s$
B. $4 m / s$
C. $6 m / s$

D. $3 m / s$

Answer: C

D Watch Video Solution

51. Two blocks of masses $5 k g$ and $2 k g$ are placed on a frictionless surface and connected by a spring. An external kick gives a velocity of $14 m / s$ to the heavier block in the direction of lighter one. The magnitudes of velocities of
two blocks in the centre of mass frame after the kick are, respectively,
A. $4 m / s, 4 m / s$
B. $10 m / s, 4 m / s$
C. $4 m / s, 10 m / s$
D. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$

Answer: C
52. In a system of particles $8 k g$ mass is subjected to a force of $16 N$ along + ve x-axis and another 8 kg mass is subjected to a force of $8 N$ along + ve y-axis. The magnitude of acceleration of centre of mass and the angle made by it with x-axis are given, respectively, by
A. $\frac{\sqrt{5}}{2} m s^{2}, \theta=45^{\circ}$
B. $3 \sqrt{5} m s^{2}, \theta=\tan ^{-1}\left(\frac{2}{3}\right)$
C. $\frac{\sqrt{5}}{2} m s^{2}, \theta=\tan ^{-1}\left(\frac{1}{2}\right)$
D. $1 m s^{2}, \theta=\tan ^{-1} \sqrt{3}$

Answer: C

- Watch Video Solution

53. A circular plate of uniform thickness has a diameter of 28 cm . A circular portion of diameter 21 cm is removed from the plate as shown. O is the centre of mass of complete plate. The position of centre of mass of remaining portion will shift towards left from

A. 5 cm

B. 9 cm

C. 4.5 cm

D. 5.5 cm

Answer: C

D Watch Video Solution

54. A heavy chain of length $1 m$ and weight 20 kg hangs vertically with one end attached to a peg and carries a block of mass 10 kg at the other end. Find the work done in winding 50 cm of chain round the peg.
A. 85 J
B. 100 J

C. 120 J

D. 125 J

Answer: D

D Watch Video Solution

55. A cannon of mass 1000 kg located at the base of an inclined plane fires a shell of mass

50 kg in horizontal direction with velocity $180 \mathrm{~km} / \mathrm{h}$. The angle of inclination of the inclined plane with the horizontal is 45°. The
coefficient of friction between the cannon and inclined plane is 0.5 . The maximum height, in metre, to which the cannon can ascend the inclined plane as a result of recoil is
A. $\frac{5}{6}$
B. $\frac{5}{24}$
C. $\frac{5}{12}$
D. none of these

Answer: B
56. A U-shaped wire has a semicircular bending between A and B as shown in Fig. A bead of mass m moving with uniform speed v through a wire enters the semicircular bend at A and leaves at B with velocity $v / 2$ after time T. The average force exerted by the bead on the part $A B$ of the wire is

A. 0
B. $\frac{3 m v}{2 T}$
C. $\frac{3 m v}{T}$
D. none of these

Answer: B

- Watch Video Solution

57. A particle of mass $2 k g$ moving with a
velocity of $3 \mathrm{~m} / \mathrm{s}$ is acted upon by a force
which changes its direction of motion by an
angle of 90° without changing its speed. What
is the magnitude of impulse experienced by
the particle?
A. $6 N s$
B. $2 N s$
C. $3 \sqrt{2} N s$
D. $6 \sqrt{2} N s$

Answer: D
58. A body of mass 3 kg moving with a velocity
of $4 m / s$ towards left collides head on with a body of mass 4 kg moving in opposite direction with a velocity of $3 \mathrm{~m} / \mathrm{s}$. After collision the two bodies stick together and move with a common velocity which is
A. zero
B. $12 m / s$ towards left
C. $12 m / s$ towards right
D. $\frac{12}{7} \mathrm{~m} / / \mathrm{s}$ towards left

Answer: A

- Watch Video Solution

59. Two blocks of masses $m_{1}=2 k g$ and $m_{2}=4 k g$ are moving in the same direction with speeds $v_{1}=6 m / s$ and $v_{2}=3 m / s$, respectively on a frictionless surface as shown in the figure. An ideal spring with spring constant $k=30000 N / m$ is attached to the back side of m_{2}. Then the maximum compression of the spring after collision will
be

A. $0.06 m$
B. $0.04 m$
C. $0.02 m$
D. none of these

Answer: C

- Watch Video Solution

60. A cracker is thrown into air with a velocity of $10 \mathrm{~m} / \mathrm{s}$ at an angle of 45° with the vertical.

When it is at a height of $0.5 m$ from the ground, it explodes into a number of pieces which follow different parabolic paths. What is
the velocity of centre of mass, when it is at a height of 1 m from the ground? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. $4 \sqrt{5} \mathrm{~m} / \mathrm{s}$
B. $2 \sqrt{5} \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{4} m / s$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

61. A force exerts an impulse lon a particle changing its speed from initial velocity u to final velocity $2 u$. The applied force and the initial velocity are oppositely oriented along the same line. The work done by the force is

$$
\begin{aligned}
& \text { A. } \frac{3}{2} I u \\
& \text { B. } \frac{1}{2} I u
\end{aligned}
$$

C. Iu
D. $2 I u$

Answer: B

- Watch Video Solution

62. A ball falls vertically onto a floor with momentum p and then bounces repeatedly. If coefficient of restitution is e, then the total momentum imparted by the ball to the floor is
A. $p(1+e)$

$$
\begin{aligned}
& \text { B. } \frac{p}{1-e} \\
& \text { C. } p\left(1+\frac{1}{e}\right) \\
& \text { D. } p\left(\frac{1+e}{1-e}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

63. A ball released from a height ho above a horizontal surface rebounds to a height h_{1}, after one bounce. The graph that relates h_{0} to
h_{1} is shown Fig. If the ball (of the mass m) was
dropped from an initial height h and made three bounces, the kinetic energy of the ball immediately after the third impact with the surface was

$$
\xrightarrow[0]{\text { con }}
$$

A. $(0.8)^{3} m g h$

$$
\text { B. }(0.8)^{2} m g h
$$

C. $0.8 m g(h / 3)$
D. $\left[1-(0.8)^{3}\right] m g h$

Answer: A

D Watch Video Solution

64. Two identical balls, of equal masses A and
B, are lying on a smooth surface as shown in
Fig. Ball A hits ball B (which is at rest) with a velocity $v=16 m / s$. What should be the minimum value of coefficient of restitution
between A and B so that B just reaches the highest point of inclined plane?

> A. $\frac{2}{3}$
> B. $\frac{1}{4}$
> C. $\frac{1}{2}$
> D. $\frac{1}{3}$

Answer: B
65. A particle of mass in is made to move with
uniform speed v_{0} along the perimeter of a regular hexagon, inscribed in a circle of radius
R. The magnitude of impulse applied at each corner of the hexagon is
A. $2 m v_{0} \sin \frac{\pi}{6}$
B. $m v_{0} \sin \frac{\pi}{6}$
C. $m v_{0} \sin \frac{\pi}{3}$
D. $2 m v_{0} \sin \frac{\pi}{3}$

Answer: A

- Watch Video Solution

66. A continuous stream of particles, of mass
m and velocity r, is emitted from a source at a rate of n per second. The particles travel along a straight line, collide with a body of mass M and get embedded in the body. If the mass M was originally at rest, its velocity when it has received N particles will be
A. $\frac{m n N}{N m+M}$
B. $\frac{m v N}{N M+M}$
C. $\frac{m v}{N m+M}$
D. $\frac{N m+M}{N M}$

Answer: B

D Watch Video Solution

67. A ball kept in a close box moves in the box making collisions with the walls. The box is
kept on a smooth surface. The velocity of the

centre of mass

A. of the box remains constant
B. of the (box + ball) system remains
constant
C. of the ball remains constant
D. of the ball relative to the box remains
constant

Answer: B
68. A particle of mass m moving with a velocity
u makes an elastic one-dimensional collision
with a stationary particle of mass m
establishing a contact with it for extremely
small time. T. Their force of contact increases
from zero to F_{0} linearly in time $T / 4$, remains
constant for a further time $T / 2$ and decreases
linearly from F_{0} to zero in further time $T / 4$ as
shown. The magnitude possessed by F_{0} is.

A. $\frac{\mathrm{mu}}{T}$
B. $\frac{2 \mathrm{mu}}{T}$
C. $\frac{4 \mathrm{mu}}{3 T}$
D. $\frac{3 \mathrm{mu}}{4 T}$
69. A stationary body explodes into two
fragments of masses m_{1} and m_{2}. If momentum of one fragment is p, the energy of explosion is
A. $\frac{p^{2}}{2\left(m_{1}+m_{2}\right)}$
B. $\frac{p^{2}}{2 \sqrt{m_{1} m_{2}}}$
c. $\frac{p^{2}\left(m_{1}+m_{2}\right)}{2 m_{1} m_{2}}$
D. $\frac{p^{2}}{2\left(m_{1}-m_{2}\right)}$

Answer: C

D Watch Video Solution

70. A ball of mass m is projected with a speed
v into the barrel of a spring gun of mass M initially at rest lying on a frictionless surface.

The mass sticks in the barrel at the point of maximum compression in the spring. The fraction of kinetic energy of the ball stored in the spring is
A. $\frac{m}{M}$
B. $\frac{M}{m+M}$
C. $\frac{m}{M+M}$
D. none of these

Answer: B

D Watch Video Solution

71. A railway flat car has an artillery gun installed on it. The combined system has a mass M and moves with a velocity V. The
barrel of the gun makes an angle a with the
horizontal. A shell of mass m leaves the barrel at a speed v relative to the barrel. The speed of the flat car so that it may stop after the firing is

> A. $\frac{m v}{M+m}$
> B. $\left(\frac{M v}{M+m}\right) \cos \alpha$
> C. $\left.\frac{m v}{M+m}\right) \cos \alpha$
> D. $(M+m)) \cos \alpha$

Answer: C
72. Two blocks of masses $6 k g$ and $4 k g$ are attached to the two ends of a massless string passing over a smooth fixed pulley. if the system is released, the acceleration of the centre of mass of the system will be
A. g, vertically downwards
B. $\frac{g}{5}$, vertically downwards
C. $\frac{g}{25}$, vertically downwards
D. zero

Answer: C

- Watch Video Solution

73. The momentum of a moving particle is
vectorially given a, $\vec{p}=p_{0}(\cos t \hat{i}+\sin t \hat{j})$
where t stands for time. Choose the correct option:
A. The applied force is constant.
B. The momentum is constant.
C. The applied force always remains
perpendicular to the momentum.

D. The applied force is always parallel to the

momentum.

Answer: C

D Watch Video Solution

74. A gun of mass M. fires a shell of mass m horizontally and the energy of explosion is such as would be sufficient to project the shell
vertically to a height ' h '. The recoil velocity of
the gun is
A. $\left(\frac{2 m^{2} g h}{M(m+M)}\right)^{\frac{1}{2}}$
B. $\left(\frac{2 m^{2} g h}{M(m-M)}\right)^{\frac{1}{2}}$
C. $\left(\frac{2 m^{2} g h}{2 M(m-M)}\right)^{\frac{1}{2}}$
D. $\left(\frac{2 m^{2} g h}{2 M(m+M)}\right)^{\frac{1}{2}}$

Answer: A

75. An inverted T-shaped object is placed on a

 horizontal floor as shown in Fig. A force F is applied on the system as shown in Fig. The value of x so that the system performs pure translational motion is
A. $\frac{L}{4}$
B. $\frac{3 L}{4}$
C. $\frac{L}{2}$
D. $\frac{3 L}{2}$

Answer: A

D Watch Video Solution

76. Two blocks m_{1} and m_{2} are pulled on a smooth horizontal surface, and are joined together with a spring of stiffness k as shown in Fig. Suddenly, block m_{2} receives a horizontal
velocity v_{0}, then the maximum extension x_{m} in the spring is

$$
\begin{aligned}
& \text { A. } v_{0} \sqrt{\frac{m_{1} m_{2}}{m_{1}+m_{2}}} \\
& \text { B. } v_{0} \sqrt{\frac{2 m_{1} m_{2}}{\left(\left(m_{1}+m_{2}\right) k\right)}} \\
& \text { C. } v_{0} \sqrt{\frac{m_{1} m_{2}}{2\left(m_{1}+m_{2}\right) k}} \\
& \text { D. } v_{0} \sqrt{\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right) k}}
\end{aligned}
$$

Answer: D

77. A particle at rest is constrained to move on

a smooth horizontal surface. Another identical

particle hits the fractional particle with a velocity v at an angle $\theta=60^{\circ}$ with horizontal.

If the particles move together, the velocity of the combination just after impact is equal to
A. v
B. $\frac{v}{2}$
C. $\frac{\sqrt{3} v}{4}$
D. $\frac{v}{4}$

Answer: D

- Watch Video Solution

78. A particle of mass m comes down on a smooth inclined plane from point B at a height of h from rest. The magni-tude of change in momentum of the particle between position A (just before arriving on horizontal surface) and C (assuming the angle of inclination of the plane as θ with respect to
the horizontal) is

A. 0
B. $2 m \sqrt{(2 g h)} \sin \theta$
C. $2 m \sqrt{(2 g h)} \sin \left(\frac{\theta}{2}\right)$
D. $2 m \sqrt{(2 g h)}$

- Watch Video Solution

79. Three balls A, B and C of masses $2 \mathrm{~kg}, 4 \mathrm{~kg}$ and 8 kg , respectively, move along the same straight line and in the same direction, with velocities $4 m / s, 1 m / s, \frac{3}{4} m / s$. If A collides with B and subse-quently B collides with C, find the velocity of ball A and ball B after collision, taking the coefficient of restitution as
unity.

A. $V_{A}=3, V_{B}=9 / 4$
B. $V_{A}=0, V_{B}=3$
C. $V_{A}=3, V_{B}=0$
D. $V_{A}=0, V_{B}=0$

Answer: D
80. A ball of mass m moving with velocity v_{0} collides with a wall as shown in Fig. After impact it rebounds with a velocity' $\left(v_{0}\right) / 2$ The component of impulse acting on the ball along the wall is

A. $\frac{m v_{0}}{2} \hat{j}$

$$
\begin{aligned}
& \text { B. }-\frac{m v_{0}}{2} \hat{j} \\
& \text { C. }-\frac{m v_{0}}{5} \hat{j} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: C

- Watch Video Solution

81. Five balls are placed one after the other along a straight line as shown in the figure. Initially, all the balls are at rest. Then the second ball has been projected with speed v_{0}
towards the third ball. Mark the correct statements, (Assume all collisions to be headon and elastic.)

A. Total number of collisions in the process
is 5
B. Velocity of separation between the first
and fifth ball after the last possible collision is v_{0}
C. Finally, three balls remain stationary.
D. All of the above

Answer: D

D Watch Video Solution

82. Two objects are at rest on a level frictionless surface. The objects are not connected. A force F is applied to one of the objects, which then moves with acceleration a.

Mark the correct statement(s).
A. The concept of centre of mass cannot be applied be-cause the external force does not act on both the objects.
B. The centre of mass moves with
acceleration that could be greater than a
C. The centre of mass moves with
acceleration that must be equal to a.
D. The centre of mass moves with
acceleration that must be less than a

Answer: D

D Watch Video Solution

83. A highly elastic ball moving at a speed of
$3 m / s$ approaches a wall moving towards it with a speed of $3 \mathrm{~m} / \mathrm{s}$. After the collision. the
speed of the ball will be

A. $3 m / s$
B. $6 m / s$
C. $9 m / s$
D. zero

Answer: C

D Watch Video Solution

84. Two identical billiard balls undergo an oblique elastic collision. Initially, one of the balls is stationary. If the initially stationary ball after collision moves in a direction which makes an angle of 37° with direction of initial motion of the moving ball, then the angle through which initially moving ball will be deflected is
A. 37°
B. 60°
C. 53°
D. $>53^{\circ}$

Answer: C

D View Text Solution

85. A ball of mass m is attached to a cord of
length L, pivoted at point O, as shown in Fig.
The ball is released from rest at point A,
swings down and makes an inelastic collision
with a block of mass $2 m$ kept on a rough
horizontal floor. The coefficient of restitution
of collision is $e=2 / 3$ and coefficient of friction between block and surface is After collision, the ball comes momentarily to rest at
C when cord makes an angle of θ with the
vertical and block moves a distance of $3 L / 2$ on rough horizontal floor before stopping. The
values of μ and θ are, respectively,

A. $\frac{50}{243}, \cos ^{-1}\left(\frac{80}{81}\right)$
B. $\frac{50}{81}, \cos ^{-1}\left(\frac{80}{81}\right)$
C. $\frac{2}{81}, \cos ^{-1}\left(\frac{80}{243}\right)$
D. $\frac{2}{243}, \cos ^{-1}\left(\frac{80}{243}\right)$

Answer: A

D Watch Video Solution

86. A ball of mass m is released from rest relative to elevator at a height h, above the
floor of the elevator. After making collision with the floor of the elevator it rebounces to
height h_{2}. The coefficient of restitution for

Collision is e. For this situation, mark the
correct statement(s).

A. If elavator is moving done with constant
velocity v_{0}, thenh $h_{2}=e^{2} h_{1}$
B. If elevator is moving down with
constasnt velocity v_{0}, then
$h_{2}=e^{2} h_{1}-\frac{v_{0}^{2}}{2 g}$
C. if elevator is moving down with constant
velocity v_{0}, then impulse imparted by
floor of the elevator of the ball is
$m\left(\sqrt{2 g h_{2}}+\sqrt{2 g h_{1}}+2 v_{0}\right) \quad$ is the
upward direction.
D. If elevator is moving with constant acceleration of $g / 4$ in upward direction,
then it is not possible to determine a relation between h_{1} and h_{2} from the given information.

Answer: A

D Watch Video Solution

87. Two blocks A and B of masses in and $2 m$, respectively, are connected with the help of a spring having spring constant, k as shown in

Fig. Initially, both the blocks arc moving with
same velocity v on a smooth horizontal plane with the spring in its natural length. During their course of motion, block B makes an inelastic collision with block C of mass m which is initially at rest. The coefficient of restitution for the collision is $1 / 2$. The maximum compression in the spring is

A. $\sqrt{\frac{2 m}{k}}$
B. will never be attained
C. $\sqrt{\frac{m}{12 k}} v$
D. $\sqrt{\frac{m}{6 k}} v$

Answer: D

D View Text Solution

88. A 3000 kg space probe is moving in a gravity
free space at a constant velocity of $300 \mathrm{~m} / \mathrm{s}$.

To change the direction of space probe, rockets have been fired in a direction perpendicular to the direction of initial motion
of the space probe, the rocket firing exerts a thrust of $4000 N$ for $225 s$. The space probe will turn by an angle of (neglect the mass of the rockets fired)
A. 30°
B. 60°
C. 45°
D. 37°

Answer: C
89. After a totally inelastic collision, two objects of the same mass and same initial speeds are found to move together at half of
their initial speeds. The angle between the initial velocities of the objects is
A. 30°
B. 60°
C. 45°
D. 37°

- Watch Video Solution

90. An object of mass 10 kg is launched from the ground at $t=0$, at an angle of 37° above the horizontal with a speed of $30 \mathrm{~m} / \mathrm{s}$. At some time after its launch, an explosion splits the projectile into two pieces. One piece of mass $4 k g$ is observed at $(105 m, 43 m)$ at
$t=2 s$. Find the location of second piece at
```
t=2s?
```


A. $(10,2)$
B. $(48,16)$
C. $(10,-2)$
D. information insufficient

Answer: C

D Watch Video Solution

91. For the system shown in Fig. the string is
light and pulley is frictionless. The $4 k g$ block is given an upward velocity of $1 \mathrm{~m} / \mathrm{s}$. The centre of mass of the two blocks will [neglect the

A. accelerate down with $g / 3$
B. initially accelerate downwards with g and
then after some time accelerate down

with $g / 3$.

C. initially accelerate with g and then the acceleration is 0
D. initially accelerate with g and then with
accelerate with $g / 3$.

Answer: D

D Watch Video Solution

92. A parallel beam of particles of mass m moving with velocity v impinges on a wall at an angle θ to its normal. The number of particles per unit volume in the beam is n. If the collision of particles with the wall is elastic, then the pressure exerted by this beam on the wall is
A. $2 m n v^{2} \cos \theta$
B. $2 m n v^{2} \cos ^{2} \theta$
C. $2 m n v \cos \theta$
D. $2 m n v \cos ^{2} \theta$

Answer: B

D Watch Video Solution

93. A block of mass m starts from rest and
slides down a frictionless semi-circular track
from a height h as shown. When it reaches the
lowest point of the track, it collides with a
stationary piece of putty also having mass m. If
the block and the putty . stick together and
continue to slide, the maximum height that
the block-putty system could reach is

A. $\frac{h}{4}$
B. $\frac{h}{2}$
C. h
D. independent of h

Answer: A

94. Three blocks are initially placed as shown in

the figure. Block A has mass m and initial velocity v to the right. Block B with mass m and block C with mass 4 m are both initially at rest.

Neglect friction. All collisions are elastic. The final velocity of block A is

A. $0.6 v$ to the left
B. $1.4 v$ to the left
C. v to the let
D. $0.4 v$ to the right

Answer: A

D Watch Video Solution

95. In the figure shown, the two identical balls
of mass M and radius R each, are placed in
contact with each other on the frictionless
horizontal surface. The third ball of mass M
and radius $R / 2$, is coming down vertically and
has a velocity $=v_{0}$ when it simultaneously
hits the two balls and itself comes to rest.

Then, each of the two bigger balls will move after collision with a speed equal to

A. $4 v_{0} / \sqrt{5}$
B. $2 v_{0} / \sqrt{5}$
C. $v_{0} / \sqrt{5}$
D. none of these

Answer: C

D View Text Solution

96. Three blocks are placed on smooth
horizontal surface and lie on same horizontal
straight line. Block 1 and block 3 have mass m
each and block 2 has mass $M(M \gg m)$.
Block 2 and block 3 are initially stationary, while block 1 is initially moving towards block 2 with speed v as shown. Assume that all collisions are head on and perfectly elastic.

What value of M / m ensures that block 1 and block 3 have the same final speed?

A. $5+\sqrt{2}$

$$
\text { B. } 5-\sqrt{2}
$$

C. $2+\sqrt{5}$

D. $3+\sqrt{5}$

Answer: C

- Watch Video Solution

97. A particle of mass m is moving along the x axis with speed v when It collides with a particle of mass $2 m$ initially at rest. After the collision, the first particle has come to rest and the second particle has split into two equal-
mass pieces that are shown in the figure.

Which of the following statements correctly describes the speeds of the two places?

$$
(\theta>0)
$$

A. each piece moves with speed v.
B. each piece moves with speed $v / 2$.
C. one of the pieces moves with speed $v / 2$,
the other moves with speed greater than
$v / 2$.
D. each piece moves with speed greater than $v / 2$.

Answer: D

D Watch Video Solution

98. A particle of mass m is acted on by two forces of equal magnitude F maintaining their orientation relative to the velocity v as shown
in Fig. The momentum of the particle

(a)

(b)

(c)
A. increases in a
B. decreases in b
C. only the diretion changes in c
D. all are correct

Answer: D
99. Three particles of equal masses are placed
at the corners of an equilateral triangle as
shown in the figure. Now particle A starts with
a velocity v_{1} towards line $A B$, particle B starts
with a velocity v_{2} towards line $B C$ and particle
C starts with velocity v_{3} towards line $C A$. The
displacement of $C M$ of three particle A, B
and C after time t will be (given if
$\left.v_{1}=v_{2}=v_{3}\right)$

A. zero
B. $\frac{v_{1}+v_{2}+v_{3}}{3} t$
C. $\frac{v_{1}+\frac{\sqrt{3}}{2} v_{2}+\frac{v_{3}}{2}}{3} t$
D. $\frac{v_{1}+v_{2}+v_{3}}{4} t$

Answer: A

D Watch Video Solution

100. A ball is projected in a direction inclined
to the vertical and bounces on a smooth horizontal plane. The range of one rebound is
R. If the coefficient of restitution is e, then
range of the next rebound is

$$
\text { A. } R^{\prime}=e R
$$

$$
\text { B. } R^{\prime}=e^{2} R
$$

C. $R^{\prime}=\frac{R}{e}$
D. $\mathrm{R}^{\prime}=\mathrm{R}^{\prime}$

Answer: A

D Watch Video Solution

101. In the figure shown, the heavy ball of mass
$2 m$, rests on the horizontal surface and the
lighter ball of mass m is dropped from a height $h>2 l$. At the instant the string gets taut, the upward the velocity of the heavy ball
will be

A. $\frac{2}{3} \sqrt{g l}$
B. $\frac{4}{3} \sqrt{g l}$
C. $\frac{1}{3} \sqrt{g l}$
D. $\frac{1}{2} \sqrt{g l}$

Answer: A

D Watch Video Solution

102. In the figure shown, the cart of mass $6 m$ is initially at rest. A particle of mass in is attached to the end of the light rod which can rotate freely about A. If the rod is released from rest in a horizontal position shown, determine the velocity $v_{r e l}$ of the particle with
respect to the cart when the rod is vertical.

A. $\sqrt{\frac{14}{3} g l}$
B. $\sqrt{\frac{7}{6} g l}$
C. $\sqrt{\frac{7}{3} g l}$
D. $\sqrt{\frac{8}{3} g l}$

Answer: C
103. Two identical particles collide in air inelastically. One moves horizontally and the other moves vertically with equal speed just before collision. The fractional loss in kinetic energy of the system of particles is equal to

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} \\
& \text { B. } \frac{1}{2} \\
& \text { C. } \frac{\sqrt{3}}{2}
\end{aligned}
$$

D. none of these

Answer: B

- Watch Video Solution

104. A particle at rest is constrained to move
on a smooth horizontal surface. Another identical particle hits the stationary particle with a velocity v at an angle $\theta=60^{\circ}$ with horizontal. If the particles move together, the velocity of the combination just after the impact is equal to
A. v
B. $v / 2$
C. $\sqrt{3} v / 4$
D. $v / 4$

Answer: D

D Watch Video Solution

105. A stationary body explodes in to four identical fragments such that three of them fly mutually perpendicular to each other, each
with same $K E\left(E_{0}\right)$. The energy of explosion will be
A. $6 E_{0}$
B. $3 E_{0}$
C. $4 E_{0}$
D. $2 E_{0}$

Answer: A
106. Shown in the figure is a system of three particles of mass $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 4 kg connected by two springs. The acceleration of $A . B$ and
C at any instant are $1 m s^{-2}, 2 m s^{-2}$ and $1 / 2 \mathrm{~ms}^{-2}$ respectively directed as shown in the figure external force acting on the system is
A. $1 N$
B. 7 N
C. $3 N$
D. none of these

Answer: C

D Watch Video Solution

107. A ping-pong ball of mass m is floating in air by a jet of water emerging out of a nozzle.

If the water strikes the ping-gong ball with a speed v and just after collision water falls dead, the rate of flow of water in the nozzle is equal to

$$
\text { A. } \frac{2 m g}{V}
$$

B. $\frac{m V}{g}$
C. $\frac{m g}{V}$
D. none of these

Answer: C

D Watch Video Solution

108. A body of mass 1 kg initially at rest, explodes and breaks into three fragments of masses in the ratio $1: 1: 3$. The two pieces of equal mass fly off perpendicular to each other
with a speed of $15 \mathrm{~ms}^{-1}$ each. What is the velocity of the heavier fragment?
A. $10 \sqrt{m} s^{-1}$
B. $5 \sqrt{3} m s^{-1}$
C. $10 \sqrt{3} m s^{-1}$
D. $5 \sqrt{2} m s^{-1}$

Answer: D
109. A block m_{1}, strikes a stationary blocks m_{3} inelastically. Another block m_{2}, is kept on m_{3}.

Neglecting the friction between all contacting surfaces, the fractional decrease of $K E$ of the system in collision is

$$
\begin{aligned}
& \text { A. } \frac{m_{1}}{m_{1}+m_{2}+m_{3}} \\
& \text { B. } \frac{m_{1}}{m_{2}+m_{3}} \\
& \text { C. } \frac{m_{3}}{m_{1}+m_{3}} \\
& \text { D. } \frac{m_{2}+m_{3}}{m_{1}+m_{2}+m_{3}}
\end{aligned}
$$

110. A ball collides with an inclined plane of inclination θ after falling through a distance h.
if it moves horizontal just after the impact, the coefficient of restitution is
A. $\tan \theta$
B. $\tan ^{2} \theta$
C. $\cot \theta$
D. $\cot ^{2} \theta$

Answer: B

D Watch Video Solution

111. A particle loses 25% of its energy during
collision with another identical particle at rest.
the coefficient of restitution will be
A. 0.25
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. 0.5

Answer: C

D Watch Video Solution

112. A body of mass 3 kg collides elastically with
another body at rest and then continues to
move in the original direction with one half of
its original speed. What is the mass of the target body?
A. 1 kg
B. 1.5 kg
C. $2 k g$
D. 5 kg

Answer: A

- Watch Video Solution

113. A glass ball collides with a smooth
horizontal surface ($x z$ plane) with a velocity
$V=a i-b j$. If the coefficient of restitution of
collision be e, the velocity of the ball just after the collision will be
A. $\sqrt{e^{2} a^{2}+b^{2}}$ at angle $\tan ^{-1}\left(\frac{a}{e b}\right)$ to the vertical
B. $\sqrt{a^{2}+e^{2} b^{2}}$ at angle $\tan ^{-1}\left(\frac{a}{e b}\right)$ to the
vertical
C. $\sqrt{a^{2}+\frac{b^{2}}{e^{2}}}$ at angle $\tan ^{-1}\left(\frac{e a}{b}\right)$ to the
vertical
D. $\sqrt{\frac{a^{2}}{e^{2}}+b^{2}}$ at angle $\tan ^{-1}\left(\frac{a}{e b}\right)$ to the vertical

Answer: B
114. A mass m_{1} moves with a great velocity. It strikes another mass m_{2} at rest in head-on collision. It comes back along its path with low speed after collision. Then
A. $m_{1}>m_{2}$
B. $m_{1}<m_{2}$
C. $m_{1}=m_{2}$
D. there is no relation between m_{1} and m_{2}

Answer: B

D Watch Video Solution

115. A body is hanging from a rigid support. by
an inextensible string of length ' 1 '. It is
struck inelastically by an identical body of mass in with horizontal velocity $v=\sqrt{2 g l}$ the tension in the string increases just after the striking by
A. $m g$
B. $3 m g$
C. $2 m g$
D. none of these

Answer: C

D Watch Video Solution

116. A steel ball of mass 0.5 kg is fastened to a
cord 20 cm long and fixed at the far end and is
released when the cord is horizontal. At the
bottom of its path the ball strikes a 2.5 kg steel
block initially at rest on a frictionless surface.

The collision is elastic. The speed of the block just after the collision will be.

$$
\begin{aligned}
& \text { A. } \frac{10}{3} m s^{-1} \\
& \text { B. } \frac{20}{3} m s^{-1} \\
& \text { C. } 5 m s^{-1} \\
& \text { D. } \frac{5}{3} m s^{-1}
\end{aligned}
$$

Answer: B

117. A bullet of mass 0.01 kg and travelling at a speed of $500 \mathrm{~ms}^{-1}$ strikes a block of mass 2 kg which is suspended by a string of length $5 m$.

The centre of gravity of the block is found to raise a vertical distance of $0.2 m$. What is the speed of the bullet after it emerges from the block?
A. $15 m s^{-1}$
B. $20 \mathrm{~ms}^{-1}$
C. $100 \mathrm{~ms}^{-1}$
D. $50 \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

118. A bomb of mass $3 m$ is kept inside a closed box of mass $3 m$ and length $4 L$ at its centre. It explodes in two parts of mass m and $2 m$. The two parts move in opposite directions and stick to the opposite sides of the walls of box.

The box is kept on a smooth horizontal surface. What is the distance moved by the box
during this time interval.

A. 0
B. $\frac{L}{6}$
C. $\frac{L}{12}$
D. $\frac{L}{3}$

Answer: D

Watch Viden Solıtion
119. For the system shown in the figure, a small block of mass m and smooth irregular shaped block of mass M, both free to move are placed on a smooth horizontal plane. The minimum velocity v imparted to block so that it will overcome the highest point of M is

$m \rightarrow v$

A. $\sqrt{2 g h}$
B. $\sqrt{2\left(1+\frac{m}{M}\right) g h}$
C. $\sqrt{\frac{2 m}{M} g h}$
D. $\sqrt{2\left(1+\frac{M}{m}\right) g h}$

Answer: B

D Watch Video Solution

120. Two particles of equal masses moving with
same momentum collide perfectly in-elastically.
After the collision the combined mass moves with half of the speed of the individual masses.

The angle between the initial momenta of individual particle is
A. 60°
B. 90°
C. 120°
D. 45°

Answer: C
(D) Watch Video Solution
121. Two identical carts constrained to move on
a straight line, on which sit two twins of same mass, are moving with equal velocity. At some
time snow begins to drop uniformly. Ram, sitting on one of the carts, picks the snow from cart and throws off the falling snow sideways and in the second cart Shyam is asleep.
A. Cart carrying Ram will have more speed
finally than that carrying Shyam.
B. Cart carrying Ram will have less speed finally than that carrying Shyam.
C. Cart carrying Ram will have same speed
finally than that carrying Shyam.
D. depends on the amount of snow thrown.

Answer: D

D Watch Video Solution
122. Two particles A and B initially at rest, move towards each other by mutual force of attraction. At the instant when the speed of A
is n and the speed of B is $3 n$, the speed of the centre of mass of the system is
A. $3 n$
B. $2 N s$
C. $1.5 n$
D. 0

- Watch Video Solution

123. Three point like equal masses m_{1}, m_{2} and m_{3} are connected to the ends of a massless rod of length L which lies at rest on a smooth horizontal plane. At $t=0$, an explosion occurs between m_{2} and m_{3}, and as a result, mass m_{3} is detached from the rod, and moves with a known velocity v at an angle of 30° with the y axis. Assume that the masses m_{2} and m_{3} are unchanged during the explosion. What is the velocity of the centre of mass of the system
consisting of three masses, after the expulsion?

A. $\frac{v}{4}(\hat{i}-3 \hat{j})$
B. $\frac{v}{4}(-\hat{i}+\sqrt{\hat{j}})$
C. $-v$
D. none of these

Answer: D

D Watch Video Solution

124. A small ball is projected horizontally between two large blocks. The ball is given a velocity $V m s^{-1}$ and each of the large blocks move uniformly with a velocity of $2 \mathrm{Vms}^{-1}$. The ball collides elastically with the blocks. If the velocity of the blocks do not change due to the collision, then find out the velocity of the

Assume friction to be absent
A. $5 v$
B. 7 V
C. 9 V
D. none of these

Answer: C

D Watch Video Solution

125. Three particles of masses $1 k g, 2 k g$ and 3 kg are situated at the corners of an equilateral triangle move at speed $6 m s^{-1}, 3 m s^{-1}$ and $2 m s^{-1}$ respectively. Each particle maintains a direction towards the particles at the next corners symmetrically.

Find velocity of $C M$ of the system at this

A. $3 m s^{-1}$
B. $5 m s^{-1}$
C. $6 m s^{-1}$
D. zero
126. Three carts move on a frictionless track with masses and velocities as shown. The carts collide and stick together after successive collisions. Find the total magnitude of the impulse experience by A.
$m_{1}=3 \mathrm{~kg}, m_{2}=1 \mathrm{~kg}, m_{3}=2 \mathrm{~kg}$
$v_{1}=1 \mathrm{~m} / \mathrm{s}, v_{2}=1 \mathrm{~m} / \mathrm{s}, v_{3}=2 \mathrm{~m} / \mathrm{s} \rightarrow+v e$

A. 1 Ns
B. $2 N s$
C. $3 N s$
D. 4 Ns

Answer: B

D Watch Video Solution

127. Block A is hanging from a vertical spring and is at rest. Block B strikes the block A with velocity v and sticks to it. Then the value of v
for which the spring just attains natural length

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{60 m g^{2}}{k}} \\
& \text { B. } \sqrt{\frac{6 m g^{2}}{k}} \\
& \text { C. } \sqrt{\frac{10 m g^{2}}{k}} \\
& \text { D. none of these }
\end{aligned}
$$

Answer: C

D Watch Video Solution
128. A pendulum consists of a wooden bob of mass m and length l. A bullet of mass m_{1} is
fired towards the pendulum with a speed v_{1}.
The bullet emerges out of the bob with a speed of $\left(v_{1}\right) / 3$ and the bob just completes motion along a vertical circle, then v_{1} is

$$
\begin{aligned}
& \text { A. } \frac{3 m}{2 m_{1}} \sqrt{5 g l} \\
& \text { B. } \frac{m_{1}}{m} \sqrt{5 g l} \\
& \text { C. } \frac{2 m}{3 m_{1}} \sqrt{5 g l} \\
& \text { D. } \frac{m_{1}}{m} \sqrt{g l}
\end{aligned}
$$

Answer: B

D Watch Video Solution

129. In the arrangements shown in the figure masses of each ball is 1 kg and mass of trolley is $4 k g$. In the figure, shell of mass 1 kg moving horizontally with velocity $v=6 m s^{-1}$ collides with the ball and get stuck to it then its maximum deflection of the thread (length
$1.5 m$) with vertical

A. 53°
B. 37°
C. 30°
D. 60°

Answer: A

D Watch Video Solution

130. A ball of mass 1 kg is thrown up with an
initial speed of $4 m / s$. A second ball of mass
$2 k g$ is released from rest from some height as
shown in Fig. Choose the correct statement (s).

$$
u=0 \mid 2 \mathrm{~kg}
$$

A. The centre of mass of the two balls
comes down with acceleration $g / 3$.
B. The centre of mass first moves up and
then comes down.
C. The acceleration of the centre of mass is
g downwards.
D. The centre of mass of the two balls
remains stationary.

Answer: B

D Watch Video Solution

131. Velocity of a particle of mass 2 kg change from

$$
\begin{equation*}
\vec{v}_{1}=-2 \hat{i}-2 \hat{j} \frac{m}{s} \tag{to}
\end{equation*}
$$

$\vec{v}_{2}=(\hat{i}-\hat{j}) m / s$ after colliding with as plane surface.
A. The angle made by the plane surface with the positive x-axis is $\tan ^{-1}\left(\frac{1}{3}\right)$
B. The angle made by the plane surface
with the positive x-axis is $\tan ^{-1}\left(\frac{1}{3}\right)$
C. The direction of change in momentum makes an angle $\tan ^{-1}\left(\frac{1}{3}\right)$ with the positive x-axis.

D. The direction of change in momentum

 makes an angle $90^{\circ}+\tan ^{-1}\left(\frac{1}{3}\right)$ with the plane surface.
Answer: A::C::D

D Watch Video Solution

132. In an elastic collision between two particles
A. the total kinetic energy of the system is
always conserved.
B. the kinetic energy of the system before
collision is equal to the kinetic energy of
the system after collision.
C. the linear momentum of the system is
conserved.
D. the mechanical energy of the system
before collision is equal to the
mechanical energy of the system after collision.

Answer: B::C::D

D Watch Video Solution

133. A block of mass ' m ' is hanging from a massless spring of spring constant K. It is in equilibrium under the influence of gravitational force. Another particle of same mass ' m ' moving upwards with velocity ao
hits the block and sticks to it. For the
subsequent motion, choose the incorrect
statements:

A. Velocity of the combined mass must be maximum at natural length of the spring. B. Velocity of the combined mass must be maximum at the new equilibrium position.
C. Velocity of the combined mass must be
maximum at the instant particle hits the
block.
D. Velocity of the combined mass must be
maximum at a point lying between old

equilibrium position and natural length.

Answer: A::C::D

D Watch Video Solution

134. Which of the following is/are correct?
A. If centre of mass of three particles is at
rest and it is known that two of them are
moving along different lines, then the
third particle must also be moving.
B. If centre of mass remains at rest, then
net work done by the forces acting on
the system must be zero.
C. If centre of mass remains at rest, then
the net external force must be zero.
D. If speed of centre of mass is changing,
then there must be some net work being
done on the system from outside.

Answer: A::C::D
135. Two masses $2 m$ and m are connected by an inextensible light string. The string is passing over a light frictionless pulley. The mass $2 m$ is resting on a surface and mass in is
hanging in air as shown in Fig. A particle of mass in strikes the mass in from below in case
(I) with a velocity v_{0} and in case (II) strikes mass in with a velocity v_{0} from top and sticks
to it.

A. The conservation of linear momentum
can be applied in both the cases just
before and just after collision.
B. The conservation of linear momentum
can be applied in case I but cannot be
applied in case II just before and just after collision.
C. The ratio of velocities of mass m just
after collision in first and second cases is
$\frac{1}{2}$.
D. The ratio of velocities of mass m just
after collision in first and second case is
2.

Answer: B::D
136. A ball moving with a velocity v hits a massive wall moving towards the ball with a velocity a. An elastic impact lasts for time $\triangle t$
A. The average elastic force acting on the
ball is $[m(u+v)] / \triangle t$
B. The average elastic force acting on the
ball is $[2 m(u+v)] / \Delta t$
C. The kinetic energy of the ball increases
by $2 \mathrm{mu}(u+v)$.
D. The kinetic energy of the ball remains the same after the collision.

Answer: B::C

- Watch Video Solution

137. A particle strikes a horizontal smooth floor with a velocity a making an angle θ with the
floor and rebounds with velocity v making an angle ϕ with the floor. If the coefficient of
restitution between the particle and the floor is e, then
A. the impulse delivered by the floor to the body is $\mu(1+e) \sin \theta$
B. $\tan \phi=e \tan \theta$
C. $v=u \sqrt{1-(1-e)^{2} \sin ^{2} \theta}$
D. the ratio of final kinetic energy to the

138. A body of mass 2 kg moving with a velocity
$3 \mathrm{~m} / \mathrm{s}$ collides with a body of mass 1 kg moving
with a velocity of $4 m / s$ in opposite direction.
If the collision is head on and completely inelastic, then
A. both particles move together with
velocity $\left(\frac{2}{3}\right) m / s$
B. the momentum of system is $2 \mathrm{kgm} / \mathrm{s}$ throughout
C. the momentum of system is $10 \mathrm{kgm} / \mathrm{s}$
D. the loss of $K E$ of system is $(49 / 3) J$

Answer: A::B::D

D Watch Video Solution

139. Two small rings, each of mass ' m ', are connected to the block of same mass ' m ' through an inextensible massless string of
length ' l '. Rings are constrained to move over smooth rod $A B$. Initially, the system is held at rest as shown in Fig. Let a and v be the velocities of ring and block, respectively when string makes an angle 60° with the vertical.

A. $u=\sqrt{\frac{g l}{5}}$
B. $u=\sqrt{\frac{8 g l}{5}}$
C. $v=\sqrt{3 g l}$
D. $v=\sqrt{\frac{3 g l}{5}}$

Answer: A::D

D View Text Solution

140. A body moving towards a body of finite mass collides with it. It is possible that
A. both bodies come to rest
B. both bodies move after collision
C. the moving body stops and the body

D. the stationary body remains stationary

and the moving body rebounds

Answer: B::C

D Watch Video Solution

141. A ball strikes a wall with a velocity \vec{u} at an angle θ with the normal to the wall surface. and rebounds from it at an angle β with the surface. Then
A. $(\theta+\beta)<90^{\circ}$ if the wall is smooth
B. if the wall is rough , coefficient of restitution $=\tan \beta / \cos \theta$
C. if the wall is rough, coefficient of restition
$<\tan \beta / \cot \theta$
D. none of these

Answer: A::C::D

- Watch Video Solution

Multiple Correct

1. A ball strikes a smooth horizontal floor obliquely and rebounds inelastically.
A. The kinetic energy of the ball just after
hitting the floor is equal to the potential
energy of the ball at its maximum height
alter rebound.
B. Total energy of the ball is not conserved.

C. The angle of rebound with the vertical is

greater than the angle of incidence.

D. None of the above.

Answer: B::C

- Watch Video Solution

2. Choose the correct statements from the following
A. The general form of Newton's second law
of motion is $\vec{F}_{\text {ext }}=\vec{m} a$
B. A body can have energy and get no
momentum.
C. A body having momentum must necessarily have kinetic energy.
D. The relative velocity of two bodies in a
head-on elastic collision remains
unchanged in magnitude and direction.

- Watch Video Solution

3. An ideal spring is permanently connected between two blocks of masses M and m. The blocks-spring system can move over a smooth horizontal table along a straight line along the length of the spring as shown in Fig.The blocks are brought nearer to compress the spring and then released. In the subsequent motion,

A. initially they move in opposite directions
with velocities inversely proportional to
their masses
B. the ratio of their velocities remains
constant
C. linear momentum and energy of the
system remain conserved
D. the two blocks will Oscillate about their
centre of mass which remains stationary

- Watch Video Solution

4. A steel ball of mass $2 m$ suffersonedimensional elastic collision with a row of three steel balls, each of mass m. If mass $2 m$ has collided with velocity v and the three balls numbered $1,2,3$ were initially at 2 . rest, then after the collision

A. balls 1,2 and 3 would start moving to
the right, each with velocity $v / 3$
B. balls 2 and 3 would start moving to the
right, each with velocity $v / 2$
C. balls 2 and 3 start moving to the right,
each with velocity v

D. ball 2 and ball of mass $2 m$ would remain

at rest

Answer: C::D

D Watch Video Solution
5. A man standing on the edge of the terrace of a high rise building throws a stone, vertically up with at speed of $20 \mathrm{~m} / \mathrm{s}$. Two seconds later, an identical stone is thrown vertically downwards with the same speed of $20 m$,. Then
A. the relative velocity between the two stones remain, constant till one hits the ground
B. both will have the same kinetic energy, when they hit the ground
C. the time interval between their hitting
the ground it $2 s$
D. if the collision on the ground is perfectly
elastic, both will rise to the same height
above the ground

Answer: A::B::C::D

- Watch Video Solution

6. A block of mass m moving with a velocity v_{0} collides with a stationary block of mass M to which a spring of stiffness k is attached, as shown in Fig. Choose the correct alternative(s)

A. The velocity of the centre of mass is v_{0}
B. The initial kinetic energy of the system in
the centre of mass frame is

$$
\frac{1}{4}\left(\frac{m M}{M+m}\right) v_{0}^{2}
$$

C. The maximum compression in the spring
is $v_{0} \sqrt{\left(\frac{m M}{m+M} \frac{1}{k}\right)}$
D. When the spring is in the state of maximum compression, the kinetic energy in the centre of mass frame is
zero

Answer: C::D

D
 Watch Video Solution

7. Two particles of masses m_{1} and m_{2} and velocities u_{1} and $\alpha u_{1}(\alpha \neq 0)$ make an elastic head on collision. If the initial kinetic energies of the two particles are equal and m_{1} comes to rest after collision, then

$$
\begin{aligned}
& \text { A. } \frac{u_{1}}{u_{2}}=\sqrt{2}+1 \\
& \text { B. } \frac{u_{1}}{u_{2}}=\sqrt{2}-1 \\
& \text { C. } \frac{m_{2}}{m_{1}}=3+2 \sqrt{2} \\
& \text { D. } \frac{m_{2}}{m_{1}}=3-2 \sqrt{2}
\end{aligned}
$$

- Watch Video Solution

8. A pendulum bob of ideal string mass m connected to the end of of length l is released from rest from horizontal position as shown in

Fig. At the lowest point, the bob makes an elastic collision with a stationary block of mass
$5 m$, Which is kept on a frictionless surface.
Mark out the comet statement(s) for the
instant just after impact.

A. Tension in the string is $(17 / 9) m g$
B. tensiion in the string is $3 m g$
C. the velocity of the block is $\sqrt{2 g l} / 3$
D. The maximum height attained by the pendulum bob after impact is (measured from the lowest position) $4 l / 9$.

Answer: A::D

D Watch Video Solution

9. A string of length $3 l$ is connected to a fixed cylinder whose top view is shown in Fig. The string is initially slack. The other end of the string (connected to a marble) is moving at a
constant velocity of $10 \mathrm{~m} / \mathrm{s}$ as shown. The string will get stretched at some instant and impulsive tension occurs in the string. If hinge is exerting a force of 40000 N for 0.25 ms on the cylinder to bear up the impact of impulsive tension, then mark the correct statements.
(Take string to be light, breaking tension of the string is $2 x 10^{5} \mathrm{~N}$)

A. The angle made by the velocity of marble
with the length of string when it is just
stretched is 60°
B. The marble will move in a circular path of
varying radius with constant speed of
$5 \sqrt{3} m / s$., after the string is taut.
C. To answer above two options, the
volume of θ must be given.
D. The string will break if impulse duration
is less than 0.05 min .

D View Text Solution

10. In the figure, the block B of mass m starts
from rest at the top of a wedge W of mass M.

All surfaces are without friction. W can slide on the ground. B slides down onto the ground, moves along it with a speed v, has an elastic collision with the wall, and climbs back

A. From the beginning, till the collision with
the wall, the centre of mass of ' B plus
W^{\prime} does not move horizontally.
B. After te collision, the centre of mass of B
plus W moves with the velocity $\frac{2 m v}{m+M}$
C. When B reaches its highest position of

$$
W \text {, the speed of } W \text { is } \frac{2 m v}{m+M}
$$

D. When B reaches its highest position of

$$
W \text {, the speed of } W \text { is } \frac{m v}{m+M}
$$

Answer: A::B::C::D

- Watch Video Solution

11. Two blocks A and B of masses in and $2 m$ respectively placed on a smooth floor are connected by a spring. A third body C of mass
m moves with velocity v_{0} along the line joining
A and B and collides elastically with A. At a certain instant of time after collision it is found that the instantaneous velocities of A and B are same then:

A. the common velocity of A and B at time
t_{0} is $v / 3$
B. the spring constant is $k=\frac{m v_{0}^{2}}{2 x_{0}^{2}}$
C. the spring constant is $k=\frac{2 m v_{0}^{2}}{3 x_{0}^{2}}$

D. none of these

Answer: A::C::D

D Watch Video Solution

12. Figure shows two identical blocks each of mass m kept on a smooth floor. Block A is connected to front wall with a just taut straight string and block B is connected to rear wall with a relaxed spring. Assume that the floor of the train car is smooth and exerts
no horizontal forces on the blocks. Mark the correct statement(s).

A. When train moves with constant velocity
there is no force either in string or spring.
B. Immediately after the train speeds up
string gets taut and spring is
compressed such that force exerted by
each on respective blocks is same.
C. When train slows down block A moves
towards front wall.
D. When train slows down resultant force
on block A is non zero in ground frame.

Answer: A::C::D

- Watch Video Solution

13. A ball of mass 1 kg is dropped from a height of $3.2 m$ on smooth inclined plane. The coefficient of restitution for the collision is $e=1 / 2$. The ball's velocity become horizontal
after the collision.

A. the angle $\theta=\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
B. The speed of the ball after the collision

$$
=4 \sqrt{2} m s^{-1}
$$

C. The total loss in kinetic energy during the collision is 8 J .

D. The ball hits the inclined plane again

while travelling vertically downward.

Answer: A::B

D View Text Solution

14. A particle of mass m collides with another stationary particle of mass M such that the second particle starts moving and the first particle stops just after the collision. Then which of the following conditions must always be valid?
A. $\frac{m}{M} \leq 1$
B. $\frac{m}{M}=1$
C. $e=1$
D. $e \leq 1$

Answer: A::D

D Watch Video Solution

15. Consider two skaters A and B initially at
rest on ice -(friction is negligible) with A holding a ball. A has greater mass than B and
the ball has some significant mass. A throws
the ball to B. B catches it and throws it back
to A who catches it again. The magnitudes of
the skater's (excluding ball) final velocities, A momentum and kinetic energies (denoted
below as v, p and K respectively) are related as

A. $v_{A}=v_{0}$
B. $v_{A}<v_{B}, p_{A}<p_{B}$
C. $p_{A}=p_{B}, K_{A}<K_{B}$
D. $p_{A}<p_{B}, K_{A}<K_{B}$

- Watch Video Solution

16. A man is standing on a plank which is placed on smooth horizontal surface. There is sufficient friction between feet of man and plank. Now man starts running over plank,

correct statement is/are

A. Work done by friction on man with respect to ground is negative.
B. Work done by friction on man with
respect to ground is positive
C. Work done by friction on plank with respect to ground
D. Work done by friction on man with respect to plank is zero.

Answer: A::C::D

D Watch Video Solution

17. Two particles of equal mass in are projected
from the ground with speeds v_{1} and v_{2} at angles θ_{1}, and θ_{2} as shown in the figure. Given
$\theta_{2}>\theta_{1} \quad$ and $\quad v_{1} \cos \theta_{1}=v_{2} \cos \theta_{2}$ Which statement/s is/are correct?

A. Centre of mass of particles will move along a vertical line.
B. Centre of mass of particles will move along a line inclined at some angle with vertical.
C. Particle '1' will be above vertical. centre of mass level when both particles are in air.

D. Particle ' 2 ' will be above centre of mass level both particles are in air.

Answer: A::D

18. A particle A suffers an oblique elastic collision particle B that is at rest initially. If their masses with a are the same, then after the collision
A. their $K E$ may be equal
B. A continues to move in the original
direction while B remains at rest
C. they will move in mutually perpendicular directions
D. A comes to rest and B starts rections moving in the direction of the original motion of $A 2$

Answer: A::C::D

D Watch Video Solution

19. Suppose two particles 1 and 2 are projected in vertical plane simultaneously.

Their angles of projection are 30° and θ, respectively, with the horizontal. Let they
collide after a timet in air. Then

A. $\theta=\sin ^{-1}\left(\frac{4}{5}\right)$ and they will have same
speed just before the collision
B. $\theta=\sin ^{-1}\left(\frac{4}{5}\right)$ and they will have
different speed just before the collision

$$
\text { C. } x<1280 \sqrt{3}-960 m
$$

D. It is possible that the particles collide
when both of them are at their highest
point

Answer: B::C::D

D Watch Video Solution

20. A particle of mass $m_{1}=4 \mathrm{~kg}$ moving at $6 \hat{i} m s^{-1}$ perfectly elastically with a particle of mass $m_{2}=2$ moving at $3 \hat{i} m s^{-1}$
A. Velocity of centre of mass (CM) is $5 \hat{i} m s^{-1}$
B. The velocities of the particles relative to
the centre of mass have same magnitude.
C. Speed of individual particle before and
after collision remains same.
D. The velocity of particles relative to CM
after
collisioin
are
$\vec{v}_{1 f / c m}=-\hat{i} m s^{-1}, \vec{v}_{2 f / c m}=2 \hat{i} m s^{-1}$

Answer: A::D

D Watch Video Solution
21. Consider a block of mass 10 kg . which rests on as smooth surface and is subjected to a
horizontal force of $6 N$. If observer A is in a
fixed frame x.

A. The final speed of the block in $4 s$ is
$7.4 m s^{-1}$, if it has initial speed of
$5 \mathrm{~ms}^{-1}$ measured from fixed frame.
B. Same speed will be observed by an
observer B, attached to the x^{\prime} axis that moves at a constant velocity of $2 m s^{-1}$ relative to A
C. Principle of impulse and momentum is
valid for observers in any inertial
reference frame
D. Momentum of a body is reference frame
dependent.

- Watch Video Solution

22. Statement I. A particle strikes head-on with another stationary particle such that the first particle comes to rest after collision. The collision should necessarily be elastic.

Statement II: In elastic collision, there is no loss of momentum of the system of the particles.
A. Both assertion and reason are true and
reason is the correct explanation of
assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: D

D Watch Video Solution
23. Statement I: No external force acts on a
system of two spheres which undergo a perfectly elastic head-on collision. The minimum kinetic energy of this system is zero
if the net momentum of the system is zero.

Statement II: If any two bodies undergo a perfectly elastic head-on collision, at the instant of maximum deformation. the complete kinetic energy of the system is converted to' deformation potential energy of the system.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: C
24. Statement I: If a sphere of mass mmoving with speed u undergoes a perfectly elastic head-on collision with another sphere of heavier mass M at rest $(M>m)$, then direction of velocity of sphere of mass m is reversed due to collision (no external force acts on system of two spheres).

Statement II: During a collision of spheres of
unequal masses, the heavier mass exerts more force on the lighter mass in comparison to the
force which lighter mass exerts on the heavier one,
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: C

- Watch Video Solution

25. Statement I: If a ball projected up obliquely
from the ground breaks up into several fragments in its path, the centre of the system of all fragments moves in the same parabolic path compared to initial one till all fragments are in air.

Statement II: In the situation of Statement 1, at the instant of breaking, the fragments may be
thrown in different directions with different speeds.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: B

(Watch Video Solution

Assertion - Reasoning

1. Statement I: In a two-body collision, the momenta of the particles are equal and opposite to one another, before as well as after the collision when measured in the centre of mass frame.

Statement. II: The momentum of the system is
zero from the centre of mass frame.
A. Both assertion and reason are true and reason is the correct explanation of assertion.
B. Both assertion and reason are true but reason is not the correct explanation of assertion.
C. Assertion is true and reason is false.
D. Assertion is false and reason is true.

Answer: A

- Watch Video Solution

2. Three spheres, each of mass m, can slide freely on a frictionless, horizontal surface.

Spheres A and B are attached to an inextensible, inelastic cord of length l and are at rest in the position shown where sphere B is struck by sphere C which is moving to the right with a velocity v_{0}. Knowing that the cord is taut where sphere B is struck by sphere C
and assuming 'head on' inelastic impact between B and C, we cannot conserve kinetic energy of the entire system.

The
velocity of B immediately after collision is along unit vector
A. \hat{i}
B. $\frac{\hat{i}+\hat{j}}{\sqrt{2}}$
C. $\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}$
D. none of these

Answer: D

D View Text Solution

Linked Comprehension

1. Three spheres, each of mass m, can slide
freely on a frictionless, horizontal surface.
Spheres A and B are attached to an
inextensible, inelastic cord of length l and are
at rest in the position shown where sphere B
is struck by sphere C which is moving to the
right with a velocity v_{0}. Knowing that the cord is taut where sphere B is struck by sphere C and assuming 'head on' inelastic impact between B and C, we cannot conserve kinetic energy of the entire system.

Velocity
of A immediately after collision is along unit

vector

A. \hat{j}
B. $\frac{1}{2} \hat{i}+\frac{\sqrt{3}}{2} \hat{j}$
C. \hat{j}
D. none of these

Answer: B
2. Three spheres, each of mass m, can slide freely on a frictionless, horizontal surface.

Spheres A and B are attached to an inextensible, inelastic cord of length l and are at rest in the position shown where sphere B is struck by sphere C which is moving to the right with a velocity v_{0}. Knowing that the cord is taut where sphere B is struck by sphere C and assuming 'head on' inelastic impact between B and C, we cannot conserve kinetic energy of the entire system.

If velocity of C immediately after collision becomes $\frac{v_{0}}{2}$ in the initial direction of motion, the impulse due to string on sphere A is

> A. $\frac{m v_{0}}{8}$
> B. $\frac{m v_{0}}{2}$
> C. $\sqrt{\frac{m v_{0}}{4}}$
D. none of these

Answer: A

D View Text Solution

3. Three spheres, each of mass m, can slide freely on a frictionless, horizontal surface.

Spheres A and B are attached to an inextensible, inelastic cord of length l and are at rest in the position shown where sphere B is struck by sphere C which is moving to the right with a velocity v_{0}. Knowing that the cord is taut where sphere B is struck by sphere C
and assuming 'head on' inelastic impact between B and C, we cannot conserve kinetic energy of the entire system.

The magnitude of velocity of A immediately after collision is
A. $\frac{\sqrt{3 v_{0}}}{4}$
B. $\frac{v_{0}}{8}$

> C. $\frac{v_{0}}{4}$
> D. $\frac{\sqrt{m v_{0}}}{8}$

Answer: B

D View Text Solution

4. Three spheres, each of mass m, can slide
freely on a frictionless, horizontal surface.
Spheres A and B are attached to an inextensible, inelastic cord of length l and are at rest in the position shown where sphere B
is struck by sphere C which is moving to the right with a velocity v_{0}. Knowing that the cord is taut where sphere B is struck by sphere C and assuming 'head on' inelastic impact between B and C, we cannot conserve kinetic energy of the entire system.

The loss is kinetic energy of the system during collision is
A. $\left(17 m v_{0}^{2}\right)$
B. $\frac{15 m v_{0}^{2}}{64}$
C. $\frac{212 m v_{0}^{2}}{25}$
D. none of these

Answer: A

D View Text Solution

5. Collision is a physical process in which two or more objects, either particle masses or rigid bodies, experience very high force of
interaction for a very small duration. It is not
essential for the objects to physically touch
each other for collision to occur. Irrespective of
the nature of interactive force and the nature
of colliding bodies, Newton's second law holds
good on the system. Hence, momentum of the
system before and after the collision remains
conserved if no appreciable external force acts
on the system during collision.

The amount of energy loss during collision, if
at all, is indeed dependent on the nature of
colliding objects. The energy loss is observed
to be maximum when objects stick together
after collision. The terminology is to define collision as 'elastic' if no energy loss takes
place and to define collision as 'plastic' for maximum energy loss. The behaviour of system after collision depends on the position of colliding objects as well. A unidirectional motion of colliding objects before collision can
turn into two dimensional after collision if the
line joining the centre of mass of the two colliding objects is not parallel to the direction of velocity of each particle before collision.

Such type of collision is referred to as oblique collision which may be either two or three
dimensional.

According to the definition of collision in paragraph I, which of the following physical process is not a collision?
A. A projectile exploding into three
fragments at its highest point.
B. Two soap bubbles coalescing to form a
bubble of larger radius.
C. A vertically upward thrown particle changing direction at its highest point.

D. A piece of magnet thrown on a metallic

surface.

Answer: C

D Watch Video Solution

6. Collision is a physical process in which two or more objects, either particle masses or rigid bodies, experience very high force of interaction for a very small duration. It is not essential for the objects to physically touch
each other for collision to occur. Irrespective of
the nature of interactive force and the nature of colliding bodies, Newton's second law holds good on the system. Hence, momentum of the system before and after the collision remains conserved if no appreciable external force acts on the system during collision.

The amount of energy loss during collision, if
at all, is indeed dependent on the nature of colliding objects. The energy loss is observed
to be maximum when objects stick together after collision. The terminology is to define collision as 'elastic' if no energy loss takes
place and to define collision as 'plastic' for maximum energy loss. The behaviour of system after collision depends on the position of colliding objects as well. A unidirectional motion of colliding objects before collision can
turn into two dimensional after collision if the
line joining the centre of mass of the two colliding objects is not parallel to the direction of velocity of each particle before collision.

Such type of collision is referred to as oblique collision which may be either two or three dimensional.

For which of the following collisions, the
external force acting on the system during collision is not appreciable as mentioned in paragraph 1.
A. A ball striking a rigid wall (consider ball
as system)
B. A $5 k g$ mass thrown vertically up
exploding during its motion (5 kg mass is
the system).
C. A particle hitting a rigid bar of length L
lying on a frictionless surface (consider
rigid bar as the system).
D. Two particles moving towards each other
due to gravitational attraction and hitting each other (consider ally particle as system).

Answer: B

D Watch Video Solution
7. Collision is a physical process in which two or more objects, either particle masses or rigid bodies, experience very high force of interaction for a very small duration. It is not essential for the objects to physically touch each other for collision to occur. Irrespective of the nature of interactive force and the nature of colliding bodies, Newton's second law holds good on the system. Hence, momentum of the system before and after the collision remains conserved if no appreciable external force acts on the system during collision.

The amount of energy loss during collision, if
at all, is indeed dependent on the nature of
colliding objects. The energy loss is observed
to be maximum when objects stick together
after collision. The terminology is to define collision as 'elastic' if no energy loss takes
place and to define collision as 'plastic' for maximum energy loss. The behaviour of system
after collision depends on the position of colliding objects as well. A unidirectional motion of colliding objects before collision can
turn into two dimensional after collision if the
line joining the centre of mass of the two
colliding objects is not parallel to the direction
of velocity of each particle before collision.

Such type of collision is referred to as oblique collision which may be either two or three dimensional.

According to the definition of oblique collision
in the paragraph, which of the following collisions cannot be oblique'?
A. Collision between two point masses.
B. Collision between two rings of same radius.
C. Collision between two rings of different radius.

D. Collision between a particle and a ring of

 finite radius.
Answer: A

D Watch Video Solution

8. Collision is a physical process in which two or more objects, either particle masses or rigid bodies, experience very high force of
interaction for a very small duration. It is not
essential for the objects to physically touch
each other for collision to occur. Irrespective of
the nature of interactive force and the nature
of colliding bodies, Newton's second law holds
good on the system. Hence, momentum of the
system before and after the collision remains
conserved if no appreciable external force acts
on the system during collision.

The amount of energy loss during collision, if
at all, is indeed dependent on the nature of
colliding objects. The energy loss is observed
to be maximum when objects stick together
after collision. The terminology is to define collision as 'elastic' if no energy loss takes
place and to define collision as 'plastic' for maximum energy loss. The behaviour of system after collision depends on the position of colliding objects as well. A unidirectional motion of colliding objects before collision can
turn into two dimensional after collision if the
line joining the centre of mass of the two colliding objects is not parallel to the direction of velocity of each particle before collision.

Such type of collision is referred to as oblique collision which may be either two or three

dimensional.

Which of the following collisions is onedimensional?

b. $\xrightarrow{u_{1}} \rightarrow \rightarrow u_{2}$
B.

D.
d.

Answer: D
9. Collision is a physical process in which two or more objects, either particle masses or rigid bodies, experience very high force of interaction for a very small duration. It is not essential for the objects to physically touch
each other for collision to occur. Irrespective of
the nature of interactive force and the nature
of colliding bodies, Newton's second law holds
good on the system. Hence, momentum of the system before and after the collision remains
conserved if no appreciable external force acts
on the system during collision.

The amount of energy loss during collision, if
at all, is indeed dependent on the nature of colliding objects. The energy loss is observed
to be maximum when objects stick together after collision. The terminology is to define collision as 'elastic' if no energy loss takes place and to define collision as 'plastic' for maximum energy loss. The behaviour of system
after collision depends on the position of colliding objects as well. A unidirectional motion of colliding objects before collision can turn into two dimensional after collision if the
line joining the centre of mass of the two colliding objects is not parallel to the direction of velocity of each particle before collision.

Such type of collision is referred to as oblique collision which may be either two or three dimensional.

A $4 k g$ sphere moving with a velocity of $4 m / s$ collides with an identical sphere of 2 kg moving with $2 m / s$ as shown. Final kinetic energy is
less than initial kinetic energy. What type of
collision is this?

A. Elastic, one-dimensional
B. Inelastic, one-dimensional
C. Elastic, two-dimensional
D. Inelastic, two-dimensional

Answer: D

10. According to the principle of conservation of linear momentum if the external force acting on the system is zero, the linear momentum of the system will remain conserved. It means if the centre of mass of a
system is initially at rest, it will remain at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

A plank of mass M is placed on a smooth horizontal surface. light identical springs, each of stiffness K, are rigidly connected to struts
at the end of the plank as shown in Fig. When
the springs are in their unextended position, the distance between their free ends is $3 l$. A block of mass m is placed on the plank and pressed against one of the springs so that it is compressed to l. To keep the block at rest it is connected to the strut means of a light string. Initially, the system is at rest, Now the string is burnt.

The maximum displacement of the plank is
A. $\frac{5 m l}{M}$
B. $\frac{5 m l}{M+m}$
C. $\frac{3 m l}{M+m}$
D. $\frac{4 m l}{M+m}$

Answer: B

- Watch Video Solution

11. According to the principle of conservation of linear momentum if the external force acting on the system is zero, the linear
momentum of the system will remain
conserved. It means if the centre of mass of a
system is initially at rest, it will remain at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

A plank of mass M is placed on a smooth
horizontal surface. light identical springs, each
of stiffness K, are rigidly connected to struts
at the end of the plank as shown in Fig. When
the springs are in their unextended position,
the distance between their free ends is $3 l$. A
block of mass m is placed on the plank and pressed against one of the springs so that it is
compressed to l. To keep the block at rest it is connected to the strut means of a light string. Initially, the system is at rest, Now the string is burnt.

The maximum velocity of the plank is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{K m}{(M+m)} l} \\
& \text { B. } \sqrt{\frac{k}{(M+m)} l} \\
& \text { C. } \sqrt{\frac{K m}{M(M+m)}} l \\
& \text { D. } \sqrt{\frac{k M}{m(M+m)}} l
\end{aligned}
$$

Answer: C

D Watch Video Solution

12. According to the principle of conservation of linear momentum if the external force acting on the system is zero, the linear momentum of the system will remain conserved. It means if the centre of mass of a system is initially at rest, it will remain at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

A plank of mass M is placed on a smooth
horizontal surface. light identical springs, each
of stiffness K, are rigidly connected to struts
at the end of the plank as shown in Fig. When
the springs are in their unextended position, the distance between their free ends is $3 l$. A
block of mass m is placed on the plank and pressed against one of the springs so that it is compressed to l. To keep the block at rest it is connected to the strut means of a light string.

Initially, the system is at rest, Now the string is burnt.

The maximum kinetic energy of the block m is

$$
\begin{aligned}
& \text { A. } \frac{K m l^{2}}{2 M(M+m)} \\
& \text { B. } \frac{K m l^{2}}{M(M+m)} \\
& \text { C. } \frac{K M l^{2}}{2(M+m)}
\end{aligned}
$$

D. none of these

Answer: C

13. Two identical balls A and B. each of mass
$2 k g$ and radius R, are suspended vertically
from inextensible strings as shown in Fig. The
third ball C of mass 1 kg and radius
$r=(\sqrt{2}-1) R$ falls and hits A and B
symmetrically with $10 \mathrm{~m} / \mathrm{s}$. Speed of both A
and B just after the collision is $3 \mathrm{~m} / \mathrm{s}$.

speed of C just asfter collision is
A. $2 m / s$
B. $2 \sqrt{2} m / s$
C. $5 m / s$

$$
\text { D. }(\sqrt{2}-1) m / s
$$

Answer: A

D View Text Solution

14. Two identical balls A and B. each of mass
$2 k g$ and radius R, are suspended vertically from inextensible strings as shown in Fig. The third ball C of mass $1 k g$ and radius $r=(\sqrt{2}-1) R$ falls and hits A and B
symmetrically with $10 \mathrm{~m} / \mathrm{s}$. Speed of both A and B just after the collision is $3 m / s$.

Impulse provided by each sting during collision is
A. $6 \sqrt{2} N s$
B. 12 Ns
C. $3 \sqrt{2} N s$
D. 6 Ns

Answer: D

D View Text Solution

15. Two identical balls A and B. each of mass
$2 k g$ and radius R, are suspended vertically from inextensible strings as shown in Fig. The
third ball C of mass $1 k g$ and radius
$r=(\sqrt{2}-1) R$ falls and hits A and B
symmetrically with $10 \mathrm{~m} / \mathrm{s}$. Speed of both A
and B just after the collision is $3 m / s$.

The value of coefficient of restitution is
A. $\frac{1}{4}$
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}-1$
D. $\frac{1}{2}$

Answer: D

D View Text Solution

16. After falling from rest through a height h, a body of mass m begins to raise a body of mass
$M(M>m)$ connected to it through a pulley.
Determnethe time it will take for the body of mass M to return to its original position
A. $\frac{2 m}{M_{m}} \sqrt{\frac{2 h}{g}}$
B. $\frac{2 m}{M-m} \sqrt{\frac{2 h}{g}}$
C. $\frac{2 m}{M-m} \sqrt{\frac{h}{g}}$
D. $\frac{m}{M-m} \sqrt{\frac{2 h}{g}}$

Answer: B

- Watch Video Solution

17. After falling from rest through a height h, a body of mass m begins to raise a body of mass
$M(M>m)$ connected to it through a pulley.

Find the fraction of kinetic energy lost when
the body of mass M is jerked into motion

$$
\begin{aligned}
& \text { A. } \frac{M}{M+m} \\
& \text { B. } \frac{M}{M-m} \\
& \text { C. } \frac{2 M}{M+m} \\
& \text { D. } \frac{M}{2(M+m)}
\end{aligned}
$$

Answer: A

18. Three identical balls are connected by light inextensible strings with each other as shown and rest over a smooth horizontal table. Length of each string is l.

At moment $t=0$, ball B is imparted a velocity v_{0} perpendicular to the strings and then the system is left on its own.

Calculate the velocity of B just before A collides with ball C.

> A. $\frac{v_{0}}{3}$
> B. $\frac{2 v_{0}}{3}$
> C. $\frac{2 v_{0}}{5}$
D. none of these

Answer: A

D Watch Video Solution

19. Three identical balls are connected by light inextensible strings with each other as shown and rest over a smooth horizontal table.

Length of each string is l.

At moment $t=0$, ball B is imparted a velocity
v_{0} perpendicular to the strings and then the system is left on its own.

Calculate the velocity of A at the above given instant.
A. $\frac{v_{0}}{3}$
B. $\frac{2 v_{0}}{3}$
C. $\frac{2 v_{0}}{6}$
D. none of these

Answer: B
20. Three identical balls are connected by light inextensible strings with each other as shown and rest over a smooth horizontal table. Length of each string is l.

At moment $t=0$, ball B is imparted a velocity v_{0} perpendicular to the strings and then the system is left on its own.

If collision between the balls is completely inelastic, then
A. there is no loss of kinetic energy of the
system
B. entire kinetic energy of the system is lost
C. kinetic energy loss in the system is less
than 50%
D. kinetic energy loss in the system is more
than 50 \%

Answer: D

- Watch Video Solution

21. In Fig. a pulley is shown which is frictionless and a ring of mass m can slide on the string without any friction. One end of the string is attached to point B and to the other end, a block ' P ' of mass m is attached. The whole system lies in vertical plane.

If the
system is released from rest, it is found that
the system remains at rest. What is the value of θ
A. 30°
B. 45°
C. 60°
D. 75°

Answer: A

D Watch Video Solution
22. In Fig. a pulley is shown which is frictionless
and a ring of mass m can slide on the string without any friction. One end of the string is attached to point B and to the other end, a block ' P ' of mass m is attached. The whole system lies in vertical plane.

Now
another block ' C ' of same mass m is attached
to the block ' 13 ' and system is released from
rest. If a_{1} and a_{2} are the magnitudes of initial
accelerations of ring and blocks, respectively, then

$$
\begin{aligned}
& \text { A. } a_{1}+a_{2}=g \\
& \text { B. } a_{1}+2 a_{2}=g \\
& \text { C. } a_{1}=2 a_{2} \\
& \text { D. } 2 a_{1}=a_{2}
\end{aligned}
$$

Answer: B
23. In Fig. a pulley is shown which is frictionless
and a ring of mass m can slide on the string without any friction. One end of the string is attached to point B and to the other end, a block ' P ' of mass m is attached. The whole system lies in vertical plane.

If block
' C ' mentioned above was released from some
height and collided with ' P ' with some
velocity u, then find the velocity of the ring
just after the collision. The collision is perfectly inelastic.
A. u
B. $\frac{u}{2}$
C. $\frac{u}{4}$
D. $\frac{u}{3}$

Answer: D
24. A system of men and trolley is shown in Fig.

To the left, end of the string, a trolley of mass
M is connected on which a man of mass m is standing. To the right end of the string another trolley of mass m is connected on which a man of mass M is standing. Initially,
the system is at rest. All of a sudden both the men leap upwards simultaneously with the same velocity u w.r.t. ground.

Find the relative velocity of left man with respect to his trolley just after he leaps upwards.

$$
\begin{aligned}
& \text { A. } \frac{\mathrm{mu}}{m+M} \\
& \text { B. } \frac{M u}{m+M} \\
& \text { C. } \frac{2 \mathrm{mu}}{m+M}
\end{aligned}
$$

$$
\text { D. } \frac{2 \mathrm{mu}}{m+M}
$$

Answer: C

- Watch Video Solution

25. A system of men and trolley is shown in Fig.

To the left, end of the string, a trolley of mass
M is connected on which a man of mass m is standing. To the right end of the string another trolley of mass m is connected on which a man of mass M is standing. Initially,
the system is at rest. All of a sudden both the men leap upwards simultaneously with the same velocity u w.r.t. ground.

Find the impulse generated in the string connecting the trolleys during this process.

$$
\begin{aligned}
& \text { A. } \frac{M \mathrm{mu}}{m+M} \\
& \text { B. } \frac{\left(M^{2}+m^{2}\right) m}{m+M}
\end{aligned}
$$

> C. $\frac{m^{2} u}{m+M}$
> D. $\frac{M^{2} u}{m+M}$

Answer: B

D Watch Video Solution

26. A system of men and trolley is shown in Fig.

To the left, end of the string, a trolley of mass
M is connected on which a man of mass m is standing. To the right end of the string another trolley of mass m is connected on
which a man of mass M is standing. Initially, the system is at rest. All of a sudden both the men leap upwards simultaneously with the same velocity u w.r.t. ground.

Which is correct
A. When the men are at the highest point of their motion, the trolleys will also be
instantaneously at rest.
B. When the men are at the highest point of their motion, then the left trolley will
be moving downwards.
C. Impulse acting on both the men will be
same in the given process.

D. None of these

Answer: A

27. Two beads A and B of masses m_{1} and m_{2}
respectively, are threaded on a smooth circular
wire of radius a fixed in a vertical plane. B is
stationary at the lowest point when A is
gently dislodged from rest at the highest point. A collided with B at the lowest point.

The impulse given to B due to collision is just great enough to carry it to the level of the centre of the circle while A is immediately brought to rest by the impact.

Find the ratio $m_{1}: m_{2}$
A. 1
B. $\sqrt{2}$
C. $\frac{1}{\sqrt{2}}$

D. 2

Answer: C

D Watch Video Solution

28. Two beads A and B of masses m_{1} and m_{2}
respectively, are threaded on a smooth circular wire of radius a fixed in a vertical plane. B is stationary at the lowest point when A is gently dislodged from rest at the highest point. A collided with B at the lowest point.

The impulse given to B due to collision is just great enough to carry it to the level of the centre of the circle while A is immediately brought to rest by the impact.

What is
the coefficient of restituting between the beads?
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{\sqrt{2}}$

Answer: D
29. Two beads A and B of masses m_{1} and m_{2} respectively, are threaded on a smooth circular wire of radius a fixed in a vertical plane. B is stationary at the lowest point when A is gently dislodged from rest at the highest point. A collided with B at the lowest point.

The impulse given to B due to collision is just great enough to carry it to the level of the centre of the circle while A is immediately brought to rest by the impact.

If m_{2} again comes down and collides with m_{1}
then after the collision
A. m_{1} will rise the same height as risen by
B. m_{1} will rise the less height as risen by
m_{2}
C. m_{1} will rise the more height as risen by
m_{2}
D. m_{1} and m_{2} will move in opposite
directions

Answer: A

D Watch Video Solution
30. Two blocks of equal mass m are connected by an unstretched spring and the system is kept at rest on a frictionless horizontal surface. A constant force F is applied on the first block pulling away from the other as shown in Fig.

Then the displacement of the centre of mass in at time t is

$$
\text { A. } \frac{F t^{2}}{2 m}
$$

B. $\frac{F t^{2}}{3 m}$
C. $\frac{F t^{2}}{4 m}$
D. $\frac{F t^{2}}{m}$

Answer: C

- Watch Video Solution

31. Two blocks of equal mass m are connected by an unstretched spring and the system is kept at rest on a frictionless horizontal surface. A constant force F is applied on the
first block pulling away from the other as shown in Fig.

If the extension of the spring is x_{0} at time t, then the displacement of the first block at this instant is

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left(\frac{F t^{2}}{2 m}+x_{0}\right) \\
& \text { B. }-\frac{1}{2}\left(\frac{F t^{2}}{2 m}+x_{0}\right) \\
& \text { C. } \frac{1}{2}\left(\frac{F t^{2}}{2 m}-x_{0}\right) \\
& \text { D. } \frac{F t^{2}}{2 m}+x_{0}
\end{aligned}
$$

Answer: A

D Watch Video Solution

32. Two blocks of equal mass m are connected by an unstretched spring and the system is kept at rest on a frictionless horizontal surface. A constant force F is applied on the
first block pulling away from the other as shown in Fig.

If the extension of the spring is x_{0} at time t, then the displacement of the second block at this instant is

$$
\begin{aligned}
& \text { A. } \frac{F t^{2}}{2 m}-x_{0} \\
& \text { B. } \frac{1}{2}\left(\frac{F t^{2}}{2 m}+x_{0}\right) \\
& \text { C. } \frac{1}{2}\left(\frac{2 F^{2}}{m}-x_{0}\right) \\
& \text { D. } \frac{1}{2}\left(\frac{F t^{2}}{2 m}-x_{0}\right)
\end{aligned}
$$

33. Two equal spheres B and C, each of mass
m, are in contact on a smooth horizontal
table. A third sphere A of same size as that of
B or C but mass $m / 2$ impinges symmetrically on them with a velocity u and is itself brought to rest.

The coefficient of restitution between the two spheres A and B (or between A and C) is
A. $1 / 3$
B. $1 / 4$
C. $2 / 3$
D. $3 / 4$

Answer: A

D View Text Solution

34. Two equal spheres B and C, each of mass m, are in contact on a smooth horizontal table. A third sphere A of same size as that of
B or C but mass $m / 2$ impinges symmetrically on them with a velocity u and is itself brought to rest.

Find the velocity acquired by each of the spheres B and C after collision.
A. $\frac{u}{\sqrt{3}}$
B. $\frac{2 u}{\sqrt{3}}$
C. $\frac{u}{2 \sqrt{3}}$
D. $\frac{u}{2}$

Answer: C

D View Text Solution

35. Two equal spheres B and C, each of mass
m, are in contact on a smooth horizontal table. A third sphere A of same size as that of
B or C but mass $m / 2$ impinges symmetrically on them with a velocity u and is itself brought to rest.

The loss of $K E$ during collision is

$$
\begin{aligned}
& \text { A. } \frac{\mathrm{mu}^{2}}{8} \\
& \text { B. } \frac{\mathrm{mu}^{2}}{6} \\
& \text { C. } \frac{\mathrm{mu}^{2}}{3} \\
& \text { D. } \frac{\mathrm{mu}^{2}}{2}
\end{aligned}
$$

- View Text Solution

36. A pendulum consists of a wooden bob of mass M and length l. A bullet of mass m is
fired towards the pendulum with a speed v.
The bullet emerges immediately out of the bob
from the other side with a speed of $v / 2$ and the bob starts rising. Assume no loss of mass of bob takes place due to penetration.

What is the momentum transferred to the bob by the bullet?
A. $m v$
B. $\frac{m v}{2}$
C. $\frac{M v}{2}$
D. Mv

Answer: B

- Watch Video Solution

37. A pendulum consists of a wooden bob of mass M and length l. A bullet of mass m is fired towards the pendulum with a speed v.

The bullet emerges immediately out of the bob
from the other side with a speed of $v / 2$ and the bob starts rising. Assume no loss of mass of bob takes place due to penetration.

If the bob stops where the string becomes horizontal then v is

$$
\begin{aligned}
& \text { A. } \frac{2 M}{m} \sqrt{3 g l} \\
& \text { B. } \frac{2 M}{m} \sqrt{5 g l} \\
& \text { C. } \frac{2 M}{m} \sqrt{g l} \\
& \text { D. } \frac{2 M}{m} \sqrt{2 g l}
\end{aligned}
$$

- Watch Video Solution

38. A pendulum consists of a wooden bob of mass M and length l. A bullet of mass m is
fired towards the pendulum with a speed v.
The bullet emerges immediately out of the bob
from the other side with a speed of $v / 2$ and the bob starts rising. Assume no loss of mass of bob takes place due to penetration.

If the bob is just able to complete the circular motion, then tension at the lowest point just when the bob starts rising will be
A. $6 M g$
B. $5 M g$
C. $3 M g$
D. $M g$

Answer: A

D Watch Video Solution

39. According to the principle of conservation of linear momentum, if the external force acting on the system is zero, the linear
momentum of the system will remain
conserved. It means if the centre of mass of a
system is initially at rest, it will remain, at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

Two blocks of masses ' m 'and ' $2 m$ ' are
placed as shown in Fig. There is no friction anywhere. A spring of force constant k is attached to the bigger block. Mass ' m ' is kept
in touch with the spring but not attached to it.
' A ' and ' B ' are two supports attached to
' $2 m^{\prime}$. Now m is moved towards left so that spring is compressed by distance ' x ' and then
the system is released from rest.

Find the relative velocity of the blocks after
' m ' leaves contact with the spring.
A. $\sqrt{\frac{2 k}{3 m}}$
B. $3 x \sqrt{\frac{k}{2 m}}$
C. $x \sqrt{\frac{3 k}{2 m}}$
D. none of these

Answer: C

40. According to the principle of conservation of linear momentum, if the external force acting on the system is zero, the linear momentum of the system will remain conserved. It means if the centre of mass of a
system is initially at rest, it will remain, at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

Two blocks of masses ' m 'and ' $2 m$ ' are placed as shown in Fig. There is no friction anywhere. A spring of force constant k is
attached to the bigger block. Mass ' m ' is kept in touch with the spring but not attached to it.
' A ' and ' B ' are two supports attached to
' $2 m$ '. Now m is moved towards left so that spring is compressed by distance ' x ' and then the system is released from rest.

Now m arrives at B. Due to its inertia of motion ' m ' breaks the support ' B ' and due to some resistance offered by ' B ', the resulting velocity of ' m ' is reduced to half of
its previous value. Then what you can say about the velocity of $2 m$?
A. It is also reduced to half of its previous
value
B. It is reduced to less than half of its
previous value.
C. It is reduced to more than half of its
previous value.
D. It remains the same.

- View Text Solution

41. According to the principle of conservation of linear momentum, if the external force acting on the system is zero, the linear momentum of the system will remain conserved. It means if the centre of mass of a system is initially at rest, it will remain, at rest in the absence of external force, that is, the displacement of centre of mass will be zero.

Two blocks of masses ' m 'and ' $2 m$ ' are placed as shown in Fig. There is no friction
anywhere. A spring of force constant k is attached to the bigger block. Mass ' m ' is kept in touch with the spring but not attached to it.
' A ' and ' B ' are two supports attached to
' $2 m$ '. Now m is moved towards left so that spring is compressed by distance ' x ' and then the system is released from rest.

What is the loss in the energy of the system due to breaking of B ?
A. $\frac{3}{8} k x^{2}$
B. $\frac{3}{4} k x^{2}$
C. $\frac{1}{8} k x^{2}$
D. $\frac{5}{8} k x^{2}$

Answer: A

D View Text Solution

42. A ballistic pendulum is a device that was
used to measure the speeds of bullets before
the development of electronic tiring, devices.

The device consists of a large block of wood of
mass M, hanging from two long cords. A bullet of mass m is fired into the block. the bullet comes quickly into rest and the block

+ bullet rises to a vertical distance h before
the pendulum comes momentarily to rest as
the ends of the arc. Itbr. In the process. the
linear momentum is conserved. In such a collision. some kinetic energy is dissipated as heat: so mechanical energy is not conserved.

When there is a loss in mechanical energy, the
collision is said to be inelastic. Further when
two bodies coalesce, the collision is said to be perfectly inelastic.

After collision what is the combined velocity of
the bullet + block system?

$$
\begin{aligned}
& \text { A. } \frac{m}{M} u \\
& \text { B. } \frac{m}{M+m} u \\
& \text { C. } \frac{M}{M+m} u \\
& \text { D. } \frac{M+m}{M} u
\end{aligned}
$$

Answer: B

D View Text Solution

43. A ballistic pendulum is a device that was
used to measure the speeds of bullets before
the development of electronic tiring, devices.

The device consists of a large block of wood of
mass M, hanging from two long cords. A bullet of mass m is fired into the block. the bullet comes quickly into rest and the block + bullet rises to a vertical distance h before
the pendulum comes momentarily to rest as
the ends of the arc. Itbr. In the process. the
linear momentum is conserved. In such a
collision. some kinetic energy is dissipated as
heat: so mechanical energy is not conserved.
When there is a loss in mechanical energy, the
collision is said to be inelastic. Further when
two bodies coalesce, the collision is said to be perfectly inelastic.

What is the initial speed of the bullet in terms of height h ?
A. $\frac{m}{M} \sqrt{2 g h}$
B. $\frac{m}{M+m} \sqrt{2 g h}$
c. $\frac{M+m}{m} \sqrt{2 g h}$
D. $\sqrt{\frac{2 m}{M+m} g h}$

Answer: C

D View Text Solution

44. A ballistic pendulum is a device that was
used to measure the speeds of bullets before
the development of electronic tiring, devices.

The device consists of a large block of wood of
mass M, hanging from two long cords. A bullet of mass m is fired into the block. the bullet comes quickly into rest and the block + bullet rises to a vertical distance h before
the pendulum comes momentarily to rest as
the ends of the arc. Itbr. In the process. the
linear momentum is conserved. In such a
collision. some kinetic energy is dissipated as
heat: so mechanical energy is not conserved.
When there is a loss in mechanical energy, the
collision is said to be inelastic. Further when
two bodies coalesce, the collision is said to be perfectly inelastic.

The collision of block-bullet system is
A. perfectly elastic
B. partially inelastic
C. partially elastic
D. perfectly inelastic

Answer: D

D View Text Solution

45. A ballistic pendulum is a device that was
used to measure the speeds of bullets before
the development of electronic tiring, devices.

The device consists of a large block of wood of
mass M, hanging from two long cords. A bullet of mass m is fired into the block. the bullet comes quickly into rest and the block + bullet rises to a vertical distance h before
the pendulum comes momentarily to rest as
the ends of the arc. Itbr. In the process. the
linear momentum is conserved. In such a
collision. some kinetic energy is dissipated as
heat: so mechanical energy is not conserved.
When there is a loss in mechanical energy, the
collision is said to be inelastic. Further when
two bodies coalesce, the collision is said to be perfectly inelastic.

The energy dissipated as heat in the collision is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m u^{2}-m g h \\
& \text { B. } \frac{1}{2} m u^{2}-(M+m) g h \\
& \text { C. } \frac{1}{2}(M+m) u^{2}-(M+m) g h
\end{aligned}
$$

D. cannot be estimated

Answer: B

D View Text Solution

46. Two identical balls, each of mass m, are
tied with a string and kept on a frictionless
surface. Initially, the string is slack. They are given velocities $2 u$ and u. in the same direction. Collision between the balls is perfectly elastic.

After the first collision, what is the total loss in
kinetic energy of the balls?
A. $2 m u^{2}$
B. $m u^{2}$
C. $3 \mathrm{mu}^{2}$
D. zero

Answer: D
47. Two identical balls, each of mass m, are tied with a string and kept on a frictionless surface. Initially, the string is slack. They are given velocities $2 u$ and u. in the same direction.

Collision between the balls is perfectly elastic.

What is the final in kinetic energy of the balls?
A. $m u^{2} / 4$

B. $\mathrm{mu}^{2} / 2$

C. $3 \mathrm{mu}^{2} / 4$
D. none of these

Answer: A

D View Text Solution

48. Two identical balls, each of mass m, are
tied with a string and kept on a frictionless
surface. Initially, the string is slack. They are given velocities $2 u$ and u. in the same
direction. Collision between the balls is perfectly elastic.

What is the impulse generated in the string during the second collision?
A. $m u / 2$
B. $\mathrm{mu} / 4$
C. $(2 \mathrm{mu}) / 3$
D. none of these

Answer: A

D View Text Solution

49. The following problems illustrate the effect of a time-dependent force of a large average magnitude which acts on a moving object only
for a short duration. Such forces are called
'impulsive' forces. According to the impulsemomentum theorem, impulse delivered to a body is equal to the change of linear momentum of the body.

A ball of mass $250 g$ is thrown with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball strikes a bat and it is hit straight back along the same line at a speed of
$50 \mathrm{~m} / \mathrm{s}$. Variation of the interaction force, as long as the ball remains in contact with the bat, is as shown in Fig.

Maximum force exerted by the bat on the ball
is
A. 2500 N
B. 5000 N
C. $7500 N$
D. 1250 N

Answer: B
50. The following problems illustrate the effect of a time-dependent force of a large average magnitude which acts on a moving object only
for a short duration. Such forces are called
'impulsive' forces. According to the impulsemomentum theorem, impulse delivered to a body is equal to the change of linear momentum of the body.

A ball of mass $250 g$ is thrown with a speed of
$30 \mathrm{~m} / \mathrm{s}$. The ball strikes a bat and it is hit
straight back along the same line at a speed of
$50 \mathrm{~m} / \mathrm{s}$. Variation of the interaction force, as
long as the ball remains in contact with the bat, is as shown in Fig.

Average force exerted by the bat on the ball is

Let us consider another example. The given ball of mass $250 g$ is dropped from a height $5 m$ on a hard floor. Force exerted by the floor on
the ball, as long as these are in contact, varies with time as shown in Fig.

A. 5000 N
B. 1250 N
C. 2500 N
D. 7500 N

Answer: C

D Watch Video Solution

51. The following problems illustrate the effect of a time-dependent force of a large average magnitude which acts on a moving object only
for a short duration. Such forces are called
'impulsive' forces. According to the impulsemomentum theorem, impulse delivered to a body is equal to the change of linear momentum of the body.

A ball of mass $250 g$ is thrown with a speed of $30 \mathrm{~m} / \mathrm{s}$. The ball strikes a bat and it is hit straight back along the same line at a speed of
$50 \mathrm{~m} / \mathrm{s}$. Variation of the interaction force, as long as the ball remains in contact with the bat, is as shown in Fig.

Linear momentum of the ball immediately after colliding with the floor will be
A. $1.5 \mathrm{kgm} / \mathrm{s}$
B. $2.5 \mathrm{kgm} / \mathrm{s}$
C. $4 \mathrm{kgm} / \mathrm{s}$
D. $0.5 \mathrm{kgm} / \mathrm{s}$

Answer: A

D Watch Video Solution
52. The following problems illustrate the effect of a time-dependent force of a large average magnitude which acts on a moving object only for a short duration. Such forces are called
'impulsive' forces. According to the impulsemomentum theorem, impulse delivered to a body is equal to the change of linear momentum of the body.

A ball of mass $250 g$ is thrown with a speed of
$30 \mathrm{~m} / \mathrm{s}$. The ball strikes a bat and it is hit
straight back along the same line at a speed of
$50 \mathrm{~m} / \mathrm{s}$. Variation of the interaction force, as
long as the ball remains in contact with the bat, is as shown in Fig.

After
collision with the hard floor, the ball will bounce to a height
A. $0.6 m$
B. $2.4 m$
C. $1.2 m$
D. $1.8 m$

Answer: D

D Watch Video Solution

53. Two persons, A of mass 60 kg and B of mass

40 kg , are standing on a horizontal platform of mass 50 kg . The platform is supported on wheels on a horizontal frictionless surface and
is initially at rest. Consider the following situations.

(i) Both A and B jump from the platform simultaneously and in the same horizontal direction.
(ii) A jumps first in a horizontal direction and after a few seconds B also jumps in the same direction. In both the situations above, just after the jump, the person (A or B) moves
away from the platform with a speed of $3 \mathrm{~m} / \mathrm{s}$ relative to the platform and along the horizontal.

In situation (i), just after both A and B jump
from the platform, velocity of centre of mass of
the system (A, B and the platform) is
A. $2 m / s$
B. $6 m / s$
C. $5 m / s$
D. none of these

- Watch Video Solution

54. Two persons, A of mass 60 kg and B of mass 40 kg , are standing on a horizontal platform of mass 50 kg . The platform is supported on wheels on a horizontal frictionless surface and is initially at rest.

Consider the following situations.

(i) Both A and B jump from the platform simultaneously and in the same horizontal direction.
(ii) A jumps first in a horizontal direction and after a few seconds B also jumps in the same direction. In both the situations above, just after the jump, the person (A or B) moves away from the platform with a speed of $3 \mathrm{~m} / \mathrm{s}$ relative to the platform and along the horizontal.

Final speed of the platform in situation (i), i.e., just after both A and B have jumped will be a.
A. $2 m / s$
B. $6 m / s$
C. $5 m / s$
D. none of these

Answer: A

D Watch Video Solution

55. Two persons, A of mass 60 kg and B of mass

40 kg , are standing on a horizontal platform of mass 50 kg . The platform is supported on
wheels on a horizontal frictionless surface and
is initially at rest. Consider the following situations.

(i) Both A and B jump from the platform simultaneously and in the same horizontal direction.
(ii) A jumps first in a horizontal direction and after a few seconds B also jumps in the same direction. In both the situations above, just
after the jump, the person (A or B) moves
away from the platform with a speed of $3 \mathrm{~m} / \mathrm{s}$
relative to the platform and along the horizontal.

Final speed of the platform in situation (ii), i.e., just after B has jumped, will be nearly
A. $7.5 m / s$
B. $5.5 m / s$
C. $4.5 \mathrm{~m} / \mathrm{s}$
D. $2.5 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

56. A string with one end fixed on a rigid wall, passing over a fixed frictionless pulley at a distance of $2 m$ from the wall, has a point mass
M of 2 kg attached to it at a distance of 1 m
from the wall. A mass in of 0.5 kg is attached to
the free end. The system is initially held at rest
so that the string is horizontal between wall
and pulley and vertical beyond the pulley as
shown in Fig. The system is released from the rest from the position as shown.

The ratio of velocity of M and m when M strikes the wall is
A. $\frac{\sqrt{5}}{2}$
B. $\frac{2}{\sqrt{5}}$
C. $\frac{3}{\sqrt{5}}$
D. $\frac{\sqrt{5}}{3}$

Answer: A

D View Text Solution

57. A string with one end fixed on a rigid wall, passing over a fixed frictionless pulley at a distance of $2 m$ from the wall, has a point mass

M of $2 k g$ attached to it at a distance of $1 m$
from the wall. A mass m of 0.5 kg is attached to the free end. The system is initially held at
rest so that the stirng is horizontal between
wall and pulley and vertical beyond the pulley as shown in figure.

What will be the speed with which point mass
M will hit the wall when the system is released? $\left(g=10 m s^{-2}\right)$

> A. $2\left(\frac{\sqrt{5+\sqrt{5}}}{6}\right) \mathrm{m} / \mathrm{s}$
> B. $2\left(\frac{\sqrt{5-\sqrt{5}}}{6}\right) \mathrm{m} / \mathrm{s}$
> C. $5\left(\frac{\sqrt{5-\sqrt{5}}}{6}\right) \mathrm{m} / \mathrm{s}$
> D. $5\left(\frac{\sqrt{5+\sqrt{5}}}{6}\right) \mathrm{m} / \mathrm{s}$

Answer: C

D Watch Video Solution

58. Two identical shells are fired from a point on the ground with same muzzle velocity at
angle of elevation $\alpha=45^{\circ}$ and $\beta=\tan ^{-1} 3$ towards top of a cliff, 20 m away from the point of firing. If both the shells reach the top simultaneously, then
muzzle velocity is
A. $10 m / s$
B. $5 m / s$
C. $15 m / s$
D. $20 \mathrm{~m} / \mathrm{s}$

Answer: D
59. Two identical shells are fired from a point on the ground with same muzzle velocity at angle of elevation $\alpha=45^{\circ}$ and $\beta=\tan ^{-1} 3$ towards top of a cliff, 20 m away from the point
of firing. If both the shells reach the top simultaneously, then
height of the cliff is
A. 20 m
B. 10 m
C. $15 m$

D. 30 m

Answer: B

D Watch Video Solution

60. Two identical shells are fired from a point on the ground with same muzzle velocity at angle of elevation $\alpha=45^{\circ}$ and $\beta=\tan ^{-1} 3$ towards top of a cliff, 20 m away from the point of firing. If both the shells reach the top
simultaneously, then
time interval between two frings is
A. $\sqrt{10}-\sqrt{2} s$
B. $\sqrt{10}+\sqrt{2} s$
C. $\sqrt{10}-\sqrt{3} s$
D. $\sqrt{10}+\sqrt{3} s$

Answer: A

D Watch Video Solution
61. Two identical shells are fired from a point
on the ground with same muzzle velocity at
angle of elevation $\alpha=45^{\circ}$ and $\beta=\tan ^{-1} 3$
towards top of a cliff, 20 m away from the point
of firing. If both the shells reach the top simultaneously, then

If just before striking the top of cliff, the two
shells get stuck together, considering elastic collision of combined body with the top of cliff,
then maximum height reached by the combined body is
A. $20 m$
B. $10 m$
C. $24 m$
D. $12 m$

Answer: D

D Watch Video Solution

62. A ball of mass m is thrown at an angle of
45° to the horizontal,, from the top of a $65 m$ high tower $A B$ as shown in Fig. at $t=0$.

Another identical ball is thrown with velocity
$20 \mathrm{~m} / \mathrm{s}$ horizontally towards $A B$ from the top of a $30 m$ high tower $C D 1 s$ after the projection of the first ball. Both the balls move the same vertical plane. If they collide in midair,

the two balls will collide at time $t=$
A. $2 s$
B. $5 s$
C. $10 s$
D. $3 s$

Answer: A

D Watch Video Solution

63. A ball of mass m is thrown at an angle of
45° to the horizontal,, from the top of a $65 m$ high tower $A B$ as shown in Fig. at $t=0$.

Another identical ball is thrown with velocity
$20 \mathrm{~m} / \mathrm{s}$ horizontally towards $A B$ from the top of a 30 m high tower $C D 1 s$ after the projection of the first ball. Both the balls move the same vertical plane. If they collide in midair,

the height from the ground where the two balls will collide is
A. $15 m$
B. $25 m$
C. $10 m$
D. 20 m

Answer: B

D Watch Video Solution

64. A ball of mass m is thrown at an angle of
45° to the horizontal,, from the top of a $65 m$ high tower $A B$ as shown in Fig. at $t=0$.

Another identical ball is thrown with velocity
$20 \mathrm{~m} / \mathrm{s}$ horizontally towards $A B$ from the top of a 30 m high tower $C D 1 s$ after the projection of the first ball. Both the balls move the same vertical plane. If they collide in midair,

the distance $A C$ is
A. 20 m
B. $30 m$

C. $40 m$

D. 20 m

Answer: C

- Watch Video Solution

65. A ball of mass m is thrown at an angle of
45° to the horizontal,, from the top of a $65 m$ high tower $A B$ as shown in Fig. at $t=0$.

Another identical ball is thrown with velocity $20 \mathrm{~m} / \mathrm{s}$ horizontally towards $A B$ from the top
of a $30 m$ high tower $C D 1 s$ after the projection of the first ball. Both the balls move the same vertical plane. If they collide in midair,

. the velocity of combined ball just after they struck together is

$$
\text { A. }-5 i-20 j m / s
$$

$$
\text { B. } 10 i-20 j m / s
$$

$$
\begin{aligned}
& \text { C. }-10 i-20 j m / s \\
& \text { D. }-5 i+10 j m / s
\end{aligned}
$$

Answer: A

D Watch Video Solution

66. A ball A of mass m is suspended by a thread of length $r=1.2 m$. Another ball B of mass $2 m$ is projected from the ground with
velocity it $u=9 m / s$ such that at the highest point of its trajectory it collides head-on
elastically with ball A. It is observed that during subsequent motion, tension in the thread at the highest point is equal to $m g$.

highest point of B, the velocity of ball A is
A. $6 \sqrt{2} m / s$
B. $2 \sqrt{6} \mathrm{~m} / \mathrm{s}$
C. $3 \sqrt{2} m / s$
D. $3 \sqrt{6} m / s$

Answer: A

D View Text Solution

67. A ball A of mass m is suspended by a thread of length $r=1.2 m$. Another ball B of mass $2 m$ is projected from the ground with
velocity it $u=9 m / s$ such that at the highest point of its trajectory it collides head-on
elastically with ball A. It is observed that during subsequent motion, tension in the thread at the highest point is equal to $m g$.

The angle of projection (θ) of ball B is
A. 30°
B. 60°
C. 45°
D. 75°

Answer: B

D View Text Solution

68. A ball A of mass m is suspended by a thread of length $r=1.2 m$. Another ball B of mass $2 m$ is projected from the ground with
velocity it $u=9 m / s$ such that at the highest point of its trajectory it collides head-on
elastically with ball A. It is observed that during subsequent motion, tension in the thread at the highest point is equal to $m g$.

$B(2 m)$

The height of the point of suspension of ball A
from the ground is

$$
\text { A. } \frac{81}{40} m
$$

$$
\begin{aligned}
& \text { B. } \frac{129}{40} m \\
& \text { C. } \frac{81}{20} m \\
& \text { D. } \frac{101}{40} m
\end{aligned}
$$

Answer: B

D View Text Solution

69. Two identical buggies of each of mass

150 kg move one after the other friction with same velocity $4 \frac{m}{s}$. A man of mass m rides the rear buggy. At a certain moment, the man
jumps into the front buggy with a velocity v relative to his buggy. As a result of this process, real boggy stops. If the sum of kinetic energies of the man and the front buggy just after collision with the from buggy differs from that just before collision by 2700 J then the mass m of the man is

A. 60 kg

B. 75 kg
C. 50 kg
D. 90 kg

Answer: C

D Watch Video Solution

70. Two identical buggies of each of mass

150 kg move one after the other friction with same velocity $4 m / s$. A man of mass m rides
the rear buggy. At a certain moment, the man
jumps into the front buggy with a velocity v relative to his buggy. As a result of this process, real boggy stops. If the sum of kinetic energies of the man and the front buggy just
after collision with the from buggy differs from
that just before collision by $2700 J$ then

The velocity v of the man relartive to the buggy is
A. $16 m / s$
B. $8 m / s$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $15 m / s$

Answer: A
71. In the arrangement shown in Fig. the ball and the block have the same mass $m=1 \mathrm{~kg}$ each, $\theta=60^{\circ}$ and length $l=2.50 \mathrm{~m}$.

Coefficient of friction between the block and
the floor is 0.5 . When the ball is released from
the position shown in Fig. it collides with the block and the block stops after moving a distance 2.50 m .

The velocity of block just after collision is
A. $10 \mathrm{~m} / \mathrm{s}$
B. $5 m / s$
C. $2.5 m / s$
D. $3 m / s$

Answer: B

D Watch Video Solution

72. In the arrangement shown in Fig. the ball and the block have the same mass $m=1 \mathrm{~kg}$ each, $\quad \theta=60^{\circ}$ and length $l=2.50 \mathrm{~m}$.

Coefficient of friction between the block and the floor is 0.5 . When the ball is released from the position shown in Fig. it collides with the block and the block stops after moving a distance 2.50 m .

The coefficient of restitution for collision
between the ball and the block is
A. 0.5
B. 0.75
C. 1.0

D. 0.3

Answer: C

- Watch Video Solution

73. A ball of mass in $m=1 \mathrm{~kg}$ is hung vertically by a thread of length $l=1.50 \mathrm{~m}$. Upper end of the thread is attached to the ceiling of a trolley of mass $M=4 \mathrm{~kg}$. Initially, the trolley is
stationary and it is free to move along horizontal rails without friction. A shell of
mass $m=1 \mathrm{~kg}$, moving horizontally with
velocity $v_{0}=6 m / s$ collides with the ball and gets stuck with it. As a result, the thread starts to deflect towards right.

The velocity of the combined body just after collision is
A. $2 m / s$
B. $3 m / s$
C. $1 m / s$

$$
\text { D. } 4 m / s
$$

Answer: B

- Watch Video Solution

74. A ball of mass in $m=1 k g$ is hung vertically by a thread of length $l=1.50 \mathrm{~m}$.

Upper end of the thread is attached to the ceiling of a trolley of mass $M=4 k g$. Initially, the trolley is stationary and it is free to move
along horizontal rails without friction. A shell of mass $m=1 \mathrm{~kg}$, moving horizontally with velocity $v_{0}=6 m / s$ collides with the ball and gets stuck with it. As a result, the thread starts to deflect towards right.

At the time of maximum deflection of the thread with vertical, the trolley will move with velocity
A. $2 m / s$
B. $3 m / s$
C. $1 m / s$
D. $4 m / s$

Answer: C

D Watch Video Solution

75. A ball of mass in $m=1 \mathrm{~kg}$ is hung vertically by a thread of length $l=1.50 \mathrm{~m}$. Upper end of
the thread is attached to the ceiling of a
trolley of mass $M=4 k g$. Initially, the trolley is
stationary and it is free to move along horizontal rails without friction. A shell of mass $m=1 \mathrm{~kg}$, moving horizontally with
velocity $v_{0}=6 \mathrm{~m} / \mathrm{s}$ collides with the ball and gets stuck with it. As a result, the thread starts to deflect towards right.

The maximum deflection of the thread with the vertical is
A. $\cos ^{-1}\left(\frac{4}{5}\right)$
B. $\cos ^{-1}\left(\frac{3}{5}\right)$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. $\cos ^{-1}\left(\frac{3}{4}\right)$

Answer: A

- Watch Video Solution

76. Two balls of masses $m_{1}=100 g$ and $m_{2}=300 g$ are suspended from point A by two equal inextensible threads, each of length
$l=\frac{32}{35} m$. Ball of mass m_{1} is drawn aside and
held at the same level as A but at a distance
$\left(\frac{\sqrt{3}}{2}\right) l$ from A, as shown in Fig. When ball
m_{1} is released, it collides elastically with the stationary ball of mass m_{2}.

m_{2}

Velocity u_{1} with which the hall of mass m_{1} collides with the other ball is
A. $1 m / s$
B. $2 m / s$
C. $3 m / s$
D. $4 m / s$

Answer: D
77. Two balls of masses $m_{1}=100 \mathrm{~g}$ and $m_{2}=300 g$ are suspended from point A by two equal inextensible threads, each of length
$l=\frac{32}{35} m$. Ball of mass m_{1} is drawn aside and held at the same level as A but at a distance $\left(\frac{\sqrt{3}}{2}\right) l$ from A, as shown in Fig. When ball m_{1} is released, it collides elastically with the stationary ball of mass m_{2}.
A. 0.20 m
B. 0.50 m
C. 0.75 m
D. $1 m$

Answer: A

D View Text Solution

78. Two identical blocks A and B each of mass
$2 k g$ are hanging stationary by a light inextensible flexible string, passing over a light and frictionless pulley, as shown in Fig. A shell
C of mass 1 kg moving vertically upwards with velocity $9 m / s$ collides with block B and gets stuck to it.

Calculate the time after which block B starts moving downwards.
A. $0.90 s$
B. $1 s$
C. 0.60 s
D. ${ }^{`} 0.30 \mathrm{~s}$

Answer: A

D Watch Video Solution

79. Two identical blocks A and B each of mass
$2 k g$ are hanging stationary by a light inextensible flexible string, passing over a light
and frictionless pulley, as shown in Fig. A shell
C of mass 1 kg moving vertically upwards with
velocity $9 m / s$ collides with block B and gets
stuck to it.

The maximum height reached by B
A. $0.81 m$
B. 0.36 m
C. $0.49 m$
D. 0.25 m

Answer: A

- Watch Video Solution

80. Two identical blocks A and B each of mass
$2 k g$ are hanging stationary by a light inextensible flexible string, passing over a light
and frictionless pulley, as shown in Fig. A shell
C of mass 1 kg moving vertically upwards with
velocity $9 m / s$ collides with block B and gets
stuck to it.

The loss of mechanical energy up to that instant is
A. $32.4 J$
B. 40 J
C. 16.5 J
D. 12.5 J

Answer: A

D Watch Video Solution

81. A pan of mass $m=1.5 \mathrm{~kg}$ and a block of mass $M=3 k g$ are connected to each other by a light inextensible string, passing over a
light pulley as shown in Fig. Initially, the block is resting on a horizontal floor. A ball of mass $m_{0}=0.5 \mathrm{~kg}$ collides with the pan at a speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$. Consider this instant of collision as $t=0$. Assume collision to be perfectly inelastic. Now, Fig. answer the following questions based on the above information.

Mark the correct statement(s) for this situation
A. After the collision, the pan + ball
system moves downwards with
decreasing speed.
B. After the collision, the block is moving
upwards with the same speed with -
which the ball + pan system is moving
downwards
C. The block will jerk for a number of times
during its motion.
D. All of these

Answer: D

D Watch Video Solution

82. A pan of mass $m=1.5 \mathrm{~kg}$ and a block of
mass $M=3 k g$ are connected to each other by a light inextensible string, passing over a light pulley as shown in Fig. Initially, the block is resting on a horizontal floor. A ball of mass $m_{0}=0.5 \mathrm{~kg}$ collides with the pan at a speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$. Consider this instant of collision as $t=0$. Assume collision to be perfectly
inelastic. Now, Fig. answer the following questions based on the above information.

Find the time t at which the block strikes the floor for the first time
A. $1 s$
B. 2
C. $4 s$
D. $5 s$

Answer: B

D Watch Video Solution

83. A pan of mass $m=1.5 \mathrm{~kg}$ and a block of mass $M=3 k g$ are connected to each other by a light inextensible string, passing over a
light pulley as shown in Fig. Initially, the block is resting on a horizontal floor. A ball of mass $m_{0}=0.5 \mathrm{~kg}$ collides with the pan at a speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$. Consider this instant of collision as $t=0$. Assume collision to be perfectly inelastic. Now, Fig. answer the following questions based on the above information.

Find the velocity of pan + ball system at
$t=2.6 s$. Assume that the block comes to rest instantaneously after striking the floor.
A. $4 m / s$ downward
B. $4 m / s$ upward

C. $0.6 m / s$ upward

D. $0.4 m / s$ downward

Answer: D

D Watch Video Solution

84. A pan of mass $m=1.5 \mathrm{~kg}$ and a block of mass $M=3 k g$ are connected to each other by a light inextensible string, passing over a light pulley as shown in Fig. Initially, the block is resting on a horizontal floor. A ball of mass
$m_{0}=0.5 \mathrm{~kg}$ collides with the pan at a speed $v_{0}=20 \mathrm{~m} / \mathrm{s}$. Consider this instant of collision as $t=0$. Assume collision to be perfectly inelastic. Now, Fig. answer the following questions based on the above information.

. Find the maximum height reached by the block alter the second jerk.
A. $0.2 m$
B. $0.64 m$
C. $0.16 m$
D. No jerk for the second time

Answer: C
85. A horizontal frictionless rod is threaded
through a bead of mass m. The length of the cart is L and the radius of the bead, r, is very small in comparison with $L(r \ll L)$. Initially at $(t=0)$ the bead is at the right edge of the cart. The can is struck and as a result, it moves with velocity v_{0} towards right. When the bead collides with the cart's walls, the collisions are always completely elastic.

What is the velocity of the cart just after the first collision?
A. $\frac{-m v_{0}}{m+M}$
B. $\frac{M v_{0}}{m+M}$
C. $\frac{M-m}{M+m} v_{0}$
D. $\frac{2 M}{m+M} v_{0}$

Answer: C

D Watch Video Solution

86. A horizontal frictionless rod is threaded
through a bead of mass m. The length of the
cart is L and the radius of the bead, r, is very
small in comparison with $L(r \ll L)$.
Initially at $(t=0)$ the bead is at the right edge
of the cart. The can is struck and as a result, it moves with velocity v_{0} towards right. When the bead collides with the cart's walls, the
collisions are always completely elastic.

Velocity of bead just after the first collision is
A. $\frac{-m v_{0}}{m+M}$
B. $\frac{M v_{0}}{m+M}$
c. $\frac{M-m}{M+m} v_{0}$
D. $\frac{2 M}{m+M} v_{0}$

Answer: D

- Watch Video Solution

87. A horizontal frictionless rod is threaded
through a bead of mass m. The length of the
cart is L and the radius of the bead, r, is very
small in comparison with $L(r \ll L)$.

Initially at $(t=0)$ the bead is at the right edge
of the cart. The can is struck and as a result, it moves with velocity v_{0} towards right. When the bead collides with the cart's walls, the
collisions are always completely elastic.

The first collision takes place at time ti and the second collision takes place at time t_{2}. Find

$$
t_{2}-t_{1}
$$

A. $\frac{2 L}{v_{0}}$
B. $\frac{L}{v_{0}}$
C. $\frac{L}{2 v_{0}}$
D. $\frac{L}{3 v_{0}}$

Answer: B

D Watch Video Solution

88. An initially stationary box on a frictionless
floor explodes into two pieces, piece A with mass m_{A} and piece B with mass m_{B}. Two pieces then move across the floor along x-axis.

Graph of position versus time for the two pieces are given

Which graphs pertain to physically possible explosion?
A. II,IV,V
B. I,III,VI
C. I,III,V
D. II, III, VI

Answer: A

D Watch Video Solution

89. An initially stationary box on a frictionless
floor explodes into two pieces, piece A with mass m_{A} and piece B with mass m_{B}. Two pieces then move across the floor along x-axis.

Graph of position versus time for the two pieces are given

If graphs are possible then. in which of the following case, external impulse must be acting on the box?
A. II
B. IV
C. V

D. VI

Answer: D

D Watch Video Solution

90. A circular disc of mass ' $2 m$ ' and radius
' $3 r$ ' is resting on a flat frictionless surface.

Another circular disc of mass m and radius
' $2 r^{\prime}$, moving with a velocity ' u '. hits the first disc as shown in the figure. The collision is elastic.

What is the tangential component of final velocity of the smaller disc?
A. u
B. $\frac{u}{2}$
C. $\frac{3 u}{2}$
D. $\frac{4 u}{5}$

Answer: D

D Watch Video Solution

91. A circular disc of mass ' $2 m$ ' and radius
' $3 r^{\prime}$ ' is resting on a flat frictionless surface.
Another circular disc of mass m and radius
' $2 r$ ', moving with a velocity ' u '. hits the first disc as shown in the figure. The collision is elastic.

What is the magnitude of normal component of final velocity of the smaller disc'?
A. $\frac{u}{5}$
B. $\frac{2 u}{512}$
C. $\frac{3 u}{5}$
D. $\frac{4 u}{5}$

Answer: A

D Watch Video Solution

92. A circular disc of mass ' $2 m$ ' and radius
' $3 r$ ' is resting on a flat frictionless surface.
Another circular disc of mass m and radius
' $2 r$ ', moving with a velocity ' u '. hits the first disc as shown in the figure. The collision is elastic.

What is
the final velocity of the heavier disc?

> A. $\frac{u}{5}$
> B. $\frac{2 u}{5}$
> C. $\frac{3 u}{5}$
> D. $\frac{4 u}{5}$

Answer: B

- Watch Video Solution

93. Two blocks of masses m_{1} and m_{2} are connected by an ideal sprit, of force constant k
. The blocks are placed on smooth horizontal surface. A horizontal force F acts on the block m_{1}. Initially spring is relaxed, both the blocks are at rest.

What is acceleration of centre of mass of system at the instant of maximum elongation of spring
A. zero

$$
\begin{aligned}
& \text { B. } \frac{F\left(m_{1}+m_{2}\right)}{m_{1} m_{2}} \\
& \text { C. } \frac{F}{m_{1}} \\
& \text { D. } \frac{F}{m_{1}+m_{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

94. Two blocks of masses m_{1} and m_{2} are connected by an ideal sprit, of force constant k
. The blocks are placed on smooth horizontal
surface. A horizontal force F acts on the block
m_{1}. Initially spring is relaxed, both the blocks are at rest.

Which of the following statement is not true tn the watt of above system.
A. Centre of mass reference frame is an inertial frame.
B. Kinetic energy of the system is minimum in centre of mass frame.

C. At the instant of maximum deformation

both the blocks are instantaneously at
rest in centre of mass reference frame
D. Acceleration of centre of mass is constant in ground frame.

Answer: A

D Watch Video Solution
95. Two blocks of masses m_{1} and m_{2} are connected by an ideal sprit, of force constant k
. The blocks are placed on smooth horizontal surface. A horizontal force F acts on the block m_{1}. Initially spring is relaxed, both the blocks are at rest.

What is maximum elongation of spring.

$$
\begin{aligned}
& \text { A. } \frac{2 m_{1} F}{\left(m_{1}+m_{2}\right) k} \\
& \text { B. } \frac{m_{1}^{2} F}{2\left(m_{1}+m_{2}\right) k}
\end{aligned}
$$

C. $\frac{2 m_{2} F}{k\left(m_{1}+m_{2}\right)}$
D. $\frac{m_{2}^{2} F}{2\left(m_{1}+m_{2}\right)^{2} k}$

Answer: C

D View Text Solution

96. A small ball B of mass m is suspended with
light inelastic string of length L from a block
A of same mass in which can move on smooth
horizontal surface as shown in the figure. The
ball is displaced by angle θ from equilibrium
position and then released.

The displacement of block when equilibrium position is
A. $\frac{L \sin \theta}{2}$
B. $L \sin \theta$
C. L

D. none of these

Answer: A

- Watch Video Solution

97. A small ball B of mass m is suspended with
light inelastic string of length L from a block
A of same mass in which can move on smooth
horizontal surface as shown in the figure. The
ball is displaced by angle θ from equilibrium position and then released.

Tension in string when it is vertical, is
A. $m g$
B. $m g(2-\cos \theta)$
C. $m g(3-2 \cos \theta)$
D. none of these

Answer: D

D Watch Video Solution

98. A small ball B of mass m is suspended with
light inelastic string of length L from a block
A of same mass in which can move on smooth
horizontal surface as shown in the figure. The ball is displaced by angle θ from equilibrium position and then released.

Maximum velocity of block during subsequent motion of the system after release of ball is
A. $[g l(1-\cos \theta)]^{\frac{1}{2}}$
B. $[2 g l(1-\cos \theta)]^{\frac{1}{2}}$
C. $[g l \cos \theta]^{\frac{1}{2}}$

D. information are sufficient to decide

Answer: A

D Watch Video Solution

99. A small ball B of mass m is suspended with
light inelastic string of length L from a block
A of same mass in which can move on smooth
horizontal surface as shown in the figure. The
ball is displaced by angle θ from equilibrium position and then released.

The
displacement of centre of mass of $A+B$
system till the string becomes vertical is
A. zero
B. $L(1-\cos \theta)$
C. $\frac{L}{2}(1-\cos \theta)$

D. none of these

Answer: C

- Watch Video Solution

100. A small ball of mass 1 kg is kept in circular path of radius $1 m$ Inside a concentric smooth horizontal fixed casing of radius R. Angular speed of the ball in the circular motion is $1 \mathrm{rads}^{-1}$. At a certain moment the string, which kept the ball in the circular path breaks
and the ball goes off tangentially to the wall of rigid casing and bounces off elastically and again hits the casing and bounces off. This way, the ball traces a regular hexagon.

Consider all the collisions to be elastic.

Total impulse imparted to the casing by the ball in first six collisions will be
A. $6 \sqrt{3} N s$
B. $3 \sqrt{3 N} s$
C. zero
D. 12 Ns

Answer: C

- Watch Video Solution

101. A small ball of mass 1 kg is kept in circular path of radius $1 m$ Inside a concentric smooth horizontal fixed casing of radius R. Angular speed of the ball in the circular motion is $1 \mathrm{rads}^{-1}$. At a certain moment the string,
which kept the ball in the circular path breaks and the ball goes off tangentially to the wall of rigid casing and bounces off elastically and again hits the casing and bounces off. This way, the ball traces a regular hexagon.

Consider all the collisions to be elastic.

Following quantities of the ball will remain a constant before and after any collision

B. kinetic energy, angular momentum about

 the centre of the circleC. velocity, angular momentum about the centre of the circle, kinetic energy
D. none of these

Answer: B

- Watch Video Solution

102. A small ball of mass 1 kg is kept in circular path of radius $1 m$ Inside a concentric smooth horizontal fixed casing of radius R. Angular speed of the ball in the circular motion is $1 \mathrm{rads}^{-1}$. At a certain moment the string, which kept the ball in the circular path breaks and the ball goes off tangentially to the wall of
rigid casing and bounces off elastically and again hits the casing and bounces off. This
way, the ball traces a regular hexagon.
Consider all the collisions to be elastic.

Total time between the first collision and the seventh collision will
A. $\frac{\sqrt{4}}{3} s$
B. $4 \sqrt{3} s$
C. $3 \sqrt{3} s$
D. none

Answer: B
103. Three balls $A, B \quad$ and
$C\left(m_{A}=m_{C}=4 m_{B}\right)$ are placed onn a smooth horizontal surface. Ball B collides with
ball C with an initial velocity v as shown in
figure. Find the total number of collision betwenent the balls (all collisions are elastic).

104. A man standing on a trolley pushes another identical a trolley (both trolleys are at rest on a rough surface), are set in motion and stop alter some time so that they If the ratio of mass of first trolley with man to mass of second trolley is 3 , then find the ratio of the stopping distances of the second trolley to that of the first trolley. (Assume coefficient of friction to be the same for both the trolleys)

D Watch Video Solution

105. A particle with a mass of 1 kg a velocity of is having $10 \mathrm{~m} / \mathrm{s}$ in + vex-direction at $t=0$.

Forces \vec{F}_{1} and \vec{F}_{2}, act on the particle whose magnitudes are changing with time according to the variation shown in Fig. The magnitude of the velocity of the particle at $t=3 s$
(neglect gravity effect) is found to be $\sqrt[n]{5}$ Find the value of n

- Watch Video Solution

Integer

1. A bullet is fired on a fixed target. It penetrates inside the target through distance
$d=3.75 \mathrm{~cm}$ and then stops. mass of the bullet
is $m=1 \mathrm{~kg}$ and of the target is $M=4 \mathrm{~kg}$.

Now an identical bullet moving with the same
velocity is fired on the identical target which is
placed at rest on a frictionless horizontal
surface. Then find the distance (in cm) to which
the bullet will penetrate inside the target?

D Watch Video Solution

2. A frog sits on the end pf a long boord of
length L. the boord rests on a fricationless
horizontal table. The frog wants os the minimum takes - off speed i.e relative to ground v that allows the frog yo do the trick?

The board and the frog have equal masses.
3. A ball of mass 1 kg moving with a velocity of
$5 \mathrm{~m} / \mathrm{s}$ collides elastically with rough ground at an angle θ with the vertical as shown in Fig.

What can be the minimum coefficient of friction if ball rebounds vertically after collision? (given $\tan \theta=2$)

4. A small sphere of mass $m=1 \mathrm{~kg}$ is moving with a velocity $(4 \hat{i}-\hat{j}) m / s$. it hits a fixed smooth wall and rebounds with velocity $(\hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$. The coefficient of restitution between the sphere and the wall is $n / 16$. Find the value of n.

- Watch Video Solution

5. A child of mass $4 k g$ jumps from cart B to
cart A and then immediately back to cart B.
The mass of each cart is 20 kg and they are initially at rest. In both the cases the child jumps at $6 m / s$ relative to the cart. If the cart moves along the same line with negligible friction with the final velocities of V_{B} and V_{A}, respectively, find the ratio of $6 V_{B}$ and $5 V_{A}$.

6. A man of mass $M=58 \mathrm{~kg}$ jumps from an
airplane as shown in Fig. He sees the hard ground below him and a lake at a distance
$d=1 m$ from the point directly below him. He immediately puts off his jacket (mass $m=2$ kg) and throws it in a direction directly away
from the lake. If he just fails to strike the ground, find the distance (in $10^{1} \mathrm{~m}$) he should walk now to pick his jacket. (Neglect air resistance and take the velocity of man at the
time of jump with respect to earth zero.)

Watch Video Solution
7. A ball of mass m makes head-on elastic collision with a ball of mass urn which is initially at rest. Show that the fractional transfer of energy by the first ball is $4 \frac{n}{(1+n)^{2}}$. Deduce the value of n for which the transfer is maximum.

- Watch Video Solution

8. A massless spring of force constant $1000 \mathrm{Nm}^{-1}$ is compressed a distance of 20 cm
between discs of 8 kg and 2 kg , spring is not attached to discs. The system is given an initial velocity $3 m s^{-1}$ perpendicular to length of spring as shown in the figure. What is ground frame velocity of $2 k g$ block (in $m s^{-1}$) when spring regains its natural length.

9. Figure shows position and velocities of two
particles moving under mutual gravitational
attraction in space at time $t=0$. The position
of centre of mass after one second is (in
meters)

10. Three particles A, B and C of equal mass move with equal speed $V=5 m s^{-1}$ along the medians of an equilateral triangle as shown in the figure. They collide at the centroid G of the triangle. After the collision, A comes to rest, B retraces its path with the speed $V=5 m s^{-1}$. What is the speed of C ?

11. N beads identical beads are resting on a smooth horizontal wire which is circular at the end with radius $r=0.5 m$ as shown in the figure. Find the minimum velocity which should be imparted to the first bead such that nth bead will fall in the tank after completing full circle in vertical plane as shown in the figure. Take all the collisions between the beads
elastic $(e=1)$.

D Watch Video Solution

12. An elevator platform is going up at a speed $20 \mathrm{~ms}^{-1}$ and during its upward motion a small ball of 50 g mass falling in downward direction strikes the platform elastically at a speed $5 m s^{-1}$. Find the speed (in $m s^{-1}$) with which
the ball rebounds.

$$
u_{1}=20 \mathrm{~m} \mathrm{~s}^{-1}\left\{\begin{array}{l}
m=50 \mathrm{gm} \\
u_{2}=5 \mathrm{~m} \mathrm{~s}^{-1}
\end{array}\right.
$$

- Watch Video Solution

13. Figure shows a wedge A of mass $6 m$ smooth semicircular groove of radius $a=8.4 m$ placed on a smooth horizontal surface. A small block B of mass m is released from a position in groove where its radius is
horizontal. Find the speed (in $m s^{-1}$) of bigger block when smaller block reaches its bottommost position.

(Watch Video Solution

14. A ball of mass m is allowed to roll down the
wedge of mass $M=2 m$ as shown in the
figure. What is the displacement of wedge (in
m) when the ball reaches from A to B ? Take $\theta=45^{\circ}, h=1 m, d=4 m$

- Watch Video Solution

15. A railway flat car, whose mass together with
the artillery gun is $M=2 m$, moves at a speed
V. The gun barrel makes an angle $\alpha=60^{\circ}$
with the horizontal. A shell of mass m leaves
the barrel at a speed $v=12 m s^{-1}$, relative to
the barrel. Find the speed of the flat car V (in
$m s^{-1}$) in order that it may stop after the firing.

D Watch Video Solution

16. Two particles of mass 1 kg and 3 kg move towards each other under their mutual force of attraction. No other force acts on them. When the relative velocity of approach of the
two particles is $2 \mathrm{~m} / \mathrm{s}$, their centre of mass has
a velocity of $0.5 \mathrm{~m} / \mathrm{s}$. When the relative velocity
of approach becomes $3 \mathrm{~m} / \mathrm{s}$, the velocity of the centre of mass is $0.75 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

Fill In The Blanks

1. A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move
with a speed v each in mutually perpendicular directions. The total energy released in the process of explosion is

D Watch Video Solution

2. The magnitude of the force (in newtons) acting on a body varies with time t (in micro seconds) as shown in the fig $A B, B C$ and $C D$ are straight line segments. The magnitude of the total impulse of the force on the body from
$t=4 \mu s$ to $t=16 \mu s$ isNs

D Watch Video Solution

SCQ_TYPE

1. Two paricle A and B initially at rest, move towards each other under mutual force of
attraction. At the instant when the speed of A is V and the speed of B is $2 V$, the speed of the centre of mass of the system is
A. 3
B. v
C. $1.5 v$
D. zero

Answer: D

-

2. A uniform chain of length L and mass M is
lying on a smooth table and one-third of its
length is hanging vertically down over the edge of the table. If g is the acceleration due to gravity, the work required to pull the hanging part on to the table is
A. $M g L$
B. $M g L / 3$
C. $M g L / 9$
D. $M g L / 18$

Answer: D

D Watch Video Solution

3. A ball hits the floor and rebounds after an inelastic collision. In this case
A. the momentum of the ball just after collision is same as that just before the collision
B. the mechanical energy of the ball remains the same in collision
C. the total momentum of the ball and the
earth is conserved
D. the total mechanical energy of the ball
and the earth is conserved

Answer: C

D Watch Video Solution
4. A shell is fired from a cannon with a velocity
$v(m / s)$ at an angle θ with the horizontal direction. At the highest point in its path it explodes into two pieces of equal mass. on, of the pieces retraces its path to the cannon and the speed, (in m / s) of the other piece immediately after the explosion is
A. $3 v \cos \theta$
B. $2 v \cos \theta$
C. $\frac{3}{2} v \cos \theta$
D. $\sqrt{\frac{3}{2}} v \cos \theta$

Answer: A

- Watch Video Solution

5. An isolated particle of mass m is moving in
horizontal planexy along the x-axis, at a certain height above the ground. It suddenly explodes into two fragment of masses $m / 4$ and $3 m / 4$. An instant later, the smaller fragment is at $y=+15 \mathrm{~cm}$. The larger fragment at this instant is at
A. $y=-5 c m$
B. $y=+20 \mathrm{~cm}$
C. $y=+5 \mathrm{~cm}$
D. $y=-20 \mathrm{~cm}$

Answer: A

- Watch Video Solution

6. Two particles of masses m_{1} and m_{2} in projectile motion have velocities \vec{v}_{1} and \vec{v}_{2}, respectively, at time $t=0$. They collide at
time t_{0}. Their velocities become $\vec{v}^{\prime}{ }_{1}$ and ${\overrightarrow{v^{\prime}}}_{2}$ at
time $2 t_{0}$ while still moving in air. The value of $\left|\left(m_{1} \vec{v}_{1}+m_{2}{\overrightarrow{v^{\prime}}}_{2}\right)-\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)\right|$
A. zero
B. $\left(m_{1}+m_{2}\right)>_{0}$
C. $\frac{1}{2}\left(m_{1}+m_{2}\right)>_{0}$
D. $2\left(m_{1}+m_{2}\right)>_{0}$

Answer: D

7. Two blocks of masses 10 kg and 4 kg are connected by a spring of negligible mass and placed on a frictionless horizontal surface. An impulse gives a velocity of $14 \mathrm{~m} / \mathrm{s}$ to the heavier block in the direction of the lighter block. The velocity of the centre of mass is
A. $30 \mathrm{~m} / \mathrm{s}$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $5 m / s$

D Watch Video Solution

8. A particle moves in the $x y$ plane under the influence of a force such that its linear momentum is
$\vec{P}(t)=A[\hat{i} \cos (k t)-\hat{j} \sin (k t)]$, where A and k are constants. The angle between the force and momentum is
A. 0°
B. 30°
C. 45°
D. 90°

Answer: D

- Watch Video Solution

9. Look at the drawing given in the figure which has been drawn with ink of uniform line-
thickness. The mass of ink used to draw each
of the two inner circles, and each of the two
line segments is m. The mass of the ink used to draw the outer circle is $6 m$.

The coordinates of the centres of the different parts are: outer circle $(0,0)$, left inner circle $(-a, a)$, right inner circle (a, a), vertical line
$(0,0)$ and horizontal line $(0,-a)$. The y coordinate of the centre of mass of the ink in
this drawing is

A. $\frac{a}{10}$
B. $\frac{a}{8}$
C. $\frac{a}{12}$
D. $\frac{a}{3}$

Answer: A

D Watch Video Solution

10. Two small particles of equal masses stant moving in opposite direction from a point A in a burtizonetal circule orbic their tangention
velocity are V and $2 V$, respectively as shown in the figure between collsions, the particals move with constant speed After making how
many elastic collition, other the then that at
A these two partical will again reach the point
A?

A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

11. A block of mass $2 k g$ is free to move along
the x-axis. It at rest and from $t=0$ onwards it is subjected to a time-dependent force $F(t)$ in
the x direction. The force $F(t)$ varies with t as
shown in the figure. The kinetic energy of the
block after 4.5 seconds is

A. 4.50 J
B. 750 J
C. 5.06 J
D. 14.06 J

Answer: C

- Watch Video Solution

12. A ball of mass 0.2 kg rests on a vertical post of height 5 m . A bullet of mass 0.01 kg , travelling with a velocity $V m / s$ in a horizontal direction, hits the centre of the ball. After the collision, the ball and bullet travel independently. The ball hits the ground at a distance of 20 m and the bullet at a distance of 100 m from the foot of the post. The velocity
V of the bullet is

A. $250 \mathrm{~m} / \mathrm{s}$
B. $250 \sqrt{2} m / s$
C. $400 \mathrm{~m} / \mathrm{s}$
D. $500 \mathrm{~m} / \mathrm{s}$

Answer: D

- Watch Video Solution

MCQ_TYPE

1. A uniform bar of length $6 a$ and mass $8 m$ lies
on a smooth horizontal table. Two point
masses m and $2 m$ moving in the same
horizontal plane with speeds $2 v$ and v, respectively, strike the bar (as shown in the
figure) and stick to the bar after collision.
Denoting angular velocity (about the centre of
mass), total energy and centre of mass velocity
by ω, E and V_{C}, respectively, we have after collision

A. $V_{c}=0$
B. $\omega=\frac{3 v}{5 a}$
C. $\omega=\frac{v}{5 a}$
D. $E=\frac{3 m v^{2}}{5}$

Answer: A::C::D
2. Two blocks A and H. each of mass m, are connected by a massless spring of natural length I. and spring constant K. The blocks are initially resting in a smooth horizontal floor with the spring at its natural length, as shown in Fig. A third identical block C, also of mass m, moves on the floor with a speed v along the line joining A and B. and collides elastically with A. Then

A. the kinetic energy of the $A-B$ system,
at maximum compression of the spring,
is zero.
B. the kinetic energy of the $A-B$ system,
at maximum compression of the spring,
is
C. the maximum compression of the spring
is $\sqrt{\left(\frac{m}{K}\right)}$
D. the maximum compression of the spring
is $v \sqrt{\left(\frac{m}{2 K}\right)}$

Answer: B::D

- Watch Video Solution

3. Two balls having linear momenta $\vec{p}_{1}=p \hat{i}$
and $\vec{p}_{2}=-p \hat{i}$, undergo a collision in fre space. There is no external force acting on the ball. Let \vec{p}_{1}^{\prime} and \vec{p}_{2}^{\prime} be their final moment.

Which of the following option(s) is (are) NOT
ALLOWED for an non zero value of $p, a_{1}, a_{2}, b_{1}, b_{2}, c_{1}$ and c_{2}.
A.

$$
\vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, \vec{p}_{2}^{\prime}=a_{2} \hat{i}+b_{2} \hat{j}
$$

$$
\text { B. } \vec{p}_{1}^{\prime}=c_{1} \hat{k}, \vec{p}_{2}^{\prime}+c_{2} \hat{k}
$$

C.

$$
\begin{aligned}
& \quad \vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}, \vec{p}_{2}^{\prime}=a_{2} \hat{i} b_{2} \hat{j}-c_{2} \hat{k} \\
& \text { D. } \vec{p}_{1}^{\prime}=a_{1} \hat{i}+b_{1} \hat{j}, \vec{p}_{2}^{\prime}=a_{2} \hat{i}+b_{1} \hat{j}
\end{aligned}
$$

Answer: A::D

- Watch Video Solution

4. A point mass of 1 kg collides elastically with a stationary point mass of 5 kg . After their collision, the 1 kg mass reverses its direction and moves with a speed of $2 m s^{-1}$. Which of the following statements (s) is (are) correct for the system of these two masses?
A. Total momentum of the system is

3 kgms $^{-1}$
B. Momentum of 5 kg mass after collision is
$4 \mathrm{kgms}^{-1}$

C. Kinetic energy of the centre of mass is

$0.75 J$

D. Total kinetic energy of the system is $4 J$

Answer: A::C

- Watch Video Solution

AR_TYPE

1. Statement I: In an elastic collision between
two bodies, the relative speed of the bodies
after collision is equal to the relative speed before the collision.

Statement II: In an elastic collision, the linear momentum of the system is conserved.
A. Both Statement I and Statement II are
true and Statement II is the correct
explanation of Statement I
B. Both Statement I and Statement II are
true but Statement II is not the correct
explanation of Statement I.

C. Statement I is true and Statement II is

false.
D. Statement I is false and Statement II is
true.

Answer: D

D Watch Video Solution

1. A small block of mass M move on a frictionless surface of an inclimed from as down is figure. The engle of the inclime suddenly change from 60° to 30° at point B.

The block is initally at rest at A Assume the collsion between the block and the incline are totally inclassic $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The speed of the block at point B immedutaly
after it strikes the second inclime is -

A. $\sqrt{60} m / s$
B. $\sqrt{45} \mathrm{~m} / \mathrm{s}$
C. $\sqrt{30} \mathrm{~m} / \mathrm{s}$
D. $\sqrt{15} \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

2. A small block of mass M moves on a frictionless surface of an inclined plane, as shown in the figure. The angle of the incline suddenly changes from 60° to 30° at point B.

The block is many at rest at A. Assume that collisions between the block id the incline are totally inelastic.

The speed of the block at point C, immediately
before it leaves the second incline

A. $\sqrt{120} \mathrm{~m} / \mathrm{s}$
B. $\sqrt{105} \mathrm{~m} / \mathrm{s}$
C. $\sqrt{90} \mathrm{~m} / \mathrm{s}$
D. $\sqrt{75} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

3. A small block of mass M move on a frictionless surface of an inclimed from as down is figure. The engle of the inclime suddenly change from 60° to 30° at point B.

The block is initally at rest at A Assume the collsion between the block and the incline are totally inclassic $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

If collision between the block and the incline is
completely elestic , then the vartical (apward)
component of the of the block at point B immediatly after it stricess the scond indine is
A. $\sqrt{30} \mathrm{~m} / \mathrm{s}$

$$
\text { B. } \sqrt{15} \mathrm{~m} / \mathrm{s}
$$

C. 0

$$
\text { D. }-\sqrt{15} \mathrm{~m} / \mathrm{s}
$$

Answer: C

(D) Watch Video Solution

INTEGER_TYPE

1. Three objects A, B and C are kept in a
straight line on a smooth horizontal surface.

These have masses $m, 2 m$ and $3 m$
respectively. The head - on elastic collision
takes place between A and B and then B
makes completely inelastic collision with C. All motions occur on the same straight line. The final speed of C will be

- Watch Video Solution

