© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

(HINGLISH)

PROPERTIES OF SOLIDS AND FLUIDS

Illustration

1. Two rods A and B, each of equal length for
different materials are suspended from a
common support as shown in the figure. The rods A and B can support a maximum load of $W_{1}=600 \mathrm{~N}$ and $W_{2}=6000 \mathrm{~N}$ respectively. If their cross sectional area are $A_{1}=10 \mathrm{~mm}^{2}$ and $A_{2}=1000 \mathrm{~mm}^{2}$, respectively then identify the stronger material.

- Watch Video Solution

2. Assume that if the shear stress in steel exceeds about $4.00 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$ the steel
reptures. Determine the shearing force necessary to a sheal a steel bolt 1.00 cm in diameter and b punch a 1.00 cm diameter hole in a steel plate 0.500 cm thick.

D Watch Video Solution

3. A bar of cross section A is subjected to equal and opposite tensile force at its ends.

Consider a plane section of the bar whose normal makes an angle θ with the axis of the bar.
a. What is the tensile stress on the plane?
b. What is the shearing stress on the this
plane?
c. For what value of θ is the tensile stress
maximum?
d. For what value of θ is the shearing stress

maximum?

Watch Video Solution

4. a. Estimate the force with which a karate master strikes a board, assuming the hand's speed at the moment of impact is $10.0 \mathrm{~ms}^{-1}$, decreasing to $1.00 \mathrm{~ms}^{-1}$ during a 0.002 s time internal of contact between te hand and the board. The mass of his and and arm is 1.00 kg .
b Estimate the shear, assuming this force it exerted on a 1.00 cm thick pine board that is $10.0 m$ wide. c. If we maximum shear stress a pine board can support before breaking is $3.60 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$, will the board break?
5. A steel wire $2 m$ long is suspended from the ceiling. When a mass is hung from its lower end, the increase in length recorded is 1 cm . Determine the strain in the wire.
A. 0.002
B. 0.005
C. 0.008
D. 0.002
6. A brass rod of length $1 m$ is fixed to a vertical wall at one end, with the other end keeping free to expand. When the temperature of the rod is increased by $120^{\circ} \mathrm{C}$, the length increases by 3 cm . What is the strain?
7. A 30.0 kg hammer, moving with speed $20.0 \mathrm{~ms}^{-1}$ strikes a steel spike 2.30 cm in diameter. The hammer rebounds with speed $10.0 \mathrm{~ms}^{-1}$ after 0.110 s . What is the average strain in the spike during the impact.?

D Watch Video Solution

8. The shear modulus for a metal is $50000 M p a$.

Suppose that a shear force of $200 N$ is applied on the upper surface of a cube of this metal
that is 3.0 cm on each edge. How far will the top surface be displaced?

A. $2.67 \times 10^{-7} \mathrm{~m}$
B. $4.5 \times 10^{-7} m$
C. $6.0 \times 10^{-7} m$
D. $1.33 \times 10^{-7} m$

Answer: D
(Watch Video Solution
9. When a weight W is hung from one end of a
wire of length L (other end being fixed), the length of the wire increases by l. If the same wire is passed over a pulley and two weights
W each are hung at the two ends, what will be the total elongation in the wire?

D Watch Video Solution

10. A load of $10 k N$ is supported from a pulley
which in turn is supported by a rope of sectional area $1 \times 10^{3} \mathrm{~mm}^{2}$ and modulus of elasticity $10^{3} \mathrm{Nmm}^{-2}$, as shown in figure.

Neglecting the friction at the pulley, determine the deflection of the load.

D Watch Video Solution

11. A uniform heavy rod of weight W, cross sectional area a and length L is hanging from
fixed support. Young modulus of the material of the rod is Y. Neglect the lateral contraction.

Find the elongation of the rod.

D Watch Video Solution

12. A uniform rod of length L and mass M is pulled horizontally on a smooth surface with a
force F. Determine the elongation of rod if Young's modulus of the material is Y.

D Watch Video Solution

13. A $0.05 m$ cube has its upper face displaced
by 0.2 cm by a tangential force of $8 N$.
Calculate the shearing strain, shearing stress and modulus of rigidity of the material of the cube.

- Watch Video Solution

14. A cube of sponge rubber with edge length

5 cm has a force of 2 N applied horizontally to
the top face (parallel to an edge) while the bottom face is held fixed. If the top face is
displaced horizontally through a distance of
$1 m m$, find the shear modulus for the sponge
rubber. (in N / m^{2})
A. 2×10^{4}
B. 3×10^{4}
C. 4×10^{4}
D. 5×10^{4}

Answer: C

D Watch Video Solution
15. Two parallel and opposite forces, each of magnitude $4000 N$, are applied tangentially to
the upper and lower faces of a cubical metal blcok 25 cm on a side. Find the angle of shear and the displacement of the upper surface relative to the lower surface. The shear mdulus
for the metal is $80 G P a$.

D Watch Video Solution

16. A horizontal aluminium rod of diameter
4.8 cm projects 5.3 cm from a wall. A 1200 kg
object is suspended from the end of the rod.
The shear modulus of aluminium is
$3.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$. Nelecting the mass of te rod find a shearing stress on the rod and b the vertical deflection of the end of the rod.

- Watch Video Solution

17. A metal cube of side 10 cm is subjected to a shearing stress of $10^{6} \mathrm{~N} / \mathrm{m}^{2}$. Calculate the modulus of rigidity if the of the cube is
displaced by 0.05 cm with respect to its bottom.
A. $1 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
B. $2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
C. $3 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
D. $4 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

Answer: B
(Watch Video Solution
18. A hydraulic press contains $0.25 m^{3}(250 L)$
of oil. Find the decrease in volume of the oil wen it is subjected to a pressure increase $\triangle p=1.6 \times 10^{7} P a$. The bulk modulus of the oil is $B=5.0 \times 10^{9} \mathrm{~Pa}$.

- Watch Video Solution

19. Compressibility of water is
$5 \times 10^{-10} \mathrm{~m}^{2} / N$. Find the decrease in volume
of 100 mL of water when subjected to a pressure of $15 M P a$.

D Watch Video Solution

20. Bulk modulus for rubber is
$9.8 \times 10^{8} \mathrm{Nm}^{-2}$. To what depth should a
rubber ball be taken in a take so that its
volume is decreased by 0.1%

D Watch Video Solution
21. A steel bar $A B C D 40 \mathrm{~cm}$ long is made up of
three parts $A B, B C$ and $C D$, as shown in figure. The rod is subjected to a pull of $25 k N$. Determine the stress in the thre parts and the total extension of the rod. Young's modulys for steel $=2 \times 10^{11} \mathrm{~nm}^{-2}$.
22. Three elastic wires $P Q, P R$ and $P S$ support a body P of mass M, as shown in figure. The wires are of the some material and cross sectional area, the middle one being vertical. Find the loads by each wire.

D Watch Video Solution

23. A composite tube is made by strinking a
thin steel tube on a nras tube. If A_{S} and A_{B}
are the respective sectional areas of the steel
and brass tubes and Y_{S} and Y_{B} their Young's
moduli, then find the Young's modulus of single tube of the same length and total sectional area, which would be have in the same facition as that of the composite tube.

D Watch Video Solution

24. Two vertical rods of equal lengths, one of steel and the other of copper, are suspended
from the ceiling at a distance l apart and are
connected rigidly to a rigid horizontal bar at
their lower ends. If A_{S} and A_{C} be their respective cross-sectional areas, and Y_{S} and Y_{C}, their respective Young's moduli of elasticities, where should a vertical force F be applied to the horizontal bar in order that the bar remains horizontal?`

D Watch Video Solution

25. A metallic wire is stretched by suspending a weight of it. If α^{2} is the longitudinal strain and Y is its Young's modulus of elasticity, then slow that the elastic potential energy per unit volume is given by $1 / 2 Y^{2}$.

D Watch Video Solution

26. Calculate the elastic potential energy per unit volume of water at a depth of 1 km .

Compressibility (α) of water $=5 \times 10^{-10} \mathrm{SI}$ units. Density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$

D Watch Video Solution

27. A catapult consists of two parallel rubber strlings each of lengths, 10 cm and cross sectional area $10 \mathrm{~mm}^{2}$. Wen struetched by

5 cm , it can throw a stone of mass 10 gm to a vertical height of 25 m . Determine Young's modulus of elasticity of rubber.
28. A plate of area $100 \mathrm{~cm}^{2}$ is placed on the upper surface of castor oil, $2 m m$ thick. Taking the coefficient of viscosity to be 15.5 poise, calculate the horizontal force neccesary to move the plate with a velocity $3 \mathrm{~cm}^{-1}$.

D Watch Video Solution

29. A metal plate of area $0.10 m^{2}$ is connected to a 0.01 kg mass via a string that pases over an idial pulley (considered to be frictionless),
as shown in the figure. A liquid with a film thickness of 3.0 mm is placed between the plate and the table. When released the plate moves to the right with a constant speed of $0.085 \mathrm{~ms}^{-1}$. Find the coefficient of vicosity of the liquid.

- Watch Video Solution

30. A sliding fit cylindrical body of mass of 1 kg drops vertically down at a constant velocity of
$5 \mathrm{cms}^{-1}$. Find the viscosity of the oil.

D Watch Video Solution

31. A powder comprising particle of various sizes is stirred up in a vessel filled to a height of 10 cm with water. Assuming the paticle to be spherical, find the size of the largest particle that will remain in suspension after $1 h$
(density of powder $=4 g / \mathrm{cm}^{3}$, viscosity of water $=0.01$ poise).

Watch Video Solution

32. Spherical particles of pollen are shaken up in water and allowed to settle. The depth of water is $2 \times 10^{-2} \mathrm{~m}$. What is the diameter of the largest particles remaining in suspension one hour later? Density of pollen $=1.8 \times 10^{3} \mathrm{kgm}^{-3} \quad$ viscosity \quad of water
$=1 \times 10^{-2}$ poise and density of water $=1 \times 10^{-5} \mathrm{kgm}^{-3}$
33. A small sphere falls from rest in a viscous
liquid. Due to friction, heat is prodced. Find the relation between the rate of production of heat and the radius of the sphere at terminal velocity.

D Watch Video Solution

34. A cube of mass $m=800 g$ floats on the suface of water. Water wets it completely. The
cube is 10 cm on each edge. By what additional distance is it buoyed up or down by surface
tension? Surface tension of water

$$
=0.07 \mathrm{Nm}^{-1}
$$

D Watch Video Solution

35. Find the maximum possible mass of a greased needle floating on water surface.

D Watch Video Solution

36. A film of water is formed between two
straight paralel wires each 10 cm long and at
seperation 0.5 cm . Calculate the work requied to increase 1 mm distance between the wires. Surface tension of water $=72 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

D Watch Video Solution

37. Calculate the work down against surface tension in blowing a soap bubble from a radius of 10 cm to 20 cm , if the surface tension of soap solution in $25 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

D Watch Video Solution

38. Calculate the difference h in water levels in two commnicating capillary tube of radius

1 mm and 1.5 mm . Surface tension of water $=0.07 \mathrm{Nm}^{-1}$

- Watch Video Solution

39. A vessel filled with air under pressue p_{0} contains a soap bubble of diameter d. The air presuue have been reduced n-fold, and the bubbled diameter increased r-fold is
othermally. Find the surface tension of the soap water solution.

D Watch Video Solution

40. What should be the pressure inside a small air bubble of 0.1 mm radius situated just below the surface of water? Surface tension of water $=72 \times 10^{-3} \mathrm{~N} / \mathrm{m}$ and atmospheric pressure $=1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
41. Two separate air bubble (radii 0.002 cm and
0.004) formed of the same liqid (surface tension $0.07 \mathrm{~N} / \mathrm{m}$) come together to form a double bubble. Find the radius and the sence of curvature of the internal film surface common to both the bubbles.

- Watch Video Solution

42. A vertical vapillary with inside diameter
0.50 mm is submergeed into water so that the length of its part emerging outside the water
surface is equal to 25 mm . Find the radius of curvature of the meniscus. Surface tension of water is $73 \times 10^{-3} \mathrm{~N} / \mathrm{m}$.

D Watch Video Solution

43. A glass rod of diameter $d_{1}=1.5 \mathrm{~mm}$ in
inserted symmetricaly into a glas capillary with
inside diameter $d_{2}=2.0 \mathrm{~mm}$. Then the whole
arrangement is vertically oriented and
bruoght in contact with the surface of water.

To what height will the liquid rise in the
capillary?
Surface tension of water $=73 \times 10^{-3} \mathrm{~N} / \mathrm{m}$

D Watch Video Solution

44. The end of a capillary tube with a radius r is immersed in water. Is mechanical energy conserved when the water rises in the tube?

The tube is suficiently long. If not calculate the energy change.

- Watch Video Solution

45. A glass capillary tube of internal radius
$r=0.25 \mathrm{~mm}$ is immersed in water. The top
end of the tube projects by 2 cm above the surface of water. At what angle does the liquid meet the tube? Surface tension of water $=0.7 \mathrm{Nm}^{-1}$.

- Watch Video Solution

46. Derive an expression for the height of capillary rise between two parrallel plates dipping in a liquid of density σ separated by a
distance d. The surface tension of the liquid is
T.

D Watch Video Solution

Solved Examples

1. A boy has a catapult made of a rubber cord of length 42 cm and diameter 6.0 mm . The boy stretches the cord by 20 cm to catapult a stone of mass 20 g . The stone flies off with a speed of $20 \mathrm{~ms}^{-1}$. Find Young's modulus for
rubber. Ignore the change in the cross section of the cord in streching.

D Watch Video Solution

2. A steel wire of cross-sectional area $0.5 \mathrm{~mm}^{2}$
is held between two fixed supports. If the wire
is just taut at $20^{\circ} \mathrm{C}$, determine the tension when the temperature falls to $0^{\circ} \mathrm{C}$. Coefficient of linear expansion of steel is $1.2 \times 10^{-5 \circ} C(-1)$ and its Young's modulus is $2.0 \times 10^{11} \mathrm{Nm}^{-2}$.
3. A sphere of radius 10 cm and mass 25 kg is attached to the lower end of a steel wire which is suspended from the ceiling of a room.

The point of support is 521 cm above the floor. When the sphere is set swimming as a simple pendulum, its lowest point just grazes the floor. Calculate the velocity of the ball at its lowest position.
4. A steel bolt is insertede into a copper tube as shown in the figure. Find the forces induced
in the bolt and in the tube when the nut is turned through one revolution. Assume that the length of the tube is l, the pitch of the bolt thread is h and the cross sectional areas of the steel bolt and the copper tube are A_{s} and A_{c} respectively.
5. A circular ring of radius R and mass m made of a uniform wire of cross sectional area
A is rotated about a stationary vertical axis passing throgh its centre and perpendicular to the plane of the ring. If the breaking stress of the material of the ring is σ_{b}, then determine the maximum angular speed $\omega_{\text {max }}$ at which the ring may be rotated without failure.
6. A glass plate of lengthh 10 cm , breadth
1.54 cm and thickness 0.20 cm weight 8.2 g in air. It is held vertically with the long side horizontal and the lower half under water.

Find the apparent weight of the plate. Surface tension of water $=7.3 \times 10^{-2} N / m$ and $=9.8 \mathrm{~ms}^{-12}$

- Watch Video Solution

7. A barometer contains two uniform capillaries of radii $1.4 \times 10^{-3} m \quad$ and
$7.2 \times 10^{-4} \mathrm{~m}$. If the height of liquid in narrow tube is $0.2 m$ more than that in wide tube, calculate the true pressure difference. Density of liqid $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, surface tension

$$
=72 \times 10^{-3} N / m \text { and } g=9.8 m s^{-12}
$$

- Watch Video Solution

8. A glass capillary sealed at the upper end is of length 0.11 m an internal diameter 2×10^{5} m . The tube is immersed vertically into a liquid of surface tension $5.06 \times 10^{-N} / \mathrm{m}$. To what length the capillary has to be immersed so that the liquid level inside and outside the capalliary becomes the same. What will happen to water level inside the capillary if the seal is now broken?
9. An open capillary tube contains a drop of water. When the tube is in its vertical position,
the drop forms a column with a length of a

2 cm , b. 4 cm , and c. 2.98 cm . The internal diameter of the capillary tube is 1 mm .

Determine the radii of curvature of the upper and lower meniscuses in each case. Consider
the wetting to be complete. Surface tension of water $=0.0075 N / m$

D Watch Video Solution

10. Two spherical soap bubble coalesce. If V is
the consequent change in volume of the contained air and S the change in total surface area, show that
$3 P V+4 S T=0$
where T is the surface tension of soap bubble
and P is

Atmospheric pressure

D Watch Video Solution

11. A uniform wire having mass per unit length
λ is placed over a liquid surface. The wire causes the liquid to depress by $y(y \ll a)$ as shown in figure. Find surface tension of liquid. Neglect end effect.

- Watch Video Solution

1. Stress and pressure are both forces per unit area. T in what respect does stress differ from

Pressure?

- Watch Video Solution

2. The stress and strain graphs for two materials, A and B are shown here. Answer the following:

reasons
A. Which material has greater Young's
modulus?
B. Which material is more ductile?
C. Which material is more brittle?
D. Which material has greater tensile

strength?

- Watch Video Solution

3. State whether the following statements are true or false with reasons.
a. Elastic forces are always conservative.
b. Elastic forces are strictly conservative only when Hooke's law is obeyed.
c. When a wire is loaded beyond the elastic
limit and then reloaded, the work done disappears completely as heat.

D Watch Video Solution

4. A horizontal force of magnitude Facts at the end P of a uniform rigid rod which is welded at point Q. In each case 1 and 2 , as shown in

Fig., find the reaction. force acting at a point C at a distance x from the fixed end Q of the
rod.

- Watch Video Solution

5. A rubber ball of bulk modulus B is taken to
a depth h of a liquid of density ρ. Find the fractional change in the radius of the ball.

- Watch Video Solution

6. Find out longitudinal stress and tangential stress on a fixed block.

D Watch Video Solution

7. Find out bulk stress on the spherical object of radius $10 / \pi \mathrm{cm}$ Piston if area and mass of
piston are $50 \mathrm{~cm}^{2}$ and 50 kg , respectively, for a cylinder filled with gas as Gas shown in figure.

D Watch Video Solution

8. Three rods of uniform area of cross section
$A=10^{-7} m^{2}$ are arranged as shown in Fig

Find out
the shift in point B, C and D.

D Watch Video Solution

9. Find the depth of lake at which density of water is 1% greater than that at the surface.

Given compressibility $k=50 \times 10^{-6} \mathrm{~atm}^{-1}$.

D Watch Video Solution

10. A rubber cube of side 5 cm has one side
fixed while a tangential force equal to $1800 N$
is applied to opposite face. Find the shearing strain and the lateral displacement of the
strained face. Modulus of rigidity for rubber is
$2.4 \times 10^{6} N / m^{2}$.

D Watch Video Solution

11. A mass ' m ' is attached with rods as shown
in Fig. This mass is slightly stretched and released. Find out whether the motion of mass
is $S . H . M$. If yes then find out the time
period.

12. A ball of mass ' m ' drops from a height which sticks to a massless hanger after striking it. Neglecting overturning. Find out
the maximum extension in rod, assuming that
the rod is massless.

- Watch Video Solution

1. A man is rowing a boat with a constant velocity v_{0} in a river. The contact area of boat is ' A ' and coefficient of viscosity is η. The depth of river is ' D '. Find the force required to row the boat.

D Watch Video Solution

2. A cubical block (of side $2 m$) of mass 20 kg
slides on inclined plane lubricated with the oil
of viscosity $\eta=10^{-1}$ with constant velocity of
$10 \mathrm{~ms}^{-1}$. Find out the thickness of the layer of
liquid (take $g=10 \mathrm{~ms}^{-2}$).

3. A drop of water of radius 0.0015 mm is
falling in air. If the coefficient of viscosity of air
is $1.8 \times 10^{-3} \mathrm{~kg} / \mathrm{m}^{3}$, what will be the terminal velocity of the drop? Density of water

$$
=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{2} \quad \text { and } \quad g=9.8 \mathrm{~N} / \mathrm{kg} .
$$

Density of air can be neglected.

- Watch Video Solution

4. A metallic sphere of radius $1.0 \times 10^{-3} \mathrm{~m}$ and density $1.0 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ enters a tank of
water, after a free fall through a distance of h
in the earth's gravitational field. If its velocity remains unchanged after entering water, determine the value of h. Given: coefficient of viscosity of water
$=1.0 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}, g=10 \mathrm{~ms}^{-12} \quad$ and
density of water $=1.0 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$.

D Watch Video Solution

5. Find the minimum force required to drag a hard polythene plate of area $2 m^{2}$ on a thin
film of oil of thickness 0.25 cm and $\eta=15$ poise. Assume the speed of the plate is $10 \mathrm{cms}^{-1}$.

D Watch Video Solution

6. A force of $3.14 N$ is required to drag a sphere of radius 4 cm with a speed of $5 \mathrm{~ms}^{-1}$ in a medium in gravity free space. Find the coefficient of the viscosity of the medium.

D Watch Video Solution

1. Why is moisture retained longer in the soil if
it is harrowed?

- Watch Video Solution

2. A capillary tube is dipped in water vertically.

It is long enough for the water to rise to the maximum height h in the tube. The length of portion immersed in water is $I<h$. The lower end of the tube is closed and then the tube is
taken out and opened again. Will all the water flow out of tube? Explain.

D Watch Video Solution

3. Two soap bubbles A and B of different diameters are blown at the two ends of a bent
tube. By opening the stopcock S, the two
bubbles are put in communication. What will
happen?

(D) Watch Video Solution
4. A mercury drop of radius R is sprayed into
n droplets of equal size. Calculate the energy
expanded if surface tension of mercury is T.

D Watch Video Solution

5. If a number of little droplets of water, each of radius r, coalesce to form a single drop of radius R, show that the rise in temperature will be given by $\frac{3 T}{J}\left(\frac{1}{r}-\frac{1}{R}\right)$ where T is the surface tension of water and J is the mechanical equivalent of heat.

D Watch Video Solution

6. A liquid of specific gravity 1.5 is observed to
rise 3.0 cm in a capillary tube of diameter
0.50 mm and the liquid wets the surface of the
tube. Calculate the excess pressure inside a
spherical bubble of 1.0 cm diameter blown
from the same liquid.

D Watch Video Solution

7. A drop of water of volume $0.05 \mathrm{~cm}^{3}$ is
pressed between two glass plates, as a consequence of which, it spreads and occupies
an are of $40 \mathrm{~cm}^{2}$. If the surface tension of water is 70 dyne $/ \mathrm{cm}$, find the normal force required to separate out the two glass plates is newton.

D Watch Video Solution

8. A glass tube of circular cross section is closed at one end. This end is weighted and the tube floats vertically in water, heavy end down. How far below the water surface is the end of the tube? Given: outer radius of the
tube is 0.14 cm , mass of weighted tube is $0.2 g$,
surface tension of water $73 d y n / \mathrm{cm}$ and $g=980 c m s^{-12}$.

D Watch Video Solution

9. If a 5 cm long capillary tube with 0.1 mm internal diameter, open at both ends, is
slightly dipped in water having surface tension
$75 d y n / \mathrm{cm}$, state whether: water will rise
halfway in the capillary, (ii) water will rig up to
the upper end of capillary, (iii) water will
overflow out of the upper end of capillary.

Explain your answer.

- Watch Video Solution

Subjective

1. A bob of mass m hangs from the ceiling of a smooth trolley car which is moving with a constant acceleration a. If young's modulus,
radius and length of the string are Y, r and I, respectively, find the (a) stress in the string
and (b) extension of the string when it makes a constant angle relative to vertical.

(Watch Video Solution
2. A smooth uniform, string of natural length l, cross-sectional area A and Young's modulus Y
is pulled along its length by a force F on a horizontal surface. Find the elastic potential energy stored in the string.

D Watch Video Solution

3. A narrow capillary tube is dipped 10 cm below water surface and a liquid bubble of radius $2 m m$ formed at the lower end by blowing air through the tube.
a. Calculate the excess pressure due to surface tension.
b. What is the pressure required in the tube in order to blow a hemispherical bubble at its end in water?

The surface tension of water at temperature of the experiment is $7.30 \times 10^{-2} \mathrm{~N} / \mathrm{m} .1$ atmospheric pressure $=10^{5} \mathrm{~Pa}$, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

- Watch Video Solution

4. A thin plate of large area is placed midway in a gap of height h filled with oil of viscosity
and the plate is pulled at constant velocity v by applying the same drag force on the plate. If a
lighter oil of viscosity η is then substituted in
the gap. it is found that for the velocity v, and
the same drag force as previous case the plate
is located unsymmetrically in the gap but parallel to the walls. Find η in terms of distance from nearer wall to the plane y.

D Watch Video Solution
5. When a vertical capillary of length with the sealed upper end was brought in contact with the surface of a liquid, the level of this liquid rose to the height h. The liquid density is ρ, the inside diameter the capillary is d, the contact angle is θ, the atmospheric pressure is
ρ_{0}. Find the surface tension of the liquid.

(Temperature this process remains constant.)

6. A rubber cord has a cross -sectional area $1 \mathrm{~mm}^{2}$ and total un stretched length 10.0 cm . It is stretched to 12.0 cm and then released to project a missile of mass 5.0 g . Taking young's modulus Y for rubber as $5.0 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
.Calculate the velocity of projection .

- Watch Video Solution

7. Two wires of diameter 0.25 cm , one made of steel and other made of brass, are loaded as
shown in the figure. The unloaded length of
the steel wire is 1.5 m and that of brass is
1.0 m . Young's modulus of steel is $2.0 \times 10^{11} \mathrm{~Pa}$
and that of brass is $1.0 \times 10^{11} \mathrm{~Pa}$. Compute
the ratio of elongations of steel and brass
wires. $\frac{\triangle l_{\text {steel }}}{\triangle l_{\text {brass }}}=$?

- Watch Video Solution

8. A steel rod of length $l_{1}=30 \mathrm{~cm}$ and two identical brass rod of length $l_{2}=20 \mathrm{~cm}$ each support a light horizontal platform as shown
in Fig. Cross-sectional area of each of the three rods is $A=1 \mathrm{~cm}^{2}$. A vertically downward force $F=5000 \mathrm{~N}$ is applied on the platform.

Young's modulus of elasticity for steel $Y_{s}=2 \times 10^{11} N^{-2} \quad$ and \quad brass
$Y_{b}=1 \times 10^{11} \mathrm{Nm}^{-2}$. Find stress (in MPa)
developed in a. Steel rod b. Brass rod

- Watch Video Solution

9. The two wires shown in figure are made of
the same material which has a breaking stress
of $8 \times 10^{8} \mathrm{Nm}^{-2}$. The area of cross section of
the upper wire is $0.006 \mathrm{~cm}^{2}$ and that of the lower wire is $0.003 \mathrm{~cm}^{2}$. The mass $m_{1}=10 \mathrm{~kg}, m_{2}=20 \mathrm{~kg}$ and teh hanger is light. a. Fidn the maximum load that casn be put on the hanger without breaking a wire. Which wire will break first if the load is increased? b. Repeat the above part $m_{1}=10 \mathrm{~kg}$ and $m_{2}=36 \mathrm{~kg}$.
10. A copper wire of negligible mass, $1 m$ length and cross-sectional area $10^{6} \mathrm{~m}^{2}$ is kept on a smooth horizontal table with one end fixed. A ball of mass $1 k g$ is attached to the other end. The wire and the ball are rotating with an angular velocity of $20 \mathrm{rad} / \mathrm{s}$. If the elongation in the wire is $10^{-3} \mathrm{~m}$.
a. Find the Young's modulus of the wire (in terms of $\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$).
b. If for the same wire as stated above, the angular velocity is increased to $100 \mathrm{rad} / \mathrm{s}$ and
the wire breaks down, find the breaking stress
(in terms of $\times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$).

D Watch Video Solution

11. An amusement park ride consists of airplane shaped cars attached to steel rods.

Each rod has a length of 20.0 m and a crosssectional area of $8.00 \mathrm{~cm}^{2}$. Young's modulus for steel is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$.
a. How much is the rod stretched (in $m m$)
when the ride is at rest ? (Assume that each
car plus two people seated in it has a total weight of 2000 N .)
b. When operating, the ride has a maximum angular speed of $\sqrt{\frac{19}{5}} \mathrm{rad} / \mathrm{s}$. How much is the rod stretched (in mm) then?

12. A capillary tube of length (i) $l=60 \mathrm{~cm}$, (ii)
$l=50 \mathrm{~cm} \quad$ and \quad radius $\quad r=1 / 4 m m \quad$ is
immersed vertically into water. Find the capillary rise in both cases. Angle of contact $=0^{\circ}$. Take coefficient of surface tension as 72 dyne $/ \mathrm{cm}, g=1000 \mathrm{cms}^{-12}$.

- Watch Video Solution

13. An annular disc of radius $r_{1}=10 \mathrm{~cm}$ and $r_{2}=5 \mathrm{~cm}$ is placed on a water surface. Find
the surface tension force on the disc if we
want to pull it from water surface. Take
coefficient of surface tension as
$\sigma=7 \times 10^{-3} N / m, g=10 m s^{-12}$.

(Watch Video Solution

14. Two soap bubbles of radii a and b coalesce
to form a single bubble of radius c. If the
external pressure is P, find the surface tension of the soap solution.

D Watch Video Solution

15. Calculate the pressure indise a small air bubble of radius 0.01 mm situated at a depth of $h=20 \mathrm{~m}$ below the fre surface of liquid of density $\quad \rho_{1}=10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \rho_{2}=800 \mathrm{~km} / \mathrm{m}^{3}$ and surface tension $T_{2}=7.5 \times 10^{-2} \mathrm{~N} / \mathrm{m}$.

The thickness of the first liqid is $h_{1}=15 m$
and $h_{2}=25 m$.

- Watch Video Solution

16. A mercury drop of radius R is sprayed into
n droplets of equal size. Calculate the energy expended if surface tension of mercury is T.

- Watch Video Solution

Single Correct

1. The ratio of diameters of two wires of same material is $n: 1$. The length of each wire is $4 m$.

On applying the same load, the increases in
the length of the thin wire will be $(n>1)$
A. n^{2} times
B. n times
C. $2 n$ times

D. $(2 n+1)$ times

Answer: A

D Watch Video Solution

2. A nylon rope 2 cm in diameter has a breaking strength of $1.5 \times 10^{5} N$. The breaking strength of a similar rope 1 cm in diameter is
A. $0.375 \times 10^{5} N$
B. $2 \times 10^{5} N$
C. $6 \times 10^{5} N$
D. $9 \times 10^{4} N$

Answer: A

D Watch Video Solution

3. The dimensions of four wires of the same material an given below. In which wire the increase in the length will be maximum?
A. Length 100 cm , diameter 1 mm
B. Length 200 cm , diameter 2 mm
C. Length 300 cm , diameter 3 mm
D. Length 50 cm , diameter 0.5 mm

Answer: D

D Watch Video Solution

4. Two wires of the same material and length
but diameters in the ratio $1: 2$ are stretched
by the same force. The potential energy per
A. 16: 1
B. $4: 1$
C. 2:1
D. 1:1

Answer: A

D Watch Video Solution
5. Two wires of the same material and length
are stretched by the same force. Their masses
are in the ratio $3: 2$. Their elongations are in the ratio
A. $3: 2$
B. 9: 4
C. $2: 3$
D. $4: 9$

Answer: C
6. Two wires of the same length and same material but radii in the ratio of $1: 2$ are stretched by unequal forces to produce equal elongation. The ratio of the two forces is
A. $1: 1$
B. $1: 2$
C. 1:3
D. 1: 4

Answer: D

D Watch Video Solution

7. When a weight of 5 kg is suspended from a
copper wire of length 30 m and diameter
0.5 mm , the length of the wire increases by
2.4 cm . If the diameter is doubled, the extension produced is
A. 1.2 cm
B. 0.6
C. 0.3 cm
D. 0.15 cm

Answer: B

D Watch Video Solution

8. The length of a wire is increased by 1 mm on
the application, of a given load. In a wire of the
same material, but of length and radius twice
that of the first, on application of the same
load, extension is
A. 0.25 mm
B. 0.5 mm
C. $2 m m$
D. 4 mm

Answer: B

D Watch Video Solution

9. An cube is shifted to a depth of $100 m$ is a lake. The change in volume is 0.1%. The bulk modulus of the material is
A. $10 P a$
B. $10^{4} \mathrm{~Pa}$
C. $10^{7} \mathrm{~Pa}$
D. $10^{9} \mathrm{~Pa}$

Answer: D

D Watch Video Solution

10. If ' S ' is stress and ' Y ' is young's modulus of material of a wire, the energy stored in the wire per unit volume is
A. $\frac{S Y}{2}$
B. $\frac{S^{2}}{2 Y}$
C. $\frac{S}{2 y}$
D. $\frac{2 S}{Y}$

Answer: B

D Watch Video Solution

11. What amount of work is done in increasing
the length of a wire through unity?
A. $\frac{Y L}{2 A}$
B. $\frac{Y L^{2}}{2 A}$
C. $\frac{Y A}{2 L}$
D. $\frac{Y L}{A}$

Answer: C

D Watch Video Solution

12. Young's modulus of rubber is $10^{4} \mathrm{~N} / \mathrm{m}^{2}$ and area of cross section is $2 \mathrm{~cm}^{-2}$. If force of
$2 \times 10^{5} d y n$ is applied along its length, then
its initial I becomes
A. $3 l$
B. $4 l$
C. $2 l$
D. none of these

Answer: C

- Watch Video Solution

13. When a certain weight is suspended from a
long uniform wire, its length increases by 1 cm .

If the same weight is suspended from another we of the same material and length but having
a diameter half of the first one, the increases in length will be
A. 0.5 cm
B. 2 cm
C. 4 cm
D. 8 cm

Answer: C

D Watch Video Solution

14. Two wires of the same material have
lengths in the ratio 1:2 and their radii are in
the ratio $1: \sqrt{2}$ If they are stretched by applying equal forces, the increase in their lengths will be in the ratio
A. $\sqrt{2}: 2$
B. $2: \sqrt{2}$
C. $1: 1$
D. 1:2

Answer: C

D Watch Video Solution

15. A piece of copper wire has twice the radius
of a piece of steel wire. Young's modulus for
steel is twice that of the copper. One end of
the copper wire is joined to one end of the steel wire so that both can be subjected to the
same longitudinal force. By what fraction of its
length will the steel have stretched when the
length of the copper has increased by 1% ?
A. 1%
B. 2%
C. 2.5%
D. 3%

Answer: B

D Watch Video Solution
16. The breaking stress for a substance is $10^{6} \mathrm{~N} / \mathrm{m}^{2}$. What length of the wire of this substance should be suspended verticaly so that the wire breaks under its own weight?
(Given: density of material of the wire $=4 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ and $\left.g=10 \mathrm{~ms}^{-12}\right)$
A. $10 m$
B. $15 m$
C. $25 m$
D. $34 m$

Answer: C

D Watch Video Solution

17. Water rises to a height of 2 cm in a capillary
tube. If the tube is tilted 60° from the vertical,
water will rise in the tube to a length of
A. 4.0 cm
B. 2.0 cm
C. 1.0 cm
D. water will not rise at all

Answer: A

D Watch Video Solution

18. A spherical liquid drop of radius R is
divided into eight the surface tension is T,
then the work equal droplets. If the surface tension is T, then the work done in this process will be
A. $2 \pi R^{2} T$
B. $3 \pi R^{2} T$

C. $4 \pi R^{2} T$

D. $2 \pi R T^{2}$

Answer: C

- Watch Video Solution

19. Air is pushed inot a soap bubble of radius r
to duble its radius. If the surface tension of
the soap solution is S, the work done in the process is
A. $2 \pi D^{2} T$
B. $4 \pi D^{2} T$
C. $6 \pi D^{2} T$
D. $8 \pi D^{2} T$

Answer: C

D Watch Video Solution

20. A water drop is divided into eight equal droplets. The pressure difference between inner and outer sides of big drop
A. will be the same as for smaller droplet
B. will be half of that for smaller droplet
C. will be one-fourth of that for smaller droplet
D. will be twice of that for smaller droplet

Answer: B

- Watch Video Solution

21. A vessel whose, bottom has round holes
with diameter 0.1 mm , is filled with water. The maximum height up to which water can be filled without leakage is
A. 100 cm
B. 75 cm
C. 50 cm
D. 30 cm

Answer: D

22. Water rises to a height of 10 cm in a capillary tube and mercury falls to a depth of
3.42 cm in the same capillary tube. If the density of mercury is $13.6 \mathrm{~g} / \mathrm{c} . c$. and the angles of contact for mercury and water n for water and are 135^{2} and 0°, respectively, the ratio of surface, tension for water and mercury is
A. $1: 0.15$
B. $1: 3$
C. $1: 6.5$
D. 1.5: 1

Answer: C

D Watch Video Solution

23. The velocity of small ball of mass M and density d_{1} when dropped in a container filled with glycerin becomes constant after sometime. If the density glycerin of is d_{2}, the viscous force acting on ball is
A. $\frac{M d_{1} g}{d_{2}}$
B. $M g\left(1-\frac{d_{2}}{d_{1}}\right)$
C. $\frac{M\left(d_{1}+d_{2}\right)}{g}$
D. $M d_{1} d_{2}$

Answer: B

D Watch Video Solution

24. Two soap bubbles, one of radius 50 mm and the other of radius 80 mm , are brought in contact so that they have a common interface.

The radius of the curvature of the common interface is
A. $0.003 m$
B. $0.133 m$
C. $1.2 m$
D. $8.9 m$

Answer: B
(Watch Video Solution
25. A glass rod of radius r_{1} is inserted symmetrically into a vertical capillary tube of radius r_{2} such that their lower ends are at the same level. The arrangement is now dipped in water. The height to which water will rise into the tube will be ($\sigma=$ surface tension of water, $\rho=$ density of water)
A. $\frac{2 \sigma}{\left(r_{2}-r_{1}\right) \rho g}$
B. $\frac{\sigma}{\left(r_{2}-r_{1}\right) \rho g}$
C. $\frac{2 \sigma}{\left(r_{2}+r_{1}\right) \rho g}$
D. $\frac{2 \sigma}{\left(r_{2}^{2}+r_{1}^{2}\right) \rho g}$

Answer: A

D Watch Video Solution

26. A large number of droplets, each of radius a, coalesce to form a bigger drop of radius b.

Assume that the energy released in the process is converted into the kinetic energy of the drop. The velocity of the drop is $\sigma=$ surface tension, $\rho=$ density)
A. $\left[\frac{\sigma}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{\frac{1}{2}}$
B. $\left[\frac{2 \sigma}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{\frac{1}{2}}$
C. $\left[\frac{3 \sigma}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{\frac{1}{2}}$
D. $\left[\frac{6 \sigma}{\rho}\left(\frac{1}{a}-\frac{1}{b}\right)\right]^{\frac{1}{2}}$

Answer: D

D Watch Video Solution

27. A thick rope of density ρ and length L is
hung from a rigid support. The increase in
length of the rope due to its own weight is (Y
is the Young's modulus)
A. $\frac{0.1}{4 Y} \rho L^{2} g$
B. $\frac{1}{2 Y} \rho L^{2} g$
C. $\frac{\rho L^{2} g}{Y}$
D. $\frac{\rho L g}{Y}$

Answer: B
28. When the load on a wire is slowly increased
from 3 to $5 k g w t$, the elongation increases
from 0.61 to 1.02 mm . The work done during
the extension of wire is
A. $0.16 J$
B. $0.016 J$
C. 1.6 J
D. 16 J

Answer: B
29. Two identical wires of iron and copper with
their Young's modulus in the ratio $3: 1$ are suspended at same level. They are to be loaded so as to have the same extension and hence level. Ratio of the weight is
A. $1: 3$
B. 2:1
C. $3: 1$
D. $4: 1$

Answer: C

- Watch Video Solution

30. A wire of cross section A is stretched horizontally between two clamps located $2 l m$ apart. A weight $W k g$ is suspended from the mid-point of the wire. If the mid-point sags
vertically through a distance $x<1$ the strain produced is
A. $\frac{2 x^{2}}{l^{2}}$
B. $\frac{x^{2}}{l^{2}}$
C. $\frac{x^{2}}{2 l^{2}}$
D. none of these

Answer: C

D Watch Video Solution

31. A long wire hangs vertically with its upper end clam A torque of $8 N m$ applied to the free end twists it through 45°. The potential energy of the twisted wire is
A. πJ
B. $\frac{\pi}{2} J$
C. $\frac{\pi}{4} J$
D. $\frac{\pi}{8} J$

Answer: A

D Watch Video Solution

32. The bulk modulus of water is
$2.0 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. The pressure required to
increase the density of water by 0.1% is
A. $2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
B. $2 x 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
C. $2 \times 10^{N} / m^{2}$
D. $2 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$

Answer: C

D Watch Video Solution

33. Two rods of different materials having
coefficients of thermal expansion α_{1}, α_{2} and

Young's modulii Y_{1}, Y_{2} respectively are fixed
between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of the rods. If $\alpha_{1}: \alpha_{2}=2: 3$, the thermal stresses developed in the two rods are equal provided $Y_{1}: Y_{2}$ is equal to
A. $2: 3$
B. 1:1
C. 3:2
D. $4: 9$

- Watch Video Solution

34. One end of uniform wire of length L and of weight W is attached rigidly to a point in the roof and a weight W_{1} is suspended from its lower end. If s is the area of cross section of the wire, the stress in the wire at a height ($3 L / 4$) from its lower end is
A. $\frac{W_{1}}{s}$
B. $\left[W_{1}+\frac{W}{4}\right] s$
c. $\left[W_{1}+\frac{3 W}{4}\right] / s$
D. $\frac{W_{1}+W}{s}$

Answer: C

- Watch Video Solution

35. A wire is stretched 1 mm by a force of $1 k N$.

How far would a wire of the same material and
length but of four times that diameter be stretched by the same force?

$$
\text { A. } \frac{1}{2} m m
$$

> B. $\frac{1}{4} m m$
> C. $\frac{1}{8} m m$
> D. $\frac{1}{16} m m$

Answer: D

D Watch Video Solution

36. Young's modulus of brass and steel are
$10 \times 10^{10} \mathrm{~N} / \mathrm{m}$
and
$2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$,
respectively. A brass wire and a steel wire of
the same length are extended by 1 mm under
the same force. The radii of the brass and steel
wires are R_{B} and R_{S}. respectively. Then
A. $R_{s}=\sqrt{2} R_{B}$
B. $R_{S}=\frac{R_{B}}{\sqrt{2}}$
C. $R_{S}=4 R_{B}$
D. $R_{S}=\left(R_{B}\right) / 4$

Answer: B

D Watch Video Solution

37. The length of a steel wire is l_{1} when the stretching force is T_{1} and l_{2} when the stretching force is T_{2}. The natural length of the wire is

$$
\begin{aligned}
& \text { A. } \frac{T_{2}}{R}-1\left(l_{1}+l_{2}\right) \\
& \text { B. } T_{1} l_{1}+T_{2} l_{2} \\
& \text { C. } \frac{l_{1} T_{2}-l_{2} T_{1}}{T_{2}-T_{1}} \\
& \text { D. } \frac{l_{1} T_{2}+l_{2} T_{1}}{T_{2}+T_{1}}
\end{aligned}
$$

Answer: C

38. Two blocks of masses 1 kg and $2 k g$ are connected by a metal wire goijng over a smooth pulley as shown in figure.

The breaking stress of the metal is
$(40 / 3 \pi) \times 10^{6} N / m^{2}$. If $g=10 m s^{-12}$, then
what should be the minimum radlus of the
wire used if it is not to break?

A. 0.5 mm
B. 1 mm
C. 1.5 mm
D. $2 m m$

Answer: B

D Watch Video Solution

39. A long elastic spring is stretched by 2 cm and its potential energy is U. If the spring is stretched by 10 cm , the $P E$. will be
A. $5 U$
B. 25 U
C. $U / 5$
D. $U / 20$

Answer: B

D Watch Video Solution
40. A copper bar of length L and area of cross
section A is placed in a chamber at atmospheric pressure. If the chamber is
evacuated, the percentage change in its
volume will be (compressibility of copper is $8 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{N}$ and $\left.1 \mathrm{~atm}=10^{5} \mathrm{~N} / \mathrm{m}\right)$
A. 8×10^{-7}
B. 8×10^{-5}
C. 1.25×10^{-4}
D. 1.25×10^{-5}

Answer: B

D Watch Video Solution
41. A small but heavy block of mass 10 kg is attached to a wire $0.3 m$ long. Its breaking stress is $4.8 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$. The area of the cross section of the wire is $10^{-6} m^{2}$. The maximum angular velocity with which the block can be rotated in the horizontal circle is
A. $4 \mathrm{rad} / \mathrm{s}$
B. $8 \mathrm{rad} / \mathrm{s}$
C. $10 \mathrm{rad} / \mathrm{s}$
D. $32 \mathrm{rad} / \mathrm{s}$

Answer: A

- Watch Video Solution

42. A ball falling in a lake of depth 200 m shows
a decrease of 0.1% in its volume at the bottom. The bulk modulus of the elasticity of the material of the ball is (take $g=10 \mathrm{~ms}^{-12}$)
A. $10^{9} \mathrm{~N} / \mathrm{m}^{2}$
B. $2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
C. $3 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

D. $4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Answer: B

D Watch Video Solution

43. A massive stone pillar $20 m$ high and of uniform cross section rests on a rigid base and supports a vertical load of $5.0 \times 10^{5} \mathrm{~N}$ at its upper end. If the compressive stress in the pillar is not exceed $16 \times 10^{6} \mathrm{~N} / \mathrm{m}$, what is the minimum cross-sectional area of the pillar?
(Density of the stone $=2.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ take $g=10 N / k g)$
A. $0.15 m^{2}$
B. $0.25 m^{2}$
C. $0.35 \mathrm{~m}^{2}$
D. $0.45 \mathrm{~m}^{2}$

Answer: D

D Watch Video Solution
44. If the work done in strectching a wire by
$1 m m$ is $2 J$, then work necessary for stretching
another wire of same material but with double
radius of cross -section and half of the length
by 1 mm is
A. $\frac{1}{4} J$
B. 4 J
C. 8 J
D. 16 J
45. Two wires of the same material and same mass are stretched by the same force. Their lengths are in the ratio
A. $3: 2$
B. $2: 3$
C. $4: 9$
D. 9: 4

- Watch Video Solution

46. A wire is suspended vertically from a rigid support. When loaded with a steel weight in air, the wire extends by 16 cm . When the weight is completely immersed in Water, the extension is reduced to 14 cm . The relative density of the material of the weight is
A. $2 \mathrm{~g} / \mathrm{cm}^{3}$
B. $6 \mathrm{~g} / \mathrm{cm}^{3}$
C. $8 \mathrm{~g} / \mathrm{cm}^{3}$

D. $16 \mathrm{~g} / \mathrm{cm}^{3}$

Answer: C

D Watch Video Solution

47. Two bars A and B of circular cross section,
same volume and made of the same material,
are subjected to tension. If the diameter of A
is half that of B and if the force applied to
both the rod is the same and it is in the elastic
limit, the ratio of extension of A to that of B
will be
A. 16
B. 8
C. 4
D. 2

Answer: A
(Watch Video Solution
48. A uniform cylindrical wire is subjected to a longitudinal tensile stress of $5 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$. Young's modulus of the material of the wire is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The volume change in the wire is 0.02%. The factional change in the radius is
A. 0.25×10^{-4}
B. 0.5×10^{-4}
C. 1.0×10^{-4}
D. 1.5×10^{-4}

Answer: A

D Watch Video Solution

49. A material has normal density ρ and bulk modulus K. The increase in the density of the material when it is subjected to an external pressure P from all sides is
A. $P / \rho K$
B. $K / \rho P$
C. $\rho P / K$

D. $\rho K / P$

Answer: C

D Watch Video Solution

50. A rubber rope of length $8 m$ is hung from the ceiling of a room. What is the increase in length of rope due to its own weight? (Given: Young's modulus of elasticity of rubber $=5 \times 10^{6} \mathrm{~N} / \mathrm{m}$ and density of rubber $=1.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. Take $\left.g=10 \mathrm{~ms}^{-12}\right)$
A. 1.5 mm
B. 6 mm
C. $24 m m$
D. 96 mm

Answer: D

D Watch Video Solution

51. A straw 6 cm long floats on water. The water
film on one side has surface tension of
$50 d y n / \mathrm{cm}$. On the other slide, camphor
reduces the surface tension to $40 d y \mathrm{n} / \mathrm{cm}$.

The resultant force acting on the straw is
A. $(50 \times 6-40 \times 6) d y n$
B. $10 d y n$
C. $\left(\frac{50}{6}-\frac{40}{6}\right) d y n$
D. $90 d y n$

Answer: A

D Watch Video Solution
52. Two glass plates are separated by water. If surface tension of water is $75 d y \mathrm{~m} / \mathrm{cm}$ and the area of each plate wetted by water is $8 \mathrm{~cm}^{2}$ and the distance between the plates is 0.12 mm , then the force applied to separate the two plates is
A. $10^{2} d y n$
B. $10^{4} d y n$
C. $10^{5} d y n$
D. $10^{6} d y n$

Answer: C

D Watch Video Solution

53. A ring is cut from a platinum tube 8.5 cm
internal and 8.7 cm external diameter. It is
supported horizontally from the pan of a balance, so that it comes in contact with the
water in a glass vessel. If an extra $3.103 g f$ is
required to pull it away from water, the surface tension of water is
A. $72 d y n / \mathrm{cm}$
B. $70.80 d y n / \mathrm{cm}$
C. $63.35 d y n / \mathrm{cm}$
D. $60 d y \mathrm{n} / \mathrm{cm}$

Answer: A

D Watch Video Solution

54. A soap film of surface tension 3×10^{-2}
formed in a rectangular frame can support a
straw as shown in Fig. If $g=10 m s^{-12}$, the

mass of the straw is

Soap film

A. 0.006 g

B. $0.06 g$
C. $0.6 g$

D. $6 g$

Answer: C
55. The lower end of a capillary tube is at a depth of 12 cm and water rises 3 cm in it. The mouth pressure required to blow an air bubble at the lower end will be $x \mathrm{~cm}$ of water column, where x is
A. 12
B. 15
C. 3

D. 9

Answer: B

D Watch Video Solution

56. A light wire $A B$ of length 10 cm can slide on
a vertical frame as shown in figure. There is a
film of soap solution trapped between the frame and the wire. Find the load W that should be suspended from the wire to keep it in equilibrium. Neglect friction. Surface
tension of soat solution $=25 \mathrm{dyncm}^{-1}$. Take

$$
\mathrm{g}=10 \mathrm{~ms}^{\wedge}-2^{`}
$$

A. $0.2 g$
B. $0.3 g$
C. $0.4 g$
D. $0.5 g$

Answer: D

- Watch Video Solution

57. The angle of contact between glass and water is 0° and water (surface tension
$70 d y \mathrm{n} / \mathrm{cm}$) rises in a glass capillary up to 6 cm
. Another liquid of surface tension
$140 \mathrm{dyn} / \mathrm{cm}$, angle of contact 60° and relative density 2 will rise in the same capillary up to
A. 12 cm
B. 24 cm
C. 3 cm
D. 6 cm

Answer: C

D Watch Video Solution

58. A hollow sphere has a small hole in it. On
lowering the sphere in a tank of water, it is observed that water enters into the hollow sphere at a depth of 40 cm below the surface.

Surface tension of water is $7 \times 10^{-2} N / m$.

The diameter of the hole is

> A. $\frac{1}{28} m m$
> B. $\frac{1}{21} m m$
> C. $\frac{1}{14} m m$
> D. $\frac{1}{7} m m$

Answer: C

D Watch Video Solution

59. Work W is required to form a bubble of volume V from a given solution. What amount
of work is required to be done to form a bubble of volume $2 V$?
A. W
B. $2 W$
C. $2^{\frac{1}{3}} W$
D. $4^{\frac{1}{3}} W$

Answer: D
(Watch Video Solution
60. The surface energy of a liquid drop is E. It
is sprayed into 1000 equal droplets. Then its
surface energy becomes
A. $1000 E$
B. $100 E$
C. $10 E$
D. E

Answer: C

- Watch Video Solution

61. A cube with a mass $=20 g$ wettable water
floats on the surface of water. Each face of the
cube is $\alpha=3 \mathrm{~cm}$ long. Surface tension of water is $70 \mathrm{dyn} / \mathrm{cm}$. The distance of the lower
face of the cube from the surface of water is (

$$
\left.g=980 c m s^{-12}\right)
$$

A. 2.3 cm
B. 4.6 cm
C. 9.7 cm
D. 12.7 cm

Answer: A

- Watch Video Solution

62. A liquid is containe in a vertical tube of semicircular cross section figure.The contact angle is zero. The force of surface tension on
the curved part and on the flat part are in ratio
R
A. $2: \pi$
B. $1: \pi$
C. $3: \pi$
D. 2.7: π

Answer: A

D Watch Video Solution

63. Two vertical parallel glass plates are partially submerged in water. The distance between the plates is d and the length is l.

Assume that the water between the plates does not reach the upper edges of the plates
and the wetting is complete. The water will rise to height ($\rho=$ density of water and $\alpha=$ surface tension of water)

> A. $\frac{2 \sigma}{\rho g d}$
> B. $\frac{\sigma}{2 \rho g d}$
> C. $\frac{4 \sigma}{\rho g d}$
> D. $\frac{5 \sigma}{\rho g d}$

Answer: A
64. A number of droplets, each of radius r, combine to form a drop of radius R. If T is the surface tension, the rise in temperature will be
A. $\frac{2 T}{r}$
B. $\frac{3 T}{R}$
C. $2 T\left[\frac{1}{r}-\frac{1}{R}\right]$
D. $3 T\left[\frac{1}{r}-\frac{1}{R}\right]$

Answer: D

Watch Video Solution

65. A drop of liquid of density ρ is floating halfimmersed in a liquid of density d. If ρ is the surface tension the diameter of the drop of the liquid is

$$
\text { A. } \sqrt{\frac{\sigma}{g(2 \rho-d)}}
$$

B. $\sqrt{\frac{2 \sigma}{g(2 \rho-d)}}$
C. $\sqrt{\frac{6 \sigma}{g(2 \rho-d)}}$
D. $\sqrt{\frac{12 \sigma}{g(2 \rho-d)}}$

Answer: D

D Watch Video Solution

66. A drop of liquid of density ρ is floating half-
immersed in a liquid of density d. If ρ is the
surface tension the diameter of the drop of
the liquid is

$$
\begin{aligned}
& \text { A. } \frac{T A^{2}}{V} \\
& \text { B. } \frac{2 T A^{2}}{V} \\
& \text { C. } \frac{4 T A^{2}}{V}
\end{aligned}
$$

D. $\frac{T A^{2}}{2 V}$

Answer: B

D Watch Video Solution

67. Two soap bubbles of radii a and b coalesce
to form a single bubble of radius c. If the external pressure is P, find the surface tension of the soap solution.
A. $\frac{P\left(c^{3}+a^{3}+b^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
B. $\frac{P\left(c^{3}-a^{3}-b^{3}\right)}{4\left(a^{2}+b^{2}-c^{2}\right)}$
C. $P c^{3}-4 a^{2}-4 b^{2}$
D. $P c^{3}-2 a^{2}-3 b^{2}$

Answer: B

- Watch Video Solution

68. A thin square plate of side 5 cm is suspended vertically a balance so that lower side just dips into water with side to surface.

When the plate is clean $\left(\theta=0^{\circ}\right)$, it appears
to weigh $0,044 N$. But when the plate is greasy $\left(\theta=180^{\circ}\right)$ it appears to weigh $0.03 N$. The surface tension of water is
A. $3.5 \times 10^{-2} N / m$
B. $7.0 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
C. $14.0 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
D. $1.08 \mathrm{~N} / \mathrm{m}$

Answer: B

D Watch Video Solution
69. A wire forming a loop is dipped into soap solution and taken out so that a film of soap solution is formed. A loop of 6.28 cm long
thread is gently put on the film and the film is
pricked with a needle inside the loop. The
thread loop takes the shape of a circle. Find
the tension in the thread. Surface tension of soap solution $=0.030 \mathrm{Nm}^{-1}$.

$$
\begin{aligned}
& \text { A. } 1 \times 10^{4} n \\
& \text { B. } 2 \times 10^{-4} N \\
& \text { C. } 3 \times 10^{-4} N
\end{aligned}
$$

D. $4 \times 10^{-4} N$

Answer: C

D Watch Video Solution

70. A 20 cm long capillary tube is dipped in
water. The water rises up to 8 cm . If the entire
arrangement is put in a freely falling elevator,
the length of water column in the capillary
tube will be
A. 20 cm
B. 4 cm
C. 10 cm
D. 8 cm

Answer: A

D Watch Video Solution

71. A marble of mass x and diameter $2 r$ is gently released in a tall cylinder containing
honey. If the marble displaces mass $y(<x)$ of
the liquid, then the terminal velocity is proportional to
A. $x+y$
B. $x-y$
C. $\frac{x+y}{r}$
D. $\frac{x-y}{r}$

Answer: D
(Watch Video Solution
72. A small metal ball of diameter 4 mm and density $10.5 \mathrm{~g} / \mathrm{cm}^{3}$ in dropped in glycerine of density $1.5 \mathrm{~g} / \mathrm{cm}^{3}$. The ball attains a terminal velocity of $8 / \mathrm{cms}^{-1}$. The coefficient of viscosity of glycerine is
A. 4.9 poise
B. 9.8 poise
C. 98 poise
D. 980 poise

Answer: B

73. A capillary tube is attached horizontally to

a constant pressure head arrangement. If the
radius of the capillary tube is increased by
10%, then the rate of flow of the liquid shall change nearly by
A. $+10 \%$
B. 46%
C. -10%

D. -40%

Answer: B

D Watch Video Solution

74. A sphere of brass released in a long liquid column attains a terminal speed v_{0}. If the terminal speed is attained by a sphere of marble of the same radius and released in the same liquid is $n v_{0}$, then the value of n will be
(Given: The specific gravities of brass, marble and liquid are $8.5,2.5$ and 0.8 , respectively)

$$
\begin{aligned}
& \text { A. } \frac{5}{17} \\
& \text { B. } \frac{17}{77} \\
& \text { C. } \frac{1}{31} \\
& \text { D. } \frac{17}{5}
\end{aligned}
$$

Answer: B

D Watch Video Solution

75. Between a plate of area $100 \mathrm{~cm}^{2}$ and another plate of area $100 \mathrm{~m}^{2}$ there is a 1 mm , thick layer of water, if the coefficient of viscosity of water is 0.01 poise, then the force required to move the smaller plate with a velocity $10 \mathrm{cms}^{-1}$ with reference to large plate is
A. $100 d y n$
B. $10^{4} d y n$
C. $10^{6} d y n$

D. $10^{9} \mathrm{dyn}$

Answer: A

D Watch Video Solution

76. A river $10 m$ deep is flowing at $5 m s^{-1}$. The shearing stress between horizontal layers of the rivers is ($\eta=10^{-(3)} S I$ units)

$$
\text { A. } 10^{-3} \mathrm{~N} / \mathrm{m}^{2}
$$

$$
\text { B. } 0.8 \times 10^{-3} N / m^{2}
$$

C. $0.5 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$

D. $1 N / m^{2}$

Answer: C

D Watch Video Solution

77. A ball rises to the surface of a liquid with constant velocity. The density of the liquid is
four lime the density of the material of the ball. The frictional force of the liquid on the
rising ball is greater than the weight of the ball by a factor of
A. 2
B. 3
C. 4
D. 6

Answer: B
(Watch Video Solution
78. A spherical ball falls through viscous medium with terminal velocity v. If this ball is replaced by another ball of the same mass but half the radius, then the terminal velocity will be (neglect the effect of buoyancy.)
A. v
B. $2 v$
C. $4 v$
D. $8 v$

- Watch Video Solution

79. Each of the pictures shows four objects
tied together with rubber bands being pulled to the right across a horizontal frictionless surface by a horizontal force F. All the objects have the same mass, all the rubber bands obey Hooke's law and have the same equilibrium length and the same force constant. Which of these pictures is drawn most correctly?
A.
C.

Answer: B

D Watch Video Solution

80. A glass rod of radius 1 mm is inserted symmetrically into a glass capillary tube with inside radius $2 m m$. Then the whole arrangement is brought in contact of the
surface of water. Surface tension of water is
$7 \times 10^{-2} N / m$. To what height will the water rise in the capillary? $\left(\theta=0^{\circ}\right)$
A. 1.4 cm
B. 4.2 cm
C. 2.1 cm
D. 6.8 cm

Answer: A

D Watch Video Solution
81. Two soap bubbles A and B of different diameters are blown at the two ends of a bent tube. By opening the stopcock S, the two
bubbles are put in communication. What will happen?

A. There will be change in the size of the bubbles
B. The bubbles will become of equal size
C. The bubbles will become of equal size
D. The bubbles will become of equal size

Answer: C

D Watch Video Solution
82. In the figure shown, forces of equal magnitude are applied to the two ends of a uniform rod. Consider A as the cross-sectional area of the rod. For this situation, mark out the incorrect statements.

A. The rod is in compressive stress.
B. The numerical value of stress developed in the rod is equal to F / A.
C. The stress is defined as internal force developed at any cross section per unit area.

D. none of these

Answer: D

D Watch Video Solution

83. The space between two large horizontal metal plates, 6 cm apart, is filled with a liquid of viscosity $0.8 \mathrm{~N} / \mathrm{m}^{2}$. A thin plate of surface
area $0.01 m^{2}$ is moved parallel to the length of
the plate such that the plate is at a distance of
$2 m$ from one of the plates and 4 cm from the other. If the plate moves with a constant speed of $1 m s^{-1}$, then
A. the layer of the fluid, which is having the maximum velocity, is lying mid-way between the plates
B. the layers of the fluid, which is in contact
with the moving plate, is having the maximum velocity
C. the layer of the fluid, which is in contact
with the moving plate and is on the side of farther plate, is moving with the maximum velocity
D. the layer of the fluid, which is in contact
with the moving plant and is on the side
of nearer plate, is moving with the maximum velocity

Answer: B

84. The pressure that has to be applied to the ends of a steel wire of length 10 cm to keep its
length constant when its temperature is raised by $100^{\circ} \mathrm{C}$ is : (For steel Young's modulus is $2 \times 10^{11} \mathrm{Nm}^{-2}$ and coefficient of thermal expansion is $1.1 \times 10^{-5} \mathrm{~K}^{-1}$)
A. $22 \times 10^{7} \mathrm{~atm}$
B. $2.2 \times 10^{3} \mathrm{~atm}$
C. zero

D. $4.3 \times 10^{3} \mathrm{~atm}$

Answer: B

D Watch Video Solution

85. Maximum excess pressure inside a thinwalled steel tube of radius r and thickness
$\triangle r(\ll r)$, so that the tube would not rupture would be (breaking stress of steel is $\sigma_{\text {max }}$

$$
\text { A. } \sigma_{\max } \times \frac{r}{\triangle r}
$$

B. $\sigma_{\max } \times \frac{\triangle r}{r}$
C. $\sigma_{\text {max }}$
D. $\sigma_{\max } \times \frac{\triangle 2 r}{r}$

Answer: B

- Watch Video Solution

86. Two equal and opposite point forces applied at mid- points of the ends of a rod of square cross shown. Consider the dotted section $A B C D$. If the rod is cut across this

Gloss section, the force exerted by the right part of the rod on left part across this cross section is

A. acting at point passing through cross
section acting at point passing through
cross section $A B C D$
B.acting at a point but not passing through the centre of cross section $A B C D$
C. uniformly distributed across the cross
section $A B C D$
D. non-uniformly distributed across the
cross section $A B C D$

Answer: C

D Watch Video Solution

87. A 5 kg rod of square cross section 5 cm on a
side and $1 m$ long is pulled along a smooth
horizontal surface by a force applied at one end. The rod has a constant acceleration of
$2 m s^{-12}$. Determine the elongation in the rod.
(Young's modulus of the material of the rod is
$\left.5 \times 10^{3} N / m^{9}\right)$.
A. Zero, as for elongation to be there, equal
and opposite forces must act on the rod
B. Non-zero but cannot be determine from
the give, situation
C. $0.4 \mu \mathrm{~m}$
D. $16 \mu m$

Answer: C

D Watch Video Solution

88. If two soap bubbles of different radii are connected by a tube
A. air follows from the larger bubble into
smaller bubble till both bubbles acquire-
B. air follows from the smaller bubble into
larger bubble and the larger bubble grows in size with decrease in size of the smaller bubble
C. air does not flow but the sizes of the bubbles changes

D. sizes of the bubbles remain unchanged

Answer: B

89. A paper disc of radius R from which a hole of radius r is cut out is floating in a liquid of the surface tension S. The force on the disc due to the surface tension is
A. $S \times 2 \pi R$
B. $S \times 2 \pi r$
C. $S \times 2 \pi(R-r)$
D. $S \times 2 \pi(R+r)$

- Watch Video Solution

90. A glass rod of radius 1 mm is inserted symmetrically into a glass capillary tube with inside radius 2 mm . Then the whole arrangement is brought in contact with the surface of water. Surface tension of water is $7 \times 10^{-2} N / m$. To what height will the water rise in the capillary? $\left(\theta=0^{\circ}\right)$
A. 1.44 cm
B. 6 cm

C. 4.86

D. none of these

Answer: A

D Watch Video Solution

91. The elastic limit of an elavator cable is
$2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. The maximum upward
acceleration that an elavator of mass
$2 \times 10^{3} \mathrm{~kg}$ can have when supported by a
cable whose cross sectional area is $10^{-4} \mathrm{~m}^{2}$,
provided the stres in cable would not exceed half to the elastic limit would be
A. $10 m s^{-2}$
B. $50 \mathrm{~ms}^{-2}$
C. $40 m s^{-2}$
D. Not possible to move up

Answer: C
(Watch Video Solution
92. A wire can sustain the weight of 20 kg before breaking. If the wire is cut into two equal parts each part can sustain a weight of

A. 10 kg

B. 20 kg
C. 40 kg
D. 35 kg

Answer: B

D Watch Video Solution
93. A wire of length L and radius r is fixed at
one end. When a stretching force F is applied
at free end, the elongation in the wire is l.
When another wire of same material but of
length $2 L$ and radius $2 r$, also fixed at one end
is stretched by a force $2 F$ applied at free end,
then elongation in the second wire will be
A. $\frac{l}{2}$
B. l
C. $2 l$
D. $\frac{l}{4}$

Answer: B

D Watch Video Solution

94. On applying a stress of $x N / m^{2}$, the length of wire of some material gets doubled.

Value of Young's modulus for the material of
the wire in N / m^{2}, is (assume Hooke's law to
be valid and go for approx. results)
A. x
B. $2 x$
C. $\frac{x}{2}$
D. Insufficient information

Answer: A

D Watch Video Solution

95. A Copper wire and steel of the same diameter and length are connected end to end and a force is applied, which stretches their
combined length by 1 cm . The two wires will have
A. same stress and same strain
B. same stress and different strains
C. different stresses and same strain
D. different stresses and different strains

Answer: B

D Watch Video Solution

96. A steel wire of length 4.7 m and crosssectional area $3 \times 10^{-6} \mathrm{~m}^{2}$ stretches by the same amount as a copper wire of length $3.5 m$ and cross-sectional area of $4 \times 10^{-6} \mathrm{~m}^{2}$ under
a given load. The ratio of Young's modulus of steel to that of copper is
A. 1.8
B. 3.6
C. 0.6
D. 8.7

Answer: A

D Watch Video Solution

97. The edges of an aluminum cube are 10 cm
long. One face of the cube is firmly fixed to a
vertical wall. A mass of 100 kg is then attached
to the opposite face of the cube. Shear modulus of aluminum is $25 \times 10^{9} \mathrm{~Pa}$, the vertical deflection in the face to which mass is attached is
A. $4 \times 10^{-4} m$
B. $4 \times 10^{-7} m$
C. $25 \times 10^{-6} m$
D. $6 x 10^{-7} m$

Answer: B

D Watch Video Solution

98. A solid sphere of radius R made of a material of bulk modulus K is surrounded by a
liquid in a cylindrical container. A massless
pistion of area A floats on the surface of the
liquid. When a mass M is placed on the piston
to compress the liquid the fractional change in the radius of the sphere, $\delta R / R$, is
A. $\frac{M g}{A K}$
B. $\frac{M g}{3 A K}$
C. $\frac{3 M g}{A K}$
D. $\frac{M g}{2 A K}$

Answer: B

99. A film of water is formed between two straight parallel wires each 10 cm long and at
a seperation of 0.5 cm . Calculate the work required to increase 1 mm distance between
the wires. Surface tension of water $=72 \times 10^{-3} N / m$.
A. $1.44 \times 10^{-5} J$
B. $1.72 \times 10^{-5} \mathrm{~J}$
C. $1.44 \times 10^{-4} J$
D. $1.72 \times 10^{-4} \mathrm{~J}$

Answer: A

D Watch Video Solution

100. The length of a needle floating on water is
2.5 cm . The minimum force in addition to its
weight needed to lift the needle above the
surface of water will be (surface tension of
water is $0.072 \mathrm{~N} / \mathrm{m}$)
A. $3.6 \times 10^{-3} N$
B. $10^{-2} N$
C. $9 \times 10^{-4} N$
D. $6 \times 10^{-4} N$

Answer: A
(D) Watch Video Solution
101. A steel wire is stretched by $1 k g w t$. If the
radius of the wire is doubled, its Young's
modulus will
A. remain unchanged
B. become half
C. become double
D. become four times

Answer: A

D Watch Video Solution

102. Two long metallic strips are joined together by two rivets each of radius 2 mm .

Each rivet can withstand a maximum shearing stress of $1.5 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. Assuming that each
rivet shares the stretching load equally, the maximum tensile force the strip can exert without rupture is
A. $1.88 \times 10^{4} N$
B. $3.8 \times 10^{4} N$
C. $6 \times 10^{7} N$
D. $3 \times 10^{4} N$

Answer: B

D Watch Video Solution
103. A solid sphere fallls with a terminal velocity of $20 \mathrm{~ms}^{-1}$ in air. If it is allowed to fal in vacuum
A. terminal velocity will be $20 m s^{-1}$
B.terminal velocity will be less than
$20 m s^{-1}$
C. terminal velocity will be greater than

$$
20 m s^{-1}
$$

D. no terminal velocity will be attained
104. The density of water at the surface of ocean is ρ. If the bulk modulus of water is B, then the density of ocean water at depth, when the pressure is αp_{0} and p_{0} is the atmospheric pressure is

$$
\begin{aligned}
& \text { A. } \frac{p B}{B-(\alpha-1) p_{0}} \\
& \text { в. } \frac{p B}{B+(\alpha-1) p_{0}} \\
& \text { с. } \frac{p B}{B-\alpha p_{0}}
\end{aligned}
$$

D. $\frac{p B}{B+\alpha p_{0}}$

Answer: A

D Watch Video Solution

105. Water rises to a height h in a capillary
tube of cross-sectional area A. the height to
which water will rise in a capillary tube of cross-sectional area $4 A$ will be
A. h
B. $h / 2$
C. $h / 4$
D. $4 h$

Answer: B

D Watch Video Solution

106. Neglecting the density of air, the terminal
velocity obtained by a raindrop of radius
0.3 mm falling through the air of viscosity
$1.8 \times 10^{-5} N / m^{2}$ will be
A. $10.9 m / s$
B. $8.3 m / s$
C. $9.2 m / s$
D. $7.6 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

107. A composite rod consists of a steel rod of length 25 cm and area $2 A$ and a copper rod of
length 50 cm and area A. The composite rod is
subjected to an axial load F. If the Young's moduli of steel and copper are in the ratio $2: 1$ then
A. the extension produced in copper rod
will be more
B. the extension in copper and steel parts
will be in the ratio $1: 2$
C. the stress applied to copper rod will be
more

D. no extension will be produced in the

steel rod

Answer: A::B::C

D Watch Video Solution

108. Four rods A, B, C and 1) of the same
length and material but of different radii
$r, r \sqrt{2}, r \sqrt{3}$ and $2 r$, respectively, are held between two rigid walls. The temperature of
all rods is increased through the same range.

If the rods do not bend, then
A. the stress in the rods A, B, C and D is
in the ratio 1:2:3:4
B. the forces on them exerted by the wall
are in the ratio $1: 2: 3: 4$
C. the energy stored in the rods due to
elasticity is in the ratio $1: 2: 3: 4$
D. it is independent of area like surface
tension while friction depends

Answer: B::C

- Watch Video Solution

109. Viscous force is somewhat like friction as
it opposes the motion and is non-conservative but not exactly so because
A. it is velocity dependent while friction is
not
B. it is velocity independent while friction is
C. it is temperature dependent while

friction is not

D. it is independent of area is like surface

tension while friction is dependent

Answer: A::C

D Watch Video Solution
110. Excess pressure can be $(2 T / R)$ for
A. spherical drop
B. spherical meniscus
C. cylindrical bubble in air
D. spherical bubble in water

Answer: A::B::C::D

D Watch Video Solution

111. If a liquid rises to the same height in two
capillaries of the same material at the same
temperature, then
A. the weight of liquid in both capillaries must be equal
B. the radius of meniscus must be equal
C. the capillaries must be cylindrical and
vertical
D. the hydrostatic pressure at the base of
capillaries must be same

Answer: A::B

112. The wires A and B shown in Fig. are made of the same material and have radii r_{A} and r_{B}, respectively. The block between them has a mass m. When the force F is $m g / 3$, one of
the wires breaks. Then

ШШلШШ

A

m
A. A will break before B if $r_{A}=r_{B}$
B. A will break before B if $r_{A}<2 r_{B}$
C. either A or B may break if $r_{A}=2 r_{B}$
D. the lengths of A and B must be known
to predict which wire will break.

Answer: A::B::C

(Watch Video Solution

Multiple Correct

1. If n drops of a liquid, form a single drop, then
A. some energy will be released in the process
B. some energy will be absorbed in the
process
C. the energy released or absorbed will be
$E\left(n-n^{\frac{2}{3}}\right)$
D. the energy released or absorbed will be

$$
n E\left(2^{\frac{2}{3}}-1\right)
$$

Answer: A::C

D Watch Video Solution

2. When a capillary tube is dipped in a liquid,
the liquid rises to a height h in the tube. The
free liquid surface inside, the tube is hemispherical in shape. The tube is now pushed down so that the height of the tube outside the liquid is less than h. Then
A. the liquid will come out of the tube like in a small fountain
B. the liquid will ooze out of the tube
slowly
C. the liquid will fill the tube but not come out of its upper end
D. the free liquid surface inside the tube
will not be hemispherical

Answer: C::D

3. A vertical glass capillary tube, open at both

 ends, contains some water. Which of thefollowing shapes may not be taken by the water -in the tube?

Answer: A::B::C

- Watch Video Solution

4. A uniform plank is resting over a smooth
horizontal floor and is pulled by applying a
horizontal force at its one end. Which of the following statements are not correct?
A. Stress developed in plank material is maximum at the end at which force is
applied and decrease linearly to zero at
the other end.
B. A uniform tensile stress is developed in
the plank material.
C. Since plank is pulled at one end only,
plank starts to accelerate along
direction of the force. Hence, no stress
developed in the plank material.
D. none of these
5. A rod is made of uniform material and has non-uniform cross section. It is fixed at both the ends as shown and heated at mid-section. Which of the following are not correct?

A. Force of compression in the rod will be maximum at mid section
B. comressive stress in the rod will be maximum at left end
C. since rod in fixed at both the ends, its
length will remain unchanged. Hence, no
strain will be induced in it.

D. none of these

Answer: A::C

6. Figure shows the stress-strain graphs for materials.A and B. From the graph it follows that

A. to material A has a higher Young's modulus
B. material B is more ductile
C. material A can withstand greater stress
D. material B can withstand greater stress

Answer: A::D

D Watch Video Solution

7. Two wires A and B have the same cross
section and are made of the same material,
but the length of wire A is twice that of B.

Then, for a given load
A. the extension of A will be twice that of

B

B. the extensions of A and B will be equal
C. the strain in A will be half that in B
D. the strains in A and B will be equal

Answer: A::D

- Watch Video Solution

8. Two wires A and B have equal lengths and
are made of the same material, but diameter of wire A is twice that of wire B. Then, for a given load,
A. The extension of B will be four times
that of A
B. the extension of A and B will be equal
C. the strain in B is four times that in A
D. the strains in A and B will be equal

Answer: A::C

D Watch Video Solution

9. Choose the correct statements from the following:
A. Steel is more elastic than rubber.
B. The stretching of a coil spring is
determined by the Young's modulus of
the wire of the spring.
C. The frequency of a tuning fork is determined by the shear modulus of the material of the fork.
D. When a material is subjected to a tensile
(stretching) stress the restoring forces
are caused by interatomic attraction.

Answer: A

D Watch Video Solution

10. Which of the following are correct?
A. For a small deformation of a material,
the ratio (stress/ strain) remains same.
B. For a large deformation of a material,
the ratio (stress/ strain) decreases.
C. Two wires made of different materials,
having the same diameter and length
are connected end to end. A force is
applied. This stretches their combined
length by $2 m m$. Now, the strain is same in both the wire but stress is different.
D. None of these is correct.

Answer: A::B

D Watch Video Solution

11. A light rod of length $2 m$ is suspended from
the ceiling horizontally by means of two vertical wires of equal length tied to its ends.

One of the wires is made of steel and is of
cross section $0.1 \mathrm{~cm}^{2}$. The other wire is a brass
of cross section $0.2 \mathrm{~cm}^{2}$. A weight is
suspended from a certain point of the rod
such that equal stress are produced in both
the wires. Which of the following are correct?
A. The ratio of tension in the steel and
brass wires is 0.5
B. The load is suspended at a distance of
$400 / 3 \mathrm{~cm}$ from the steel wire.
C. Both (a) and (b) are correct
D. Neither (a) nor b) is correct.

- Watch Video Solution

12. Which of the following are correct?
A. The product of bulk' modulus of elasticity and compressibility is 1
B. A rope 1 cm in diameter breaks if the
tension in it exceeds $500 N$. The
maximum tension that may be given to a
similar rope of diameter 2 cm is 2000 N .
C. Both (a) and (b) are correct.
D. Neither (a) nor (b) is correct.

Answer: A::B::C

D Watch Video Solution
13. Which of the following are correct?
A. The shear modulus of a liquid is infinite.
B. Bulk modulus of a perfectly rigid body is infinite.
C. According to Hooke's law, the ratio of
the stress and strain remains constant.
D. None of the above

Answer: B::C

D Watch Video Solution

14. A heavy block of mass 150 kg hangs with
the help of three vertical wires of equal length
and equal cross-sectional area as shown in Fig.
Wire is attached to the mid-point (centre of mass) of block. Take $Y_{2}=2 Y_{1}$. For this arrangement mark out the correct
statement(s).

A. The wire I and III should have same

Young's modulus.
B. Tension in I and III would be always
equal.
C. Tension in I and III would be different.
D. Tension in II is $75 g$

Answer: A::B::D

D Watch Video Solution

15. A body of mass M is attached to the lower end of a metal wire, whose upper end is fixed.

The elongation of the wire is l.
A. Loss in gravitational potential energy of M is $M g l$
B. Elastic potential energy stored in the
wire is $\frac{M g l}{2}$
C. Elastic potential energy stored in the
wire is $M g l$
D. Elastic potential energy stored in the
wire is $\frac{M g l}{3}$

Answer: A::B
16. A metal wire of length L, area of crosssection A and young's modulus Y is stretched by a variable force F such that F is always slightly greater than the elastic forces of resistance in the wire. When the elongation of the wire is l
A. the work done by F is $\frac{Y A l^{2}}{2 L}$
B. the work done by F is $\frac{Y A l^{2}}{L}$
C. the elastic potential energy stored in
wire is $\frac{Y A l^{2}}{2 L}$
D. no energy is lost during elongation

Answer: A::C::D

D Watch Video Solution

17. A tank of large base area is filled with water up to a height of 5 m . A hole of $2 \mathrm{~cm}^{2}$ cross section in the bottom allows the water to drain out in continuous streams. For this
situation, mark out the correct statement(s)
(take $\rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}, g=10 \mathrm{~ms}^{-12}$)

A. The cross-sectional area of the emerging stream of water decreases as it falls down.
B. The cross-sectional area of the emerging
stream of water increases as it falls
down.
C. At a distance of 5 m below the bottom of
the tank, the cross-sectional area of the
stream is $1.414 \mathrm{~cm}^{2}$.
D. At a distance of $5 m$ below the bottom of
the tank, the cross-sectional area of the stream is $2.86 \mathrm{~cm}^{2}$.

Assertion- Reasoning

1. Statement I: Surface tension has the same
units as fore gradient.

Statement II: Surface tension is the force gradient along the surface of liquid.
A. Statement I is true, statement II is true and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true and Statement II is NOT the correct explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A
(Watch Video Solution
2. Statement $\mathrm{I}:$ Small liquid drops assume sphereical shape.

Statement II: Due to surface tension liquid drops tend to have minimum surface area.
A. Statement I is true, statement II is true and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true
and Statement II is NOT the correct
explanation for Statement I.

C. Statement I is true, Statement II is false.

D. Statement I is false, Statement II is true.

Answer: A

D Watch Video Solution

3. Statement I: A small drop of mercury is spherical F bigger drops are oval in shape.

Statement II: Surface tension of liquid decreases with increase in temperature.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true and Statement II is NOT the correct explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: B

4. Statement I: Droplets of liquid are usually more spherical in shape than large drops of the same liquid.

Statement II: Force of surface tension predominates force of gravity in case of small drops.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.

B. Statement I is true, Statement II is true

 and Statement II is NOT the correct explanation for Statement I.C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

- Watch Video Solution

5. Statement I: Finer the capillary, greater is
the height to which the liquid rises in the tube

Statement II: This is in accordance with the ascent formula.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true
and Statement II is NOT the correct
explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

D Watch Video Solution

6. Statement I: A raindrop after failing through some height attains a constant velocity.

Statement II: At constant velocity, the viscous drag is just equal to its weight.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true and Statement II is NOT the correct explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

7. Statement I: A needle placed carefully on the
surface of water may float, whereas the ball of
the same material will always sink.
Statement II: The buoyancy of an object depends both on the material and shape of the object.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.

B. Statement I is true, Statement II is true

 and Statement II is NOT the correct explanation for Statement I.C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

D Watch Video Solution

8. Statement I: Dust particles generally settle down in a closed room.

Statement II: The terminal velocity is inversely proportional to the square of their radii.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true
and Statement II is NOT the correct
explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

D Watch Video Solution

9. Statement I: Smaller drops of liquid resist deforming forces better than the larger drops.

Statement II: Excess pressure inside a drop is directly proportional to its surface area.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true and Statement II is NOT the correct explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

10. Statement I: An object from a greater height reaches a steady terminal velocity.

Statement II: The viscous forces on a body depends upon its velocity. The greater the velocity the greater is the viscous force.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.

B. Statement I is true, Statement II is true

 and Statement II is NOT the correct explanation for Statement I.C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: B

- Watch Video Solution

11. Statement I: Spraying of water causes cooling.

Statement II: For an isolated system, surface energy increase on the expense of internal energy.
A. Statement I is true, statement II is true and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true
and Statement II is NOT the correct

explanation for Statement I.

C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

D Watch Video Solution

12. Statement I: While blowing a soap bubble.
to increase the size of soap bubble, we have to
increase the air pressure within the soap bubble.

Statement II: To increase the size of soap bubble more air has to be pushed into the bubble.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true
and Statement II is NOT the correct
explanation for Statement I.
C. Statement I is true, Statement II is false.

D. Statement I is false, Statement II is true.

Answer: D

D Watch Video Solution

13. Statement I: More is the cohesive force, more is the surface tension.

Statement II: More cohesive force leads to more shrinking of liquid surface.
A. Statement I is true, statement II is true
and Statement II is a correct explanation
for Statement I.
B. Statement I is true, Statement II is true and Statement II is NOT the correct explanation for Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

Linked Comprehension

1. A light rod of length $L=2 m$ is suspended
horizontally from the ceiling by two wires A
and B of equal lengths. The wire A is made of steel with the area of cross section
$A_{S}=1 \times 10^{-5} \mathrm{~m}^{2}$, while the wire B is made of brass of cross sectional area
$A_{b}=2 \times 10^{-5} \mathrm{~m}^{2}$. A weight W is suspended
at a distance x from the wire A as shown in
figure.

Take, Young's modulus of steel and brass as

$$
Y_{s}=2 \times 10^{11} \mathrm{Nm}^{-2}
$$

$Y_{b}=1 \times 10^{11} \mathrm{Nm}^{-2}$.
WIMIIII

Determine the value of x so that equal stresses are produced in each wire.
A. $1.33 m$
B. $2.5 m$
C. $3.6 m$
D. $2.1 m$

Answer: A

D Watch Video Solution

2. A light rod of length $L=2 m$ is suspended
horizontally from the ceiling by two wires A and B of equal lengths. The wire A is made of steel with the area of cross section
$A_{S}=1 \times 10^{-5} \mathrm{~m}^{2}$, while the wire B is made of brass of cross sectional area
$A_{b}=2 \times 10^{-5} \mathrm{~m}^{2}$. A weight W is suspended
at a distance x from the wire A as shown in
figure.

Take, Young's modulus of steel and brass as

$$
Y_{s}=2 \times 10^{11} \mathrm{Nm}^{-2}
$$

$$
Y_{b}=1 \times 10^{11} \mathrm{Nm}^{-2}
$$

Determine the value of x so that equal strains are produced in each wire
A. $1 m$
B. $2 m$
C. $3 m$

D. $2.2 m$

Answer: A

D Watch Video Solution

3. A lead sphere of 1.0 mm diameter and relative density 11.20 attains a terminal velocity of $0.7 \mathrm{cms}^{-1}$ in a liquid of relative density 1.26.

Determine the coefficient of dynamic viscosity of the liquid.
A. $0.45 \mathrm{~N} / \mathrm{m}^{2}$
B. $0.85 \mathrm{~N} / \mathrm{m}^{2}$
C. $0.56 \mathrm{~N} / \mathrm{m}^{2}$
D. $0.77 \mathrm{~N} / \mathrm{m}^{2}$

Answer: D

D Watch Video Solution

4. A lead sphere of 1.0 mm diameter and relative density 11.20 attains a terminal velocity of $0.7 \mathrm{cms}^{-1}$ in a liquid of relative

density 1.26 .

What is the value of the Reynolds number?
A. 0.01
B. 0.03
C. 0.15
D. 0.26

Answer: A

- Watch Video Solution

5. A long capillary tube of radius 0.2 mm is
placed vertically inside a beaker of water.
If the surface tension of water is
$7.2 \times 10^{-2} \mathrm{~N} / \mathrm{m}$ the angle of contact between glass and water is zero, then determine the height of the water column in the tube.
A. 3 cm
B. 9 cm
C. 7 cm
D. 5 cm

Answer: C

- Watch Video Solution

6. A long capillary tube of radius 0.2 mm is
placed vertically inside a beaker of water.

If the tube is now pushed into water so that only 5.0 cm of its length is above the surface,
then determine the angle of contact between
the liquid and glass surface.
A. $\cos ^{-1}\left(\frac{4}{5}\right)$
B. $\cos ^{-1}\left(\frac{5}{7}\right)$
C. $\cos ^{-1}\left(\frac{3}{5}\right)$
D. $\cos ^{-1}\left(\frac{5}{4}\right)$

Answer: B

D Watch Video Solution

7. An oil of relative density 0.9 and viscosity
$0.12 \mathrm{~kg} / \mathrm{ms}$ flows through a 2.5 cm diameter pipe with a pressure drop of $38.4 k N / m^{2}$ in a
length of 30 m . Determine

Determine the discharge

$$
\begin{aligned}
& \text { A. } 2.16 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& \text { B. } 2.9 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s} \\
& \text { C. } 1 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& \text { D. } 2 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Answer: C
(Watch Video Solution
8. An oil of relative density 0.9 and viscosity
$0.12 \mathrm{~kg} / \mathrm{ms}$ flows through a 2.5 cm diameter
pipe with a pressure drop of $38.4 k N / m^{2}$ in a length of 30 m . Determine

Determine the shear stress at the pipe wall

$$
\begin{aligned}
& \text { A. } 8 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { B. } 3.9 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { C. } 2.3 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2} \\
& \text { D. } 10.6 \times 10^{-6} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

9. An oil of relative density 0.9 and viscosity
$0.12 \mathrm{~kg} / \mathrm{ms}$ flows through a 2.5 cm diameter pipe with a pressure drop of $38.4 \mathrm{kN} / \mathrm{m}^{2}$ in a length of 30 m . Determine

Determine the power required to maintain the flow
A. $2.2 W$
B. $3.84 W$
C. 5.6 W

D. $9.3 W$

Answer: B

D Watch Video Solution

10. A steel bolt of cross-sectional area
$A_{b}=5 \times 10^{-5} \mathrm{~m}^{2}$ is passed through a cylindrical tube made of aluminium. Crosssectional area of the tube material is
$A_{t}=10^{-4} \mathrm{~m}^{2}$ and its length is $l=50 \mathrm{~cm}$. The bolt is just taut so that there is no stress in
the bolt and temperature of the assembly increases through $\triangle \theta=10^{\circ} C$. Given, coefficient of linear thermal expansion of steel, $\alpha_{b}=10^{-5} /{ }^{\circ} C$.

Young's
modulus
of
steel
$Y_{b}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Young's modulus of $A l, Y_{t}=10^{11} \mathrm{~N} / \mathrm{m}^{2}$,
coefficient of linear thermal expansion of
$A l \alpha_{t}=2 \times 10^{-5} /{ }^{\circ} C$
The compressive strain in tube is
A. 10^{-4}
B. 5×10^{-5}
C. 2×10^{-3}
D. 10^{-6}

Answer: B

D Watch Video Solution

11. A steel bolt of cross-sectional area
$A_{b}=5 \times 10^{-5} \mathrm{~m}^{2}$ is passed through a
cylindrical tube made of aluminium. Cross-
sectional area of the tube material is
$A_{t}=10^{-4} \mathrm{~m}^{2}$ and its length is $l=50 \mathrm{~cm}$. The bolt is just taut so that there is no stress in the bolt and temperature of the assembly increases through $\triangle \theta=10^{\circ} C$. Given, coefficient of linear thermal expansion of steel,

$$
\alpha_{b}=10^{-5} /{ }^{\circ} C .
$$

Young's modulus of steel
$Y_{b}=2 \times 10^{11} N / m^{2}$
Young's modulus of $A l, Y_{t}=10^{11} \mathrm{~N} / \mathrm{m}^{2}$,
coefficient of linear thermal expansion of $A l$
alpha_(t)=2xx10^(-5)//^@C'

The compressive stress in tube is
A. $5 \times 10^{6} N / m^{2}$
B. $10^{5} \mathrm{~N} / \mathrm{m}^{2}$
C. $10^{8} \mathrm{~N} / \mathrm{m}^{2}$
D. $10^{3} \mathrm{~N} / \mathrm{m}^{2}$

Answer: A

- Watch Video Solution

12. A steel bolt of cross-sectional area
$A_{b}=5 \times 10^{-5} m^{2}$ is passed through a
cylindrical tube made of aluminium. Crosssectional area of the tube material is
$A_{t}=10^{-4} \mathrm{~m}^{2}$ and its length is $l=50 \mathrm{~cm}$. The bolt is just taut so that there is no stress in the bolt and temperature of the assembly increases through $\triangle \theta=10^{\circ} C$. Given, coefficient of linear thermal expansion of steel,

$$
\alpha_{b}=10^{-5} /{ }^{\circ} C
$$

Young's
modulus
$Y_{b}=2 \times 10^{11} N / m^{2}$
Young's modulus of $A l, Y_{t}=10^{11} \mathrm{~N} / \mathrm{m}^{2}$,
coefficient of linear thermal expansion of
$A l \alpha_{t}=2 \times 10^{-5} /{ }^{\circ} C$
The tensile stress in bolt is
A. $10^{4} \mathrm{~N} / \mathrm{m}^{2}$
B. $10^{7} \mathrm{~N} / \mathrm{m}^{2}$
C. $2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
D. $10^{10} \mathrm{~N} / \mathrm{m}^{2}$

- Watch Video Solution

13. On gradual loading , stress - strain relationship for a metal wire is as follows.

Within proportionality limit, stress \propto strain or, $\frac{\text { Stress }}{\text { strain }}=$ a constant for the material of wire.

Two wires of same material have length and radius (L, r) and $\left(2 L, \frac{r}{2}\right)$. The ratio of their
young's moduli is

Stess

A. $1: 2$
B. $2: 3$
C. 2:1
D. $1: 1$

Answer: D

D Watch Video Solution

14. On gradual loading , stress - strain relationship for a metal wire is as follows.

Within proportionality limit , stress
proportional to strain or, $\frac{\text { Stress }}{\text { strain }}=$ a constant for the material of wire.

Just on crossing the yield region, the material
will have

Stess

A. reduced stress
B. increased stress
C. breaking stress
D. constant stress

Answer: A::C

D Watch Video Solution

15. According to Hooke's law, within the elastic
limit stress/strain $=$ constant. This constant depends on the type of strain or the type of force acting. Tensile stress might result in compressional or elongative strain, however, a tangential stress can only cause a shearing strain. After crossing the elastic limit, the material undergoes elongation and beyond a
stage beaks. All modulus of elasticity are basically constants for the materials under stress.

If stress/strain is x in elastic region and y in
the region of yield, then
A. $x=y$
B. $x>y$
C. $x<y$
D. $x=2 y$

Answer: B
16. Molecular forces exist between the molecules of a liquid in a container. The molecules on the surface have unequal force leading to a tension on the surface. If this is not compensated by a force, the equilibrium of the liquid will be a difficult task. This leads to an excess pressure on the surface. The nature of the meniscus can inform us of the direction of the excess pressure. The angle of contact of the liquid decided by the forces
between the molecules, air and container can make the angle of contact.

The direction of the excess pressure in the meniscus of a liquid of angle of contact $2 \pi / 3$ is
A. upward
B. downward
C. horizontal
D. cannot be determined

Answer: A
17. Molecular forces exist between the molecules of a liquid in a container. The molecules on the surface have unequal force leading to a tension on the surface. If this is not compensated by a force, the equilibrium of the liquid will be a difficult task. This leads to an excess pressure on the surface. The nature of the meniscus can inform us of the direction of the excess pressure. The angle of contact of the liquid decided by the forces
between the molecules, air and container can make the angle of contact.

If the excess pressure in a soap bubble is p,
the excess pressure in an air bubble is
A. $\frac{p}{2}$
B. p
C. $2 p$
D. $4 p$

Answer: A
18. Molecular forces exist between the molecules of a liquid in a container. The molecules on the surface have unequal force leading to a tension on the surface. If this is not compensated by a force, the equilibrium of the liquid will be a difficult task. This leads
to an excess pressure on the surface. The nature of the meniscus can inform us of the
direction of the excess pressure. The angle of contact of the liquid decided by the forces between the molecules, air and container can
make the angle of contact.

In a meniscus of radius r, with excess pressure
p in atmospheric pressure p_{0}, the force experienced is
A. $\left(p-p_{0}\right) p r^{2}$
B. $\left(p-p_{0}\right) 2 \pi r$
C. $p \pi r^{2}$
D. $p_{0} 2 \pi r$

Answer: C

19. Materials get deformed when force is applied. Some of them regain their status when the applied force is removed. They are termed as elastic. Those of which not regaining are called plastic. There may be delay in the regaining in some materials. They are said to have got elastic aftereffect, since
they have gone beyond the elastic limit.

Repeated application and removal of force
leads to fatigueness in the material. Fatigued materials may break at any point time and so
are avoided.

The stress strain graph for two materials A
and B is shown in the following figure:

If the intensity of A and B is E_{A} and E_{B},
respectively
A. $E_{A}=E_{B}$
B. $E_{A}>E_{B}$
C. $E_{A}<E_{B}$

$$
\text { D. } E_{A} \ll E_{B}
$$

Answer: B

D Watch Video Solution

20. Materials get deformed when force is applied. Some of them regain their status
when the applied force is removed. They are termed as elastic. Those of which not regaining are called plastic. There may be
delay in the regaining in some materials. They are said to have got elastic aftereffect, since
they have gone beyond the elastic limit. Repeated application and removal of force leads to fatigueness in the material. Fatigued materials may break at any point time and so are avoided.

The stress strain graph for two materials A and B is shown in the following figure:

The strength of the material A and B is S_{A} and S_{B}, respectively, while the longevity of plastic behaviour is L_{A} and L_{B}. Then
A. $S_{A}>S_{B}, L_{A}<L_{B}$
B. $S_{A}=S_{B}, L_{A}=L_{B}$
C. $S_{A}>S_{B}, L_{A}>L_{B}$

D. $S_{A}<S_{B}, L_{A}<L_{B}$

Answer: C

D Watch Video Solution

21. Materials get deformed when force is applied. Some of them regain their status
when the applied force is removed. They are termed as elastic. Those of which not regaining are called plastic. There may be delay in the regaining in some materials. They
are said to have got elastic aftereffect, since they have gone beyond the elastic limit.

Repeated application and removal of force leads to fatigueness in the material. Fatigued materials may break at any point time and so are avoided.

The stress strain graph for two materials A and B is shown in the following figure:

The time in which the two materials regain
their original status is t_{A} and t_{B} related as
$t_{B}=2 t_{B}$. Then the material under elastic aftereffect (relatively) is
A. B
B. A
C. both A and B
D. neighter A nor B

Answer: A

22. Figure shows a capillary tube of radius r dipped into water. If the atmosphere pressure is P_{0}, the pressure at point A is

A. P_{0}
B. $P_{0}+\frac{2 s}{r}$
C. $P_{0}-\frac{2 s}{r}$
D. $P_{0}-\frac{4 s}{r}$

Answer: C

- Watch Video Solution

23. Figure shows a capillary tube of radius r dipped into The atmospheric pressure is P_{0} and the capillary rise of water is $h . s$ is the surface tension for water-glass.

Initially, $h=10 \mathrm{~cm}$. If the capillary tube is now incline at 45°, the length of water rising in
the tube will be
A. 10 cm
B. $10 \sqrt{2} \mathrm{~cm}$
C. $\frac{10}{\sqrt{2}} \mathrm{~cm}$
D. none of these

Answer: B

D Watch Video Solution

24. Figure shows a capillary tube of radius r dipped into The atmospheric pressure is P_{0} and the capillary rise of water is $h . s$ is the
surface tension for water-glass.

Initially, $h=10 \mathrm{~cm}$. If the capillary tube is now incline at 45°, the length of water rising in the tube will be
A.
B.
C.
D.

Answer: C
25. In the figure shown, A and B are two short steel rods each of cross-sectional area $5 \mathrm{~cm}^{2}$.

The lower ends of A and B are welded to a fixed plate $C D$. The upper end of A is welded to the L-shaped piece $E F G$, which can slide without friction on upper end of B. A horizontal pull of 1200 N is exerted at G as shown. Neglect the weight of $E F G$.

Mark out the correct statement(s).
A. Shearing stress in A is zero.
B. Shearing stress in B is zero
C. Shearing stress in both A and B is zero
D. Shearing stress in both A and B is non-
zero

Answer: B

D Watch Video Solution

26. In the figure shown, A and B are two short steel rods each of cross-sectional area $5 \mathrm{~cm}^{2}$.

The lower ends of A and B are welded to a fixed plate $C D$. The upper end of A is welded to the L-shaped piece $E F G$, which can slide without friction on upper end of B. A horizontal pull of 1200 N is exerted at G as shown. Neglect the weight of $E F G$.

Longitudinal stress in A is
A. tensile in nature and having magnitude
$180 \mathrm{~N} / \mathrm{m}^{2}$
B. tensile in nature and having magnitude
$240 N / m^{2}$
C. compressive in nature and having magnitude $180 \mathrm{~N} / \mathrm{m}^{2}$
D. compressive in nature and having magnitude $240 \mathrm{~N} / \mathrm{m}^{2}$

Answer: A

27. In the figure shown, A and B are two short steel rods each of cross-sectional area $5 \mathrm{~cm}^{2}$.

The lower ends of A and B are welded to a fixed plate $C D$. The upper end of A is welded to the L-shaped piece $E F G$, which can slide without friction on upper end of B. A horizontal pull of 1200 N is exerted at G as shown. Neglect the weight of $E F G$.

Longitudinal stress in B is
A. tensile in nature and having magnitude
$180 \mathrm{~N} / \mathrm{cm}^{2}$
B. tensile in nature and having magnitude
$240 \mathrm{~N} / \mathrm{cm}^{2}$
C. compressive in nature and having magnitude $180 \mathrm{~N} / \mathrm{cm}^{2}$
D. compressive in nature and having
magnitude $240 \mathrm{~N} / \mathrm{cm}^{2}$

Answer: C

D Watch Video Solution
28. Two opposite forces $F_{1}=120 N$ and $F_{2}=80 \mathrm{~N}$ act on an elastic plank of modulus
of elasticity $Y=2 x 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and length
$l=1 m$ placed over a smooth horizontal
surface. The cross-sectional area of the plank
is $S=0.5 m^{2}$. The change in length of the plank is $x \times 10^{-11} m$. Find the value of x.

- Watch Video Solution

29. A ring of radius r made of wire of density ρ
is rotated about a stationary vertical axis
passing through its centre and perpendicular
to the plane of the ring as shown in the figure.

Determine the angular velocity (in rad/s) of ring at which the ring breaks. The wire breaks at tensile stress σ. Ignore gravity. Take $\sigma / \rho=4$ and $r=1 m$.

- Watch Video Solution

30. A cube of side a and mass on just floats on
the surface of water as shown in the figure.

The surface tension and density of water are T and ρ_{w} respectively. If angle of contact between cube and water surface is zero, find the distance h (in metres) between the lower face of cube and surface of the water.
(Take $m=1 \mathrm{~kg}, g=10 \mathrm{~ms}^{-12}, a T=\frac{10}{4}$ unit
and $\rho_{w} a^{2} g=10$ unit)

(D) Watch Video Solution

Integer

1. A thin plate $A B$ of large area A is placed symmetrically in a small gap of height h filled with water of viscosity η_{0} and the plate has a constant velocity v by applying a force F as shown in the figure. If the gap is filled with some other liquid of viscosity $0.75 \eta_{0}$ at what minimum distance (in cm) from top wall should the plate be placed in the gap, so that
the plate can again be pulled at the same constant velocity V. by applying the same force F ? (Take $h=20 \mathrm{~cm}$)

D Watch Video Solution

2. The diameter of a gas bubble formed at the bottom of a pond is $d=4 \mathrm{~cm}$. When the bubble rises to the surface, its diameter tension of water $=T=0.07 \mathrm{Nm}^{-1}$
3. n drops of water, each of radius $2 m m$, fall
through air at a terminal velocity of $8 \mathrm{~cm}^{-1}$ If they coalesce to form a single drop, then the terminal velocity of the combined drop is $32 \mathrm{~cm}^{-1}$ The value of n is

- Watch Video Solution

4. A substance breaks down under a stress of
$10^{5} \mathrm{~Pa}$. If the density of the wire is $2 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$, find the minimum length of
the wire which will break under its own weight
$\left(g=10 m s^{-2}\right)$.

- Watch Video Solution

5. A wire of length L and cross sectional area A is made of a material of Young's modulus Y . If
the wire is streched by an amount x, the work done is.

D Watch Video Solution

6. A solid sphere of radius R made of a material of bulk modulus K is surrounded by a
liquid in a cylindrical container. A massless
pistion of area A floats on the surface of the
liquid. When a mass M is placed on the piston
to compress the liquid the fractional change in the radius of the sphere, $\delta R / R$, is

- Watch Video Solution

Fill In The Blanks

1. A uniform rod of length L and density ρ is being pulled along a smooth floor with a horizontal acceleration α (see Fig.) The magnitude of the stress at the transverse cross-section through the mid-point of the rod is

- Watch Video Solution

1. The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?
A. Length $=50 \mathrm{~cm}$, diameter $=0.5 \mathrm{~mm}$
B. Length 100 cm , diameter $=1$
C. Length $=200 \mathrm{~cm}$, diameter $=2 \mathrm{~mm}$
D. Length $=300 \mathrm{~cm}$, diameter $=3 \mathrm{~mm}$

Answer: A

D Watch Video Solution

2. Two rods of different materials having coefficients of thermal expansion α_{1}, α_{2} and

Young's modulii Y_{1}, Y_{2} respectively are fixed between two rigid massive walls. The rods are heated such that they undergo the same increase in temperature. There is no bending of the rods. If $\alpha_{1}: \alpha_{2}=2: 3$, the thermal
stresses developed in the two rods are equal provided $Y_{1}: Y_{2}$ is equal to
A. $2: 3$
B. $1: 1$
C. $3: 2$
D. $4: 9$

Answer: C
(Watch Video Solution
3. The adjacent graph shows the estension
(Δl) of a wire of length 1 m suspended from
the top of a roof at one end and with a load W connected to the other end. If the crosssectional area of the wire is $10^{-6} \mathrm{~m}^{2}$, calculate the Young's modulus of the material of the wire.

A. $2 \times 10^{11} \mathrm{~N} / \mathrm{m}$
B. $2 \times 10^{11} \mathrm{~N} / \mathrm{m}$
C. $3 \times 10^{-12} N / m$
D. $2 \times 10^{-3} \mathrm{~N} / \mathrm{m}$

Answer: A

D Watch Video Solution
4. When temperature of a gas is $20^{\circ} \mathrm{C}$ and pressure is changed from $p_{1}=1.01 \times 10^{5} \mathrm{~Pa}$
to $p_{2}=1.165 \times 10^{5} \mathrm{~Pa}$, the volume changes by 10%. The bulk modulus is
A. $1.55 \times 10^{5} \mathrm{~Pa}$
B. $0.115 \times 10^{5} \mathrm{~Pa}$
C. $1.4 \times 10^{5} \mathrm{~Pa}$
D. $1.01 \times 10^{5} \mathrm{~Pa}$

Answer: A

- Watch Video Solution

5. A glass tube of uniform internal radius(r)
has a valve separating the two identical ends.
Intially, the valve is in a tightly closed position.
End 1 has a hemispherical soap bubble or radius r. End 2 has sub-hemispherical soap bubble as shown in figure. Just after opening the valve,

A. Air from end 1 flows towards end 2.

There is no change in the volume of the soap bubble.
B. Air from end 1 flows towards end 2.

Volume of the soap bubble at end 1 decreases.
C. No change occurs.
D. Air from end 2 flows towards end 1 .

Volume of the soap bubble at end 1 increases.

Answer: B

D Watch Video Solution

6. One end of a horizontal thick copper wire of
length $2 L$ and radius $2 R$ is welded to an end of another horizontal thin copper wire of length L and radius R.When the arrangement is stretched by applying forces at two ends, the ratio of the elongation in the thin wire to that in the thick wire is
A. 0.25
B. 0.50
C. 2.00
D. 4.00

Answer: C

- Watch Video Solution

LC_TYPE

1. When liquid medicine of density ρ is to put
in the eye, it is done with the help of a dropper. As the bulp on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at
the opening is spherical because that requires
a minimum increase in its surface energy. To
determine the size, we calculate the net
vertical force due to the surface tension T
when the radius of the drop is R. When this
force becomes smaller than the weight of the
drop, the drop gets detached from the dropper.

If the radius of the opening of the dropper is r, the vertical force due to the surface tension on the drop of radius R (assuming $r|t| t R$) is
A. $2 \pi r T$
B. $2 \pi R T$
C. $2 \pi r^{2} T / R$
D. $2 \pi R^{2} T / r$

Answer: C
2. When liquid medicine of density ρ is to put in the eye, it is done with the help of a dropper. As the bulp on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at the opening is spherical because that requires a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T
when the radius of the drop is R. When this
force becomes smaller than the weight of the drop, the drop gets detached from the dropper.

If $\quad r=5 \times 10^{-4} \mathrm{~m}, \quad \rho=10^{3} \mathrm{kgm}^{-3}$,
$g=10 \mathrm{~ms}^{-2}, T=0.11 \mathrm{Nm}^{-1}$, the radius of
the drop when it detaches from the dropper is approximately

$$
\begin{aligned}
& \text { A. } 1.4 \times 10^{-3} m \\
& \text { B. } 3.3 \times 10^{-3} m \\
& \text { C. } 2.0 \times 10^{-3} m
\end{aligned}
$$

$$
\text { D. } 4.1 \times 10^{-3} m
$$

Answer: A

D Watch Video Solution

3. When liquid medicine of density ρ is to put in the eye, it is done with the help of a dropper. As the bulp on the top of the dropper is pressed, a drop forms at the opening of the dropper. We wish to estimate the size of the drop. We first assume that the drop formed at
the opening is spherical because that requires
a minimum increase in its surface energy. To determine the size, we calculate the net vertical force due to the surface tension T when the radius of the drop is R. When this
force becomes smaller than the weight of the drop, the drop gets detached from the dropper.

After the drop detaches, its surface energy is
A. $1.4 \times 10^{-6} J$
B. $2.7 \times 10^{-6} J$
C. $5.4 \times 10^{-6} J$

D. $8.1 \times 10^{-6} J$

Answer: B

- Watch Video Solution

INTEGER_TYPE

1. Two soap bubbles A and B are kept in a
closed chamber where the air is maintained at pressure $8 \mathrm{~N} / \mathrm{m}^{2}$. The radii of bubbles A and B are 2 cm and 4 cm , respectively. Surface tension
of the soap-water used to make bubbles is
$0.04 N / m$. Find tha ratio n_{B} / n_{A}, where n_{A} and n_{B} are the number of moles of air in bubbles A and B, respectively. [Neglect the effect of gravity.]

D Watch Video Solution

2. A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1 m and its cross sectional are is $4.9 \times 10^{-7} m^{2}$. If the mass is pulled a little in the vertically
downward direction and released, it performs
simple harmonic motion of angular frequency
$140 \mathrm{rads}^{-1}$. If the Young's modulus of the material of the wire is $n \times 10^{9} \mathrm{Nm}^{-2}$, the value of n is

D Watch Video Solution

