©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

NUCLEAR PHYSICS

Illustration

1. How many electrons protons, and neutrons are there in $12 g$ of ${ }_{6} C^{2}$ and in $14 g$ of ${ }_{6} C^{14}$?.

- Watch Video Solution

2. a. Find an approximate expression for the mass of a nucleus of mass number A, B. Find an expression for the volume of this nucleus in terms of the mass number. C. Find a numerical value for its density.
3. Calcualte the radius of $70 G e$.

- Watch Video Solution

4. The most common kind of iron nucleus has a mass number of 56 . Find the radius, approximate mass, and approximate density of the nucleus.

- Watch Video Solution

5. Calculate the electric potential energy due to the electric repulsion between two nuclei of ${ }^{\wedge} 12 C$ when they touch each other at the surface.

- Watch Video Solution

6. The most abundant isotope of helium has a $\cdot{ }_{2}^{4} \mathrm{H}$ nucleus whose mass is $6.6447 \times 10^{-27} \mathrm{~kg}$. For this nucleus, find (a) the mass defect and (b) the binding energy.

Given: Mass of the electron: $m_{e}=5.485799 \times 10^{-4} u$, mass of the proton: $m_{P}=1.007276 u$ and mass of the neutron: $m_{n}=1.008665 u$.

- Watch Video Solution

7. The atomic mass $\cdot{ }_{2}^{4} \mathrm{He}$ is $4.0026 u$ and the atomic mass of $\cdot{ }_{1}^{1} \mathrm{H}$ is 1.0078 u . Using atomic mass units instead of kilograms, obtain the binding energy of.$_{2}^{4} \mathrm{He}$ nucleus.

- Watch Video Solution

8. The nucleus of the deuterium atom, called the deuteron, consists of a proton and a neutron. Calculate the deuteron's binding energy, given atomic mass, i.e., the mass of a deuterium nucleus plus an electron is measured to be $2.014102 u$.

- Watch Video Solution

9. Calculate the binding energy for nucleon of . $6^{12} C$ nucleus, if mass of proton $m_{p}=10078 u$, mass of neutron $m_{n}=1.0087 u$, mass of $C_{12}, m_{C}=12.0000 u$, and $1 u=931.4 M e V$.

- Watch Video Solution

10. The atomic mass of uranium ${ }_{92}^{238} U$ is $23.058 u$, that of throium. ${ }_{90}^{234} \mathrm{Th}$ is $234.0436 u$ and that of an alpha particle.${ }_{2}^{4} \mathrm{He}$ is $4.006 u$, Determine the energy released when α - decay converts. ${ }_{92}^{238} U$ into ${ }_{92}^{238} U$. int.${ }_{90}^{234} T h$.

- Watch Video Solution

11. Refer to illustration 5.10 , the energy released by the α - decay of ${ }_{92}^{238} U$ is found to be4.3MeV. Since this energy is carried away as kinetic energy of the recoiling ${ }_{90}^{234} \mathrm{Th}$. nucleus and the α - particles, it follows that $K E_{T h}+K E_{\alpha}=4.3 M e V$. However, $K E_{T} h$ and $K E_{\alpha}$ are not equal.

Which particle carries away more kinetic energy, the $90 T h$ nucleus or the α-particle? .

- Watch Video Solution

12. The atomic mass of thorium ${ }_{.90}^{234} \mathrm{Th}$ is $234.04359 u$, while that of protactinium ${ }_{91}^{234} P a$ is $234.04330 u$. Find the energy released when β decay changes ${ }_{9}^{234} T h$ into

- Watch Video Solution

13. Consider the beta decay
${ }^{\wedge} 198 \mathrm{Au} \rightarrow{ }^{198} \mathrm{Hg} *+B \eta^{-1}+\vec{v}$.
where ^ $198 \mathrm{Hg}^{*}$ represents a mercury nucleus in an excited state at energy 1.088 MeV above the ground state. What can be the maximum kinetic energy of the electron emitted? The atomic mass of ${ }^{\wedge} 198 A u$ is $197.968233 u$ and that of ${ }^{\wedge} 198 \mathrm{Hg}$ is $197.966760 u$.
14. Find the energy liberated in the beta decay of ${ }_{6}^{14} \mathrm{C}$ to ${ }_{\cdot 7}^{14} \mathrm{~N}$ as represented by Eq.(iii). Equation (iii) refers to nuclei. Adding six electrons to both sides of Eq.(iii) gives
. $-6^{14} C$ atom $\rightarrow .-7^{14} N$.

- Watch Video Solution

15. What is the wavelenth of the 0.186 MeV gamma- ray photon emitted by radium ${ }_{88}^{226} R a$?

- Watch Video Solution

16. A radioactive sample has 6.0×10^{18} active nuclei at a certain instant. How many of these nuclei will still be in the same active state after two half-lives?
17. The half-life of a radioactive nuclide is 20 hours. What fraction of original activity will remain after 40 hours?

Watch Video Solution

18. Suppose 3.0×10^{7} radon atoms are trapped in a basement at a given time. The basement is sealed against further enetry of the gas. The half life of radon is 3.83 days. How many radon atoms remain after31 days?

- Watch Video Solution

19. In the above illustration, suppose there are 3.0×10^{7} radon atoms $T_{1} / 2=3.83$ days or $3.31 \times 10^{5} s$ trapped in a basement. (a) How many radon atoms remain after 31 days ? Find the activity (b) just after the basement is sealed against further entry of radon and (c) days later.

- Watch Video Solution

20. The decay constant for the radioactive nuclide $64 C u$ is $1.516 \times 10^{-5} s^{-1}$. Find the activity of a sample containing $1 \mu g$ of ^ 64 Cu . Atomic weight of copper $=63.5 \mathrm{~g}(\mathrm{~mol})^{-1}$. Neglect the mass difference between the given radioisotope and normal coper.

- Watch Video Solution

21. The half-life of ${ }^{\wedge} 198 A u$ is 2.7 days. Calculate (a) the decay constant, (b) the average-life and (C) the activity of 1.00 mg of ${ }^{\wedge} 198 \mathrm{Au}$. Take atomic weight of ${ }^{\wedge} 198 \mathrm{Au}$ to be $198 \mathrm{gmol}^{-1}$.

- Watch Video Solution

22. (a) Determine the number of carbon ${ }_{6}^{14} \mathrm{C}$ atoms present for every gram of carbon . _ $6^{12} C$ in a living organism. Find (b) The decay constant and (c) the activity of this sample.
23. The number of ${ }^{\wedge} 238 U$ atoms in an ancient rock equals the number of ${ }^{\wedge} 206 \mathrm{~Pb}$ atoms. The half-life of decay of ${ }^{\wedge} 238 U$ is $4.5 \times 10^{9} y$. Estimate the age of the rock assuming that all the ${ }^{\wedge} 206 \mathrm{~Pb}$ atoms are formed from the decay of ${ }^{\wedge} 238 U$.

- Watch Video Solution

24. A bottle of red wine is thought to have been sealed about 5years ago. The wine containa a number of different kinds of atoms, incluing carbon, oxygen,and hydrogen. Each of these has a radioactive isotope. The radiaoctive isotope of carbon is the familiar $\cdot{ }_{6}^{14} \mathrm{C}$ with a half-life of 5730years. The radioactive isotope of oxygen is..$_{8}^{15} \mathrm{O}$ and has a half-life of $122.2 s$. The radioactive isotope of hydrogen.${ }_{1}^{3} \mathrm{H}$ and is called tritium, its half-life is 12.33 years. The activity of each of these isotopes is known at the time the bottle was sealed. However, only one of the isotopes is useful for determining the age of the wine accurately. Which is it?
25. A radioactive nucleus undergoes a series of decay according to the scheme
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta^{-}} A_{2} \xrightarrow{\alpha} A_{3}^{172} \xrightarrow{\gamma} A_{4}$.

- Watch Video Solution

26. Suppose, the daughter nucleus in a nuclear decay is itself radioactive.

Let λ_{p} and λ_{d} be the decay constants of the parent and the daughter nuclei. Also, let N_{p} and N_{d} be the number of parent and daughter nuclei at time t. Find the condition for which the number of daughter nuclei becomes constant.

- Watch Video Solution

27. A radioactive nucleus can decay by two different processes. The halflife for the first process is t_{1} and that for the second process is t_{2}. Show that the effective half-life t of the nucleus is given by

$$
\frac{1}{t}=\frac{1}{t_{1}}+\frac{1}{t_{2}}
$$

(D) Watch Video Solution

28. A factory produces a radioactive substance A at a constant rate R which decays with a decay constant λ to form a stable substance. Find (a) the number of nuclei of A and (b) number of nuclei of B, at any time t assuming the production of A starts at $t=0$. (c) Also, find out the maximum number of nuclei of A present at any time during its formation.

- Watch Video Solution

29. Nuclei of radioactive element A are being produced at a constant rate.
α. The element has a decay constant λ. At time $t=0$, there are N_{0} nuclei of the element.
(a) Calculate the number N of nuclei of A at time t .
(b) IF $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life time of A and also the limiting value of N at $t \rightarrow \infty$.
30. The mean lives of an unstable nucleus in two different decay processes are $1620 y r$ and $405 y r$, respectively. Find out the time during which three-fourth of a sample will decay.

- Watch Video Solution

31. Find the half-life of uranium, given that $3.32 \times 10^{7} \mathrm{~g}$ radium is found per gram of uranium in old minerals. The atomic weights of uranium and radium are 238 and 226 and half-life of radium is 1600 years (Avogadro number is $6.023 \times 10^{23} / g-$ atom).

- Watch Video Solution

32. Find the Q value of the reaction $P+.{ }^{7} \mathrm{Li} \rightarrow .{ }^{4} \mathrm{He}+.{ }^{4} \mathrm{He}$. Determine whether the reaction is exothermic or endothermic. The atomic masses of $.{ }^{1} \mathrm{H}, .{ }^{4} \mathrm{He}$ and.${ }^{7} \mathrm{Li}$ are $1.007825 u, 4.002603 u$, and $7.016004 u$, respectively.
33. Consider a collision between two particles one of which is at rest and the other strikes it head on with momentum P_{1}. Calculate the energy of reaction Q in terms of the kinetic energy of the particles before and they collide.

Watch Video Solution

34. Two other possible ways by which . ${ }^{235} U$ can undergo fission when bombarded with a neutron are (1) by the release of . ${ }^{140} \mathrm{Xe}$ and.${ }^{94} \mathrm{Sr}$ as fission fragments and (2) by the release of . ${ }^{132} S n$ and.${ }^{101} \mathrm{Mo}$ as fission fragments. In each case, neutrons are also released. Find the number of neutrons released in each of these events.

- Watch Video Solution

35. Calculate the total energy released if 1.0 kg of.${ }^{235} U$ undergoes fission, taking the disintergration energy per event to be $Q=208 \mathrm{MeV}$ (a more accurate value than the estimate given previously).

- Watch Video Solution

36. On disintegration of one atom of ${ }^{235} U$, the amount of energy obtained is 200 MeV . The power obtained in a reactor is 1000 kilo watt. How many atoms are disintegrated per second in the reactor? What is the decay in mass per hour?

- Watch Video Solution

37. A deuterium reaction that occurs in an experimental fusion reactor is in two stage:
(a) Two deuterium $\left({ }_{1}^{2} \mathrm{D}\right)$ nuclei fuse together to form a tritium nucleus, with a proton as a by product written as $D(D, p) T$.
(b) A tritium nucleus fuses with another deuterium nucleus to form a
helium ${ }_{2}^{4} \mathrm{He}$ nucleus with neutron as a by - product, written as T (D, n) .${ }_{2}^{4} \mathrm{He}$.

Compute (a) the energy released in each of the two stages, (b) the energy released in the combined reaction per deutrium. (c) What percentage of the mass energy of the initial deuterium is released. Given,
${ }_{.}^{2} D=2.014102 a m u$
${ }_{.}^{3} T=3.016049$
${ }_{\cdot 2}^{4} \mathrm{He}=4.002603 \mathrm{amu}$.
${ }_{1}^{1} H=1.007825 a \mathrm{mu}$
$\cdot{ }_{0}^{1} n=1.00665 a m u$

- Watch Video Solution

38. In the process of nuclear fission of $1 g$ uranium, the mass lost is 0.92 mg . The efficiency of power house run by the fission reactor is 10% .To obtain 400 megawatt power from the power house, how much uranium will be required per hour? $\left(c=3 \times 10^{8} \mathrm{~ms}^{-1}\right)$.

- Watch Video Solution

39. A nuclear reactor using ${ }^{235} U$ generates $250 M W$ of electric power. The efficiency of the reactor (i.e., efficiency of conversion of thermal energy into electrical energy) is 25%. What is the amount of ${ }^{235} U$ used in the reactor per year? The thermal energy released per fission of ${ }^{235} U$ is 200 MeV .

- Watch Video Solution

40. What is the power output of a $.92 U^{235}$ reactor if it is takes 30 days to use up 2 kg of fuel, and if each fission gives 185 MeV of useable energy ?.

- Watch Video Solution

41. A nuclear explosion is designed to deliver $1 M W$ of heat energy, how many fission events must be required in a second to attain this power level. If this explosion is designed with a nuclear fuel consisting of uranium 235 to run a reactor at this power level for one year, then
calculate the amount of fuel needed. You can assume that the calculate the amount of energy released per fission event is 200 MeV .

- Watch Video Solution

Solved Examples

1. The disintegration rate of a certain radioactive sample at any instant is 4750 disintegrations per minute. Five minutes later the rate becomes 2700 per minute. Calculate
(a) decay constant and (b) half-life of the sample

- Watch Video Solution

2. There is a stream of neutrons with a kinetic energy of 0.0327 eV . If the half-life of neutrons is $700 s$, what fraction of neutrons will decay before they travel is distance of 10 m ? Given mass of neutron

$$
=1.676 \times 10^{-27} \mathrm{~kg}
$$

3. The binding energies per nucleon for deuteron (. ${ }_{1} H^{2}$) and helium (${ }_{\cdot 2} \mathrm{He}^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when two deuterons fuse to form a helium nucleus (.$_{2} \mathrm{He}^{4}$) is \qquad

- Watch Video Solution

4. Some amount of a radioactive substance (half-life $=10$ days) is spread inside a room and consequently the level of radiation become 50 times the permissible level for normal occupancy of the room. After how many days will the room be safe for occupation?.

- Watch Video Solution

5. A small quantity of solution containing $N a^{24}$ radio nuclide (half $-l$ if $e=15 h$) of activity 1.0 microcurie is injected into the blood of a person. A sample of the blood of volume $1 \mathrm{~cm}^{3}$ taken after $5 h$
shows an activity of 296 disintegrations per minute. Determine the total volume of the blood in the body of the person. Assume that the radioactive solution mixes uniformly in the blood of person. (1 curie $=3.7 \times 10^{10}$ disintegrations per second)

- Watch Video Solution

6. At a given instant there are 25% undecayed radioactive nuclei in a sample. After $10 s$ the number of undecayed nuclei reduces to 12.5%.

Calculate

(a) mean life of the nuclei,
(b) the time in which the number of undecayed nuclei will further reduce to 6.25% of the reduced number.

- Watch Video Solution

7. In an ore containing uranium, the ratio of.$^{238} U$ to ${ }^{206} \mathrm{~Pb}$ nuclei is 3 .

Calculate the age of the ore, assuming that all the lead present in the ore
is the final stable product of . ${ }^{238} U$. Take the half-life of ${ }^{\wedge} 238 U$ to be 4.5×10^{9} years.

- Watch Video Solution

8. The element curium ${ }_{96}^{248} \mathrm{Cm}$ has a mean life of $10^{13} s$. Its primary decay modes are spontaneous fission and α-decay, the former with a probability of 8% and the later with a probability of 92%, each fission releases 200 MeV of energy. The masses involved in decay are as follows
${ }_{.96}^{248} \mathrm{Cm}=248.072220 u$,
${ }_{\cdot 94}^{244} P_{u}=244.064100 u$ and $.{ }_{2}^{4} \mathrm{He}=4.002603 u$. Calculate the power output from a sample of $10^{20} \mathrm{Cm}$ atoms. $\left(1 u=931 \mathrm{MeV} / \mathrm{c}^{2}\right)$

- Watch Video Solution

9. In a nuclear reactor . ${ }^{235} \mathrm{U}$ undergoes fission liberating 200 MeV of energy. The reactor has a 10% efficiency and produces 1000 MW power. If the reactor is to function for $10 y r$, find the total mass of uranium required.

- Watch Video Solution

10. A nucleus at rest undergoes a decay emitting an a particle of de Broglie wavelength $\lambda=5.76 \times 10^{-15} \mathrm{~m}$ if the mass of the daughter nucleus is 223.610 amu and that of alpha particle is $4.002 a \mu$, determine the total kinetic energy in the final state Hence, obtain the mass of the parent nucleus in amu ($1 \mathrm{amu}=931.470 \mathrm{MeV} / \mathrm{e}^{2}$)

- Watch Video Solution

11. A radioactive element decays by β-emission. A detector records n beta particles in $2 s$ and in next $2 s$ it records $0.75 n$ beta particles. Find mean life correct to nearest whole number. Given $\ln |2|=0.6931$, In $|3|=1.0986$.

- Watch Video Solution

12. A rock is 1.5×10^{9} years old. The rock contains.${ }^{238} U$ which disintegretes to form.$^{236} U$. Assume that there was no ${ }^{206} \mathrm{~Pb}$ in the rock initially and it is the only stable product fromed by the decay. Calculate the ratio of number of nuclei of ${ }^{238} U$ to that of ${ }^{206} \mathrm{~Pb}$ in the rock. Halflife of . ${ }^{238} U$ is 4.5×10^{9}. years. $\left(2^{\wedge}(1 / / 3)=1.259\right)^{\prime}$.

- Watch Video Solution

13. What is the minimum photon energy required to remove the least bound neutron of $\cdot{ }_{20}^{40} \mathrm{Ca}$ and ${ }^{40} \mathrm{Ar}$. The nesessary atomic masses (in μ) are given below:

$$
\begin{aligned}
M\left({ }^{40} C a\right) & =39.962591 u \\
M\left({ }^{39} C a\right) & =38.970719 u \\
M\left({ }^{40} A r\right) & =39.962383 \\
M\left({ }^{39} A r\right) & =38.964314 u \\
m_{n} & =1.008665 u
\end{aligned}
$$

- Watch Video Solution

14. Consider a body at rest in the L-Frame, which explodes into fragments of masses m_{1} and m_{2}. Calculate energies of the fragments of the body.

Before collision

After collision

- Watch Video Solution

15. (a) Find the energy needed to remove a neutron from the nucleus of the calcium isotope ${ }_{20}^{42} C a$.
(b) Find the energy needed to remove a proton from this nucleus.
(c) Why are these energies different? Mass of . $\quad(20)^{40} C a=40.962278 u$, mass of proton $=1.007825 u$.

(Watch Video Solution

16. Write the decay equations and expression for the disintegration energy Q of the following decay: β - decay,electron capture.

- Watch Video Solution

17. Find whether α - deacy or any of the β - decay are allowed for ${ }_{89}^{226} A c$.

- Watch Video Solution

Exercise 5.1

1. How many electron potons and mass number in a nucleus of atomic number 11 and mass 24 ?
(i) number of electron $=$ (ii)number of proton $=$ (iii)number of neutrons $=$

- Watch Video Solution

2. Calculate the average binding energy per nucleon of ${ }_{41}^{93} \mathrm{Nb}$ having mass 9.2.906 u..

- Watch Video Solution

3. Protons and neutrons exit together in an extermely small space within the nucleus. How is this possible when protons replel each other?

- Watch Video Solution

4. A nucelus has binding energy of 100 MeV . It further releases 10 MeV energy. Find the new binding energy of the nucleus.

- Watch Video Solution

5. A nuclear reaction is given as
$A+B \rightarrow C+D$

Binding energies of A, B, C, and D, are given as B_{1}, B_{2}, B_{3} and B_{4}.
Find the energy released in the reaction.

- Watch Video Solution

6. Calculate the binding energy of an alpha particle from the following data:
massof $_{1}^{1} H a \rightarrow m=1.007825 u$
mass of neutron $=1.008665 u$
mass of $_4^{2} \mathrm{Hea} \rightarrow m=4.00260 u$.
Take $1 u=931 \mathrm{MeVc}^{-2}$

- Watch Video Solution

7. Find the binding energy of $-26^{56} \mathrm{Fe}$. Atomic mass of ${ }^{\wedge} 56 \mathrm{Fe}$ is $55.9349 u$ and that of ${ }^{\wedge} 1 H$ is $1.00783 u$. Mass of neutron $=1.00867 u$.

- Watch Video Solution

8. Use Avogadrs's number to show that the atomic mass unit is 1 u $=1.66 \times 10^{-27} \mathrm{~kg}$.

- Watch Video Solution

9. Take a sample of lead and oxygen. They contain different atoms and the density of solid lead is much greater than that of gaseosu oxygen. Decide whether the density of the nucleus in a lead atom is greater than, approximately equa to, or less than that in an oxygen atom.

- Watch Video Solution

10. Show that the nuclide.$^{8} \mathrm{Be}$ has a positive binding energy but is unstable with respect to decay into two alpa particles, where masses of neutron,.${ }^{1} \mathrm{H}$, and.${ }^{8} \mathrm{Be}$ are $1.008665 \mathrm{u}, 1.007825 u$, and $8.005305 u$, respectively.
11. A uranium nucleus (atomic number 92 , mass number 231) emits an α particle and the resultant nucleus emits a β-particles. What are the atomic and mass numbers of the final nucleus? .

- Watch Video Solution

2. A radioactive nucleus undergoes a series of decay according to the scheme

If the mass number and atomic number of A are 180 and 72 , respectively, what are these number A_{4} ?.

- Watch Video Solution

3. A nucleus, absorbing a neutron, emits an electron to go over to neptunium which on futher emitting an electron goes over to plutonium.

How would you represent the resulting plutonium?

- Watch Video Solution

4. A uranium nucleus $U-238$ of atomic number92 emits two α-particles and two β-particles and trasnforms into a thorium nucleus. What is the mass number and atomic number of the thorium nucleus so produced?

- Watch Video Solution

5. How many electrons protons, and neutrons are there in $12 g$ of ${ }_{6} C^{2}$ and in $14 g$ of ${ }_{6} C^{14}$?.

- Watch Video Solution

6. Determine the product of the reaction:
${ }_{.}^{7} \mathrm{Li}+{ }_{.}^{4} \mathrm{He} \rightarrow$? $+n$
What is the Q value of the reaction?
7. The half life of radioactive Radon is 3.8 days . The time at the end of which $\frac{1}{20} t h$ of the radon sample will remain undecayed is (given $\log e=0.4343$)

- Watch Video Solution

8. In the final Uranium radioactive series the initial nucleus is U_{92}^{238} and the final nucleus is $P b_{82}^{206}$. When Uranium nucleus decays to lead, the number of a - particle is And the number of β - particles emitted is

- Watch Video Solution

9. A radioactive sample has a mass m, decay cosntant λ, and molecular weight M. If the Avogadro number is N_{A}, then
(a) find the initial number of neclei present, (b) find the number of
deacyed nuceli after a time t, (c) find the activity of the sample after a time t,

- Watch Video Solution

10. Calculate the time taken to decay 100 percent of a radioactive sample in terms of (a) half- life T and
(b) mean-life $T_{a v}$

Watch Video Solution

11. The activity of a sample of radioactive material is A_{1} at time t_{1} and A_{2} at time $t_{2}\left(t_{2} \leq t_{1}\right)$. Obtain an expression for its mean life.

- Watch Video Solution

12. A ${ }_{92}^{238}$ Th undergoes alpha decay. What is the resulting daughter nucleus?
13. Is the sulphur isotope ${ }_{16}^{38} S$ likely to be stable?

- Watch Video Solution

14. Determine the average. ${ }^{14} \mathrm{C}$ activity in decays per minute per gram of natural carbon found in living organisms if the concentration of. ${ }^{14} \mathrm{C}$ relative to that of.${ }^{12} C$ is 1.4×10^{-12} and half -life of.${ }^{14} C$ is $T_{1 / 2}=57.30$ years.

- Watch Video Solution

15. Radium 226 is found to have a decay constant of $1.36 \times 10^{-11} \mathrm{~Bq}$.

Determine its half-life in years. If a 200 g sample of radium was taken in
1902, how much of it will remain a hundered years later?
16. A bottle of red wine is thought to have been sealed about 5years ago.

The wine contain a number of different kinds of atoms, including carbon, oxygen,and hydrogen. Each of these has a radioactive isotope. The radioactive isotope of carbon is the familiar ${ }_{6}^{14} \mathrm{C}$ with a half-life of $5730 y e a r s$. The radioactive isotope of oxygen is..$_{8}^{15} \mathrm{O}$ and has a half-life of $122.2 s$. The radioactive isotope of hydrogen.$_{1}^{3} H$ and is called tritium, its half-life is 12.33 years. The activity of each of these isotopes is known at the time the bottle was sealed. However, only one of the isotopes is useful for determining the age of the wine accurately. Which is it?

- Watch Video Solution

17. A radio nuclide A_{1} with decay constant λ_{1} transforms into a radio nuclide A_{2} with decay constant λ_{2}. Assuming that at the initial moment, the preparation contained only the radio nuclide A_{1}
(a) Find the equation decribing accumulation of radio nuclide A_{2} with time. (b) Find the time interval after which the activity of radio nuclide A_{2} reaches its maximum value.
18. Consider the beta decay of an unstable ${ }_{6}^{14} \mathrm{C}$ nuleus initially at rest: ${ }_{6}^{{ }_{6}^{14}} C \rightarrow ._{7}^{14} N+.{ }_{-1}^{0} e+v \cdot e$. Is it possible for the maximum kinetic energy of the emiited beta particle to be exactly equal to Q ?

- Watch Video Solution

19. The atomic mass of uranium ${ }_{92}^{238} U$ is $23.058 u$, that of throium. ${ }_{90}^{234} \mathrm{Th}$ is $234.0436 u$ and that of an alpha particle ${ }_{2}^{4} \mathrm{He}$ is $4.006 u$, Determine the energy released when α - decay converts. ${ }_{92}^{238} U$ into ${ }_{92}^{238} U$. int.${ }_{90}^{234} T h$.

- Watch Video Solution

20. Refer to illustration 5.10 , the energy released by the α - decay of ${ }_{92}^{238} U$ is found to be4.3MeV. Since this energy is carried away as kinetic energy of the recoiling ${ }_{90}^{234} \mathrm{Th}$. nucleus and the α - particles, it follows
that $K E_{T h}+K E_{\alpha}=4.3 M e V$. However, $K E_{T} h$ and $K E_{\alpha}$ are not equal. Which particle carries away more kinetic energy, the ${ }^{234} T h$ nucleus or the α-particle? .

(Watch Video Solution

21. Estiamte the minium amount of ${ }_{.235}^{92} U$ that needs to undergo fission in order to run a $1000 M W$ power reactor per year of continuous operartion. Assume an efficiency of about 33 percent.

(Watch Video Solution

22. The isotope $\cdot{ }_{6}^{14} C$ is radioactive and has a half-life of 5730 years. If you starts with a sample of 1000 carbon -14 niclei, how many will still be around in 17,190 years?

- Watch Video Solution

23. The half-life of the radioactive nucleus ${ }_{86}^{226} R a$ is $1.6 \times 10^{3} y r$. If a sample contains 3.0×10^{16} such nuclei, determine the activity at this time.

- Watch Video Solution

24. Radon, ${ }_{86}^{222} R n$, is a radioactive gas that can be trapped in the basement of homes, and its presence in high concnetrations is a known health hazard. Radon has a half-life of $3.83 d$ days. A gas sample contains 4.0×10^{8} radon atoms initially.
(a) How many atoms will remain after 12days have passed if no more radon leaks in? (b) What is the initial activity of the radon sample?

- Watch Video Solution

25. The ${ }_{.88}^{226} R a$ nucleus undergoes α-decay to ${ }_{.88}^{226} R n$. Calculate the amount of energy liberated in this decay. Take the mass of.${ }_{88}^{226} R a$ to be
$226.025402 u$, that of ${ }_{88}^{226} R n$ to be $222.017571 u$, and that of.${ }_{2}^{4} \mathrm{He}$ to be $4.002602 u$.

- Watch Video Solution

26. Calculate the energy released when three alpha particles combine to form a ${ }^{\wedge} 12 \mathrm{C}$ nucleus. The atomic mass of ${ }_{-} 2^{4} \mathrm{He}$ is $4.002603 u$.

- Watch Video Solution

27. (a) Find the energy needed to remove a neutron from the nucleus of the calcium isotope ${ }_{20}^{42} C a$.
(b) Find the energy needed to remove a proton from this nucleus.
(c) Why are these energies different? Mass of $.{ }_{20}^{40} C a=40.962278 u$, mass of proton $=1.007825 u$.

Subjective

1. In a certain hypothetical radioactive decay process, species A decays into spesies B and species B decays into C according to the reactions
$A \rightarrow 2 B+$ particles + energy
$B \rightarrow 2 C+$ particles + energy
The decay constant for species B is $\lambda_{2}=100 \mathrm{~s}^{-1}$. Initially, 10^{4} moles of species of A were present while there was no none of B and C. It was found that species B reaches its maximum number at a time $t_{0}=21 n(10) s$. Calcualte the value of maximum number of moles of B.

- Watch Video Solution

2. ' m_{1} ' g of non-radioactive isotopes $\cdot z X^{A}$ are mixed with ' M_{2} ' g of the radioactive isotopes ${ }_{z} X^{A^{\prime}}$. How much will the specific activity decreases ? Half-life of ${ }_{\cdot z} X^{A^{\prime}}=T$ Take N_{A} as Avagardo number.

- Watch Video Solution

3. C^{14} disintegrates by β-emission with a reaction eneregy (Qvalue) of 0.155 MeV .A β-particle with an energy of 0.025 MeV is emitted in a direction at 135° to the direction of motion of the recoil nucleus. Determine the momneta of the three particles $\left(\beta^{-}=\bar{V},{ }^{14} N\right)$ involved in this disintegration in $\mathrm{MeV} / \mathrm{c}$ units (where c is speed of light in vaccum)

$$
\left(M_{0}=0.511 \mathrm{MeV} / c^{2}\right) .
$$

- Watch Video Solution

4. A radio nuclide with disintegration constant λ is produced in a reactor at a constant rate α nuclei per second. During each decay energy E_{0} is released. 20% of this energy is utilized in increasing the temperature of water. Find the increase in temperature of m mass of water in time t. Specific heat of water is s. Assume that there is no loss of energy through water surface.
5. A stable nuclei C is formed from two radioactive nuclei A and B with decay constant of λ_{1} and λ_{2} respectively. Initially, the number of nuclei of A is N_{0} and that of B is zero. Nuclei B are produced at a constant rate of P. Find the number of the nuclei of C after time t.

- Watch Video Solution

6. Suppose a nucleus initally at rest undergoes α decay according to equation
${ }_{.}{ }_{92}^{235} X \rightarrow Y+\alpha$
At $t=0$, the emitted α-partilces enter a region of space where a uniform magnetic field $\vec{B}=B_{0} \hat{j}$ and elcertis field $\vec{E}=E_{0} \hat{i}$ exist. The α-prticles enters in the region with velocity $\vec{V}=v_{0} \hat{j}$ from $x=0$. At time $t=\sqrt{3} \times 10^{6} \frac{m_{0}}{q_{0} E_{0}} s$, the particle was observed to have speed twice the initial velocity v_{0}. Then, find (a) the velocity v_{0} of the α-particles,
(b) the initial velocity v_{0} of the α-particle, (c) the binding energy per nucleon of the α-particle.
$[$ Given $\operatorname{that} m(Y)=221.03 u, m(\alpha)=4.003 u, m(n)=1.09 u, m(P)=1.0$

- Watch Video Solution

7. Natural uranium is a mixture of three isotopes ${ }_{92}^{234} U,{ }_{92}^{235} U$ and ${ }_{92}^{238} U$ with mass percentage $0.01 \%, 0.71 \%$ and 99.28% respectively. The half-life of three isotopes are $2.5 \times 10^{5} y r, 7.1 \times 10^{8} y r$ and $4.5 \times 10^{9} y r$ respectively.

Determine the share of radioactivity of each isotope into the total activity of the natural uranium.

- Watch Video Solution

8. A nuclear reaction is given us
$P+{ }^{15} N \rightarrow{ }_{Z}^{A} X+n$
(a). Find, A, Z and identity the nucleus X. (b) Find the Q value of the reaction. (c) If the proton were to collide with the.${ }^{15} \mathrm{~N}$ at rest, find the minimum KE needed by the proton to initiate the above reaction. (d) If
the proton has twice energy in (c) and the outgoing neutron emerges at an angle of 90° with the direction of the incident proton, find the momentum of the protons and neutrons.
[Given, $m(p)=1.007825 u, m\left(.{ }^{15} C\right)=15.0106 u$,
$\left.m\left(.{ }^{16} N\right)=16.0061 u, m\left(.{ }^{15} N\right)=15.000 u\right)$,
$m\left(.{ }^{16} O\right)=15.9949 u, m(u)=1.0086665 u$,
$m\left(.{ }^{15} O\right)=15.0031 u$, and $\left.1 u \approx 931.5 M e V.\right]$

D View Text Solution

9. ${ }_{235}^{239} P u .94$ is undergoing $\alpha-$ decay according to the equation ${ }_{94}^{235} \mathrm{Pu} \rightarrow\left({ }_{97}^{235} \mathrm{U}\right)+{ }_{.}^{4} \mathrm{He}$. The energy released in the process is mostly kinetic energy of the α-particle. However, a part of the energy is released as γ rays. What is the speed of the emitted α-particle if the γ rays radiated out have energy of 0.90 MeV ? Given: Mass of ${ }_{\cdot 94}^{239} \mathrm{Pu}=239.05122 u$, mass of $\left({ }_{97}^{235} U\right)=235.04299 u$ and mass of ${ }_{.}^{4} \mathrm{He}=4.002602 u(1 u=931 \mathrm{MeV})$.

- Watch Video Solution

10. A tritrium gas target is bombared with a beam of monoenergetic protons of kinetic energy $K_{1}=3 \mathrm{MeV}$ The $K E$ of the neutron emiited at 30° to the inicdent beam is K_{2} ? Find the value of K_{1} / K_{2} (approximately in whole number). Atomic masses are $H^{1}=1.007276 a \mu$, $n^{1}=1.008665 a \mu,{ }_{.1} H^{3}=3.016050 a \mu,{ }_{.2} H e^{3}=3.016030 a \mu$.

- View Text Solution

11. Consider a nuclear reaction $A+B \rightarrow C$. A nucleus A moving with kinetic energy of 5 MeV collides with a nucleus B moving with kinetic energy of 3 MeV and forms a nucleus C in excited state. Find the kinetic energy of nucleus C just after its formation if it is formed in a state with excitation energy 10 MeV . Take masses of nuclei of A, B and C as $25.0,10.0,34.995 a \mu$, respectively.
$\left(1 a \mu=930 M e V / c^{2}\right)$.

- Watch Video Solution

12. Find the Q value of the reaction
$N^{14}+\alpha \rightarrow O^{17}+P$
The mass of are, respectively, $14.00307 u, 4.00260 u$, and $16.99913 u$. Find the total kinetic energy of the products if the striking α particles has the minimum kinetic energy required to initiate the reaction .

- Watch Video Solution

13. A sample has two isotopes A^{150+} and B having masses $50 g$ and $30 g$, respectively. A is radioactive and B is stable. A decays to A^{\prime} by emitting α-particles. The half-life of A is $2 h$. Find the mass of the sample after $4 h$ and number of α-particles emitted.

- Watch Video Solution

14. The nucleus.${ }^{23} \mathrm{Ne}$ decays by β-emission into the nucleus.${ }^{23} \mathrm{Na}$.

Write down the β-decay equation and determine the maximum kinetic
energy of the electrons emitted. Given, $\left(m\left({ }_{11}^{23} N e\right)=22.994466 a m u\right.$ and $m\left({ }_{11}^{23} N a=22.989770 a m u\right.$. Ignore the mass of antineutrino (\bar{v}).

- Watch Video Solution

15. A radioavtive source in the form of a metal sphere of daimeter $10^{-3} \mathrm{~m}$ emits β-particles at a constant rate of 6.25×10^{10} particles per second. If the source is electrically insulated, how long will it take for its potential to rise by 1.0 V , assuming that 80% of the emitted β-particles escape the socurce?

- Watch Video Solution

16. Find whether α - deacy or any of the β - decay are allowed for ${ }_{-89}^{226} A c$.
17. Show that $\left({ }_{26}^{55} \mathrm{Fe}\right)$ may electron capture, but not β^{+}decay.

Masses given are $M\left({ }_{26}^{55} \mathrm{Fe}\right)=54.938298 \mathrm{amu}$,
$M\left({ }_{25}^{55} M n\right)=54.938050 a m u, m(e)=0.000549 a m u$.

- Watch Video Solution

18. A sample of.${ }^{18} F$ is used internally as a medical diagnostic tool to look for the effects of the positron decay $\left(T_{1 / 2}=110 \mathrm{~min}\right)$. How long does it take for 99% of the.${ }^{18} F$ to decay?

- Watch Video Solution

19. Find the binding energy of an α-particle from the following data.

Mass of helium nucleus $=4.001235 \mathrm{amu}$
Mass of proton $=1.007277 \mathrm{amu}$
Mass of neutron $=1.00866 \mathrm{amu}$
(take $1 a m u=931.4813 \mathrm{MeV}$).
20. Assume that a neutron breaks into a proton and an electron. The energy released during this process is (mass of neutron $=1.6725 \times 10^{-27} \mathrm{~kg}$ mass of proton $=1.6725 \times 10^{-27} \mathrm{~kg}$ mass of electron $=9 \times 10^{-31} \mathrm{~kg}$)

Watch Video Solution

21. The binding energy of ${ }_{\cdot 17}^{35} \mathrm{Cl}$ nncleus. Take atomic mass of ${ }_{\cdot 6}^{12} \mathrm{C}$ as 12.000anu Take $R_{0}=1.2 \times 10-{ }^{15} \mathrm{~m}$.

- Watch Video Solution

22. Find the density of ${ }_{6}^{12} C$ nucleus. Take atomic mass of ${ }_{6}^{12} C$ as 12.00 amu Take $R_{0}=1.2 \times 10^{-15} \mathrm{~m}$.
23. Calculate the binding energy per nucleon for ${ }_{10}^{20} \mathrm{Ne},{ }_{26}^{56} \mathrm{Fe}$ and ${ }_{98}^{238} \mathrm{U}$. Given that mass of neutron is $1.008665 a m u$, mass of proton is 1.007825 amu , mass of ${ }_{\cdot 10}^{20} \mathrm{Ne}$ is $19.9924 a \mathrm{mu}$, mass of ${ }_{\cdot 26}^{56} \mathrm{Fe}$ is 55.93492amu and mass of ${ }_{92}^{238} U$ is 238.050783 amu .

- Watch Video Solution

24. One gram of a radiactive material having a half-life period of 2 years is kept in store for a duration of 4 years. Calculate how much of the material ramins uncahnged.

- Watch Video Solution

25. One gram of a radiactive substance takes 50 to lose 1 centigram. Find its half-life period.

- Watch Video Solution

26. One gram ofo a radioactive substance disintegrates at the rate of 3.7×10^{10} disintegarations per second. The atomic mass of the subsatnce is 226 . Calculate its mean life.

- Watch Video Solution

27. There is a stream of neutrons with a kinetic energy of 0.0327 eV . If the half-life of neutrons is $700 s$, what fraction of neutrons will decay before they travel is distance of 10 m ? Given mass of neutron $=1.676 \times 10^{-27} \mathrm{~kg}$.

- Watch Video Solution

28. Nuclei of radioactive element A are being produced at a constant rate.
α. The element has a decay constant λ. At time $t=0$, there are N_{0} nuclei of the element.
(a) Calculate the number N of nuclei of A at time t .
(b) IF $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life time of A and also the limiting value of N at $t \rightarrow \infty$.

- Watch Video Solution

29. The fission type of warhead of some guided missiles is estimated to be equivalent to 30000 tons of $T N T$. If $3.5 \times 10^{8} J$ of energy is released by one tone of expolining $T N T$, how many fissions occur in the explosions of warhead? An energy of 200 MeV is released by fission of one atom of ${ }^{235} U$.

- Watch Video Solution

30. IN a nuclear reactor, fission is produced in 1 g of ${ }^{235} U$
(235.0349amu). In assuming that ${ }_{53}^{92} \mathrm{Kr}(91.8673 \mathrm{amu})$
and.${ }_{36}^{141} \mathrm{Ba}(140.9139 \mathrm{amu})$ are produced in all reactions and no energy is lost, calculate the total energy produced in killowatt. Given: $1 a m u=931 \mathrm{MeV}$.
31. In the fission of ${ }_{94}^{239} \mathrm{Pu}$ by a thermal neutron, two fission fragmnets of equal masses and sizes are produced and four neutrosn are emitted. Find the force between the two fission fragments at the moment they are produced.

Given : $R_{0}=1.1$ fermi.

- Watch Video Solution

32. Calcualte the excitation energy of the compound nuclei produced when

Given:
$M\left({ }^{235} U\right)=235.0439 \mathrm{amu}, \quad M(n)=1.0087 \mathrm{amu}$,
$M\left(.{ }^{238} U\right) 238.0508 \mathrm{amu}, \quad M\left(.{ }^{236} U\right)=236.0456 \mathrm{amu}$,
$M\left(.{ }^{239} U\right)=239.0543 \mathrm{amu}$

- Watch Video Solution

33. Calculate the ground state Q value of the induced fission reaction in the equation
$n+{ }_{.92}^{235} U \rightarrow{ }_{.{ }_{92} 236} U * \rightarrow{ }_{.40}^{99} \mathrm{Zr}+{ }_{.}{ }_{52}^{134} \mathrm{Te}+2 n$
If the neutron is thermal. A thermal neutron is in thermal equilibrium with its environment, it has an average kinetic energy given by (3/2)kT.

Given :
$\left.m(n)=1.0087 a m u, M\left(.{ }^{235} U\right)=235.0439\right) a m u$,
$M\left(.{ }^{99} \mathrm{Zr}\right)=98.916 \mathrm{amu}, M\left(.{ }^{134} \mathrm{Te}\right)=133.9115 a \mathrm{mu}$.

- Watch Video Solution

34. Show that ${ }_{92}^{230} U$ does not decay by emitting a neutron or proton.

Given:
$M\left({ }_{92}^{230} U\right)=230.033927 a m u, M\left({ }_{92}^{230} U\right)=229.033496 a m u$,
$M\left({ }_{92}^{229} P a\right)=229.032089 a m u, M(n)=1.008665 a m u$
$m(p)=1.007825 a m u$.
35. The nuclear reaction $n+{ }_{5}^{10} \mathrm{~B} \rightarrow{ }_{3}^{7} \mathrm{Li}+{ }_{2}^{4} \mathrm{He}$ is observed to occur even when very slow-moving neutrons ($M_{n}=1.0087 \mathrm{amu}$) strike a boron atom at rest. For a particular reaction in which $K_{n}=0$, the helium $\left(M_{H e}=4.0026 \mathrm{amu}\right)$ is observed to have a speed of $9.30 \times 10^{6} \mathrm{~ms}^{-1}$. Determine (a) the kinetic energy of the lithium ($\left.M_{L i}=7.0160 a m u\right)$ and (b) the Q value of the reaction.

- Watch Video Solution

Single Correct Option

1. An element A decays into element C by a two-step process :
$A \rightarrow B+{ }_{2} H e^{4}$
$B \rightarrow C+2 e^{-}$
Then.
A. A and C are isotopes
B. A and ${ }^{\prime} C$ are isobars
C. B and 'C are isotopes
D. A and B are isobars

Answer: a

- Watch Video Solution

2. Consider two arbitaray decay equation and mark the correct alternative s given below. (i) ${ }_{\cdot 92}^{230} U \rightarrow n+{ }_{92}^{229} U($ ii) $) \cdot 92 \cdot(230) U \rightarrow P+{ }_{91}{ }_{92} P a$ Given:
$M\left({ }_{92}^{230} U\right)=230.033927 u, M\left({ }_{92}^{229} U\right)=229.03349 u, m_{n}=1.008665 u$, $M\left({ }_{91}^{229} P a\right)=229.032089, m_{p}=1.007825,1 \mathrm{am} \mathrm{u}=931.5 \mathrm{MeV}$.
A. Only decay (i) is possible.
B. Only decay (ii) is possible.
C. Both decay are possible.
D. Neither of the two decay is possible.

Answer: d

Watch Video Solution

3. In a smaple of rock, the ration ${ }^{206} \mathrm{~Pb}$ to.$^{238} U$ nulei is found to be 0.5 . The age of the rock is (given half-life of U^{238} is 4.5×10^{9} years).
A. 2.25×10^{9} year
B. $4.5 \times 10^{9} \ln 3$ year
C. $4.5 \times 10^{9} \frac{\frac{\ln (3)}{2}}{\ln 2}$ year
D. $2.25 \times 10^{9} \ln \left(\frac{3}{2}\right)$ year

Answer: c

- Watch Video Solution

4. Let E_{1} and E_{2} be the binding energies of two nuclei A and B. it is observed that nuclei of A combine together to form a B nuclus. This observation is correct only if.
A. $E_{1}>E_{2}$
B. $E_{2}>E_{1}$
C. $E_{2}>2 E_{1}$
D. nothing can be said

Answer: C

- Watch Video Solution

5. A radioactive sample decays by 63% of its initial value in 10 s . It would have decayed by 50% of its initial value in .
A. $7 s$
B. $14 s$
C. 0.7 s
D. 1.4 s
6. A nucleus moving with velocity \bar{v} emits an α-particle. Let the velocities of the α-particle and the remaining nucleus be \bar{v}_{1} and \bar{v}_{2} and their masses be m_{1} and $\left(m_{2}\right)$ then,
A. $\xrightarrow[v]{\longrightarrow}, \xrightarrow[v_{1}]{\longrightarrow}$ and $\xrightarrow[v_{2}]{ }$ must be parallel to each other
B. none of the two of $\xrightarrow[v]{\longrightarrow}, \overrightarrow{v_{1}}$ and $\xrightarrow[v_{2}]{ }$ should be paralle to each other
C. $\underset{v_{1}}{\longrightarrow}+\underset{v_{2}}{\longrightarrow}$ must be parallel to $\xrightarrow[v]{\longrightarrow}$.
D. $m_{1} \xrightarrow[v_{1}]{\longrightarrow}+m_{2} \xrightarrow[v_{2}]{\longrightarrow}$ must be parallel to $\xrightarrow[v]{\longrightarrow}$

Answer: D

- Watch Video Solution

7. Which of the following statements is incorrect for nuclear forces?
A. These are strongest in magnitude.
B. They are charge dependent.
C. They are effective only for short ranges.
D. They are from interaction of every nucleon with the nearest limited number of nucleons.

Answer: d

- Watch Video Solution

8. A certain radioactive material can undergo three constant $\lambda, 2 \lambda$ and 3λ . Then, the effective decay constant $\lambda_{e f f}$ is equal to $n \lambda$. What is the value of n ?
A. 6
B. 4
C. 2
D. 3

D Watch Video Solution

9. In an α-decay, the kinetic energy of α-particles is 48 MeV and Q value of the reaction is 50 MeV . The mass number of the mother nucleus is (assume that daughter nucleus is in ground state)
A. 96
B. 100
C. 104
D. none of these

Answer: b
10. A sample of radioactive material decays simultaneously by two processes A and B with half-lives $\frac{1}{2}$ and $\frac{1}{4} h$, respectively. For the first half hour it decays with the process A, next one hour with the process B, and for further half an hour with both A and B. If, originally, there were N_{0} nuclei, find the number of nuclei after 2 h of such decay.
A. $\frac{N_{0}}{(2)^{8}}$
B. $\frac{N_{0}}{(2)^{4}}$
C. $\frac{N_{0}}{(2)^{6}}$
D. $\frac{N_{0}}{(2)^{5}}$

Answer: A

- Watch Video Solution

11. In which of the following processes, the number of protons in the nuleus increase ?
A. α-decay
B. β^{-}-decay
C. β^{+}-decay
D. K-capture

Answer: b

- Watch Video Solution

12. A radioactiev nuleus X deays to a stable nuleus Y. Then, time graph of rate of formation of Y against time t will be:
a.

A.
b.

B.

c.

C.
D.
d.

Answer: c

- Watch Video Solution

13. A heavy nuleus having mass number 200 gets disintegrated into two small fragmnets of mass numbers 80 and 120 . If binding energy per nulceon for parent atom is 6.5 MeV and for daughter nuceli is 7 MeV and 8 MeV , respectivley, then the energy released in the decay will be.
A. 200 MeV
B. (-)220 MeV
C. 220 MeV
D. 180 MeV

Answer: c

D Watch Video Solution

14. An element X decays, first by positron emission and then two α particles are emitted in successive radiactive decay. If the product nucleus has a mass number 229 and atomic number 89 , the mass number and atomic number of element X are.
A. 237,93
B. 237,94
C. 221,84
D. 237,92
15. 90% of a radioactive sample is left undecayed after time t has elapsed. What percentage of the initial sample will decay in a total time $2 t$?
A. 20%
B. 19%
C. 40%
D. 38%

Answer: B

- Watch Video Solution

16. A radioactive element X converts into another stable element Y. Halflife of X is $2 h$. Initially, only X is present. After time t, the ratio of atoms of X and Y is found to be $1: 4$ Then t in hours is .
A. 2
B. 4
C. between 4 and 6
D. 6

Answer: C

- Watch Video Solution

17. $A \xrightarrow{\lambda} B \xrightarrow{2 \lambda} C$
$T=0, N_{0}, 0$,
$T N_{1} N_{2} N_{3}$
The ratio of N_{1} to N_{2} is maximum I s
A. at no time this is possible
B. 2
C. $1 / 2$
D. $\frac{\ln 2}{2}$

- Watch Video Solution

18. The binding energy of an electron in the ground state of He atom is equal to $E_{0}=24.6 \mathrm{eV}$. Find the energy required to remove both electrons form the atom.
A. 24.6 eV
B. 79.0 eV
C. 54.4 eV
D. none of these

Answer: b
19. The mean life time of a radionuclide, if the activity decrease by 4% for every $1 h$, would b e(product is non-radioactive, i.e., stable)
A. $25 h$
B. $1.042 h$
C. $2 h$
D. $30 h$

Answer: A

- Watch Video Solution

20. On an average, a neutron loses half of its energy per collision with a quesi-free proton. To reduce a 2 MeV neutron to a thermal neutron having energy 0.04 eV , the number of collisions requaired is nearly.
A. 50
B. 52
C. 26
D. 15

Answer: c

- Watch Video Solution

21. Masses of two isobars ${ }_{29} C u^{64}$ and $\cdot 30 \mathrm{Zn}^{64}$ are $63.9298 u$ and $63.9292 u$, respectively. It can be concluded from these data that .
A. both the isobars are stable
B. ${ }^{64} \mathrm{Zn}$ is radioactive, decaying to ${ }^{64} \mathrm{Cu}$ through β - decay
C. ${ }^{64} \mathrm{Cu}$ is radioactive, decaying to ${ }^{64} \mathrm{Zn}$ through β-decay
D. . ${ }^{64} \mathrm{Cu}$ is radioactive, decaying to.$^{64} \mathrm{Zn}$ through γ-decay

Answer: c

22. If a nucleus such as ${ }^{226} R a$ that is initially at rest undergoes α-decay, then which of the following statemnets is true?
A. The alpha particles has more kinetic than the daughter nuclues.
B. The alpha particle has less kinetic energy than the daughter nucleus.
C. The alpha particle and daughter nucleus both have same kinetic energy
D. We cannot say anything about kinetic energy of alpha particle and daughter nucleus.

Answer: a

- Watch Video Solution

23. If the Q value of an endothermic reaction is 11.32 MeV , then the minimum energy of the reactant nuclei to carry out the reaction is (in laboratotry frame of reference)
A. 11.32 MeV
B. less than 11.32 MeV
C. greater than 11.32 MeV
D. Data is insufficeint

Answer: c

- Watch Video Solution

24. 1.00 kg of . ${ }^{235} U$ undergoes fission process. If energy released per event is 200 MeV , then the total energy released is
A. $5.12 \times 10^{24} \mathrm{MeV}$
B. $6.02 \times 10^{23} \mathrm{MeV}$
C. $5.12 \times 10^{16} \mathrm{MeV}$
D. $6.02 \times 10^{6} \mathrm{MeV}$
25. Mark out the incoreect statemnet.
A. A free neutron can transfrom itself into photn.
B. A free neutron can transfrom itself into neutron.
C. In beta minus decay, the electron originates from nucleus.
D. All of the above

Answer: a

- Watch Video Solution

26. $U-235$ can decay by many ways, let us here consider only two ways,
A and B. In decay of $U-235$ by means of A, the energy released per fission is 210 MeV while in B it is 186 MeV . Then, the uranium 235 sample is more likely to decay by .
A. scheme A
B. scheme B
C. equally likely for both schemes
D. it depends on half-life of schemes A and B

Answer: a

- Watch Video Solution

27. ${ }_{19}^{49} \mathrm{~K}$ isotope of potassium has a half-life of $1.4 \times 10^{9} \mathrm{yr}$ and decays to form stable argon, ${ }_{18}^{40} \mathrm{Ar}$. A sample of rock has been taken which contains both potassium and argon in the ratio 1:7, i.e.,
(Numberofpotassium-14a $\rightarrow m s$)/(Numberofargon-40
$a \rightarrow m s)=\frac{1}{2}$
Assuming that when the rock was fromed no argon - 40 was present in the sample and none has escaped subssequently, determine the age of the rock.
A. 4.2×10^{9} years
B. 9.8×10^{9} years
C. 1.4×10^{9} years
D. 10×10^{9} years

Answer: a

- Watch Video Solution

28. What is the probability of a radioactive nucleus to survive one mean life?
A. $\frac{1}{e}$
B. $1-\frac{1}{e}$
C. $\frac{\ln 2}{e}$
D. $1-\frac{\ln 2}{e}$
29. Consider one of fission reactions of ^ (235)U by thermal neutrons ${ }_{92}^{235} U+n \rightarrow{ }_{.38}^{94} S r+{ }_{.54}^{140} \mathrm{Xe}+2 n$. The fission fragments are however unstable and they undergo successive β-decay until $\quad .{ }_{38}^{94} \mathrm{Sr}$ becomes ${ }_{40}^{94} Z r$ and ${ }_{54}^{140} \mathrm{Xe}$ becomes ${ }_{.58}^{140} \mathrm{Ce}$. The energy released in this process is Given:
$m\left(.{ }^{235} U\right)=235.439 u, m(n)=1.00866 u, m\left(.{ }^{94} Z r\right)=93.9064 u, m\left(.{ }^{140}\right.$
A. 156 MeV
B. 208 MeV
C. 465 MeV
D. cannot be computed

Answer: b

30. A star initially has 10^{40} deuterons. It produces energy via the processes $.{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{1}^{3} H+p$ and $.{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} H e+n$, where the masses of the nuclei are
$m\left({ }^{2} H\right)=2.014 \mathrm{amu}, m(p)=1.007 \mathrm{amu}, m(n)=1.008 \mathrm{amu}$ and $m\left(.{ }^{4} \mathrm{He}\right)=4.001 \mathrm{amu}$. If the average power radiated by the star is $10^{16} W$, the deuteron supply of the star is exhausted in a time of the order of
A. $10^{6} s$
B. $10^{8} s$
C. $10^{12} s$
D. $10^{16} s$

Answer: C

31. Two radioactive X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time .
A. $\frac{1}{10 \lambda}$
B. $\frac{11}{10 \lambda}$
C. $\frac{1}{11 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: D

- Watch Video Solution

32. A radioactive substance is being consumed at a constant of $1 s^{-1}$. After what time will the number of radioactive nuclei become 100. Initially, there were 200 nuclei present.
A. $1 s$
B. $\frac{1}{1 n(2)} s$
C. $\ln (2) s$
D. $2 s$

Answer: C

- Watch Video Solution

33. A radioactive isotope is being produced at a constant rate X. Half-life of the radioactive substance is Y. After some time, the number of radioactive nuclei become constant. The value of this constant is .
A. $\frac{X Y}{\ln (2)}$
B. $X Y$
C. $(X Y) \ln (2)$
D. $\frac{X}{Y}$
34. A radioactive substance X decays into another radioactive substance Y. Initially, only X was present.λ_{x} and λ_{y} are the disintegration constant of X and Y . N_{y} will be maximum when.
A. $\frac{N_{y}}{N_{x}-N_{y}=\frac{\lambda_{y}}{\lambda_{x}}-\lambda_{y}}$
B. $\frac{N_{y}}{N_{x}-N_{y}=\frac{\lambda_{y}}{\lambda_{x}}-\lambda_{y}}$
C. $\lambda_{y} N_{y}=\lambda_{x} N_{x}$
D. $\lambda_{y} N_{x}=\lambda_{x} N_{y}$

Answer: C

- Watch Video Solution

35. There are two radio nuclei A and B. A is an α emitter and B a β emitter. Their disintegration constant are in the ratio of 1:2 What should
be the ratio of number of atoms of A and B at any time t so that probabilities of getting alpha and beta particles are same at that instant?
A. $2: 1$
B. 1:2
C.e
D. e^{-1}

Answer: A

- Watch Video Solution

36. Half-life of a radioactive substance A is two times the half-life of another radioactive substance B. Initially, the number of A and B are N_{A} and N_{B}, respectively. After three half-lives of A, number of nuclei of both are equal. Then, the ratio N_{A} / N_{B} is .
A. $1 / 4$
B. $1 / 8$

C. | $1 / / 3$ |
| :--- |

D. $1 / 6$

Answer: b

- Watch Video Solution

37. There are two radioactive substance A and B. Decay constant of B is two times that of A. Initially, both have equal number of nuclei. After n half-lives of A, rates of disintegration of both are equal. The value of n is .

- Watch Video Solution

38. A radioactive nucleus A finally transforms into a stable nuccelus B. Then, A and B may be
A. isobars
B. isotones
C. isotopes
D. none of these

Answer: c

- Watch Video Solution

39. If . 92 封 238 changes to $.85 A t^{210}$ by a series of α-and β-decays, the number of α and β-decays undergone is.
A. 7 and 5
B. 7 and 7
C. 5 and 7
D. 7 and 9

Answer: b

40. Number of nuclei of a radioactive substance are 1000 and 900 at times $t=0$ and time $t=2 s$. Then, number of nuclei at time $t=4 s$ will be

- Watch Video Solution

41. A radioacitve nucleus is being produced at a constant rate α per second. Its decay constant is λ. If N_{0} are the number of nuclei at time $t=0$, then maximum number of nuceli possible are.
A. $\frac{\alpha}{\lambda}$
B. $\frac{N_{0} \alpha}{\lambda}$
C. N_{0}
D. $\frac{\lambda}{\alpha+N_{0}}$

Answer: a

42. In a sample of a radioactive substance, what fraction of the initial nuceli will remain undecayed after a time $t=T / 2$, where $\mathrm{T}=$ half -life of radioactive substance?
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{2}-1}$

Answer: a

- Watch Video Solution

43. The activity of a radioactive substance is R_{1} at time t_{1} and R_{2} at time $t_{2}\left(>t_{1}\right)$. Its decay cosntant is λ. Then .
A. $R_{1} t_{1}$
B. $R_{2}=R_{1} e^{\lambda\left(t_{1}-t_{2}\right)}$
C. $\frac{R_{1}-R_{2}}{t_{2}-t_{1}=\text { cons } \tan t}$
D. $R_{2}=R_{1} e^{\lambda\left(t_{2}-t_{1}\right)}$

Answer: b

- Watch Video Solution

44. In problem43, number of atoms decayed between time interval t_{1} and t_{2} are
A. $\frac{\ln (2)}{\lambda}\left(R_{1} R_{2}\right)$
B. $R_{1} e^{-\lambda t_{2}}-R_{2} e^{-\lambda t_{2}}$
C. $\lambda\left(R_{1}-R_{2}\right)$
D. $\left.\frac{R_{1}-R_{2}}{\lambda}\right)$

Answer: d

45. The ratio of molecular mass of two radioactive substances is $3 / 2$ and the ratio of their decay constant is $4 / 3$. Then. The ratio of their initial activity per mole will be
A. 2
B. $\frac{8}{9}$
C. $\frac{4}{3}$
D. $\frac{9}{8}$

Answer: C

- Watch Video Solution

46. N_{1} atoms of a radioactive element emit N_{2} beta partilces per second.

The decay cosntant of the element is (in s^{-1})
A. $\frac{N_{1}}{N_{2}}$
B. $\frac{N_{2}}{N_{1}}$
C. $N_{1} \ln (2)$
D. $N_{2} \ln (2)$

Answer: b

- Watch Video Solution

47. The binding energy of nuclei X and Y are E_{1} and E_{2}, respectively. Two atoms of X fuse to give one atom of Y and an energy Q is released. Then,
A. $Q=2 E_{1}-E_{2}$
B. $Q=2 E_{2}-2 E_{1}$
C. $Q<2 E_{1}-E_{2}$
D. $Q>2 E_{2}-2 E_{1}$

Answer: B

48. The binding energy per nucleon number for deutron H_{1}^{2} and helium He_{2}^{4} are 1.1 MeV and 7.0 MeV respectively. The energy released when two deuterons fase to form a belium nucleus $H e_{2}^{4}$ is.
A. 20.8 MeV
B. 16.6 MeV
C. 25.2 MeV
D. 23.6 MeV

Answer: d

- Watch Video Solution

49. .92 U^{238} absorbs a neutron. The product emits an electron. This product further emits an electron. The result is
A. ${ }_{94} P u^{239}$
B. ${ }_{90} P u^{239}$
C. ${ }_{93} P u^{237}$
D. $-(94) P u^{237}$

Answer: a

- Watch Video Solution

50. The activity of a radioative element decreases to one third of the original activity I_{0} in a period of nine years. After a further 1apse of nine years, its activity will be
A. A_{0}
B. $\frac{2}{3} A_{0}$
C. $\frac{A_{0}}{9}$
D. $\frac{A_{0}}{6}$

Answer: c

51. The half-life of a radioactive decay is x times its mean life. The value of $z x$ is
A. 0.3010
B. 0.6930
C. 0.6020
D. $\frac{1}{0.6930}$

Answer: b

- Watch Video Solution

52. Neutron decay in the free space is given follows:
${ }_{\cdot 0} n^{1} \rightarrow{ }_{\cdot 1} H^{1}+{ }_{\cdot}^{0}{ }_{-e}+[]$
Then, the parenthesis represents
A. photon
B. graviton
C. neutrino
D. antineutrino

Answer: d

D Watch Video Solution

53. A nucleus $\cdot{ }_{Z}^{A} X$ emits an α-particel. The resultant nucleus emits a β^{+} particle. The respective atomic and mass numbers of the final nucleus will be
A. $Z-3, A-4$
B. $Z-1, A-4$
C. $Z-2, A-4$
D. $Z, A-2$

Answer: a

54. Ceratain radioactive substance reduces to 25% of its value is 16 days. Its half-life is
A. 32days
B. 8days
C. 64days
D. 28 days

Answer: b

- Watch Video Solution

55. What is the age of an ancient wooden piece if it is known that the specific activity of C^{14} nuclide in it amounts to $3 / 5$ of that in fresh trees?

Given: the half of C nuclide is 5570 years and $\log _{e}(5 / 3)=0.5$.
A. 1000years
B. 2000 years
C. 3000 years
D. 4000 years

Answer: D

- Watch Video Solution

56. A helium atom, a hydrogen atom and a neutron have mases of $4.003 u, 1.008 u$ and $1.009 u$ (unified atomic mass units), respectively. Assuming that hydogen atoms and neutrons can be fuse to from helium, what is the binding energy of a helium nucleus?
A. $2.01 u$
B. $3.031 u$
C. $1.017 u$
D. $0.031 u$

- Watch Video Solution

57. A certain radioactive element has half-life of 4 days. The fraction of material that decays in 2days is
A. $1 / 2$
B. $1 /(\sqrt{2})$
C. $(\sqrt{2})$
D. $(\sqrt{2})-1 /(\sqrt{2})$

Answer: d

- Watch Video Solution

58. In the disintegration series
${ }_{92}^{238} U \vec{\alpha} X \overrightarrow{\beta^{-}} \cdot{ }_{Z}^{A} Y$ the values of Z and A, respectively, will be
A. 92326
B. 88230
C. 90234
D. 91234

Answer: d

- Watch Video Solution

59. Atomic mass number of an element is 232 and its atomic number is 90 .

The end product of this radiaoctive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.
A. 6,3
B. 6,4
C. 5,5
D. 4,6

D Watch Video Solution

60. The initial activity of a certain radioactive isotope was measured as 16000 counts $\min .^{-1}$. Given that the only activity measured was due to this isotope and that its activity after $12 h$ was 2100 counts $\min .^{-1}$, its half-life, in hours, is nearest to [Given $\log _{e}(7.2)=2$].
A. 9.0
B. 6.0
C. 4.0
D. 3.0

Answer: C

61. The minimum frequency of a γ-ray that causes a deutron to disintegrate into a poton and a neutron is $\left(m_{d}=2.0141 a m u, m_{p}=1.0078 a m u, m_{n}=1.0087 a m u.\right)$.
A. $2.7 \times 10^{20} \mathrm{~Hz}$
B. $5.4 \times 10^{20} \mathrm{~Hz}$
C. $10.8 \times 10^{20} \mathrm{~Hz}$
D. $21.6 \times 10^{20} \mathrm{~Hz}$

Answer: b

- Watch Video Solution

62. The fission of a heavy nucleus gives, in general, two smaller nuclei, two or three neutrons, some β - particles and some γ - radiation. It is always true that the nuclei produced.
A. have a total rest-mass that is greater than that of the original nucleus
B. have large kinetic energies that carry off the greater part of the energy released
C. travel in exactly oppsite directions
D. have neutron-to-proton ratios that are too low for stabitity

Answer: B

- Watch Video Solution

63. The activity of a radioactive sample is 1.6 curie, and its half-life is
$2.5 d$ ays. Its activity after 10 days will be
A. 0.8 curie
B. 0.4 curie
C. 0.1curie
D. 0.16 curie

Answer: c

- Watch Video Solution

64. The rest mass of a deuteron is equivalent to an energy of 1876 MeV , that of a proton to 939 MeV , and that of a neutron to 940 MeV .
A. emits an X -ray photon of energy 2 MeV
B. captures an X -ray photon of energy 2 MeV
C. emits an X-ray photon of energy 3 MeV
D. captures an X-ray photon of energy 3 MeV

Answer: d

- Watch Video Solution

65. A newly prepared radioactive nuclide has a decay constant λ of $10^{-6} s^{-1}$. What is the approximate half-life of the nuclide?
A. 1 hour
B. 1 day
C. 1 week
D. 1 month

Answer: c

- Watch Video Solution

66. The half-life of a certain radioactive isotope is $32 h$. What fraction of a sample would remain after $16 h$?
A. 0.25
B. 0.71
C. 0.29
D. 0.75

Answer: B

- Watch Video Solution

67. Samples of two radioactive nuclides, X and Y, each have equal activity A at time $t=0$. X has a half-life of $24 y e a r s$ and Y a half-life of $16 y e a r s$. The samples are mixed together. What will be the total activity of the mixture at $t=48$ years?
A. $\frac{1}{2} A_{0}$
B. $\frac{1}{4} A_{0}$
C. $\frac{3}{16} A_{0}$
D. $\frac{3}{8} A_{0}$

Answer: d

68. A sample of a radioactive element has a mass of $10 g$ at an instant $t=0$. The approxiamte mass of this element in the sample after two mean lives is.
A. $1.35 g$
B. 2.50 g
C. 3.70 g
D. 6.30 g

Answer: a

- Watch Video Solution

69. Atomic mass number of an element is 232 and its atomic number is 90 .

The end product of this radioactive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.
A. $\alpha=3, \beta=3$
B. $\alpha=6, \beta=4$
C. $\alpha=6, \beta=0$
D. $\alpha=4, \beta=6$

Answer: b

- Watch Video Solution

70. After an interval of one day , $1 / 16$ th initial amount of a radioactive material remains in a sample. Then, its half-life(in h) is .

- Watch Video Solution

71. The half-life of . ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{~s}$. The time taken for the activity of a sample of . ${ }^{215} A t$ to decay to $\frac{1}{16} t h$ of its initial value is
B. $6.3 \mu \mathrm{~s}$
C. $40 \mu \mathrm{~s}$
D. $300 \mu \mathrm{~s}$

Answer: a

- Watch Video Solution

72. A stationery thorium nucleus $(A=200, Z=90)$ emits an alpha particle with kinetic energy E_{α}. What is the kinetic energy of the recoiling nucleus
A. $\frac{E_{\alpha}}{108}$
B. $\frac{E_{\alpha}}{110}$
C. $\frac{E_{\alpha}}{55}$
D. $\frac{E_{\alpha}}{54}$

Answer: D

73. The fraction of a radioactive material which remains active after time t is $9 / 16$. The fraction which remains active after time $t / 2$ will be .
A. $\frac{4}{5}$
B. $\frac{7}{8}$
C. $\frac{3}{5}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

74. The radioactive decay rate of a radioactive element is found to be 10^{3} disintegration per second at a cartain time. If the half life of the element is one second, the dacay rate after one second And after three second
A. $500 s^{-1}$
B. $1000 s^{-1}$
C. $250 s^{-1}$
D. $2000 s^{-1}$

Answer: a

- Watch Video Solution

75. The percentage of quantity of a radioactive material that remains after 5 half-lives will be .
A. 31%
B. 3.125%
C. 0.3%
D. 1%

Answer: b

76. ${ }^{238} U$ decays with a half-life of 4.5×10^{9} years, the decay series eventaully ending at.${ }^{206} P b$, which is stable. A rock sample analysis shows that the ratio of the number of atoms of ${ }^{206} \mathrm{~Pb}$ to ${ }^{238} \mathrm{U}$ is 0.0058. Assuming that all the ${ }^{206} \mathrm{~Pb}$ is prodduced by the decay of ${ }^{238} U$ and that all other half-lives on the chain are negligilbe, the age of the rock sample is $\left(1 n 1.0058=5.78 \times 10^{-3}\right)$.
A. 38×10^{8} years
B. 38×10^{6} years
C. 19×10^{8} years
D. 19×10^{6} years

Answer: b

- Watch Video Solution

77. A radioactive nucleus a series of decays according to the scheme
$\underset{\rightarrow}{\alpha} A_{1} \underset{\rightarrow}{\beta} A_{2} \underset{\rightarrow}{\alpha} A_{3} A_{4}$
If the mass number and atomic number of A are 180 and 72 , respectively, then what are these number for A_{4} ?
A. 172 and 69
B. 174 and 70
C. 176 and 69
D. 176 and 70

Answer: A

- Watch Video Solution

78. If 10% of a radioactive substance decays in every 5 year, then the percentage of the substance that will have decaed in 20years will be .
A. 40%
B. 50%
C. 65.6%
D. 34.4%

Answer: d

- Watch Video Solution

79. Stationery nucleus.${ }^{238} U$ decays by a emission generaring a total kinetic energy T:
${ }_{.92}^{238} \rightarrow{ }_{.{ }_{90}}^{234} T h+{ }_{2}^{4} \alpha$
What is the kinetic energy of the α-particle?
A. Slightly less than $T / 2$
B. $T / 2$
C. Slightly less than T
D. Slightly greater than T

- Watch Video Solution

80. The activity of a radioative element decreases to one third of the original activity I_{0} in a period of nine years. After a further 1apse of nine years, its activity will be
A. I_{0}
B. $(2 / 3) I_{0}$
C. $\left(I_{0} / 9\right)$
D. $\left(I_{0} / 6\right)$

Answer: c

81. The half-life period of $\operatorname{RaB}\left({ }_{82} P b^{214}\right)$ is 26.8 min . The mass of one curie of RaB is
A. $3.71 \times 10^{10} g$
B. $3.71 \times 10^{-10} g$
C. $8.61 \times 10^{10} g$
D. $3.064 \times 10^{-8} g$

Answer: d

- Watch Video Solution

82. A $5 \times 10^{-4} \AA$ photon produces an electron-positron pair in the vincinity of a heavy nucleus. Rest energy of electron is 0.511 MeV . slf they have the same kinetic energies, the energy of each paricles is nearly

A. 1.2 MeV

B. 12 MeV
C. 120 MeV
D. 1200 MeV

Answer: b

- Watch Video Solution

83. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. $6 h$
B. $12 h$
C. $24 h$
D. $128 h$

Answer: b
84. Uranium ores contain one radium -226 atom for every 2.8×10^{6} uranium -238 atoms. Calculate the half-life of $.88 R a^{226}$ is 1600 years $\left(.{ }_{88} R a^{226}\right.$ is a decay product of $\left..92 U^{238}\right)$.
A. 1.75×10^{3} years
B. $1600 \times \frac{238}{92}$ years
C. 4.5×10^{9} years
D. 1600×238 years

Answer: c

- Watch Video Solution

85. Plutinium has atomic mass 210 and a decay constant equal to $5.8 \times 10^{-8} s^{-1}$. The number of α-particles emitted per second by 1 mg plutonium is
(Avagadro's constant $=6.0 \times 10^{23}$).
A. 1.7×10^{9}
B. 1.7×10^{11}
C. 2.9×10^{11}
D. 3.4×10^{9}

Answer: b

- Watch Video Solution

86. At any instant, the ratio of the amounts of two radioactive substance is $2: 1$. If their half-lives be, respectively, $12 h$ and $16 h$, then after two days, what will be the ratio of the substances?
A. 1:01
B. 2: 01
C. 1:2
D. 1:4

- Watch Video Solution

87. The radioactivity of a sample is R_{1} at a time T_{1} and R_{2} at time T_{2}. If the half-life of the specimen is T , the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proporational to
A. $R_{1} T_{1}=R_{2} T_{2}$
B. $R_{1}-R_{2}$
C. $\frac{R_{1}-R_{2}}{T}$
D. $\left(R_{1}-R_{2}\right) T$

Answer: d

88. Half-life of a radioactive substance A and B are, respectively, 20 min and 40 min . Initially, the samples of A and B have equal number of nuclei. After 80 min , the ratio of the ramaining number of A and B nuclei is
A. $1: 16$
B. $4: 1$
C. 1: 4
D. 1: 1

Answer: c

- Watch Video Solution

89. A radioactive nucleus can decay by two differnet processess. The mean value period for the first process is t_{1} and that the second process is t_{2} .The effective mean value period for the two processes is .
A. $\frac{t_{1}+t_{2}}{2}$
B. $t_{1}+t_{2}$
C. $\sqrt{t} t_{2}$
D. $\frac{t_{1}+t_{2}}{t_{1}+t_{2}}$

Answer: d

- Watch Video Solution

90. The half-life of radium is 1620 years and its atomic weight is 226 . The number of atoms that will decay from its $1 g$ sample per second will be .
A. 3.6×10^{10}
B. 3.6×10^{12}
C. 3.1×10^{15}
D. 31.1×10^{15}
91. The nuclear radius of a nucelus with nucleon number 16 is $3 \times 10^{-15} \mathrm{~m}$. Then, the nuclear radius of a nucleus with nucleon number 128 is .
A. $3 \times 10^{-15} m$
B. $1.5 \times 10^{-15} \mathrm{~m}$
C. $6 \times 10^{-15} m$
D. $4.5 \times 10^{-15} \mathrm{~m}$

Answer: c

Watch Video Solution

92. The nuclear radius of ${ }_{8} O^{16}$ is $3 \times 10^{-15} \mathrm{~m}$. If an atomic mass unit is $1.67 \times 10^{-27} \mathrm{~kg}$, then the nuclear density is approximately.
A. $2.35 \times 10^{17} \mathrm{gcm}^{-3}$
B. $2.35 \times 10^{17} \mathrm{kgm}^{-3}$
C. $2.35 \times 10^{17} \mathrm{gm}^{-3}$
D. $2.35 \times 10^{17} \mathrm{kgmm}^{-3}$

Answer: b

- Watch Video Solution

93. What would be the energy required to dissociate completely $1 g$ of
$C a-40$ into its constituent, particles? Given: Mass of proton $=1.00866 \mathrm{amu}$,

Mass of neutron $=1.00866 \mathrm{amu}$,
Mass of $C a-40=39.97454 a m u$, (Take $1 a m u=931 \mathrm{MeV}$).
A. $4.813 \times 10^{24} \mathrm{MeV}$
B. $4.813 \times 10^{24} \mathrm{eV}$
C. $4.813 \times 10^{23} \mathrm{MeV}$
D. none of these

Answer: a

- Watch Video Solution

94. In fission,the percentage of mass converted into energy is about
A. 94%
B. 1%
C. 0.1%
D. 0.01%

Answer: c

- Watch Video Solution

95. In the nuclear reaction ${ }_{\cdot 1} H^{2}+{ }_{.1} H^{2} \rightarrow{ }_{.2} H e^{3}+{ }_{0} n^{1}$ if the mass of the deuterium atom $=2.014741 \mathrm{amu}$, mass of ${ }_{.2} \mathrm{He}^{3}$ atom $=3.016977 a m u$, and mass of neutron $=1.008987 a m u$, then the Q value of the reaction is nearly.
A. 0.00352 MeV
B. 3.27 MeV
C. 0.82 MeV
D. 2.45 MeV

Answer: B

- Watch Video Solution

96. Assuming that about 20 MeV of energy is released per fusion reaction ${ }_{\cdot 1} H^{2}+{ }_{.1} H^{3} \rightarrow{ }_{.0} n^{1}+{ }_{.2} H e^{4}$, the mass of ${ }_{1} H^{2}$ consumed per day in a future fusion reactor of powder $1 M W$ would be approximately
A. $0.001 g$
B. $0.1 g$
C. 10.0 g
D. 1000 g

Answer: b

- Watch Video Solution

97. Assuming that about 200 MeV of energy is released per fission of ${ }^{-92} U^{235}$ nuceli, the mass of U^{235} consumed per day in a fission ractor of power 1 megawatt will be approximately .
A. $10^{-2} g$
B. $1 g$
C. 100 g
D. $10,000 \mathrm{~g}$

D Watch Video Solution

98. If mass of $U^{235}=235.12142 a . m . u .$, mass of $U^{236}=236.1205 a . m . u$, and mass of neutron $=1.008665 a . m . u$, then the energy required to remove one neutron from the nucleus of U^{236} is nearly about.
A. 75 MeV
B. 6.5 MeV
C. 1 eV
D. zero

Answer: B

99. The binding energies per nucleon for deuteron (. ${ }_{1} H^{2}$) and helium (${ }_{.2} \mathrm{He}^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when two deutrons fuse to form a helium nucleus (..2 $H e^{4}$) is
A. 13.9 MeV
B. 26.9 MeV
C. 23.6 MeV
D. 19.2 MeV

Answer: C

- Watch Video Solution

100. In the fusion reaction $\cdot{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{3} \mathrm{He}+{ }_{0}^{1} n$, the masses of deuteron, helium and neutron expressed in amu are $2.015,3.017$ and 1.009 respectively. If 1 kg of deuterium undergoes complete fusion, find the amount of total energy released. 1 amu $=931.5 \mathrm{MeV} / \mathrm{c}^{2}$.
A. $\approx 6.02 \times 10^{13} \mathrm{~J}$
B. $\approx 5.6 \times 10^{13} \mathrm{~J}$
C. $\approx 9.0 \times 10^{13} \mathrm{~J}$
D. $\approx 0.9 \times 10^{13} \mathrm{~J}$

Answer: c

- Watch Video Solution

101. The half-life of radium is 1500 years. In how many years will $1 g$ of pure radium be reduced to one centigram?
A. 3.927×10^{2} years
B. 9.927×10^{2} years
C. 99.927×10^{2} years
D. 0.927×10^{2} years
102. The compound unstabel nucleus ${ }_{92}^{236} U$ often decays in accordance with the following reaction
${ }_{.92}^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+{ }_{.{ }_{38}^{94} \mathrm{Sr}+\text { other particles }, ~}^{\text {a }}$
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances.

A proton and a neutron are both shot at $100 \mathrm{~ms}^{-1}$ toward a ${ }_{6}^{12} \mathrm{C}$ nuleus.
Which partilce, if either, is more likely to be absorebed by the nucleus?
A. The proton
B. The neutron
C. Both particles are about equally likely to be absorbed,
D. Neither particle will be absorbed.

Answer: b

- Watch Video Solution

103. A container is filled with a radioactive substance for which the halflife is $2 d a y s$. A week later, when the container is opened, it contains $5 g$ of the substance. Approximately how many grams of the substance were initially placed in the container?
A. 40
B. 60
C. 80
D. 100

Answer: C

104. The half - life ofl ${ }^{\wedge}(131)$ is8days. Givenasamp \leq ofl^(131)attimet $=$ 0', we can assert that
A. no nucleus will decay before $t=4 d a y s$
B. no nucleus will decay before $t=8 d a y s$
C. all nucleus will decay before $t=16$ days
D. a given nucleus may decay at any tiem after $t=0$.

Answer: d

- Watch Video Solution

105. When an atom undergoes β^{-}decay
A. a neutron changes into a proton
B. a proton changes into a neutron
C. a neutron changes into an antiproton
D. a proton changes into an antineutron

Answer: b

- Watch Video Solution

106. The nucleus of the deuterium atom, called the deuteron, consists of a proton and a neutron. Calculate the deutron's binding energy, given atomic mass, i.e., the mass of a deuterium nucleus plus an electron is measured to be $2.014102 u$.
A. 0.002388 MeV
B. 2.014102 MeV
C. 2.16490 MeV
D. 2.224 MeV
107. The compound unstabel nucleus ${ }_{92}^{236} U$ often decays in accordance with the following reaction
${ }_{-}(92)^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+$ _ $^{(38)^{\wedge}(94) \mathrm{Sr}{ }^{`}+\text { other particles }}$
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances. In the nuclear reaction presented above, the "otter particles" might be .
A. An alpha particle, which consists of two protons and two neutrons
B. two protons
C. one proton and one neutron
D. two neutrons

Answer: d

- Watch Video Solution

108. The compound unstabel nucleus ${ }_{92}^{236} U$ often decays in accordance with the following reaction
${ }_{92}^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+{ }_{.{ }_{38}^{94} \mathrm{Sr}+\text { other particles }, ~}^{\text {a }}$
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances.

Why is a $\cdot{ }_{2}^{4} \mathrm{He}$ nucleus more stable than a $\cdot{ }_{3}^{4} \mathrm{Li}$ nulceus?
A. The strong nuclear force is larger when the neutron to proton ratio is higher.
B. The laws of nuclear physics forbid a nucleus from contaning more protons than neutrons.
C. Forces other than the strong nuclear force make the lithium nulceus less stable.
D. none of these

Answer: c

- Watch Video Solution

109. What is the power output of a $.92 U^{235}$ reactor if it is takes 30 days to use up 2 kg of fuel, and if each fission gives 185 MeV of usable energy ?.
A. 45 megawatt
B. 58.46 megawatt
C. 72 megawatt
D. 92 megawatt

- Watch Video Solution

110. Consider the following reaction :
$H_{1}^{2}+H_{1}^{2}=H e_{2}^{4}+Q$
Mass of the deuterium atom $=2.0141 u$

Mass of helium atom $=4.0024 u$

This is a nuclear reaction in which the energy Q released is MeV'.
A. 12
B. 6
C. 24
D. 48

Answer: C

111. A radioactive nuclide is produced at the constant rate of n per second (say, by bombarding a target with neutrons). The expected number N of nuclei in existence $t \mathrm{~s}$ after the number is N_{0} is given by
A. $N=N_{0} e^{-\lambda t}$
B. $N=N_{0} e^{-\lambda t}$
C. $N=\frac{n}{\lambda}+\left(N_{0}+\frac{n}{\lambda}\right) e^{-\lambda t}$
D. $N=\frac{n}{\lambda}+\left(N_{0}+\frac{n}{\lambda}\right) e^{-\lambda t}$

Answer: c

- Watch Video Solution

112. A radioactive sample undergoes decay as per the following gragp. At timet $=0$, the number of undecayed nuclei is N_{0}. Calculate the number
of nuclei left after $1 h$.

A. N_{0} / e^{8}
B. N_{0} / e^{10}
C. N_{0} / e^{12}
D. N_{0} / e^{14}

Answer: c
113. Binding energy per nucleon for C^{12} is 7.68 MeV and for C^{13} is 7.74 MeV . The energy required to remove a neutron from C^{13} is .
A. 5.49 MeV
B. 8.46 MeV
C. 9.45 MeV
D. 15.49 MeV

Answer: b

- Watch Video Solution

114. A radio nuclide A_{1} with decay constant λ_{1} transforms into a radio nuclide A_{2} with decay constant λ_{2}. Assuming that at the initial moment, the preparation contained only the radio nuclide A_{1}
(a) Find the equation describing accumulation of radio nuclide A_{2} with time. (b) Find the time interval after which the activity of radio nuclide A_{2} reaches its maximum value.
A. $\frac{\ln \left(\lambda_{2} / \lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}$
B. $\frac{\ln \left(\lambda_{2} / \lambda_{1}\right)}{\lambda_{2}-\lambda_{1}}$
C. $\ln \left(\lambda_{2}-\lambda_{1}\right)$
D. none of these

Answer: D

- Watch Video Solution

115. A radioiostope X has a half-life of $10 s$. Find the number of nuclei in the sample (if initially there are 1000 isotopes which are falling from rest from a height of 3000 m) when it is at a height of 1000 m from refrence plane.
A. 50
B. 250
C. 29
D. 100

D Watch Video Solution

116. In the nuclear raction given by ${ }_{\cdot 2} H e^{4}+{ }_{.7} N^{14} \rightarrow{ }_{\cdot 1} H^{1}+X$ the nucleus X is
A. nitrogen of mass 16
B. nitrogen of mass 17
C. oxygen of mass 16
D. oxygen of mass 17

Answer: d

- Watch Video Solution

117. A stationary nucleus of mass 24 amu emits a gamma photon. The energy of the emitted photon is 7 MeV . The recoil energy of the nucleus
A. 2.2
B. 1.1
C. 3.1
D. 22

Answer: b

- Watch Video Solution

118. There are n number of radioactive nuclei in a sample that undergoes beta decay. If from the sample, n^{\prime} number of β-particels are emitted every $2 s$, then half-life of nuclei is .
A. $n^{\prime} / 2$
B. $0.693 \times\left(2 n / n^{\prime}\right)$
C. $0.6931 n\left(2 n / n^{\prime}\right)$

$$
\text { D. } 0.693 \times\left(n / n^{\prime}\right)
$$

Answer: b

- Watch Video Solution

119. The luminous dials of watches are usually made by mixing a zinc sulphide phosphor with an α-particles emitter. The mass of radium (mass number 226, half $-l$ if $e 1620 y e a r s$)that is needed to produce an average of 10 alpha'-particles per second for this purpose is
A. 2.77 mg
B. $2.77 g$
C. $2.77 \times 10^{-23} g$
D. $2.77 \times 10^{-13} \mathrm{~kg}$

Answer: d

120. The following deutruim reactions and corresponding raction energies are found to occur. S
A. 0.5 eV
B. 0.5 MeV
C. 0.05 MeV
D. 0.05 eV

Answer: c

- Watch Video Solution

121. A neutron of energy 1 MeV and mass $1.6 \times 10^{-27} \mathrm{~kg}$ passes a proton at such a distance that the angular momentum of the neutron relative to the proton approximately equals $10^{-33} \mathrm{Js}$. The distance of closest approach neglecting the interaction between particles si
A. $0.44 n m$
B. 0.44 mm
C. $0.44 \AA$
D. 0.44 fm

Answer: d

- Watch Video Solution

122. Rank the following nuclei in order from largest to smallest value of the binding energy per nucleon:
(i). ${ }_{2}^{4} H$, (ii) $(24)^{52} \mathrm{Cr}$, (iii) $\cdot{ }_{62}$ ${ }_{.62}^{152} \mathrm{Sm}$, (iv).$_{80}^{100} \mathrm{Hg}$, (v) ${ }_{92}^{252} C f$.
A. $E_{v}>E_{i v}>E_{i i i}>E_{i i}>E_{i}$
B. $E_{i}>E_{i i}>E_{i i i}>E_{i v}>E_{v}$
C. $E_{i i}>E_{i i i}>E_{i v}>E_{v}>E_{i}$
D. $E_{i}=E_{i i}=E_{i i i}=E_{i v}=E_{v}$

Answer: C

123. A nucelus with atomic number Z and neutron number N undergoes two decay processes. The result is a nucleus with atomic number $Z-3$ and neutron $N-1$. Which decay processes took place?
A. Two β^{-}decays
B. Two β^{+}decays
C. An α decay and a β^{-}decays
D. Analphadecay and a beta $^{\wedge}(+)^{\prime}$ decays

Answer: d

- Watch Video Solution

124. Gold ${ }_{.79}^{198} \mathrm{Au}$ undergoes β^{-}decay to an excited state of ${ }_{80}^{198} \mathrm{Hg}$. If the excited state decays by emission of a γ-photon with energy 0.412 MeV , the maximum kinetic energy of the electron emitted in the
decay is (This maximum occurs when the antineutrino has negligible energy. The recoil energy of the ${ }_{.80}^{198} \mathrm{Hg}$ nucleus can be ignored. The masses of the neutral atoms in their ground states are $197.968255 u$ for ${ }_{.}{ }_{79} \mathrm{Hg}$).
A. 0.412 MeV
B. 1.371 MeV
C. 0.959 MeV
D. 1.473 MeV

Answer: C

- Watch Video Solution

125. For a certain radioactive substance, it is observed that after $4 h$, only 6.25 \% of the original sample is left undeacyed. It follows that.
A. the half-life of the sample is $1 h$
B. the mean life of the sample is $\frac{1}{1 n 2} h$
C. the decay constant of the sample is $1 n(2) h^{-1}$
D. after a further $4 h$, the amount of the substance left over would by only 0.39% of the original amount

Answer: a,b,c,d

- Watch Video Solution

126. Mark out the coreect statemnet (s).
A. Higher binding energy per nucleon means the nucleus is more stable.
B. If the binding energy of nucleus can be negative.
C. Binding energy of a nucleus can be negative.
D. Binding energy of a nucleus is always positive.

Answer: a,b,d

127. Mark out the coreect statemnet (s).
A. In alpha decay,the energy released is shared between alpha particle and daughter nulceus in the form of kinetic energy and share of alpha particle is more than that of the daughter nucleus.
B. In beta decay,the energy released is in the form of kinetic energy of beta particles.
C. In beta minus decay,the energy released is shared between electron and antineutrino
D. In gamma decay,the energy released is in the form of energy carried by photons termed as gamma rays.

Answer: a,c,d

- Watch Video Solution

128. Mark out the coreect statemnet (s).
A. For an exothermic reaction, if Q value is +12.56 MeV and the $K E$ of incident particcle is $2.44 M e V$, then the totla $K E$ of products of reaction is 15.00 MeV .
B. For an exothermic reaction, if Q value is +12.56 MeV and the KE of incident particcle is 2.44 MeV , then the totla $K E$ of products of reaction is 12.56 MeV .
C. For an endothermic reaction, if we give the energy equal $|Q|$ value of reaction, then the reaction will be carried out.
D. For an exothermic reaction, the BE per nucleon of products should be greater than the BE per nucleon of reactants.

Answer: a,d

- Watch Video Solution

129. Mark out the coreect statemnet (s).
A. In fission and fusion processes, the mass of reactant nuclide is greater than the mass of product nuclide.
B. In fission process, BE per nucleon of reactant nucleide is less than the binding energy per nucleon of product nucleide.
C. In fusion process, BE per nucleon of reactant nucleide is less than the binding energy per nucleon of product nucleide.
D. In fusion process, BE per nucleon of reactant nucleide is greater than the binding energy per nucleon of product nucleide.

Answer: a,b,c,

- Watch Video Solution

130. During β-decay (beta minus), the emission of antineutrino particle is supported by which of the following statement (s)?
A. Angular momnetum conservation holds good in any nuclear raction
B. Linear momnetum conservation holds good in any nuclear raction
C. The KE of emitted β-particel is varying conitnuously to a maximum value.
D. none of these

Answer: a,b,c

- Watch Video Solution

131. Two samples A and B of same radioactive nuclide are prepared. Sample A has twice the initial activity of sample B. For this situation, mark out the correct statement (s).
A. The half-lives of both the samples would be same.
B. The half-lives of the samples are different.
C. After each has passed through 5 half-lives, ratio of activity of A to B is $2: 1$.
D. After each has passed through 5 half-lives, ratio of activity of A to B is $64: 1$.

Answer: a,c

- Watch Video Solution

132. The decay constant of a radioactive substance is 0.173 year $^{-1}$. Therefore,
A. nearly 63% of the radioactive substnce will decay in ($1 / 0.173$)
year.
B. half-life of the radioactive substance is $(1 / 0.173)$ year
C. One-fourth of the radioactive substance will be left after 8 years
D. All of the above

Answer: a,c

133. A nuclide A undergoes α-decay and another nuclide B undergoed β decay. Then,
A. All the α-paricles emitted by A will have almost the same speed.
B. the α-particles emitted by B will have widely different speed.
C. the β-particles emitted by B will have almost the same speed.
D. the β-particles emitted by B may have almost the same speed.

Answer: a,d

- Watch Video Solution

134. If A, Z and N denote the mass number, the atomic number, and the neutron number for a given nucleus, we can say that.
A. $N=Z+A$
B. isobars have the same A but different Z and ${ }^{\mathrm{N}}$.
C. isotopes have the same Z but different N and A.
D. isotopes have the same N but different A and Z.

Answer: b,c,d

- Watch Video Solution

135. It has been found that nuclides with $2,8,20,50,82$, and 126 protons or neutrons are exceptionally stable. These numbers are refferd to as the magic numbers and their existance has led to.
A. the idea of periodictiy in nuclear properties similar to the
periodicity of chemical elements in periodic table
B. the so-called "liquid drop model of the nucleus"
C. the so-called "shell model of the nuclus"
D. have a conveninet exploanation of "nuclear fission"

Answer: a,c

136. The phenomenon of nuclear fission can be carried out both in a controlled and in an incontrolled way. Out of the following, the correct statements vis-à-vis these phenomens are:
A. The fission energy released per reaction is much more than conventional nuclear reactions and one of the products of the reaction is that very particle which initiates the reaction.
B. It is the "surface to valume" ratio of the sample of nuclear fuel used which determines whether or not the reaction would sustain itself as a 'chain reaction".
C. The "control rods" in a nuclear reactor must be made of a material that absorbs neutorns effectively.
D. The energy released per fission as well as energy released per unit mass of the fuel in nuclear fission are both greater than the corresponding quantities for nuclear fusion.

- Watch Video Solution

137. Choose the correct statements from the following:
A. Like other light nuclei, the . $\quad 2 H e^{4}$ nuclei also have a low value of the binding energy per nucleon .
B. The binding energy per nucleon decreases for nuclei with small as
well as large atomic number.
C. The energy required to remove one neutron from ${ }_{.3} L i^{7}$ to transform it into the isotpes ${ }_{.3} L^{6}{ }^{6}$ is 5.6 MeV , which is the same as the binding energy per nucleon of ${ }_{3} L i^{6}$
D. When two deuterium ncueli fuse together, they give rise to a tritrium nucleus accompained by a release of energy.

Answer: d,c

138. It is observerd that only 0.39% of the original radioactive sample remains undecayed after eight hours. Hence,
A. the half-life of that substance is $1 h$
B. the mean-life of the substance is $[1 /(\log 2)] h$
C. decay constant of the substance is $(\log 2) h^{-1}$
D. if the number of radioactive nuclei of the this substance at a given instant is 10 , then the number left after 30 min would be 7.5

Answer: a,b,c

- Watch Video Solution

139. In a nuclear reactor.
A. the chain reaction is kept under control by rods of cadmium, which reduces the rate
B. the thick concrete shield is used to slow down the speed of fast neutrons
C. heavy water (or graphite)moderate the activity of the reactor
D. out of U^{238} and U^{235} natural uranium has less than 1% of U^{235}

Answer: a,d

- Watch Video Solution

140. A radioactive sample has initial concentration N_{0} of nuclei. Then,
A. the number of undecayed nuclei present in the sample decays exponentially with time
B. the activity (R) of the sample at any instant is directly proportional to the number of undecayed nuclei present in the sample at that
C. the number of decayed nuclei grows exponentially with time
D. the number of decayed nuclei grows lineraly with time

Answer: a,b

- Watch Video Solution

141. An O^{16} nucleus is spherical and has a radius R and a volume $V=\frac{4}{3} \pi R^{3}$.According to the empirical observation, the volume of the ${ }_{.54} X^{128}$ nucleus assumed to be sphericla is V^{\prime} and radius is R^{\prime}. Then
A. $V^{\prime}=8 V$
B. $V^{\prime}=2 V$
C. $R^{\prime}=2 R$
D. $R^{\prime}=8 R$

Answer: a,c

142. Statement $\mathrm{I}:$ Heavy nuclides tend to have more number of neutrons than protons.

Staements II: In hevay nuclei, as there is coloumbic repulsion between protons, so excess of neutrons are preferable:

- Watch Video Solution

143. Staements I: ${ }_{z} X^{4}$ undergoes 2α-decays, 2β-decays (negative β) and 2γ-decays. As a result, the daughter product is $\cdot_{z}-2 X^{A-B}$.

Staements II: In β-decay, the mass number decreases by 4 unit and atomic number decreases by 2 unit. In β-decay (negative β), the mass number remains unchanged and atomic number increases by 1 unit. In γ-decay, mass number and atomic number remain unchanged.

- Watch Video Solution

144. Staements I: The nucleus ${ }_{Z}^{A} X$ is having atomic mass as well as its mass number as A.

Staements II: Mass number of an element is an integer that specifies an isotopes and has no units, while atomic mass is generally not an integer.

- Watch Video Solution

145. Staements I: Light nuclei are most stable if $\mathrm{N}=\mathrm{Z}$, while heavy nuclei are more stable if N gtZ. ($\mathrm{N} \rightarrow$ number of neutrons, $\mathrm{Z} \rightarrow$ number of protons)

Staements II: As the number of protons increases in a nucleus, the Coulomb's repulsive forece increases, which tends to break the nucleus apart. So, to keep the nucleus apart. So, to keep the nucleus stable, more number of neutrons are needed which are neutral in nature.

- Watch Video Solution

146. Staements I: In alpha decay of different radioactive nuclides, the energy of alpha particles has been compared. It is found that as the energy of alpha particle increases the half-life of the decay goes on decreasing.

Staements II: More is the energy in any decay process, more is the probability of decaying the nuclide which leads to faster rate of decay.

- Watch Video Solution

147. Staements I: To determine the age of certain very old oragnic samples, dating of the sample with radioactive isotpes having larger halflife is a better choice than with radioactive isotopes having smaller halflives.

Staements II: The activity of a radioactive sample having smaller half-life is negligibly small after a very long time and hence makes it next to impossible to get dtected.
148. Staements I: The amount of energy required to remove an average nucleon from different nuclei having different mass numbers is approximately the same, while to remove an average electron from atoms having different mass numbers widely varying amounts of energies are required.

Staements II: Nucleon in a nucleus are bounded by short-range nuclear force while elecrtons in an atom are bounded by lond-range Coulomb' force.

- Watch Video Solution

149. Staements I: The fission of a heavy nucleus is always accompanied with the neutrons along with two product nuclei.

Staements II: For a lighter stble nuclide, the $\frac{N}{Z}$ ratio has to be slightly greater than 1.

- Watch Video Solution

150. Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant λ and half-life $T_{1 / 2}$. At the time $t=0$, there are N_{0} nuclei of the element X.

The number N_{X} of nuclei of X at time $t=T_{1 / 2}$ is:
A. $\frac{K+\lambda N_{0}}{2 \lambda}$
B. $\frac{\left(2 \lambda N_{0}-K\right) 1}{\lambda}$
c. $\left[\lambda N_{0}+\frac{K}{2}\right] \frac{1}{\lambda}$
D. Data insufficient

Answer: A

- Watch Video Solution

151. Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant λ and half-life $T_{1 / 3}$. At the time $t=0$, there are N_{0} nuclei of the

element X .

The number N_{Y} of nuclei of Y at time t is .
A. $K t-\frac{K-\lambda N_{0}}{\lambda} e^{-\lambda t}+K-\lambda \frac{N_{0}}{\lambda}$
B. $K t-\frac{K-\lambda N_{0}}{\lambda} e^{-\lambda t}+K-\lambda \frac{N_{0}}{\lambda}$
C. $K t+\frac{K-\lambda N_{0}}{\lambda} e^{-\lambda t}$
D. $K t+\frac{K-\lambda N_{0}}{\lambda} e^{-\lambda t}$

Answer: B

- Watch Video Solution

152. Nuclei of a radioactive element X are being produced at a constant rate K and this element decays to a stable nucleus Y with a decay constant λ and half-life $T_{1 / 3}$. At the time $t=0$, there are N_{0} nuclei of the element X.

The number N_{Y} of nuclei of Y at $t=T_{1 / 2}$ is.
A. $K \frac{\ln 2}{\lambda}+\frac{3}{2}\left(\frac{K-\lambda N_{0}}{\lambda}\right)$
B. $K \frac{\ln 2}{\lambda}+\frac{1}{2}\left(\frac{K-\lambda N_{0}}{\lambda}\right)$
C.
D. $K \frac{\ln 2}{\lambda}-2\left(\frac{K-\lambda N_{0}}{\lambda}\right)$

Answer: c

- Watch Video Solution

153. A radioactive with decay constant λ is being produced in a nuclear reactor at a rate q_{0} per second, where q_{0} is a positive constant and t is the time. During each decay, E_{0} energy is released. The production of radionuclide starts at time $t=0$.

Which differential equation correctly represents the above process?.
A. $\frac{d N}{d t}+\lambda N=q_{0} t$
B. $\frac{d N}{d t}-\lambda N=q_{0} t$
C. $\frac{d N}{d t}+q_{0} t=\lambda N$
D. $\frac{d N}{d t}+q_{0} t=-\lambda N$

Answer: A

- Watch Video Solution

154. The half life of radioactive Radon is 3.8 days. The time at the end of which $\frac{1}{20} t h$ of the radon sample will remain undecayed is (given $\log e=0.4343$)
A. 3.8days
B. 16.5 days
C. 33 days
D. 76 days

Answer: b

A. electromagnetic radiations
B. the electrons orbiting around the nucleus
C. charged particles emitted by the nucleus
D. neutral particles

Answer: c

D Watch Video Solution

156. The equation
$4 H^{+} \rightarrow_{2}^{4} \mathrm{He}^{2+}+2 e \overline{+} 26 \mathrm{MeVrepresents}$
A. β-deacy
B. γ-decay
C. fusion
D. Fission

Answer: C

157. During a beta decay
A. an atomic electron is ejected
B. an electron which is already present within the nucleus is ejected
C. a neutron in the nucleus decays emitting an electron
D. a part of the binding energy of the nucleus is converted into an electron

Answer: C

- Watch Video Solution

158. During a nuclear fusion reaction
A. a heavy nucleus breaks into two fragments by itself
B. a heavy nucleus breaks into two fragments by itself
C. a light nucleus bombarded by thermal neutrons breaks up
D. two light nuclei combine to give a heavier nucleus and possibly other products

Answer: d

D Watch Video Solution

159. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. $6 h$
B. $12 h$
C. $24 h$
D. $28 h$
160. The decay constant of a radioactive sample is λ. The half-life and the average-life of the sample are respectively
A. $1 / \lambda$ and $(\ln 2) / \lambda$
B. $(\ln 2) \lambda$ and $1 / \lambda$
C. $\lambda(\ln 2)$ and $1 / \lambda$
D. $\lambda /(\ln 2)$ and $1 / \lambda$

Answer: b

- Watch Video Solution

161. A star initially has 10^{40} deuterons. It produces energy via the processes $.{ }_{1} H^{2}+{ }_{1} H^{2} \rightarrow_{1} H^{3}+p$ and ${ }_{.1} H^{2}+{ }_{1} H^{3} \rightarrow_{2} H e^{4}+n$. If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of
(a) $10^{6} s$ (b) $10^{8} s$ (c) $10^{12} s$

The masses of the nuclei are as follows
$M\left(H^{2}\right)=2.014 \mathrm{amu}, M(n)=1.008 \mathrm{amu}$,
$M(p)=1.007 \mathrm{amu}, M\left(H e^{4}\right)=4.001 \mathrm{amu}$
A. $10^{6} s$
B. $10^{8} s$
C. $10^{12} s$
D. $10^{16} s$

Answer: c

- Watch Video Solution

162. Fast neutrons can easily be slowed down by
A. the use of lead shielding
B. passing them through water
C. elastic collision with heavy nuclei
D. applying a strong electric field

Answer: b

- Watch Video Solution

163. Consider a particle , β particle and γ-rays, each having an energy of 0.5 MeV . In increase order of panetrating power, the radiation are.
A. α, β, γ
B. α, γ, β
C. β, γ, α
D. γ, β, α

Answer: c

- Watch Video Solution

164. Masses of two isobars ${ }_{29} \mathrm{Cu}^{64}$ and ${ }_{30}{Z n^{64}}^{64}$ are $63.9298 u$ and $63.9292 u$, respectively. It can be concluded from these data that .
A. both the isobars are stable
B. $Z n^{64}$ is radioactive, decaying to $C u^{64}$ through β-decay
C. Cu^{64} is radioactive, decaying to $Z n^{64}$ through γ-decay
D. $C u^{64}$ is radioactive, decaying to $Z n^{64}$ through β-decay

Answer: d

- Watch Video Solution

165. The half - life ofl ^ (131)is8days. Givenasamp \leq ofl^(131)attimet $=$ $0^{`}$, we can assert that
A. no nucleus will decay before $t=4 d a y s$
B. no nucleus will decay before $\begin{aligned} & \\ & t=8 d a y s\end{aligned}$
C. all nucleus will decay beforet $=16$ days
D. a given nucleus may decay at any tiem after $t=0$.

Answer: d

- Watch Video Solution

166. In hydrogen spectrum the wavelength of H_{a} line is 656 nm , where in the spectrum of a distance galaxy H_{a} line wavelength is 706 nm . Estimated speed of the galaxy with respect to earth is ,
A. $2 \times 10^{8} \mathrm{~ms}^{-1}$
B. $2 \times 10^{7} \mathrm{~ms}^{-1}$
C. $2 \times 10^{6} \mathrm{~ms}^{-1}$
D. $2 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: b

- Watch Video Solution

167. Order of magnitude of density of uranium nucleus is, [m = 1.67 xx $10^{\wedge}(-27 \mathrm{~kg}]^{`}$
A. $10^{20} \mathrm{kgm}^{-3}$
B. $10^{17} \mathrm{kgm}^{-3}$
C. $10^{14} \mathrm{kgm}^{-3}$
D. $10^{11} \mathrm{kgm}^{-3}$

Answer: b

- Watch Video Solution

168. Ne nucleus, the after absorbing energy, decays into two α particle and an unknown nucleus. The unknown nucleus is
A. nitrogen
B. carbon
C. boron
D. oxygen

Answer: b

- Watch Video Solution

169. The half-life period of a radioactive element x is same as the mean life time of another radioactive element y. Initially, both of them have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. X and Y have the same decay rate initially
B. X and Y decay at the same rate always
C. Y will decay at a faster rate than ${ } \mathrm{X}$
D. X will decay at a faster rate than Y

Answer: c

D Watch Video Solution

170. Which of the following is a correct statement?
A. Beta rays are same as cathode rays.
B. Gamma rays are high-energy neutrons.
C. Alpha particles are singly ionized helium atoms.
D. Protons and neutrons have exactly the same mass

Answer: a

- Watch Video Solution

171. Two radioactive X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time .
A. $\frac{1}{10 \lambda} s$
B. $\frac{1}{11 \lambda}$
C. $\frac{11}{10 \lambda}$
D. $\frac{1}{9 \lambda}$

Answer: d

- Watch Video Solution

172. The electron emitted in beta radiation originates from
A. inner orbits of atoms
B. free electrons existing in nuclei
C. decay of a neutron in a nuclues
D. photon escaping from the nucleus

Answer: c

173. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life of one species is τ and that of the other is 5τ. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figure best represents the form of this plot?
(a), (b), (c), (d)

A.
a.

B.
b.

C.
c.

D.
d.

Answer: d

- Watch Video Solution

174. The half - life of ${ }^{\wedge}(215) A t$ is $100 \mu, s$. The time taken for the radioactivity of a sample of ${ }^{\wedge}(215) A t$ to decay to $1 / 16^{t h}$ of its initially value is
A. $400 \mu s$
B. $6.3 \mu s$
C. $40 \mu s$
D. $300 \mu \mathrm{~s}$

Answer: A

- Watch Video Solution

175. Which of the following process represents a $\gamma-$ decay?
A. $\wedge(A) X_{Z}+\gamma \rightarrow{ }^{A} X_{Z-1}+a+b$
B. ${ }^{\wedge}(A) X_{Z}+{ }^{1} n_{0} \rightarrow{ }^{A-3} X_{Z-2}+a c$
C. ${ }^{\wedge}(A) X_{Z} \rightarrow{ }^{A} X_{Z}+f$
D. ${ }^{\wedge}(A) X_{Z}+e_{-1} \rightarrow^{A} X_{Z-1}+g$

Answer: c

- Watch Video Solution

176. For uranium nucleus how does its mass vary with volume?
A. $m \propto V$
B. $m \propto 1 / V$
C. $m \propto(\sqrt{V})$
D. $m \propto V^{2}$

Answer: a

- Watch Video Solution

177. A nucleus with mass number 220 initially at rest emits an α-particle. If the Q -value of the reaction is 5.5 MeV , calculate the kinetic energy of the α-particle.
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV
D. 6.5 MeV

Answer: B

- Watch Video Solution

178. A 280 days old radioactive substance shown an activity of 6000 dps , 100 days later its activity between 3000 dps ,what was its initial activity ?
A. $20000 d p s$
B. $24000 d p s$
C. $120000 d p s$
D. $6000 \mathrm{dps}{ }^{`}$

Answer: b

D Watch Video Solution

179. If a star can convert all the He nuclei completely into oxygen nuclei.

The energy released per oxygen nuclei is (Mass of the helium nucleus is
4.0026 amu and mass of oxygen nucleus is 15.9994 amu)
A. 7.6 MeV
B. 56.12 MeV
C. 10.24 MeV
D. 23.9 MeV

Answer: c

- Watch Video Solution

180. _ $(87)^{221}$ Ra is a radioactive substance having half life of 4 days. Find the probability that a nucleus undergoes decay after two half lives
A. 1
B. $\frac{1}{2}$
C. $\frac{3}{4}$
D. $\frac{1}{4}$

- Watch Video Solution

181. In the option given below, let E denote the rest mass energy of a nucleas and n a neutron .The correct option is
A. $E\left({ }_{92}^{236} U\right)>E\left({ }_{92}^{137} I\right)+E\left({ }_{59}^{97} Y\right)+2 E(n)$
B. $E\left({ }_{\cdot 92}^{236} U\right)<E\left({ }_{53}^{137} I\right)+E\left({ }_{.99}^{97} Y\right)+2 E(n)$
C. $E\left({ }_{\cdot 92}^{236} U\right)<E\left(.{ }_{56}^{140} B a\right)+E\left(.{ }_{36}^{94} K r\right)+2 E(n)$
D. $E\left({ }_{.92}^{236} U\right)=E\left({ }_{\cdot 56}^{140} B a\right)+E\left(.{ }_{36}^{94} K r\right)+2 E(n)$

Answer: a

- Watch Video Solution

182. A radioactive sample S_{1} having an activity $5 \mu C i$ has twice the number of nuclei as another sample S_{2} which has as activity of $10 \mu C i$.

The half lives of S_{1} and S_{2} can be
A. 20years and 5years, respectively.
B. $20 y$ years and $10 y e a r s$, respectively.
C. 10year seach
D. 5yearseach

Answer: a

- Watch Video Solution

Linked Comprehension

1. A radioactive with decay constant λ is being produced in a nuclear ractor at a rate q_{0} per second, where q_{0} is a positive constant and t is the time. During each decay, E_{0} energy is released. The production of radionuclide starts at time $t=0$.

Instantaneous power developed at time t due to the decay of the radionuclide is .
A. $\left(q_{-}(0) t-q_{-}(0) /(l a m b d a)+q_{-}(0) /(l a m b d a) e^{\wedge}(-l a m b d a t)\right) E_{-}(0)^{\wedge}$
B. (q_(0)t+q_(0)/(lambda)-q_(0)/(lambda)e^(-lambdat))E_(0)` C. (q_(0)t+q_(0)/(lambda)+q_(0)/(lambda)e^(-lambdat))E_(0)`
D. $\left(\mathrm{q}_{-}(0) \mathrm{t}+\mathrm{q}_{-}(0) /(\operatorname{lambda})-\mathrm{q}_{-}(0) /(\operatorname{lambda}) \mathrm{e}^{\wedge}(-\operatorname{lambdat})\right) \mathrm{E}_{-}(0)^{\wedge}$

Answer: a

- Watch Video Solution

2. A radioactive with decay constant λ is being produced in a nuclear ractor at a rate q_{0} per second, where q_{0} is a positive constant and t is the time. During each decay, E_{0} energy is released. The production of radionuclide starts at time $t=0$.

Average power developed in time t due to the decay of the radionuclide is
A. $\left(\frac{q_{0} t}{2}-\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda^{2} t}-\frac{q_{0}}{\lambda^{2} t} e^{-\lambda t} E_{0}\right)$
B. $\left(\frac{q_{0} t}{2}+\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda^{2} t}-\frac{q_{0}}{\lambda^{2} t} e^{-\lambda t} E_{0}\right)$
C. $\left(\frac{q_{0} t}{2}-\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda^{2} t}+\frac{q_{0}}{\lambda^{2} t} e^{-\lambda t} E_{0}\right)$
D. $\left(\frac{q_{0} t}{2}+\frac{q_{0}}{\lambda}+\frac{q_{0}}{\lambda^{2} t}+\frac{q_{0}}{\lambda^{2} t} e^{-\lambda t} E_{0}\right)$

Answer: a

- Watch Video Solution

3. Various rules of thumb have seen proposed by the scientific community to expalin the mode of radioactive decay by various radioisotopes. One of the major rules is called the n / p ratio. If all the known isotopes of the elemnts are plotted on a graph of number of neutrons (n) versus number of protons (p), it is observed that all isotopes lying outside of a "stable" n / p ratio region are radioactive as shown fig. The graph exhibits straight line behaviour with unit slope up to $p=25$. Above $p=25$, tgose isotopes with n / p ratios lying above the stable region usually undergo beta decay. Very heavy isotopes $(p>83)$ are unstable because of their relativley large nuclei and they undergo alpha decay. Gamma ray emission does not involve the release of a particle. It represnts a change in an atom from a higher energy level to a lower energy level.

How would the radioisotope of magnesium with atomic mass 27 undergo radioactive decay?.
A. electron capture
B. alpha decay
C. beta decay
D. gamma ray emission

Answer: c

4. Various rules of thumb have seen proposed by the scientific community to expalin the mode of radioactive decay by various radioisotopes. One of the major rules is called the n / p ratio. If all the known isotopes of the elemnts are plotted on a graph of number of neutrons (n) versus number of protons (p), it is observed that all isotopes lying outside of a "stable" n / p ratio region are radioactive as shown f The graph exhibits straight line behaviour with unit slope up to $p=25$. Above $p=25$, tgose isotopes with n / p ratios lying above the stable region usually undergo beta decay. Very heavy isotopes $(p>83)$ are unstable because of their relativley large nuclei and they undergo alpha decay. Gamma ray emission does not involve the release of a particle. It represnts a change in an atom from a higher energy level to a lower energy level.

$T h-230$ undergoes a series of radioactive decay processes resulting in $B i-214$ being the final product. What was the sequence of the processes that occured?
A. $\alpha, \alpha, \alpha, g, \beta$
B. $\alpha, \alpha, \alpha, \alpha, \beta$
C. $\alpha, \alpha, \beta, \beta$
D. $\alpha, \beta, \beta, \beta, \gamma$

Answer: b

5. Various rules of thumb have seen proposed by the scientific community to expalin the mode of radioactive decay by various radioisotopes. One of the major rules is called the n / p ratio. If all the known isotopes of the elemnts are plotted on a graph of number of neutrons (n) versus number of protons (p), it is observed that all isotopes lying outside of a "stable" n / p ratio region are radioactive as shown fig.5.28. The graph exhibits straight line behaviour with unit slope up to $p=25$. Above $p=25$, tgose isotopes with n / p ratios lying above the stable region usually undergo beta decay. Very heavy isotopes ($p>83$) are unstable because of their relativley large nuclei and they undergo alpha decay. Gamma ray emission does not involve the release of a particle. It represnts a change in an atom from a higher energy level to a lower energy level.

Which of the following represents the relative penetrating power of the three types of radioactive emission in decreasing order?
A. $\beta>\alpha>\gamma$
B. $\beta>\gamma>\alpha$
C. $\gamma>\alpha>\beta$
D. $\gamma>\beta>\alpha$

Answer: d

6. The radionuclide ${ }^{56} \mathrm{Mn}$ is being produced in a cyclontron at a constant rate P by bombarding a manganese target with deutrons.
.${ }^{56} \mathrm{Mn}$ has a half-life of $2.5 h$ and the target contains large numbers of only the stable manganese isotopes.${ }^{56} \mathrm{Mn}$. The reaction that produces . ${ }^{56} \mathrm{Mn}$ is
$.{ }^{56} M n+d \rightarrow .{ }^{56} M n+p$
After being bombarded for a long time, the activity of ${ }^{56} \mathrm{Mn}$ becomes constant, equal to $13.86 \times 10^{10} s^{-1}$. (Use $1 n 2=0.693$, Avagardo number $=6 \times 10^{2}$, atomic weight of ${ }^{56} \mathrm{Mn}=56 \mathrm{gmol}^{-1}$).

At what constant rate P,.${ }^{56} \mathrm{Mn}$ nuclei are being produced in the cyclontron during the bombardment?
A. $2 \times 10^{11} \nu c \leq i s^{-1}$
B. $13.86 \times 10^{10} \nu c \leq i s^{-1}$
C. $9.6 \times 10^{10} \nu c \leq i s^{-1}$
D. $6.93 \times 10^{10} \nu c \leq i s^{-1}$

Answer: b

7. The radionuclide.${ }^{56} \mathrm{Mn}$ is being produced in a cyclontron at a constant rate P by bombarding a manganese target with deutrons.
${ }^{56} \mathrm{Mn}$ has a half-life of $2.5 h$ and the target contains large numbers of only the stable manganese isotopes.${ }^{56} \mathrm{Mn}$. The reaction that produces

- (56) Mn is
$.{ }^{56} \mathrm{Mn}+d \rightarrow .{ }^{56} \mathrm{Mn}+p$
After being bombarded for a long time, the activity of.${ }^{56} \mathrm{Mn}$ becomes constant, equal to $13.86 \times 10^{10} s^{-1}$. (Use $1 n 2=0.693$, Avagardo number $=6 \times 10^{2}, a \rightarrow$ micweightof. $\wedge(56) \mathrm{Mn}=56$ g $\mathrm{mol}^{\wedge}(-1)$
). Aftertheactivityof.^(56)Mnbecomescons $\tan t, \nu m b e r o f . \wedge(56) M n `$ nuclei present in the target is equal to .
A. 5×10^{11}
B. 20×10^{11}
C. 1.2×10^{14}
D. 1.8×10^{15}

- Watch Video Solution

8. The radionuclide. ${ }^{56} \mathrm{Mn}$ is being produced in a cyclontron at a constant rate P by bombarding a manganese target with deutrons.
${ }^{56} \mathrm{Mn}$ has a half-life of $2.5 h$ and the target contains large numbers of only the stable manganese isotopes.${ }^{56} \mathrm{Mn}$. The reaction that produces .${ }^{56} M n$ is
$.{ }^{56} M n+d \rightarrow .{ }^{56} M n+p$
After being bombarded for a long time, the activity of ${ }^{56} \mathrm{Mn}$ becomes constant, equal to $13.86 \times 10^{10} s^{-1}$. (Use $1 n 2=0.693$, Avagardo number $=6 \times 10^{2}$, atomic weight of ${ }^{56} \mathrm{Mn}=56 \mathrm{gmol}^{-1}$).

After a long time bombardment, number.$^{56} \mathrm{Mn}$ nuclei present in the target depends upon.
A. All (i), (ii), and (iii) are correct.
B. Only (i) and (ii) are correct.
C. Only (ii) and (iii) are correct.
D. Only (i) and (iii) are correct.

Answer: c

D Watch Video Solution

9. Many unstable nuclie can decay spontaneously to a nucleus of lower mass but differnet combination of nucleons. The process of spontaneous emission of radiation is called radioactivity substance.

Radioactive decay is a statistical process. Radiaactivity is independent of all external conditions. The number of decays per unit time or decay rate is called activity. Activity exponentially decrease with time. Mean lifetime is always greater than half-life time.

Choose the correct statemnet about radioactivity:
A. Radioactivity is a statistical process.
B. Radioactivity is independent of high temperature and high pressure
C. When a nucleus undergoes α - or - β-decay, its atomic number changes.
D. All of the these

Answer: d

- Watch Video Solution

10. Many unstable nuclie can decay spontaneously to a nucleus of lower mass but differnet combination of nucleons. The process of spontaneous emission of radiation is called radioactivity substance.

Radioactive decay is a statistical process. Radiaactivity is independent of all external conditions. The number of decays per unit time or decay rate is called activity. Activity exponentially decrease with time. Mean lifetime is always greater than half-life time.

If T_{H} is the half-life and T_{M} is the mean life. Which of the following statement is correct.

$$
\text { A. } T_{M}>T_{H}
$$

B. $T_{M}<T_{H}$
C. Both ar directly proportional to square of the decay constant.
D. $T_{M} \propto \lambda_{0}$

Answer: a

- Watch Video Solution

11. Many unstable nuclie can decay spontaneously to a nucleus of lower mass but differnet combination of nucleons. The process of spontaneous emission of radiation is called radioactivity substance.

Radioactive decay is a statistical process. Radiaactivity is independent of all external conditions. The number of decays per unit time or decay rate is called activity. Activity exponentially decrease with time. Mean lifetime is always greater than half-life time.
n number of α-particels per second are being emitted by B atoms of a radioactive element. The half-life of element will be
A. $\frac{n}{N} s$
B. $\frac{N}{n} s$
C. $0693 \frac{N}{n} s$
D. $0.693 \frac{n}{N} s$

Answer: c

D Watch Video Solution

12. All nuclei consist of two types of particles- protaon and neutrons. Nuclear force is the strongest froce. Stability of nucleus is determined by the neutron - proton ratio or mass defect or binding energy per nucleus or packing fraction. Shape of nucleus is calculated by quadrupole moment. Spin of nucleus depends on even or odd mass number. Volume of nucleus depends on the mass number. Whole mass of the atom (nearly 99%) is centered at the nucleus. Magnetic moment of the nucleus is measured in terms of the nuclear magnetons.

The correct statements about nuclear force is/are
A. Charge independent
B. short-range force
C. non-conservation force
D. spin-dependent force

Answer: a,b,c,d

- Watch Video Solution

13. All nuclei consist of two types of particles- protaon and neutrons. Nuclear force is the strongest froce. Stability of nucleus is determined by the neutron - proton ratio or mass defect or binding energy per nucleus or packing fraction. Shape of nucleus is calculated by quadrupole moment. Spin of nucleus depends on even or odd mass number. Volume of nucleus depends on the mass number. Whole mass of the atom (nearly 99%) is centered at the nucleus. Magnetic moment of the nucleus is measured in terms of the nuclear magnetons.

Binding energy per nucleon is maximum.
A. for lighter order element (lows mass number)
B. for heavier oreder elements (high mass number)
C. for middle order elements
D. equal for all order elements

Answer: c

- Watch Video Solution

14. All nuclei consist of two types of particles- protaon and neutrons. Nuclear force is the strongest froce. Stability of nucleus is determined by the neutron - proton ratio or mass defect or binding energy per nucleus or packing fraction. Shape of nucleus is calculated by quadrupole moment. Spin of nucleus depends on even or odd mass number. Volume of nucleus depends on the mass number. Whole mass of the atom (nearly 99%) is centered at the nucleus. Magnetic moment of the nucleus is measured in terms of the nuclear magnetons.

Volume (V) of the nucleus is related to mass number (A) as
A. $V \propto A^{2}$
B. $V \propto A^{1 / 3}$
C. $V \propto A^{2 / 3}$
D. $V \propto A$

Answer: d

- Watch Video Solution

15. The compound unstabel nucleus ${ }_{92}^{236} U$ often decays in accordance with the following reaction
${ }_{-}(92)^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+$ _ $^{(38)^{\wedge}(94) \mathrm{Sr}{ }^{`}+\text { other particles }}$
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very
close together at intranuclear distances.

In the nuclear reaction presented above, the "otter particles" might be .
A. An alpha particle, which consists of two protons and two neutrons
B. two protons
C. one proton and one neutron
D. two neutrons

Answer: d

- Watch Video Solution

16. The compound unstabel nucleus ${ }_{.92}^{236} U$ often decays in accordance with the following reaction
${ }_{92}^{236} \mathrm{U} \rightarrow{ }_{.}^{140} \mathrm{Xe}+{ }_{.}{ }_{38}^{94} \mathrm{Sr}+$ other particles
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances.

Why is a $\cdot{ }_{2}^{4} \mathrm{He}$ nucleus more stable than a $\cdot{ }_{3}^{4} \mathrm{Li}$ nulceus?
A. The strong nuclear force is larger when the neutron to proton ratio is higher.
B. The laws of nuclear physics forbid a nucleus from contaning more protons than neutrons.
C. Forces other than the strong nuclear force make the lithium nulceus less stable.
D. None of the above.

Answer: a

- Watch Video Solution

17. The compound unstabel nucleus ${ }_{\cdot 92}^{236} U$ often decays in accordance with the following reaction
${ }_{92}^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+{ }_{.38}^{94} \mathrm{Sr}+$ other particles
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances.

A proton and a neutron are both shot at $100 \mathrm{~ms}^{-1}$ toward a ${ }_{6}^{12} \mathrm{C}$ nuleus.
Which partilce, if either, is more likely to be absorebed by the nucleus?
A. The proton
B. The neutron
C. Both particles are about equally likely to be absorbed,.
D. Neither particle will be absorbed.

Answer: b

- Watch Video Solution

18. The compound unstabel nucleus ${ }_{92}^{236} U$ often decays in accordance with the following reaction
${ }_{92}^{236} U \rightarrow{ }_{.54}^{140} \mathrm{Xe}+{ }_{.{ }_{38}^{94} \mathrm{Sr}+\text { other particles }}$
During the reaction, the uranium nucleus "fissions" (splits) into the two smaller nuceli have higher nuclear binding energy per nucleon (although the lighter nuclei have lower total nuclear binding energies, because they contain fewer nucleons).

Inside a nucleus, the nucleons (protonsa and neutrons)attract each other with a "strong nuclear" force. All neutrons exert approxiamtely the same strong nuclear force on each other. This force holds the nuclear are very close together at intranuclear distances.

Which of the following graphs might represent the relationship between atomic number (i.e., "atomic weight") and the total binding energy of the nucleus, for nuclei heavier than ${ }_{38}^{94} \mathrm{Sr}$?

Atomic mass number \longrightarrow

A.
a.

B.
b.

c.
C.

D.
d.

Answer: c

19. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

Calculate the electrostatic potential energy at the instant when the alpha particle stops?
A. 36.3 MeV
B. 45.0 MeV
C. 3.63 MeV
D. 40.0 MeV

Answer: c

- Watch Video Solution

20. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

What initial kinetic energy (in joule and in MeV)did the alpha particle have?
A. 36.3
B. 0.36
C. 3.63
D. 2.63

Answer: c

- Watch Video Solution

21. A beam of alpha paricles is incident on a target of lead. A particular alpha paticles comes in 'head- on' to a particular lead nucleus and stops $6.50 \times 10^{-14} \mathrm{~m}$ away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of alpha particle is $6.64 \times 10^{-27} \mathrm{~kg}$

What was the initial speed of the alpha particle?
A. 132. $\times 10^{2} m s^{-1}$
B. 1.32. $\times 10^{7} \mathrm{~ms}^{-1}$
C. 13.2. $\times 10^{2} \mathrm{~ms}^{-1}$
D. $0.13 . \times 10^{7} \mathrm{~ms}^{-1}$

Answer: b

- Watch Video Solution

22. A nucleus kept at rest in free space, brakes up into smaller nuclei of masses ' m ' and ' $2 m$ '. Total energy generated in this fission is E. The
bigger part is radioactive, emits five gamma ray photons in the direction opposite to its velocity and finally comes torest.

$$
\left[\text { Given } h=6.6 \times 10^{-34} \mathrm{Js}, m=1 \times 10^{-26} \mathrm{Kg}, E=3.63 \times 10^{-8} \mathrm{mc}^{2}, C=\right.
$$

Fractional loss of mass in the fission is
A. 1.21×10^{-8}
B. 2.56×10^{-8}
C. $1.73 \times \times 10^{\wedge}(-8)^{\wedge}$
D. 3.52×10^{-8}

Answer: a

- Watch Video Solution

23. A nucleus kept at rest in free space, brakes up into smaller nuclei of masses ' m ' and ' $2 m$ '. Total energy generated in this fission is E. The bigger part is radioactive, emits five gamma ray photons in the direction opposite to its velocity and finally comes torest.
$\left[\right.$ Given $h=6.6 \times 10^{-34} \mathrm{Js}, m=1 \times 10^{-26} \mathrm{Kg}, E=3.63 \times 10^{-8} \mathrm{mc}^{2}, C=$ Velocity of small daughter nucleus is
A. $5.6 \times 10^{4} m s^{-1}$
B. $6.6 \times 10^{4} \mathrm{~ms}^{-1}$
C. $7.6 \times 10^{4} \mathrm{~ms}^{-1}$
D. $8.6 \times 10^{4} \mathrm{~ms}^{-1}$

Answer: b

- Watch Video Solution

24. A nucleus kept at rest in free space, brakes up into smaller nuclei of masses ' m ' and ' $2 m$ '. Total energy generated in this fission is E. The bigger part is radioactive, emits five gamma ray photons in the direction opposite to its velocity and finally comes torest. $\left[\right.$ Given $h=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{m}=1 \times 10^{-26} \mathrm{Kg}, E=3.63 \times 10^{-8} \mathrm{mc}^{2}, C=$ The wavelength of the gamma ray is
A. $0.02 \AA$
B. $0.03 \AA$
C. $0.04 \AA$
D. $0.05 \AA$

Answer: b

- Watch Video Solution

25. Nuceli A and B convert into a stable nucleus C. Nucleus A is converted into C by emitting 2α particels and 3β-particles. Nucleus B is converted into C by emitting one α-particle and 5β-particles. At time $t=0$, nuclei of A are $4 N_{0}$ and nuceli of B are N_{0}. Initially, number of nuclei of C are zero. Half-life of A (into conservation of C) is 1 min and that of B is 2 min . Find the time (in minutes) at which rate of disintegration of A and B are equal.
26. The half-life of a radioactive nuclide is 20 hours. What fraction of original activity will remain after 40 hours?

- Watch Video Solution

27. A radioactive sample has 8.0×10^{18} active nuclei at a certain instant. How many of these nuclei will still be in the active state after two half-life $\left(\right.$ in $\left.\times 10^{18}\right) ?$

- Watch Video Solution

28. A radioactive sample decays with an average life of 20 ms . A capacitor of capacitance $100 \mu F$ is charged to some potential and then the plates are connected through a resistance R. What should be the value of R so that the ratio of the charge on the capacitor to the activity of the radioactive sample remains constant in time?
29. A radioactive sample decays through two different decay processes α decay and β-decay is 6 . What will be the ratio of number of radioactive nuclei present after $6 h$?.

- Watch Video Solution

Integer

1. . ${ }_{92} U^{238}$ changes to $.85 A t^{210}$ by a series of α-and β-decays. Find the number of α-decays undergone (an integer).

- Watch Video Solution

2. A certain radioactive material can undergo three constant $\lambda, 2 \lambda$ and 3λ
. Then, the effective decay constant $\lambda_{\text {eff }}$ is equal to $n \lambda$. What is the value of n ?
3. The radioactive of a sample is R_{1} at a time T_{1} and R_{2} at a time T_{2}. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is equal to $\frac{n\left(R_{1}-R_{2}\right) T}{\ln 4}$. Here n is some integral number. What is the value of n ?

- Watch Video Solution

4. The radioactive decay rate of a radioactive element is found to be 10^{3} disintegration per second at a cartain time. If the half life of the element is one second , the dacay rate after one second And after three second is

- Watch Video Solution

5. In the final Uranium radioactive series the initial nucleus is U_{92}^{238} and the final nucleus is $P b_{82}^{206}$. When Uranium neucleus decays to lead, the number of a - particle is \qquad And the number of β-particles emited is
6. When Boron nucleus B_{3}^{10} is bombarded by neutrons, a- particle are emitted. The resulting nucleus is of the element and has the mass number....

- Watch Video Solution

Fill In The Blanks

1. Atoms having the same but different are called isotopes .

- Watch Video Solution

2. The binding energies per nucleon for deuteron (.1 H^{2}) and helium (${ }_{.2} \mathrm{He}^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when two deutrons fuse to form a helium nucleus (.2 $H e^{4}$) is
3. In the nuclear process, $C_{6}^{11} \rightarrow_{2} B^{11}+\beta^{+}+X, X$ stands for.......

- Watch Video Solution

4. Consider the reaction $.{ }_{1}^{2} H+{ }_{1}^{2} H={ }_{2}^{4} \mathrm{He}+Q$. Mass of the deuterium atom $=2.0141 u$. Mass of helium atom $=4.0024 u$. This is a nuclear. reaction in which the energy Q released is...........MeV.

- Watch Video Solution

5. The order of magnitude of the density of nuclear matter is $10^{4} \mathrm{kgm}^{-3}$

- Watch Video Solution

Multiple correct option

1. From the following equation pick out the possible nuclear fusion reactions
A. . ${ }_{6} C^{13}+{ }_{.1} H^{1} \rightarrow{ }_{.6} C^{14}+4.3 \mathrm{MeV}$
B. . ${ }_{6} C^{13}+{ }_{.1} H^{1} \rightarrow{ }_{.7} C^{13}+2 \mathrm{MeV}$
C. ${ }_{7} C^{14}+{ }_{.1} H^{1} \rightarrow .{ }_{8} O^{15}+7.3 \mathrm{MeV}$
D. $.92 U^{235}+.{ }_{.0} n^{1}$

Answer: a,b,c

- Watch Video Solution

2. Which of the following statement (s) is (are) correct ?
A. The rest mass of a stable nucleus is greater than the sum of the rest masses of its separated nucleons.
B. The rest mass of a stable nucleus is greater than the sum of the
C. In nuclear fission, energy is released by fusing two nuclei of medium mass (approximately 100 a.m.u.)
D. In nuclear fission, energy is released by fragammentation of a very heavy nulceus.

Answer: a,d

- Watch Video Solution

3. Let m_{p} be the mass of a poton , M_{1} the mass of a $-(10)^{20} N e$ nucleus and M_{2} the mass of a $\quad(20){ }^{40} \mathrm{Ca}$ nucleus . Then
A. $M_{2}=2 M_{1}$
B. $M_{2}>2 M_{1}$
C. $M_{2}<2 M_{1}$
D. $M_{1}<10\left(m_{p}+m_{p}\right)$

Answer: c,d

4. Assume that the nuclear binding energy per nucleus (B / A) versus mass number (A) is as shown in the figure Use this plot to choose the correct (s) choice given below

A. Fusion of nuclei with mass numbers lying in the range of $1<A<50$ will release energy.
B. Fusion of nuclei with mass numbers lying in the range of $51<A<100$ will release energy.
C. Fission of a nucleus lying in the mass range of $100<A<260$ will release energy when broken into equal fragments.
D. Fission of a nucleus lying in the mass range of $200<A<260$ will release energy when broken into equal fragments.

Answer: b,d

- Watch Video Solution

Linked comprehension type

1. Scientists are working hard to develop nuclear fusion reactor Nuclei of heavy hydrogen, _(1) ${ }^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is - (1) ${ }^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} \mathrm{He}+n+$ energy. In the core of fusion reactor, a gas of heavy hydrogen of ${ }_{-}(1)^{2} H$ is fully ionized into deuteron nuclei and electrons. This collection of $1^{2} H$ nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally
come close enough for nuclear fusion to take place. Usually, the temperature in the reactor core are too high and no material will can be used to confine the to plasma for a time t_{0} before the particles fly away from the core. If n is the density (number volume) of deuterons, the product $n t_{0}$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$ it may be helpfull to use the following boltzmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$
In the core of nucleus fusion reactor, the gas become plasma because of
A. strong nuclear force acting between the deutrons
B. Coulomb force acting between the deutrons
C. Coulomb force acting between deuteron-electron pairs
D. the high pairs temperature maintained inside the reactor core

Answer: D

- Watch Video Solution

2. Scientists are working hard to develop nuclear fusion reactor Nuclei of heavy hydrogen, _(1) ${ }^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is _ (1) $)^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} H e+n+$ energy. In the core of fusion reactor, a gas of heavy hydrogen of ${ }_{-}(1)^{2} H$ is fully ionized into deuteron nuclei and electrons. This collection of $1^{2} H$ nuclei and electrons is known as plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperature in the reactor core are too high and no material will can be used to confine the to plasma for a time t_{0} before the particles fly away from the core. If n is the density (number volume) of deuterons, the product $n t_{0}$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$
it may be helpfull to use the following boltzmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$
Assume that two deuteron nuclei in the core of fusion reactor at temperature energy T are moving toward each other, each with kinectic energy $1.5 k T$, when the seperation between them is large enough to
neglect coulomb potential energy. Also neglate any interaction from other particle in the core. The minimum temperature T required for them to reach a separation of $4 \times 10^{-15} \mathrm{~m}$ is in the range
A. $1.0 \times 10^{9} \mathrm{~K}<T 2.0 \times 10^{9} \mathrm{~K}$
B. $2.0 \times 10^{9} K<T 3.0 \times 10^{9} K$
C. $3.0 \times 10^{9} K<T 4.0 \times 10^{9} K$
D. $4.0 \times 10^{9} \mathrm{~K}<T 5.0 \times 10^{9} \mathrm{~K}$

Answer: A

- Watch Video Solution

3. Scientists are working hard to develop nuclear fusion reactor Nuclei of heavy hydrogen, _(1) ${ }^{2} H$, known as deuteron and denoted by D, can be thought of as a candidate for fusion rector. The $D-D$ reaction is - (1) ${ }^{2} H+{ }_{1}^{2} H \rightarrow{ }_{2}^{1} \mathrm{He}+n+$ energy. In the core of fusion reactor, a gas of heavy hydrogen of ${ }_{-}(1)^{2} H$ is fully ionized into deuteron nuclei and electrons. This collection of $\quad 1^{2} H$ nuclei and electrons is known as
plasma. The nuclei move randomly in the reactor core and occasionally come close enough for nuclear fusion to take place. Usually, the temperature in the reactor core are too high and no material will can be used to confine the to plasma for a time t_{0} before the particles fly away from the core. If n is the density (number volume) of deuterons, the product $n t_{0}$ is called Lawson number. In one of the criteria, a reactor is termed successful if Lawson number is greater then $5 \times 10^{14} \mathrm{~s} / \mathrm{cm}^{2}$ it may be helpfull to use the following boltzmann constant
$\lambda=8.6 \times 10^{-5} \mathrm{eV} / k, \frac{e^{2}}{4 \pi s_{0}}=1.44 \times 10^{-9} \mathrm{eVm}$
Result of calculations for four different design of a fusion reactor using
$D-D$ reaction are given below. which of these is most promising based on Lawson criterion ?
A. Deuteron density $=2.0 \times 10^{12} \mathrm{~cm}^{-3}$, confinement tiem

$$
=5.0 \times 10^{-3} \mathrm{~s}
$$

B. Deuteron density $=8.0 \times 10^{14} \mathrm{~cm}^{-3}$, confinement tiem

$$
=9.0 \times 10^{-1} s
$$

C. Deuteron density $=4.0 \times 10^{23} \mathrm{~cm}^{-3}$, confinement tiem

$$
=1.0 \times 10^{-11} s
$$

D. Deuteron density $=2.0 \times 10^{24} \mathrm{~cm}^{-3}$, confinement tiem

$$
=4.0 \times 10^{-12} s
$$

Answer: B

- Watch Video Solution

4. The $\beta-$ decay process, discovered around 1900 , is basically the decay of a neutron n. In the laboratory, a proton p and an electron e^{-}are observed as the decay product of neutron. Therefore considering the decay of neutron as a two- body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant . But experimentally, it was observed that the electron kinetic energy has continuous spectrum Considering a three- body decay process , i.e.
$n \rightarrow p+e^{-}+\bar{\nu}_{e}$, around 1930 , Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino $\left(\bar{\nu}_{e}\right)$ to be massaless and
possessing negligible energy, and the neutrino to be at rest, momentum and energy conservation principle are applied. From this calculation, the maximum kinetic energy of the electron is $0.8 \times 10^{6} \mathrm{eV}$ The kinetic energy carried by the proton is only the recoil energy.

If the - neutrono had a mass of $3 e V / c^{2}$ (where c is the speed of light) insend of zero mass, what should be the range of the kinectic energy K. of the electron?

- Watch Video Solution

5. The $\beta-$ decay process, discovered around 1900 , is basically the decay of a neutron n. In the laboratory, a proton p and an electron e^{-}are observed as the decay product of neutron. Therefore considering the decay of neutron as a two- body decay process, it was predicted theoretically that the kinetic energy of the electron should be a constant .

But experimentally, it was observed that the electron kinetic energy has continuous spectrum Considering a three- body decay process , i.e. $n \rightarrow p+e^{-}+\bar{\nu}_{e}$, around 1930 , Pauli explained the observed electron energy spectrum. Assuming the anti-neutrino $\left(\bar{\nu}_{e}\right)$ to be massaless and
possessing negligible energy, and the neutrino to be at rest, momentum and energy conservation principle are applied. From this calculation, the maximum kinetic energy of the electron is $0.8 \times 10^{6} \mathrm{eV}$ The kinetic energy carried by the proton is only the recoil energy.

What is the maximum energy of the anti-neutrino ?
A. The nucleus.${ }_{3}^{6} L i$ can emit an alpha particle
B. The nucleus ${ }_{84}^{120} P 0$ cam emit a proton.
C. Deuteron and alpha particle can undergo complete fusion.
D. The nuclei $\cdot{ }_{30}^{70} Z n$ and ${ }_{34}^{82} S e$ can undergo complete fusion.

Answer: C

- Watch Video Solution

Integer type

1. To determine the half life of a radioactive element, a student plot a graph of in $\left|\frac{d N(t)}{d t}\right|$ versus t, Here $\left|\frac{d N(t)}{d t}\right|$ is the rate of radioactive decay at time t, if the number of radioactive nuclei of this element decreases by a factor of p after 4.16 year the value of p is

- Watch Video Solution

2. The activity of a freshly prepared radioactive sample is 10^{10} disintegrations per second, whose mean life is $10^{9} s$ The mass of an atom of this radioisotope is $10^{-25} \mathrm{~kg}$ The mass (in mg) of the radioactive sample is
3. A freshly prepared sample of a radioisotope of half - life $1386 s$ has activity 10^{3} disintegrations per second Given that $\ln 2=0.693$ the fraction of the initial number of nuclei (expressed in nearest integer percentage) that will decay in the first $80 s$ after preparation of the sample is

- Watch Video Solution

ddp.5.1

1. The graph between $\log R$ and $\log A$ wher R is the nuclear radius and A is the mass of is.
A.
B.
C.
D.

Answer: A

- Watch Video Solution

2. The ratio of radii of nuclei ${ }_{13} A 1^{27}$ and ${ }_{52} X^{A}$ is $3: 5$. The number of neutrons in the nuclei of X will be
A. 52
B. 73
C. 125
D. 13

Answer: B

3. Radius of ${ }_{2}^{4} \mathrm{He}$ nucleus is 3 Fermi. The radius of ${ }_{82}^{206} \mathrm{~Pb}$ nucleus will be.
A. 5 Fermi
B. 6 Fermi
C. 11.16 Fermi
D. 8 Fermi

Answer: C

- Watch Video Solution

4. What is the radius of iodine atom (at no. 53 , mass number 126)?
A. $2.5 \times 10^{-11} m$
B. $2.5 \times 10^{-9} \mathrm{~m}$
C. $7 \times 10^{-9} m$
D. $7 \times 10^{-6} \mathrm{~m}$

- Watch Video Solution

5. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio $8: 1$. The ratio of radii of the fragments is.
A. $1: 2$
B. 1: 4
C. $4: 1$
D. 2:1

Answer: A

D Watch Video Solution

6. Order of magnitude of density of uranium nucleus is, [m = 1.67 xx $10^{\wedge}(-27 \mathrm{~kg}]^{`}$
A. $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
B. $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
C. $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
D. $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$

Answer: B

- Watch Video Solution

7. α-particles of enegry 400 KeV are boumbardel on nucleus of .82 Pb . In scattering of α-particles, it minimum distance from nucleus will be
A. 0.59 nm
B. $0.59 \AA$
C. $5.9 \AA$
D. 0.59 pm
8. In nuclear reaction ${ }_{.2} \mathrm{He}^{4} \cdot{ }_{z} X^{A} \rightarrow{ }_{\cdot z+2} Y^{A+3}+A$, denotes.
A. electron
B. positron
C. proton
D. neutron

Answer: D

- Watch Video Solution

9. For a nucleus to be stable, the correct relation between neutron number N and proton number Z is.
A. $N>Z$
B. $N=Z$
C. $N<Z$
D. $N \geq Z$

Answer: D

- Watch Video Solution

10. Two nucleons are at a separation of $1 \times 10^{-15} \mathrm{~m}$. The net force between them is F_{1}, if both are neutrons, F_{2} if both are protons and F_{3} if one is a proton and other is a neutron. In such a case.
A. $F_{2}>F_{1}>F_{3}$
B. $F_{1}=F_{2}=F_{3}$
C. $F_{1}=F_{2}>F_{3}$
D. $F_{1}=F_{3}>F_{2}$

Answer: B

11. M_{n} and M_{p} represent mass of neutron and proton respectively. If an element having atomic mass M has N - neutron and Z-proton, then the correct relation will be :
A. $M<\left[N M_{n}+Z M_{P}\right]$
B. $M>\left[N M_{n}+Z M_{P}\right]$
C. $M=\left[N M_{n}+Z M_{P}\right]$
D. $M=N\left[M_{n}+M_{P}\right]$

Answer: A

- Watch Video Solution

12. $M, M_{n} \& M_{p}$ denotes the masses of a nucleous of ${ }_{Z} X^{A}$ a neutron, and a proton respectively. If the nucleus is separated in to its individual protons and neutrons then

$$
\text { A. } m<(A-Z) m_{n}+Z m_{p}
$$

B. $m=(A-Z) m_{n}+Z m_{p}$
C. $m=(A-Z) m_{p}+Z m_{n}$
D. $m>(A-Z) m_{n}+Z m_{p}$

Answer: A

D Watch Video Solution

13. The rest energy of an electron is.
A. 510 KeV
B. 931 KeV
C. 510 MeV
D. 931 MeV

Answer: A

14. Let m_{p} be the mass of a poton , M_{1} the mass of a $-(10)^{20} N e$ nucleus and M_{2} the mass of a $-(20){ }^{40} \mathrm{Ca}$ nucleus . Then
A. $M_{2}=2 M_{1}$
B. $M_{2}>2 M_{1}$
C. $M_{2}<2 M_{1}$
D. $M_{1}<10\left(m_{n}+m_{p}\right)$

Answer: C::D

- Watch Video Solution

15. The mass number of a nucleus is.
A. always less than its atomic number
B. always greater than its atomic number
C. sometimes equal to its atomic number
D. sometimes more than and sometimes equal to its atomic number

Answer: C::D

D Watch Video Solution

ddp.5.2

1. The mass defect in a particular nuclear reaction is 0.3 grams. The amont of energy liberated in kilowatt hours is.
(Velocity of light $\left.=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
A. 1.5×10^{6}
B. 2.5×10^{6}
C. 3×10^{6}
D. 7.5×10^{6}

Answer: D

2. If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
A. $1.5 \times 10^{-10} J$
B. $3 \times 10^{-10} J$
C. $4.5 \times 10^{-10} J$
D. None of these

Answer: B

- Watch Video Solution

3. Binding energy of a nucleus is.
A. energy given to its nucleus during its formation
B. total mass of nucleus converted to energy units
C. loss of energy from the nucleus during its formation
D. total K.E. and P.E. of the nucleons in the nucleus

Answer: C

D Watch Video Solution

4. The binding energies per nucleon for a deuteron and an α - particle are x_{1} and x_{2} respectively. What will be the energy Q released in the following reaction ?
${ }_{.1} H^{2}+{ }_{.1} H^{2} \rightarrow{ }_{.2} H e^{4}+Q$.
A. $4\left(x_{1}+x_{2}\right)$
B. $4\left(x_{2}=x_{1}\right)$
C. $2\left(x_{1}+x_{2}\right)$
D. $2\left(x_{2}=x_{1}\right)$

Answer: B

- Watch Video Solution

5. The curve of blinding energy per nucleon as a function of atomic mass number has a sharp peak for helium nucleus. This implies that helium.
A. can easily be broken up
B. is very stable
C. can be used as fissionable material
D. is radioactive

Answer: B

- Watch Video Solution

6. Binding energy per nucleons vs mass curve for nucleus is shown in the figure W, X, Y and Z are four nuclei indicated on the curve. The process
that would release energy is

A. $Y \rightarrow 2 Z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$
D. $X \rightarrow Y+Z$

Answer: C

- Watch Video Solution

7. The binding energy per nucleon is maximum in the case of.
A. ${ }_{2}^{4} \mathrm{He}$
B. ${ }_{26}^{56} \mathrm{Fe}$
C. ${ }_{56}^{141} B a$
D. ${ }_{92}^{235} U$

Answer: B

- Watch Video Solution

8. The masses of neutron and proton are 1.0087 a.m.u. and 1.0073 a.m.u. respectively. If the neutrons and protons combine to form a helium nucleus (alpha particle) of mass 4.0015a.m.u. The binding energy of the helium nucleus will be (1a.m. u. $=931 \mathrm{MeV}$).
A. 28.4 MeV
B. 20.8 MeV
C. 27.3 MeV
D. 14.2 MeV

- Watch Video Solution

9. The mass defect for the nucleus of helium is 0.0303 a.m.u. What is the binding energy per nucleon for helium in MeV ?
A. 28
B. 7
C. 4
D. 1

Answer: B

- Watch Video Solution

10. M_{p} denotes the mass of a proton and M_{n} that of a neutron. A given nucleus, of binding energy B, contains Z protons and N neutrons. The
mass $M(N, Z)$ of the nucleus is given by.
A. $M(N, Z)=N M_{n}+Z M_{P}-B c^{2}$
B. $M(N, Z)=N M_{n}+Z M_{P}+B c^{2}$
C. $M(N, Z)=N M_{n}+Z M_{P}-B / c^{2}$
D. $M(N, Z)=N M_{n}+Z M_{P}+B / c^{2}$

Answer: C

- Watch Video Solution

11. The binding energy of deuteron.${ }_{1}^{2} \mathrm{H}$ is 1.112 MeV per nucleon and an α - particle.${ }_{2}^{4} \mathrm{He}$ has a binding energy of 7.047 MeV per nucleon. Then in the fusion reaction ${ }_{1}^{2} H+{ }_{1}^{2} h \rightarrow{ }_{2}^{4} \mathrm{He}+Q$, the energy Q released is.
A. 1 MeV
B. 11.9 MeV
C. $23,8 \mathrm{MeV}$
D. 931 MeV

Answer: C

- Watch Video Solution

12. If the binding energy per nucleon in ${ }_{3} L i^{7}$ and ${ }_{.2} H e^{4}$ nuclei are respectively 5.60 MeV and 7.06 MeV , then the ebergy of proton in the reaction ${ }_{.3} L i^{7}+p \rightarrow 2 .{ }_{2} \mathrm{He}^{4}$ is
A. 19.6 MeV
B. 2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D

- Watch Video Solution

13. The binding energy per nucleon of deuterium and helium atom is 1.1 MeV and 7.0 MeV . If two deuterium nuclei fuse to form helium atom, the energy released is.
A. 19.2 MeV
B. 23.6 MeV
C. 26.9 MeV
D. 13.9 MeV

Answer: B

- Watch Video Solution

14. A nucleus of ${ }_{.84}^{210}$ Po originally at rest emits α particle with speed v. What will be the recoil speed of the daughter nucleus?
A. $4 v / 206$
B. $4 v / 214$
C. $v / 206$
D. $v / 214$

Answer: A

- Watch Video Solution

15. The binding energy per nucleon of O^{16} is 7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is.
A. 3.52
B. 3.64
C. 4.23
D. 7.86

Answer: C

1. In the disintegration series
${ }_{.92}^{238} U \vec{\alpha} X \overrightarrow{\beta^{-}} \cdot{ }_{Z}^{A} Y$ the values of Z and A, respectively, will be
A. 92236
B. 88230
C. 90234
D. 91234

Answer: D

- Watch Video Solution

2. In the given reaction
${ }_{\cdot z} X^{A} \rightarrow{ }_{\cdot z+1} Y^{A} \rightarrow{ }_{\cdot z-1} K^{A-4} \rightarrow{ }_{\cdot z-1} K^{A-4}$
Radioactive radiations are emitted in the sequence.
A. α, β, γ
B. β, α, γ
C. γ, α, β
D. β, γ, α

Answer: B

- Watch Video Solution

3. A radioactive nucleus undergoes a series of deacy according to the scheme.
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta^{-}} A_{2} \xrightarrow{\alpha} A_{3} \xrightarrow{\gamma} A_{4}$
If the mass number and atomic number of A are 180 and 172 respectively, what are these numbers for A_{4}.
A. 172 and 69
B. 174 and 70
C. 176 and 69
D. 176 and 70

Answer: A

- Watch Video Solution

4. An element A decays into element C by a two-step process :
$A \rightarrow B+{ }_{.2} H e^{4}$
$B \rightarrow C+2 e^{-}$

Then.
A. A and C are isotopes
B. A and C are isobars
C. A and B are isotopes
D. A and B are isobars

Answer: A

5. Half-lives of two radioactive substances A and B are respectively 20 minutes and 40 minutes. Initially, he sample of A and B have equal number of nuclei. After 80 minutes the ratio of the remaining number of A and B nuclei is :
A. 0.052777777777778
B. 0.16736111111111
C. 0.044444444444444
D. 0.042361111111111

Answer: C

- Watch Video Solution

6. The half - life ofl ^(131)is8days. Givenasamp \leq of $\left.\right|^{\wedge(131) a t t i m e t ~}=0$, we can assert that
A. No nucleus will decay before $t=4$ days
B. No nucleus will decay before $t=8$ days
C. All nuclei will decay before $t=16$ days
D. A given nucleus may decay at any time after $\mathrm{t}=0$

Answer: D

- Watch Video Solution

7. At any instant, the ratio of the amounts of two radioactive substance is
$2: 1$. If their half-lives be, respectively, $12 h$ and $16 h$, then after two days, what will be the ratio of the substances?
A. 0.042361111111111
B. 0.084027777777778
C. 0.043055555555556
D. 0.044444444444444

Answer: A

8. During mean life of a radioactive element, the fraction that disintegrates is
A. e
B. $\frac{1}{e}$
C. $\frac{e-1}{e}$
D. $\frac{e}{e-1}$

Answer: C

Watch Video Solution

9. The activity of a sample of radioactive material A_{1} at time t_{1} and A_{2} at time $t_{2}\left(t_{2}>t_{1}\right)$. Its mean life is T.
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $A_{1}-A_{2}=t_{2}-t_{1}$
C. $\left.A_{2}=A_{1} e^{\left(t_{1}-t_{2}\right)} / T\right)$
D. $\left.A_{2}=A_{1} e^{\left(t_{1} / t_{2}\right)} / T\right)$

Answer: C

- Watch Video Solution

10. The half-life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at $t=0$, then the number of atoms decayed in the duration $t=2$ hour to $t=4$ hour will be
A. 2×10^{10}
B. 1.5×10^{10}
C. Zero
D. Infinity

Answer: B

11. Atomic mass number of an element is 232 and its atomic number is 90 . The end product of this radiaoctive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.
A. $\alpha=3, \beta=3$
B. $\alpha=6, \beta=4$
C. $\alpha=6, \beta=0$
D. $\alpha=4, \beta=6$

Answer: B

- Watch Video Solution

12. A sample contains 16 gm of radioactive material, the half-life of which is two days. After 32 days, the amount of radioactive material left in the
sample is
A. $<1 m g$
B. $\frac{1}{4} g m$
C. $\frac{1}{2} g m$
D. 1 gm

Answer: A

- Watch Video Solution

13. A radio-isotope has a half-life of 5 yeard. The fraction of the atoms of this material that would decay in 15 years will be
A. $1 / 8$
B. $2 / 3$
C. $7 / 8$
D. $5 / 8$

Answer: C

D Watch Video Solution

14. Three α - particle and one β - particle decaying takes place in series from an isotope $.88 R a^{238}$. Finally the isotope obtained will be.
A. ${ }_{84} X^{220}$
B. . $86 X^{222}$
C. ${ }_{83} X^{224}$
D. ${ }_{83} X^{215}$

Answer: C

- Watch Video Solution

15. Radon (Ra) decays into Polonium (P_{0}) by emitting an α-particle with half-life of 4 days. A sample contains 6.4×10^{10} atoms of R_{n}. After

12 days, the number of atoms of R_{n} left in the sample will be
A. 3.2×10^{10}
B. 0.53×10^{10}
C. 2.1×10^{10}
D. 0.8×10^{10}

Answer: D

- Watch Video Solution

ddp.5.4

1. If 10% of a radioactive material decays in 5 days, then the amount of original material left after 20 days is approximately.
A. 0.6
B. 0.65
C. 0.7
D. 0.75

Answer: B

- Watch Video Solution

2. A radioactive isotope X with a half-life of 1.37×109 years decays to Y which is stable. A sample of rock from the moon was found to contain both the elements X and Y which were in the ratio of 1:7. The age of the rock is.
A. 1.96×10^{8} years
B. 3.85×10^{9} years
C. 4.11×10^{9} years
D. 9.59×10^{9} years

Answer: C

3. The half-life of radium is 1620 years and its atomic weight is 226 . The number of atoms that will decay from its $1 g$ sample per second will be .
A. 3.61×10^{10}
B. 3.6×10^{12}
C. 3.11×10^{15}
D. 31.1×10^{15}

Answer: A

- Watch Video Solution

4. A radioactive material decays by simulataneous emission of two particle from the with respective half-lives 1620 and 810 year. The time, in year , after which one - fourth of the material remains is
B. 2430
C. 3240
D. 4860

Answer: A

- Watch Video Solution

5. For a substance the average life for α-emission is 1620 years and for β - emission is 405 years. After how much time the $1 / 4$ of the material remains after α and β emission ?
A. 1500 years
B. 300 years
C. 449 years
D. 810 years

Answer: C

6. A radioactive nucleus undergoes α-emission to form a stable element. What will be the recoil velocity of the daughter nucleus is V is the velocity of α-emission and A is the atomic mass of radioactive nucleus?
A. $\frac{4 V}{A-4}$
B. $\frac{2 V}{A-4}$
C. $\frac{4 V}{A+4}$
D. $\frac{2 V}{A+4}$

Answer: A

- Watch Video Solution

7. Half-life of a radioactive substance is 20 minutes. Difference between points of time when it is 33% disintegrated and 67% disintegrated is
approximate.
A. 10 min
B. 20 min
C. 30 min
D. 40 min

Answer: B

- Watch Video Solution

8. A and B are two radioactive substances whose half lives are 1 and 2 years respectively. Initially 10 gm of A and 1 gm of B is taken. The time (approximate) after which they will have same quantity remaining is.
A. 6.62 years
B. 5 years
C. 3.2 years
D. 7 years

Answer: A

- Watch Video Solution

9. Half life of a radio-active substance is 20 minutes. The time between
20% and 80% decay will be
A. 20 minutes
B. 40 minutes
C. 30 minutes
D. 25 minutes

Answer: B

10. The excitation energy of a hydrogen -like ion in its first excited state is 40.8 eV Find the energy needed to remain the electron from the ion
A. 54.4 eV
B. 13.6 eV
C. 40.8 eV
D. 27.2 eV

Answer: A

- Watch Video Solution

11. The rate of disintegration was observed to be 1017 disintegrations per sec when its half life period is 1445 years. The original number of particles are.
A. 8.9×10^{27}
B. 6.6×10^{27}
C. 1.4×10^{16}
D. 1.2×10^{17}

Answer: B

- Watch Video Solution

12. A small quantity of solution containing $N a^{24}$ radio nuclide (half $-l$ if $e=15 h$) of activity 1.0 microcurie is injected into the blood of a person. A sample of the blood of volume $1 \mathrm{~cm}^{3}$ taken after $5 h$ shows an activity of 296 disintegrations per minute. Determine the total volume of the blood in the body of the person. Assume that the radioactive solution mixes uniformly in the blood of person.
(1 curie $=3.7 \times 10^{10}$ disintegrations per second)
A. 5.94 L
B. 2 L
C. 317 L

D. 1 L

Answer: A

- Watch Video Solution

13. A radioactive sample of ^ $(238) U$ decay to Pb through a process for which the half is 4.5×10^{9} year. Find the ratio of number of nuclei of Pb to ${ }^{\wedge}(238)$ Uafter a time of 1.5×10^{9} year Given $(2)^{1 / 3}=1.26$
A. 0.12
B. 0.26
C. 1.2
D. 0.37

Answer: B

- Watch Video Solution

14. A radioactive sample is α-emitter with half life 138.6 days is observed by a student to have 2000 disintegration/sec. The number of radioactive nuclei for given activity are.
A. 3.45×10^{10}
B. 1×10^{10}
C. $3.45 \times X 10^{15}$
D. 2.75×10^{11}

Answer: A

- Watch Video Solution

15. If one starts with one curie of radioactive substance ($T_{1 / 2}=12 \mathrm{hrs}$) the activity left after a period of 1 week will be about
A. 1 curie
B. 120 microcurie
C. 60 microcurie
D. 8 millicurie

Answer: C

- Watch Video Solution

ddp.5.5

1. An antomic Power station has a generating capacity of 200 MW . The energy generated in a day by this station is.
A. 200 MW
B. 200 J
C. $4800 \times 10^{6} J$
D. $1728 \times 10^{6} \mathrm{~J}$

Answer: D

2. 200 MeV of energy may be obtained per fission of U^{235}. A reactor is generating 1000 kW of power. The rate of nuclear fission in the reactor is.
A. 1000
B. 2×10^{8}
C. 3.125×10^{16}
D. 931

Answer: C

- Watch Video Solution

3. If 200 MeV energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$).
A. 3.125×10^{13}
B. 3.125×10^{14}
C. 3.125×10^{15}
D. 3.125×10^{16}

Answer: A

- Watch Video Solution

4. Energy released in the fission of a single $.92 U^{235}$ nucleus is 200 MeV . The fission rate of a . $92 U^{235}$ fuelled reactor operating at a power level of $5 W$ is.
A. $1.56 \times 10^{+10} s^{-1}$
B. $1.56 \times 10^{+11} s^{-1}$
C. $1.56 \times 10^{+16} s^{-1}$
D. $1.56 \times 10^{+17} s^{-1}$

Answer: B

5. If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
A. $1.5 \times 10^{-10} J$
B. $3 \times 10^{-10} J$
C. $4.5 \times 10^{-10} J$
D. None of these

Answer: B

- Watch Video Solution

6. Energy released in fusion of 1 kg of deuterium nuclei.
A. $8 \times 10^{13} J$
B. $3 \times 10^{27} \mathrm{~J}$
C. $2 \times 10^{7} \mathrm{kWH}$
D. $8 \times 10^{23} \mathrm{MeV}$

Answer: A

- Watch Video Solution

7. If the energy released in the fission of the nucleus is 200 MeV . Then the number of nuclei required per second in a power plant of 6 kW will be.
A. 0.5×10^{14}
B. $0.5 \times X 10^{12}$
C. 5×10^{12}
D. 5×10^{14}

Answer: D

- Watch Video Solution

8. To generate a power of 3.2 mega watt, the number of fissions of U^{235} per minute is.
(Energy released per fission $=200 \mathrm{MeV}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$).
A. 6×10^{18}
B. 6×10^{17}
C. 10^{17}
D. $6 \times \times 10^{16}$

Answer: A

- Watch Video Solution

9. The binding energy per nucleon of deuterium and helium atom is
1.1 MeV and 7.0 MeV . If two deuterium nuclei fuse to form helium atom, the energy released is.
A. 19.2 MeV
B. 23.6 MeV
C. 26.9 MeV
D. 13.9 MeV

Answer: B

- Watch Video Solution

10. The energy liberated on complete fission of 1 kg of ${ }_{.92} U^{235}$ is (Assume 200 MeV energy is liberated on fission of 1 nucleus).
A. $8.2 \times 10^{10} J$
B. $8.2 \times 10^{9} \mathrm{~J}$
C. $8.2 \times 10^{13} J$
D. $8.2 \times 10^{16} J$

Answer: C

11. The nuclear reaction $.{ }^{2} H+.{ }^{2} H \rightarrow .{ }^{4} \mathrm{He}$ (mass of deuteron $=2.0141 a . m . u$ and mass of $H e=4.0024 a . m . u)$ is
A. fusion reaction releasing 24 MeV energy
B. fusion reaction absorbing 24 MeV energy
C. fission reaction releasing 0.0258 MeV energy
D. fission reaction absorbing 0.0258 MeV energy

Answer: A

- Watch Video Solution

12. Fission of nuclei is possible because the binding energy per nuclei in them
A. increases with mass number at high mass numbers
B. decreases with mass number at low mass numbers
C. increases with mass number at low mass numbers
D. decreases with mass number at low mass numbers

Answer: B

- Watch Video Solution

13. An atomic power nuclear reactor can deliver 300 MW . The energy released due to fission of each nucleus of uranium atom U^{238} is 170 MeV . The number of uranium atoms fissioned per hour will be.
A. 30×10^{25}
B. 4×10^{22}
C. 10×10^{20}
D. 5×10^{15}

Answer: B

14. Which of the following statement (s) is / are correct (may have more than one option correct):
A. the rest mass of a stable nucleus is less than sum of the rest masses of its separated nucleons.
B. the rest mass of a stable nucleus is greater than the sum of the rest masses of its separated nucleons.
C. in nuclear fission energy is released by fusing two nuclei of medium mass (approximately 100 amu).
D. in nuclear fission energy is released by fragmentation of a very heavy nucleus.

Answer: A: D

- Watch Video Solution

15. Match the statements of column I and column II
