©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS
 (HINGLISH)

THERMODYNAMICS

1. One mole of an ideal gas is warmed slowly
so that it goes form the $P V$ state $\left(P_{f} V_{i}\right)$ to
$\left(3 P_{i}, 3 V_{i}\right)$ in such a way that the pressure of the gas is directly proportional to the volume.
(a) How much work is done on the as in the process?
(b) How is the temperature of the gas related to its volume during this process?

- Watch Video Solution

2. We consider a thermodynamic system. If
ΔU represents the increase in its internal
energy and W the work done by the system, which of the following statements is true?
A. $\Delta U=-W$ in an adiabatic process
B. $\Delta U=W$ in an isothermal process
C. $\Delta U=-W$ in an isothermal process
D. $\Delta U=W$ in an adiabatic process

Answer:

3. Two moles a monatomic gas in state A
having critical pressure P_{0} and temperature $3 T_{0}$ is taken to a state B having pressure $3 P_{0}$ and temperature $T_{0} / 3$ by the process of equation $P^{2} T=$ constant. Then state B is taken to state C keeping the volume constant and it comes back to initial state A keeping temperature constant.
a. Plot a P and T graph. (P on the y-axis and T on the x-axis).

Find the net work done and heat supplied to the gas during the complete cycle.

- Watch Video Solution

2

1. An ideal gas is taken through a quasi-static process described by $P=\alpha V^{2}$, with $\alpha=5.00 \mathrm{~atm} / \mathrm{m}^{6}$. The gas is expanded to
twice its original volume of $1.00 \mathrm{~m}^{3}$. How much
work is done by the gas in expanding gas in
this process?
2. When heat in given to a gas in an isobaric process, then
A. the work is done by the gas
B. internal energy of the gas increases
C. both (a) and (b)
D. none from (a) and (b)

Answer:

3. For one complete cycle of a thermodynamic process gas as shown in the P-V diagram, which of following correct?

A. $\Delta E_{\text {int }}=0, Q<0$
B. $\Delta E_{\text {int }}=0, Q>0$
C. $\Delta E_{\text {int }}>0, Q<0$

$$
\text { D. } \Delta E_{\mathrm{int}}<0, Q>0
$$

Answer: A

D Watch Video Solution

3

1. The cyclic process for 1 mole of an ideal gas
is shown in the V-T diagram. The work done in
$A B, B C$ and $C A$ respectively is

A. $O, \mathrm{RT}_{2} \ln \left(\frac{V_{1}}{V_{2}}\right), R\left(T_{1}-T_{2}\right)$
B. $R\left(T_{1}-T_{2}\right), 0, \mathrm{RT}_{1} \ln \frac{V_{1}}{V_{2}}$
C. $0, \mathrm{RT}_{2} \ln \left(\frac{V_{2}}{V_{1}}\right), R\left(T_{1}-T_{2}\right)$
D. $0, \mathrm{RT}_{2} \ln \left(\frac{V_{2}}{V_{1}}\right), R\left(T_{2}-T_{1}\right)$

Answer: D

D Watch Video Solution

2. Which of the following is correct in terms of increasing work done for the same initial and final state?
A. Adiabatic < Isothermal < Isobaric
B. Isobaric $<$ Adiabatic $<$ Isothermal
C. Adiabatic $<$ Isobaric $<$ Isothermal
D. None of these

Answer: d

- Watch Video Solution

3.

A sample of an ideal gas in taken through the
cyclic process abca in the given figure. It absorbs 50 J of heat during the parth ab , no
heat during bc and rejects 70j of heat during
$\mathrm{ca}, 40 \mathrm{~J}$ of work is done on the gas during the
part bc.
(a) Find the internal energy of the gas at b adn
c if it is 1500 J at a. Itbr. (b) Calculate the work done by the gas during the part ca.
A. 1590J
B. 1620J
C. 1540J
D. 1570J

1. A thermodynamic system undergoes cyclic process $A B C D A$ as shown in figure. The work
done by the system is

A. $P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $\frac{P_{0} V_{0}}{2}$
D. Zero

Answer: D

D Watch Video Solution

2. When an ideal diatomic gas is heated at
constant pressure, the fraction of the heat
energy supplied, which increases the internal energy of the gas, is
A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{3}{7}$

Answer: d

D Watch Video Solution

3. A thermodynamic process of one mole ideal monoatomic gas is shown in figure. The efficiency of cyclic process $A B C A$ will be
A. 25%
B. 12.5%
C. 50%

$$
\text { D. } \frac{100}{13} \%
$$

Answer: D

D Watch Video Solution

5

1. Consider a process shown in the figure.

During this process the work done by the
system

A. Continuously increases
B. Continuously decreases
C. First increases, then decreases
D. First decreases, then increases

Answer: A

D Watch Video Solution

2. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it is
A. $\frac{2}{5} R$
B. $\frac{5}{2} \mathrm{R}$
C. $\frac{10}{3} \mathrm{R}$
D. $\frac{6}{7} R$

Answer: a

D Watch Video Solution

3. An ideal gas is taken from state 1 to state 2
through optional path A, B, C and D as
shown in the $P V$ diagram. Let Q, W and U represent the heat supplied, work done and change in internal energy of the gas respectively.

Then,

A. $Q_{A}-Q_{D}=W_{A}-W_{D}$
B. $Q_{B}-W_{B}>Q_{C}-W_{C}$
C. $W_{A}<W_{B}<W_{C}<W_{D}$
D. $Q_{A}<Q_{B}<Q_{C}<Q_{D}$

1. Six moles of an ideal gas performs a cycle
shown in figure. If the temperature are
$T_{D}=600 K, T_{B}=800 K, T_{C}=2200 K$ and
$T_{D}=1200 K$, the work done per cycle is

A. 20 kJ
B. 30 kJ
C. 40 kJ
D. 60 kJ

Answer: C

D Watch Video Solution

2. An insulator container contains 4 moles of
an ideal diatomic gas at temperature T . Heat Q
is supplied to this gas, due to which 2 moles of
the gas are dissociated into atoms but temperature of the gas remains constant.

Then

$$
\text { A. } Q=2 R T
$$

B. $\mathrm{Q}=\mathrm{RT}$

C. $Q=3 R T$
D. $Q=4 R T$

Answer: C

D Watch Video Solution

3. Following figure shows on adiabatic
cylindrical container of volume V_{0} divided by an adiabatic smooth piston (area of crosssection = A) in two equal parts. An ideal gas
$\left(C_{p} / C_{y}=\lambda\right)$ is at pressure P_{1} and temperature T_{1} in left part and gas at pressure P_{2} and temperature T_{2} in right part. The piston is slowly displaced and released at a position where it can stay in equilibrium. The final pressure of the two parts will be (Suppose $x=$ displacement of the piston)

A. P_{2}
B. P_{1}
$P_{1}\left(\frac{V_{0}}{2}\right)^{\gamma}$
C.

$$
\overline{\left(\frac{V_{0}}{2}+A x\right)^{\gamma}}
$$

$P_{2}\left(\frac{V_{0}}{2}\right)^{\gamma}$
D.

$$
\overline{\left(\frac{V_{0}}{2}+A x\right)^{\gamma}}
$$

Answer: C

D Watch Video Solution

1. $P-V$ diagram of an ideal gas is as shown
in figure. Work done by the gas in process
$A B C D$ is

A. $4 P_{0} V_{0}$
B. $2 P_{0} V_{0}$

C. $3 P_{0} V_{0}$

D. $P_{0} V_{0}$

Answer: C

- Watch Video Solution

2. Which one of the following gases possesses
the largest internal energy
A. 2 moles of helium occupying $1 \mathrm{~m}^{3}$ at 300
B. 56 kg of nitrogen at $10^{7} \mathrm{Nm}^{-2}$ and 300

K
C. 8 grams of oxygen at 8 atm and 300 K
D. 6×10^{26} molecules of argon occupying

$40 m^{3}$ at 900 K

Answer: c

D Watch Video Solution

3. In the following P-V diagram two adiabatic

cut two isothermals at temperature
T_{1} and T_{2} (fig). The value of $\frac{V_{a}}{V_{d}}$ will be

A. $\frac{V_{b}}{V_{c}}$
B. $\frac{V_{c}}{V_{b}}$
c. $\frac{V_{d}}{V_{a}}$
D. $V_{b} V_{c}$

Answer: A

D Watch Video Solution

1. A gas expands with temperature according to the relation $V=k T^{2 / 3}$. What is the work
done when the temperature changes by $30^{\circ} \mathrm{C}$

?

A. $10 R$
B. $20 R$
C. $30 R$
D. $40 R$

Answer: B
(Watch Video Solution
2. In the figure given two processes A and B
are shown by which a thermodynamic system
goes from initial to final state F . if ΔQ_{A} and
ΔQ_{B} are respectively the heats supplied to the systems then

A. $\Delta Q_{A}=\Delta Q_{B}$

B. $\Delta Q_{A} \geq \Delta Q_{B}$

C. $\Delta Q_{A}<\Delta Q_{B}$
D. $\Delta Q_{A}>\Delta_{B}$

Answer: b

D Watch Video Solution

3. An ideal gas undergoes a cyclic process abcda which is shown by pressure-density
curve,

A. Work done by the gas in the process 'bc'
is zero
B. Work done by the gas in the process 'cd'
is negative
C. Internal energy of the gas at point 'a' is greater than at state ' c '
D. Net work done by the gas in the cycle is
neagative.

Answer: A,B,D

- Watch Video Solution

1. One mole of an ideal gas is kept enclosed under a light piston (area $=10^{-2} \mathrm{~m}^{2}$) connected by a compressed spring (spring constant $100 \mathrm{~N} / \mathrm{m})$. The volume of gas is
$0.83 \mathrm{~m}^{3}$ and its temperature is 100 K . The gas
is heated so that it compresses the spring further by $0.1 m$. The work done by the gas in
the process is $N \times 10^{-1} J$. Find N. (Take
$R=8.3 J / K-$ mole) and suppose there is
no atmosphere).

A. $3 J$
B. $6 J$
C. 9 J

D. 1.5 J

Answer: D

D Watch Video Solution

2. When a system is taken from state f along
path $i a f, Q=50 J$ and $W=20 J$. Along path
$i b f, Q=35 J$. If $W=-13 J$ for the curved
return path $f I, Q$ for this path is

A. 33 J
B. 23 J
C. $-7 J$
D. $-43 J$

Answer: d
3. An ideal gas can be expanded form an initial state to a certain volume through two different processes $P V^{2}=$ constant and
$P=K V^{2}$ where K is a positive constant.
Then
A. Final temperature in (i) will be greater
B. Final temperature in (ii) will be greater then in (i)
C. Total heat given to the gas in (i) case is
greater than in (ii)
D. Total heat is given to the gas in (ii) case
is greater than in (i)

Answer: B,D
(Watch Video Solution

1. n moles of a gas fille in a container temperature T is in thermodynamic equilibrium initially. If the gas is compressed slowly and isothermally so half its initial
volume volume the work done by the atmosphere on the piston is :
A. $\frac{n R T}{2}$
B. $-\frac{n R T}{2}$
C. $n R T\left(\ln 2-\frac{1}{2}\right)$
D. $-n R T \ln 2$

Answer: A

- Watch Video Solution

2. The $P-V$ diagram of a system undergoing
thermodynamic transformation is shown in
figure. The work done by the system in going
from $A \rightarrow B \rightarrow C i s 30 J$ and $40 J$ heat is given to the system. The change in internal energy between A and C is

A. 10 J
B. 70 J
C. 84 J
D. 134 J

Answer: a

D Watch Video Solution

3. A monatomic idea gas of 2 mol is taken
through a cyclic process starting from A as
shown in figure. The volume ratio are $V_{B} / V_{A}=2$ and $V_{D} / V_{A}=4$. If the temperature T_{A} at A is $27^{\circ} C$, and gas constant is R. Calculate.

The temperature of the gas at point B
A. 600 K
B. 450 K

C. 400 K

D. 900 K

Answer: A

D Watch Video Solution

1. Find the work done by the gas in the process
$A B C$.

A. $\frac{3}{2} P_{0} V_{0}$
B. $\frac{5}{2} P_{0} V_{0}$
C. $\frac{7}{2} P_{0} V_{0}$
D. $4 P_{0} V_{0}$

Answer: C

D Watch Video Solution

2. The $P-V$ diagram of 2 gm of helium gas
for a certain process $A \rightarrow B$ is shown in the
figure. What is the heat given to the gas
during the process $A \rightarrow B$?

A. $4 P_{0} V_{0}$
B. $6 P_{0} V_{0}$
C. $4.5 P_{0} V_{0}$
D. $2 P_{0} V_{0}$

Answer: c

- Watch Video Solution

3.

A monoatomic ideal gas of two moles is taken
through a cyclic process starting from A as
shown
$\frac{V_{B}}{V_{A}}=2$ and $\frac{V_{D}}{V_{A}}=4$
Temperature T_{A} at A is $27^{\circ} C$.
Q. Work done during complete cyclic process
A. 1200 R
B. 1500 R
C. 1400 R
D. 1000 R

Answer: B,D

1. In an isothermal reversible expansion, if the volume of 96 gm of oxygen at $27^{\circ} \mathrm{C}$ is
increased from 70 litres to 140 litres, then the work done by the gas will be

- Watch Video Solution

2. Volume versus temperature graph of two moles of helium gas is as shown in figure. The
ratio of heat absorbed and the work done by
the gas in process $1-2$ is

A. 3
B. $\frac{5}{2}$
C. $\frac{5}{3}$
D. $\frac{7}{2}$

Answer: B

D Watch Video Solution

3. A monotomic ideal gas of two metal is taken
through a cyclic process straining from A as
shown

$$
V_{B} / V_{A}=2 \text { and } V_{D} / V_{A}=4
$$

Temperature $T_{A} i s 27^{\circ} C$
The work done during process $B \rightarrow C$
(approx) is

A. 1000 R
B. 800 R
C. 832 R
D. 945 R

Answer: C

- Watch Video Solution

13

1. 540 calories of heat convert 1 cubic centimeter of water at $100^{\circ} \mathrm{C}$ into 1671 cubic centimeter of steam at $100^{\circ} \mathrm{C}$ at a pressure of one atmosphere. Then the work done against the atmospheric pressure is nearly
2. Heat is supplied to a diatomic gas at constant pressure.

The ratio of $\Delta Q: \Delta U: \Delta W$ is
A. $5: 3: 2$
B. $5: 2: 3$
C. 7:5:2
D. $7: 2: 5$

Answer: C
3. A monotomic ideal gas of two metal is taken
through a cyclic process straining from A as
shown

$$
V_{B} / V_{A}=2 \text { and } V_{D} / V_{A}=4
$$

Temperature $T_{A} i s 27^{\circ} C$

The work done during the process $C \rightarrow D$ is

A. 900R (absorbed)
B. 900 R (released)
C. 1200R(absorbed)
D. 1200 R (released)

Answer: B,D

D Watch Video Solution

14

1. A system changes from the state $\left(P_{1}, V_{1}\right)$ to
$\left(P_{2} V_{2}\right)$ as shwon in the diagram. The
workdone by the system is

D Watch Video Solution

2. N moles of an ideal diatomic gas are in a cylinder at temperature T. suppose on supplying heat to the gas, its temperature
remain constant but n moles get dissociated into atoms. Heat supplied to the gas is
A. zero
B. $\frac{1}{2} n R T$
C. $\frac{3}{2} n R T$
D. $\frac{3}{2}(N-n) R T$

Answer: B

D Watch Video Solution
3. A monotomic ideal gas of two metal is taken
through a cyclic process straining from A as
shown

$$
V_{B} / V_{A}=2 \text { and } V_{D} / V_{A}=4
$$

Temperature $T_{A} i s 27^{\circ} C$

The work done during the process $D \rightarrow A$ is

A. 900R (absorbed)
B. 900 R (released)
C. 1200R(absorbed)
D. 1200R(released)

Answer: D

- Watch Video Solution

1. A sample of an ideal monoatomic gas is taken round the cycle ABCA as shown in the figure the work done during the cycle is
 $\mathrm{V} \longrightarrow$

D Watch Video Solution

2. In thermodynamic process, pressure of a fixed mass of a gas is changes in such a manner that the gas molecules gives out 20 J of heat and 10 J of work is done in the gas. If the initial internal energy of the gas was 40 J , then the final internal energy will be

D Watch Video Solution

3. A monotomic ideal gas of two metal is taken
through a cyclic process straining from A as shown

$$
V_{B} / V_{A}=2 \text { and } V_{D} / V_{A}=4
$$

Temperature $T_{A} i s 27^{\circ} C$

The work done during the entire process is

A. 400 R
B. 600R
C. 450 R

D. 800 R

Answer: B

- Watch Video Solution

16

1. A perfect gas goes from a state A to another
state B by absorbing $8 \times 105 \mathrm{~J}$ of heat and doing $6.5 \times 105 \mathrm{~J}$ of external work. It is now transferred between the same two states in
another process in which it absorbs 105 J of heat. In the second process

D Watch Video Solution

1. The specific heat of a gas in an isothermal process is
2. A thermally insulated container is divided into two parts by a screen. In one part the pressure and temperature are P and T for an ideal gas filled. In the second part it is vacuum.

If now a small hole is created in the screen, then the temperature of the gas will

- Watch Video Solution

1. When an ideal gas in a cylinder was compreswsed isothermally by a piston, the work done on the gas found to be 1.5×10^{4} cal. During this process about

D Watch Video Solution

20

1. In adiabatic expansion ΔU is

(positive/negative/zero)

Watch Video Solution

21

1. A gas at NTP is suddenly compressed to one-
fourth of its original volume. If. λ is supposed
to be $\frac{3}{2}$, then the final perssure is

- Watch Video Solution

1. An ideal gas at $27^{\circ} C$ is compressed adiabatically to $8 / 27$ of its original volume. If $\gamma=5 / 3$, then the rise in temperature is

- Watch Video Solution

23

1. Two identical samples of gases are allowed
to expand to the same final volume
isothermally (ii) adiabatically. Work done is

24

1. During the adiabatic expansion of 2 moles of
a gas, the internal energy of the gas is found to decrease by 2 joules, the work done during the process on the gas will be equal to

- Watch Video Solution

