© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

(HINGLISH)

RIGID BODY DYNAMICS 1

Illustration

1. A uniform rod of length l is spinning with an
angular velocity $\omega=2 \frac{v}{l}$ while its centre of
mass moves with a velocity v. Find the velocity of the end of the rod.

- Watch Video Solution

2. The ends A and B of a eod of length l have velocities of magnitudes $\left|\vec{v}_{A}\right|=v$ and $\left|\vec{v}_{B}\right|=2 v$ respectively. If the inclination of

\vec{v}_{A} relationn to the rod is α find the

a. Inclination β of \vec{c}_{B} relative of the rod.
b. angular velocity of the rod.

- Watch Video Solution

3. A uniiform disc of radius r spins with angular velocity ω and angular acceleration α.

If the centre of mass of the disc has linear acceleration a, find the magnitude and direction of aceeleration of the point 1,2 , and 3.

4. A rod od length l is moving in a vertical plane $(x-y)$ when the owest point A of the rod is moved with a velociy v. find the a angular velocity of the rod and b velocity of the end B.

- Watch Video Solution

5. Find the instantneous axis of rotation of a rod length l when its end A moves with a velocity $\vec{v}_{A}=\hat{i}$ and the rod rotates with an
angular velocity $\vec{\omega}=-\frac{v}{2 l} \hat{k}$.

- Watch Video Solution

6. Four particles each of mass m are kept at
the four corners of a square of edge a. Find
the moment of inertias of the system about a
line perpendicular to the plane of the square and passing through the centre of the square.

D Watch Video Solution

7. A uniform rod of mass m and length l_{0} is rotating with a constant angular speed ω about a vertical axis passing through its point of suspension. Find the moment of inertia of the rod about the axis of rotation if it make an angle θ to the vertical (axis of rotation).

Watch Video Solution

8. Calculate the moment of inertia of a ring having mass M, radius R and having uniform mass distribution about an axis passing through the centre of the ring and perpendicular to the plane of the ring?

9. Calculate the moment of inertia of a uniform rod of mass M and length l about an axis passing through an end and perpendicular to the rod. The rod can be divided into a number of mass elements along
the length of the rod.

- Watch Video Solution

10. Find the moment of inertia of a circular disk or solid cylinder of radius R about the
axis through the centre and perpendicular to
the flat surface.

A. $\frac{1}{2} M R^{2}$
B. $\frac{2}{3} M R^{2}$
C. $\frac{3}{2} M R^{2}$
D. $M R^{2}$

Answer: A

- Watch Video Solution

11. Two uniform identicla rods each of mass M
and length I are joined to form a cross as
shown in figure. Find the momet of inertia of
the cross about a bisector as shown doted in
the figure

- Watch Video Solution

12. Find the moment of inertia of a solid cylinder of mass M and radius R about a line
parallel to the axis of the cylinder and on the surface of the cylinder.
A. $\frac{3}{2} M R^{2}$
B. $\frac{1}{2} M R^{2}$
C. $\frac{7}{5} M R^{2}$
D. $\frac{2}{5} M R^{2}$

Answer: A
(Watch Video Solution

13. Calculate the moment of inertia of

a. a ring of mass M and radius R about an
axis coinciding with the diameter of the ring.
b. as thin disc about an axis coinciding with
the diameter.

- Watch Video Solution

14. Find the out the moment of inertia of a ring having uniform mass distribution of mass
M and radius R about an axis which is
tangent ot the ring and a in the plane of the ring b. perpendicular to the plane of the ring.
(1)

(i)
(2)

(ii)

D Watch Video Solution

15. Two uniform solid of masses m_{1} and m_{2}
and radii r_{1} and r_{2} respectively, are connected at the ends of a uniform rod of length l and
mass m. Find the moment of inertia of the system about an axis perpendicular to the rod and passing through a point at a distance of a from the centre of mass of the rod as shown in figure.

16. There are four solid balls with their centres
at the four comers of a square of side a. the
mass of each sphere is m and radius is r. Find the moment of inertia of the system about (i) one of the sides of the square (ii) one of the diagonals of the square.

D Watch Video Solution

17. A circular hole of radius $R / 2$ is cut from a circular disc of radius R. The disc lies in the $x y$
-plane and its centre coincides with the origin.
If the remaining mass of the disc is M, then a. determine the initial mass of the disc and b. determine its moment of inertia about the z -axis.

18. Three identical thin rods, each of mass m and length l, are joined to form an equilateral triangular frame. Find the moment of inertia of the frame about an axis parallel to tis one side and passing through the opposite vertex.

Also find its radius of gyration about the given axis.

- Watch Video Solution

19. A particle of mass m is released in vertical
plane from a point P at $x=x_{0}$ on the x-axis.
It falls vertically parallel to the y-axis. Find the torque τ acting on the particle at a time about origin.

20. Determine the point of application of force, when forces of 20 N and 30 N are acting on rod as shown in figure.

A. 70 m
B. 80 m
C. 60 m
D. 50 m

Answer: A

D Watch Video Solution

21. In a circus show are used large numbers of
light boards, each of which can rotate around
a fixed fulcrum. Fulcrum of reach board divides
the length of the board in ratio $2: 1$. At the one end of the left most board is placed a small block of mass 30 kg and a team of clowns stand keeping their feel at the ends of adjacent boards as shown in figure. the mass
of each clown is 80 kg . What maximum number of clowns can keep balance in this way?

- Watch Video Solution

22. Two small kids weighing 10 g and 15 kg respectively are tyribg t balance a seesaw of total length 5.0 with the fulcrum at the centre.

If one of the kids is sitting at an end where shold the other sit?

- Watch Video Solution

23. A rod $A B$ rests with the end A on rough
horizontal ground and the end B against a smooth vertical wall. The rod is uniform and of weight w. If the rod is in equilibrium in the position shown in figure. Find
(a)frictional force shown at A
(b) normal reaction at A
(c) normal reaction at B.

24. At the bottom edge of a smooth wall, an inclined plane is kept at an angle of 45°. A uniform ladder of length l and mass M rests on the inclined plane against the wall such that it is perpendicular to the incline.

a. If the plane is also smooth, which way will the ladder slide?
b. What is the minimum coefficient of friction necessary so that the ladder does not slip on the incline.

D Watch Video Solution

25. A horizontal force F is applied to a homogeneous rectangular block of mass m, width b and height H. The block moves with constant velocity, the coefficient of friction is
μ_{k}.
a. What is the greater height h at which the
force F can be applied so that the block will slide without tipping over?

b. Through which point on the bottom face of the block will the resultant of the friction and normal forces act if $h=H / 2$?
c. If the block is at rest and coefficient of static friction is μ_{s} what are the various criteria for which sliding or tipping occurs?

D Watch Video Solution

26. A heavy block of length b and height h is
placed at rest on a rough inclined plane of inclination θ with the horizontal, as shown in
figure.

- View Text Solution

27. A tall block of mass $M=50 \mathrm{~kg}$ and base width $b=1 m$ and height $h=3 m$ is kept on rough inclined surface with coefficient of friction $\mu=0.8$ as shown in figure. The angle
of inclination with the horizontal is 37°.

Determine whether the block slides down or topples over.
$b=1 \mathrm{~m}$

- Watch Video Solution

28. Determine the maximum ratio h / b for which the homogenous block will side without tipping under the actionof force P. The coefficient of static friction between the block and the incline is μ_{s}.

29. the door of an almirah is 6 ft high, 1.5 ft
wide and weights 8 kg . The door is supported by two hinges situated at a distance of 1 ft from the ends. If the magnitude of the forces exerted by the hinges on the door are equal find this magnitude.
30. A cotton reel of mass m and moment of inertia I is kept at rest on as smooth horizontal surface. The reel has inner and other radius r and R respectively. A horizontal force F starts actings as shown in figure. Find the

a. acceleration of the centre of mass of reel.
b. angular acceleration of the reel
c. net acceleration of point of contact.

D Watch Video Solution
31. A uniform rod of mass m and length l is in equilibrium under the action of constraint forces, gravity and tension in the string. Find the

a. frictional force acting on the rod.
b. tension in the string.
c. normal reaction on the rod.

Now, the string is cut. Find the
d. angular acceleration of the rod just after
the string is cut.
e. normal reaction on the rod just after the
string is cut.
32. In figure calculate the linear acceleration of the blocks.

Mass of block $B=8 \mathrm{~kg}$
mass of disc shaped pulley $=2 k g$ (take
$\left.g=10 m / s^{2}\right)$

- Watch Video Solution

33. A block of mass m is attached at the end of
an inextensible string which is wound over a rough pulley of mass M and radius R. Assume the string does not slide over the pulley. Find the acceleration of the block when released.

$$
\begin{aligned}
& \text { A. } \frac{m g}{2 m+M} \\
& \text { B. } \frac{2 m g}{m+M} \\
& \text { C. } \frac{m g}{m+M} \\
& \text { D. } \frac{2 m g}{2 m+M}
\end{aligned}
$$

- Watch Video Solution

34. An extensible string is wound over a rough
pulley of mass M_{1} and radius R and a cylinder of mass M_{2} and radius R such that as the cylinder rolls down. The string un wounds over the pulley as well the cylinder. Find the acceleration of cylinder M_{2}.

- Watch Video Solution

35. In figure mass m_{1} slides without friction on the horizontal surface, the frictionless pulley is in the form of a cylinder of mass M and radius
R, and a string turns the pulley without slipping. Find the acceleration of each mass, and tension in each part of the string.

36. A uniform cylinder of radius R is spinned about it axis to the angular velocity ω_{0} and then placed into a corner,. The coeficient of friction between the corner walls and the cylinder is μ_{k} How many turns will the cylinder
accomplish before it stops?

D Watch Video Solution

37. A uniform rod of length L and mass M is
pivoted freely at one end and placed in vertical position.
a. What is angular acceleration of the rod
when it is at an angle θ with the vertical?
b. What is the tangential linear acceleration of the free end when the rod is horizontal?

D Watch Video Solution

38. Three particles A, B and C each of mass m, are connected to each other by three massless
rigid rods to form a rigid, equilateral triangular body of side I. This body is placed on a horizontal frictionless table ($x-y$ plane) and is hinged to it at the point A so that it can
move without friction about the vertical axis
through A. the body is set into rotational motion on the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.
(b) At time T, when the side $B C$ is parallel to the x-axis, a force F is applied on B along $B C$
(as shown). Obtain the x-component and the y component of the force exerted by the hinge on the body, immediately after time T .

D Watch Video Solution

39. The arrangement shown in figure consists
of two identical, uniform, solid cylinders, each
of mass m, on which two light threads are wound symmetrically.

Find the tensions of each thread in the process of motion. The friction in the axle of
the upper cylinder is assumed to be absent.

(Watch Video Solution

Solved Examples

1. A uniform cylinder of radius r and mass m can rotate freely about a fixed horizontal axis.

A thin cord of length I and mass m_{0} is would
on the cylinder in a single layer. Find the angular acceleration of the cylinder as a function of the length x of the hanging part of the end. the wound part of the cord is supposed to have its centre of gravity on the
cylinder axis is shown in figure.

(Watch Video Solution
2. A thin uniform bar of mass m and length $2 L$
is held at angle 30° with the horizontal by means of two vertical inextensible strings, at each and as shown in figure. If the string at the right end breaks, leaving the bar to swing the tension in the string at the left end of the bar immediately after string breaks is

$$
T=\frac{n}{13} m g
$$

D Watch Video Solution

3. A uniform solid sphere of mass 1 kg and radius 10 cm is kept stationary on a rough inclined plane by fixing a highly dense particle
at B. Incination of plane is 37° with horizontal
and $A B$ is the diameter of the sphere which is
parallel to the plane, as show in figure.

Calculate

a. mass of the particle fixed at B
b. minimum required coefficient of friction between sphere and plane to keep sphere in

- Watch Video Solution

4. A block of mass m height $2 h$ and width $2 b$
rests on a flat car which moves horizontally
with constant acceleration a as shown in
figure. Determine

a. the value of the acceleration at which
slipping of the block on the car starts, if the coefficient of friction is μ.
b. the value of the acceleration at which block topples about A, assuming sufficient friction to prevet slipping and
c. the shortest distance in which it can be stopped from a speed of $20 m s^{-1}$ with constant deceleration so that the block is not disturbed. The following data are given

$$
b=0.6 m, h=0.9 \mu=0.5 \text { and } g=10 m s^{-2}
$$

5. A uniform slender bar $A B$ of mass m is
suspended as shown from a small cart of the
same mass m. Neglecting the effect of the
friction, determine the accelerations of points
A and B immediately after a horizontal force

F has been applied at B.

6. One fourth length of a uniform rod of length $2 l$ and mass m is place don a horizontal table and the rod is held horizontal.

The rod is released from rest. Find the normal reaction on the rod as soon as the rod is released.

- Watch Video Solution

7. Determine the minimum coefficient of friction between a thin rod and a floor at which a person can slowly lift the rod from the floor, without slipping, to the vertical position applying at its end a force always perpendicular to its length.

- Watch Video Solution

8. Consider two heavy right circular rollers of the radii R and r respectively and rest on a rough horizontal plane a shown in figure. The
larger roller has a string wound around it to
which a horizontal force P can be applied as
shown. Assuming that the coefficient of
friction m has the same value for all surfaces
of contact, determine the necessary condition
under which the larger roller can be pulled
over the smaller one. Assume the smaller
cylinder should neither roll nor slide.

P

- View Text Solution

9. In the system shown in the figure blocks A
and B have mass $m_{1}=2 k g$ and
$m_{2}=26 / 7 \mathrm{~kg}$ respectively. Pulley having
moment of inertia $I=0.11 \mathrm{kgm}^{-2}$ can rotate
without friction about a fixed axis. Inner and
outer radii of pulley are $a=10 \mathrm{~cm}$ and
$b=15 \mathrm{~cm}$ respectively. B is hanging with the
thread wrapped around the pulley, while A lies
on a rough inclined plane.
Coefficient of friction being $\mu=\sqrt{3} / 10$
Calculate
as. Tension in each thread, and
b. Acceleration of each block $\left(g=10 m s^{-2}\right)$

- Watch Video Solution

Exercise 2.1

1. The rod of length $l=1 m$ rotates with an angular velocity $\omega=2 \mathrm{rads}^{-1}$ an the point P moves with velocity $\quad v=1 m s^{-1} \quad$ and acceleration $a=1 \mathrm{~ms}^{-2}$. Find the velocity and acceleration of Q.

2. The angular velocity and angular acceleration of the pivoted rod are given as ω and α respectively. Fid the x and y components of acceleration of B.

- Watch Video Solution

3. A rod $A B$ length $5 m$ which remains in vertical plane has its ends A and B constrained to remain contact with a horizontal floor and a vertical wall respectively.

Determine the velocity of the end B and angular velocity at the position shown in Fig.,
if the point A has a velocity of $3 m s^{1}$ rightward.

- Watch Video Solution

4. Shown in the figure is rod which moves with
$v=2 m s^{-1}$ and rotates with $\omega=2 \pi r a d s^{-1}$.

Find the instantaneous axis of rotation.

D Watch Video Solution
5. Find the position of instantaneous centre of rotation and angular velocity of the disc in the following cases as shown. Radius of disc is R in each case.

D Watch Video Solution

6. A rotating disc moves in the positive direction of x-axis as shown. Find the equation
$y(x)$ describing the position of the
instantaneous axis of rotation if at the initial moment the centre C of the disc was located at origin after which
a. it moved with constant acceleration a (initial velocity zero) while the disc rotating anticlockwise with constant angular velocity ω.
b. it moved with constant velocity v while the disc started rotating anticlockwise with a constant angular acceleration a (with initial
angular velocity zero).

- Watch Video Solution

Exercise 2.2

1. Two heavy particles having masses m_{1} and m_{2} are situated in a plane perpendicular to
line $A B$ at a distance or r_{1} and r_{2} respectively.

a. What is the moment of inertia of the system about axis $A B$?
b. What is the moment of inertia of the system
about an axis passing through m_{1} and perpendicular to the line joining m_{1} and m_{2} ?
c. What is the moment of inertia of the system about an axis passing through m_{1} and m_{2} ?

D Watch Video Solution

2. Find out the moment of inertia of the circular arcs shown, each having mass M, radius R and having uniform mass distribution about an axis passing through the centre and perpendicular to the plane?

(a)

(b)

(c)

- Watch Video Solution

3.

Calculate the moments of inertia of the figures
shown, each having mass M, radius R and having uniform mass distribution about an axis perpendicular to the plane and passing through the centre?

- View Text Solution

4. In Fig. find moment of inertia of a plate having mass M, length l and width b about axes $1,2,3$ and 4 . Assume that C is the centre and mass is uniformly distributed.

5. Find the moment of inertia of a uniform rectangular plate of mass M and edges of length ' I ' and ' b ' about its axis passing through the centre and perpendicular to it.

6. Find the moment of inertia of a uniform
square plate of mass M and edge of length
' l ' about its axis passing through P and perpendicular to it.

7. Calculate the moment of inertia of a rectangular frame formed by uniform rods having mass m each as shown in about an axis passing through its centre and perpendicular to the plane of frame. Also find moment of inertia about an axis passing through $P Q$?

D Watch Video Solution
8. Find the moment of inertia of the two uniform joint rods about point P as shown in

Fig. Use parallel axis theorem. Mass of each rod is M.

9.

${ }^{x}$

Find the moment of inertia of a solid sphere of mass M and radias R about an axis XX shown in figure. Also find radius of gyration about the given axis.
10. Find the radius of gyration of a hollow uniform sphere of radius R about its tangent.

- Watch Video Solution

11. The square structure shown in Fig. consists
of lour point masses connected by rods of negligible Find the moment of inertia of the structure about the following axes: (a) axis A,
passing through the centre of the structure and normal to its plane, (b) axis B passing through one of the point masses and normal to the plane of the structure, (c) axis CC^{\prime}, passing through two adjacent point masses and (d) axis DD^{\prime}, along the diagonal of the structure.

12. Calculate the moment of inertia of each particle in Fig. about the indicated axis of rotation.
(a)

(b)

(c)

(d)

13. A uniform disc of mass m and radius R has
an additional rim of mass m as well as four symmetrically placed masses, each of mass $m / 4$ tied at positions $R / 2$ from the centre as
shown in Fig. What is the total moment of inertia of the disc about an axis perpendicular to the disc through its centre?

14. Find the moment of inertia A of a spherical ball of mass m and radius r attached at the end of a straight rod of mass M and length l,
if this system is free to rotate about an axis passing through the end of the rod (end of
the rod opposite to sphere).

D Watch Video Solution

15. Find the moment of inertia of a cylinder of mass M, radius R and length L about an axis passing through its centre and perpendicular
to its symmetry axis. Do this by integrating an elemental disc along the length of the cylinder.

D Watch Video Solution

16. Find $M I$ of a triangular lamina of mass M about the axis of rotation $A B$ shown in Fig.

本

- Watch Video Solution

17. Four identical rods, each of mass m and length l, make a square frame in the $x y$ plane as shown in Fig.
a. Calculate its moment of inertia about the x -
and y-axes.
b. Also, calculate its moment of inertia about
the z-axis.

(D) Watch Video Solution

Exercise 2.3

1. A uniform cube of side a and mass m rests on a rough horizontal table. A horizontal force
F is applied normal to one of the faces at a point directly above the centre of the face, at a height $\frac{3 a}{4}$ above the base. What is the minimum value of F for which the cube begins to tip about an edge?
2. A uniform rod is made to lean between a rough vertical wall and the ground. The coefficient of friction between the rod and the ground is μ_{1} and between the rod and the wall is μ_{2}. Find the angle at which the rod can he leaned without slipping.

D Watch Video Solution

3. A beam of weight W supports a block of weight W. The length of the beam is I. and
weight is at a distance $\frac{L}{4}$ from the left end of
the beam. The beam rests on two rigid supports at its ends. Find the reactions of the supports.

D Watch Video Solution

4. A uniform ladder of mass 10 g leans against
a smooth vertical wall making an angle of 53^{0}
with it. The other end rests on a rough horizontal floor. Find the normal force and the frictional force that the floor exerts on the ladder

D Watch Video Solution

5. A uniform ladder of length 10.0 m and mas
16.0 kg is resting against a vertical wall making
an angle of 37° with it. An electrician
weighing 60.0 kg climbs up the ladder. If the
stays on the ladder at a point 8.00 m from the
lower end, will be normal force and the force of friction on the ladder by the ground? What should be the minimum coefficient of friction for the electrician to work safely?

D Watch Video Solution

6. A uniform rod of length L rests against a
smooth roller as shown in figure. Find the friction coefficient between the ground and the lower end if the minimum angle that rod
can make with the horizontal is θ.

Figure 10-E9

- Watch Video Solution

7. The ladder shown in figure has negligible mass and rests on a frictionless floor. The crossbar connects the two legs of the ladder at the middle. The angle between the two legs
is 60°. The fat person sitting on the ladder with a mas of 80 kg . Find the contact force exerted by the floor on each leg and the
tension in the cross bar.

- Watch Video Solution

8. A uniform rod of length l and mass m is
hung from, strings of equal length from a
ceiling as shown in figure. Determine the tensions in the strings?

- Watch Video Solution

9. A uniform ladder of length L and mass m_{1} rests against a frictionless wall. The ladder makes an angle θ with the horizontal. (a) Find the horizontal and vertical forces the ground
exerts on the base of the ladder when a firefighter of mass m_{2} is a distance x from the bottom. (b) If the ladder is just on the verge of slipping when the firefighter is a distance d from the bottom, what is the coefficient of static friction between ladder and ground?

D Watch Video Solution

10. A uniform beam of mass m is inclined at an
angle θ to the horizontal. Its upper end produces a ninety degree bend in a very rough
rope tied to a wall, and its lower end rests on
a rough floor (a) If the coefficient of static
friction between beam and floor is μ_{s}
determine an expression for the maximum
mass M that can be suspended from the top
before the beam slips. (b) Determine the magnitude of the reaction force at the floor and the magnitude of the force exerted by the beam on the rope at P in terms of m, M and
μ_{s}

- View Text Solution

11. A uniform rod of weight F_{g} and length L is supported at its ends by a frictionless through as shown in figure. (a) Show that the centre of gravity of the rod must be vertically over point
O when the rod is in equilibrium.

Determine the equilibrium value of the angle θ

12. Figure shows a vertical force applied tangentially to a uniform cylinder of weight F_{g}
. The coefficient of static friction between the
cylinder and all surfaces is 0.500 . In terms of
F_{g}, find the maximum force P that can be applied that does not cause the cylinder to
rotate.

(D) Watch Video Solution
13. A trailer with loaded weight F_{g} is being pulled by a vehicle with a force P, as in figure.

The trailer is loaded such that its centre of mass is located as shown. Neglect the force of rolling friction and let a represent the x component of the acceleration of the trailer.
(a) Find the vertical component of P in terms
of the given parameters. (b) If $\mathrm{a}=2.00 \mathrm{~ms}^{-2}$
and $h=1.50 \mathrm{~m}$, what must be the value of d
in order that $P=0$ (no vertical load on the
vehicle)?

(Watch Video Solution

14. A bicycle is traveling downhill at a high speed. Suddenly, the cyclist sees that a bridge ahead has collapsed, so she has to stop. What is the maximum magnitude of acceleration the
bicycle can have if it is not to flip over its front wheel-in particular, if its rear wheel is not to leave the ground? The slope makes an angle of 37° with the horizontal. On level ground, the centre of mass of the woman-bicycle system is at a point 1.0 m above the ground, 1.0 m horizontally behind the axle of the front wheel, and 35.0 cm in front of the rear axle. Assume that the tires do not skid.
15. A car moves with speed v on a horizontal
circular track of radius R. A head-on view of
the car is shown in figure. The height of the car's centre of mass above the ground h, and
the separation between its inner and outer
wheel, is d. The road is dry, and the car does
not skid. Show that the maximum speed the
car can have without overturning is given by
$v_{\max }=\sqrt{\frac{g R d}{2 h}}$. To reduce the risk of rollover,
should one increase or decrease h ? Should
one increase or decrease the width d of the
wheel base?

D Watch Video Solution

Exercise 2.4

1. A uniform rod of mass m and length l can
rotate in a vertical plane about a smooth
horizontal axis point H. a. Find angular acceleration α of the rod. just after it is
released from initial horizontal position from rest'? b. Calculate the acceleration (tangential and radial), point A at this moment.

Watch Video Solution

2. A uniform rod of mass m and length l can rotate in a vertical plane abota smooth horizontal axis hinged at point H. Find the
force exerted by the hinge just after rod is
released from rest, from initial horizontal
position?

- Watch Video Solution

3. A wheel of radius r and moment of inertia I about its axis is fixed at top of an inclined plane of inclination θ as shown in figure. A
string is wrapped round the wheel and its free
end supports a block of mass M which can
slide on the plane. initially, the wheel is rotating at a speed ω in direction such that the block slides up the plane. How far will the block move before stopping?

- Watch Video Solution

4. A uniform rod $A B$ of mass $m=2 k g$ and length $l=1.0 m$ is placed on a sharp support
P such that $a=0.4 m$ and $b=0.6 m$. A.
spring of force constant $k=600 \mathrm{~N} / \mathrm{m}$ is attached to end B as shown in Fig. To keep the rod horizontal, its end A is tied with a thread such that the spring is B elongated by $1 C M$. Calculate reaction of support P when
the thread is burnt.

- Watch Video Solution

5. A cotton reel of mass m, radius R and moment of inertia I is kept on a smooth horizontal surface. If the string is pulled horizontally by a force F, find the (i) acceleration of $C M$, (ii) angular acceleration
of the cotton reel.

D Watch Video Solution
6. Find acceleration a and angular acceleration α. If $F=2 N, m=1 k g$ and $l=2 m$

- Watch Video Solution

Find
α, a_{Q} and the point of zero acceleration when the horizontal force F acts on the smooth rod of mass m and length l which is kept on a horizontal surface.
8. A uniform solid. cylinder A of mass can freely rotate about a horizontal axis fixed to a mount of mass m_{2}. A constant horizontal
force F is applied to the end K of a light thread tightly wound on the cylinder. The friction between the mount and the
supporting horizontal plane is assumed to be
absent. Find the acceleration of the point K.

- Watch Video Solution

9. For what value of x, the point P on the rod of length $l=6 m$ has zero acceleration if a
force F is applied at the end of rod as shown.

- Watch Video Solution

10. A uniform rod of mass m and length is
acted upon by the forces F_{1} and F_{2} Find that:
a. linear-and angular acceleration of the rod.
b. value of x for which the point P does not accelerate.

- View Text Solution

11. Find a_{C} and α of the smooth rod of mass
m and length l.

- Watch Video Solution

Subjective

1. In the instant shown in the diagram the board is moving up (vertically) with velocity v.

The drum winds up at a constant rate ω. If the radius of the drum is R and the board always remains horizontal, find the value of velocity in terms of R, θ, ω.

2. A weightless rod of length l with a small load of mass m at the end is hinged at point
A as shown and occupies a strictly vertical position, touching a body of mass M. A light jerk sets the system in motion.
a. For what mass ratio M / m will the rod form an angle $\alpha=\pi / 6$ with the horizontal at the moment of the separation from the body?
b. What will he the velocity u of the body at
this moment? Friction should be neglected.

D View Text Solution

3. A cylinder of weight W and raidus R is to be raised onto a horizontal step of height $h=R / 3$ as shown. A rope is wrapped around the cylinder and pulled horizontally. Assuming no slipping, find the minimum value of F to
raise the cylinder.

D Watch Video Solution

4. A cylinder is rolling without sliding over two horizontal planks (surfaces) 1 and 2 . If the velocities of the surfaces A and B are $-v \hat{i}$ and $2 v \hat{i}$ respectively, find the:
a. Position of instantaneous axis of rotation.
b. Angular velocity of the cylinder.

2

- Watch Video Solution

5. A block of mass $M=4 \mathrm{~kg}$ of height and breath b is placed on a rough plank of same mass M. A light inextensible string is connected to the upper end of the block and
passed through a light smooth pulley as
shown in figure. A mass $m=1 \mathrm{~kg}$ is hung to
the other end of the string.
a. What should be the minimum value of coefficient of friction between the block and the plank so that, there is no slipping between the block and the wedge?
b. Find the minimum value of b / h so that the
block does not topple over the plank, friction
is absent between the plank and the ground.

- Watch Video Solution

6. A uniform $\operatorname{rod} A B$ of mass m and length l is suspended by two massless and inextensible strings $A C$ and $B D$ whose ends C and D are fixed as shown. Find the tension in the string
$B D$ immediately after the string at A is cut.

D Watch Video Solution

7. A cylinder rests on a horizontal rotating disc, as shown in the figure. Find at what angular velocity, ω, the cylinder falls off the disc, if the distance between the axes of the disc and cylinder is R, and the coefficient of friction $\mu>D / h$ where D is the diameter of
the cylinder and It is its height.

D View Text Solution

8. A uniform slender bar $A B$ of mass m is suspended as shown from a small cart of the
same mass m. Neglecting the effect of the friction, determine the accelerations of points
A and B immediately after a horizontal force F has been applied at B.

- Watch Video Solution

9. A uniform bar of length I and mass m stands vertically touching a vertical wall (y axis). When slightly displaced, its lower end begins to slide along the floor (x-axis). Obtain an expression for the angular velocity (ω) of the bar as a function of O. Neglect friction
everywhere.

- Watch Video Solution

10. A uniform cube of side ' a ' and mass m rests on a rough horizontal table. A horizontal
force F is applied normal to one of the faces at a point directly below the centre of the face,
at a height $a / 4$ above the base.
a. What is the minimum value of F for which
the cube begins to tip about an edge?
b. What is the minimum value of its so that toppling occurs?
c. If $\mu=\mu_{\text {min }}$ find minimum force for topping.
d. Find minimum μ_{s} so that $F_{\min }$ can cause toppling.

View Text Solution

11. Find minimum value of l so that truck can avoid the dead end, without toppling the block kept on it.

- Watch Video Solution

12. A uniform rod of mass m and length l can
rotate in vertical plane about a smooth horizontal axis hinged at point H. Find
angular acceleration α of the rod just after it is released from initial position making an angle of 37° with horizontal from rest?

D Watch Video Solution
13. A wheel of radius $R=10 \mathrm{~cm}$ and moment of inertia $I=0.05 \mathrm{kgm}^{2}$ is rotating about a fixed horizontal axis O with angular velocity $\omega_{0}=10 \mathrm{rads}^{-1}$. A uniform riigid rod of mass $m=3 \mathrm{~kg}$ and length $l=50 \mathrm{~cm}$ is hinged at one end A such that it can rotate at end A in
a vertical plane. End B of the rod is tied with a
thread as shown in figure such that the rod is
horizontal and is just in contact with the surface of rotating wheel. Horizontal distance between axis of rotation O of cylinder and A is equal to $a=30 \mathrm{~cm}$.

If the wheel stops rotating after one second after the thread has burnt, calculate coefficient of friction , μ between the rod and the surface of the wheel. $\left(g=10 m s^{-2}\right)$

D Watch Video Solution

Single Correct

1. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of inertia of the system about an axis passing through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)
A. $\frac{1}{2} m r^{2}$
B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$

D. $2 m r^{2}$

Answer: C

D Watch Video Solution

2. The moment of inertia of a solid sphere about an axis passing through the centre radius is $\frac{1}{2} M R^{2}$, then its radius of gyration about a parallel axis t a distance $2 R$ from first axis is
A. $5 R$
B. $\sqrt{\frac{22}{5}} R$
C. $\frac{5}{2} R$
D. $\sqrt{\frac{12}{5}} R$

Answer: B

D Watch Video Solution

3. From a given sample of uniform wire, two circular loops P and Q are made, P of radius r and Q of radius $n r$. If the M.I. of Q about its axis is four times that of P about its axis
(assuming the wire to be of diameter much smaller than either radius), the value of n is
A. $(4)^{\frac{2}{3}}$
B. $(4)^{\frac{1}{3}}$
C. $(4)^{\frac{1}{2}}$
D. $(4)^{\frac{1}{4}}$

Answer: B
(Watch Video Solution
4. Two circular discs A and B of equal masses
and thicknesses. But are made of metals with
densities $\quad d_{A}$ and $d_{B}\left(d_{A}>d_{B}\right)$. If their moments of inertia about an axis passing
through the centre and normal to the circular faces be I_{A} and I_{B}, then.
A. $I_{A}=I_{B}$
B. $I_{A}>I_{B}$
C. $I_{A}<I_{B}$
D. $I_{A} \geq I_{B}$

Answer: C

- Watch Video Solution

5. Four identical rods are joined end to end to
form a square. The mass of each rod is M. The moment of inertia of the square about the median line is
A. $\frac{M l^{2}}{3}$
B. $\frac{M l^{2}}{4}$
C. $\frac{M l^{2}}{6}$

D. none of these

Answer: D

D Watch Video Solution

6. Two circular iron discs are of the same
thickness. The diameter of A is twice of B. The moment of inertia of A as compared to that of B is
A. twice as large
B. four times as large
C. eight times as large
D. 16 times as large

Answer: D

- Watch Video Solution

7. Two thin discs each of mass M and radius r
are attached as shown in figure, to from a
rigid body. The rotational inertia of this body about an axis perpendicular to the plane of

disc B and passing through its centre is :

A. $2 M r^{2}$
B. $3 M r^{2}$
C. $4 M r^{2}$

D. $5 M r^{2}$

Answer: D

- Watch Video Solution

8. An isosceles triangular piece is cut a square
plate of side l. The piece is one-fourth of the square and mass of the remaining plate is M.

The moment of inertia of the plate about an axis passing through O and perpendicular to
its plane is

A. $\frac{M l^{2}}{6}$
B. $\frac{M l^{2}}{12}$
C. $\frac{M l^{2}}{24}$
D. $\frac{M l^{2}}{3}$

Answer: A

- Watch Video Solution

9. Three rings, each of mass m and radius r, are so placed that they touch each other. Find the moment of inertia about the axis as shown
in Fig.

A. $5 m r^{2}$
B. $\frac{5}{7} m r^{2}$
C. $7 m r^{2}$
D. $\frac{7}{2} m r^{2}$

Answer: D

D Watch Video Solution

10. Three identical rods, each of mass m and
length l, form an equaliteral triangle. Moment
of inertia about one of the sides is

$$
\text { A. } \frac{m l^{2}}{6}
$$

B. $m l^{2}$
C. $\frac{3 m l^{2}}{4}$
D. $\frac{2 m l^{2}}{3}$

Answer: D

11. About which axis moment of inertia in the given triangular lamina is maximum?

A. $A B$
B. $B C$
C. $A C$
D. $B L$

Answer: B

- Watch Video Solution

12.

A square is made by joining four rods each of mass M and length L. Its moment of inertia about an axis $P Q$, in its plane and passing through one one of its corner is
A. $\frac{2}{3} m l^{2}$
B. $2 m l^{2}$
C. $3 m l^{2}$
D. $\frac{8}{3} m l^{2}$

Answer: D

- Watch Video Solution

13. Figure shows a uniform solid block of mass
M and edge lengths a, b and c. Its $M . I$. about an axis through one edge and perpendicular
(as shown) to the large face of the block is

A. $\frac{M}{3}\left(a^{2}+b^{2}\right)$
B. $\frac{M}{4}\left(a^{2}+b^{2}\right)$
C. $\frac{7 M}{12}\left(a^{2}+b^{2}\right)$
D. $\frac{M}{12}\left(a^{2}+b^{2}\right)$

Answer: A

D Watch Video Solution

14. In a rectangle $A B C D, A B=21$ and
$B C=1$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is
least about :

A. $D B$
B. $B C$
C. $x x$
D. $y y$

Answer: C
15. Figure shows a thin metallic triangular sheet $A B C$. The mass of the sheet is M. The moment of inertia of the sheet about side $A C$ is :

A. $\frac{M l^{2}}{18}$
B. $\frac{M l^{2}}{12}$
C. $\frac{M l^{2}}{6}$
D. $\frac{M l^{2}}{4}$

Answer: B

D Watch Video Solution
16. The moment of inertia of a door of mass m, length $2 l$ and width l about its longer side is.
A. $\frac{11 m l^{2}}{24}$
B. $\frac{5 m l^{2}}{24}$
C. $\frac{m l^{2}}{3}$
D. none of these

Answer: C

D Watch Video Solution

17. A disc of radius R rolls without slipping at speed v along positive x-axis. Velocity of point
P at the instant shown in Fig. is

$$
\begin{aligned}
& \text { А. } \vec{V}_{P}=\left(v+\frac{v r \sin \theta}{R}\right) \hat{i}+\frac{v r \cos \theta}{R} \hat{j} \\
& \text { в. } \vec{V}_{P}=\left(v+\frac{v r \sin \theta}{R}\right) \hat{i}-\frac{v r \cos \theta}{R} \hat{j} \\
& \text { С. } \vec{V}_{P}=\frac{v r \sin \theta}{R} \hat{i}+\frac{v r \cos \theta}{R} \hat{j} \\
& \text { D. } \vec{V}_{P}=\frac{v r \sin \theta}{R} \hat{i}-\frac{v r \cos \theta}{R} \hat{j}
\end{aligned}
$$

Answer: B

D Watch Video Solution

18. A disc of radius R rolls on a horizontal ground with linear acceleration a and angular acceleration α as shown in Fig. The magnitude of acceleration of point P as shown in the
figure at an instant when its linear velocity is v
and angular velocity is ω will be a

A. $\sqrt{(a+r \alpha)^{2}+\left(r \omega^{2}\right)^{2}}$
B. $\frac{a r}{R}$
C. $\sqrt{r^{2} \alpha^{2}+r^{2} \omega^{4}}$
D. $r \alpha$

Answer: A

D Watch Video Solution

19. A uniform disc of mass M and radius R is
mounted on an axle supported in frictionless
bearings. A light cord is wrapped around the
rim of the disc and a steady downward pull T
is exerted on the cord. The angular
acceleration of the disc is
A. $\frac{T}{M R}$
B. $\frac{M R}{T}$
C. $\frac{2 T}{M} R$
D. $\frac{M R}{2 T}$

Answer: C

D Watch Video Solution

20. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of
inertia of the system about an axis passing
through the centre and perpendicular to the plane of one of the rings is (mass the ring

$$
=m, \text { radius }=r \text {) }
$$

A. $\frac{1}{2} m r^{2}$
B. $m r^{2}$
C. $\frac{3}{2} m r^{2}$
D. $2 m r^{2}$

Answer: c

21. The moment of inertia of a solid sphere about an axis passing through the centre radius is $\frac{1}{2} M R^{2}$, then its radius of gyration about a parallel axis at a distance $2 R$ from first axis is
A. $5 R$
B. $\sqrt{\frac{22}{5}} R$
C. $\frac{5}{2} R$
D. $\sqrt{\frac{12}{5}} R$

Answer: b

- Watch Video Solution

22. A triangular plate of uniform thickness and density is made to rotate about an axis perpendicular to the plane of the paper and
(i) passing through A,
(ii) passing through B, by the application of some force F at C (mid - point AB) as shown in the figure. In which case angular
acceleration is more?

A. in case a
B. in case b
C. both a and b
D. none of these

Answer: B

D Watch Video Solution

23. A uniform rod of length L and mass M is
pivoted freely at one end and placed in vertical
position.
a. What is angular acceleration of the rod when it is at an angle θ with the vertical?
b. What is the tangential linear acceleration of
the free end when the rod is horizontal?
A. $g \sin \theta$
B. $\frac{g}{L} \sin \theta$
C. $\frac{3 g}{2 L} \sin \theta$
D. $6 g L \sin \theta$

Answer: C

D Watch Video Solution
24. In Fig, the bar is uniform and weighing $500 N$. How large must W be if T_{1} and T_{2} are
to be equal?

A. 500 N
B. 300 N
C. 750 N
D. 1500 N

Answer: D

- Watch Video Solution

25. In an experiment with a beam balance, an
unknown mass m is balanced by two known
masses of 16 kg and $4 k g$ shown in Fig. The
value of the unknown mass m is

A. 10 kg
B. 6 kg
C. 8 kg
D. 12 kg
26. A sphere is moving towards the positive x axis with a velocity v_{c} and rotates clockwise with angular speed ω shown in Fig. such that
$v_{c}>\omega R$. The instantaneous axis of rotation
will be

A. on point P
B. on point P^{\prime}
C. inside the sphere
D. outside the sphere

Answer: D

D Watch Video Solution

27. A cylinder of height H and diameter $H / 4$
is kept on a frictional turntable as shown in

Fig. The axis of the cylinder is perpendicular to
the surface of the table and the distance of axis of the cylinder is $2 H$ from the centre of the table. The angular speed of the turntable at which the cylinder will start toppling
(assume that friction is sufficient to prevent
slipping) is

A. $\sqrt{\frac{g}{2}\left(\frac{1}{2}-H\right)}$
B. $\sqrt{g\left(\frac{1}{2}-H\right)}$
C. $\sqrt{\frac{g}{4 H}}$
D. $\sqrt{\frac{g}{8 H}}$

Answer: D

D Watch Video Solution

A thin rod of length 41 , mass 4 m is bent at the point as shown in the figure. What is the moment of inertia of the rod about the axis passing through O and perpendicular to the plane of the paper?

$$
\text { A. } \frac{M l^{2}}{3}
$$

> B. $\frac{10 M l^{2}}{3}$
> C. $\frac{M l^{2}}{12}$
> D. $\frac{M l^{2}}{24}$

Answer: B

D Watch Video Solution

29. Three point masses m_{1}, m_{2} and m_{3} are
located at the vertices of an equilateral triangle of side α. What is the moment of
inertia of the system about an axis along the altitude of the triangle passing through m_{1} ?

$$
\begin{aligned}
& \text { A. }\left(m_{1}+m_{2}\right) \frac{a^{2}}{4} \\
& \text { B. }\left(m_{2}+m_{3}\right) \frac{a^{2}}{4} \\
& \text { C. }\left(m_{1}+m_{3}\right) \frac{a^{2}}{4} \\
& \text { D. }\left(m_{1}+m_{2}+m_{3}\right) \frac{a^{2}}{4}
\end{aligned}
$$

Answer: B

D Watch Video Solution

30. The pulleys in figure are identical, each having a radius R and moment of inertia I . Find the acceleration of the block M.

$$
\begin{aligned}
& \text { A. } \frac{(M-m) g}{\left(M+m+\frac{2 l}{r^{2}}\right)} \\
& \text { B. } \frac{(M-m) g}{\left(M+m-\frac{2 l}{r^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \frac{(M-m) g}{\left(M+m+\frac{I}{r^{2}}\right)} \\
& \text { D. } \frac{(M-m) g}{\left(M+m-\frac{I}{r^{2}}\right)}
\end{aligned}
$$

Answer: A

D Watch Video Solution

31. A uniform cube of side a and mass m rests
on a rough horizontal table. A horizontal force
F is applied normal to one of the faces at a point directly above the centre of the face, at a
height $\frac{3 a}{4}$ above the base. What is the minimum value of F for which the cube begins to tip about an edge?
A. $m g$
B. $\frac{2}{3} m g$
C. $\frac{3}{2} m g$
D. $\frac{3}{4} m g$

Answer: B

D Watch Video Solution
32. A ladder of length l and mass m is placed against a smooth vertical wall, but the ground is not smooth. Coefficient of friction between the ground and the ladder is μ. The angle θ at which the ladder will stay in equilibrium is

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}(\mu) \\
& \text { B. } \theta=\tan ^{-1}(2 \mu) \\
& \text { C. } \theta=\tan ^{-1}\left(\frac{\mu}{2}\right) \\
& \text { D. none of these }
\end{aligned}
$$

Watch Video Solution

33. A cube of side a is placed on an inclined plane of inclination θ. What is the maximum value of θ for which the cube will not topple?

A. 15°
B. 30°
C. 45°
D. 60°

Answer: C

- Watch Video Solution

34. A uniform rod of length l is placed symmetrically on two walls as shown in Fig.

The rod is in equilibrium. If N_{1} and N_{2} are the normal forces exerted by the walls on the rod,
then

A. $N_{1}>N_{2}$
B. $N_{1}<N_{2}$
C. $N_{1}=N_{2}$
D. N_{1} and N_{2} would be in the vertical
directions

Answer: C

- Watch Video Solution

35. A square plate of mass M and edge L is
shown in the figure. The moment of inertia of
the plate about the axis in the plane of plate and passing through one of its vertex making
an angle 15° horizontal is

A. $\frac{M L^{2}}{12}$
B. $\frac{11 M L^{2}}{24}$
C. $\frac{7 M L^{2}}{12}$
D. none of these

- Watch Video Solution

36. The figure shows a uniform rod lying along the x-axis. The locus of all the points lying on the $x-y$ plane, about which the moment of inertia of the rod is same as that about O, is

A. an ellipse
B. a circle
C. a parabola
D. a striaght line

Answer: B

D Watch Video Solution

37. Find minimum height of the obstacle so
that the sphere can stay in equilibrium

A. $\frac{R}{1+\cos \theta}$
B. $\frac{R}{1+\sin \theta}$
C. $R(1-\sin \theta)$
D. $R(1-\cos \theta)$

Answer: D
38. A sphere is placed rotating with its centre initially at rest in a corner as shown in Figs.(a) and (b). Coefficient of friction between all surfaces and the sphere is $1 / 3$. Find the ratio of the friction forces f_{a} / f_{b} by ground in situations (a) and (b).

(a)

(b)
B. $\frac{9}{10}$
C. $\frac{10}{9}$
D. none of these

Answer: B

D Watch Video Solution

39. In the figure shown, the instantaneous speed of end A of the rod is v to the left. The angular velocity of the rod of length L must

A. $\frac{v}{2 L}$
B. $\frac{v}{L}$
C. $\frac{v \sqrt{3}}{2 L}$
D. none of these

- Watch Video Solution

40. A uniform rod of mass m and length l is
fixed from Point A, which is at a distance $l / 4$ from one end as shown in the figure. The rod is free to rotate in a vertical plane. The rod is released from the horizontal position.

What is the reaction at the hinge, when kinetic energy of the rod is maximum?
A. $\frac{4}{7}$
B. $\frac{5}{7} m g$
C. $\frac{13}{7} m g$
D. $\frac{11}{7} m g$

Answer: C

D Watch Video Solution

41. In the pulley system shown, if radii of the bigger and smaller pulley are $2 m$ and $1 m$ respectively and the acceleration of block A is
$5 \mathrm{~m} / \mathrm{s}^{2}$ in the downward direction, then the acceleration of block B will be :

A. $0 m s^{-2}$
B. $5 m s^{-2}$
C. $10 m s^{-2}$
D. $\frac{5}{2} m s^{-2}$

Answer: D

D Watch Video Solution

42. A planar object made up of a uniform square plate and four semicircular discs of the same thickness and material is being acted
upon by four forces of equal magnitude as
shown in Fig. The coordinates of point of application of forces is given by

A. $(0, a)$
B. $(0,-a)$
C. $(a, 0)$

$$
\text { D. }(-a, 0)
$$

Answer: B

D Watch Video Solution

43. An equilateral prism of mass m rests on a rough horizontal surface with coefficient of friction μ. A horizontal force F is applied on the prism as shown in figure. If the coefficient of friction is sufficiently high so that the prism
does not slide before toppling, the minimum
force required to topple the prism is

$$
\begin{aligned}
& \text { A. } \frac{m g}{\sqrt{3}} \\
& \text { B. } \frac{m g}{4} \\
& \text { C. } \frac{\mu m g}{\sqrt{3}} \\
& \text { D. } \frac{\mu m g}{4}
\end{aligned}
$$

Answer: A

D Watch Video Solution

44. A uniform disc of radius R lies in the $x-y$
plane, with its centre at origin. Its moment of inertia about z-axis is equal to its moment of inertia about line $y=x+c$. The value of c
will be.

A. $-\frac{R}{2}$
B. $\pm \frac{R}{\sqrt{2}}$
C. $+\frac{R}{4}$
D. $-R$

Answer: B

D Watch Video Solution

45. A rectangular block of mass M and height
a is resting on a smooth level surface. A force
F is applied to one corner as shown in Fig. At what point should a parallel force $3 F$ be applied in order that the block shall undergo
pure translational motion? Assume normal contact force a between the block and surface passes through the centre of gravity of the
block.

A. $\frac{a}{3}$ vertically above centre of gravity
B. $\frac{a}{6}$ vertically above centre of gravity
C. no such point exists
D. it is not possible
46. A uniform rod of mass 15 kg is held stationary with the help of a light string as shown in Fig. The tension in the string is $\exists=1$
A. 150 N
B. 225 N
C. $100 N$
D. none of these

Answer: C

D Watch Video Solution

47. Figure shown two pulley arrangments for
lifting a mass m. In case-1, the mass is lifting by attaching a mass 2 m while in case- 2 the mass is lifted by pulling the other end with a
downward force $F=2 m g$. If a_{a} and a_{b} are
the accelerations of the two masses then
(Assumme string is massless and pulley is ideal).

A. $\alpha_{A}=\alpha_{B}$
B. $\alpha_{A}>\alpha_{B}$
C. $\alpha_{A}<\alpha_{B}$

D. none of these

Answer: B

D Watch Video Solution

48. Two uniform boards, tied together with the
help of a string, are balanced on a surface as
shown in Fig.

The coefficient of static friction between boards and surface is 0.5 . The minimum value of θ, for which this type of arrangement is
possible is

A. 30°
B. 45°
C. 37°
D. it is not possible to have this type of
balanced arrangement

Answer: B

D Watch Video Solution

49. A slender rod of mass m and length L is pivoted about a horizontal axis through one end and released from rest at an angle of 30° above the horizontal. The force exerted by the pivot on the rod at the instant when the rod passes through a horizontal position is
A. $\sqrt{\frac{10}{4}} \mathrm{mg}$ along horizontal
B. $m g$ along vertical
C. $\frac{\sqrt{10}}{4} m g$ alonng a line making an angle
of $\tan ^{-1}\left(\frac{1}{3}\right)$ with the horizontal
D. $\frac{\sqrt{10}}{4} \mathrm{mg}$ along a line making an angle of $\tan ^{-1}(3)$ with the horizontal

Answer: C

D Watch Video Solution

50. Two painters are working from a wooden
hoard $5 m$ long suspended from the top of a building by two ropes attached to the ends of
the plank. Either rope can withstand a maximum tension of $1040 N$. Painter A of mass

80 kg is working at a distance of 1 m from one end. Painter B of mass 60 kg is working at a distance of x in from the centre of mass of the
board on the other side. Take mass of the board as 20 kg and $g=10 \mathrm{~ms}^{-2}$. The range of x so that both the painters can work safely is
A. $\frac{1}{3}<x<\frac{11}{6}$
B. $0<x<\frac{11}{6}$
C. $0<x<2$
D. $\frac{1}{3}<x<2$

Answer: C

D View Text Solution

51. In Fig. a massive rod $A B$ is held in horizontal position by two massless strings. If the string at B breaks and if the horizontal
acceleration of centre of mass, vertical acceleration and angular acceleration of rod about the centre of mass are a_{x}, a_{y} respectively, then

A. $2 \sqrt{3} a_{y}=\sqrt{3} \alpha l+2 a_{x}$
B. $\sqrt{3}_{y}=\sqrt{3} \alpha l+a_{x}$
C. $a_{y}=\sqrt{3} \alpha l+2 a_{x}$
D. $2 a_{y}=\alpha l+2 \sqrt{3} a_{x}$

- View Text Solution

52. A rod of length L is held vertically on a smooth horizontal surface. The top end of the rod is given a gentle push. At at certain instant of time, when the rod makes an angle 37° with horizontal the velocity of $C O M$ of the rod of $2 \mathrm{~m} / \mathrm{s}$. The velocity of the end of the rod in contact with the surface at that instant is

$$
\text { A. } 2 m s^{-1}
$$

B. $1 m s^{-1}$
C. $4 m s^{-1}$
D. $1.5 m s^{-1}$

Answer: D

- Watch Video Solution

53. A uniform bar $A B$ of mass m and a ball of
the same mass are released from rest from the
same horizontal position. The bar is hinged at
end A. There is gravity downwards. What is
the distance of the point from point B that
has the same acceleration as the ball, immediately after release?

A. $\frac{2 L}{3}$
B. $\frac{L}{3}$
C. $\frac{L}{2}$
D. $\frac{3 L}{4}$

Answer: B

- Watch Video Solution

54. Find force F required to keep the system in equilibrium. The dimensions of the system are
$d=0.3 m$ and $a=0.2 m$. Assume the rods to be massless.

A. $150(\hat{i})$
B. $150(-\hat{k})$
C. $150(-\hat{i})$
D. it cannot be in equilibrium

Answer: C

D Watch Video Solution

55. A uniform cylinder of mass m lies on a fixed plane inclined at a angle θ with the horizontal.

A light string is tied to the cylinder at the
rightmost point, and a mass m hangs from the string as shown. Assume that the coefficient of friction between the cylinder and the incline plane is sufficiently large to prevent slipping. for the cylinder to remain static the value of m is

A. $\frac{M \sin \theta}{1-\sin \theta}$

> B. $\frac{M \cos \theta}{1+\sin \theta}$ C. $\frac{M \sin \theta}{1+\sin \theta}$ D. $\frac{M \cos \theta}{1-\sin \theta}$

Answer: A

D Watch Video Solution

56. Two blocks each of the mass m are attached to the ends, a massless rod which pivots as shown in figure. Initial the rod is held in the horizontal position and then release,

Calculate the net torque on this system above
pivot.

A. $\left(m l_{2} g-m l_{1} g\right) \hat{k}$
B. $\left(m l 1 g-m l_{2} g\right) \hat{k}$
C. $\left(m l_{1} g+m l_{2} g\right) \hat{k}$
D. $-\left(m l 1 g+m l_{2} g\right) \hat{k}$

Answer: B

57. A $198-\mathrm{cm}$ tall girl lies on a light (massless) board which is supported by two
scales one under the top of her heal and one beneath the bottom of her feet. The two scales read respectively 36 and 30 kg . What distance is the centre of gravity of this girl from the bottom of her feet? .

A. 99 cm
B. 90 cm
C. 108 cm
D. 82 cm

Answer: C

- Watch Video Solution

58. The wheels of an airplane are set into rotation just before landing so that the wheels do not slip on the ground. If the airplane is travelling in the east direction,
what should be the direction of angular velocity vector of the wheels?
A. east
B. west
C. south
D. north

Answer: D
(Watch Video Solution
59. A wheel rotates with a constasnt acceleration of $2.0 \mathrm{ra} \frac{d}{s^{2}}$. If the wheel starts
from rest, how many evolutions wil it make in
the first 10 senconds?
A. 3
B. 6
C. 9
D. 12

Answer: A

Uniform rod $A B$ is hinged at end A in
horizontal position as shown in the figure. The other end is connected to a block through a massless string as shown. The pulley is smooth and massless. Mass of block and rod is
same and is equal to m Then acceleration of block just after release from this position is
A. $6 g / 13$
B. $g / 4$
C. $3 g / 8$
D. none of these

Answer: C
(Watch Video Solution
61. A 'T' shaped object with dimensions shown
in the figure, is lying on a smooth floor. A force
${ }^{\prime} \vec{F}$ ' is applied at the point P parallel to AB ,
such that the object has only the translational
motion without rotation. Find the location of
P with respect C .

A. $(3 / 4) l$
B. l
C. $(4 / 3) l$
D. $(3 / 2) l$

Answer: C

- Watch Video Solution

62. Four forces of the same magnitude act on
a square as shown in figure. The square can
rotate about point O, mid point of one of the edges. The force which can produce greatest
torque is

A. F_{1}
B. F_{2}
C. $F 3$
D. $F 4$

Answer: C

- Watch Video Solution

63. Given a uniform disc of mass M and radius
R. A small disc of radius $R / 2$ is cut from this disc in such a way that the distance between the centres of the two discs is $R / 2$. Find the moment of inertia of the remaining disc about
a diameter of the original disc perpendicular to the line connecting the centres of the two discs
A. $3 M R 2 / 32$
B. $5 M R 2 / 16$
C. $1 M R 2 / 64$
D. none of these

Answer: C

D Watch Video Solution

64. A horizontal force F is applied at the top of an equilateral triangular block having mass
m. The minimum coefficient of friction required to topple the block before

$$
\begin{aligned}
& \text { A. } \frac{2}{\sqrt{3}} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{\sqrt{3}} \\
& \text { D. } \frac{1}{2}
\end{aligned}
$$

Answer: C
65. The line of action of the resultant of two
like parallel forces shifts by one-fourth of the distance between the forces when the two forces are interchanged. The ratio of the two forces is:
A. $1: 2$
B. 2:3
C. 3:4
D. 3:5

Answer: D

D Watch Video Solution

66. $A B C$ is a triangular plate of uniform A
thickness. The sides are in the ratio shown in
the figure. $I_{A B}, I_{B C}, I_{C A}$ are the moments of inertia of the plated about $A B, B C$ and $C A$ respectively. Which one of the following
relation is correct?

A. $I_{C A}$ is maximum
B. $I_{A B}>I_{B C}$
C. $I_{B C}>I_{A B}$

D. $I_{A B}+I_{B C}=I_{C A}$

Answer: B

D Watch Video Solution

67. Ler I be the moment of inertia of a uniform square plate about an axis $A B$ that passes
through its centre and is parallel to two of its sides. $C D$ is a line in the plane of the plate that passes through the centre of the plate and makes an angle θ with AB . The moment of
inertia of the plate about the axis CD is then equal to
A. I
B. $I \sin ^{2} \theta$
C. $I \cos ^{2} \theta$
D. $I \cos ^{2}\left(\frac{\theta}{2}\right)$

Answer: A
(Watch Video Solution
68. In a rectangle $A B C D, A B=21$ and
$B C=1$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is least about :

A. $D B$
B. $B C$
C. $x x$

D. $y y$

Answer: C

D Watch Video Solution

69. A uniform thin rod is bent in the form of
closed loop $A B C D E F A$ as shown in the
figure. The ratio of moment of inertia of the
loop about x-axis to that about y-axis is

A. >1
B. <1
C. $=1$
D. $1 / 2$

- Watch Video Solution

70. Figure shows an arrangement of masses hanging from a ceiling. In equilibrium, each rod is horizontal, has negligible mass and extends three times as far to the right of the wire supporting it as to the left. If mass m_{4} is

48 kg then mass m_{1} is equal to

A. 1 kg
B. 2 kg
C. 3 kg
D. 4 kg

Answer: A

D Watch Video Solution

71. Two identical uniform discs of mass m and radius r are arranged as shown in the figure. If α is the angular acceleration of the lower disc and $a_{c m}$ is acceleration of centre of mass of
the lower disc, then relation among $a_{c m}, \alpha$ and r is

 a_{cm}

A. $a_{c m}=\frac{\alpha}{r}$
B. $a_{c m}=2 \alpha r$
C. $a_{c m}=\alpha r$
D. none of these

Answer: B

D Watch Video Solution

72. A uniform triangular plate $A B C$ of moment of mass m and inertia I (about an axis passing through A and perpendicular to
plane of the plate) can rotate freely in the
vertical plane about point ' A ' as shown in
figure. The plate is released from the position shown in the figure. Line $A B$ is horizontal. The acceleration of centre of mass just after the release of plate is

A. $\frac{m g a^{2}}{\sqrt{3} I}$
B. $\frac{m g a^{2}}{4 I}$
C. $\frac{m g a^{2}}{2 \sqrt{3} I}$
D. $\frac{m g a^{2}}{3 I}$

Answer: C

D Watch Video Solution

73. O is the centre of an equilateral triangle
$A B C . F_{1}, F_{2}$ and F_{3} are the three forces acting along the sides $A B, B C$ and $A C$ respectively. What should be the value of F_{3}

A. $2\left(F_{1}+F_{2}\right)$
B. $\frac{F_{1}+F_{2}}{2}$
C. $F_{1}-F_{2}$
D. $F_{1}+F_{2}$
74. Two discs have same mass and thickness.

Their materials are of densities π and π_{2}. The ratio of their moment of inertia about central axis will be
A. $\pi_{1}: \pi_{2}$
B. $\pi_{1} \pi_{2}: 1$
C. $1: \pi_{1} \pi_{2}$
D. $\pi_{2}: \pi_{1}$

Answer: D

D Watch Video Solution

75. Let I_{A} and I_{B} be moments of inertia of a body about two axes A and B respectively.

The axis A passes through the centre of mass of the body but B does not
A. $I_{A}<I_{B}$
B. If $I_{A}<I_{B}$ the axes are parallel
C. If the axes are parallel $I_{A}<I_{B}$

D. If the axes are not parallel the $I_{A}>I_{B}$

Answer: C

D Watch Video Solution

76. In a rectangle $A B C D, A B=21$ and
$B C=1$. Axes \times and $y y$ pass through centre of the rectangle. The moment of inertia is
least about :

A. $B C$
B. $B D$
C. $H F$
D. $E G$

Answer: D
77. For the same total mass, which of the
following will have the largest moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of the body
A. a ring o radius l
B. a disc of radius l
C. a square lamina of side $2 l$
D. Four rods forming square of side $2 l$

Answer: D

D Watch Video Solution

78. A uniform plane sheet of metal in the form of a triangle $A B C$ has $B C>A B>A C$. Its moment of inertia will be smallest
A. about $A C$ as axis
B. about $A B$ as axis
C. about $B C$ as axis

D. with a line through C normal to its

 plane as axis,
Answer: C

D Watch Video Solution

79. The masses of two uniform discs are in the
ratio 1:2 and their diameters in the ratio $2: 1$.

The ratio of their moment, of inertia about the axis passing through their respective centres and perpendicular to their planes is
A. $1: 1$
B. 1:2
C. 2:1
D. 1: 4

Answer: C

D Watch Video Solution

80. There are four solid balls with their centres
at the four comers of a square of side a. the mass of each sphere is m and radius is r. Find
the moment of inertia of the system about (i) one of the sides of the square (ii) one of the diagonals of the square.
A. $\frac{8}{5} m r^{2}+m b^{2}$
B. $\frac{8}{5} m r^{2}+2 m b^{2}$
C. $\frac{8}{5} m r^{2}+4 m b^{2}$
D. none of these

Answer: B

D Watch Video Solution
81. if l_{1} is te moment of inertia of a thin rod about an axis perpendicular to its length and passing thorugh its centre of mass and l_{2} te moment of inertia of the ring formed by the same rod about an axis passing through the centre of mass of the ring and perpendicular tot he plane of the ring. then find the ratio $\frac{l_{1}}{l_{2}}$.
A. $I_{1}: I_{2}=1: 1$
B. $I_{1}: I_{2}=\pi^{2}: 3$
C. $I_{1}: I_{2}=\pi: 4$
D. $I_{1}: I_{2}=3: 5$

Answer: B

D Watch Video Solution

82. Moment of inertia of a uniform rod of
length L and mass M, about an axis passing
through $L / 4$ from one end and perpendicular to its length is
A. $\frac{M L^{2}}{3}$
B. $\frac{M L^{2}}{6}$
C. $\frac{M L^{2}}{9}$
D. $\frac{M L^{2}}{12}$

Answer: C

D Watch Video Solution

83. A small hole is made in a disc of mass M
and radius R at a distance $R / 4$ from centre.
The disc is supported on a horizontal peg
through this hole. The moment of inertia of
the disc about horizontal peg is

$$
\text { A. } \frac{M R^{2}}{9}
$$

B. $\frac{5}{16} M R^{2}$
C. $\frac{9}{16} M R^{2}$
D. $\frac{5}{4} M R^{2}$

Answer: C

D Watch Video Solution

84. Two rings of same radius and mass are placed such that their centres are at a common point and their planes are perpendicular to each other. The moment of
inertia of the system about an axis passing
through the centre and perpendicular to the plane of one of the rings is (mass the ring $=m$, radius $=r$)
A. $M R^{2}$
B. $\frac{3}{2} M R^{2}$
C. $2 M R^{2}$

$$
\text { D. } \frac{5}{2} M R^{2}
$$

Answer: B
85. We have two spheres, one of which is
hollow and the other solid. They have identical
masses and moment of intertia about their respective diameters. The ratio of their radius
is given by.
A. $5: 7$
B. $3: 5$
C. $\sqrt{3}: \sqrt{5}$
D. $\sqrt{3}: \sqrt{7}$

Answer: C

D Watch Video Solution

86. Let I_{A} and I_{B} be moments of inertia of a
body about two axes A and B respectively.

The axis A passes through the centre of mass of the body but B does not
A. $I_{A}<I_{B}$
B. If $I_{A}<I_{B}$ the axes are parallel
C. If the axes are paralel $I_{A}<I_{B}$

D. if the axes are not parallel the $I_{A} \geq I_{B}$

Answer: C

- View Text Solution

87. A triangular plate of uniform thickness and density is made to rotate about an axis perpendicular to the plane of the paper and
(i) passing through A,
(ii) passing through B, by the application of some force F at C (mid - point AB) as shown
in the figure. In which case angular acceleration is more ?

A. angular acceleration in both the cases is
the same
B. angular acceleration for case (a) is larger
C. angular acceleration for case (b) is larger

D. there would be no angular acceleration

for case (a)

Answer: C

D Watch Video Solution

88. Two identical masses are connected to a
horizontal thin massless rod as shown in the
figure. When their distance from the pivot is x,
a torque produces an angular acceleration α_{1}.

If the masses are now repositioned so that
they are at distance $2 x$ each from the pivot,
the same torque will produce an angular acceleration α_{2} such that,

A. $\alpha_{2}=4 \alpha_{1}$
B. $\alpha_{2}=\alpha_{1}$
C. $\alpha_{2}=\frac{\alpha_{1}}{2}$
D. $\alpha_{2}=\frac{\alpha_{1}}{4}$

- Watch Video Solution

89. From a complete ring of mass M and
radius R, a 30° sector is removed. The moment
of inertia of the incomplete ring about an axis
passing through the centre of the ring and
perpendicular to the plane of the ring is

A. $\frac{9}{12} M R^{2}$
B. $\frac{11}{12} M R^{2}$
C. $\frac{11.3}{12} M R^{2}$
D. $M R^{2}$

Answer: B

- Watch Video Solution

90. A cubical block of side L rests on a rough
horizontal surface with coefficient of friction μ
. A horizontal force F is applied on the block as
shown. If the coefficient of friction is
sufficiently high so that the block does not
slide before toppling, the minimum force
required to topple the block is

A. infinitesimal
B. $\frac{m g}{34}$
C. $\frac{m g}{2}$
D. $m g(1-\mu)$

Answer: C

- Watch Video Solution

91. The density of a rod continuously increases
from A to B. It is easier to set it into rotation by
A. clamping the rod at A and applying a
force F at B, perpendicular to the rod
B. clamping the rod at B and applying a
force F at A, perpendicular to the rod
C. clamping the rod at mid point of $A B$
and applying a force F at A,
perpendicular to the rod
D. clamping the rod at mid-point of $A B$
and applying force F at B,
perpendicular to the rod.

Answer: B

D View Text Solution
92. Three children are sitting on a see-saw in
such a way that is balances. A 20 kg and a 30 kg
boy are on opposite sides at a distance of $2 m$
from the pivot. It the third boy jumps off,
thereby destroying balance, then the initial
angular acceleration of the board is: (Neglect weight of board)
A. $0.01 \mathrm{rads}^{-2}$
B. $1.0 \mathrm{rads}^{-2}$
C. 10 rads $^{-2}$

D. $100 \mathrm{rads}^{-2}$

Answer: B

D Watch Video Solution

93. A wheel of radius R has an axle of radius
$R / 5$. A force F is applied tangentially to the
wheel. To keep the system in a state of
"rotational" rest, a force F^{\prime} is applied tangentially to the axle. The value of F^{\prime} is
A. F
B. $3 F$
C. $5 F$
D. $7 F$

Answer: C

- Watch Video Solution

94. Calculate the force F that is applied horizontally at the axle of the wheel which is necessary to raise the wheel over the obstacle of height $0.4 m$. Radius of wheel is 1 m and
$m a s s=10 \mathrm{~kg} . F$ is

A. 100 N
B. $66 N$
C. $167 N$
D. $133.3 N$

Answer: D

- Watch Video Solution

95. A rigid body is rotating about a vertical
axis. In t second, the axis gradually becomes
horizontal. But the rigid body continues to make v rotations per second throughout the
time interval of 1 second. If the moment of inertia I of the body about the axis of rotation
can he taken as constant, then the torque acting on the body is
A. $2 \pi v$
B. $2 \sqrt{2} \pi v$
C. $\frac{2 \sqrt{2} \pi v}{t}$
D. $\frac{2 \sqrt{2} \pi v l}{t}$

Answer: D

- Watch Video Solution

96. A string is wrapped around a cylinder of mass M and radius R. The string is pulled vertically upwards to prevent the centre of
mass from falling as the cylinder unwinds the string. The tension in the string is
A. $2 M g / 3$
B. $M g / 2$
C. $M g / 3$
D. $M g / 6$

Answer: C

- Watch Video Solution

97. End A of the bar $A B$ in figure rests on a
frictionless horizontal surface and end B is
hinged. A horizontal force \vec{F} of magnitude $120 N$ is exerted on end A. You can ignore the weight of the bar. What is the net force exerted by the bar on the hinge at B ?

A. 200 N
B. 140 N
C. $100 N$
D. none of these

Answer: A

D Watch Video Solution

Multiple Correct

1. A rigid body is in pure rotation, that is,
undergoing fixed axis rotation. Then which of
the following statement(s) are true?
A. You can find two points in the body in a
plane perpendicular to the axis of rotation having the same velocity.
B. You can find two points in the body in a
plane perpendicular to the axis of rotation having the same acceleration.
C. Speed of all the particles lying on the
curved surface of a cylinder whose axis
coincides with the axis of rotation is the
same.
D. Angular speed of the body is the same
as seen from any point in the body.

Answer: C::D

D Watch Video Solution

2. The moment of inertia of a thin square plate
$A B C D$, fig, of uniform thickness about an axis passing through the centre O and
perpendicular to the plane of the plate is
where l_{1}, l_{2}, l_{3} and l_{4} are respectively the moments of intertial about axis 1,2,3 and 4 which are in the plane of the plate.

A. $I_{1}+I_{2}$
B. $I_{3}+I_{4}$
C. $I_{1}+I_{3}$

$$
\text { D. } I_{1}+I_{2}+I_{3}+I_{4}
$$

Answer: A::B::C

D Watch Video Solution

3. A bucket of water of mass 21 kg is suspended by a rope wrapped around a solid cylinder $0.2 m$ in diameter. The mass of the solid cylinder is 21 kg . The bucket is released from rest. Which of the following statements are correct?
A. The tension in the rope is 70 N .
B. The acceleration of the bucket is
$\left(\frac{20}{3}\right) m / s^{2}$
C. The acceleration of the bucket is independent of the mass of the bucket.
D. All of these

Answer: A::B::C::D

D Watch Video Solution

4. A massless spool of inner radius r outer radius R is placed against a vertical wall and a titled split floor as shown. A light inextensible thread is tightly wound around the spool through which a mass m is hainging. There exists no friction at point A, while the coefficient of friction between the spool and point B is μ. The angle between the two
surface is θ

A. the magnitude of force on the spool at
B in order to maintain equilibrium is

$$
m g \sqrt{\left(\frac{r}{R}\right)^{2}+\left(1-\text { or } \frac{r}{R}\right)^{2} \frac{1}{\tan ^{2} \theta}}
$$

B. the magnitude of force on the spool at
B in order to maintain equilibrium is
$m g\left(1-\frac{r}{R}\right) \frac{1}{\tan \theta}$
C. the minimum value of μ for the system
to remain in equilibrium $\frac{\cot \theta}{\left(\frac{R}{r}\right)-1}$
D. the minimum value of p for the system

$$
\text { to remain equilibrium is } \frac{\tan \theta}{\left(\frac{R}{r}\right)-1}
$$

Answer: A::D

5. A uniform thin flat isolated disc is floating in space. It has radius R and mass m. A force is applied to it at a distance $d=\left(\frac{R}{2}\right)$ from the centre in the y-direction. Treat this problem as two-dimensional. Just after the force is applied:

A. acceleration of the centre of the disc is

$$
F / m
$$

B. angular acceleration of the disk is $F / m R$.
C. acceleration of leftmost point on the, disc is zero

D. point
which
is instantaneously

unaccelerated is the rightmost point.

Answer: A::B::C

6. A rod bent at right angle along its centre
line is placed on a rough horizontal fixed cylinder of radius R as shown in the figure. Mass of the rod is $2 m$ and the rod is in equilibrimu. Assume that the friction force on
rod at A and B is equal in magnitude.

A. Normal force applied by cylinder on rod at A is $3 m g / 2$
B. Normal force applied by cylinder on rod at B must be zero.
C. Friction force acting on rod at B is
upward.
D. Normal force applied by cylinder on rod at A is mg .

Answer: A::C

D Watch Video Solution

7. A clockwise torque of $6 N-m$ is applied to
the circular cylinder as shown in the figure.

There is no friction between the cylinder and
the block.

A. The cylinder will be slipping but the
system does not move forward
B. The system cannot move forward for any
torque applied to the cylinder
C. The acceleration of the system will be

$1 m / s^{2}$ forward

D. The angular acceleration of the cylinder

$$
\text { is } 10 \mathrm{rads}^{-2}
$$

Answer: C::D

D Watch Video Solution

8. Illustrated is a uniform cubical block of mass
M and side a Mark the correct statement (s)

A. The moment of inertia about axis A, passing through the centre of mass is

$$
I A=\frac{1}{6} M a^{2}
$$

B. The moment of inertia about axis B,
which bisects one of the cube faces is
$l B=\frac{5}{12} M a^{2}$
C. The moment of inertia about axis C,
along one of the cube edge is

$$
I C=\frac{2}{3} M a^{2}
$$

D. The moment of inertia about axis D,
whch bhisects one of the horizontal
cube face is $\frac{7}{12}$

Answer: A::B::C

D Watch Video Solution

9. The radius of gyration of a body depends upon
A. mass of the body
B. nature of distribution of mass
C. axis of rotation
D. none of these

Answer: B::C

D Watch Video Solution

Linked Comprehension

1. A uniform rod of mass $M=2 \mathrm{~kg}$ and length
L is suspended by two smooth hinges 1 and 2
as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 .

Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed. The rod starts to rotate downward about hinge 1. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The reaction at hinge 1 , before hinge 2 breaks, is
A. $24 N$
B. $12 N$
C. $11 N$
D. 10 N

Answer: C
2. A uniform rod of mass $M=2 k g$ and length
L is suspended by two smooth hinges 1 and 2
as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 .

Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed. The rod starts to rotate downward about hinge 1 . $\left(g=10 m / s^{2}\right)$

The reaction at hinge 1 , just after breaking of hinge 2 , is
A. $20 N$
B. 10 N
C. $5 N$
D. 0

Answer: C

D View Text Solution
3. A uniform rod of mass $M=2 k g$ and length
L is suspended by two smooth hinges 1 and 2
as shown in Fig. A force $F=4 N$ is applied downward at a distance $L / 4$ from hinge 2 .

Due to the application of force F, hinge 2 breaks. At this instant, applied force F is also removed. The rod starts to rotate downward about hinge 1. $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

The acceleration of the end point of the rod of
small mass $d m$ at the end point of the rod, when the rod becomes vertical is
A. $30 m / s^{2}$
B. $20 \mathrm{~m} / \mathrm{s}^{2}$
C. $10 m / s^{2}$
D. 0

Answer: A

D Watch Video Solution

The end B of the $\operatorname{rod} A B$ which makes angle θ
with the floor is being pulled with a constant
velocity v_{v} as shown. The length of the rod is l.

$$
\begin{aligned}
& \text { A. } \frac{3}{5} v_{0} \\
& \text { B. } \frac{4}{5} v_{0}
\end{aligned}
$$

5

C. $\frac{5}{3} v_{0}$
D. $\frac{5}{4} v_{0}$

Answer: B

- Watch Video Solution

The end B of the $\operatorname{rod} A B$ which makes angle θ
with the floor is being pulled with a constant
velocity v_{v} as shown. The length of the rod is l.

> A. $\frac{5 v_{0}}{3 l}$
> B. $\frac{3 v_{0}}{5 l}$
C. $\frac{5 v_{0}}{4 l}$
D. $\frac{4 v_{0}}{5 l}$

Answer: A

D Watch Video Solution

6. End A of a $\operatorname{rod} A B$ is being pulled on the floor with a constant velocity v_{0} as shown.

Taking the length of the rod as l, at an instant when the rod makes an angle 37° with the horizontal, calculate

the velocity of the $C M$ of the rod
A. $\frac{5}{7} v_{0}$ at $\frac{\tan ^{-1} 4}{3}$ below horizontal
B. $\frac{5}{7} v_{0}$ at $\frac{\tan ^{-1} 3}{4}$ below horizontal
C. $\frac{5}{6} v_{0}$ at $\frac{\tan ^{-1} 3}{4}$ below horizontal
D. $\frac{5}{6} v_{0}$ at $\frac{\tan ^{-1} 4}{3}$ below horizontal

Answer: D

D Watch Video Solution

7. An L shaped uniform rod of mass $2 M$ and
length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal.

There is no friction between the hinge and the rod at A.

Find the tension in the string
А. $\frac{M g}{3}$
B. $\frac{M g}{4}$
C. $M g$
D. $\frac{M g}{2}$

Answer: D

D Watch Video Solution

8. An L shaped uniform rod of mass $2 M$ and
length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal.

There is no friction between the hinge and the rod at A.

What
will be the reaction between hinge and rod at point A ?
A. $\sqrt{65} \frac{M g}{4}$
B. 2 Mg
C. $\sqrt{17} \frac{M g}{4}$
D. $\sqrt{17} \frac{M g}{2}$

Answer: D

D Watch Video Solution

9. An L shaped uniform rod of mass $2 M$ and
length $2 L(A B=B C=L)$ is held as shown in Fig. with a string fixed between C and wall so that $A B$ is vertical and $B C$ is horizontal.

There is no friction between the hinge and the rod at A.

If the string is burnt, find the angle between $A B$ and the vertical at equilibrium position.

$$
\begin{aligned}
& \text { A. } \tan ^{-1}\left(\frac{1}{3}\right) \\
& \text { B. } \tan ^{-1}\left(\frac{1}{4}\right) \\
& \text { C. } \tan ^{-1}(3) \\
& \text { D. } \tan ^{-(-1)}\left(\frac{1}{2}\right)
\end{aligned}
$$

Answer: A

D View Text Solution

10. A uniform rod of length L and mass M is
lying on a frictionless horizontal plane and is
pivoted at one of its ends as shown in Fig.
There is no friction at the pivot. An inelastic
ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J
is given to the rod at a distance $2 L / 3$ from O
in a direction perpendicular to the rod.

Assume that the ball remains in contact with
the rod after the collision and impulse J acts
for a small time interval $\triangle t$. Now answer the
following questions:

Find the resulting instantaneous angular velocity of the rod after the impulse.
A. $\frac{3 J}{(m+3 M) L}$
$6 J$
B. $\frac{}{(m+3 M) L}$
C. $\frac{3 J}{(3 m+M) L}$

$$
\text { D. } \frac{6 J}{(3 m+M) L}
$$

Answer: B

D Watch Video Solution

11. A uniform rod of length L and mass M is
lying on a frictionless horizontal plane and is
pivoted at one of its ends as shown in Fig.
There is no friction at the pivot. An inelastic ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J
is given to the rod at a distance $2 L / 3$ from O
in a direction perpendicular to the rod.

Assume that the ball remains in contact with
the rod after the collision and impulse J acts
for a small time interval $\triangle t$. Now answer the
following questions:

Find the impulse acted on the ball during the time $\triangle t$

$$
\text { A. } \frac{2 M J}{(3 m+M)}
$$

$$
\begin{aligned}
& \text { B. } \frac{2 M J}{(m+3 M)} \\
& \text { C. } \frac{2 m J}{(3 m+M)} \\
& \text { D. } \frac{2 m J}{(m+3 M)}
\end{aligned}
$$

Answer: D

- Watch Video Solution

12. A uniform rod of length L and mass M is
lying on a frictionless horizontal plane and is pivoted at one of its ends as shown in Fig.

There is no friction at the pivot. An inelastic
ball of mass m is fixed with the rod at a distance $L / 3$ from O. A horizontal impulse J is given to the rod at a distance $2 L / 3$ from O in a direction perpendicular to the rod.

Assume that the ball remains in contact with
the rod after the collision and impulse J acts
for a small time interval $\triangle t$. Now answer the following questions:

Find the magnitude of the impulse applied by
the during the time interval $\triangle t$
A. $\frac{m J}{(m+3 M)}$
B. $\frac{m J}{(3 m+M)}$
C. $\frac{M J}{(m+3 M)}$
D. $\frac{M J}{(3 m+M)}$

Answer: A

D Watch Video Solution

13. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm .

The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible.

The cyclist is peddling at a constant rate of two revolutions per second. Assume that the
force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction
within cycle parts and the rolling friction.

The tension in the upper portion of the chain

 is equal toA. 100 N

B. 120 N
C. $160 N$
D. 240 N

Answer: C

- Watch Video Solution

14. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm .

The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible.

The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting $100 N$ force. Neglect friction within cycle parts and the rolling friction.

Net torque on the rear wheel of the bicycle is equal to
A. zero
B. 16 Nm
C. $6.4 N-m$

$$
\text { D. } 4.8 N-m
$$

Answer: A

D Watch Video Solution

15. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm .

The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist
applies 100 N for, that is always perpendicular
to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible.

The cyclist is peddling at a constant rate of two revolutions per second. Assume that the
force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction within cycle parts and the rolling friction.

The power delivered by the cyclist is equal to
A. $280 W$
B. 100 W
C. $64 \pi W$
D. 32 W

Answer: C

D Watch Video Solution

16. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm .

The bicycle wheels are 70 cm in diameter and
the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible.

The cyclist is peddling at a constant rate of two revolutions per second. Assume that the force applied by other foot is zero when one foot is exerting $100 N$ force. Neglect friction within cycle parts and the rolling friction.

The speed of the bicycle is
A. $6.4 \pi m s^{-1}$
B. $3.5 \pi m s^{-1}$
C. $2.8 \pi m s^{-1}$
D. $6.5 \pi m s^{-1}$

Answer: B

- Watch Video Solution

17. A bicycle has pedal rods of length 16 cm connected to sprocketed disc of radius 10 cm .

The bicycle wheels are 70 cm in diameter and the chain runs over a gear of radius 4 cm . The speed of the cycle is constant and the cyclist applies 100 N for, that is always perpendicular to the pedal rod, as shown in figure. Assume tension in the lower part of chain is negligible.

The cyclist is peddling at a constant rate of two revolutions per second. Assume that the
force applied by other foot is zero when one foot is exerting 100 N force. Neglect friction
within cycle parts and the rolling friction.

The net force of the friction on the rear wheel due to the road is:
A. 100 N
B. $62 N$
C. 32.6 N
D. 18.3 N

Answer: D

- Watch Video Solution

18. A cord is wound round the circumference of a solid cylinder radius R and mass M. The axis of the cylinder is horizontal. A weight $m g$ is attached to the end of the cord and falls from rest. After falling through a distance h.

A. $\frac{2 m g}{M+2 m}$
B. $\sqrt{\frac{2 g h}{R^{2}}}$
C. $\left(\frac{\sqrt{4 m g h}}{(M+2 m) R^{2}}\right)$
D. $\sqrt{\frac{4 m g h}{M+2 m}}$

Answer: C

D Watch Video Solution

19. A cord is wound round the circumference of a solid cylinder radius R and mass M. The
axis of the cylinder is horizontal. A weight $m g$
is attached to the end of the cord and falls
from rest. After falling through a distance h.

If the mass starts from rest and falls a distance h, then its speed at that instant is:
A. proportional to R
B. proportional to $\frac{1}{R}$
C. propotional to $\frac{1}{R^{2}}$

D. independent of R

Answer: D

D Watch Video Solution

20. A diving board 3.00 m long is supported at
a point 1.00 m from the end and a diver weighing 500 N stands at the free end. The diving board is of uniform cross section and weighs $280 N$. Find.

The force at the support point

A. $780 N$
B. 220 N
C. $1920 N$
D. $1140 N$

Answer: C
21. A diving board 3.00 m long is supported at a point 1.00 m from the end and a diver weighing 500 N stands at the free end. The diving board is of uniform cross section and weighs $280 N$. Find.

The force at the end that is held down.
A. $780 N$
B. 220 N
C. $1920 N$
D. 1140 N

Answer: D

D Watch Video Solution

22. The horizontal beam in figure weighs 150 N
, and its centre of gravity is at its centre. Find

The tension in the cable
A. $75 N$
B. 500 N
C. 300 N
D. 625 N

Answer: B

- Watch Video Solution

23. The horizontal beam in figure weighs 150 N
, and its centre of gravity is at its centre. Find

The horizontal and vertical components of the force exerted on the beam at the wall,
A. Horizontal component is 500 N towards
left and vertical component $75 N$
downwards
B. Horizontal component is 500 N towards
right and vertical component $75 N$
upwards
C. Horizontal component is $625 N$ towards
left and vertical component $150 N$
upwards

D. Horizontal component is $625 N$ towards

 right and vertical component $150 N$ downwards
Answer: A

D Watch Video Solution

24. A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end $3.0 m$ to from the wall. The ladder weighs
$160 N$. The coefficient of static friction between the foot of the ladder and the ground is 0.40 . A man weighing 740 N climbs slowly up the ladder.

What is the maximum frictional force that the ground can exert on the ladder at its lower end?
A. $360 N$
B. $171 N$
C. $900 N$
D. 740 N

Answer: B

D Watch Video Solution

25. A uniform ladder 5.0 m long rests against a
frictionless, vertical wall with its lower end
3.0 m to from the wall. The ladder weighs
$160 N$. The coefficient of static friction
between the foot of the ladder and the ground is 0.40 . A man weighing 740 N climbs slowly up the ladder.

What is the actual frictional force when the

man has climbed 1.0 m along the ladder?

A. $360 N$
B. $171 N$
C. 900 N
D. $740 N$

Answer: C

D Watch Video Solution
26. A uniform ladder 5.0 m long rests against a frictionless, vertical wall with its lower end
$3.0 m$ to from the wall. The ladder weighs
$160 N$. The coefficient of static friction
between the foot of the ladder and the ground is 0.40 . A man weighing $740 N$ climbs slowly up the ladder.

How far along the ladder can the man climb before the ladder starts to slip?
A. $3 m$
B. $5 m$
C. $2.7 m$

D. $1.25 m$

Answer: A

D Watch Video Solution

27. A disc having radius R is rolling without slipping on a horizontal $(x-z)$ plane. Centre of the disc has a velocity v and acceleration a as shown.

Speed of point P having coordinates (x, y) is
A. $\frac{v \sqrt{x^{2}+y^{2}}}{R}$
B. $\frac{v \sqrt{x^{2}+(y+R)^{2}}}{R}$
C. $\frac{v \sqrt{v^{2}+(y-R)^{2}}}{R}$
D. none of these

Answer: B

D Watch Video Solution

28. A disc having radius R is rolling without
slipping on a horizontal $(x-z)$ plane. Centre
of the disc has a velocity v and acceleration a as

If $v=\sqrt{2 a R}$ the angle θ between acceleration of the top most point and the horizontal is
A. 0
B. 45°
C. $\tan ^{-1} 2$
D. $\tan ^{-1}\left(\frac{1}{2}\right)$

- Watch Video Solution

Integer

1. A solid cylinder with $r=0.1 m$ and mass
$M=2 k g$ is placed such that it is in contact
with the vertical and a horizontal surface as
shown in Fig. The coefficient of friction is
$\mu=(1 / 3)$ for both the surfaces. Find the
distance (in $C M$) from the centre of the
cylinder at .which a force $F=40 N$ should be applied vertically so that the cylinder just
starts rotating in anticlockwise direction.

- Watch Video Solution

2. A uniform rod of length $1 m$ and mass $2 k g$ is
suspended. Calculate tension T (in N) in the
string at the instant when the right string snaps $\left(g=10 m / s^{2}\right)$.

D Watch Video Solution

3. A uniform rod $A B$ of mass $2 k g$ is hinged at one end A. The rod is kept in the horizontal
position by a massless string tied to point B.
Find the reaction of the hinge (in N) on end A of the rod at the instant when string is cut.
$\left(g=10 m / s^{2}\right)$

D Watch Video Solution

4. A square plate $A B C D$ of mass m and side l
is suspended with the help of two ideal strings
P and Q as shown. Determine the acceleration
(in m / s^{2}) of corner A of the square just at the moment the string Q is cut.
$\left(g=10 m / s^{2}\right)$.

D Watch Video Solution
5. Four solid spheres each of diameter sqart5 cm and mass 0.5 kg are placed with their
centers at the corners of a square of side 4 cm .
The moment is $N \times 10^{-4} k g-m^{2}$, then N is .

D Watch Video Solution

6. A uniform cylinder rests on a cart as shown.

The coefficient of static friction between the
cylinder and the cart is 0.5 If the cylinder is

4 cm in diameter and 10 cm in height, which of
the following is the minimum acceleration of
the cart needed to cause the cylinder to tip
over?

D Watch Video Solution

7. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure.

If $F=4 N, m=.1 k g, R=1 m$ and $r=\frac{1}{2} m$
then, find the:

acceleration of the $C M$ (in $m s^{2}$)

- Watch Video Solution

8. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure.

If $F=4 N, m=.1 \mathrm{~kg}, R=1 m$ and $r=\frac{1}{2} m$
then, find the:

angular acceleration of the disc. $\left(\mathrm{rads}^{-1}\right)$
9. A uniform disc of mass m, radius R is placed on a smooth horizontal surface. If we apply a horizontal force F at P as shown in the figure.
If $F=4 N, m=.1 \mathrm{~kg}, R=1 m$ and $r=\frac{1}{2} m$
then, find the:

A rod of length $l=1 m$ leaning against a vertical wall is pulled at its lowest point A
with a constant velocity $v=4 m s^{-1}$. In consequence, the rod rotates win the vertical plane. When the rod makes an angle $\theta=4 m s^{-1}$ with vertical and find the angular velocity of the rod (in rads^{-1}).

10. A light rigid rod of length $4 m$ is connected rigidly with two identical particles each of mass $m=2 k g$. the free end of the rod is smoothly pivoted at O. The rod is released from rest from its horizontal position at $t=0$.

Find the

angular acceleration of the rod at $t=0$ (in $\left.r a d s^{-2}\right)$.
11. A light rigid rod of length $4 m$ is connected rigidly with two identical particles each of mass $m=2 \mathrm{~kg}$. the free end of the rod is smoothly pivoted at O. The rod is released from rest from its horizontal position at $t=0$.

Find the

reaction offered by the pivot at $t=0$ (in N).

Watch Video Solution

