©゙’ doubtnut India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

VECTORS

Il|ustration

1. A car is moving round a circular track with a
constant speed $v o f 20 \mathrm{~ms}^{-1}$ (As shown in figure).At different times, the car is at A, B and C,respectively .

Find the velocity change (a) from A to C, and
from A to B.

- Watch Video Solution

2. The greatest and least resulant of two forces acting at a point is $10 N$ and $6 N$,respectively. If
each force is increased by $3 N$, find the resulant of new forces when acting at a point at an angle of 90° with each other.

- Watch Video Solution

3. Two equal vector have a resultant equal to either of them, then the angle between them will be:

- Watch Video Solution

4. Two forces whose magnitudes are in the ratio
$3: 5$ give a resultant of 28 N . If the angle of their
inclination is 60°, find the magnitude of each force.

- Watch Video Solution

5. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to the vector \vec{A} and its magnitude is equal to half of the magnitude of the vector \vec{B}.

Find out the angles between \vec{A} and \vec{B}.

A. 120
B. 90
C. 60
D. 150

Answer: D

- Watch Video Solution

6. Two forces of unequal magnitude simultaneously act on a particle making an angle $\theta\left(=120^{\circ}\right)$ with each other.If one of them is reversed ,the
accelaration of the particle is become $\sqrt{3}$ times.
Calculate the ratio of the magnitude of the forces.

- Watch Video Solution

7. The resultant of \vec{P} and \vec{Q} is \vec{R}. If \vec{Q} is doubled, \vec{R} is doubled, when \vec{Q} is reversed, \vec{R} is again doubled, find $P: Q: R$,

- Watch Video Solution

8. A particle slides with a speed of $3 m s^{-1}$ at P.

When it reaches Q,it acquires a speed of $4 m s^{-1}$
after describing an angle of 60° at O as shown in
figure .Find the changes in the velocity of the particle between P and Q. Assume that the path followed by the particle is circular from P to Q

A. $\sqrt{10 m} s^{-1}$
B. $\sqrt{9 m} s^{-1}$
C. $\sqrt{13 m} s^{-1}$
D. $\sqrt{15 m} s^{-1}$

Answer: C

- Watch Video Solution

9. A force if $15 N$ acts on a box as shown in
(figure).What are the horizontal component and
vertical components of force?

A. $F_{x}=0 N, F_{y}=15 N$
B. $F_{x}=12.99 N, F_{y}=7.5 N$
C. $F_{x}=15 N, F_{y}=12.99 N$
D. $F_{x}=7.5 N, F_{y}=12.99 N$

Answer: D
10. A person in a wheelchair is moving up a ramp at constant speed.Their total weight is $900 N$. The ramp makes an angle of 37° with the horizontal.

Calculate the component of its weight parallel and perpendicular to ramp.
A. $W_{| |}=54 N, W_{\perp}=72 N$
B. $W_{| |}=720 N, W_{\perp}=540 N$

$$
\text { C. } W_{\| \mid}=540 N, W_{\perp}=720 N
$$

D. $W_{| |}=0 N, W_{\perp}=720 N$

Answer: C

- Watch Video Solution

11. A particle is moving with velocity $v=100 \mathrm{~ms}^{-1}$.

If one of the rectangular components of a velocity
is $50 \mathrm{~ms}^{-1}$. Find the other component of velocity
and its angle with the given component of velocity.

12. An aeroplane takes off at an angle of 60° to the

 horizontal. If the velocity of the plane is $200 \mathrm{kmh}^{-1}$,calculate its horizontal and vertical component of its velocity (in $k m h^{-1}$).A. $v_{x}=50, v_{y}=10 \sqrt{3}$
B. $v_{x}=50 \sqrt{3}, v_{y}=100 \sqrt{3}$
C. $v_{x}=100 \sqrt{3}, v_{y}=100 \sqrt{3}$
D. $v_{x}=100, v_{y}=100 \sqrt{3}$

Answer: D

13. A man rows a boat with a speed of $18 \mathrm{Kmh}^{-1}$ in the north-west direction (figure). The shoreline makes an angle of 15° south of west. Obtain the components of the velocity of the boat along the shoreline and perpendicular to the shoreline.

14. Find the unit vector of $\vec{A}=2 \hat{i}+3 \hat{j}+2 \hat{k}$.

$$
\begin{aligned}
& \text { A. } \frac{5 \hat{i}+2 \hat{j}+\hat{k}}{\sqrt{30}} \\
& \text { B. } \frac{2 \hat{i}-3 \hat{j}-2 \hat{k}}{\sqrt{15}} \\
& \text { C. } \frac{2 \hat{i}+3 \hat{j}+2 \hat{k}}{\sqrt{17}} \\
& \text { D. } \frac{2 \hat{i}-3 \hat{j}-2 \hat{k}}{\sqrt{17}}
\end{aligned}
$$

Answer: C
15. Find the unit vector of $(\vec{A}+\vec{B})$ where $\vec{A}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{B}=3 \hat{i}-2 \hat{j}-2 \hat{k}$.

- Watch Video Solution

16. Given $\vec{A}=0.3 \hat{i}+0.4 \hat{j}+c \hat{k}$ calculate the value of c if A is a unit vector.
A. 0.866
B. 0.166
C. 0.18
D. 0.0866

Answer: A

- Watch Video Solution

17. Determine that vector which when added to the resultant of $\vec{A}=3 \hat{i}-5 \hat{j}+7 \hat{k} \quad$ and
$\vec{B}=2 \hat{i}+4 \hat{j}-3 \hat{k}$ gives unit vector along $y-$ direction.

- Watch Video Solution

18. A car is moving in direction $\vec{r}=-4 \hat{i}+3 \hat{j}$
with a speed of $10 \mathrm{~ms}^{-1}$. Write the velocity vector
of car in unit vector notation.

- Watch Video Solution

19. A car is moving with a speed of $10 \mathrm{~ms}^{-1}$, If the east direction taken as x-axis and the north direction as y-axis. Write the velocity vector of car in unit vector notation.ff it is moving (a) in the direction of $\mathrm{N}-\mathrm{E},(\mathrm{b})$ in the direction of $N-W$,(C) in the direction of $S-W$, and (d) in the direction of $S-E$.
20. An inclined plane is inclined at θ with horizontal as shown in (figure).Write a unit vector in the direction parallel (\widehat{a}) and perpendicular (\hat{b}) to inclined plane,in standard xy coordinate system.

- Watch Video Solution

21. Given $\vec{A}=5 \hat{i}+2 \hat{j}+4 \hat{k}$. Find (a) $|\vec{A}|$
A. $\sqrt{55}$
B. $\sqrt{145}$
C. $\sqrt{45}$
D. $\sqrt{345}$

Answer: C

- Watch Video Solution

22. A bird moves with velocity $20 \mathrm{~ms}^{-1}$ in a direction making an angle of 60° with vertical upward .Represent the velocity vector in a rectangular form.
23. A particle is initially at point $A(2,4,6) m$ moves finally to the point $B(3,2,-3) m$. Write the initial position vector,final position,and displacement vector of the particle.

- Watch Video Solution

24. A bird flies due east through a distance of 100 m
, then heading due north by a distance of 50 m , it
flies vertically up through a distance of 20 m . Find
the position of the bird relative to its initial
position.

- Watch Video Solution

25. An insect crawls from A to B where B is the centre of the rectangular slant face. Find the (a) initial and final position vector of the insect and (b)
displacement vector of the insect.

- Watch Video Solution

26. Given that $\vec{A}+\vec{B}+\vec{C}=\overrightarrow{0}$. Out of three vectors,two are equal in magnitude and the magnitude of the third vectors is $\sqrt{2}$ times that of either of the two having equal magnitude. Find the angles between the vectors.
27. A bob of weight $3 N$ is in equilibrium under the action of two string 1 and 2 (figure). Find the tension forces in the string.

28. Find the dot product of two vectors $\vec{A}=3 \hat{i}+2 \hat{j}-4 \hat{k}$ and $\vec{B}=2 \hat{i}-3 \hat{j}-6 \hat{k}$.
A. 12
B. 30
C. 24
D. 56

Answer: C

- Watch Video Solution

29. Find the value of m so that the vector $3 \hat{i}-2 \hat{j}+\hat{k}$ may be perpendicular to the vector $2 \hat{i}+6 \hat{j}+m \hat{k}$.

- Watch Video Solution

30. What is the angle between the following pair of vectors?

$$
\vec{A}=\hat{i}+\hat{j}+\hat{k} \text { and } \vec{B}=-2 \hat{i}-2 \hat{j}-2 \hat{k}
$$

31. If the sum of two unit vectors is a unit vector, then find the magnitude of their differences.

- Watch Video Solution

32. Find the value of m so that the vector $3 \hat{i}-2 \hat{j}+\hat{k}$ may be perpendicular to the vector $2 \hat{i}+6 \hat{j}+m \hat{k}$.

33.

Prove
that
$(\vec{A}+2 \vec{B}) \cdot(2 \vec{A}-3 \vec{B})=2 A^{2}+A B \cos \theta-6 B^{2}$

- Watch Video Solution

34. A body constrainedto move along the z-axis of a
co-ordinate system is subjected to a constant force \vec{F} given by $\vec{F}=-\hat{i}+2 \hat{j}+3 \hat{k}$ newton where
\hat{i}, \hat{j} and \hat{k} represent unit vectors along x -,y-,and $\mathrm{z}-$ axes of the system, respectively.Calculate the work
done by this force in displacing the body through a distance of $4 m$ along the z-axis.

- Watch Video Solution

35. By vector method, prove that if the diagonals of a parallelogram intersect perpendicularly,then the parallelogram is rombus.

- Watch Video Solution

36. \hat{i} and \hat{j} are unit vectors along x-and y-axes respectively. What is the magnitude and the
direction of the vectors $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$? What are the components of a vector $\vec{A}=2 \hat{i}+3 \hat{j}$ along the direction $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$?

- Watch Video Solution

37. Calculate the are of the triangle determined by the two vectors $\vec{A}=3 \hat{i}+4 \hat{j}$ and
$\vec{B}=-3 \hat{i}+7 \hat{j}$.
A. $33(u n i t)^{2}$
B. $\frac{2}{33}(u n i t)^{2}$
C. $\frac{11}{2}(u n i t)^{2}$
D. $\frac{33}{2}(u n i t)^{2}$

Answer: D

- Watch Video Solution

38. Calculate the area of the parallelogram when adjacent sides are given by the vectors $\vec{A}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{B}=2 \hat{i}-3 \hat{j}+\hat{k}$.
39. a. Prove that the vector $\vec{A}=3 \hat{i}-2 \hat{j}+\hat{k}$,
$\vec{B}=\hat{i}-3 \hat{j}+5 \hat{k}$, and $\vec{C}=2 \hat{i}+\hat{j}-4 \hat{k}$ from a right -angled triangle.
b. Determine the unit vector parallel to the cross
product of vector $\vec{A}=3 \hat{i}-5 \hat{j}+10 \hat{k} \quad \&$

$$
=\vec{B}=6 \hat{i}+5 \hat{j}+2 \hat{k}
$$

- Watch Video Solution

1. A car travles 6 km towards north at an angle of
45° to the east and then travles distance of 4 km towards north at an angle of 135° to east (figure).

How far is the point from the starting point? What angle does the straight line joining its initial and final position makes with the east?

2. There are two forces vector,one of 5 N and other of 2 N . At what angle should the two vector be added to get the resultant vector of $17 \mathrm{~N}, 7 \mathrm{~N}$,and 13 N respectively?

- Watch Video Solution

3. Given that $\vec{A}+\vec{B}+\vec{C}=\overrightarrow{0}$. Out of three vectors, two are equal in magnitude and the magnitude of the third vectors is $\sqrt{2}$ times that of
either of the two having equal magnitude. Find the angles between the vectors.

D Watch Video Solution

4. If $\vec{A}=4 \hat{i}-3 \hat{j}$ and $\vec{B}=6 \hat{i}+8 \hat{j}$,then find the magnitude and direction of $\vec{A}+\vec{B}$.

- Watch Video Solution

5. A truck travelling due to north at $20 \mathrm{~ms}^{-1}$ turns
west and travels at the same speed. Find the
change in its velocity.

- Watch Video Solution

6. If the sum of two unit vectors is a unit vector,then find the magnitude of their differences.

- Watch Video Solution

7. The sum of the magnitudes of two forces acting at a point is 18 and the magnitude of their resultant is 12 . If the resultant is at 90° with the force of smaller magnitude, What are the magnitudes of forces?
8. Two forces $F_{1}=1 N$ and $F_{2}=2 N$ act along the lines $x=0$ and $y=0$, respectively. Then find the resultant of forces.

- Watch Video Solution

9. Let $\vec{A}=2 \hat{i}+\hat{j}, B=3 \hat{j}-\hat{k}$ and $\vec{C}=6 \hat{i}-2 \hat{k}$.

Find the value of $\vec{A}-2 \vec{B}+3 \vec{C}$.

- Watch Video Solution

10. A vector \vec{a} is turned without a change in its length through a small angle $d \theta$. Find the value of $|\Delta \vec{a}|$ and Δa.

- Watch Video Solution

11. An object of m kg with speed of $m s^{-1}$ strikes a wall at an angle θ and rebounds at the same speed and same angle. Find the magnitude of change in
the momentum of object.

- Watch Video Solution

12. If $A=3 \hat{i}+4 \hat{j}$ and $B=7 \hat{i}+24 \hat{j}$,find the vector having the same magnitude as B and parallel to A .
13. Vector \vec{A} makes equal angles with $x-y$ - - ,and $z-$ axis. Find the value of its components (in terms of magnitude of \vec{A})

D Watch Video Solution

14. Find the vector that must be added to the
vector $\hat{i}-3 \hat{j}+2 \hat{k}$ and $3 \hat{i}+6 \hat{j}-7 \hat{k}$ so that the resultant vector is a unit vector along the y-axis.
15. At what angle should the two forces vectors $2 F$ and $\sqrt{2} \mathrm{~F}$ act so that the resultant force is $\sqrt{10} F$

- Watch Video Solution

16. Two forces, while acting on particle in opposite directions, have the resultant of 10 N . If they act at right angles to each other, the resultant is found to be 50 N . Find the two forces?
17. Two forces each equal to $F / 2$ act at right angle.

Their effect may be neutralized by a third force acting along their bisector in the opposite direction. What is the magnitude of that third forces.

- Watch Video Solution

18. The resultant of two forces has magnitude 20 N .

One of the forces is of magnitude $20 \sqrt{3} N$ and makes an angle of 30° with the resultant. Then what is the magnitude of the other force?
19. The resultant of \vec{P} and \vec{Q} is \vec{R}. If \vec{Q} is doubled, \vec{R} is doubled, when \vec{Q} is reversed, \vec{R} is again doubled. Find P:Q:R.

D Watch Video Solution

Exercise 32

1. $\vec{A}=2 \hat{i}+4 \hat{j}+4 \hat{k}$ and $\vec{B}=4 \hat{i}+2 \hat{j}-4 \hat{k}$ are two vectors. Find the angles between them.
2. If two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}-\lambda \hat{k}$ are parallel to each other,then find the value of λ

- Watch Video Solution

3. In $Q-2$, if vectors are perpendicular to each other then find the value of λ.

- Watch Video Solution

4. If $\vec{A}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{B}=-\hat{i}+3 \hat{j}+4 \hat{k}$, then find the projection of \vec{A} on \vec{B}.

- Watch Video Solution

5. A body, acted upon by a force of 50 N , is displaced through a distance 10 m in direction making an angle of 60° with the force. Find the work done by the force.
6. A particle moves from position $3 \hat{i}+2 \hat{j}-6 \hat{k}$ to $14 \hat{i}+13 \hat{j}+9 \hat{k}$ due to a uniform force of $4 \hat{i}+\hat{j}+3 \hat{k} N$. If the displacement is in meters, then find the work done by the force.

- Watch Video Solution

7. If for two vectors \widehat{A} and \widehat{B}, sum $(\vec{A}+\vec{B})$ is perpendicular to the diffrence $(\vec{A}-\vec{B})$. Find the ratio of their magnitude.
8. A force $F=-k(y \hat{i}+x \hat{j})$ (where k is a positive constant) acts on a particle moving in the $x-y$ plane. Starting from the origin, the particle is taken along the positive x -axis to the point $(a, 0)$ and then parallel to the y-axis to the point (a, a).

The total work done by the force F on the particle is
(a) $-2 k a^{2}$,
(b) $2 k a^{2}$,
$(c)-\mathrm{ka}^{\wedge}(2),(d) \mathrm{ka}^{\wedge}(2)^{\wedge}$

- Watch Video Solution

9. If $\vec{A}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{B}=2 \hat{i}-2 \hat{j}+4 \hat{k}$,
then find the value of $|\vec{A} \times \vec{B}|$.

- Watch Video Solution

10. The vector from origion to the point A and B are
$\vec{A}=3 \hat{i}-6 \hat{j}+2 \hat{k} \quad$ and $\quad \vec{B}=2 \hat{i}+\hat{j}-2 \hat{k}$
,respectively. Find the area of the triangle OAB.
A. $\frac{5 \sqrt{17}}{2}$ sq. unit
B. $\frac{5 \sqrt{15}}{3}$ sq. unit
C. $\frac{3 \sqrt{17}}{2}$ sq. unit
D. None

Answer: A
11. The angle between the vector \vec{A} and \vec{B} is θ.

Find the value of triple product $\vec{A} \cdot(\vec{B} \times \vec{A})$.

- Watch Video Solution

12. Find the torque of the force
$\vec{F}=(2 \hat{i}-3 \hat{j}+4 \hat{k}) \quad \mathrm{N}$ acting at the point
$\vec{r}=(3 \hat{i}=2 \hat{j}+3 \hat{k}) \mathrm{m}$ about the origion.

- Watch Video Solution

13. If the particle of mass m is moving with constant velocity v parallel to x-axis in $x-y$ plane as shown in (figure), Find its angular momentum with respect of origin at any time t.

14. A cube is placed so that one corner is at the origin and three edges are along the $x-, y-$, and,$z-$ axes of a coordinate system (figure).Use vector to compute
a.The angle between the edge along the z-axis (line ab) and the diagonal from the origin to the opposite corner (line ad).
b. The angle between line ac (the diagonal of a face
) and line ad.

- Watch Video Solution

2. You are given vector $\vec{A}=5 \hat{i}-6.5 \hat{j}$ and
$\vec{B}=10 \hat{i}-7 \hat{j}$.
A third vector \vec{C} lies in the $x-y$ plane. Vector
(C) is perpendicular to vector \vec{A} and the scalar product of \vec{C} with \vec{B} is 15 . From this information, find the component of \vec{C}

- Watch Video Solution

3. Two vector \vec{A} and \vec{B} have magnitudes $\mathrm{A}=3.00$
and $B=3.00$. Their vector product is
$\vec{A} \times \vec{B}=-5.00 \hat{k}+2.00 \hat{i}$.
What is the angle between \vec{A} and \vec{B} ?

- Watch Video Solution

4. Given two vectors $\vec{A}=3 \hat{i}+\hat{j}+\hat{k}$ and
$\vec{B}=\hat{i}-\hat{j}-\hat{k}$. Find the
a.Area of the triangle whose two adjacent sides are represented by the vector \vec{A} and \vec{B}
b.Area of the parallelogram whose two adjacent sides are represented by the vector \vec{A} and \vec{B}
c. Area of the parallelogram whose diagnoals are represented by the vector \vec{A} and \vec{B}

- Watch Video Solution

5. On a horizontal flat ground, a person is standing
at a point A. At this point, he installs a $5 m$ long
pole vertically. Now, he moves $5 m$ towards east and then $2 m$ towards north and reaches at a point B. There he installs another $3 m$ long vertical pole .

A bird flies from the top of the first pole to the top of the swecond pole. Find the displacement and magnitude of the displacement of the bird.

- Watch Video Solution

6. Find the vector sum of N coplanar forces, each of the magnitude F, when each force makes an angle of $2 \pi / N$ with that preceding it.
7. Can you find at least one vector perpendiculr to $3 \hat{i}-4 \hat{j}+7 \hat{k} ?$

- Watch Video Solution

8. Two forces P and Q acting at a point are such that if P is reveserd, the direction of the resultant is turned through 90°. Prove that the magnitudes of the forces are equal.
9. Unit vector \widehat{P} and \widehat{Q} are inclined at an angle θ. Prove that $|\widehat{P}-\widehat{Q}|=2 \sin (\theta / 2)$.

- Watch Video Solution

10. A sail boat sails $2 k m$ due east, $5 k m 37^{\circ}$ south
of east, and finally an unknown displacement. If the
final displacement of the boat from the starting point is 6 km due east,determine the third displacement.

- Watch Video Solution

11. Two forces of magnitudes P and Q are inclined at an angle (θ). The magnitude of their resultant is 3Q. When the inclination is changed to $\left(180^{\circ}-\theta\right)$, the magnitude of the resultant force becomes Q .

Find the ratio of the forces.

D Watch Video Solution

12. A vector \vec{B} which has a magnitude 8.0 is added to a vector \vec{A} which lies along the x-axis. The sum of these two vector is a third vector which lies along the y-axis and has a magnitude that is twice the magnitude of \vec{A}. Find the magnitude of \vec{A}

- Watch Video Solution

13. Three vector as shown in (figure) have magnitudes $|\vec{a}|=3,|\vec{b}|=4$, and $|\vec{c}|=10$

$c \underbrace{\substack{y}}_{-30^{\circ}}$
 a

a.Find the x and y components of these vectors.
b.Find the numbers p and q such that $\vec{c}=p \vec{a}+q \vec{b}$.
14. A bouy is attached to three tugboats by three ropes. The tugboats are engaged in a tug-Of-war.

One tugboat pulls west on the buoy with a force \vec{F}_{1} of magnitude $1000 N$. The second tugboat pulls south on the buoy with a force \vec{F}_{2} of magnitude $2000 N$. The third tugboat pulls northeast (that is, half way between north and east), with a force \vec{F}_{3} of magnitude $2000 N$
a. Express each force in unit vector from (\hat{i}, \hat{j}).
b. Calculate the magnitude of the resultant force.
15. Two horizontal forces of magnitudes of $10 N$ and $P N$ act on a particle. The force of magnitude $10 N$ acts due west and the force of magnitude $P N$ acts on a bearing of 30° east of north as shown in
(figure) The resultant of these two force acts due north. Find the magnitude of the resultant.

16. The position vectors of two balls are given by

$$
\begin{aligned}
& \vec{r}_{1}=2(m) i+7(m) j \\
& \vec{r}_{2}=-2(m) i+4(m) j
\end{aligned}
$$

What will be the distance between the two balls?

- Watch Video Solution

17. A particle whose speed is $50 \mathrm{~ms}^{-1}$ moves along the line from $A(2,1)$ to $B(9,25)$. Find its velocity vector in the from of $a \hat{i}+b \hat{j}$.
18. A particle travels with speed $50 \mathrm{~ms}^{-1}$ from the point $(3,-7)$ in a direction $7 \hat{i}-24(j)$. Find its position vector after $3 s$.

- Watch Video Solution

19. A particle has an initial velocity of $3 \hat{i}+4 \hat{j}$ and an acceleration of $0.4 \hat{i}+0.3 \hat{j}$. Its speed after 10 s is :

- Watch Video Solution

20. Forces X, Y and Z have magnitudes
$10 N 5(\sqrt{3}-1) N$ and $5(\sqrt{3}+1) N$, respectively.
The forces Y and Z act in the same direction as shown in (figure) The resultant of X and Y and the resultant of X and Z have the same magnitudes.

Find θ, the angle between X and Y.

21. A particle of $m=5 \mathrm{~kg}$ is momentarily at rest at $x=a t \mathrm{t}=$. It is acted upon by two forces \vec{F}_{1} and $\vec{F}_{2} . \quad V e c(F)_{1}=70 \hat{j} \quad \mathrm{~N}$. The direction and manitude of \vec{F}_{2} are unknown. The particle experiences a constant acceleration, \vec{a}, in the direction as shown in (figure) Neglect gravity.
a.Find the missing force \vec{F}_{2}.
b. What is the velocity vector of the particle at $t=10 s ?$
c. What third force, \vec{F}_{3} is required to make the acceleration of the particle zero? Either give magnitude and direction of \vec{F}_{3} or its components.

D Watch Video Solution

22. A spy plane is being tacked by a radar. At $t=0$, its position is reported as ($100 \mathrm{~m}, 200 \mathrm{~m}, 1000 \mathrm{~m}$). 130 s later, its position is reported to be $(2500 m, 1200 m$,1000 m). Find a unit vector in the direction of
plane velocity and the magnitude of its average velocity.

- Watch Video Solution

23. a. Calculate $\vec{r}=\vec{a}-\vec{b}+\vec{c}$, where
$\vec{a}=5 \hat{i}+4 \hat{j}-6 \hat{k}$,
$\vec{b}=-2 \hat{i}+2 \hat{j}+3 \hat{k}$, and $\vec{c}=4 \hat{i}+3 \hat{j}+2 \hat{k}$.
b. Calculate the angle between \vec{r} and the z-axis.

- Watch Video Solution

24. A force $\vec{F}=3 \hat{i}+2 \hat{j}+c \hat{k} \mathrm{~N}$ causes a displacement $\vec{r}=c \hat{i}+4 \hat{j}+c \hat{k} \quad m$. The work done is 36 J . Find the values (s) of c .

- Watch Video Solution

25. When two vectors of magnitudes P and Q are inclined at an angle θ, the magnitudes of their resultant is 2 P . When the inclination is changed to $180^{\circ}-\theta$, the magnitudes of the resultant is halved. Find the ratio of P and Q.
26. Find the magnitudes of the unknown forces if the sum of all forces is zero (figure)

- Watch Video Solution

27. Three boys are pulling a heavy trolled by means
of three ropes. The boy in the middle is exerting a
pull of 100 N . The other two boys ,whose ropes
both make an angle 30° with the central rope, are pulling with forces of $50 \sqrt{3} N$ and $100 \sqrt{3} N$. Find the magnitudes of the resultant pull on the trolltey.

- Watch Video Solution

28. If $\vec{A}=2 \hat{i}+\hat{j}$ and $\vec{B}=\hat{i}-\hat{j}$, sketch vector graphically and find the component of \vec{A} along \vec{B} and perpendicular to \vec{B}

- Watch Video Solution

1. The sum and diffrence of two perpendicular vector of equal length are
A. Perpendicular to each other and of equal
length.
B. Perpendicular to each other and of different
length
C. Of equal length and have an obtuse angle between them
D. Of equal length and have an acute angle

between them

Answer: A

- Watch Video Solution

2. The minimum number of vector having different planes which can be added to give zero resultant is
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

3. A vector perpendicular to $\hat{i}+\hat{j}+\hat{k}$ is

A. $\hat{i}-\hat{j}+\hat{k}$
B. $\hat{i}-\hat{j}-\hat{k}$
C. $-\hat{i}-\hat{j}-\hat{k}$
D. $3 \hat{i}+2 \hat{j}-5 \hat{k}$

Answer: D

- Watch Video Solution

4. From figure the correct relation is

A. $\vec{A}+\vec{B}+\vec{E}=\overrightarrow{0}$
B. $\vec{C}-\vec{D}=-\vec{A}$
с. $\vec{B}+\vec{E}-\vec{C}=-\vec{D}$
D. All of the above

Answer: D

- Watch Video Solution

5. Out of the following set of forces, the rsultant of

 which cannot be zero?A. 10,10,10
B. 10,10,20
C. 10,20,20
D. $10,20,40$

Answer: D

- Watch Video Solution

6. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to the vector \vec{A} and its magnitudes is equal to half of the magnitudes of vector \vec{B}
(figure). The angle between \vec{A} and \vec{B} is

A. 120°
B. 150°
C. 135°
D. None of these

Answer: B
7. The ratio of maximum and minimum magnitudes of the resultant of two vectors \vec{a} and \vec{b} is 3:1. Now, $|\vec{a}|$ is equal to
A. $|\vec{b}|$
B. $2|\vec{b}|$
C. $3|\vec{b}|$
D. $4|\vec{b}|$

Answer: B
8. Two forces, each equal to F, act as shown in (figure) Their resultant is

A. $F / 2$
B. F
C. $\sqrt{3} F$
D. $\sqrt{5} F$

Answer: B

- Watch Video Solution

9. Vector \vec{A} is 2 cm long and is 60° above the x -axis in the first quadrant. Vector \vec{B} is 2 cm long and is
60° below the x-axis in the fourth quadrant. The sum $\vec{A}+\vec{B}$ is a vector of magnitudes
A. 2 cm along positive y -axis
B. 2 cm along positive x -axis
C. 2 cm along negative y-axis
D. 2 cm along negative x -axis

Answer: B

- Watch Video Solution

10. What is the angle between two vector forces of equal magnitude such that their resultant is onethird of either of the original forces?

$$
\begin{aligned}
& \text { A. } \cos ^{-1}\left(-\frac{17}{18}\right) \\
& \text { B. } \cos ^{-1}\left(-\frac{1}{3}\right)
\end{aligned}
$$

C. 45°
D. 120°

Answer: A

- Watch Video Solution

11. The angle between $\vec{A}+\vec{B}$ and $\vec{A} \times \vec{B}$ is
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: C

- Watch Video Solution

12. The projection of a vector $\vec{r}=3 \hat{i}+\hat{j}+2 \hat{k}$ on the $x-y$ plane has magnitude
A. 3
B. 4
C. $\sqrt{14}$
D. $\sqrt{10}$

D Watch Video Solution

13. If $|\vec{A}+\vec{B}|=|\vec{A}|=|\vec{B}|$ then the angle between \vec{A} and \vec{B} is
A. 120°
B. 60°
C. 90°
D. 0°

Answer: A
14. If vector $\vec{A}=\hat{i}+2 \hat{j}+4 \hat{k}$ and $\vec{B}=5 \hat{i}$ represent the two sides of a triangle, then the third side of the triangle can have length equal to
A. 6
B. $\sqrt{56}$
C. Both of the above
D. None of the above

Answer: C

15. Given $\left|\vec{A}_{1}\right|=2,\left|\vec{A}_{2}\right|=3$ and $\left|\vec{A}_{1}+\vec{A}_{2}\right|=3$.

Find the value of $\left(\vec{A}_{1}+2 \vec{A}_{2}\right) \cdot\left(3 \vec{A}_{1}-4 \vec{A}_{2}\right)$.
A. -64
B. 60
C. -60
D. 64

Answer: A

- Watch Video Solution

16. Three vector $\vec{A}, \vec{B}, \vec{C}$ satisfy the relation $\vec{A} \cdot \vec{B}=0$ and $\vec{A} \cdot \vec{C}=0$. The vector \vec{A} is parallel to
A. \vec{B}
В. \vec{C}
C. $\vec{B} \cdot \vec{C}$
D. $\vec{B} \times \vec{C}$

Answer: D

- Watch Video Solution

17. If $\vec{A}=\vec{B}+\vec{C}$, and the magnitudes of \vec{A}, \vec{B},
\vec{C} are 5,4 , and 3 units, then the angle between \vec{A} and \vec{C} is
A. $\cos ^{-1}\left(\frac{3}{5}\right)$
B. $\cos ^{-1}\left(\frac{4}{5}\right)$
C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. $\frac{\pi}{2}$

Answer: A
18. Given: $\vec{A}=A \cos \theta \hat{i}+A \sin \theta \hat{j}$. A vector \vec{B}, which is perpendicular to \vec{A},is given by
A. $B \cos \theta \hat{i}-B \sin \theta \hat{j}$
B. $B \sin \theta \hat{i}-B \cos \theta \hat{j}$
C. $B \cos \theta \hat{i}+B \sin \theta \hat{j}$
D. $B \sin \theta \hat{i}+B \cos \theta \hat{j}$

Answer: B

- Watch Video Solution

19. The angle which the vector $\vec{A}=2 \hat{i}+3 \hat{j}$ makes with the y-axis, where \hat{i} and \hat{j} are unit vectors along x - and y-axis, respectively, is
A. $\cos ^{-1}(3 / 5)$
B. $\cos ^{-1}(2 / 3)$
C. ${ }^{\prime} \tan ^{\wedge}(-1)(2 / / 3)$
D. $\sin ^{-1}(2 / 3)$

Answer: C

20. Given $\vec{P}=3 \hat{i}-4 \hat{j}$. Which of the following is perpendicular to \vec{P} ?
A. $3 \hat{i}$
B. $4 \hat{j}$
C. $4 \hat{i}+3 \hat{j}$
D. $4 \hat{i}-3 \hat{j}$

Answer: C

- Watch Video Solution

21. In going from one city to another, a car travles

75 km north, 60 km noth-west and 20 km east,The magnitude of displacement between the two cities
is $($ take $1 / \sqrt{2}=0.7)$
A. 170 km
B. 137 km
C. 119 km
D. 140 km

Answer: C

22. What is the angle between \vec{A} and \vec{B}, If \vec{A} and \vec{B} are the adjacent sides of a parallelogram drwan from a common point and the area of the parallelogram is $A B / 2$?
A. 15°
B. 30°
C. 45°
D. 60°

Answer: B

23. Two vectors \vec{a} and \vec{b} are such that $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$. What is the angle between \vec{a} and \vec{b} ?
A. 0°
B. 90°
C. 60°
D. 180°

Answer: B

- Watch Video Solution

24. Given $\vec{A}=4 \hat{i}+6 \hat{j}$ and $\vec{B}=2 \hat{i}+3 \hat{j}$. Which of the following
A. $\vec{A} \times \vec{B}=\overrightarrow{0}$
B. $\vec{A} \cdot \vec{B}=24$
C. $\frac{|\vec{A}|}{|\vec{B}|}=\frac{1}{2}$
D. \vec{A} and \vec{B} are antiparallel

Answer: A

- Watch Video Solution

25. Given $\vec{A}=2 \hat{i}+p \hat{j}+q \hat{k} \quad$ and
$\vec{B}=5 \hat{i}+7 \hat{j}+3 \hat{k}$. If $\vec{A}|\mid \vec{B}$, then the values of
p and q are, respectively,
A. $\frac{14}{5}$ and $\frac{6}{5}$
B. $\frac{14}{3}$ and $\frac{6}{5}$
C. $\frac{6}{5}$ and $\frac{1}{3}$
D. $\frac{3}{4}$ and $\frac{1}{4}$

Answer: A

- Watch Video Solution

26. If \vec{A} is perpendicular to \vec{B}, then

$$
\begin{aligned}
& \text { A. } \vec{A} \times \vec{B}=0 \\
& \text { B. } \vec{A} \cdot[\vec{A}+\vec{B}]=A^{2} \\
& \text { C. } \vec{A} \cdot \vec{B}=A B \\
& \text { D. } \vec{A} \cdot[\vec{A}+\vec{B}]=A^{2}+A B
\end{aligned}
$$

Answer: B

- Watch Video Solution

27. If the angle between the vectors \vec{a} and \vec{b} is an acute angle, then the diffrence $\vec{a}-\vec{b}$ is
A. The major diagonal of the parallelogram
B. The minor diagnol of the parallelogram
C. Any of the above
D. None of the above

Answer: B

- Watch Video Solution

28. Given that $\vec{A}+\vec{B}=\vec{C}$. If $|\vec{A}|=4,|\vec{B}|=5$ and $|\vec{C}|=\sqrt{61}$, the angle between \vec{A} and \vec{B} is
A. 30°
B. 60°
C. 90°
D. 120°

Answer: B

- Watch Video Solution

29. If $\vec{b}=3 \hat{i}+4 \hat{j}$ and $\vec{a}=\hat{i}-\hat{j}$ the vector having the same magnitude as that of \vec{b} and parallel to \vec{a} is
A. $\frac{5}{\sqrt{2}}(\hat{i}-\hat{j})$
B. $\frac{5}{\sqrt{2}}(\hat{i}+\hat{j})$
C. $5(\hat{i}-\hat{j})$
D. $5(\hat{i}+\hat{j})$

Answer: A

- Watch Video Solution

30. Choose the wrong statement.
A. Three vector of different magnitudes may be
combined to give zero resultant.
B. Two vectors of different magnitudes can be combined to give a zero resultant.
C. The product of a scalar and a vector is a vector quantity.
D. All of the above are wrong statements.

Answer: B

- Watch Video Solution

31. What displacement at an angle 60° to the x-axis
has an x-component of $5 m ? \hat{i}$ and \hat{j} are unit vector
in x and y directions, respectively.
A. $5 \hat{i}$
B. $5 \hat{i}+5 \hat{j}$
C. $5 \hat{i}+5 \sqrt{3} \hat{j}$
D. All of the above

Answer: C

- Watch Video Solution

32. Mark the correct statement.

$$
\text { A. }|\vec{a}+\vec{b}| \geq|\vec{a}|+|\vec{b}|
$$

B. $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$
C. $|\vec{a}-\vec{b}| \leq|\vec{a}|+|\vec{b}|$
D. All of the above

Answer: B

- Watch Video Solution

33. Out of the following forces, the resultant of which cannot be $10 N$?
A. $15 N$ and $20 N$
B. 10 N and 10 N
C. $5 N$ and $12 N$
D. $12 N$ and $1 N$

Answer: D

- Watch Video Solution

34. Which of the following pairs of forces cannot be added to give a resultant force of $4 N$?
A. $2 N$ and $8 N$
B. $2 N$ and $2 N$
C. $2 N$ and $6 N$
D. $2 N$ and $4 N$

Answer: A

- Watch Video Solution

35. In an equilateral triangle $\mathrm{ABC}, \mathrm{AL}, \mathrm{BM}$, and $C N$ are medians. Forces along BC and BA represented by them will have a resultant represented by
A. 2 AL
B. 2 BM
C. 2 CN
D. AC

Answer: B

- Watch Video Solution

36. The sum of two vectors A and B is at right angles to their difference. Then
A. Equal to each other
B. Equal to each other in a magnitude
C. Not equal to each other in magnitude
D. Cannot be predicted

- Watch Video Solution

37. If a parallelogram is formed with two sides represented by vector \vec{a} and \vec{b}, then $\vec{a}+\vec{b}$ represents the
A. Major diagonal when the angle between
vectors is acute
B. Minor diagonal when the angle between
vector is obtuse
C. Both of the above
D. None of the above

Answer: C

- Watch Video Solution

38. Given that $\vec{A}+\vec{B}=\vec{C}$ and that \vec{C} is perpendicular to \vec{A} Further if $|\vec{A}|=|\vec{C}|$, then what is the angle between \vec{A} and \vec{B}
A. $\frac{\pi}{4} r a d$
B. $\frac{3 \pi}{4} r a d$
C. $\frac{5 \pi}{4} r a d$
D. $\frac{7 \pi}{4} \mathrm{rad}$

Answer: B

- Watch Video Solution

39. Two forces $\vec{F}_{1}=500 N$ due east and $\vec{F}_{2}=250 N$ due north have their common initial point. $\vec{F}_{2}-\vec{F}_{1}$ is
A. $250 \sqrt{5} N, \tan ^{-1}(2) W o f N$
B. $250 N, \tan ^{-1}(2) W$ of N
C. Zero
D. $750 N, \tan ^{-1}(3 / 4) N o f W$

Answer: A

- Watch Video Solution

40. Find the resultant of the three vectors
$\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ shown in figure. Radius of the
circle is R.

A. r
B. $2 r$
C. $r(1+\sqrt{2})$
D. $r(\sqrt{2})$

Answer: C

- Watch Video Solution

41. Two vectors \vec{a} and \vec{b} are at angle of 60° with each other. Their resultant makes an angle of
45° with \vec{a} If $|\vec{b}|=2$ unit , then $|\vec{a}|$ is
A. $\sqrt{3}$
B. $\sqrt{3}-1$
C. $\sqrt{3}+1$
D. $\sqrt{3} / 2$

Answer: B

- Watch Video Solution

42. The resultant of two vectors \vec{P} and \vec{Q} is \vec{R}. If the magnitude of \vec{Q} is doubled, the new resultant vector becomes perpendicular to \vec{P}. Then, the magnitude of \vec{R} is equal to
A. $P+Q$
B. P
C. $P-Q$
D. Q

Answer: D

- Watch Video Solution

43. A vector \vec{A} When added to the vector $\vec{B}=3 \hat{i}+4 \hat{j}$ yields a resultant vector that is in the positive y-direction and has a magnitude equal to that of \vec{B}. Find the magnitude of \vec{A}.
A. $\sqrt{10}$
B. 10
C. 5
D. $\sqrt{5}$

Answer: A

- Watch Video Solution

44. $A B C D E F$ is a regular hexagon with point O as

$$
\begin{aligned}
& \text { centre. } \\
& \overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F} \text { is }
\end{aligned}
$$

А. $2 \overrightarrow{A O}$
B. $2 \overrightarrow{A O}$
C. $6 \overrightarrow{A O}$
D. 0

Answer: C

- Watch Video Solution

45. In a two diamensional motion of a particle, the particle moves from point A, with position vector \vec{r}_{1} to point B , with position vector \vec{r}_{2}. If the magnitudes of these vectors are, respectively, $r_{1}=3$ and $r_{2}=4$ and the angles they make with the x-axis are $\theta_{1}=75^{\circ}$ and $\theta_{2}=15^{\circ}$, respectively, then find the magnitude of the displacement
vector.

A. 15
B. $\sqrt{13}$
C. 17
D. $\sqrt{15}$

Answer: B
46. The sum of two forces at a point is 16 N . if their resultant is normal to the smaller force and has a magnitude of 8 N , then two forces are
A. 2 N
B. 4 N
C. 6 N
D. 7 N

Answer: C
47. The angle between two vector A and B is θ.

Vector R is the resultant of the two vectors. If R θ
makes an angle $\frac{\theta}{2}$ with A, then
A. $A=2 B$
B. $A=B / 2$
C. $A=B$
D. $A B=1$

Answer: C
48. The resultant of three vectors 1,2 , and 3 units
whose directions are those of the sides of an equilateral triangle is at an angle of
A. 30° with the first vector
B. 15° with the first vector
C. 100° with the first vector
D. 150° with the first vector

Answer: D

- Watch Video Solution

49. A unit vector along the incident ray of light is \hat{i}.

The unit vector for the corresponding refracted ray
of light is $\hat{r} . \widehat{n}$, a unit vector normal to the boundary of the medium and directed towards the incident medium. If μ is the refractive index of the medium, then snell's law (second law) of refraction is

$$
\begin{aligned}
& \text { A. } \hat{i} \times \widehat{n}=\mu(\widehat{n}+\vec{r}) \\
& \text { B. } \hat{i} . \widehat{n}=\mu(\hat{r} . \widehat{n}) \\
& \text { C. } \hat{i} \times \widehat{n}=\mu(\hat{r} \times \widehat{n}) \\
& \text { D. } \hat{i} \times \widehat{n}=\mu(\hat{r} \times \widehat{n})
\end{aligned}
$$

Answer: C

- Watch Video Solution

50. The components of a vector along the x - and y directions are $(n+1)$ and 1 , respectively. If the coordinate system is rotated by an angle $\theta=60^{\circ}$,
then the components change to n and 3 . The value of n is
A. 2
B. $\cos 60^{\circ}$
C. $\sin 60^{\circ}$
D. 3.5

Answer: D

- Watch Video Solution

51. Two point masses 1 and 2 move with uniform velocities \vec{v}_{1} and \vec{v}_{2}, respectively. Their initial position vectors are \vec{r}_{1} and \vec{r}_{2}, respectively. Which of the following should be satisfied for the collision of the point masses?

$$
\text { A. } \frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}-\vec{v}_{1}\right|}
$$

B. $\frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}-\vec{v}_{1}\right|}$
C. $\frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}+\vec{r}_{1}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}+\vec{v}_{1}\right|}$
D. $\frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}+\vec{r}_{1}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}+\vec{v}_{1}\right|}$

Answer: B

- Watch Video Solution

Exercise Multiple Correct

1. Which of the following statements is/ are correct(Figure)

A. The sign of the x-component of \vec{d}_{1} is positive and that of \vec{d}_{2} is negative.
B. The signs of the y-components of \vec{d}_{1} and
\vec{d}_{2} are positive and negative, respectively.
C. The signs of x - and y-components of $\vec{d}_{1}+\vec{d}_{2}$ are positive.

D. None of the above

Answer: A::C

- Watch Video Solution

2. Give two vectors $\vec{A}==3 \hat{i}+4 \hat{j}$ and $\vec{B}=\hat{i}+\hat{j} \cdot \theta$ is the angle between \vec{A} and \vec{B}.

Which of the following statements is/are correct?
A. $|\vec{A}| \cos \theta\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$ is the component of \vec{A} along \vec{B}.
B. $|\vec{A}| \sin \theta\left(\frac{\hat{i}-\hat{j}}{\sqrt{2}}\right)$ is the component of \vec{A} perpendicular to \vec{B}.
C. $|\vec{A}| \cos \theta\left(\frac{\hat{i}-\hat{j}}{\sqrt{2}}\right)$ is the component of \vec{A} along \vec{B}.
D. $|\vec{A}| \sin \theta\left(\frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)$ is the component of \vec{A} perpendicular to \vec{B}.

Answer: A::B

- Watch Video Solution

3. If $\vec{A}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{B}=\hat{i}+\hat{j}+\hat{k}$ are two vectors, then the unit vector is
A. Perpendicular to \vec{A} is $(-\hat{j}+\hat{k}) \frac{1}{\sqrt{2}}$
B. Parallel to \vec{A} is $\frac{2 \hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}$
C. Perpendicular to \vec{B} is $\left(\frac{-\hat{j}+\hat{k}}{\sqrt{2}}\right)$
D. Parallel to \vec{A} is $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: A::B::C

- Watch Video Solution

4. If $\vec{v}_{1}+\vec{v}_{2}$ is perpendicular to $\vec{v}_{1}-\vec{v}_{2}$, then
A. \vec{v}_{1} is perpendicular to \vec{v}_{2}.
B. $\left|\vec{v}_{1}\right|=\left|\vec{v}_{2}\right|$
C. \vec{v}_{1} is a null vector
D. The angle between \vec{v}_{1} and \vec{v}_{2} can have any
value

Answer: B::D
5. Two vectors \vec{A} and \vec{B} lie in plane, another vector \vec{C} lies outside this plane, then the resultant of these three vectors i.e., $\vec{A}+\vec{B}+\vec{C}$
A. cannot be zero
B. can be zero
C. Lies in the plane of \vec{A} or \vec{B}
D. Lies in a plane different from that of any of the three vectors

Answer: A::D

