©"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR

STRUCTURE

Lattice Energy, lonic, Covalent And Cordinate Bonds

1. NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ are two forms of nitrogen dioxide. One exists in gaseous state while other
in liquid state. The nature of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$
forms are
A. both are paramagnetic
B. both are diamagnetic
C. NO_{2} is paramagnetic while $\mathrm{N}_{2} \mathrm{O}_{4}$ is diamagnetic
D. NO_{2} is diamagnetic while $\mathrm{N}_{2} \mathrm{O}_{4}$ is paramagnetic

Answer: C

2. Which among the following elements has the tendency to form covalent compounds?
A. Ba
B. Be
C. Mg
D. Ca

Answer: b

3. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-} \mathrm{BaO}_{2}$ and NO_{2}^{+} unpaired electron is present in :
A. NO_{2}^{+}and BaO_{2}
B. $K O_{2}$ and $A I O_{2}^{-}$
C. $K O_{2}$ only
D. BaO_{2} only

Answer: c

4. The strongest bond is

A. $N a-C I$
B. $C s-C I$
C. both (a) and (b)
D. None

Answer: A

Watch Video Solution
5. The valency of C in CO_{3}^{2-} is
A. 2
B. 3
C. 4
D. -3

Answer: C

Watch Video Solution

6. Which combination will give the strongest ionic bond?
A. $N a^{+}$and $C I^{-}$
B. $M g^{2+}$ and $C I^{-}$
C. Na^{+}and O^{2-}
D. $M g^{2+}$ and O^{2-}

Answer: D

D Watch Video Solution

7. Two elements X and Y have following electronic configurations.
$X: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
$Y: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$

The expected compound formed
combination of X and Y will be expresed as
A. $X Y_{2}$
B. $X_{5} Y_{2}$
C. $X_{2} Y_{5}$
D. $X Y_{5}$

Answer: A

Watch Video Solution
8. An atom of an element A has three electron in its outer shell and B has six electron in outermost shell. The formula of the compound formed between these two will be
A. $A_{6} B_{6}$
B. $A_{2} B_{3}$
C. $A_{3} B_{2}$
D. $A_{2} B$

Answer: B
9. The electronic configuration of four elements
L, P, Q and R are given in brackets
$L\left(1 s^{2}, 2 s^{2}, 2 p^{4}\right), P\left(1 s^{2}, 2 p^{6}, 3 s^{1}\right)$
$Q\left(1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{5}\right), R\left(1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}\right)$
The formula of ionic compounds that can be formed between elements are
A. $L_{2} P, R L, P Q$ and $R_{2} Q$
B. $L P, R L, P Q$ and $R Q$
C. $P_{2} L, R L, P Q$ and $R Q_{2}$
D. $L P, R_{2} L, P_{2} Q$ and $R Q$

Answer: C

D Watch Video Solution

10. The electronic structure of four elements
A, B, C, D are
(a) $1 s^{2}$ (b) $1 s^{2}, 2 s^{2}, 2 p^{2}$
(c) $1 s^{2}, 2 s^{2}, 2 p^{5}$ (d) $1 s^{2}, 2 s^{2} 2 p^{6}$

The tendency to form electrovalent bond is
largest in
A. A
B. B
C. C
D. D

Answer: C

Watch Video Solution

11. Chemical formula for calcium pyrophosphate
is $\mathrm{Ca}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. The formula for ferric
pyrophosphate will be
A. $F e_{3}\left(P_{2} O_{7}\right)_{3}$

$$
\text { B. } F e_{4} P_{4} O_{14}
$$

C. $F e_{4}\left(P_{2} O_{7}\right)_{3}$
D. $\mathrm{Fe}_{3} \mathrm{PO}_{4}$

Answer: C

- Watch Video Solution

12. Out of the following which compound will have electrovalent bonding

A. Ammonia

B. Water

C. Calcium chloride

D. Chloromethane

Answer: C

D Watch Video Solution

13. For $N a C l$, lattice energy

$=-186 \mathrm{kcal} / \mathrm{mol}$, the solvation energy of
$\mathrm{Na}{ }^{+}$and Cl are -97 and $-85 \mathrm{kcal} / \mathrm{mole}$ respectively. Therefore for $N a C l(s)$
A. enthalpy of solution is exothermic and magnitude equal to $4 k c a l / m o l$
B. enthalpy of solution is exothermic and magnitude equal to $4368 \mathrm{kcal} / \mathrm{mol}$
C. enthalpy of solution is endothermic and magnitude equal to $4 \mathrm{kcal} / \mathrm{mol}$

D. enthalpy of solution is endothermic and magnitude equal to $368 \mathrm{kcal} / \mathrm{mol}$

Answer: C

14. The compound which contains both covalent and coordinate bond is
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NC}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$
c. $H C N$
D. None of these

Answer: A
15. Which of the following contains a coordinate covalent
A. $\mathrm{N}_{2} \mathrm{O}_{5}$
B. $B a C I_{2}$
C. $H C I$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: A

Watch Video Solution
16. The compound containing coordinate bond
is
A. O_{3}
B. SO_{3}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$

D. All of these

Answer: D

17. The structure of orthophosphoric acid is
A.
(a) $\mathrm{H}-\mathrm{O}-\stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{P}}} \stackrel{-\mathrm{O}-\mathrm{H}}{\stackrel{\mathrm{O}}{\mathrm{O}}} \stackrel{+}{\mathrm{H}}$

B.
(c) $\mathrm{O} \leftarrow \stackrel{\mathrm{P}}{\stackrel{\mathrm{P}}{\mathrm{P}}} \stackrel{\mathrm{l}}{\mathrm{H}}$
(d) $\mathrm{H}-\mathrm{O}-\mathrm{P}=\mathrm{O}$
D.

Answer: A
18. Which of the following have both polar and non-polar bonds?
A. $C_{2} H_{6}$
B. $\mathrm{NH}_{4} \mathrm{CI}$
C. $H C I$
D. $A I C I_{3}$

Answer: b
19. Blue vitriol has
A. Ionic bond
B. Coordinate bond
C. Hydrogen bond

D. All the above

Answer: D
20. The number of ionic, convalent and coordinate bonds in $\mathrm{NH}_{4} \mathrm{CI}$ are respectively
A. 1,3 and 1
B. 1,3 and 2
C. 1,2 and 3
D. 1,1 and 3

Answer: A
21. The bonds present in $\mathrm{N}_{2} \mathrm{O}_{3}(g)$ are
A. only ionic
B. covalent and coordinate
C. only covalent
D. covalent and ionic

Answer: b

- Watch Video Solution

22. Which of the following does not contain a coordinate bond?
A. $\mathrm{H}_{3} \mathrm{O}^{+}$
B. $B F_{4}^{-}$
C. $H F_{2}^{-}$
D. NH_{4}^{+}

Answer: c
23. Lattice energy of an ionic compound depedns upon:
A. Charge on the ions only
B. Size of the ions only
C. Packing of the ions only

D. Charge and size of the ions

Answer: D

Formal Charge, Resonance And Polarity Of Covalent Bond (Fajans Rule)

1. In the cyanide ion, the formal negative charge is on :
A. C
B. N
C. Both C and N
D. Resonate between C and N

Answer: B
2. The formal charge of the O -atom in the ion $[: \ddot{N}=O:]$ is
A. -2
B. +1
C. -1
D. 0

Answer: D

3. Which of the following is insolube in water

A. AgF
B. Ag I
C. $K B r$
D. CaCI_{2}

Answer: B

- Watch Video Solution

4. A compound with the maximum ionic charater is formed from
A. $N a$ and F
B. $C s$ and F
C. $C s$ and I
D. $N a$ and $C I$

Answer: B
5. Which of the following has the highest ionic character?
A. $M g C I_{2}$
B. $C a C I_{2}$
C. $B a C I_{2}$
D. $B e C I_{2}$

Answer: C

6. Which of the following compounds has the maximum nature?
A. $L i C I$
B. $N a C I$
C. $K C I$
D. $C s C I$

Answer: A
7. Among the following the maximum convalent character is shown by the compound
A. $F e C I_{2}$
B. SnCI_{2}
C. $A l C I_{3}$
D. MgCI_{2}

Answer: C

8. Which of the following has convant bond

A. $N a_{2} S$
B. $A I C I_{3}$
C. NaH
D. $M g C I_{2}$

Answer: B

- Watch Video Solution

9. Polarization is the distortion of the anion by an adjacently placed cation. Which of the following statement is correct?
A. Maximum polarization is brought about by a cation of high charge
B. Maximum polarization is brought about by a cation of low radius
C. A large cation is linkely to bring about a
large degree of pollarization

D. A small anion is linkely to undergo a large

degree of pollarization

Answer: A

D Watch Video Solution

10. Maximum covalent character is associated with the compound
A. $N a I$
B. $M g I_{2}$
C. $A l C l_{3}$

D. AlI_{3}

Answer: D

D Watch Video Solution

11. Among $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2} the compound with the greatest and least ionic character respectively are
A. LiCl and RbCl
B. $R b C l$ and $B e C l 2$
C. RbCl and MgCl_{2}

D. $M g C l_{2}$ and $B e C l_{2}$

Answer: B

D Watch Video Solution

12. $L i F$ a least soluble among the fluorides of
alkali metals, because
A. smaller size $L i$ impart significant covalent
character in $L i F$
B. the hydration energies of $L i^{+}$and F^{-} are quit higher
C. lattice energy of $L i F$ is quite higher due to the smaller size of $L i^{+}$and F^{-}
D. $L i F$ has strong polymeric network in solid

Answer: C
13. $S a C I_{4}$ is a convalent Iquid because
A. electron clouds of the $C I^{-}$ions are weakly polarized to envelop the cation
B. electron clouds of the $C I^{-}$ions are
strongly polarized to envelop the cation
C. its molecules are attracted to one another by strong van der Waals forces
D. So shown inert pair effect

Answer: B

14. Which of the following Lewis structure does

 not contribute in resonance?
A. I
B. II
C. III
D. IV

Answer: B

D Watch Video Solution

15. Carbonyl group has following resonating structures
(I)

$$
\text { (I) }>\stackrel{+}{\mathrm{C}}-\overline{\mathrm{O}}(\mathrm{II})>\overline{\mathrm{C}}-\stackrel{+}{\mathrm{O}}(\mathrm{III})>\mathrm{C}=\mathrm{O}
$$

The correct order of stablity of these structures
is

> A. $I>I I>I I I$
> B. $I I I>I>I I$

C. $I>I I I>I I$

D. $I I I>I I>I$

Answer: B

D Watch Video Solution

16. Point out incorrect statement about resonance
A. Resonance structures, should have equal
energy
B. In resonance situctures, the consituent
atoms should be in the same position
C. In resonance situctures, three should not
be the same number of the electron pairs

D. Resonance situctures, should differ only in

the locattion of electron around the
consituent atoms.

Answer: C

17. In compound $\mathrm{O}_{2} \mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}$. The geometry around the S, N and number of resonating structure are respectively
A. trigonal planar, trigonal pyramidal and three

B. tetrahedral pyramidal and two

C. trigonal planar, tetrahedral and three
D. linear pyramidal and three

Answer: A

18. Which of the following is leaser acceptable resonating atructure of N_{3}^{-}?

$$
\begin{aligned}
& \text { A. } \quad \text { (a) }[\ddot{\mathrm{N}}=\mathrm{N}=\stackrel{\mathrm{N}}{\mathrm{~N}}]^{-} \\
& \text {B. } \\
& \text { (b) }[: \ddot{\mathrm{N}}-\mathrm{N} \equiv \mathrm{~N}:] \\
& \text { C. } \quad \begin{array}{c}
\text { (c) }\left[\begin{array}{c}
\mathrm{N}=\mathrm{N}: \\
\vdots \\
\vdots \\
N
\end{array}\right]
\end{array} \\
& \text { (d) }[: \mathrm{N}-\mathrm{N} \equiv \mathrm{~N}:]^{-} \\
& \text {D. }
\end{aligned}
$$

Answer: C

19. Which of the following pair constitute resonance structure?
A. (a) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\oplus}{\mathrm{N}} / \mathrm{O}_{\mathrm{O}}^{\mathrm{O}}$ and $\mathrm{H}_{3} \mathrm{C}-\mathrm{O}-\mathrm{N}=\mathrm{O}$

(c) $\mathrm{H}_{3} \mathrm{C}-\underset{\|}{\mathrm{C}}-\mathrm{CH}_{3}$ and $\mathrm{H}_{3} \mathrm{C}-\underset{\text { I }}{\mathrm{C}}=\mathrm{CH}_{2}$
D. $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
and

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}
$$

Answer: b
20. Which of the following statement about resonance energy is wrong?
A. The difference in energy of the resonance
hybrid and the most stable contributing
structure (having least energy) is called
resonance energy
B. The difference in energy of the resonance
hybrid and the most stable contributing
structure (having higher energy) is called

resonance energy

C. The difference in energy of the
experimental and calculated enthalipies
(bond enthalpy, formation or combustion
or hydrogenation) is called resonance

energy

D. Resonace energy is the amount of energy
by which the compound is stable

- Watch Video Solution

21. Aqueous solution of two compounds
$M_{1}-O-H$ and $M_{2}-O-H$ are prepared in two different beakers. If electronegativity of
$M_{1}=3.4, M_{2}=1.2,0=3.5$ and $H=2.1$,
then the nature of two solution will be respectively
A. Acidic, basic
B. acidic acidic
C. basic, acidic

D. basic, basic

Answer: a

- Watch Video Solution

22. Which of the following statement (s) is (are) true? .
A. CaCl_{2} is more covalent than NaCl
B. $H F$ is more polar than $H B r$
C. $H F$ is less polar than $H B r$

D. Chemical bond formation takes place

when are found of attraction overcome
the forces of repulsion

Answer: c

D Watch Video Solution

23. In the anion HCOO^{-}, the carbon-oxygen
bonds are found to be of equal length. This is due to:
A. The onion $H C O O$ has two resonating
structure
B. The onion is obtained by removel of a
proton from the acid molecule
C. Electronic orbitals of carbon are
hybridised
D. The $C=O$ bond is weaker than the
$C-O$ bond

Answer: A
24. A metal, M from chaloride in its +2 and +4 oxidation states . Which of the following statement about thes chalorides is correct ?
A. $M C I_{2}$ is more easily hydrolysed than
$M C I_{4}$
B. $M C I_{2}$ is more volatile than $M C I_{4}$
C. $M C I_{2}$ is more soluble in anhydrous
ethanol than $M C I_{4}$
D. $M C I_{2}$ is more ionic than $M C I_{4}$

Answer: D

- Watch Video Solution

25. The charge /size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarising power of the cationic species,

$$
K^{+}, C a^{+}, M g^{2+}, B e^{2+} ?
$$

A. $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
B. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
C. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<B e^{2+}$

$$
\text { D. } \mathrm{Ca}^{2+}<M g^{2+}<B e^{2+}<K^{+}
$$

Answer: C

D Watch Video Solution

26. The correct statement for the molecule $C s I_{3}$
is
A. It is a covalent molecule
B. It contains $C s^{+}$and I_{3}^{-}

C. It contains $C s^{3+}$ and I^{-}ions

D. It contains $C s^{+}, I^{-}$and I_{2} molecule

Answer: B

D Watch Video Solution

Dipole Moment

1. Which pair of moecules will have permanent dipole moment for both members?
A. NO_{2} and O_{3}
B. SiF_{4} and CO_{2}
C. SiF_{4} and NO_{2}
D. NO_{2} and CO_{2}

Answer: A

Watch Video Solution
2. The molecule which has zero dipole moment is
A. $\mathrm{CH}_{2} \mathrm{CI}_{2}$
B. $B F_{3}$
C. $N F_{3}$
D. CIO_{2}

Answer: B

D Watch Video Solution

3. A diatomic molecule has dipole moment of $1.2 D$. If the bond distance is $1 \AA$ what parcentage of covalent in the molecule is
A. 12% of e
B. 19% of e
C. 25% of e
D. 29% of e

Answer: C

D Watch Video Solution

4. The electronegativity difference between two
atoms A and B is 2 , then percentage of covalent character in the molecule is
A. 54%
B. 40%
C. 23%
D. 72%

Answer: a

D Watch Video Solution

5. Which one of the following arrangements of molecules is correct on the basic of their dipole moments?
A. $B F_{3}>\mathrm{NH}_{3}>\mathrm{NF}_{3}$

$$
\text { B. } B F_{3}>N F_{3}>N H_{3}
$$

C. $\mathrm{NH}_{3}>B F_{3}>N F_{3}$
D. $\mathrm{NH}_{3}>N F_{3}>B F_{3}$

Answer: d

D Watch Video Solution

6. The electronegativity of H and Cl are 2.1 and
3.0 respectively. The correct statement (s)
about the nature of $H C I$ is/are:
A. 17% ionic
B. 83% ionic
C. 50% ionic
D. 100% ionic

Answer: a

D Watch Video Solution

7. The order of increasing polarity is
$\mathrm{HCI}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and HF molecules is
A. $\mathrm{CO}_{2}, \mathrm{HCI}, \mathrm{H}_{2} \mathrm{O}$

B. $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCI}, \mathrm{CO}_{2}$

C. $\mathrm{CO}_{2}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{CC}_{2}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HC}$

Answer: A

D Watch Video Solution

8. Out of the following which has highest dipole moment?
A. 2, 2-dimethyl propane
B. trans-2-pentene
C. cis -3 - hexen
D. 2, 2, 3, 3- tertamethyl butane

Answer: c

D Watch Video Solution

9. For the formation of covalent bond, the different in the value of electronegativities should be
A. Equal to or less than 1.7

B. More than 1.7

C. 1.7 or more

D. None of these

Answer: a

D Watch Video Solution

10. Which of the following molecules will show dipole moment?
A. Methane

B. Carbon tetracholride

C. chloroform

D. Carbon dioxide

Answer: C

D Watch Video Solution

11. Which bond angle θ would result in the maximum dipole moment for the triatomic $Y X Y ?$
A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$
D. $\theta=180^{\circ}$

Answer: a

D Watch Video Solution

12. Carbon tetrachloride has no net dipole moment because of
A. Its planar structure
B. Its regular tetrahedral structure
C. Similar sizes of carbon and chlorine atoms
D. Similar electron affinities of carbon and
chlorine

Answer: B

D Watch Video Solution
13. Pick out of molecule which has zero dipole moment?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $B C I_{3}$
D. SO_{2}

Answer: C

Watch Video Solution
14. Which has maximum dipole moment?

Answer: A

D Watch Video Solution

15. The dipole moment of $H B r$ is
$1.6 \times 10^{-30} \mathrm{~cm}$ and interatomic spacing is $1 \AA$.

The $\%$ ionic character of HBr is
A. 7
B. 10
C. 15
D. 27

Answer: b

D Watch Video Solution

16. In a pole molecule, the ionic is 4.8×10^{-10} esu. If the inter distance is $1 \AA$ unit, then the dipole moment is
A. 41.8 debye

B. 4.18 debye

C. 4.8 debye
D. 0.48 debye

Answer: C

Watch Video Solution

17. Which of the following will have zero dipole moment?
A. 1, 1 dichloroethylene

B. cis -1, 2 dichloroethylene

C. trans $-1,2$ dichloroethylene
D. None of these

Answer: C

D Watch Video Solution

18. $B F_{3}$ and $N F_{3}$ both molecules, are covalent,
but $B F_{3}$ is non - polar and $N F_{3}$ pole. Its reason is
A. In uncombined state botom is metal and
nitrogen is gas
B. $B-F$ bond has no dipole moment
whereas $N-F$ bond has dipole moment
C. The size of boron atom is smaller than
nitrogen
D. $B F_{3}$ is planar whereas $N F_{3}$ is pyramidal

Answer: D

19. Which of the following is the correct order of dipole moment?

(I)

(II)

(III)
A. $I>I I>I I I$
B. $I I>I>I I I$
C. $I I I>I>I I$
D. $I I I>I I>I$

Answer: A
20. Arrange the following compounds in order of increasing dipole moment .

Toluene (I) m-dichlorobenzene (II)
o-dichlorobenzene (III) . P-dichlorobenzene
$(I V)$.
A. I It IV It II It III
B. IV It I It II It III
C. IV It I It III It II
D. IV It II It I It III

Answer: b

D Watch Video Solution

21. Of the following molecules the one which has permaanent dipole moment is:
A. $S i F_{4}$
B. $B F_{3}$
C. $P F_{3}$
D. $P F_{5}$

Answer: c

D Watch Video Solution

22. Increasing order of dipole moment is

$$
\text { A. } C F_{4}<N H_{3}<N F_{3}<H_{2} O
$$

B. $\mathrm{CF}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NF}_{3}$
C. $C F_{4}<N F_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
D. $\mathrm{CF}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$

Answer: d
23. Which contains both polar and non-polar bonds?.
A. $\mathrm{NH}_{4} \mathrm{CI}$
B. $H C N$
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: c
24. The correct sequece of dipole moment among the chlorides of methane is

A. $\mathrm{CHCl}_{3}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}$ B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CHCl}_{3}>\mathrm{CCl}_{4}$
C. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CHCl}_{3}>\mathrm{CCl}_{4}$
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CHCl}_{3}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}$

Answer: a
25. The geometry of $H_{2} S$ and its dipole moment are :
A. angular and non -zero
B. angular and zero
C. linear and non -zero
D. linear and zero

Answer: a
26. Which of the following has been arrange in order of detereasing dipole moment?
A. $\mathrm{CH}_{3} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
B. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
C. $\mathrm{CH}_{3} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{~F}$
D. $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{CI}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}$

Answer: a
27. Which of the following has the least dipole moment?
A. $N F_{3}$
B. CO_{2}
C. SO_{2}
D. NH_{3}

Answer: B
28. Which of the following molecules significant $\mu \neq 0$?
Cl

(l)

(ii)
Cl

SH
A. Only (i)
B. (i) and (ii)
C. Only (iii)

D. (iii) and (iv)

Answer: D

(D) Watch Video Solution

Valence Bond Theory (Vbt)

1. $B F_{3}$ and $N F_{3}$ both molecules, are covalent,
but $B F_{3}$ is non - polar and $N F_{3}$ is polar.lts
reason is
A. Boron is a solid and nitrogen is a gas in
free state
B. $B F_{3}$ is planner but $N F_{3}$ is pyramidal in shap
C. Boron is a metalloid while nitrogen is a non-metal

D. Atomic size of boron is smaller than that

of nitrogen

Answer: b
2. In which of the following sepcies, is the underlined carbon has $s p^{3}$-hybridisation ?
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\mathrm{CH}_{3} \mathrm{COOH}_{3}$
D. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}$

Answer: b
3. Among the following the compounds, the one that is polar and has central atom with $s p^{2}$ hydridisation is
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$
B. $S i F_{4}$
C. $B F_{3}$
D. HCIO_{2}

Answer: a
4. The bond between two identical non-metal atoms has a pair of electrons:
A. unequally shared between the two

B. transferred fully from one atom to

another
C. with identical spins
D. equally shared between them

Answer: d

5. Which of the following will provide the most efficient overlap?
A. $s-s$
B. $s-p$
C. $s p^{2}-s p^{2}$
D. $s p-s p$

Answer: D
6. The number and type of bonds between two carbon atoms in CaC_{2} are:
A. one sigma (σ) and one pi (π) bonds
B. one sigma (σ) and two pi (π) bonds
C. one sigma (σ) and one half pi (π) bonds
D. one sigma (σ) bonds

Answer: b
7. Which is not true according to $V B T$?
A. A covalent bond is formed by the overlapping of orbitals with umpaired
electron of opposite spins
B. A covalent bond is formed by the overlapping of orbitals with unpaired electron of same spins
C. The greater the extent of overlapping the
strong is the bond
D. Overlapping takes place only in the direction of maximum electron density of the orbital

Answer: B

D Watch Video Solution

8. The hybridisation of C atoms in $(C-C)$
single-bond of $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ is :
A. $s p^{3}-s p^{3}$
B. $s p^{2}-s p$
C. $s p-s p^{2}$
D. $s p^{3}-s p^{2}$

Answer: b

D Watch Video Solution

9. Number of sigma bonds in $P_{4} O_{10}$ is :
A. 6
B. 7
C. 17

D. 16

Answer: D

D Watch Video Solution

10. The bond in the formation of fouorine molecule will be
A. Due to $s-s$ overlapping
B. Due to $s-p$ overlapping
C. Due to $p-p$ overlapping

D. Due to hybridization

Answer: C

D Watch Video Solution

11. Which of the following are wrong?
A. $S H_{6}$ and $B i C I$ do not exist B. There are two $p \pi-d \pi$ bonds in SO_{3}
C. SeF_{4} and CH_{4} are tetrahedral ion

D. I_{3}^{Θ} is a linear molecule with $s p^{3} d$

 hydridistion
Answer: C

D Watch Video Solution

12. Which of the following overlaps gives a σ bond with x as internuclear axis?
A. p_{z} and p_{z}
B. s and p_{z}
C. s and p_{x}

D. s and $p_{-}(y)$

Answer: C

D Watch Video Solution

13. Which of the statement is correct about SO_{2}
?
A. Two σ, two π and no lone pair of
electrons

B. two σ and one π

C. two σ, two π and one lone pair

D. none of these

Answer: C

D Watch Video Solution

14. Which p -orbitals overlapping would give the
strongest bond?

Answer: C

Watch Video Solution
15. Ratio of σ and π bonds is maximum in

A. naphthalene

B. tetracyano methane

C. enolic form of urea

D. equal

Answer: C

D Watch Video Solution

16. Which of the following is True stetement?
A.
B. In $C_{2} H_{2}(C N)_{2}$ there are six σ bonds
C. In $C_{2} H_{6}$ all C are $s p^{2}$ hybridized
D. In $C_{3} O_{2}$, all the carbon are in $s p$ hydridisation

Answer: d

D Watch Video Solution

17. $H C N$ and $H N C$ moleculas have equal number of
A. lone pair and σ bonds
B. σ bonds and π bonds
C. π bonds and lone pair
D. lone pairs, σ bonds and π bonds

Answer: D

Watch Video Solution

18. Allyl cyanide has
A. 9 sigma bonds and 4 pi bonds
B. 9 sigma bonds, 3 pi bonds and 1 lone pair
C. 8 sigma bonds and 5 pi bonds
D. 8 sigma bonds, 3 pi bonds

Answer: B

D Watch Video Solution

19. $M g_{2} C_{1}$ reacts with water forming propyne C_{3}^{4-} has
A. two sigam and two pi bonds
B. three sigma and one pi bonds
C. two sigma and one pui bonds
D. two sigma anf three pi bonds

Answer: a

D Watch Video Solution

20. The strength of bonds by overlapping of atomic orbitals is in order

$$
\text { A. } s-s>s-p>p-p
$$

$$
\begin{aligned}
& \text { B. } s-s>s-p>s-p \\
& \text { C. } s-p>s-s>p-p \\
& \text { D. } p-p>s-s>s-p
\end{aligned}
$$

Answer: A

D Watch Video Solution

21. Effective overlapping will be shown by:

> A. ${ }^{\text {(a) } \oplus \ominus+\oplus \Theta}$ B. \quad (b) $\left(\frac{\oplus}{\ominus}\right)+\left(\frac{\ominus}{\oplus}\right)$

C. (c) $\oplus \Theta+\Theta \oplus$

D. All the above

Answer: C

D Watch Video Solution

22. Main axis of diatometic molecule is z, molecular orbatals p_{x} and p_{y} overlap to form, which of the following orbital?
A. π-molecular orbital
B. σ-molecular orbital

C. δ-molecular orbital

D. no bond will form

Answer: A

- Watch Video Solution

23. Which plot best represents the potential energy (E) of two hydrogen atoms as they approach one another to form a hydrogen molecule?

(a)

(b)

(c) E

C.
(d) E

Answer: a

D Watch Video Solution

24. A: tetracynomethance, B: Carbon dioxide , C: Benzene, D: 1, 3butadiene

Ratio of s and p bond is in order

$$
\begin{aligned}
& \text { A. } A=B<C<D \\
& \text { B. } A=B<D<C \\
& \text { С. } A=B=C=D \\
& \text { D. } C<D<A<B
\end{aligned}
$$

Answer: a
25. How many bonds are there in

A. 13
B. 23
C. 20
D. 26

Answer: B
26. How many $\sigma-$ and $\pi-$ bond are there in salicycle acid?
A. $10 \sigma, 4 \pi$
B. $16 \sigma, 4 \pi$
C. $18 \sigma, 2 \sigma$
D. $16 \sigma, 2 \pi$

Answer: B

27. The ratio of σ and π bond in benzene is

A. 2
B. 6
C. 4
D. 8

Answer: C

Watch Video Solution
28. The enolic form of acetone contains:
A. $9 \sigma, 1 \pi$ bond and 2 lone pairs
B. $8 \sigma, 2 \pi$ bond and 2 lone pairs
C. $10 \sigma, 1 \pi$ bond and 1 lone pairs
D. $9 \sigma, 2 \pi$ bond and 1 lone pairs

Answer: a

D Watch Video Solution

29. Which connot be expained by $V B T$?
A. Overlapping

B. Bond formation

C. Paramagenatic nature of oxygen

D. Shapes of molencules

Answer: c

D Watch Video Solution

30. Which of the following leads to bonding?
A.
(a) $\oplus \stackrel{\oplus}{\ominus}$
B.
(b) $\oplus \multimap \ominus$
C.
(c) $\stackrel{\ominus}{\oplus} \quad \stackrel{\ominus}{\theta}$
D.

Answer: B

D Watch Video Solution

Vsepr Theory And Hybridisation

1. In which of the following molecules/ions, are
all the bonds not equal ?
A. $B F_{4}$
B. $S F_{4}$
C. $S i F_{4}$
D. XeF_{4}

Answer: B

Watch Video Solution

2. In which of the following pairs, the two species are not isostructural?
A. CO_{3}^{2+} and NO_{3}^{-}
B. PCI_{4}^{+}and SiSI_{4}
C. $P F_{5}$ and $B r F_{5}$
D. $A I F_{6}^{3-}$ and $S F_{6}$

Answer: C

D Watch Video Solution

3. The structure of $I F_{7}$ is
A. square pyramidal

B. tringonal bipyramidal

C. octahedral

D. pentagonal bipgonal bipyramidal

Answer: D

D Watch Video Solution

4. The compounds in which C uses its $s p^{3}$ hybrid orbitals for bond formation are:
A. HCOOH
B. $\left(\mathrm{H}_{2} \mathrm{~N}\right)_{2} \mathrm{CO}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: c

D Watch Video Solution

5. One hybridization of one s and one p orbital
we get
A. two multually perpendicular orbitals
B. two orbitals at 180°
C. four orbitals directed tetrahedrally
D. three orbitals in a plane

Answer: b

D Watch Video Solution

6. Among the following species, identify the isostuctural pairs
$\mathrm{NF}_{3} . \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}, \mathrm{HN}_{3}$
A. $\left[\mathrm{NF}_{3}, \mathrm{NO}_{3}^{-}\right]$and $\left[\mathrm{BF}_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$

$$
\begin{aligned}
& \text { B. }\left[N F_{3}, N H_{3}\right],\left[N O_{3}^{-}, B F_{3}\right] \\
& \text { C. }\left[N F_{3}, H_{3}^{+} O\right] \text { and }\left[N O_{3}^{-}, B F_{3}\right] \\
& \text { D. }\left[N F_{3}, H_{3}^{+} O\right] \text { and }\left[H N_{3}, B F_{3}\right]
\end{aligned}
$$

Answer: c

D Watch Video Solution

7. The structure of XeOF_{4} is
A. tetrahedral
B. square pyramidal

C. square planar

D. octahedral

Answer: B

D Watch Video Solution

8. The hydridization of sulphur is:

A. $s p$
B. $s p^{3}$
C. $s p^{2}$

D. $d s p^{2}$

Answer: C

D Watch Video Solution

9. In which of the following molecules, the type of hybridization changes when
A. NH_{3} cambines with H^{+}
B. $A I H_{3}$ cambines H^{-}
C. in both cases

D. in none of the above

Answer: b

D Watch Video Solution

10. The species in which the cantral atom uses $s p^{2}$ hybrid orbital in its bonding is:
A. PH_{3}
B. NH_{3}
C. CH_{3}^{+}

D. SbH_{3}

Answer: C

D Watch Video Solution

11. The molecule that has linear structure is:
A. CO_{2}
B. NO_{2}
C. SO_{2}
D. SiO_{2}

Answer: A

D Watch Video Solution

12. The $C I-C-C I$ angle in $1,1,2,2$, tetrachloroethone and tetrachloromethane respectively will be about:
A. 120° and 109.5°
B. 90° and 109.5°
C. 109.5° and 90°
D. 109.5° and 120°

Answer: a

D Watch Video Solution

13. In the following which central atom has different hybridisation than others.
A. $\mathrm{CI}_{2} \mathrm{O}$
B. $O F_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{2}

Answer: d

D Watch Video Solution

14. Which of the folowing have undistorted octahedral structures:(1)
$S F_{6}(2) P F_{6}{ }^{-}(3) S I F_{6}^{2-}(4) X e F_{6}$
Select the correct answer using the codes given below
A. 2,3 and 4
B. 1, 3 and 4

C. 1,2 and 3

D. 1,2 and 4

Answer: c

D Watch Video Solution

15. The molecule which has pyramidal shapes is:
A. $P C I_{3}$
B. SO_{2}
C. CO_{3}^{2-}

Answer: A

D Watch Video Solution

16. The type of hybrid orbitals used by the chlorine atom in $\mathrm{CIO}_{2^{-}}$is
A. $s p^{3}$
B. $s p^{2}$
C. $s p$

D. None of these

Answer: A

(Watch Video Solution

17. Molecular shapes of
$S F_{4} . A n d C F_{4}$ and $X e F_{4}$ are:
A. the same with 2,0 and 1 lone pair of
electrons
B. the same with 1,1 and 1 lone pair of
electrons
C. different with 0,1 and 2 lone pair of
electrons
D. different with 1,0 and 2 lone pair of
electrons

Answer: D
18. In which of the following compounds corban atom undergoes hybridisation of more than one type
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(iii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $H-C \equiv C-H$
A. (iii) and (iv)
B. (i) and (iv)
C. (ii) and (iii)
D. Only (ii)

Answer: c

D Watch Video Solution

19. Which one of the following molecules is planar?
A. $N F_{3}$
B. $N C I_{3}$
C. PH_{3}
D. $B F_{3}$

Answer: D

D Watch Video Solution

20. The molencule which posses both $s p^{3}$ and $s p^{3} d^{2}$ hybridisation is
A. solid $P C I_{5}$
B. gaseous $P C I_{5}$
C. $P C I_{4}$
D. $P C I_{6}$

Answer: A

D Watch Video Solution

21. Which one of the following compounds has $s p^{2}$ hybridization?
A. CO_{2}
B. SO_{2}
C. NO_{2}^{+}
D. $C O$

Answer: B

D Watch Video Solution

22. Which of the following have linear shapes?
A. $S n C l 2$
B. NO_{2}^{+}
C. $F N O$
D. SO_{2}

Answer: b
23. A molecule $X Y_{2}$ contains two σ bonds two π bond and one lone pair of electrons in the valence shell of X. The arrangement of lone pair as well as bond pairs is
A. square pyramidal
B. Linear
C. Trigonal planer

D. Unperdictable

Answer: c

D Watch Video Solution

24. The maximum number of 90° angles hetween bond pair -bond pair of electron is observed in :
A. $s p^{2} d^{2}$ hybridisation
B. $s p^{2} d$ hybridisation
C. $d s p^{2}$ hybridisation
D. $d s p^{3}$ hybridisation

Answer: A

D Watch Video Solution

25. The correct order of hybridisation of the central atom in the following species
$\mathrm{NH}_{3},\left[P t C l_{4}\right]^{2-}, P C l_{5}$ and $B C l_{3}$ is :
A. $d s p^{2}, d s p^{3} s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{2} s p^{2} d$ and $s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3} d p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2} d s p^{3}$

Answer: b

D Watch Video Solution

26. Which of the following has a 3 centred 2 electron bond?
A. $B F_{3}$
B. NH_{3}
C. CO_{2}
D. $B_{2} H_{6}$

Answer: d

D Watch Video Solution

27. Which species has the maximum number of
lone pair of electrons on the central atom?
A. $\left[\mathrm{CIO}_{3}\right]^{-}$
B. $X e F_{4}$
C. $S F_{4}$
D. $\left[I_{3}\right]^{-}$

Answer: D

D Watch Video Solution

28. Among $\mathrm{CIF}_{3}, \mathrm{BF}_{3}$ and NH_{3} molencules the one with non-planar geometry is
A. CIF_{3}
B. NH_{3}
C. $B F_{3}$
D. None of these

Answer: b

- Watch Video Solution

29. Specify the coordination geometry around and the hybridisation of N and B atoms in $1: 1$ complex of BF_{3} and NH_{3}.
A. N tetrahedral, $s p^{3}, B$: tetrahedral, $s p^{3}$
B. N pyramidal, $s p^{3}, B$: pyramidal,$s p^{3}$
C. N pyramidal, $s p^{3}, B$: planar,$s p^{2}$
D. N pyramidal, $s p^{3}, B$: tetrahedral,$s p^{3}$

Answer: A

D Watch Video Solution

30. Which of the following molecules planer planar geometry?
A. $I F_{3}$
B. $B F_{3}$
C. NH_{3}
D. $B F_{3}$

Answer: d

D Watch Video Solution

31. The two types of bonds present in $B_{2} H_{6}$ are covalent and
A. Three centre bond
B. Hydrogen bond
C. Two centre bond
D. None of the above

Answer: a

D Watch Video Solution

32. Which has regular tetrahedral geometary?
A. $S F_{4}$
B. $B F_{4}$
C. $X e F_{4}$
D. $\left[N i(C N)_{4}\right]^{2}$
33. Which of the following are isolectronic and iso-structural ?
$\mathrm{NO}_{3}^{\Theta}, \mathrm{CO}_{3}^{2-}, \mathrm{CIO}_{3}^{\Theta}, \mathrm{SO}_{3}$.
A. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
B. $\mathrm{SO}_{3}, \mathrm{NO}_{3}^{-}$
C. $\mathrm{CIO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
D. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}$

Answer: a
34. The percentage s-character of the hybrid orbitals in methane, ethene are respectively
A. $25,33,50$
B. $25,50,75$
C. $50,75,100$
D. 10, 20, 40

Answer: a
35. Among the compounds
$B F_{3}, N C I_{3}, H_{2} S, S F_{4}$ and $B e C I_{2}$., identify the
ones in which the central atom has the same
type of hybridisation
A. $B F_{3}$ and $N C I_{3}$
B. $H_{2} S$ and $B e C I_{2}$
C. $B F_{3}, N C I_{3}$ and $H_{2} S$
D. $N C I_{3}$ and $H_{2} S$

Answer: d
36. Total number of lone pair of electrons in XeOF_{4} is :
A. 0
B. 1
C. 2
D. 3

Answer: B
37. Indicate the incorrect statement:
A. An 'sp' hybrid orbital is not lower in energy than both s -and p -orbitals
B. $2 s p$ and $2 p$ orbitals of carbon can be hybridized to yield two new more stable orbitals
C. Effect hybridisation is not possible with orbitals of widely different energies
D. The concept of hydration has a greater significance in the $V B$ theory of localised orbitals than in the $M O$ theory

Answer: b

D Watch Video Solution

38. Which iof the folowing molecule contains one pair of non-bonding electrons?
A. CH_{4}
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $H F$

Answer: b

D Watch Video Solution

39. The hybridisation of the central atom will change when
A. NH_{3} combined with H^{+}
B. $H_{3} B O_{2}$ combined with $O H$
C. $\mathrm{NH}_{3} f$ or $m s \mathrm{NH}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}$ combines with H^{+}

Answer: b

D Watch Video Solution

40. Which of the following is most stable

Answer: a

D Watch Video Solution

41. The states of hybridisation of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respecitivelty :
A. $s p^{3}$ and $s p^{3}$
B. $s p^{2}$ and $s p^{3}$
C. $s p^{3}$ and $s p^{2}$
D. $s p^{2}$ and $s p^{2}$

Answer: b
42. Sulphur reacts with chlorine in 1:2 ratio and forms X hydrolysis of X gives a sulphure compound Y. What is the hybridisation state od central atom in the compound?
A. $s p^{2}$
B. $s p^{3}$
C. $s p$
D. $d s p^{2}$

Answer: b
43. In $X e F_{2}, X e F_{4}$ and $X e F_{6}$, the number of Ione pair of electrons on $X e$ are respectively :
A. $2,3,1$
B. $1,2,3$
C. $4,1,2$
D. $3,2,1$

Answer: D

D Watch Video Solution

44. The snecies having pyramidal shapes is

A. SO_{3}
B. $B e F_{3}$
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer: d
(D) Watch Video Solution
45. The shapes of $\mathrm{XeO}_{2} F_{2}$ molecule is
A. trigonal bipyramidal

B. squre planar

C. tertrahedral
D. see-saw

Answer: D

D Watch Video Solution

46. The pair of species having identical shape of both species :
A. $B F_{3}, P C I_{3}$
B. $P F_{5}, I F_{5}$
C. $B F_{4}, S F_{4}$
D. $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$

Answer: d

- Watch Video Solution

Molecular Orbitial Theory

1. A simplified applified of $M O$ theory to the hypotheritical molecule $O F$ would gives its bond order as:
A. 2
B. 1.5
C. 1.0
D. 0.5

Answer: B
(D) Watch Video Solution
2. During the formation of a molecular orbital from atomic orbital, the electron density is :
A. not zero in the nodal plane B. maximum in the nodal plane
C. zero in the nodal plane

D. zero on the surface of the lobe

Answer: C

3. According to $M O$ Thory

A. O_{2}^{+}is paramagnetic and bond order is greater than O_{2}
B. O_{2}^{+}is paramagnetic and bond order is
less than O_{2}
C. O_{2}^{+}is diamagnetic and bond order is less
than O_{2}
D. O_{2}^{+}is diamagnetic and bond order is more than O_{2}

Answer: a

D Watch Video Solution

4. If z-axis is the molecular axis, then $\pi-$ molecular orbitals are formation by the formed by the overlap of
A. $s+p_{z}$
B. $p_{s}+p_{z}$
C. $p_{z}+p_{z}$
D. $p_{x}+p_{x}$

Answer: D

D Watch Video Solution

5. Bond order of $O_{2}, O_{2}^{-}, O_{2}^{+}$and O_{2}^{2-} is in order

$$
\text { A. } O_{2}^{-}<O_{2}^{2-}<O_{2}<O_{2}^{+}
$$

$$
\text { B. } O_{2}^{2-}<O_{2}^{-}<O_{2}<O_{2}^{+}
$$

$$
\text { C. } O_{2}^{+}<O_{2}<O_{2}^{-}<O_{2}^{2-}
$$

$$
\text { D. } O_{2}<O_{2}^{+}<O_{2}^{-}<O_{2}^{2-}
$$

Answer: B

D Watch Video Solution

6. Which of the following pairs have identical value of bond order?
A. N_{2}^{+}and O_{2}^{+}
B. F_{2} and O_{2}^{+}
C. O_{2} and B_{2}
D. C_{2} and N_{2}

- Watch Video Solution

7. The common feature of the species $\mathrm{N}_{2}^{2-}, \mathrm{O}_{2}$ and NO^{-}are
A. bond order three and isoelectronic
B. bond order two and isoelectronic
C. bond order three but not isoelectronic
D. bond order two but not isoelectronic

Answer: B

D Watch Video Solution

8. Which one of the following constitutes a group of the isoelectronic species?
A. $C_{2}^{2-}, O_{2}^{-}, C O, N O$
B. $N O^{+}, C_{2}^{2}, C N^{-}, N_{2}$
C. $\mathrm{CN}^{-}, \mathrm{N}_{2} \mathrm{O}_{2}^{2-}, \mathrm{C}_{2}^{2-}$
D. $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}, \mathrm{NO}^{+}, \mathrm{CO}$

Answer: B

D Watch Video Solution

9. In the of the following pairs of molecules
/ions both the species are not likely to exist?
A. $H_{2}^{+}, H e_{2}^{2-}$
B. $H_{2}^{-}, H e_{2}^{2-}$
C. $H_{2}^{2+}, H e_{2}$
D. $H_{2}^{-}, H e_{2}^{2+}$

Answer: c

D Watch Video Solution

10. Consider the given figure showing the formation of H_{2}^{+}ion depending on intermuclear distance versus potential energy of the system.

A. Curve -1 represents the most stable state
of the system for H_{2}^{+}ion
B. Curve -2 represents the most stable state
of the system for H_{2}^{+}ion
C. Curve-1 indicates that the molecular hydrogen ion is formed
D. Curve-2 represent the energy level of the
antibonding region

Answer: b
11. Which of the following is paramagentic?
A. O_{2}^{-}
B. $C N$
C. $C O$
D. NO^{+}

Answer: A

Watch Video Solution
12. N_{2} and O_{2} are converted into monocations,
N_{2}^{+}and O_{2}^{+}respectively. Which of the following is wrong?
A. In $N_{2}^{+}, N-N$ bond order weakens
B. In O_{2}^{+}, the $O-O$ bond order increases
C. In O_{2}^{+}paramagnetism decreases
D. N_{2}^{+}becomes diagnetic

Answer: d
13. Which of the following order is correct for the bond dissociation energy of
O_{2}, O_{2}, O_{2}^{-}and $O_{2}^{2-} ?$

$$
\begin{aligned}
& \text { A. } O_{2}^{+}>O_{2}>O_{2}>O_{2}^{2-} \\
& \text { B. } O_{2}^{+}>O_{2}<O_{2}<O_{2}^{2-} \\
& \text { C. } O_{2}^{+}<O_{2}<O_{2}<O_{2}^{2-} \\
& \text { D. } O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-}
\end{aligned}
$$

Answer: a
14. Which of the following statement is incorrect?
A. Among O_{2}^{+}, O_{2} and $O_{2^{-}}$, the stability decreases as $\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}$
B. $H e_{2}$ molcecule does not exist as the effect of bonding and anti-bonding orbitals molecuylar orbital of O_{2}.
C. C_{2}, O_{2}^{2-} and $L i_{2}$ are diamagnetic
D. $\operatorname{In} F_{2}$ molecule, the energy of $\sigma_{2 p z}$ is more
than $\pi_{2 p x}$ and $\pi_{2 p y}$

Answer: d

D Watch Video Solution

15. Which of the following statement is incorrect?
A. During N_{2}^{+}, formation, one electron is
removed from than bonding molecular orbital of N_{2}.
B. During N_{2}^{+}, formation , one electron is removed from the antibonding molecular
orbital of O_{2}.
C. During O_{2}^{+}, formation, one electron is added to the bonding molecular orbital of
O_{2}.

D. During $C N^{-}$, formation, one electron is

added to the bonding molecular orbital of
$C N$.

Answer: C

16. S_{1} : The $H O M O \in F_{2} i s \pi \cdot 2 p_{s}=\pi \cdot 2 p$, molecular orbitals
S_{2} : Bond order of O_{2} is more than O_{2}^{+}.
$S_{3}: \mathrm{NO}^{+}$is more stable than N_{2}^{+}
$S_{4}: C_{2}$ is more stable than C_{2}^{+}

State in order whether $S_{1}, S_{2}, S_{3}, S_{4}$ are true or false.
A. $F F F T$
B. $F \top T$
C. FIFT
D. $F F$ †

Answer: d

D Watch Video Solution

17. The nodal plane is the pi -bond of ethene is
located in :
A. the molencular plane
B. a plane parallel to the molecular plane
C. a plane parpondicular to the molecular
plane which bisects the carbon σ-bondat
right angle

D. a plane parpondicular to the molecular

plane which contains the carbon σ-bond

Answer: a

D Watch Video Solution

18. Among the following , the paramagnetic compound is :
A. $\mathrm{Na}_{2} \mathrm{O}_{2}$
B. O_{3}
C. $\mathrm{N}_{2} \mathrm{O}$

D. $K O_{2}$

Answer: D

D Watch Video Solution

19. Which of the following option with respect to increasing bond dissociation energies is correct?
A. $\mathrm{NO}<\mathrm{C}_{2}<\mathrm{O}_{2}<\mathrm{He}_{2}^{+}$
B. $C_{2}<\mathrm{NO}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}$

$$
\begin{aligned}
& \text { C. } H e_{2}^{+}<O_{2}<N O<C_{2} \\
& \text { D. } H e_{2}^{+}<O_{2}<C_{2}<N O
\end{aligned}
$$

Answer: d

D Watch Video Solution

20. Write the molecular orbital electron distribution of oxygen $\left(O_{2}\right)$ Specify its bond order and magnetic property

Fill in the blanks
When N_{2} goes to $N_{2}{ }^{\oplus}$, the $N-N$ bond
distance__- and when O_{2} goes to O_{2}^{\oplus} the
$O-O$ bond distance \qquad
A. increase, decrease
B. decrease, increase
C. increased in both the cases
D. decreased in both the cases

Answer: a
21. The cyanide ion $C N$ and N_{2} are isoelectronic, but in contrast to $C N^{-}, N_{2}$ is
chemically inert, because of
A. low bond energy
B. absence of bond polarity
C. unsymmetrical electron distribution
D. presence of more of electron in bonding orbitals

Answer: b
22. Which of the following comnpounds is paramagnetic?
A. $C O$
B. NO
C. O_{2}^{2-}
D. O_{3}

Answer: B
23. The number of antibonding electron pairs in
O_{2}^{2-} molecular ion on the basic of molecular orbital theory is
A. 4
B. 3
C. 2
D. 5

Answer: a
24. The correct order of decreasing $C-O$ bond length of (1) $\mathrm{CO},(I I) \mathrm{CO}_{3}^{2-}(I I I) \mathrm{CO}_{2}$ is .

$$
\begin{aligned}
& \text { A. } \mathrm{CO}_{3}^{2}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-} \\
& \text {B. } \mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}
\end{aligned}
$$

$$
\text { C. } \mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}
$$

$$
\text { D. } \mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}
$$

Answer: d

25. The bond length the species
$\mathrm{O}_{2}, \mathrm{O}_{2}^{+}$and O_{2}^{-}are in the order of
A. $O_{2}>O_{2}>O_{2}^{-}$
B. $O_{2}^{+}>O_{2}^{-}>O_{2}$
C. $O_{2}>O_{2}^{+}>O_{2}^{-}$
D. $O_{2}^{-}>O_{2}>O_{2}^{+}$

Answer: A
26. In a matallic crystal the .
A. Valence electrons remain within the fields
of influence of their own kemels
B. Kemels as well as the electrons move
rapidly
C. Valence electrons are localized between
the two kemels
D. Valence electrons constitute a sea of
mobile electrons

Answer: d

D Watch Video Solution

27. The common features among the species
$\mathrm{CN}^{-}, \mathrm{CO}$ and NO^{+}are :
A. bond order three and isoelectronic
B. bond order three and weak ligands
C. bond order two and π acceptors
D. isoelectronic and weak fieldligands

- Watch Video Solution

28. The nodal plane in the pi -bond of ethene is located in :
A. A plane parallel to the molecular plane B. The molecular plane
C. a plane parpendicular to the molecular
plane which bisects the $(C-C) \sigma$-bond
at right angle

D. a plane parpendicular to the molecular

plane which contains the $(C-C) \sigma$-bond

Answer: B

D Watch Video Solution

29. Which of the following is a zero overlap which leads to non-bonding?
(a)

B.
(b) $\oplus \ominus \oplus^{+}$
D. All

Answer: A

D Watch Video Solution

30. The least stable ion among the following is
A. $L i^{-}$
B. $B e^{-}$
C. B^{-}
D. C^{-}

Answer: b

D Watch Video Solution

31. Which of the following molecular species has
unpaired electrons(s) ? .
A. N_{2}
B. F_{2}
C. O_{2}^{-}

$$
\text { D. } O_{2}^{2}
$$

Answer: c

D Watch Video Solution

32. Among the following species, which has the minimum bond length?
A. B_{2}
B. C_{2}
C. F_{2}

D. O_{2}^{-}

Answer: b

D Watch Video Solution

33. The correct order of bond strength is:
A. $O_{2}^{-}<O_{2}<O_{2}^{+}<O_{2}^{2-}$
B. $O_{2}^{2-}<O_{2}^{-}<O_{2}<O_{2}^{+}$
C. $O_{2}^{-}<O_{2}^{2-}<O_{2}<O_{2}^{+}$

$$
\text { D. } O_{2}^{+}<O_{2}<O_{2}^{-}<O_{2}^{2-}
$$

Answer: B

D Watch Video Solution

34. The bond order in $N O$ is 2.5 , while that in
NO^{+}is 3 Which statement is true ?
A. Bond length is unpredictable
B. Bond length in $N O$ is greater than in
NO^{+}
C. Bond length in NO^{+}is equal to than in NO

D. Bond length in NO^{+}is greater than in

NO

Answer: B

D Watch Video Solution

35. The species having bond order differnet from that in $C O$ is .
A. $N O$
B. $N O^{+}$
C. $C N^{-}$
D. N_{2}

Answer: A

- Watch Video Solution

36. Which one of the following sepcies is diamagnetic in nature ?
A. $H e_{2}^{+}$
B. H_{2}
C. H_{2}^{+}
D. H_{2}^{-}

Answer: b

Watch Video Solution

37. Assuming that Hund's rule is violated the bond order and magnetic nature of the diatomic molecle B_{2} is
A. 1 and diamagnetic B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: A

D Watch Video Solution

38. Which of the following species exhibits the diamagnetic behaviour?
A. O_{2}^{2-}
B. O_{2}^{+}
C. O_{2}
D. NO

Answer: a

D Watch Video Solution

39. In which of the following ionixation processes, the bond order has increased and the magnetic behaviour has changed ?

$$
\begin{aligned}
& \text { A. } \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}^{+} \\
& \text {B. } \mathrm{NO} \rightarrow \mathrm{NO}^{+} \\
& \text {C. } \mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+} \\
& \text {D. } \mathrm{NO}^{+} \rightarrow \mathrm{N}_{2}^{+}
\end{aligned}
$$

Answer: B

D Watch Video Solution

40. Which one of the following pairs of species have the same bond order?

A. $C N$ and $N O^{+}$

$$
\text { B. } C N^{-} \text {and } C N^{+}
$$

C. O_{2}^{-}and CN^{-}
D. NO^{+}and $C N^{-}$

Answer: b

D Watch Video Solution

41. Assuming $2 s, 2 p$ mixing is NOT operative , the paramagnetic species among the following is
A. $B e_{2}$
B. B_{2}
C. C_{2}
D. N_{2}

Answer: c

Watch Video Solution

42. Stability of the species $L i_{2}, L i_{2}^{-}, L i_{2}^{+}$ increases in the order of

A. $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
 B. $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$
 C. $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$
 D. $L i_{2}^{+}<L i_{2}<L i_{2}^{+}$

Answer: b

D Watch Video Solution

1. Give the decreasing order of melting points of
the following $\mathrm{NH}_{3}, \mathrm{PH}_{3},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ Explain
(b) In which molecule is the van der Waals force
likely to be the most important in determining the m.pt and b.pt for $\mathrm{ICI}, \mathrm{Br}_{2}, \mathrm{HCI}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}$
A. $C O$
B. $H_{2} S$
C. $B r_{2}$
D. $H C I$

Answer: c

D Watch Video Solution

2. Which one among the following does not have the hybrogen bond ?
A. phenol
B. liquid NH_{3}
C. Water
D. $H C I$

Answer: D

D Watch Video Solution

3. Which of the following has highest visosity?
A. Glycerol
B. Glycol
C. Ethanol
D. Water
4. Molecular size of $I C I$ and $B r_{2}$ is nearly same but b. pt. of $I C I$ is about 40° higher than $B R_{2}$. This is due to :
A. $I C I$ bond is stronger than $B r-B r$ bond B. I. E. of $1<I$. E. of $B r$
C. $I C I$ is polar while $B r_{2}$ is non-polar
D. 1 has larger size than $B r$
5. $\mathrm{H}_{2} \mathrm{O}$ has higher boiling point than $\mathrm{H}_{2} \mathrm{~S}$ because
A. $H_{2} S$ is a smaller molecule and hence more closely packed

B. the bond angle of $\mathrm{H}_{2} \mathrm{O}$ is more than $\mathrm{H}_{2} \mathrm{~S}$

and hence $\mathrm{H}_{2} \mathrm{O}$ molecule are more tightly
packet
C. the intermolecular hydrogen bonding in

liquid $\mathrm{H}_{2} \mathrm{O}$

D. the latent head of voparisation is higher for $\mathrm{H}_{2} \mathrm{O}$ than for $\mathrm{H}_{2} \mathrm{~S}$

Answer: C

D Watch Video Solution

6. Number of H-bonds formed by a water molecule is:
A. 2
B. 4
C. 3
D. 1

Answer: B

D Watch Video Solution

7. At ordinary temperature and presture chloride is a gas bromine a liquid and iodine a solid. This is due to the fact that
A. the specific heat is in the order $l_{2}>B r_{2}>C I_{2}$
B. the intermolecular force in molecules of
cholorine are the weakest and those in iodine are the strongest
C. the order of density is $l_{2}>B r_{2}>C I_{2}$

D. the order of stability is $l_{2}>B r_{2}>C I_{2}$

Answer: b

8. Of the two compounds shown below, the vapour pressure of B at a particular temperature is

A. higher than that of A
B. lower than that of A
C. same as that of A
D. depends on the amout and size of verssel
9. Which one of the following has intramolecular H -bonding ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. o-Nitrophenol
C. HF
D. $\mathrm{CH}_{3} \mathrm{OH}$

Answer: B
10. In which of the following molecular the intermolecular force is of the type induced dipole indiced dipole?
A. $C I_{2}$
B. $H C I$
C. $\mathrm{CH}_{2} \mathrm{OH}$
D. $C_{2} F_{6}$

Answer: a
11. $K F$ combines with to form $K H F_{2}$. The compound contains the species :
A. $\mathrm{K}^{\prime}, \mathrm{F}$ and H^{\prime}
B. $\mathrm{K}^{\prime}, \mathrm{F}^{\prime}$ and HF
C. K^{\prime} and $\left[H F_{2}\right]$
D. ' $[K H F]$ ' and f^{\prime}

Answer: c

D Watch Video Solution
12. Which contains strongestn H - hund ?
A. O-H....S
B. S - H....O
C. F-H....F
D. F - H....O

Answer: C

Watch Video Solution
13. B.P of $H_{2} O\left(100^{\circ} C\right)$ and $H_{2} S\left(\equiv 42^{\circ} C\right)$ is explained by
A. ven der waals force

B. Covalent bond

C. Hydrogen bond

D. Ionic bond

Answer: c
14. Ethy1 alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ has higher boiling point than dimethyl ether $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}\right)$
although the molecular weight of both are same .
A. Hydrogen bonding in eithnol
B. Hydrogen bonding in dimeyl ether
C. CH_{3} group in ethand
D. CH_{3} group in demethyl ether

Answer: A

15. Which of the following exhibits the weakest intermolecular forces?

A. He

B. HCl
C. NH_{3}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: a

-

16. In which of the following species intercular H-bonding can be exbibitied in the equation solution ?

Answer: b

D Watch Video Solution

17. On the basic intermolecular force predict the correct order of decreasing bolling point of the compound ?
A. $\mathrm{CH}_{2} \mathrm{OH}>\mathrm{H}_{2} \mathrm{CH}_{4}$

$$
\text { B. } \mathrm{CH}_{3} \mathrm{OH}>\mathrm{CH}_{4} \mathrm{H}_{2}
$$

C. $\mathrm{CH}_{4} \mathrm{CH}_{2} \mathrm{OH}>\mathrm{H}_{2}$
D. $\mathrm{H}_{2}>\mathrm{CH}_{4}>\mathrm{CH}_{2} \mathrm{OH}$

Answer: b

D Watch Video Solution

18. Amost $\mathrm{NH}_{2}, \mathrm{PH}_{3}, \mathrm{AsH}_{3}$ and SbH_{3} the one with highest bolding point is
A. NH_{2} because of lower molcular weight
B. SbH_{3} because of higher molcular weight
C. PH_{2} because of H -bonding

D. AsH_{3} because of lower molcular weight

Answer: b

D Watch Video Solution

19. Which of the following statement is true?
A. Hf is less polar than HBr
B. Absoltely pure water does not contain any
ions
C. Chemical boad formation takes place
when force of attraction evberone the
force of repulsion
D. In convence transfer of electrons takes
palce

Answer: c
20. An ether is more volatile then alcohol having same molecular fromula. This is due to :
A. Intermolecular H -bonding in ethers
B. Intermolecular H-bonding in alcobols
C. Dipolar character of ethers
D. Resomance character in alchole

Answer: b

D Watch Video Solution

21. Among the following mixiture dipole-dipole as the mojor interaction is present is
A. Benzene and carbon teracholoride
B. Bazane qand ethernol
C. Acetombtrile and acetore

D. RCI and waetr

Answer: c

22. Which of the following hydrogen bonds is the strongest ?

A. $\mathrm{O}-\mathrm{H}-\mathrm{N}$

B. F- H-F
C. O-H-O

D. O-H-F

Answer: b

Bond Enthalpy, Bond Angle And Bond Length

1. Indicate the type of bond anghle presents in
$I F_{5}$
A. 90°
B. $90^{\circ}, 120^{\circ}$
C. $90^{\circ}, 180^{\circ}$
D. $90^{\circ}, 120^{\circ}, 180^{\circ}$

Answer: A
2. The bond energy (in kcal mol^{-1}) of a $C-C$ single bond is approximately
A. 1
B. 10
C. 100
D. 1000

Answer: C
3. The correct increasing bond angle among $B F_{3}, P F_{3}$ and $C l F_{3}$ follow the order
A. $B F_{3}<P F_{3}, C I F_{3}$
B. $P F_{3}<B F_{3}, C I F_{3}$
C. $C I F_{3}<P F_{3}, B F_{3}$
D. All have equal bonfd angle

Answer: C

- Watch Video Solution

4. The bond energies in $\mathrm{NO}, \mathrm{NO}^{+}, \mathrm{NO}^{-}$ follow the order
A. $\mathrm{NO}^{+}>\mathrm{NO}>\mathrm{NO}^{-}$
B. $\mathrm{NO}^{+}<\mathrm{NO}<\mathrm{NO}^{-}$
C. $\mathrm{NO}^{+}<\mathrm{NO}>\mathrm{NO}^{-}$
D. $\mathrm{NO}>\mathrm{NO}^{+}>\mathrm{NO}^{-}$

Answer: A
5. The correct order of O - O bond length in
$\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
A. $\mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{H}_{2} \mathrm{O}_{2}$
B. $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{2}$
C. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
D. $\mathrm{O}_{2}>\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}$

Answer: C
6.
Among
the
species
$\mathrm{CO}_{2}, \mathrm{CH}_{3} \mathrm{COO}^{\prime}, \mathrm{CO}, \mathrm{CO}_{3}^{2-} \mathrm{HCHO}$
has the veakest carbon-oxygen bond
A. CO_{2}
B. $\mathrm{CH}_{2} \mathrm{COO}$
C. CO
D. CO_{3}^{2-}

Answer: d
7. In the series ethane, ethylene and acetylene the $C-H$ bond energy is
A. The same in the these compounds B. Greater in ethane
C. Greater in ethyene

D. Greater in acethayene

Answer: d
8. As the p - charcter increases the bond angle in in hydrid orbital formed by a and atomic orbitals
A. Decreases
B. increases
C. Doubles
D. Remains unchanged

Answer: A
(D) Watch Video Solution

9. Which of the least bond angle ?

A. NH_{3}
B. $B e F_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. CH_{4}

Answer: C
10. Which of the following sequence represents the correct increasing order of bond angle in the given molecules ?

$$
\begin{aligned}
& \text { A. } \mathrm{ClO}_{2}<\mathrm{OF}_{2}<\mathrm{OCl}_{2}<\mathrm{H}_{2} \mathrm{O} \\
& \text { B. } \mathrm{OF}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OCl}_{2}<\mathrm{ClO}_{2} \\
& \text { C. } \mathrm{OCl}_{2}<\mathrm{ClO}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OP}_{2} \\
& \text { D. } \mathrm{H}_{2} \mathrm{O}<\mathrm{OF}_{2}<\mathrm{OCl}_{2}<\mathrm{ClO}_{2}
\end{aligned}
$$

Answer: B

11. The correect order of decreasing bond angle is
A. $N H_{1}>N H_{2}>N H_{4}$
B. $\mathrm{NH}_{4}>\mathrm{NH}_{2}>\mathrm{NH}_{2}$
C. $\mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{NH}_{4}$
D. $\mathrm{NH}_{4}>\mathrm{NH}_{2}>\mathrm{NH}_{3}$

Answer: B
12. In which of the following compound all the bond angles are same
A. $\mathbb{C} I_{4}$
B. CHCI_{3}
C. $\mathrm{CH}_{3} \mathrm{CI}$
D. $\mathrm{CH}_{3} \mathrm{CI}_{2}$

Answer: a
13. Consider the following molecules:
$\mathrm{H}_{2} \mathrm{OH}_{2} \mathrm{SH}_{2} \mathrm{SeH}_{2} \mathrm{Te}$

IIIIIIIV

Arrange these molecules in increasing order of bond angles

$$
\begin{aligned}
& \text { A. } I<I I<I I I<I V \\
& \text { B. } I V<I I I<I I<I \\
& \text { C. } I<I I<I V<I I I \\
& \text { D. } I<I V<I I I<I
\end{aligned}
$$

- Watch Video Solution

14. Consider the following statement(s)
$C H_{3}=X$ and $C V_{3}=V$
(i)Which X dimerises bond angle decreases
(ii) Which Y dimerises bond angle increases
i(iii) In X - Y molecule C- C bond length is less than that in $\mathrm{Y}-\mathrm{Y}$ molecule
(iv) Bond angle is X is greater than in Y Pick the increases statement
A. IIIII

B. I,II,III

C. I,IV

D. II,III,IV

Answer: a

D Watch Video Solution

15. Percentage of p - character in each orbital of centain atom used bonding in NH_{3} is
A. 25%
B. 75%
C. More than 75%
D. 33.3%

Answer: C

- Watch Video Solution

16. The ONO angle is maximum in :
A. HNO_{3}
B. NO_{2}^{+}
C. HNO_{2}

D. NO_{2}

Answer: b

D Watch Video Solution

17. Arrange the following in order of decreasing

N - O bond length $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}$
A. $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}>\mathrm{NO}_{2}^{-}$
B. $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}>\mathrm{NO}_{2}^{-}$

$$
\text { C. } \mathrm{NO}_{2}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{-}
$$

$$
\text { D. } \mathrm{NO}_{2}^{-}>\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}^{+}
$$

Answer: b

D Watch Video Solution

18. The highest amount of s-character is observed in :
A. $\mathrm{N}-\mathrm{H}$ hond of NH_{3}
B. $N-H$ bond of NH_{4}^{+}
C. $\mathrm{N}-\mathrm{H}$ bond in $\mathrm{H}_{2} \mathrm{NNH}_{2}$
(Hydrazine)

D. $N-H$ bond in $H N=N H$

(Diazene)

Answer: D

D Watch Video Solution

19. In which of the following pairs, bond angle is $109^{\circ} 28^{\prime} ?$
A. $\left.\left[N H_{4}\right]^{+}, B F_{4}^{-}\right]$
B. $N H_{4}^{+},\left[B F_{3}^{-}\right]$
C. $\mathrm{NH}_{3}^{+},\left[B F_{4}^{-}\right]$
D. $\left[\mathrm{NH}_{3}\right],\left[B F_{3}\right]$

Answer: A

D Watch Video Solution

20. Which among the following has smallest bond angle ?
A. $H_{2} S$
B. NH_{3}
C. $S O_{2}$

D. $\mathrm{H}_{2} \mathrm{O}$

Answer: a

D Watch Video Solution

21. The correct order of bond strength is
A. $H_{2} S<N H_{3}<B F_{3}<S i H_{4}$
B. $N H_{3} S<H_{2} S<S i H_{4}<B F_{3}$
C. $H_{2} S<N H_{3}<S i H_{4}<B F_{3}$

$$
\text { D. } H_{2} S<S i H_{4}<N H_{3}<B F_{3}
$$

Answer: C

(Watch Video Solution

22. The decreasing values of bond angles from
$N H_{3}\left(106^{\circ}\right)$ to $S b H_{3}\left(101^{\circ}\right)$ down the group 15 of the periodic table is due to :
A. Decreasing electrongativity
B. Increasing hp-hp repulsion
C. Increasing p-orbital churacter in $\mathrm{sp}^{\wedge}(3)$

D. Decreasing $l p-b p$ repulsion

Answer: A

D Watch Video Solution

23. The molecule having smaller bond angle is
A. $N C_{3}$
B. $A s C I_{3}$
C. $S b C I_{3}$
D. $P C I_{3}$

Answer: C

D Watch Video Solution

Section B - Assertion Reasoning

1. Assertion Ionic compounds tend to be nonvolatile

Reasoning Intermolecular forces in these
compounds are weak.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a
2. Assertion : Bond order can assume any value number including zero.

Reason :Higher the bond order, shorter is bond
length and greater is bond energy.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: b

D Watch Video Solution

3. Assertion : Water is liquid but $H_{2} S$ is a gas. Reason : Oxygen is paramagnetic.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: b
4. Assertion: The first ionisation energy of $B e$ is greater than that of B.

Reason: 2p-orbital is lower in energy than 2sorbital.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: c

- Watch Video Solution

5. Assertion : σ-bond is strong white π-bond is
a weak bond.

Reason :Atomic rotate freely about π-bond.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c
6. Assertion : $\mathrm{H}_{2} \mathrm{O}_{2}$ is non - ionic compound.

Reason : The $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}_{2} \mathrm{O}_{2}$ is
shorter than that of $O_{2} F_{2}$.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: b

D Watch Video Solution

7. Assertion : B_{2} molecule is paramagnetic.

Reason :The highest occupied molecular orbital is of σ type.
A. If both assertion and reason are true and
the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c

D Watch Video Solution

8. Assertion :First ionization energy is lower
than oxygen.

Reason :Across a period effective charge decreases.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: b

D Watch Video Solution

9. Assertion (A): F-F bond in F_{2} melocule is weak. Reason(B)F atom is small in size.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: d

D Watch Video Solution

10. Assertion :The S-S-S bond in S_{8} molecule is
105°.

Reason : S_{8} has V-shape.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c

11. Assertion : Bond order for CO is more than
bond order in CO whereas bond order in N_{2}^{-}is
less than N_{2} whereas both are isoelectronic.

Reason : Both are same bond order.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: c

(Watch Video Solution

12. Assertion : $N_{2} O$ is respented by (i)
$N=N=O$ and (ii) $N=N \rightarrow O$ but the latter is more stable.

Reason :From (ii) shown resonance.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c

13. Assertion (A): Lithium chloride is predominantly covalent compound.

Reason (R): electronegativity difference between Li and Cl is small.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: c

D Watch Video Solution

14. Assertion : $C a F_{2}$ is solution in water but $C a I_{2}$ not.

Reason: $C a F_{2}$ is soluble in water but CaI_{2}.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d
15. Assertion : O_{3} and NO_{2}^{-}are isoelectronic.

Reason : Bond angle of O_{3} and NO_{2}^{-}are 118.8° and 115° respectively.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: b

D Watch Video Solution

16. Assertion : NO_{2} is readily dimerised to $\mathrm{N}_{2} \mathrm{O}_{4}$

Reason : NO_{2} has one unpaired electron and two such electron with opposite spin in two
NO_{2} molecules form bond between two N atoms readily.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a
17. Assertion :Bothe $C u^{+}$and $N a^{+}$have almost
same radil.

Reason :Cu possesses more power to polarise an anion.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: b

D Watch Video Solution

18. Statement : p-dimethoxy benzene is polar molecule.

Explanation : The two methoxy groups. At para
positions are located as

CH_{3}
 CH_{3}

A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: c

D Watch Video Solution

19. Statement : The lattice energy of silver halids
is $A g F>A g C l>A g B r>A g I$.

Explanation : $A g F$ is water soluble .
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: b
20. Assertion : in $C H_{3} N C O$, the angles
$C-N-C$ and $N-C-O$ are not identical
Reason : N - atom has a pair of electrons which is
involved to $p \pi-d \pi$ delocalisation whereas
C - atom does not have lone pair of electrons.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: c

D Watch Video Solution

21. Assertion : In $I O F_{4}^{-}$a single lone pair is present an iodine atom trans to oxygen to have minimum repulsion between the $I=0$ and the lone pair of electrons.

Reason : The VSEPR model consider double and triple bonds to have slightly greater repulsive effect then single bonds bonds because of the repulsive effective π electrons
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: a

D Watch Video Solution

22. Assertion : Molecular having different hybridisation can have same shape.

Reason :The shape of a molecule does not depend on the hybridisation but it depends on the energy factor.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a
23. Assertion : $\mathrm{SO}_{2}, \mathrm{NO}_{3}^{-}$and CO_{3}^{2-} are isoelectronic as well as isostructural species.

Reason :The d and f-orbital do not shield the nuclear charge very effectively. Therefore there is signified rediduction in the size of the ions, just after d or f orbital have been completely filled.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d

- Watch Video Solution

24. Assertion : Carbon has unique ability to form $p \pi-p \pi$ multiple bonds with itself and with
other atomic of small size and high
electronegativety.
Reason : Heaviur elements of group 14th do not
form $p \pi-p \pi$ bonds because their atomic orbital are too large and diffuse to have effective sideways overapping.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: b

25.

Assertion

F bond
angle p is equal to the bond angle Q but not precisely equal to 90°.

Reason :The molecule is T - shapes and there is repulsion between lone pairs of electrons.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a

D Watch Video Solution

26. Assertion : Elemental nitrogen exist as a diatomic molecule and phospours as tetratomic molecule.

Reason :Nitrogen does not have vacant dorbital wheras phosphorus have vacant dorbital.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: b
27. Assertion : Amongst the oxo acids of halogens, $\mathrm{HOCl}, \mathrm{HOBr}$ and HOI , the HO is the most acidic acid.

Reason :The conjugate base stability is
$C I O>B r O>I O$.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

the assertion.

C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d

D Watch Video Solution

28. Assertion : Aluminium chloride in acidified
aqueous solution from octahedral
$\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion.
Reason :In $\left[\mathrm{AI}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ complest ion the $3 d$
orbital of Al are involved and the hybridisation
state of Al is $s p^{3} d^{2}$.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a

- Watch Video Solution

29. Assertion :A molecule of

Buckminsterfullerene exhibita aromatic
character.

Reason :All the carbon atom undergo $s p^{2}$
hybridisation. Each carbon atom atomic three
sigma bonds with other three carbon atom. The remaining electron at each carbon is delocalised in molecular orbitals.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a
30. Assertion : The double bond in C_{2} molecule consider of both π bonds

Reason :Four electrons are presents in two π bonding molecule orbital in C_{2}
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: a

D Watch Video Solution

31. Assertion : To obtain effefctive $p \pi-p \pi$ overlap, the size of the de-orbital must be similar to the p-orbital so the chlorine $p \pi-p \pi$ bonding is strongest in their oxoanions.

Reason :On moving period from left to right in the periodic table, the nuclear charge is incresed and more s and p-electrons are added.

Since these $s-$ and p-electron shield the nuclear charge incompletely, the size of the atom and that of the $d-$ orbital decreases. This
leads to progressively stronger $p \pi-d \pi$ bonding.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a

- Watch Video Solution

32. Assertion :dimenthyl ether and disilyl ether both readily form complexes with trimethyl
borane.
Reason:

$$
\begin{aligned}
& \mathrm{H}_{3} \mathrm{Si}-\underset{\mathrm{O}}{\ddot{\mathrm{O}}}-\mathrm{H}_{3} \mathrm{Si} \\
& \mathrm{H}_{3} \mathrm{Si}-\stackrel{\ddot{\mathrm{O}}}{\dot{\mathrm{O}}}+\mathrm{SiH}_{3} \\
& \mathrm{H}_{3} \mathrm{Si}-\stackrel{\ddot{\mathrm{O}}}{\dot{+}}-\overline{\mathrm{SiH}_{3}}
\end{aligned}
$$

A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d

- Watch Video Solution

33. Assertion : Solubility of Lil is more than that of LiBr .

Reason :Lil has more lattice energy and more hydration energy in comparison is LiBr .
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c

D Watch Video Solution

34. Assertion : $A I^{3+}$ forms more ionic compound in comparison to $G a^{3+}$ with identical anion.

Reason $: r_{A I}^{3+}$ and $z_{e f f}$ of $G a^{3+}$ is more than that of $A I^{3+}$.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a
35. Assertion : $N F_{3}$ has tendency to act as a donor molecule.

Reason : The highly electronegative F atoms atract electron and these moments partly cancel the moment from the lone pair.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: a

D Watch Video Solution

36. Assertion : Ortho boric acid crystal are hard
and cannot be broken eassily into the powder form.

Reason :In the solid state $B(O H)_{3}$ units are
hydrogen bonded togather into two dimensional sheets.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: d

- View Text Solution

37. Assertion :The orystal sturctures of
NaHCO_{3} and KHCO_{3} both show intermolecule hydrogen bonding but are different.

Reason :In NaHCO_{3} the HCO_{3} ions are linked togather through intermolecular hydrogen bond into an inflate chain white in
$\mathrm{KHCO}_{3} \mathrm{HCO}_{3}^{-}$ions form dimerics anions through intermolecular hydrogen bonds.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a

D Watch Video Solution

AIPMT/ NEET Questions

1. Main axis of diatometic molecule is z, molecular orbatals p_{x} and p_{y} overlap to form, which of the following orbital?
A. π-molecular orbital
B. σ-molecular orbital

C. δ-molecular orbital

D. No bond will be formed.

Answer: a

D Watch Video Solution

2. In $X-H---Y$, both X and Y are electronegative elements
A. Electron density on X will increases and on H will decreases
B. In both electron density will decrease
C. In both electron density will increase
D. Electron density will decrease on X and will increase on H

Answer: a

D Watch Video Solution

3. Which of the following two are isostructural ?
A. $X e F_{2}, I F_{2}^{-}$
B. $N H_{3}, B F_{3}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. $P C l_{5}, I C l_{5}$

Answer: a

D Watch Video Solution

4. In which of the following bond angle is maximum
A. NH_{3}
B. NH_{4}^{+}
C. $P C I_{3}$
D. $S C L_{2}$

Answer: b

D Watch Video Solution

5. Which of the following molecule forms linear polymeric structure due to H -bonding ?
A. HCl

B. HF

C. $\mathrm{H}_{2} \mathrm{O}$

D. NH_{3}

Answer: b

D Watch Video Solution

6. The correct order of increasing covalent character is :
A. $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
B. $\mathrm{BeCl}<\mathrm{NaCl}<\mathrm{LiCl}$
C. $\mathrm{BeCl}<\mathrm{LiCl}<\mathrm{NaCl}$
D. $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$

Answer: a

D Watch Video Solution

7. In which of the following $p \pi-d \pi$ bonding is observed?
A. NO_{3}^{-}
B. SO_{3}^{2-}
C. BO_{3}^{3-}
D. CO_{3}^{2-}

Answer: b

D Watch Video Solution

8. In NO_{3}^{-}ion, the number of bond pair and

Ione pair of electrons no N -atom are :
A. 2,2
B. 3,1
C. 1,3
D. 4,8

Answer: d

Watch Video Solution

9. Which of the following statement is not correct for sigma and pi- bonds formed between two carbon atoms ?
A. Sigma -bond determines the direction between carbon atoms but a pi-bond has
no primary in this regard
B. Sigma -bond is stronger than a pi-bond
C. Bond energies of sigma and pi-bond are
of the order of $264 k j / \mathrm{mol}$ and
$347 k J / \mathrm{mol}$,respectively
D. Free rotation of atoms about a sigme -
bond is allowed but not in case of a pi-
bond.

Answer: c

D Watch Video Solution

10. Among the following the pair in which the two species are not isostuctural is
A. $S i F_{4}$ and $S F_{4}$
B. IO_{3}^{-}and XeO_{3}
C. BH_{4}^{+}and NH_{4}^{+}
D. $P F_{6}{ }^{-}$and $S F_{6}$

Answer: a

D Watch Video Solution

11. $\mathrm{H}_{2} \mathrm{O}$ is depolar, wheras $\mathrm{Be} F_{2}$ is not. it because
A. The electronegativity of F is greater than that of O
B. $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bending whereas
$B e F_{2}$ is a discrete molecule
C. $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular

D. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear

Answer: d

D Watch Video Solution

12. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x^{2}-y^{2}}, d_{z^{2}}$
B. $d_{x z}, d_{x^{2}-y^{2}}$
C. $d_{z^{2}}, d_{x z}$

D Watch Video Solution

13. In a regular octahedral molecule $M X_{6}$ the number of $X-M-X$ bonds at 180° is
A. 3
B. 2
C. 6

D Watch Video Solution

14. Among the following the pair in which the two species are not isostuctural is
A. $S i F_{4}$ and $S F_{4}$
B. IO_{3}^{-}and XeO_{3}
C. BH_{4}^{-}and NH_{4}^{+}
```
D. \(P F_{6}{ }^{-}\)and \(S F_{6}\)
```


Answer: c

D Watch Video Solution

15. In $B r F_{3}$ molecule, the lone pairs occupy equatorial positions to minimize
A. lone pair-bond pair repulsion only
B. bond pair-bond pair repulsion only
C. Ione pair-bond pair repulsion and lone

pair-lone pair repulsion

D. lone pair-lone pair repulsion only

Answer: c

D Watch Video Solution

16. Which of the following is the electrondeficient molecule?
A. $C_{2} H_{6}$
B. $B_{2} H_{6}$
C. $S i H_{6}$
D. PH_{3}

Answer: B

D Watch Video Solution

17. Which one of the following arrangements represents the correct order of electron gain enthalpy of the given atomic species?
A. $S<O<C l<F$

$$
\begin{aligned}
& \text { B. } O<S<F<C l \\
& \text { C. } C l<F<S<O \\
& \text { D. } F<C l<O<S
\end{aligned}
$$

Answer: b

D Watch Video Solution

18. Which molecule has trigonal planar geometry?
A. $I F_{3}$
B. $P C l_{3}$
C. NH_{3}
D. $B F_{3}$

Answer: D

D Watch Video Solution

19. The molecule having permanent dipole moment is
A. $S F_{4}$
B. $X e F_{4}$
C. NH_{3}
D. $B F_{3}$

Answer: d

Watch Video Solution

20. Which is expected to show paramagnetism ?
A. CIO_{2}
B. SO_{2}
C. CO_{2}

D. SiO_{2}

Answer: a

(Watch Video Solution

21. The electronegaivity difference between N
and F is greater than that between N and H
yet the dipole moment of NH_{2} (1.5 D) is larger than that of $N F_{3}(0.2 D)$. This is because :
A. In NH_{3} the atomic dipole and bond
dipole are in the same direction, wheras
in $N F_{3}$ these are in opposite directions
B. In $H N_{3}$ as well as $N F_{3}$ the atomic dipole and bond dipole are in opposite directions
C. In $H N_{3}$ the atomic dipole and bond
dipole are in the opposite direction ,
wheras in $N F_{3}$ these are in the same direction

D. In $N H_{3}$ as well as $N F_{3}$ the atomic dipole

and bond dipole are in same direction

Answer: a

D Watch Video Solution

22. In which of the following molecules all the bonds are not equal ?
A. $A l F_{3}$
B. $N F_{3}$
C. CIF_{3}

D. $B F_{3}$

Answer: c

D Watch Video Solution

23. The correct order of electronegativity regarding the hybrid orbitals of carbon is:
A. $s p<s p^{2}>s p^{3}$
B. $s p<s p^{2}<s p^{3}$
C. $s p>s p^{2}<s p^{3}$
D. $s p>s p^{2}>s p^{3}$

Answer: d

D Watch Video Solution

24. Which of the following species has a linear
shape ?
A. NO_{2}^{+}
B. O_{3}
C. NO_{2}^{-}
D. $S O_{4}^{2}$

Answer: a

D Watch Video Solution

25. Which of the following is not isostructural
with SiCI_{4} ?
A. PO_{4}^{3-}
B. $1 N H_{4}^{+}$
C. $S C I_{4}$

D. SO_{4}^{2-}

Answer: c

D Watch Video Solution

26. Which of the following is not a correct statement?
A. Every $A B_{2}$ molecule does in fact has square pyramid structure.
B. Maltiple bonds are always shorter then
cotreponding single bonds.
C. The electron deficient molecule can act as

Lewis acids.
D. The canonical structure have no real existence.

Answer: a
27. Which one of the following orders is not correct in accordance with the property stated against is ?
A. $F_{2}>C I_{2}>B r_{2}<I_{2}$: Electronegatively

$$
\text { B. } F_{2}>C I_{2}>B r_{2}<I_{2} \text { : }
$$

disrisociation energy
C. $F_{2}>C I_{2}>B r_{2}<I_{2}$: oxygidising power

$$
\text { D. } H I>H B r>H C l<H F: \quad \text { Acidic }
$$

28. The number of unpaired electrons in a parmamagnetic diatomic molecule of an element with atomic number 16 is :
A. 4
B. 1
C. 2
D. 3

- Watch Video Solution

29. Which of the following pair are isotructural ?
A. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
B. $B F_{3}, N F_{3}$
C. $\mathrm{BrO}_{3}^{-}, \mathrm{XeO}_{3}$
D. $S F_{4}, X e F_{4}$

Answer: c

30. The element having lowest ionisation energy

 among the following isA. $1 s^{2}, 2 s^{2}, 2 p^{3}$
B. $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{1}$
C. $1 s^{2}, 2 s^{2}, 2 p^{6}$
D. $1 s^{2}, 2 s^{2} 2 p^{5}$

Answer: b

31. The correct order of decreasing $C-O$ bond length of (1) $\mathrm{CO},(I I) \mathrm{CO}_{3}^{2-}(I I I) \mathrm{CO}_{2}$ is .

$$
\begin{aligned}
& \text { A. } \mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2} \\
& \text { B. } \mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO} \\
& \text { C. } \mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-} \\
& \text { D. } \mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}
\end{aligned}
$$

Answer: c
32. Which of the following posses maximum hydration energy?
A. MgSO_{4}
B. RaSO_{4}
C. SrSO_{4}
D. BaSO_{4}

Answer: a
33. The angular shape of none molecule $\left(\mathrm{O}_{3}\right)$
consists of
A. 1 sigma and 2 pi bonds
B. 2 sigma and 2 pi bonds
C. 1 sigma and 1 pi bonds
D. 2 sigma and 1 pi bonds

Answer: D
34. Decreasing order of bond angle of $\left(\mathrm{NO}_{2}^{\oplus}, \mathrm{NO}_{2}, \mathrm{NO}_{2}^{\ominus}\right.$ is
A. $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{+}$
B. $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}<\mathrm{NO}_{2}^{-}$
C. $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}$
D. $\mathrm{NO}_{2}^{-}<\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}$

Answer: a
35. Four diatomic species are listed in different sequence .Which of these represent the correct order of their increasing bond order?

$$
\begin{aligned}
& \text { A. } \mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+} \\
& \text {B. } \mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-} \\
& \text {C. } \mathrm{HE}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-} \\
& \text { D. } \mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}
\end{aligned}
$$

Answer: c

36. The correct of decreasing second ionisation enthalpy of $T i(22), V(23), C r(24) \quad$ and $M n(25)$ is

> A. $V>M n>C r>T i$
> B. $M n>C r>T i>V$
> C. $T i>V>C r>M n$
> D. $C r>M n>V>T i$

Answer: d
37. What is the dominant intermolecular forces or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to gas ?
A. Landon dispersion force
B. Hydrogen bonding
C. Dipole-dipole interaction
D. Covalent bonds

Answer: B

- Watch Video Solution

38. In which of the following molecular/ions
$\mathrm{BF}_{2}, \mathrm{NO}_{2}^{-}, \mathrm{NH}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ the correct atom is $s p^{2}$ hybridized?
A. $B F_{3}$ and NO_{2}^{-}
B. NO_{2}^{-}and NH_{2}^{-}
C. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
D. NO_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$

Answer: a
39. Which of the following is the strongest oxidising agent?
A. $C I_{2}$
B. F_{2}
C. $B r_{2}$
D. I_{2}

Answer: b
40. According to MO theory which of thhe following lists makes the nitrogen species in terms of increasing bond order?

$$
\begin{aligned}
& \text { A. } N_{2}^{-}<N_{2}^{2-}<N_{2} \\
& \text { B. } N_{2}^{-}<N_{2}<N_{2}^{2-} \\
& \text { C. } N_{2}^{2-}<N_{2}^{2-}<N_{2} \\
& \text { D. } N_{2}<N_{2}^{2-}<N_{2}^{-}
\end{aligned}
$$

41. In the case of alkali metals, the covalent character decreases in the order.
A. $M I>M B r>M C l>M F$ B. $M C l>M I>M B r>M F$
C. $\mathrm{MF}>\mathrm{MCl}>\mathrm{MBr}>\mathrm{MI}$
D. $M F>M C l>M I>M B r$

Answer: a
42. Which of the following oxides is not expected to react with sodium hydroxide?
A. BeO
B. $\mathrm{B}_{2} \mathrm{O}_{3}$
C. $C a O$
D. SiO_{2}

Answer: c
43. Amongst the following elements (whose electronic configuration an given below) the one having highest ionization energy is
A. $N e\left[3 s^{2} 3 p^{1}\right]$
B. $N e\left[3 s^{2} 3 p^{3}\right]$
C. $N e\left[3 s^{2} 3 p^{2}\right]$
D. $\operatorname{Ar}\left[3 d^{10} 4 s^{2} 4 p^{3}\right]$

Answer: b
44. In which one of the following species, the central atom has the tuype of hybdridiztion which is not the same as that present in other three?
A. $S F_{4}$
B. I_{3}^{-}
C. SbCl_{2}^{2-}
D. $P C l_{5}$

Answer: c
45. Which of the following species does not exist under normal condition ?
A. $B e^{2+}$
B. $B e_{2}$
C. B_{2}
D. $L i_{2}$

Answer: b
(D) Watch Video Solution
46. The correct order of increasing bond angle in the following species is

$$
\begin{aligned}
& \text { A. } \mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-} \\
& \text {B. } \mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-} \\
& \text {C. } \mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2} \\
& \text { D. } \mathrm{ClO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}
\end{aligned}
$$

Answer: d
47. In which of the following pairs of molecule/ions , the central atom has $s p^{2}$ hybridization?
A. NO_{2} and NH_{3}
B. $B F_{2}$ and NO_{2}^{-}
C. NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$
D. $B F$ and NH_{3}

Answer: b
48. Among the following $\mathrm{Ca}, \mathrm{Mg}, \mathrm{P}$ and Cl the order of increasing atomic radius is
A. $M g<C a<C I<P$

$$
\text { B. } C l<P<M g<C a
$$

C. $P<C l<C a<M g$
D. $C a<M g<P<C l$

Answer: b
49. Among the following which has the highest cation to anion size ratio ?

A. CsI

B. CsF
C. LiF
D. $N a F$

Answer: b
50. In which of the following molecule, the contral atom does not have $s p^{2}$ hybridization?
A. CH_{4}
B. $S F_{4}$
C. $B F_{4}^{-}$
D. NH_{4}

Answer: b
51. How many bridging oxygen atoms are presents in $P_{4} O_{10}$?
A. 6
B. 4
C. 2
D. 5

Answer: a
52. Some of the properies of the two species
NO_{2}^{-}and $\mathrm{H}_{3} \mathrm{O}$ are described below which one of them is correct ?
A. Dissimilar in hybridization for the central
atom with different atom
B. Isostructual with the same hybridization
for the central atom
C. Isostructural with the difference
hybridization for the central atom

D. Similar in hydridization for the central

 atom with defferent structure.Answer: a

- Watch Video Solution

53. Considering the state of hybridization of carbon atomic ,find out the molecule among the following which is linear?
A. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$ B. $\mathrm{CH}_{3}-\mathrm{C}=\mathrm{C}-\mathrm{CH}_{3}$

$$
\text { C. } \mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}=\mathrm{CH}_{2}
$$

$$
\text { D. } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

Answer: b

D Watch Video Solution

54. Which of the following compounds has the lowest melting point?
A. $C a F_{2}$
B. $C a C I_{2}$
C. $C a B r_{2}$

D. CaI_{2}

Answer: d

D Watch Video Solution

55. The correct order of increasing bond length of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$ is
A. $C-H<C-O<C-C<C=C$
B. $C-H<C=C<C-O<C-C$

$$
\begin{aligned}
& \text { C. } C-C<C=C<C-O<C-H \\
& \text { D. } C-O<C-H<C-C<C=C
\end{aligned}
$$

Answer: b

D Watch Video Solution

56. For the four successive transition elements
($\mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}$, and Co), the stability of +2 oxidation state will be there in which of the following order ?
(At. Nos. $C r=24, M n=25, F e=26, C o=27)$

$$
\begin{aligned}
& \text { A. } C r>M n>C o>F e \\
& \text { B. } M n>F e>C r>C o \\
& \text { C. } F e>M n>C o>C r \\
& \text { D. } C o>M n>F e>C r
\end{aligned}
$$

Answer: b

D Watch Video Solution

57. Which of the two lons from the list given have the geometry that is explained by the

$\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-} \mathrm{NH}_{4}^{+} \mathrm{SCN}^{-}$?

A. NO_{2}^{-}and NH_{2}^{-}
B. NO_{2}^{-}and NO_{3}^{-}
C. NH_{4}^{+}and NO_{3}^{-}
D. SCN^{-}and NH_{2}

Answer: b

D Watch Video Solution
58. Which of the following has the minimum bond length ?
A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: B
59. Which of the following pairs is isostractural
(i.e having the same shape and hybridization?
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.N H_{4}^{+}\right]$
C. $\left[B C l_{3}\right.$ and $\left.B r C l_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: b
60. Which of the following species contains
three bond pair and one lone pair around the central atom?
A. NH_{2}^{-}
B. $P C l_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $B F_{3}$

Answer: b
(Watch Video Solution
61. The pair of species with the same bond order is :

A. NO,CO

$$
\text { B. } N_{2}, O_{2}
$$

C. O_{2}^{2-}, B_{2}
D. $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$

Answer: C

62. The correct order of bond strength is :
A. O_{2}^{2-}
B. O_{2}
C. O_{2}^{+}
D. O_{2}^{-}

Answer: D

- Watch Video Solution

63. Identify the wrong statement in the following ?
A. Atomic radius of the element increases as
one moves down the first group of the
periodic table
B. Atomic radius of the element decreases as
one moves across from left to right in the

2nd periodic table
C. Atomic isoelectronic species the smaller
the positive charge on the cation, the

smaller is the ionic radius

D. Amongst isoelectronic species, the

 greater the negative charge on the anion, the larger is the ionic radius.
Answer: c

D Watch Video Solution

64. In the conversion of $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{-}$
electron enter in which molecular orbital?
A. π^{*} orbital
B. π orbital
C. σ^{*} orbital
D. σ orbital

Answer: A

D Watch Video Solution

65. Which one of the following does not correctly represent the correct order of the property indicated against it ?
A. $T i<V<C r<M n$: increasing number of oxidation states

$$
\text { B. } T i^{3+}<V^{3+}<C r^{3+}<M n^{3+}:
$$

increasing magnetive moment
C. $T i<V<C r<M n$: increasing melting
points
D. $T i<V<M n<C r$: increasing \quad 2nd
ionization enthalpy.

Answer: c

66. Four diatomic species are listed in different
sequence .Which of these represent the correct order of their increasing bond order?

$$
\begin{aligned}
& \text { A. } \mathrm{NO}<\mathrm{O}_{2}^{-}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+} \\
& \text {B. } \mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+} \\
& \text {C. } \mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO} \\
& \text { D. } \mathrm{He} e^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}
\end{aligned}
$$

Answer: D

67. Which of the following is electron deficient ?
A. $\left(\mathrm{SiH}_{3}\right)_{2}$
B. $\left(\mathrm{BH}_{3}\right)_{2}$
C. PH_{3}
D. $\left(\mathrm{CH}_{3}\right)_{2}$

Answer: b
68. Which one of the following molecules contains no π-bond?
A. $\mathrm{H}_{2} \mathrm{O}$
B. SO_{2}
C. NO_{2}
D. CO_{2}

Answer: a
69. Which of the following is a polar moleule ?
A. $S F_{4}$
B. $S i F_{4}$
C. XeF_{4}
D. $B F_{3}$

Answer: a

- Watch Video Solution

70. Which of the following is paramagnertic ?
A. O_{2}^{-}
B. $C N^{-}$
C. NO^{+}
D. $C O$

Answer: a

- Watch Video Solution

71. $X e F_{2}$ is isostructure with
A. $I C I_{2}^{-}$
B. $S b C I_{3}$
C. $B a C I_{2}$
D. $T e F_{2}$

Answer: a

D Watch Video Solution

72. Dipole-induced dipole interaction are present in which of the following pairs
A. $C I_{2}$ and $C C I_{4}$
B. HCl and He atoms

C. SiF_{4} and He atoms

D. $\mathrm{H}_{2} \mathrm{O}$ and alcohol

Answer: b

- Watch Video Solution

73. $B e^{2+}$ is isoelectronic with which of the following ions ?
A. H^{+}
B. $L i^{+}$
C. $N a^{+}$
D. $M g^{2+}$

Answer: b

D Watch Video Solution

74. Which of the following molecules has the maximum dipole moment?
A. CO_{2}
B. CH_{4}
C. NH_{3}
D. $N F_{3}$

Answer: c

D Watch Video Solution

75. Which of the following species has plane tringular shape?
A. N_{3}^{-}
B. NO_{3}^{-}
C. NO_{2}^{-}
D. CO_{2}

Answer: b

D Watch Video Solution

76. The corrent bond order in the following species is

$$
\text { A. } O_{2}^{2+}<O_{2}^{-}<O_{2}^{+}
$$

$$
\text { B. } O_{2}^{+}<O_{2}^{-}<O_{2}^{2+}
$$

$$
\text { C. } O_{2}^{-}<O_{2}^{+}<O_{2}^{2+}
$$

$$
\text { D. } O_{2}^{2+}<O_{2}^{+}<O_{2}^{-}
$$

Answer: c

D Watch Video Solution

77. The correct order of bond strength is :
A. $O_{2}^{-}<O_{2}<O_{2}^{+}$
B. $O_{2}^{-}>O_{2}>O_{2}^{+}$

$$
\begin{aligned}
& \text { C. } O_{2}^{-}<O_{2}>_{2}^{+} \\
& \text {D. } O_{2}^{-}>O_{2}>O_{2}^{+}
\end{aligned}
$$

Answer: a

D Watch Video Solution

78. The total number of π bond electrons in the
following structure is

A. 12

B. 16

C. 4
D. 8

Answer: d

D Watch Video Solution

79. Which of the following species contains equal number of pi and pi bonds?
A. $(C N)_{2}$
B. $\mathrm{CH}_{2}(\mathrm{CN})_{2}$
C. HCO_{3}^{-}
D. XeO_{4}

Answer: d

Watch Video Solution

80. Bond order of O_{2}, O_{2}^{-}and O_{2}^{2-} is in order
A. $O_{2}>O_{2}^{+}>O_{2}^{2-}>O_{2}^{-}$

$$
\begin{aligned}
& \text { B. } O_{2}^{-}>O_{2}^{2-}>O_{2}^{+}>O_{2} \\
& \text { C. } O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-} \\
& \text { D. } O_{2}^{2-}>O_{2}^{-}>O_{2}>O_{2}^{+}
\end{aligned}
$$

Answer: c

D Watch Video Solution

81. In which of the following pairs, both the species are not isostractural ?
A. $\mathrm{NH}_{3}, \mathrm{PH}_{3}$

B. $\mathrm{XeF}_{4}, \mathrm{XeO}_{4}$

C. $S I C l_{4}, P C l_{4}$
D. Diamond, silicon carbide

Answer: b

D Watch Video Solution

82. Predicted the correct order among the
following
A. Ione pair -line pair gt bond pair - bond gt
lone pair - lone pair
B. Ione pair -lone pair gt lone pair - bond pair gt bond pair - bond pair
C. Ione pair -lone pair gt bond pair - bond pair gt lone pair - bone pair

D. bond pair -bond pair gt lone pair - bond

pair gt lone pair - lone pair

Answer: b

83. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ which of the given statement is false?
A. The $H-C-H$ bond angle in $C H_{4}$ is
larger than the $H-N-H$ bond angle is NH_{4}
B. The $H-C-H$ bond angle in $C H_{4}$ is
the $H-N-H$ bond angle is $N H_{4}$ and
the $H-O-H$ bond in $H_{2} O$ are all greater than 90°
C. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is
larger than the $H-C-H$ bond angle is
CH_{4}
D. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is
smaller than the $H-N-H$ bond angle
is NH_{3}

Answer: c
84. Which of the following pairs of compound is isoelectronic and isostructure?
A. $T e I_{2}, X e F_{2}$
B. $I B r_{2}, X e F_{2}$
C. $I F_{3}, X e F_{2}$
D. $B e C l_{2}, X e F_{2}$

Answer: b
85. The species, having bonds angle of 120° is
A. $C I F_{3}$
B. $N C l_{3}$
C. $B C l_{3}$
D. PH_{3}

Answer: c

86. Which of the following pairs of species have the same bond order ?

A. O_{2}, NO^{+}

B. $C N^{-}, C O$
C. N_{2}, O_{3}^{-}

$$
\text { D. } C O, N O
$$

Answer: d

87. Magnesium reacts with an element (X) is
forms a ionic compound .If the ground state electron configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{2}$, the simple formula for the compound is
A. $M g_{2}, X_{3}$
B. $M g X_{2}$
C. $M g_{2} X$
D. $M g_{3} X_{2}$

Answer: d
88. Consider the following species
$C N^{-}, C N^{-}, N O$ and CN`.

Which one of these will hqave the highest bond order?
A. $N O$
B. $C N^{-}$
C. $C N^{+}$
D. $C N$

- Watch Video Solution

89. The number of lone pairs of electrons present on the central atom of $C I F_{3}$ is
A. one
B. two
C. four
D. three

Answer: b

AllMS Questions

1. Which of the following is an electrovalent
linkage?
A. CH_{4}
B. $M g C l_{2}$
C. $S i C l_{4}$
D. $B F_{3}$
2. Which one is the electron deficient compound ?
A. ICI
B. NH_{3}
C. BCl_{3}
D. PCl_{3}

Answer: c

3. Which of the most convalent ?

A. $C-O$
B. $C-B r$
C. $C-S$
D. $C-F$

Answer: c

- Watch Video Solution

4. The number of electrons shared by each outermost shell of N_{2} is
A. 2
B. 3
C. 4
D. 5

Answer: b

D
 Watch Video Solution

5. Which of the following has covalent bond
A. $N a_{2} S$
B. $A l C l_{3}$
C. NaH
D. $M g C l_{2}$

Answer: d

Watch Video Solution

6. Strongest bond is
A. $C-C$

$$
\text { B. } C-H
$$

C. $C-N$
D. $C-O$

Answer: c

Watch Video Solution

7. The compound containing coordinate bond is

A. O_{3}
B. SO_{3}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$

D. All of these

Answer: d

D Watch Video Solution

8. Which molecules has zero dipole moment ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. CO_{2}
C. $H F$

D. $H B r$

Answer: b

D Watch Video Solution

9. Which bond angle θ would result in the

 maximum dipole moment for the triatomic $Y X Y ?$A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$

```
D. \(\theta=180^{\circ}\)
```


Answer: a

- Watch Video Solution

10. Which of the following is the most polar?

A. $C C I_{4}$
B. CHCl_{3}
C. $\mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{Cl}$

Answer: c

D Watch Video Solution

11. Which of the following has zero dipole moment?
A. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
B. CH_{4}
C. NH_{3}
D. PH_{3}

Answer: b

- Watch Video Solution

12. If the electron pair forming a bond between
two atoms and B is not in the center then the bond is?
A. single bond
B. polar bond
C. none- polar bond
D. $\pi-$ bond

Answer: d

D Watch Video Solution

13. Which of the following is a polar compound ?
A. $H F$
B. HCl
C. HNO_{3}
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: a

D Watch Video Solution

14. In which of the following there exists a $p \pi-p \pi$ bonding
A. Diamond
B. Graphite
C. Dimenthyl amine
D. Trisilylamine

Answer: D

D Watch Video Solution

15. Which of the following statement is not
correct ?
A. Hybridization is the mixing of atomic orbitals period their combiting into molecules
B. $s p^{2}$ hydrid orbital are formed from two p atom orbital and one s orbital
C. $d^{2} s p^{2}$ hybrid orbital are direction towards
the comens of a regular octredron
D. $d s p^{3}$ hybrid orbitals are all at 90° to one another

Answer: d

D Watch Video Solution

16. Noble gases have compleately filled valance shall i.e. $m^{2} s p^{2}$ exceps He (i.e) .Noble gases are monoomic under normal conductions .Law
bolding point of the ligher noble gases are due to weak van dor wads forces between the atoms and abance of any interature imaractions $X e$ reacts with F_{2} so give a sourceof fouoxide mently $\mathrm{XeF}_{2}, \mathrm{XeF}_{4}, \mathrm{XeF}_{4}, \mathrm{XeF}_{3}$ on complete hydrolyes gives XeFe_{3},

Structure of XeF_{4} is
A. linear
B. pyramidal
C. tetrahedral
D. squre planner

Answer: d

D Watch Video Solution

17. The molecule of $C O_{2}$ has 180° bond angle it one be explained on the basic of
A. $s p^{3}$ hydridisation
B. $s p^{2}$ hydridisation
C. $s p$ hydridisation
D. $d^{2} s p^{3}$ hydridisation

Answer: c

D Watch Video Solution

18. Which of the following compounds the one having linear structure is
A. NH_{2}
B. CH_{4}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: c

D Watch Video Solution

19. The isoelectronic pair is
A. $\mathrm{Cl}_{2} \mathrm{O}, I C l_{2}$
B. $\mathrm{ICl}_{2} \mathrm{ClO}_{2}$
C. $I F_{2}^{+} I_{3}^{-}$
D. $\mathrm{ClO}_{2}^{-} \mathrm{O}_{2}, \mathrm{CIF}_{2}^{+}$

Answer: d

- Watch Video Solution

20. Bond order of O_{2}, O_{2}^{-}and O_{2}^{2-} is in order
A. O_{2}
B. O_{2}^{-1}
C. O_{2}^{+1}
D. O_{2}^{-2}

Answer: c

- Watch Video Solution

21. Which of the following does not exist on the basis of molecule orbital theory?
A. H_{2}^{+}
B. $H e_{2}^{+}$
C. $H e_{2}$
D. $L i_{2}$

Answer: C
22. Which of the following species have maximum number of unpaired electrons?
A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: a
23. Give reason in one or two sentences form
the following: 'o-nitrophenol is steam volatile,
whereas p-nitrophenol is not'.
A. Resonance
B. Hyperconjugation
C. Hydrogen bonding
D. Streric hindrance

Answer: C
24. Water has high heat of vaporisation due to ?
A. covelent bonding
B. H -bonding
C. ionic bonding
D. none of the above

Answer: b

- Watch Video Solution

25. Why is ice less denser than water and what kind of attractive force must be overcome to melt ice?
A. hydrogen bonding interactions
B. dipole- dipole interactions
C. dipole-induced dipole interctions
D. induced
dipole-induced
dipole
interactions

Answer: A
26. Ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ has higher boiling point than dimethyl ether $\left(\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}\right)$
although the molecular weight of both are same .
A. hydrogen bonding in ethanol
B. hydrogen bonding in dimeyl ether
C. CH_{3} group in ethanol
D. CH_{3} group in dimethyl ether

(D) Watch Video Solution

27. Which one is the highest melting halide ?
A. NaCl
B. NaBr
C. NaF

D. NaI

Answer: C

28. In the formation of a molecule by an atom ?

A. attractive forces operate
B. repulsive forces operate
C. both attractive and repulsive forces
operate
D. none of these

Answer: C
29. Which of the following exhibits the weakest intermolecular forces?
A. He
B. HCl
C. NH_{3}
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: a
30. $\mathrm{H}_{2} \mathrm{O}$ is depolar, wheras $B e F_{2}$ is not. it because
A. electronegativity of F is greater than that of O

B. $\mathrm{H}_{2} \mathrm{O}$ involves H -bonding, wheras BeF_{2} is

a discrete molecule
C. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
D. $\mathrm{H}_{2} \mathrm{O}$ is linear and BeF_{2} is angular.

Answer: C
31. Which is incorrect regarding S and P mixing (along Z axis.) ?
A. Nodal plane(s) present in ABMO
B. Nodel plane is absent in BMO
C. MO formed may have highest energy than
parent AO
D. $M O$ formed are aysmmetric

Answer: B

Assertion - Reasoning Questions

1. Assertion :Sulphuric acid is more visous than
water.

Reason :Concentrated Sulphuric acid has a greater effinity for water.
A. If both assertion and reason are true and
the reason is a true explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: b

- Watch Video Solution

2. Assertion : The dipole moment helps to predict whether a molecule is polar or non-
polar.

Reason : The dipole moment helps to predict geometry of molecule.
A. If both assertion and reason are true and
the reason is a true explanation of the
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: a

D Watch Video Solution

3. Assertion : Water is a good solvent for ionic
compounds but poor one for covalent compounds.

Reason :Hydrogen energy of ions realeases
sufficient energy to overcome lattice energy and
break hydrogen bonds in water, white covalent bonded compound interact so weakly that even
van der walls force between molecule of convalent compounds cannot be broken .
A. If both assertion and reason are true and
the reason is a true explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: a

D Watch Video Solution

4. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms .
A. If both assertion and reason are true and
the reason is a true explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: a
5. Assertion : All F - S - F angle in $S F_{4}$ are greater than 90° but less than 180°.

Reason :The lone pair -bond pair repulsion is
weaker than bond pair -bond pair repulsion
A. If both assertion and reason are true and
the reason is a true explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. if assertion is false but reason is true.

Answer: c

D Watch Video Solution

6. Assertion : Both $\pi\left(2 p_{x}\right)$ and $\pi *\left(2 p_{x}\right)$ MO's
have one modal plane each

Reason :All Mo's formed by side way overlapping
of $2 p$-orbital have one model palne
A. If both assertion and reason are true and
the reason is a true explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: B

Section D - Chapter End Test

1. if assertion is false but reason is true.
A. Changes from $s p^{3}$ to $s p^{2}$
B. Remain unchanged
C. Changes from $s p^{3}$ to $s p^{3} d$
D. Changes from $s p^{3}$ to $s p$

Answer: b
2. $P C I_{5}$ exists but $N C I_{5}$ does not because
A. Nitrogen has no vacant 2-d orbital
B. NCl_{3} is unstable
C. N -atom is much smaller than P
D. Nitrogen is highly inert

Answer: A

(D)
3. Among the following species, identify the isostuctural pairs
$\mathrm{NF}_{3} . \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}, \mathrm{HN}_{3}$
A. $\left[N F_{3}, N O_{3}^{-}\right]$and $\left[B F_{3} H_{3} O^{+}\right]$
B. $\left[N F_{3}, H N_{3}\right]$ and $\left[N O_{3}^{-}, B F_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{~N}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{NO}_{3}^{-}, B F_{3}\right]$
D. $\left[N F_{3}, H_{3} O^{+}\right]$and $\left[H N_{3}^{--}, B F_{3}\right]$

Answer: C

D Watch Video Solution

4. The bond order in CO_{2}^{2-} ion between C-O is

A. Zero
B. 0.88
C. 1.33
D. 2

Answer: c

- Watch Video Solution

5. The order of dipole moment of the following molecules is
A. $\mathrm{CHCl}_{3}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CHCl}_{3}>\mathrm{CCl}_{4}$
C. $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CHCl}_{3}>\mathrm{CCl}_{4}$
D. $\mathrm{CH}_{2} \mathrm{Cl}_{2}>\mathrm{CHCl}_{3}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CCl}_{4}$

Answer: d
6. Which of the following resonating structure of $\mathrm{N}_{2} \mathrm{O}$ is the most contributing ?

$$
\text { A. } N \equiv N-O
$$

$$
\text { B. } N-N \equiv O
$$

C. $N=N-O$

$$
\text { D. } N-N=O
$$

Answer: a

7. Number of H-bonds formed by a water molecule is:
A. 4
B. 3
C. 2
D. 1

Answer: a
8. The correct order of decreasing $C-O$ bond length of (1) $\mathrm{CO},(I I) \mathrm{CO}_{3}^{2-}(I I I) \mathrm{CO}_{2}$ is .

$$
\text { A. } \mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}
$$

$$
\text { B. } \mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}
$$

$$
\text { C. } \mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}
$$

$$
\text { D. } C O<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}
$$

Answer: d

9. In which of the following the central atom does not use $s p^{2}$ hybrid orbitals in its bonding
A. $B e F_{3}^{-}$
B. OH_{3}^{+}
C. NH_{2}^{-}
D. $N F_{3}$

Answer: a
10. The number is $S-S$ bonds in sulphar trioxide times $S_{3} O_{9}$ is
A. Three
B. Two
C. One
D. Zero

Answer: d
11. Bonds presents in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is
A. Electrovalent and covalent
B. Electrovalent and coordinate
C. Electrovalent, covalent and coordinate
D. Covalent and coordinate

Answer: c

- Watch Video Solution

12. From the following which group of elements easily forms cation
A. $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
B. $\mathrm{Li}, \mathrm{Na}, \mathrm{K}$
C. O,S,Se
D. $N, P, A s$

Answer: b
13. The high folowing points and insolution in orgaints solvents of sulphanilic acid are due to itsstructure
A. Simple ionic
B. Bipolar ionic
C. Cubic
D. Hexagonal

Answer: b
14. On analysis ,a certain compound was found to cootains iodine and oxygen in the ratio of $254 g$ of iodinite and $80 g$ of oxygen .The atomic mass of oidine is 127 and the of oxygen is 16

Which of the following is the formation of the compound ?
A. 10
B. $I_{2} O$
C. $I_{5} O_{2}$
D. $I_{2} O_{5}$

Answer: d

D Watch Video Solution

15. The acid having $\mathrm{O}-\mathrm{O}$ bond is
A. $H_{2} S_{2} O_{3}$
B. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{6}$
C. $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
D. $H_{2} S_{4} O_{6}$

Answer: c
16. Which of the following does not have a coordinate bond ?
A. SO_{2}
B. HNO_{3}
C. $\mathrm{H}_{2} \mathrm{SO}_{3}$
D. HNO_{2}

Answer: d
17. Which bond angle θ would result in the maximum dipole moment for the triatomic $Y X Y ?$
A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$
C. $\theta=150^{\circ}$
D. $\theta=180^{\circ}$

Answer: a
18. In a polar molecule, the ionic charge is
4.8×10^{-10} esu. If the interatomic distance is
$1 \AA$ unit, then the dipole moment is
A. 41.8 debye
B. 4.18 debye
C. 4.8 debye
D. 0.48 debye

Answer: c
19. If the electron pair forming a bond between
two atoms and B is not in the center then the bond is?
A. Single bond
B. Polar bond
C. None- polar bond
D. $\pi-$ bond

Answer: b
20. Which of the following have both polar and non-polar bonds?
A. $C_{2} H_{6}$
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. HCl
D. AlCl_{3}

Answer: b
21. In which of the following there exists a $p \pi-p \pi$ bonding

A. Diamond

B. Graphite
C. Dimethyl amine
D. Trisilylamine

Answer: d

22. Number of bond in SO_{2}

A. Two σ and two π
B. Two σ and one π
C. Two σ, two π and one lone pair
D. None of these

Answer: c

- Watch Video Solution

23. As the p-charcter increases the bond angle in in hydrid orbital formed by a and atomic orbitals
A. Decreases
B. Increases
C. Doubles
D. Remains unchanged

Answer: a

24. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x^{2}}, d_{x z}$
B. $d_{x y}, d_{y z}$
C. $d_{x^{2}-y^{2}}, d_{z^{2}}$
D. $d_{x z}, d_{x^{2}-y^{2}}$

Answer: c
25. Among the compounds
$B F_{3}, N C l_{3}, H_{2} S, S F_{4}$ and $B e l_{2}$. Identify the ones in which the central atom has the same type of hybridisation.
A. $B F_{3}$ and $N C l_{3}$
B. $\mathrm{H}_{2} \mathrm{~S}$ and BeCl_{2}
C. NCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$
D. NCl_{3} and BeCl_{2}

Answer: C

26. The molecule of CO_{2} has 180° bond angle it one be explained on the basic of
A. $s p^{3}$ hybrisation
B. $s p^{2}$ hybridisation
C. $s p$ hybridisation
D. $d^{2} s p^{3}$ hybridisation

Answer: c
27. $\mathrm{H}_{2} \mathrm{O}$ is depolar, wheras $\mathrm{Be} F_{2}$ is not. it because
A. $\mathrm{H}_{2} \mathrm{O}$ linear and BeF_{2} is angular
B. $\mathrm{H}_{2} \mathrm{O}$ is angular and BeF_{2} is linear
C. The electronegativity of F is greater than
that of O
D. $\mathrm{H}_{2} \mathrm{O}$ involves hydrogen bonding wheras
$B e F_{2}$ is a discreate molecule

Answer: b
28. Assertion : Crystals of hydrated calcium sulphate gypsure $\left(\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ are soft easilly eleaved.

Reason :Crystals anldrous calcium sulphate (anydride: CaSO_{4}) are hard and very difficult to cleave.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: b

D
 Watch Video Solution

29. Assertion: Fluorine $\left(F e_{2}\right)$ is gas white iodine
$\left(I_{2}\right)$ is solid at room temperature.

Reason :A large molecule or heavy atom is more polarizable and has larger dispersion forces because it has many electrons some of which are less hightly hekld and are farther from the nucleus.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
C. If assertion is true but reason is false.

D. if assertion is false but reason is true.

Answer: a

D Watch Video Solution

30. Statement : The molecule cis-1chloropropene is more polar than trans-1chloropropene .

Explanation : The magnitude of resultant vector in chloropropene is non-zero.
A. If both assertion and reason are true and
the reason is the correct explanation of
the assertion.
B. If both assertion and reason are true and
the reason is the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. if assertion is false but reason is true.

Answer: d

