©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

(HINGLISH)

ELECTRIC CURRENT \& CIRCUITS

Restivity And Drift Velocity

1. Is the motion of a charge across junction
momentum conserving ? Why or why not ?
2. The relaxation time τ is nearly independent of applied electric field E whereas it changes significiantly with temperature T. First fact is
(in part) responsible for Ohm's law whereas the second fact leads to variation of p with temperature. Elaborate why ?

- Watch Video Solution

3. Following figures show four situations in which positive and negative charges move horizontally through a region and give the rate at which each charge moves. Rank the situations according to the effective current through the region greatest first.

A. $i=i i=i i i=i v$
B. $i>i i>i i i>i v$
C. $i=i i=i i i>i v$

$$
\text { D. } i=i i=i i i<i v
$$

Answer: C

D Watch Video Solution

4. Variation of current passing through a conductor as the voltage applied across its ends is varied as shown in the adjoining diagram. If the resistance (R) is determined at
the points A, B, C and D, we will find that

A. $R_{C}=R_{D}$
B. $R_{B}>R_{A}$
C. $R_{C}>R_{B}$
D. None of these

Answer: D

D Watch Video Solution

5. $I-V$ characterstic of a copper wire of
length L and area fo cross-section A is shown
in Fig. The slope of the curve becomes

A. More if the experiment is performed at
higher temperature
B. More if a wire of steel of the same
direction is used
C. more if the length of the wire is increased
D. Less if the length of the wire is increased

Answer: D

D Watch Video Solution

6. The resistance R of a conductor varies with temperature t as shown in the figure. If the
variation
is
represented
by

$$
R_{t}=R_{0}\left[1+\alpha t+\beta t^{2}\right], \text { then }
$$

$R_{t} \uparrow$
A. α and β are both negative
B. α and β are positive
C. α is positive and β is negative
D. α is negative and β is positive

Answer: B

D Watch Video Solution

7. The V - i graph for a conductor at temperature T_{1} and T_{2} are as shown in the
figure. $\left(T_{2}-T_{1}\right)$ is proportional to

A. $\cos 2 \theta$
B. $\sin \theta$
C. $\cot 2 \theta$
D. $\tan \theta$

Answer: C

D Watch Video Solution

8. A cylindrical conductor has uniform crosssection. Resistivity of its material increase
linearly from left end to right end. If a constant current is flowing through it and at a section distance x from left end, magnitude of electric field intensity is E, which of the following graphs is correct

B.
(b) $E \uparrow$ x
C.
(c) $E \uparrow$
D.
(d) $E \uparrow$ x

Answer: B

D Watch Video Solution

9. Dimensions of a block are
$1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 100 \mathrm{~cm}$. If specific resistance of
its material is 3×10^{-7} ohm $-m$, then the resistance between the opposite rectangular facesis

$$
\begin{aligned}
& \text { A. } 3 \times 10^{-9} \Omega \\
& \text { B. } 3 \times 10^{-7} \Omega \\
& \text { C. } 3 \times 10^{-5} \Omega \\
& \text { D. } 3 \times 10^{-3} \Omega
\end{aligned}
$$

Answer: B
10. In the above question, the resistance between the square faces is
A. $3 \times 10^{-9} \Omega$
B. $3 \times 10^{-7} \Omega$
C. $3 \times 10^{-5} \Omega$
D. $3 \times 10^{-3} \Omega$

Answer: D
11. A Steady current flows in a metalic conductor of non uniform cross section. The quantity/quantities which remain constant along the length of the conductor is/are
A. Current, electric field and drift speed
B. Drift speed only
C. Current and drift speed
D. Current only

Answer: D

D Watch Video Solution

12. A current I is passing through a wire having two sections P and O of uniform diameters d and $d / 2$ respectively. If the mean drift velocity of electrons in section P and Q is
denoted by v_{P} and v_{Q} respectively, then

$$
\begin{aligned}
& \text { A. } v_{P}=v_{Q} \\
& \text { B. } v_{P}=\frac{1}{2} v_{Q}
\end{aligned}
$$

> C. $v_{p}=\left(\frac{1}{4}\right) v_{Q}$
> D. $v_{P}=2 v_{Q}$

Answer: C

- Watch Video Solution

13. The length of the resistance wire is
increased by 10%. What is the corresponding
change in the resistance of wire?
A. 0.1
B. 0.25
C. 0.21
D. 0.09

Answer: C

- Watch Video Solution

14. Which of the follwing characteristies of electrons determines the current in a conductor?
A. Drift velocity alone
B. Thermal velocity alone
C. Both drift velocty and thermal velocity
D. Neither drift nor thermal velocity

Answer: A

D Watch Video Solution

15. Temperature dependence of resistivity $p(T)$
of semiconductors, insulators and metals is
significantly based on the following factors:
A. number of charge carriers can change

with temperature T

B. time interval between two successive collisions can depend on T
C. length of material can be a function of T
D. mass of carriers is a function of T

Answer: A::B

D Watch Video Solution

16. A cylindrical solid of length L and radius a is connected across a source of emf V and negligible internal resistance shown in figure.

The resistivity of the rod at point P at a distance x from left end is given by $\rho=b x$ (where b is a positive constant). Find the electric field at point P.

17. A common flashlight bulb is rated 0.30A and 2.7 V (the values of the current and voltage under operating conditions.) If the resistance of the tungsten bulb filament at room temperature $20^{\circ} \mathrm{C}$ is 1.0Ω and its temperature coefficient of resistivity is
$4.0 \times 10^{-3} C^{-1}$, then find the temperature in centigrade of the filament when the bulb is on.
(Consider the variation of resistance to be linear with temperature.)
18. Two wires of resistance R_{1} and R_{2} have temperature coefficient of resistance α_{1} and α_{2} respectively. These are joined in series. The effective temperature coefficient of resistance is
A. (alpha_(1) + alpha_(2))/2`
B. $\left(\sqrt{\alpha_{1} \alpha_{2}}\right)$
C. $\frac{\alpha_{1} R_{1}+\alpha_{2}+R_{2}}{R_{1}+R_{2}}$

$$
\text { D. }\left(\frac{\sqrt{R_{1} R_{2} \alpha_{1} \alpha_{2}}}{\sqrt{R_{1}^{2}+R_{2}^{2}}}\right.
$$

Answer: C

- Watch Video Solution

19. Two resistance R_{1} and R_{2} are made of different material. The temperature coefficient of the material of R_{1} is α and of the material of R_{2} is $-\beta$. Then resistance of the series combination of R_{1} and R_{2} will not change
with temperature, if R_{1} / R_{2} will not change with temperature if R_{1} / R_{2} equals
A. $\frac{\alpha}{\beta}$
B. $\frac{\alpha+\beta}{\alpha-\beta}$
C. $\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$
D. $\frac{\beta}{\alpha}$

Answer: D
(Watch Video Solution
20. An ionization chamber with parallel conducting plates as anode and cathode has
5×10^{7} electrons and the same number of singly-charged positive ions per cm^{2}. The electrons are moving at $0.4 \mathrm{~m} / \mathrm{s}$. The current density from anode to cathodes $4 \mu A / m^{2}$. The velocity of positive ions moving towards cathode is
A. $0.4 m / s$
B. $16 \mathrm{~m} / \mathrm{s}$
C. Zero

D. $0.1 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

21. The current in conductor varies with time t
as $I=2 t+3 t^{2}$ where I is in ampere and t in
seconds. Electric charge flowing through a section of the conductor during $t=2 \mathrm{sec}$ to
$t=3 \mathrm{sec}$ is
A. 10 C
B. 24 C
C. 33 C
D. 44 C

Answer: B

D Watch Video Solution

22. The resistance of a wire of iron is 10 ohm
and temperature coefficient of resistivity is
$5 \times 10^{-3} / .^{\circ} C$, At $20^{\circ} C$ it carries $30 m A$ of
current. Keeping constant potential difference
between its ends. The temperature of the wire
is raised to $120^{\circ} C$. The current in $m A$ that
flows in the wire now is.
A. 20
B. 15
C. 10
D. 40

Answer: A

D Watch Video Solution
23. Length of a hollow tube is $5 m$, its outer diameter is 10 cm and thickness of its wall is 5 mm . If resistivity of the material of the tube is
$1.7 \times 10^{-8} \Omega \times m$ then resistance of tube will be
A. $5.6 \times 10^{-5} \Omega$
B. $2 \times 10^{-5} \omega$
C. $4 \times 10^{-5} \Omega$
D. None of these

Answer: A

- Watch Video Solution

24. In order to increase the resistance of a given wire of uniform cross section to four times its value, a fraction of its length is stretched uniformly till the full length of the wire becoes $\frac{3}{2}$ times the original length. What is the value of this fraction?
A. $\frac{1}{8}$
B. $1 / 6^{\prime}$
C. $\frac{1}{10}$
D. $\frac{1}{4}$

Answer: A

- Watch Video Solution

25. Following figure shows cross-section
through three long conductors of the same
length and material, with square cross-section
of edge lengths as shown. Conductor B will snugly within conductor B. Relationship
between their end to end resistance is

A. $R_{A}=R_{B}=R_{C}$
B. $R_{A}>R_{B}>R_{C}$
C. $R_{A}<R_{B}<R$
D. Information is not sufficient.

Answer: A
26. In figure shows a rectangular block with dimensions $\mathrm{x}, 2 \mathrm{x}$ and 4 x . Electrical contacts
can be made to the block between opposite pairs of faces (for example, between the faces labelled A-A, B-B and C-C). Between which two faces would the maximum electrical
resistance be obtained (A - A : Top and bottom faces, B-B : Left and right faces, C - C :

Front and rear faces)

A. A-A
B. $B-B$
C. C-C
D. Same for all three pairs

Answer: C

- Watch Video Solution

27. A battery is connected to a uniform resistance wire $A B$ and B is earthed. Which one of the graphs below shows how the current density J varies along $A B$

B.
(b) J^{\uparrow}
(c) ${ }^{J \uparrow}$

Answer: D

- Watch Video Solution

28. Two wires each of radius of cross section r
but of different materials are connected together end to end (in series). If the densities of charge carries in the two wires are in the ratio $1: 4$, the drift velocity of electrons in the two wires will be in the ratio:
A. $1: 2$
B. 2:1
C. $4: 1$
D. 1: 4

Answer: C

- Watch Video Solution

29. Consider a conductor of variable cross
section in which current is flowing from cross
section 1 to 2 . Then

A. current density at $A=$ current density at B
B. current density at A gt current density at B
C. current density at A gt current density at B

D. none of the above

Answer: B

30. A 150 m long metal wire connects points A and B. The electric potential at point B is 50 V less than that at point A. If the conductivity of the metal is $60 \times 10^{6} \mathrm{mho} / \mathrm{m}$ then magnitude of the current density in the wire is equal to:

$$
\begin{aligned}
& \text { A. } 11 \times 10^{-4} A / m^{2} \\
& \text { B. } 5.5 \times 10^{-3} A / m^{2} \\
& \text { C. } 4 \times 10^{7} A / m^{2} \\
& \text { D. } 20 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}
\end{aligned}
$$

- View Text Solution

Combination Of Resistance 1

1. First a set of n equal resistors of R each are connected in series to a battery of emf E and internal resistance R. A current I is observed to
flow. Then, the n resistors are connected in parallel to the same battery. It is observed that the current is increased 10 times. What is ' n '?
2. Suppose there is a circuit consister of only resistance and batteries, suppose one is to double (or increase it to in n-times)all voltage and all resistances , show that currents are unalatered

D Watch Video Solution

3. Find the equivalent resistance between terminals A and B. Each resistor is of
resistance R.

- Watch Video Solution

4. Find the equivalent resistance between A
and B in the arrangement of resistance as
shown.

- Watch Video Solution

5. The two ends of a uniform conductor are
joined to a cell of e.m.f. E and some internal
resistance. Starting from the midpoint P of
the conductor, we move in the direction of
current and return to P. The potential V at every point on the path is plotted against the distance covered (x). which of the following graphs best represent the resulting curve ?

C.
(c)

Answer: B

- Watch Video Solution

6. The $V-I$ graphs of parallel and series
combinations of two metallic resistors are
shown in (Fig. 3.53). Which graph represents
the parallel combinations?

A. A
B. B
C. A and B both
D. Neither A nor B

Answer: A

- Watch Video Solution

7. If each resistance in the figure is of 9Ω then reading of ammeter is

D Watch Video Solution
8. Two resistors of resistance R_{1} and R_{2}
having $R_{1}>R_{2}$ are connected in parallel. For equivalent resistance R, the correct statement is
A. $R>R_{1}>R_{2}$
B. $R_{1}<R<R_{2}$
C. $R_{2}<R<\left(R_{1}+R_{2}\right)$
D. $R<R_{1}$

Answer: D

9. The potential difference between points A
and B adjoining figure is

A. $2 / 3 \mathrm{~V}$
B. $8 / 9 \mathrm{~V}$
C. $4 / 3 \mathrm{~V}$
D. 2 V

Answer: C

D Watch Video Solution

10. Seven resistance are connected as shown
in the firgure. The equivalent resistance between A and B is approximately

A. 3Ω
B. 4Ω
C. 4.5Ω
D. 5Ω

Answer: A

D Watch Video Solution
11. What is the equivalent resistance between
the points A and B of the network?

A. $\frac{57}{7} \Omega$
B. 8Ω
C. 6Ω
D. $\frac{57}{3} \Omega$

Answer: B
12. A uniform wire of resistance 9Ω is cut into

3 equal parts. They are connected in form of equilateral triangle $A B C$. A cell of e.m.f. $2 V$ and negligible internal resistance is connected across B and C. Potential difference across $A B$ is
A. 1 V
B. 2 V
C. 3V
D. 0.5 V

Answer: A

D Watch Video Solution

13. In the figure shown the current flowing
through $2 R$ is:

A. from left to right
B. from right to left
C. no current
D. none of these

Answer: B

D Watch Video Solution

14. The equivalent resistance between the points A and B is:

36
A. $\frac{3}{7} \Omega$
B. 10Ω
C. $\frac{85}{7} \Omega$

D. none of these

Answer: C

Combination Of Resistance 2

1. If each resistance $R=100 \sqrt{3} \Omega$, then find the equivalent resistance (in ohm) between A
and B.

- Watch Video Solution

2. In the figure shown eight resistors eachof resistance ' R ' are connected to form two squares $A B C H$ and DEFG. Four resistors each of resistors ' 2 R ' are connected in the vertical lines $A F, B G, C D$ and $E H$. ' A ' and ' C ' are connected to a battery of interal resistance ' R '
and emf V. Find out the current in 'AB' and 'ED'.

D Watch Video Solution

3. Find the equivalent resistance between A and B. Each resistor has same resistance R.

- Watch Video Solution

4. Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the figure below. The effective resistance
between A and B is

A. $2 R \Omega$
B. $4 \frac{R}{3} \Omega$
C. $2 \frac{R}{3} \Omega$
D. $R \omega$

Answer: C

- Watch Video Solution

5. The total current supplied to the circuit by
the battery is

A. 1A
B. 2A
C. 4A
D. 6 A

Answer: C

- Watch Video Solution

6. A wire of resistance 10Ω is bent to form a circle. P and Q are points on the circumference of the circle dividing it into a quadrant and are
connected to a Battery of 3 V and internal resistance 1Ω as shown in the figure. The currents in the two parts of the circle are

A. $\frac{6}{23} A$ and $\frac{18}{23} A$
B. $\frac{5}{26} A$ and $\frac{15}{26} A$
C. $\frac{4}{25} A$ and $\frac{12}{25} A$
D. $\frac{3}{25} A$ and $\frac{9}{25} A$

Answer: A

- Watch Video Solution

7. The resistance between the terminal point A and B of the given infinitely long circuit will be

A. $(\sqrt{3}-1)$
B. $(1-\sqrt{3}$
C. $(1+\sqrt{3}$
D. $(2+\sqrt{3}$

Answer: C

- Watch Video Solution

8. In the circuit shown, the value of each resistance is r, then equivalent resistance of
circuit between points A and B will be

A. $14 / 11 r$
B. $7 / 5 \mathrm{r}$
C. $8 / 7$ r
D. $14 / 13 r$

Answer: D
9. The potential difference across 8 ohm resistance is 48 volt as shown in the figure.

The value of potential difference across X and
Y point will be

A. 160 volt
B. 128 volt

C. 80 volt

D. 62 volt

Answer: A

- Watch Video Solution

10. The resistance of the series combination of
two resistances is S. When they are joined in
parallel the total resistance is P . If $\mathrm{S}=\mathrm{nP}$ then
the minimum possible value of n is
11. The equivalent resistance across the terminals of source of e.m.f. 24 V for the circuit
shown in the figure is

A. 15Ω
B. 10Ω

C. 5Ω

D. 4Ω

Answer: C

- Watch Video Solution

12. A potential divider is used to give outpurs of 4 V and 8 V from a 12 V source. Which combination of resistance, $\left(R_{1}, R_{2}, R_{3}\right.$ gives
the correct voltages? ($\mathrm{R}_{-}(1)$: $\mathrm{R}_{-}(2)$: $\mathrm{R}_{-}(3)^{\prime}$

A. 2:1:2
B. 1:1:1
C. 2:2:1
D. 1:1:2

Answer: B

- Watch Video Solution

13. Find equivalent resistance between A and B

A. R
B. $\frac{3 R}{4}$
C. $\frac{R}{2}$
D. 2 R

Answer: C

D Watch Video Solution

14. A wire has resistance of 24Ω is bent in the following shape. The effective resistance

between A and B is

A. 24Ω
B. 10Ω
C. $\frac{16}{3} \Omega$
D. None of these

Answer: B

Kirchhoff S Law And Grouping Cells

1. The figure below shows current in a part of electric circuit. The current i is

A. 1.7amp
B. 3.7 amp

C. 1.3amp

D. 1 amp

Answer: A

- Watch Video Solution

2. The figure here shows a portion of a circuit.

What are the magnitude and direction of the
current i in the lower right-hand wire

A. 7A
B. 8 A
C. 6 A
D. 2 A

Answer: B

A group of N cells where e.m.f. varies directly with the internal resistance as per the equation $E_{N}=1.5 r_{N}$ are connected as
shown in the figure. The current I in the circuit is:
A. 0.51 amp
B. 5.1amp
C. 0.15 amp
D. 1.5 amp

Answer: D

D Watch Video Solution

4. Two batteries of emf ε_{1} and $\varepsilon_{2}\left(\varepsilon_{2}>\varepsilon_{1}\right.$ and
internal resistances r_{1} and r_{2} respectively are
connected in parallel as shown in Fig. 2 (EP).1.

A. Two equivalent emf $\varepsilon_{e q}$ of the two cells is
between ε_{1} and ε_{2}.ie. $\varepsilon_{1}<\varepsilon_{e q}<\varepsilon_{2}$
B. The equivalent emf $e_{e q}$ is smaller than ε_{1}
C. The $\varepsilon_{e q}=\varepsilon_{1}+\varepsilon_{2}$ always
D. $\varepsilon_{e q}$ is independent of internal resistance

Answer: A

- Watch Video Solution

5. Twelve cells each having the same e.m.f are
connected in series and are kept to a closed
box. Some of the cell are connected in reverse order .The battery is connected in series with an ammeter an external resistance R and two cells of the same type as an in the battery .The
current when they and support each other is 3 ampere and current is 2 ampare when the two
oppose each other. How many cells are

connected in servese order ?

A. 4
B. 1
C. 3
D. 2

Answer: B
(Watch Video Solution
6. A battery of 24 cells each of emf 1.5 V and internal resistnace 2Ω is to be connected in order to send the maximum current through a 12Ω resistor. The correct arrangement of cells will be
A. 2 rows of 12 cells connected in parallel
B. 3rows of 8 cells connected in parallel
C. 4 rows of 6 cells connected in parallel
D. All of these

- Watch Video Solution

7. In an experiment, a graph was plotted of the potential difference V between the terminals of a cell against the circuit current "I" by varying load rheostat, internal conductance of the cell is given by

A. $x y$
B. y / x
C. x / y
D. $(x-y)$

Answer: B

- Watch Video Solution

8. The magnitude and direction of the current in the circuit shown will be

A. $7 / 3$ A from a to b through c
B. $7 / 3$ A from b to a through c
C. 1 A from b to a through c

D. 1A from a to b through c

Answer: B

9. The internal resistances of two cells shown
are 0.1Ω and 0.3Ω. If $R=0.2 \Omega$, its potential
difference across the cell

A. B will be zero
B. A will be zero
C. A and B will be $2 V$

D. A will be gt 2 V and B will be lt 2 V

Answer: D

D Watch Video Solution

10. Two cells, having the same emf, are connected in series through an external resistance R. Cells have internal resistance r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. When the circuit is closed, the potentail difference across the first cell is zero the value of R is
A. $r_{1}+r_{2}$
B. $r_{1}-r_{2}$
C. $\frac{r_{1}+r_{2}}{2}$
D. $\frac{r-(1)-r_{2}}{2}$

Answer: A

D Watch Video Solution

11. In the circuit shown here,
$E_{1}=E_{2}=E_{3}=2 V$ and $R_{1}=R_{2}=4 o h m s$
. The current flowing between point A and B
through battery E_{2} is

A. zero
B. $2 A$ from A to B
C. $2 A$ from B to A
D. None of the above
12. Consider the circuit shown in the figure.

The current I_{3} is equal to

A. 5 A
B. 3 A
C. $-3 A$
D. $-\frac{5}{6} A$

Answer: D

D Watch Video Solution

13. As the switch S is closed in the circuit shown in figure, current passed through it is.

A. 4.5 A
B. 6.0 A
C. 3.0 A
D. Zero

Answer: A
14. The current in the arm CD of the circuit will be

A. i_{1}
B. $i_{2}+i_{3}$
C. $I_{1}+i_{3}$
D. $i_{1}-i_{2}+i_{3}$

Answer: A::B

- Watch Video Solution

15. Kirchoff's junction rule is a reflection of
A. conservation of current density vector
B. conservation of charge
C. the fact that the momentum with which

a charged particle approaches a junction

is unchanged (as a vector) as the charged particle leaves the junction

D. the fact that there is no accumulation of

charges at a junction

Answer: B::D

D Watch Video Solution

Kirchhoff S Law And Simple Circuits

1. In the circuit element given here, if the potential at point $B=V_{B}=0$, then the potentials of A and D are given as

A. $V_{A}=-1.5 V, V_{D}=+2.5 V$
B. $V_{A}=+1.5 V, V_{D}=+2.5 V$
C. $V_{A}=+1.5 V, V_{D}=+0.5 \mathrm{~V}$
D. $V_{A}=+1.5 V, V_{D}=-0.5 \mathrm{~V}$

- Watch Video Solution

2. The magnitude in i in ampere unit is

A. 0.1
B. 0.3
C. 0.6
D. None of these

Answer: A

- Watch Video Solution

3. If in the circuit shown below, the internal resistance of the battery is 1.5Ω and V_{P} and V_{Q} are the potential at P and Q respectively, what is the potential difference between the
point P and Q ?

D Watch Video Solution

4. In the circuit shown below
$E_{1}=4.0 \mathrm{~V}, R_{1}=2 \Omega, E_{2}=6.0 \mathrm{~V}, R_{2}=4 \Omega$
and $R_{3}=2 \Omega$. The current I_{1} is

A. 1.6A
B. 1.8 A
C. 1.25A
D. 1.0A

Answer: B

- Watch Video Solution

5. Consider the circuit shown in the figure.

Both the circuits are taking same current from
battery but current through R in the second circuit is $\frac{1}{10}$ th of current through R in the first circuit. If R is 11Ω, the value of R_{1}

A. 9.9Ω
B. 11Ω
C. 8.8Ω
D. 7.7Ω

Answer: A

- Watch Video Solution

6. Current through XY of circuit shown is

A. 1A
B. 4 A
C. $2 A$ from B to A
D. 3A

Answer: C

D Watch Video Solution

7. In the circuit of adjoining figure the current through 12Ω resister will be

A. 1A
B. $1 / 5 \mathrm{~A}$
C. 2/5A
D. OA

Answer: D

D Watch Video Solution

8. The circuit is shown in the following figure.

The potential at points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and O are given. The currents in the resistance R_{1}, R_{2}
and R_{3} are in the ratio of $4: 2: 1$. What is the ratio of resistance R_{1}, R_{2}, R_{3} and R_{4} ?

A. $3: 2: 12: 16$
B. $2: 3: 36: 12$
C. $4: 3: 12: 32$
D. $3: 4: 14: 32$

D View Text Solution

9. In the circuit as shown if the current drawn through battery is $0.5 A$. Then

A. Resistance $\mathrm{R}=46 \Omega$
B. Current through 20Ω resistance is 0.1 A
C. Potential difference across the middle resistance is 2 V
D. Potential difference across the 20Ω
resistance is 4 V

Answer: A::B::C

D Watch Video Solution
10. Consider a simple circuit shown in Fig.

2(ET).2. stands for a variable resistance $R^{\prime} . R^{\prime}$
can vary from R_{0} to infinity. r is internal
$\left(r \ll R \ll l R_{0}\right)$

A. Potential drop across $A B$ is nealry
constant as R^{\prime} is varied
B. Current through R^{\prime} is nearly a constant as R^{\prime} is varied
C. Current I depends sensitivity on R^{\prime}
D. $I \geq\left(\frac{V}{r+R}\right)$ always

Answer: A::D

D Watch Video Solution
11. The circuit consists of resistors and ideal
cells. I_{1} and I_{2} are current through branches
indicated in the figure, V_{A} and V_{B} is the
potential at points A and B on the circuit

The value of $\frac{I_{2}}{I_{1}}$ is:
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

12. The circuit consists of resistors and ideal
cells. I_{1} and I_{2} are current through branches
indicated in the figure, V_{A} and V_{B} is the
potential at points A and B on the circuit

The value of $V_{A}-V_{B}$ in volts is:
A. 5
B. 10
C. 15
D. 30

Answer: D

- Watch Video Solution

13. In the given circuit, if resistance of each resistor is R :

Find the equivalent resistance between M and

N,
A. $5 / 2 R$
B. 5 R
C. $\left(\frac{31}{10}\right) R$
D. $\left(\frac{3}{5}\right) R$

Answer: D

D Watch Video Solution
14. In the given circuit, if resistance of each resistor is R :

How much current will flow through resistor 1,
if current entered at M is I :
A. $\frac{I}{5}$
B. $2 \frac{l}{5}$
C. $3 \frac{I}{5}$
D. $4 \frac{I}{5}$

Answer: A

D Watch Video Solution

15. In the given circuit, if resistance of each resistor is R :

The equivalent resistance between M and Q.
A. $\frac{R}{2}$
B. $\frac{R}{3}$
C. R
D. 2 R

Answer: C
(D) Watch Video Solution

