びdoubtnut

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

IONIC EQUILIBIUM

Type Of Acids And Bases And Ostwid'S Dilution Law

1. Dissociation constants of two acids $H A$ and $H B$ are
respectively 4×10^{-10} and 1.8×10^{-5}, whose $p H$ value
will be higher for a given molarity:
A. $H A$
B. $H B$
C. Both same
D. Can't say

Answer: A

- Watch Video Solution

2. A monoprotic acid in $1.00 M$ solution is 0.01% ionised.

The dissociation constant of this acid is
A. 1×10^{-8}
B. 1×10^{-4}
C. 1×10^{-6}
D. 10^{-5}

Answer: A

- Watch Video Solution

3. The dissociation constants of two acids $H A_{1}$ and $H A_{2}$
are 3.0×10^{-4} and 1.8×10^{-5} respectively. The relative strengths of the acids will be approximately
A. 1: 4
B. $4: 1$
C. $1: 16$
D. $16: 1$

Answer: B
4. Which of the following can act both as Bronsted acid and as Bronsted base ?
A. Cl^{-}
B. HCO_{3}^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. OH^{-}

Answer: B
5. pH of water is 7.0 at $25^{\circ} \mathrm{C}$. If water is heated to $70^{\circ} \mathrm{C}$, the:
A. $p H$ will decrease and solution becomes acidic
B. $p H$ will increase
C. $p H$ will remain constant as 7
D. $p H$ will decrease but solution will be neutral

Answer: D

- Watch Video Solution

6. The equivalent conductance at infinite dilution of a weak acid such as $H F$
A. Can be determined by measurement of very dilute

$H F$ solution

B. Can be determined by extrapoltaion of measurements on dilute solutions of $\mathrm{HCl}, \mathrm{HBr}$ and HI
C. Can best be determined from measurements on dilute solutions of $\mathrm{NaF}, \mathrm{NaCl}$ and HCl
D. Is an underfined quantity

Answer: C

- Watch Video Solution

7. 100 ml of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is added to 100 ml of 0.2 MNaOH

.The resulting solution will be
A. Acidic
B. Basic
C. Neutral
D. Slightly basic

Answer: A

- Watch Video Solution

8. K_{a} for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strength of acids is:
A. $19: 1$
B. 2.3: 1
C. 1:2.1
D. $4.37: 1$

Answer: D

(Watch Video Solution

9. In
the
following
reaction
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{PO}_{4}^{3-}(a q) \Leftrightarrow \mathrm{HPO}_{4}^{-2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)$
, which are the two Bronsted bases?
A. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and PO_{4}^{3-}
B. $H P O_{4}^{2-}$ and $C_{2} O_{4}^{2-}$
C. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and HPO_{4}^{2-}
D. PO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

Answer: D

- Watch Video Solution

10. The following equilibrium is established when $\mathrm{HC} 1 \mathrm{O}_{4}$ is dissolved in weak acid $H F$,
$\mathrm{HF}+\mathrm{HClO}_{4} \Leftrightarrow \mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{~F}^{+}$
Which of the following is correct set of conjugate acid base pair?
A. HF and HClO_{4}
B. HF and ClO_{4}^{-}
C. $H F$ and $H_{2} F^{+}$
D. HClO_{4} and $\mathrm{H}_{2} \mathrm{~F}^{+}$

Answer: C

- Watch Video Solution

11. 10 ml of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ will completely neutralise

A. 10 ml of 1 MNaOH solution

B. 10 ml of 2 MNaOH solution
C. 5 ml of 2 MKOH solution
D. 5 ml of $1 \mathrm{MNa}_{2} \mathrm{CO}_{3}$ solution
12. Boric acid $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a:
A. Arrhenius acid
B. Bronsted acid
C. Lewis acid
D. All of these

Answer: C

- Watch Video Solution

13. The hydrogen ion concentration in weak acid of dissociation constant K_{a} and concentration c is nearly equal to
A. $\sqrt{K_{a} / c}$
B. c / K_{a}
C. $K_{a} c$
D. $\sqrt{K_{a} c}$

Answer: D
14. For $10^{-2}(M) H_{3} \mathrm{PO}_{3}$ solution which of the following relations is correct?
A.

$$
\left[H_{3} P O_{3}\right]+\left[H_{2} P O_{3}^{-}\right]+\left[H P O_{3}^{2-}\right]+\left[P O_{3}^{2-}\right]=10^{-2}
$$

B. $\left[\mathrm{H}_{3} \mathrm{PO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+\left[\mathrm{HPO}_{3}^{2-}\right]=10^{-2}$
C. $\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+\left[\mathrm{HPO}_{3}^{2-}\right]+\left[\mathrm{PO}_{3}^{3-}\right]=10^{-2}$
D. $\left[\mathrm{H}_{3} \mathrm{PO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+2\left[\mathrm{HPO}_{3}^{2-}\right]=10^{-2}$

Answer: B
15. When 100 ml of 1 MNaOH solution is mixed with 10 ml of $10 \mathrm{MH}_{2} \mathrm{SO}_{4}$, the resulting mixture will be
A. Acidic
B. Alkaline
C. Neutral
D. Strongly alkaline

Answer: A

- Watch Video Solution

16. What is the concentration of $A g^{+}$ion in a $1 L$ solution containing 0.02 mol of AgNO_{3} and 0.14 mol of NH_{3} ? For
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}, K_{\text {Instal }}=10^{8}$
A. $2 \times 10^{-7}(M)$
B. $10^{-8}(M)$
C. $2 \times 10^{-8}(M)$
D. $2 \times 10^{-9}(M)$

Answer: C

- Watch Video Solution

17. In a solution total concentration of M^{3+} is $2 \times 10^{-3}(M)$ and total concentration of $S C N^{-}$is $1.51 \times 10^{-3}(M)$ and free $S C N^{-}$concentration $=1 \times 10^{-5}(M)$

What is the dissociation constant of the complex $M(S C N)^{2+}$?
A. 2×10^{5}
B. 2×10^{-5}
C. 3.33×10^{5}
D. 3.33×10^{-6}

Answer: D

Watch Video Solution

18. The salt that forms neutral solution in water is
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. NaCl
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $K_{3} B O_{3}$

Answer: B

D Watch Video Solution

19. The dissociation constant of a monobasic acid which is
3.5% dissociated in $\frac{N}{20}$ solution at $20^{\circ} \mathrm{C}$ is
A. 3.5×10^{-2}
B. 5×10^{-3}
C. 6.34×10^{-5}
D. 6.75×10^{-2}

- Watch Video Solution

20. Which of the following substance is an electrolyte?
A. Chloroform
B. Benzene
C. Toluene
D. Magnesium chloride

Answer: D

D Watch Video Solution
21. The species among the following which can act as an acid and as a base is
A. HSO_{4}^{-}
B. SO_{4}^{2-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. Cl^{-}

Answer: A

- Watch Video Solution

22. The dissociation constant of weak acid $H A$ is 4.9×10^{-8}. After making the necessary approximations,
calculate $p H$ in $0.1 M$ acid.
A. 1.155
B. 2.155
C. 3.155
D. 4.155

Answer: D

- Watch Video Solution

23. The K_{a} for formic acid and acetic acid are 2×10^{-4} and 2×10^{-5} respectively. Calculate the relative strength of acids with same molar concentration
A. $\sqrt{10}$
B. $\sqrt{7}$
C. $\sqrt{8}$
D. $\sqrt{5}$

Answer: A

- Watch Video Solution

24. Which among the following is strongest acid ?
A. $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{2}$
B. $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{3}$
C. $\mathrm{H}(\mathrm{ClO}) O$
D. $\mathrm{H}(\mathrm{ClO})$

Answer: B

- Watch Video Solution

25. Calculate $p H$ of $0.002 \mathrm{NNH}_{4} \mathrm{OH}$ having 2% dissociation
A. 7.6
B. 8.6
C. 9.6
D. 10.6

Answer: C

26. What concentration of acetic acid is needed to give a hudrogen ion concentration of $3.5 \times 10^{-4} M$?
$\left(K_{a}=1.8 \times 10^{-5}\right) ?$
A. $3.5 \times 10^{-4} M$
B. $6.80 \times 10^{-3} M$
C. $4.2 \times 10^{-4} M$
D. $7.2 \times 10^{-4} M$

Answer: B
27. A solution of acetic acid is 1.0% ionised. Determine the molar concentration of acid $\left(K_{a}=1.8 \times 10^{-5}\right)$ and also the $\left[H^{+}\right]$.
A. $1.8 \times 10^{-1} M$ and $1.8 \times 10^{-3} M$
B. $0.18 \times 10^{-1} M$ and $1.8 \times 10^{-4} M$
C. $0.18 \times 10^{-2} M$ and $1.8 \times 10^{-2} M$
D. $0.18 \times 10^{-3} M$ and $1.8 \times 10^{-1} M$

Answer: A
28. $B O H$ is a weak base, molar concentration of $B O H$ that provides a $[O H]^{-}$
$1.5 \times 10^{-3} M\left[K_{b}(B O H)=1.5 \times 10^{-5} M\right]$ is
A. $0.15 M$
B. $0.1515 M$
C. $0.0015 M$
D. $1.5 \times 10^{-5} M$

Answer: A
29. Lemon juice normally has a $p H$ of 2 . If all the acid the lemon juice is citric acid and there are no citrate salts present, then what will be the citric acid concentration [Hcit] in the lemon juice? (Assume that only the first hydrogen of citric acid is important)

HCit $\Leftrightarrow H^{+}+$Cit $^{-}, K_{a}=8.4 \times 10^{-4} \mathrm{molL} L^{-1}$
A. $8.4 \times 10^{-4} M$
B. $4.2 \times 10^{-4} M$
C. $16.8 \times 10^{-4} M$
D. $11.9 \times 10^{-2} M$

Answer: D
30. Strongest conjugate base is
A. $C 1^{-}$
B. $B r^{-}$
C. F^{-}
D. I^{-}

Answer: C

- Watch Video Solution

31. $0.2 M$ solution of a weak acid $H A$ is 1% ionised $25^{\circ} C$.
K_{a} for the acid is equal to
A. $\frac{0.002 \times 0.002}{0.198}$
B. $\frac{0.02 \times 0.02}{0.18}$
C. $\frac{0.01 \times 0.01}{0.19}$
D. $\frac{0.19}{0.01 \times 0.01}$

Answer: A

- Watch Video Solution

32. An aqueous solution of aluminium sulphate would show
A. An acidic reaction
B. An neutral reaction
C. An basic reaction
D. Both acidic and basic reaction

(Watch Video Solution

33. Which of the following has highest proton affinity?
A. NH_{3}
B. PH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $H_{2} S$

Answer: A
34. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is :
A. $H P O_{4}^{2-}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}$
C. $H_{3} \mathrm{PO}_{4}$
D. PO_{4}^{3-}

Answer: A

- Watch Video Solution

35. According to Bronsted principle, an aqueous solution of HNO_{3} will contain
A. NO_{2}^{-}
B. NO_{3}^{-}
C. NO_{2}^{+}
D. NO^{+}

Answer: B

D Watch Video Solution
36. The conjugate base of OH^{-}is :
A. O_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O^{-}
D. O^{2-}

- Watch Video Solution

37. Would gaseous HCl be considered as an Arrhenius acid?
A. Yes
B. No
C. Not known
D. Gaseous HCl does not exist

Answer: B
38. The first and second dissociation constant of an acid $H_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be
A. 5.0×10^{-5}
B. 5.0×10^{15}
C. 5.0×10^{-15}
D. 0.2×10^{5}

Answer: C

- Watch Video Solution

39. An aqueous solution of sodium carbonate is alkaline because sodium carbonate is a salt of
A. Weak acid and weak base
B. Strong acid and weak base
C. Weak acid and strong base
D. Strong acid and strong base

Answer: C

- Watch Video Solution

40. Four species are listed below:
(i) HCO_{3}^{-}
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) HSO_{4}^{-}
(iv) $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
A. $i v<i i<i i i<i$
B. $i i<i i i<i<i v$
C. $i<i i i<i i<i v$
D. $i i i<i<i v<i i$

Answer: C

- Watch Video Solution

41. Ammonia gas dissolves in water to form $\mathrm{NH}_{4} \mathrm{OH}$. In this reaction water acts as
A. A conjugate base
B. A non-polar solvent
C. An acid
D. A base

Answer: C

- Watch Video Solution

42. The $p H$ of a 0.1 molar solution of the acid $H Q$ is 3 . The value of the ionisation constant, K_{a} of the acid is
A. 3×10^{-1}
B. 1×10^{-3}
C. 1×10^{-5}
D. 1×10^{-7}

Answer: C

D Watch Video Solution
43. Orthoboric acid in aqueous medium is
A. Monobasic
B. Dibasic
C. Tribasic

D. All are correct

Answer: A

- Watch Video Solution

44. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below
I. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
II. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
III. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2+}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
A. II only
B. I and $I I$
C. III only
D. I only

Answer: A

- Watch Video Solution

Ph, Pkw And Ph Mixture Of Acid And Bases

1. If the degree of ionization of water be 1.8×10^{-9} at
$298 K$. Its ionization constant will be
A. 1.8×10^{-16}
B. 1×10^{-14}
C. 1×10^{-16}
D. 1.67×10^{-14}

Answer: A

(D) Watch Video Solution

2. 10^{-2} mole of NaOH was added to 10litres of water. The $p H$ will change by
A. 4
B. 3
C. 11
D. 7

Answer: A
3. For an aqueous solution to be neutral it must have
A. $p H=7$
B. $\left[H^{+}\right]=\left[O H^{-}\right]$
C. $\left[H^{+}\right]=\sqrt{K_{w}}$
D. $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right]$

Answer: B

- Watch Video Solution

4. If an aqueous solution at $25^{\circ} \mathrm{C}$ has twice as many OH^{-} as pure water its $p O H$ will be
B. 7.307
C. 7
D. 6.98

Answer: A

- Watch Video Solution

5. The $p H$ of an aqueous solution of $0.1 M$ solution of a weak monoprotic acid which is 1% ionised is
A. 1
B. 2
C. 3
D. 11

- Watch Video Solution

6. $p H$ of a $10^{-10} M N a O H$ is nearest to
A. 10
B. 7
C. 4
D. 10

Answer: B
(Watch Video Solution
7. The following reaction takes place in the body

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} . \quad \text { If } \quad \mathrm{CO}_{2}
$$

escapes from the system
A. $p H$ decrease
B. $\left[H^{+}\right]$will decrease
C. $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ remains the same
D. forward reaction will be promoted

Answer: B
8. Equal volumes of two solutions of a strong acid having $p \mathrm{H} 3$ and pH 4 are mixed together. The pH of the resulting solution will then be equal to
A. 3.5
B. 3.26
C. 7
D. 1.0

Answer: B
9. Let K_{w} at $100^{\circ} C$ be $5.5 \times 10^{-13} M^{2}$. If an aqueous solution at this temperature has $p H=6.2$. Its nature will be
A. acidic
B. alkaline
C. neutral
D. can't say

Answer: B

- Watch Video Solution

10. $p H$ value of pure water at $0^{\circ} C$ will be?
A. Greater than 7
B. Less than 7
C. 7
D. All of these

Answer: A

- Watch Video Solution

11. If $p K_{b}$ for fluoride ion at $25^{\circ} C$ is 10.83 , the ionization constant of hydrofluroic acid in water at this temparature is
A. 1.74×10^{-5}
B. 3.52×10^{-3}
C. 6.95×10^{-4}
D. 5.38×10^{-2}

Answer: C

- Watch Video Solution

12. $10^{-6} \mathrm{MHCl}$ is diluted to 100 times. Its $p H$ is:
A. 6.0
B. 8.0
C. 6.95
D. 9.5
13. A certain weak acid has a dissociation constant 1.0×10^{-4}. The equilibrium constant for its reaction with a strong base is :
A. 1.0×10^{-4}
B. 1.0×10^{-10}
C. 1×10^{-10}
D. 1.0×10^{-14}

Answer: C

14. 10 mL of $10^{-6} \mathrm{MHCl}$ solution is mixed with $90 \mathrm{mLH}_{2} \mathrm{O}$. $p H$ will change approximately:
A. By one unit
B. By 0.3 unit
C. By 0.7 unit
D. By 0.1 unit

Answer: C

- Watch Video Solution

15. At $25^{\circ} \mathrm{CK}_{b}$ for $B O H=1.0 \times 10^{-12} \cdot 0.01 M$ solution of $B O H$ has $\left[O H^{-}\right]$:
A. $1.0 \times 10^{-6} M$
B. $1.0 \times 10^{-7} M$
C. $1.0 \times 10^{-5} M$
D. $2.0 \times 10^{-6} M$

Answer: B

D Watch Video Solution

16. Which of the following is true
A. $p K_{b}$ for $O H^{-}$is -1.74 at $25^{\circ} C$
B. The equilibrium constant for the reaction between
$H A\left(p K_{a}=4\right)$ and NaOH at $25^{\circ} \mathrm{C}$ will be equal to
10^{10}.
C. The pH of a solution containing 0.1 MHCOOH

$$
\begin{aligned}
& \left(K_{a}=1.8 \times 10^{-4}\right) \text { and } 0.1 M H O C N \\
& \left(K_{a}=3.2 \times 10^{-4}\right) \text { will be nearly }(3-\log 7) .
\end{aligned}
$$

D. all the above are correct.

Answer: C

- Watch Video Solution

17. pOH water is 7.0 at 298 K . If water is heated to 350 K , which of the following should be ture?
A. $p O H$ will decrease.
B. pOH will increase.
C. pOH will remain 7.0.
D. concentration of H^{+}ions will increase but that of OH^{-}will decrease.

Answer: A

- Watch Video Solution

18. In pure liquid of $H C O O H$, concentration of $\mathrm{HCOO}^{-}=10^{-3} \mathrm{M}$ at $27^{\circ} \mathrm{C}$. What is the self- ionisation constant $\left(\mathrm{K}=\left[\mathrm{HCOOH}^{2+}\right]\left[\mathrm{HCOO}^{-}\right]\right)$
A. 10^{-3}
B. 10^{3}
C. 10^{6}
D. 10^{-6}

- Watch Video Solution

19. At certain temperature K_{w} for water 4×10^{-14} which of the following is incorrect for pure water at the given temperature?
$\log 2=0.3$
A. $p H=6.7$ and water is acidic
B. $p H=6.7$ and water is neutral
C. $p O H=6.7$ and water is neutral
D. $p H+p O H=13.4$
20. The $p H$ of $B a(O H)_{2}$ solution is 13 . The number millimoles of $\mathrm{Ba}(\mathrm{OH})_{2}$ present in 10 ml of solution would be
A. 1.00
B. 0.50
C. 10.00
D. 15.00

Answer: B

- Watch Video Solution

21. The $p H$ of $0.01(M) K O H$ is 12 , if the temperature of the given $K O H$ solution is increased which of the following would occur?
A. Both $p H$ and $p O H$ would remain constant
B. $p H$ would be decreased but $p O H$ remains constant
C. $p H$ would be increased while $p O H$ remains constant
D. $p H$ would be increased while $p O H$ would be decreased

Answer: B

- Watch Video Solution

22. The number of S^{2-} ions present in $1 L$ of $0.1(M) H_{2} S$ solution having $\left[H^{+}\right]=0.1(M)$ is
(Given $H_{2} S \Leftrightarrow 2 H^{+}+S^{2-} K_{a}=1.1 \times 10^{-21}$)
A. 6.625×10^{3}
B. 6.625×10^{4}
C. 6.625×10^{5}
D. 6.625×10^{6}

Answer: A
23. A 50 ml solution of $p H=1$ is mixed with a 50 ml solution of $p H=2$. The $p H$ of the mixture will be nearly
A. 0.76
B. 1.26
C. 1.76
D. 2.26

Answer: B

D Watch Video Solution
24. To make a solution of $\mathrm{pH}=12$, the amount of NaOH dissolved in one litre of the solution should be
A. $0.1 g$
B. $0.2 g$
C. $0.4 g$
D. $1.2 g$

Answer: C

- Watch Video Solution

25. The $p H$ of $0.5 M$ aqueous solution of $H F$
$\left(K_{a}=2 \times 10^{-4}\right)$ is
A. 2
B. 4
C. 6

Answer: A

- Watch Video Solution

26. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5
are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
A. $3.7 \times 10^{-3} M$
B. $1.11 \times 10^{-3} M$
C. $1.11 \times 10^{-4} M$
D. $3.7 \times 10^{-4} M$

- Watch Video Solution

27. The rate constant at $25^{\circ} \mathrm{C}$ for the reaction of NH_{4}^{+} and $O H^{-}$to form $\mathrm{NH}_{4} O H$ is $4 \times 10^{10} M^{-1} \mathrm{sec}^{-1}$ and ionisation constant of aq. $N H_{3}$ is 1.8×10^{-5}. The rate constant of proton transfer to NH_{3} is
A. 1.8×10^{-5}
B. 7.2×10^{5}
C. 3.6×10^{5}
D. 4.2×10^{-5}
28. How many hydrogen ions are present in 1 ml of a solution of $p H=13$?
A. 6.02×10^{13}
B. 6.02×10^{12}
C. 6.02×10^{7}
D. 6.02×10^{5}

Answer: C

(D) Watch Video Solution
29. The $p H$ of a 0.05 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water is nearly
A. 0.05
B. 1
C. -1
D. 0

Answer: B

- Watch Video Solution

30. The $p H$ of a $0.01 M$ solution of a monobasic acid is four.

Which one of the following statement about the acid is incorrect
A. When a little $N a O H$ is added, it will form a buffer solution
B. It is a weak acid
C. Its sodium salt will be acidic
D. Its sodium salt will be basic

Answer: C

- Watch Video Solution

31. Calculate the pH of solution obtained by mixing 10 ml of 0.1 MHCl and 40 ml of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$
A. 0.3685
B. 0.4685

C. 1.3685

D. 1.4684

Answer: B

- Watch Video Solution

32. Find the $p H$ of solution prepared by mixing 25 ml of a 0.5 M solution of $\mathrm{HCl}, 10 \mathrm{ml}$ of a 0.5 M solution of NaOH and 15 ml of water
A. 0.8239
B. 1.0029
C. 1.0239
D. 1.8239

- Watch Video Solution

33. Calculate the $p H$ of a solution which contains 10 ml of 1 MHCl and 10 ml of 2 MNaOH
A. 11.7
B. 12.7
C. 13.7
D. 10.7

Answer: C

34. Calculate $p H$ of a solution whose 100 ml contains 0.2 gNaOH dissolved in it.
A. 10.699
B. 11.699
C. 12.699
D. 13.699

Answer: C

- Watch Video Solution

35. Which of the following has $p H$ is equal to near about one?
A. $100 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
B. $55 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{HCl}+44 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
c. $10 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{HCl}+90 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
D. $75 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{HCl}+25 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{NaOH}$

Answer: D

- Watch Video Solution

36. The hydrogen ion concentration of a $10^{-8} \mathrm{MHCl}$ aqueous soultion at $298 K\left(K_{w}=10^{-14}\right)$ is
A. $9.525 \times 10^{-8} M$
B. $1.0 \times 10^{-8} M$
C. $1.0 \times 10^{-6} \mathrm{M}$

D. $1.0525 \times 10^{-7} M$

Answer: D

- Watch Video Solution

37. A reaction $C a F_{2} \Leftrightarrow C a^{2+}+2 F^{-}$is at equilibrium. If the concentration of Ca^{2+} is increased four times, what will be the change in F^{-}concentration as compared to the initial concentration of F^{-}?
A. $\frac{1}{4}$ times
B. $\frac{1}{2}$ times
C. 4 times
D. 2 times

- Watch Video Solution

38. What molar concentration of ammonia will provide a
hydroxyl ion concentration of 1.5×10^{-3} ?

$$
\left(K_{b}=1.8 \times 10^{-5}\right)
$$

A. $0.125 M$
B. $0.12 M$
C. $0.13 M$
D. $0.14 M$

Answer: C
39. An acid solution of $p H=6$ is diluted 1000 times, the $p H$ of the final solution is
A. 6.99
B. 6.0
C. 3.0
D. 9.0

Answer: A
40. What will be the $p H$ of a solution formed by mixing 40 ml of 0.10 MHCl with 10 ml of 0.45 MNaOH ?
A. 12.0
B. 10.0
C. 8.0
D. 6.0

Answer: A

- Watch Video Solution

41. $2 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$
$K_{w}=1 \times 10^{-14}$ at $25^{\circ} C$. Hence, K_{a} is:
A. 1×10^{-14}
B. 5.55×10^{-13}
C. 1.8×10^{-16}
D. 1.00×10^{-7}

Answer: C

D Watch Video Solution

42. Equal volumes of two soultion, one having pH 6 and the other having $p H 4$ are mixed. The $p H$ of the resulting solution would be
A. 5.7
B. 4.3
C. 5.0
D. 5.5

Answer: B

- Watch Video Solution

43. A solution is prepared by dissolving 5.6 g of KOH per
litre of solution. pOH of the solution would be
A. $10^{-0.1}$
B. 10^{-1}
C. 1
D. 13

Answer: C

(Watch Video Solution

44. $\left[O H^{-}\right]$in a solution is $1 \mathrm{molL} L^{-1}$. The $p H$ of the solution is
A. 1
B. 0
C. 14
D. 10^{-14}

Answer: C

45. If $K_{a}=10^{-5}$ for a weak acid, then $p K_{b}$ for its conjugate base would be
A. 10^{-10}
B. 9
C. 10^{-9}
D. 5

Answer: B

- Watch Video Solution

46. The dissociation constant of an acid is 1×10^{-5}. The $p H$ of its $0.1 M$ solution will be approximately
A. 6
B. 4
C. 3
D. 5

Answer: C

D Watch Video Solution
47. For $\mathrm{NH}_{3}, K_{b}=1.8 \times 10^{-5} . K_{a}$ for NH_{4}^{+}would be
A. 1.8×10^{5}
B. 5.56×10^{5}
C. 1.8×10^{10}

```
D. \(5.56 \times 10^{-10}\)
```


Answer: D

- Watch Video Solution

48. A solution of $H C l$ contains $0.1920 g$ of an acid in $0.5 l i t r e$ of a solution. The degree of dissociation is 95%. The pH of the solution is
A. 4.0
B. 2.0
C. 2.192
D. 1.92

(Watch Video Solution

49. $10^{-6} \mathrm{MNaOH}$ is diluted by 100 times. The $p H$ of diluted base is
A. Between 6 and 7
B. Between 10 and 11
C. Between 7 and 8
D. Between 5 and 6

Answer: C

50. Which statement is not true?
A. $p H$ of $1 \times 10^{8} \mathrm{MHCl}$ is 8
B. 96500 coulomb deposits $1 g$ equivalent of copper
C. Conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is HPO_{4}^{2-}
D. $p H+p O h=14$ for all aqueous solution

Answer: A

- Watch Video Solution

51. When rain is accompained by a thunderstorm, the collected rain water will have a $p H$:
A. Influenced by occurrence of thunder storm
B. Depends upon the amount of dust in water
C. Slightly lower than that of rain water without thunderstorm
D. Slightly higher than that when thunderstorm is not there

Answer: C

- Watch Video Solution

52. Hydrogen ion concentration in mol / L in a solution of $p H=5.4$ will be:
A. 3.98×10^{8}
B. 3.88×10^{6}
C. 3.68×10^{8}
D. 3.98×10^{-6}

Answer: D

- Watch Video Solution

53. The $p K_{a}$ of a weak acid, $H A$, is 4.80 . The $p K_{b}$ of a weak base, $B O H$, is 4.78 . The $p H$ of an aqueous solution of the corresponding salt, $B A$, will be:
A. 8.58
B. 4.79
C. 7.01
D. 9.22

- Watch Video Solution

54. How many litres of water must be added to $1 L$ of an aqueous solution of $H C l$ with a $p H$ of 1 to create an aqueous solution with $p H$ of 2 ?
A. $0.1 L$
B. 0.9 L
C. $2.0 L$
D. 9.0 L

Answer: D
55. An acid $H A$ ionizes as $H A \Leftrightarrow H^{+}+A^{-}$The $p H$ of
$1.0 M$ solution is 5 . Its dissociation constant would be
A. 1×10^{-10}
B. 5
C. 5×10^{-8}
D. 1×10^{-5}

Answer: A

Salt Hydrolysis

1. If K_{h} (hydrolysis constant) for anilinium ion is $2.4 \times 10^{-5} M$, then K_{b} for aniline will be
A. 4.1×10^{10}
B. 4.1×10^{-10}
C. 2.4×10^{9}
D. 2.4×10^{-19}

Answer: B

D Watch Video Solution

2. The aqueous solution of FeCl_{3} is acidic due to
A. Acidic impurities
B. Ionisation
C. Hydrolysis
D. Dissociation

Answer: C

- Watch Video Solution

3. The aqueous solution of potash alum is acidic due to hydrolysis of
A. K^{+}
B. $A l^{3+}$
C. SO_{4}^{--}
D. presence of acid in its crystal as impurity

Answer: B

(Watch Video Solution

4. Which is least soluble in water?
A. AgCl
B. $A g F$
C. $A g l$
D. $A g_{2} S$

Answer: D
(Watch Video Solution
5. A white salt is readily soluble in water and gives a colourless solution with a $p H$ of about 9 . The salt would be
A. $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. CaCO_{3}

Answer: B

D Watch Video Solution
6. If acetic acid mixed with sodium acetate, then H^{+}ion concentration will be
A. Increased
B. Decreased
C. Remains unchanged
D. $p H$ decreased

Answer: B

- Watch Video Solution

7. $p H$ for the solution of salt undergoing anionic hydrolysis
(say $\mathrm{CH}_{3} \mathrm{COONa}$) is given by:
A. $p H=1 / 2\left[p K_{w}+p K_{a}+\log C\right]$
B. $p H=1 / 2\left[p K_{w}+p K_{a}-\log C\right]$
C. $p H=1 / 2\left[p K_{w}+p K_{b}-\log C\right]$

D. None of these

Answer: A

- Watch Video Solution

8. An aqueous solution of sodium carbonate has a $p H$ greater than 7 because
A. It contains more carbonate ions than $\mathrm{H}_{2} \mathrm{O}$ molecules
B. It cantains more hydroxide ions that carbonate ions
C. $N a^{+}$ions react with water
D. Carbonate ions react with $\mathrm{H}_{2} \mathrm{O}$
9. Which of the following salts when dissolved in water with get hydrolysed?
A. NaCl
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. KCl
D. $\mathrm{Na}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

10. $p H$ of $0.01 M H S^{-}$will be:
A. $p H=7+\frac{p K_{a}}{2}+\frac{\log C}{2}$
B. $p H=7-\frac{p K_{a}}{2}+\frac{\log C}{2}$
C. $p H=7+\frac{p K_{1}+p K_{2}}{2}$
D. $p H=7+\frac{\left(p K_{a}+p K_{b}\right)}{2}$

Answer: A

- Watch Video Solution

11. An aqueous solution of $\mathrm{CH}_{3} \mathrm{COONa}$ will be
A. Acidic
B. alkaline
C. neutral

D. None of these

Answer: B

- Watch Video Solution

12. In which of the following salt hydrolysis takes place
A. KCl
B. NaNO_{3}
C. $\mathrm{CH}_{3} \mathrm{COOK}$
D. $K_{2} S O_{4}$

Answer: C
13. When 0.1 m mole of solid NaOH is added in 1 L of $0.1 M N H_{3}(a q)$ then which statement is going to be wrong?

$$
\left(K_{b}=2 \times 10^{-5}, \log 2=0.3\right)
$$

A. degree of dissociation of NH_{3} approaches to zero.
B. change in $p H$ would be 1.85
C. concentration of $\left[\mathrm{Na}^{+}\right]=0.1 \mathrm{M},\left[\mathrm{NH}_{3}\right]=0.1 \mathrm{M}$,

$$
\left[O H^{-}\right]=0.2 M
$$

D. on addition of $\mathrm{OH}^{-}, \mathrm{K}_{b}$ of NH_{3} does not changes

Answer: C

14. Hydrolysis of sodium acetate will give
A. Acidic solution
B. Basic solution
C. Neutral solution
D. Normal solution

Answer: B

- Watch Video Solution

15. From separate solutions of sodium salts, $N a W, N a X$,
$N a Y$ and $N a Z$ have $p H 7.0,9.0,10.0$ and 11.0 respectively.
When each solution was $0.1 M$, the strongest acid is:
A. $H W$
B. $H X$
c. $H Y$
D. $H Z$

Answer: A

- Watch Video Solution

16. Which is the correct alternate for hydrolysis constant of
$\mathrm{NH}_{4} \mathrm{CN}$?
A. $\sqrt{\frac{K_{w}}{K_{a}}}$
B. $\frac{K_{w}}{K_{a} \times K_{b}}$
C. $\sqrt{\frac{K_{b}}{c}}$
D. $\frac{K_{a}}{K_{b}}$

Answer: B

- Watch Video Solution

17. Which one of the following salt is most acidic in water?
A. $N i C l_{2}$
B. $B e C l_{2}$
C. FeCl_{3}
D. $A l C l_{3}$
18. Which of the following aqueous solution will have a $p H$ less than ${ }^{`} 7.0$?
A. KNO_{3}
B. NaOH
C. FeCl_{3}
D. $N a C N$

Answer: C
19. Hydrolysis constant for a salt of weak acid and weak base would be
A. $K_{h}=\frac{K_{w}}{K_{a}}$
B. $K_{h}=\frac{K_{w}}{K_{b}}$
C. $K_{h}=\frac{K_{w}}{K_{a} K_{b}}$
D. None of these

Answer: C

- Watch Video Solution

20. Which of salt will give basic solution on hydrolysis?
A. $K C N$
B. KCl
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$

Answer: A

- Watch Video Solution

21. Which salt can be classified as an acid salt?
A. $N a_{2} S O_{4}$
B. BiOCl
C. $\mathrm{Pb}(\mathrm{OH}) \mathrm{Cl}$
D. $\mathrm{Na}_{2} \mathrm{HPO}_{4}$

- Watch Video Solution

22. $H A$ is a weak acid and $B O H$ is a weak base. For which of the following salts the extent of hydrolysis is independent of the concentration of the salt in its aqueous solution
A. $N a A$
B. $N a B$
C. BCl
D. $B A$

- Watch Video Solution

23. $p H$ of water is 7 . When a substance Y is dissolved in water, the $p H$ becomes 13 . The substance Y is a salt of
A. Strong acid and strong base
B. Weak acid and weak base
C. Strong acid and weak base
D. Weak acid and strong base

Answer: D

- Watch Video Solution

24. Which is a basic salt
A. $P b S$
B. PbCO 3
C. PbSO_{4}
D. $2 \mathrm{PbCO}_{3}, \mathrm{~Pb}(\mathrm{OH})_{2}$

Answer: D

- Watch Video Solution

25. The $p H$ of $0.02 M N H_{4} C l(a q)\left(p K_{b}=4.73\right)$ is equal to
A. 3.78
B. 4.73
C. 5.48
D. 7.00

Answer: C

- Watch Video Solution

26. 100 ml of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ are mixed with 100 ml of 0.1 MNaOH , the pH of the resulting solution would be
A. zero
B. 7
C. >7
D. <7

- Watch Video Solution

27. A compound whose aqueous solution will have the highest $p H$
A. $N a C l$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. NaHCO 3

Answer: B
28. Baking soda is
A. Basic salt
B. Acidic salt
C. Complex salt
D. Double salt

Answer: B

- Watch Video Solution

29. Which one of the following substances will be a mixed salt?
A. NaHCO 3
B. $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$
C. $\mathrm{K}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Mg}(\mathrm{OH}) \mathrm{Br}$

Answer: B

- Watch Video Solution

30. $0.5 M$ ammonium benzoate is hydrolysed to 0.25 precent, hence its hydrolysis constant is
A. 2.5×10^{-5}
B. 1.5×10^{-4}
C. 3.125×10^{-6}
D. 6.25×10^{-4}

- Watch Video Solution

31. The compound whose $0.1 M$ solution is basic is
A. Ammonium acetate
B. Calcium carbonate
C. Ammonium sulphate
D. Sodium acetate

Answer: D

D Watch Video Solution
32. A weak base, B, has basicity constant $K_{b}=2 \times 10^{-5}$.

The $p H$ of any solution in which $[B]=\left[B H^{+}\right]$is
A. 4.7
B. 7.0
C. 9.3
D. 9.7

Answer: C

- Watch Video Solution

33. Which of the following will not be hydrolysed?
A. Potassium nitrate
B. Potassium cyanide
C. Potassium succinate
D. Potassium carbonate

Answer: A

(Watch Video Solution

34. In hydrolysis of a salt of weak acid and strong base,
$A^{-}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HA}+\mathrm{OH}^{-}$, the hydrolysis constant $\left(K_{h}\right)$
is equal to
A. $\frac{K_{w}}{K_{a}}$
B. $\frac{K_{w}}{K_{b}}$
C. $\sqrt{\frac{K_{a}}{C}}$
D. $\frac{K_{w}}{K_{a} \times K_{b}}$

Answer: A

Watch Video Solution

35. Which of the following $0.1 M$ solution will contain the
largest concentration of hydronium ions?
A. NaHCO_{3}
B. $\mathrm{NH}_{4} \mathrm{Cl}$
C. HCl
D. NH_{3}
36. $1 M N a C l$ and $1 M H C l$ are present in an aqueous solution. The solution is
A. Not a buffer solution and with $p H<7$
B. Not a buffer solution with $p H>7$
C. A buffer solution with $p H<7$
D. A buffer solution with $p H>7$

Answer: A

Common Ion Effect, Ksp And Applications

1. The solubility of $A_{2} X_{5}$ is x mole $d m^{-3}$. Its solubility product is
A. $36 x^{6}$
B. $64 \times 10^{4} x^{7}$
C. $126 x^{7}$
D. $1.25 \times 10^{4} x^{7}$

Answer: D

D Watch Video Solution
2. When equal volumes of following solution are mixed, precipitation of $A g C l$?
$\left(K_{s p}=1.8 \times 10^{-10}\right)$ will occur only with
A. $10^{-4} \mathrm{M}, \mathrm{Ag}^{+}$and $10^{-4} \mathrm{M}, \mathrm{Cl}^{-}$
B. $10^{-5} \mathrm{M}, \mathrm{Ag}^{+}$and $10^{-5} \mathrm{M}, \mathrm{Cl}^{-}$
C. $10^{-6} \mathrm{M}, \mathrm{Ag}^{+}$and $10^{-6} \mathrm{M}, \mathrm{Cl}^{-}$
D. $10^{-10} \mathrm{M}, \mathrm{Ag}^{+}$and $10^{-10} \mathrm{M}, \mathrm{Cl}^{-}$

Answer: A

- Watch Video Solution

3. If $K_{s p}$ for HgSO_{4} is 6.4×10^{-5}, then solubility of this substance in mole per m^{3} is
A. 8×10^{-3}
B. 6.4×10^{-5}
C. 8×10^{-6}
D. None of these

Answer: A

- Watch Video Solution

4. The solubility of $C a F_{2}\left(K_{\text {sp }}=3.4 \times 10^{-11}\right)$ in $0.1 M$ solution of $N a F$ would be
A. $3.4 \times 10^{-12} M$
B. $3.4 \times 10^{-10} M$
C. $3.4 \times 10^{-9} M$
D. $3.4 \times 10^{-13} M$

- Watch Video Solution

5. Let the solubilities of AgCI in $\mathrm{H}_{2} \mathrm{O}$, and in $0.01 M C a C I_{2}, 0.01 M N a C I$, and $0.05 M A g N O_{3}$ be $S_{1}, S_{2}, S_{3}, S_{4}$, respectively. What is the correct relationship between these quantites.
A. $s_{1}>s_{2}>s_{3}>s_{4}$
B. $s_{1}>s_{2}=s_{3}>s_{4}$
C. $s_{1}>s_{3}>s_{2}>s_{4}$
D. $s_{4}>s_{2}>s_{3}>s_{1}$
6. Which of the following statements is correct for a solution saturated with $A g C l$ and $A g B r$ if their solubilities in moles per litre in separate solutions are x and y respectively?
A. $\left[A g^{+}\right]=x+y$
B. $\left[A g^{+}\right]=\left[B r^{-}\right]+\left[C l^{-}\right]$
C. $\left[B r^{-}\right]=y$
D. $\left[C l^{-}\right]$

Answer: B

7. Which of the following is most soluble in water ?
A. $M n S\left(K_{S P}=8 \times-37\right)$
B. $Z n S\left(K_{S P}=7 \times 10^{-16}\right)$
C. $B i_{2} S_{3}\left(K_{S P}=\times 10^{-70}\right)$
D. $A g_{2} S\left(K_{S P}=6 \times 10^{-5}\right)$

Answer: B

- Watch Video Solution

8. Solubility of $B a F_{2}$ in a solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$, will be represented by the concentration term:
A. $\left[B a^{2+}\right]$
B. $\left[F^{-}\right]$
C. $1 / 2\left[F^{-}\right]$
D. $2\left[\mathrm{NO}_{3}^{+}\right]$

Answer: C

(Watch Video Solution

9. At $30^{\circ} \mathrm{C}$ the solubility of $A g_{2} \mathrm{CO}_{3}\left(K_{S P}=8 \times 10^{-12}\right)$ would be gretest in one litre of:
A. $0.05 \mathrm{MNa}_{2} \mathrm{CO}_{3}$
B. $0.05 \mathrm{MAgNO}_{3}$
C. pure water
D. $0.05 \mathrm{MK}_{2} \mathrm{CO}_{3}$

- Watch Video Solution

10. The volume of the water needed to dissolve $1 g$ of $B a S O_{4}\left(K_{S P}=1.1 \times 10^{-10}\right)$ at $25^{\circ} C$ is:
A. 280litre
B. 410litre
C. 205litre
D. None of these

Answer: B
11. A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added drop by drop to litre of a solution containing 10^{-4} mole of $B a^{2+}$ and 10^{-5} mole of Ag, if $K_{S P}$ for $B a C O_{3}$ is 8.1×10^{-9} and $K_{S P}$ for $\mathrm{Ag}_{2} \mathrm{CO}_{3} i s 6.9 \times 10^{-12}$, then which is not true ?
A. No precipitate of BaCO_{3} will appear until $\left[\mathrm{CO}_{3}^{2-}\right]$
reaches 8.1×10^{-5} molperlitre
B. A percipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear when $\left[\mathrm{CO}_{3}^{2-}\right]$
reaches 6.9×10^{-5} mollitre ${ }^{-1}$
C. No percipitate of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ will appear until $\left[\mathrm{CO}_{3}^{2-}\right]$
reaches $6.9 \times 10^{-2} \mathrm{mo} \leq$ perlitre
D. BaCO_{3} will be percipitated first

- Watch Video Solution

12. $M(O H)_{X}$ has $K_{S P} 4 \times 10^{-12}$ and solubility $10^{-4} M$.

The value of x is:
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

13. The solubility products of $M A, M B, M C$ and MD are $1.8 \times 10^{-10}, 4 \times 10^{-3}, 4 \times 10^{-8} \quad$ and $\quad 6 \times 10^{-5}$ respectively. If a $0.01 M$ solution of MX is added dropwise to a mixture containing A^{-}, B^{-}, C^{-}and D^{-}ions, then the one to be precipitated first will be:
A. $M A$
B. $M B$
C. $M C$
D. $M D$

Answer: A
14. Which of the following species is more soluble in water ?
A. $M(O H)_{3}\left(K_{S P}=1 \times 10^{-35}\right)$
B. $M(O H)_{2}\left(K_{S P}=1 \times 10^{-30}\right)$
C. $\operatorname{MOH}\left(K_{S P}=1 \times 10^{-28}\right)$
D. $\operatorname{MOH}\left(K_{S P}=1 \times 10^{-26}\right)$

Answer: A

D Watch Video Solution

15. Silver nitrate solution is gradually added to an aqueous solution containing 0.01 M each of chloride, bromide and
iodine ions. The correct sequence in which the halides will be precipitated is :
A. Bromide, chloride iodide
B. lodide, chloride, bormide
C. lodide, bormide, chloride
D. Bromide chloride

Answer: C

- Watch Video Solution

16. $K_{s p}$ of $S r F_{2}(s)$ in water is 3.2×10^{-11}. The solubility
$S r F_{2}(s)$ in $0.1(M) N a C l$ solution is
A. $3.2 \times 10^{-9}(M)$
B. $2 \times 10^{-4}(M)$
C. $4 \times 10^{-4}(M)$
D. slightly higher than $2 \times 10^{-4}(M)$

Answer: D

- Watch Video Solution

17. Sodium chromate solution is gradually added to a mixture containing $0.05 \mathrm{MPb}^{2+}$ ions and $0.10 \mathrm{MBa}{ }^{2+}$ ions. The concentration of the ion precipitating first when the second ion begins to form a percipitate is [Note: $K_{s p}$ of $\mathrm{BaCrO}_{4}=2.4 \times 10^{-10} \quad$ and $\quad K_{s p} \quad$ of
$\left.\mathrm{PbCrO}_{4}=1.8 \times 10^{-14}\right]$
A. 7.5×10^{-6}
B. 2.5×10^{-5}
C. 8.2×10^{-3}
D. 5.0×10^{-4}

Answer: A

D Watch Video Solution

18. Solubility of calcium phosphate (molecular mass, M) in water is $W g$ per 100 mL at $25^{\circ} \mathrm{C}$. Its solubility product at $25^{\circ} C$ will be approximately
A. $10^{9}\left(\frac{W}{M}\right)^{5}$
B. $10^{7}\left(\frac{W}{M}\right)^{5}$
C. $10^{5}\left(\frac{W}{M}\right)^{5}$
D. $10^{3}\left(\frac{W}{M}\right)^{5}$

Answer: B

- Watch Video Solution

19. The $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1 \times 10^{-12} .0 .01 M M g(\mathrm{OH})_{2}$
will precipitate at the limiting $p H$
A. 3
B. 9
C. 5
D. 8

(D) Watch Video Solution

20. A salt $M_{2} X_{3}$ dissolves in water such that is solubility is
x.g. mole/litre. Its $K_{S P}$ is:
A. x^{5}
B. $6 x^{2}$
C. $108 x^{5}$
D. $6 x^{5}$

Answer: C

21. Solubility product of AgCl is 2.8×10^{-10} at $25^{\circ} \mathrm{C}$.

Calculate solubility of the salt in $0.1 \mathrm{MAgNO}_{3}$ solution
A. $2.8 \times 10^{-9} \mathrm{~mol} /$ litre
B. $2.8 \times 10^{-10} \mathrm{~mol} /$ litre
C. $3.2 \times 10^{-9} \mathrm{~mol} /$ litre
D. $3.2 \times 10^{-12} \mathrm{~mol} /$ litre

Answer: A

- Watch Video Solution

22. The solubility product of chalk is 9.3×10^{-8}. Calculate its solubility in gram per litre
A. $0.3040 \mathrm{gram} /$ litre
B. $0.0304 \mathrm{gram} /$ litre
C. 2.0304gram / litre
D. 4.0304gram / litre

Answer: B

- Watch Video Solution

23. A solution containing $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ has
$[\mathrm{OH}]=10^{-6} \mathrm{molL}^{-1}$, which of the following hydroxides would be precipitated when this solution in added in equal volume to a solution containing 0.1 M of metal ions?
A. $M g(O H)_{2}\left(K_{s p}=3 \times 10^{-11}\right)$
B. $F e(O H)_{2}\left(K_{s p}=8 \times 10^{-16}\right)$
C. $C d(O H)_{2}\left(K_{s p}=8 \times 10^{-6}\right)$
D. $\operatorname{AgOH}\left(K_{s p}=5 \times 10^{-3}\right)$

Answer: B

D View Text Solution

24. The precipitate of $C a F_{2}\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volumes of the following are mixed
A. $10^{-4} M C a^{2+}$ ion and $10^{-4} M F^{-}$
B. $10^{-2} M C a^{2+}$ and $10^{-3} M F^{-}$
C. $10^{-5} M C a^{2+}$ and $10^{-3} M F^{-}$
D. $10^{-3} M C a^{2+}$ and $10^{-5} M F^{-}$

- Watch Video Solution

25. $K_{s p}$ of a sparingly soluble salt $A B_{2}$ is
$4 \times 10^{-12} \mathrm{~mol}^{3} L^{-3}$. The solubility of the salt is
A. $2 \times 10^{-6} M$
B. $4 \times 10^{-4} M$
C. $1 \times 10^{-12} M$
D. $1 \times 10^{-4} M$

Answer: D
26. If the solubility product of $M O H$ is $1 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ then $p H$ of its aqueous solution will be
A. 12
B. 9
C. 6
D. 3

Answer: B
(D) Watch Video Solution
27. The solubility product of AgCl is 1.8×10^{-10} at $18^{\circ} \mathrm{C}$.

The solubility of AgCl in 0.1 M solution of sodium chloride would be
A. $1.8 \times 10^{-9} M$
B. $1.8 \times 10^{-10} M$
C. $1.8 \times 10^{-11} M$
D. $4.2 \times 10^{-5} \mathrm{M}$

Answer: A
28. Three sparingly soluble salts $M_{2} X, M X$ and $M X_{3}$ have the same solubility product. Their solubilities will be in the order
A. $M X_{3}>M X>M_{2} X$
B. $M X_{3}>M_{2} X>M X$
C. $M X>M X_{3}>M_{2} X$
D. $M X>M_{2} X>M X_{3}$

Answer: D

D Watch Video Solution
29. The solubility of a sparingly soluble compound $M X_{2}$ at $25^{\circ} \mathrm{C}$ is $5.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$. Its solubility product at that temperature is

$$
\text { A. } 25 \times 10^{-6}
$$

B. 5.0×10^{-11}
C. 5.0×10^{-7}
D. 1.25×10^{-9}

Answer: C
30. The solubility product ($K_{s p}$) of the sparingly soluble salt $M X$ at $25^{\circ} C$ is 2.5×10^{-9}. The solubility of the salt (in $m o l L^{-1}$) at this temperature is
A. 1.0×10^{-14}
B. 5.0×10^{-8}
C. 1.25×10^{-9}
D. 5.0×10^{-5}

Answer: D
31. The solubility of a springly soluble salt $A B_{2}$ in water is $1.0 \times 10^{-5} \mathrm{~mol}^{-1}$. Its solubility product is:

$$
\text { A. } 10^{-15}
$$

B. 10^{-10}
C. 4×10^{-15}
D. 4×10^{-10}

Answer: C

- Watch Video Solution

32. $K_{S P}$ of $M X_{4}$ and solubility of $M X_{4}$ is $S m o l / L$ is related by:
A. $S=\left[K_{S P} / 256\right]^{1 / 5}$
B. $S=\left[128 K_{S P}\right]^{1 / 4}$
C. $S=\left[256 K_{S P}\right]^{1 / 5}$
D. $S=\left[K_{S P} / 128\right]^{1 / 4}$

Answer: A

- Watch Video Solution

33. The solubility product of a salt having general formula
$M X_{2}$ in water is 4×10^{-12}. The concentration of M^{2+} ions in the aqueous solution of the salt is:
A. $2 \times 10^{-6} M$
B. $1 \times 10^{-4} M$
C. $1.6 \times 10^{-4} M$
D. $4.0 \times 10^{-6} M$

Answer: B

- Watch Video Solution

34. In a saturated solution of the spatingly soluble strong electrolyte AgIO_{3} (molecular mass $=283$) the equilibrium which sets in is

$$
\mathrm{AgIO}_{3}(s) \Leftrightarrow A g^{+}(a q)+I O_{3}^{-}(a q)
$$

If the solubility product constant $K_{S P}$ of AgIO_{3} at a given temperature is 1.0×10^{-8}, what is the mass of AgIO_{3} cotained in 100 mL of its saturated solution?
A. $28.3 \times 10^{-2} g$
B. $28.3 \times 10^{-3} g$
C. $1.0 \times 10^{-7} g$
D. $1.0 \times 10^{-4} g$

Answer: B

- Watch Video Solution

35. The $K_{S P}$ for $C r(O H)_{3}$ is 1.6×10^{-30}. The molar solubility of this compound in water is
A. $2 \sqrt{1.6 \times 10^{-30}}$
B. $4 \sqrt{1.6 \times 10^{-30}}$
C. $4 \sqrt{\frac{1.6 \times 10^{-30}}{27}}$

$$
\text { D. } 1.6 \times 10^{-30} / 27
$$

Answer: C

- Watch Video Solution

36. Solubility product of silver bromide is 5.0×10^{-13}. The quantity of potassium bromide (molar mass taken as $120 \mathrm{gmol}^{-1}$) to be added to $1 L$ of 0.05 M solution of silver nitrate to start the precipitation of $A g B r$ is
A. $1.2 \times 10^{-10} g$
B. $1.2 \times 10^{-9} g$
C. $6.2 \times 10^{-5} g$
D. $5.0 \times 10^{-8} g$

- Watch Video Solution

37. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 1.0×10^{-11}. At which $p H$, will Mg^{2+} ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 M M g^{2+}$ ions ?
A. 9
B. 10
C. 11
D. 8

Watch Video Solution

38. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)$ is gradually dissolved in a $1.0 \times 10^{-4} M N a_{2} \mathrm{CO}_{3}$ solution. At what concentrations of $B a^{2+}$, will a precipitate begin to form?
$\left(K_{S P}\right.$ for $\left.\mathrm{BaCO}_{3}=5.1 \times 10^{-9}\right)$
A. $4.1 \times 10^{-5} M$
B. $5.1 \times 10^{-5} M$
C. $8.1 \times 10^{-8} M$
D. $8.1 \times 10^{-7} M$

Answer: B

Buffer Solutions

1. When a solution of benzoic acid was titrated with NaOH
the $p H$ of the solution when half the acid neutralized was
4.2. Dissociation constant of the acid is
A. 6.31×10^{-5}
B. 3.2×10^{-5}
C. 8.7×10^{-8}
D. 6.42×10^{-4}

Answer: A

- Watch Video Solution

2. Which is a buffer solution?
A. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{NaOH}+\mathrm{NaCl}$

Answer: A

- Watch Video Solution

3. The $p H$ of a buffer is 6.745 . When 0.01 mole of NaOH is added to 1 litre of it, the $p H$ changes to 6.832 . Its buffer capacity is
A. 0.187
B. 0.115
C. 0.076
D. 0.896

Answer: B

- Watch Video Solution

4. A buffer solution contains 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and 1 mole of $\mathrm{NH}_{4} \mathrm{OH}\left(K_{b}=10^{-5}\right)$. The pH of solution will be:
A. 5
B. 9
C. 5.3

D. 8.7

Answer: D

- Watch Video Solution

5. For preparing a buffer solution of pH 6 by mixing sodium accetate and acetic, the ratio of the concentration of salt and acid should be $\left(K_{a}=10^{-5}\right)$
A. $1: 10$
B. 10: 1
C. 100:1
D. 1: 100

(Watch Video Solution

6. The total number of different kind of buffers obtained during the titration of $\mathrm{H}_{3} \mathrm{PO}_{4}$ with NaOH are:
A. 3
B. 1
C. 2
D. zero

Answer: A
7. Which may be added to one litre of water to act a buffer?
A. One mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and one mole of HCl
B. One mole of $\mathrm{NH}_{4} \mathrm{OH}$ and one mole of NaOH
C. One mole of $\mathrm{NH}_{4} \mathrm{Cl}$ and one mole of HCl
D. One mole of $\mathrm{CH}_{3} \mathrm{COOH}$ and 0.5 mole of NaOH

Answer: D

- Watch Video Solution

8. $p H$ of a solution of 10 ml .1 N sodium acetate and 50 ml 2 N acetic acid $\left(K_{a}=1.8 \times 10^{-5}\right)$ is approximately
B. 5
C. 6
D. 7

Answer: A

D Watch Video Solution

9. The $p H$ of an acidic buffer mixture is:
A. >7
B. <7
C. $=7$
D. Depends upon K_{a} of acids

- Watch Video Solution

10. $p H$ of a mixture containing $0.10 M X^{-}$and $0.20 M H X$
is: $\left[p K_{b}\left(X^{-}\right)=4\right]$
A. $4+\log 2$
B. $4-\log 2$
C. $10+\log 2$
D. $10-\log 2$

Answer: D

11. What $\%$ of the carbon in the $\mathrm{H}_{2} \mathrm{CO}_{3}-\mathrm{HCO}_{3}^{-}$buffer should be in the form of HCO_{3}^{-}so as to have a neutral solution? $\left(K_{a}=4 \times 10^{-7}\right)$
A. 20%
B. 40%
C. 60%
D. 80%

Answer: D
12. An acidic buffer solution can be prepared by mixing solution of
A. Ammonium acetate and acetic acid
B. Ammonium chloride and hydrochloric acid
C. Sulphuric acid and sodium sulphate
D. Acetic acid and sulphuric acid

Answer: A

- Watch Video Solution

13. Buffer capacity of a buffer solution is x, the volume of 1 MNaOH added to 100 mL of this solution if the change
of $p H$ by 1 is
A. $0.1 x m L$
B. $10 x m L$
C. $100 x m L$
D. $x m L$

Answer: C

- Watch Video Solution

14. 100 mL of a buffer solution contains $0.1 M$ each of weak acid $H A$ and salt $N a A$. How many gram of $N a O H$ should be added to the buffer so that it $p H$ will be 6 ?
$\left(K_{a}\right.$ of $\left.H A=10^{-5}\right)$.
A. 4.19
B. 0458
C. 0.328
D. None

Answer: C

- Watch Video Solution

15. Calculate the amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ in grams which must be added to 500 ml of 0.2 MNH 3 to yield a solution of $p H=9, K_{b}$ for $N H_{3}=2 \times 10^{-5}$
A. $3.248 g$
B. $4.248 g$
C. $1.320 g$
D. $6.248 g$

Answer: C

- Watch Video Solution

16. The buffer solution of 100 ml having a $p H$ value 4 when added to $1 m l$ dilute $H C l$, then the $p H$ of buffer solution
A. Converts to 7
B. Does not change
C. Converts to 2
D. Changes to 10

- Watch Video Solution

17. What amount of solution propanoate should be added to one litre of an aqueous solution containing 0.02 mole of propanoic acid ($K_{a}=1.0 \times 10^{-5}$ at $25^{\circ} C$) to obtain a buffer solution of pH 6
A. $0.1 M$
B. 0.2 M
C. $0.3 M$
D. $1.3 M$

Watch Video Solution

18. 20 ml of 0.2 MNaOH is added to 50 ml , of $0.2 \mathrm{MCH}_{3} \mathrm{COOH}$ to give 70 ml , of the solution. What is the $p H$ of the solution? The ionization constant of acetic acid is 2×10^{-5}
A. 4.522
B. 5.568
C. 6.522
D. 7.568

Answer: A

19. The concentration of H^{+}ion in a $0.2 M$ solution of HCOOH is $6.4 \times 10^{-3} \mathrm{~mole} L^{-1}$. To this solution HCOONa is added so as to adjust the concentration of HCOONa to one mole per litre. What will be the $p H$ of this solution? K_{a} for HCOOH is 2.4×10^{-4} and the degree of dissociation of HCOONa is 0.75
A. 3.19
B. 4.19
C. 5.19
D. 6.19

Answer: B
20. What amount of HCl will be required to prepare one litre of a buffer solution of $p H 10.4$ using 0.01 mole of $N a C N$? Given $K_{i o n}(H C N)=4.1 \times 10^{-10}$.
A. 8.55×10^{-3} moles
B. 8.65×10^{-3} moles
C. 8.75×10^{-3} moles
D. 9.9×10^{-4} moles

Answer: D
(Watch Video Solution
21. Calculate $p H$ of a solution of given mixture ($0.1 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{COOH}+0.2 \mathrm{molCH}_{3} \mathrm{COONa}$) in 100 ml of mixture. $K=2 \times 10^{-5}$.
A. 4.6
B. 5.6
C. 6.6
D. 7.6

Answer: A
22. Calculate the $p H$ of a buffer solution prepared by dissolving 10.6 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 500 ml of an aqueous solution containing 80 ml of $1 \mathrm{MHCl} . \quad K_{a}$ for $\mathrm{HCO}_{3}^{-}=6 \times 10^{-11}$
A. 8.6
B. 9.6
C. 11.6
D. 12.6

Answer: B
23. What volume of 0.1 MHCOONa solution should be added to 50 ml of 0.05 M formic acid to produce a buffer solution of $p H=4.0, p K_{a}$ of formic acid $=3.7$?
A. 50 ml
B. 40 ml
C. 30 ml
D. 60 ml

Answer: A
24. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one liter. The $\left[\mathrm{H}^{+}\right]$in solution is

$$
\begin{aligned}
& \text { A. } 8 \times 10^{-2} M \\
& \text { B. } 8 \times 10^{-11} M \\
& \text { C. } 1.6 \times 10^{-11} M \\
& \text { D. } 8 \times 10^{-5} M
\end{aligned}
$$

Answer: B
25. The $p K_{a}$ of a weak acid $(H A)$ is 4.5 . The $p O H$ of an aqueous buffered solution of $H A$ in which 50% of the acid is ionized is:
A. 4.5
B. 2.5
C. 9.5
D. 7.0

Answer: C

D Watch Video Solution

1. A volume of 50.00 mL of a weak acid of unknown concentration is titrated with 0.10 M solution of NaOH .

The equivalence point is reached after 39.30 mL of NaOH
solution has been added. At the half-equivalence point $(19.65 m L)$, the $p H$ is 4.85 . Thus, initial concentration of the acid and its $p K_{a}$ values are
A. $[H A]$ initial $=0.1 M, p K_{a}=4.85$
B. $[H A]$ initial $=0.079 M, p K_{a}=2.93$
C. $[H A]$ initial $=0.1 M, p K_{a}=3.70$
D. $[H A]$ initial $=0.079 M, p K_{a}=4.85$

Answer: D

2. What fraction of an indicator H in is in the basic form at a $p H$ of 6 if $p K_{a}$ of the indicator is 5 ?
A. $\frac{1}{2}$
B. $\frac{1}{11}$
C. $\frac{10}{11}$
D. $\frac{1}{10}$

Answer: C

- Watch Video Solution

3. Strong acids are generally used as standard solution in acid-base titrations because:
A. The $p H$ at equivalence point will be 7
B. They titrate both strong and weak base
C. They form more stable solutions than weak acids
D. The salts of strong acids do not hydrolyse

Answer: B

- Watch Video Solution

4. At $25^{\circ} \mathrm{CpH}$ range of phenolphthalein is $8-10$. At $100^{\circ} \mathrm{CpH}$ range of phenophthalein would be
A. pH range remains unaffected by the temperature
B. pH range is altered to 8 to 9
C. pH range is altered to 7 to 11

D. pH range is altered to 8 to 11

Answer: B

- Watch Video Solution

5. An indicator is a weak acid and $p H$ range of its colour is 3
to 5 . If the neutral point of the indicator lies in the centre of the $\left[H^{+}\right]$corresponding to given $p H$ range, then $p H$ at the equivalence point is
A. 7.0
B. 4.0
C. 3.3
D. 5.0

- Watch Video Solution

6. 100 mL of $0.02 M$ benzoic acid $\left(p K_{a}=4.2\right)$ is titrated using $0.02 \mathrm{MNaOH} . \mathrm{pH}$ values after 50 mL and 100 mL of NaOH have been added are
A. $3.50,7$
B. $4.2,7$
C. $4.2,8.1$
D. $4.2,8.25$

Answer: C
7. What will be the $p H$ at the equivalence point during the titration of a 100 mL 0.2 M solution of $\mathrm{CH}_{3} \mathbb{C O N a}$ with $0.2 M$ solution of $H C l ? K_{a}=2 \times 10^{-5}$
A. $3-\log \sqrt{2}$
B. $3+\log \sqrt{2}$
C. $3-\log 2$
D. $3+\log 2$

Answer: A

8. 20 mL of a weak monobasic acid $(H A)$ requires 20 mL 0.2 MNaOH for complete titration. If pH of solution upon addition of $10 m L$ of this alkali to $25 m L$ of the above solution of $H A$ is 5.8 . The $p K_{a}$ of the weak acid is
A. 6.1
B. 5.8
C. 5.98
D. 5.58

Answer: C

9. An acid-base indicator which is a weak acid has a $p K_{\text {In }}$ value $=5.45$. At what concentration ratio of sodium acetate to acctic acid would the indicator show a colour half-way between those of its acid and conjugate base forms ?
$\left[p K_{a}\right.$ of acetic acid $\left.=4.75, \log 2=0.3\right]$
A. $4: 1$
B. 6:1
C. 5:1
D. $3: 1$

Answer: C

10. When 10 ml of $0.1 M$ acetic acid $\left(p K_{a}=50\right)$ is titrated against 10 ml of 0.1 M ammonia solution $\left(p K_{b}=5.0\right)$, the equivalence point occurs at $p H$
A. 5.0
B. 6.0
C. 7.0
D. 9.0

Answer: C

- Watch Video Solution

11. An indicator has $p K_{\text {In }}=5.3$. In a certain titration, this indicator is found to be 80% ionized in its acid form. Thus,
$p H$ of the solution is
A. 4.7
B. 5.3
C. 5.9
D. 6.2

Answer: A

- Watch Video Solution

12. A certain indicator (an organic dye) has $p K_{a}=5$. For which of the following titrations may it be suitable
A. acetic acid against NaOH
B. aniline hydrochloride against NaOH
C. sodium carbonate against HCl
D. barium hydroxide against oxalic acid

Answer: C

- Watch Video Solution

13. An acid-base indicator which is a weak acid has a $p K_{a}$ value $=5.5$. At what concentration ratio of sodium acetate to acetic acid would the indicator show a colour half-way between those of its acid and conjugate base forms?
A. $4.93: 1$
B. $6.3: 1$
C. $5.62: 1$
D. 2.37: 1

Answer: C

(Watch Video Solution

14. K_{b} of an acid-base indicator H In is 10^{-9}. The $p H$ at which its $10^{-3}(M)$ solution shows the colour change
A. 9
B. 7
C. 5
D. 3

- Watch Video Solution

15. A certain mixture of HCl and $\mathrm{CH}_{3}-\mathrm{COOH}$ is 0.1 M in each of the acids. 20 ml of this solution is titrated against 0.1 MNaOH . By how many units does the $p H$ change from the start to the stage when the HCl is almost completely neutralised and acidic acid remains unreacted? K_{a} for acetic acid $=2 \times 10^{-5}$.
A. 1.5
B. 3
C. 2
D. 3.25

- Watch Video Solution

16. A weak acid $(H A)$ after treatment with $12 m L$ of $0.1 M$ strong base $(B O H)$ has a $p H$ of 5 . At the end point , the volume of same base required is $27 m L . K_{a}$ of acid is $(\log 2=0.3)$
A. 1.8×10^{-5}
B. 8×10^{-6}
C. 1.8×10^{-6}
D. 8×10^{-5}
17. To a 200 ml of $0.1 M$ weak aicd $H A$ solution 90 ml of
0.1 M solution of NaOH be added. Now, what volume of
0.1 MNaOH be added into above solution so that pH of resulting solution be 5. $\left[K_{a}(H A)=10^{-5}\right]$
A. $2 m l$
B. 20 ml
C. 10 ml
D. 15 ml

Answer: C

18. What is the difference in $p H$ for $1 / 3$ and $2 / 3$ stages of neutralization of $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$ with 0.1 MNaOH ?
A. $2 \log 3$
B. $2 \log (1 / 4)$
C. $2 \log (2 / 3)$
D. $2 \log 2$

Answer: D

D Watch Video Solution

Section B - Assertion Reasoning

1. Assertion : A ionic product is used for any types of electrolytes whereas solubility product is applicable only to sparingly soluble salts.

Reason : ionic product is definef at any stage of the reaction whereas solubility product is only applicable to the saturation stage
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

2. Assertion : The $p H$ of pure water is less than 7 at $60^{\circ} C$.

Reason : As the temperature increases, pure water becomes
slightly acidic.
A. If both assertion and reason are true and the reason
is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

3. Assertion : The $p H$ of human blood at body temperature is found to be 6.9.

Reason : Blood is alkaline in nature.
A. If both assertion and reason are true and the reason
is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

4. Assertion : The $p H$ of a basic buffer mixture is given by:
$p H=p K_{a}+\log \left(\frac{[\text { Base }]}{[\text { conjugateacid }]}\right)$
Reason : The $p H$ of an acidic buffer mixture is given by:
$p H=p K_{a}+\log \left(\frac{[\text { conjugateacid }]}{[\text { Acid }]}\right)$
A. If both assertion and reason are true and the reason
is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

D Watch Video Solution

5. Assertion : On passing $H C l(g)$ through a saturted solution of $B a C l_{2}$, a white turbidity appears.

Reason : The common ion effect is responsible for white turbidity.
A. If both assertion and reason are true and the reason
is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

6. Assertion : Degree of hydrolysis and $p H$ of a salt, e.g.
$\mathrm{NH}_{4} \mathrm{CN}$ is independent of concentration of $\mathrm{NH}_{4} \mathrm{CN}$ Reason : The solution of $\mathrm{NH}_{4} \mathrm{CN}$ in water has pH slightly greater than 7 .
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

7. Assertion : In a pair of two electrolytes one having higher value of $K_{S P}$ is more soluble in water than the other having lower value of $K_{s p}$.

Reason : Solubility of electrolyte depends upon $K_{s p}$ as well as on the nature of electrolyte.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

8. Assertion : HgCl_{2} and SnCl_{2} cannot coexist in a solution.

Reason : Increase in concentration of Cl^{-}in solution brings in precipitation of either of them.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

9. Assertion : The solubility of HgI_{2} in water decreases in presence of $K I$.

Reason : $H g I_{2}$ is insoluble in water but it becomes soluble in $K I(a q)$.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

10. Assertion : The dissociation constant of water at $60^{\circ} \mathrm{C}$ is 10^{-13}.

Reason : The $p H$ of water is 6.5 and that it behaves as acid at $60^{\circ} C$.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

11. Assertion : Salting out action of sodium soap in oresence of $N a C l$ is based on common ion effect.

Reason : Salting out action of soap is based on the fact that as the concentration of $N a^{+}$increases, the RCOONa shows precipitation because $\left[\mathrm{RCOO}^{-}\right]\left[N a^{+}\right]>K_{s p}$.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

12. Assertion : In a titration of weak monoprotic acid with strong base, the $p H$ at the half equivalent point is $p K_{a}$. Reason : At half equivalence point, it will form acidic buffer at its maximum capacity where [acid] $=[$ salt $]$.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

(D) Watch Video Solution

13. Assertion : Solubility of AgCl in $\mathrm{NH}_{3}(a q)$ is greater than in pure water.

Reason : When AgCl dissolve in $\mathrm{NH}_{3}(\mathrm{aq})$, complex ion [$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}$] formation takes place and solubility equilibrium of $A g C l_{3}$ shifted in forward direction.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

(Watch Video Solution

14. Assertion : The $\mathrm{H}_{3} \mathrm{O}^{+}$has additional water molecules closely associated with it.

Reason : In solid state the species $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$and $\mathrm{H}_{9} \mathrm{O}_{4}^{+}$have been found to exist.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

15. Assertion : The proton transfer reaction between NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ proceeds only to a slight extent.

Reason : Proton transfer reaction is virtually complete in the case of HCl in dilute solution.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

16. Assertion : Aqueoous solutions of all strong acids contain only the same acid, the hydronium ion.

Reason : Hydronium ion is the strongest acid that can exist in any significant concentration in dilute aqueous solution.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

17. Assertion : Acids that have more than one proton that
can be donated to base are called polyrotic acids.
Reason : For all diprotic acids, the equilibrium constant $K_{a_{2}}$
for the second stage of ionisation is smaller than the equilibrium constant, $K_{a_{1}}$, for the first stage of ionisation.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.
18. Assertion : 0.20 M solution of $N a C N$ is more than basic than $0.20 M$ solution of $N a F$.

Reason : K_{a} of $H C N$ is very much less than that of $H F$.
A. Both assertion and reason are true and the reason is the correct explanation of the assertion.
B. Both assertion and reason are true but reason is not the correct explanation of the assertion.
C. Assertion is true but reason is false.
D. Assertion is false but reason is true.
19. Assertion : A substance that can either act as an acid a base is called ampholyte.

Reason : Bisulphide ion $\left(H S^{-}\right)$and biscarbonate ion $\left(\mathrm{HCO}_{3}^{-}\right)$are ampholytes.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.
20. Assertion : Addition of $\mathrm{HCl}(\mathrm{aq})$ to $\mathrm{HCOOH}(a q)$ decreases the ionization of $\mathrm{HCOOH}(a q)$

Reason : Due to common ion effect of H^{+}, ionization of HCOOH decreased.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

21. Assertion : pH of $10^{-7} \mathrm{MHCl}$ is less than 7 at $25^{\circ} \mathrm{C}$.

Reason : At very low concentration of HCl , contribution of
${ }^{`} \mathrm{H}^{\wedge}(+)$ from water is considerble.
A. If both assertion and reason are true and the reason
is the correct explantion of the assertion.
B. If both assertion and reason are true but reason is
not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

AIPMT/ NEET/ AIIMS Questions

1. In $\mathrm{HS}^{-}, \mathrm{I}^{-}, R-N H_{2}, N H_{3}$ order of proton accepting tendency will be
A. $I_{-}>\mathrm{NH}_{3}>R \mathrm{NH}_{2}>\mathrm{HS}^{-}$
B. $\mathrm{NH}_{3}>\mathrm{RNH}_{2}>\mathrm{HS}^{-}>I_{-}$
C. $\mathrm{RNH}_{2}>\mathrm{NH}_{3}>\mathrm{HS}^{-}>I_{-}$
D. $H S^{-}>R \mathrm{NH}_{2}>\mathrm{NH}_{3}>I_{-}$

Answer: C

- Watch Video Solution

2. NH_{3} gas dissolves in water to give $\mathrm{NH}_{4} \mathrm{OH}$. In this reaction, water acts as
A. an acid
B. a base
C. a salt
D. a conjugate base

Answer: A
3. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and concentration of H^{+}ions is 3.4×10^{-4}. Then, find out initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules.
A. 3.4×10^{-4}
B. 3.4×10^{-3}
C. 6.8×10^{-4}
D. 6.8×10^{-3}

Answer: D

D Watch Video Solution
4. Solubility if $M_{2} S$ type salt is 3.5×10^{-6}, then find out its solubility product
A. 1.7×10^{-6}
B. 1.7×10^{-16}
C. 1.7×10^{-18}
D. 1.7×10^{-12}

Answer: B

- Watch Video Solution

5. Solubility of $M X_{2}$ type electrolytes is $0.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$, then find out $K_{s p}$ of electrolytes.
A. 5×10^{-12}
B. 25×10^{-10}
C. 1×10^{-13}
D. 5×10^{-13}

Answer: D

- Watch Video Solution

6. Which has the highest $p H$?
A. $\mathrm{CH}_{3} \mathrm{COOK}$
B. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C. $\mathrm{NH}_{4} \mathrm{Cl}$

Answer: B

- Watch Video Solution

7. Solution of $0.1 \mathrm{NNH}_{4} \mathrm{OH}$ and $0.1 \mathrm{NNH}_{4} \mathrm{Cl}$ has pH 9.25 , then find out K_{b} of $\mathrm{NH}_{4} \mathrm{OH}$.
A. 9.25
B. 4.75
C. 3.75
D. 8.25

Answer: B
8. The solubility product of AgI at $25^{\circ} \mathrm{C}$ is $1.0 \times 10^{-16} \mathrm{~mol}^{2} L^{-2}$. The solubility of AgI in $10^{-4} \mathrm{~N}$ solution of $K I$ at $25^{\circ} C$ is approximately (in $m o l L^{-1}$)
A. 1.0×10^{-10}
B. 1.0×10^{-8}
C. 1.0×10^{-16}
D. 1.0×10^{-12}

Answer: D

9. The rapid change of $p H$ near the stoichiometric point of an acid-base titration is the basic of indicator detection. $p H$ of the solution is related to the ratio of the concentration of conjugate acid $(H \in)$ and base $\left(\mathrm{In}^{-}\right)$ forms of the indicator by the expression
A. $\log \left[\frac{\left[I n^{-}\right]}{[H I n]}\right]=p K_{a}+p H$
B. $\log \left[\frac{[H I n]}{\left[I n^{-}\right]}\right]=K_{a}+p H$
C. $\log \left[\frac{\left[I n^{-}\right]}{[H I n]}\right]=p H+p K_{a}$
D. $\log \left[\frac{\left[I n^{-}\right]}{[H I n]}\right]=p H-p K_{a}$

Answer: D
10. The solubility product of a sparingly soluble salt $A X_{2}$ is
3.2×10^{-11}. Its solubility (in $m o / L$) is
A. 5.6×10^{-6}
B. 3.1×10^{-4}
C. 2×10^{-4}
D. 4×10^{-4}

Answer: C

(Watch Video Solution

11. The correct relationship between the $p H$ of isomolar solutions of sodium oxide $\left(p H_{1}\right)$, sodium sulphide $\left(p H_{2}\right)$, sodium selenide $\left(p H_{3}\right)$ and sodium telluride $\left(p H_{4}\right)$ is
A. $p H_{1}>p H_{2}>p H_{3}>p H_{4}$
B. 'pH_(1)/tpH_(2)/tpH_(3)~pH_(4)
C. $p H_{1}<p H_{2} \sim p H_{3}>p H_{4}$
D. $p H_{1}>p H_{2} \sim p H_{3}>p H_{4}$

Answer: A

- Watch Video Solution

12. At $25^{\circ} C K_{b}$ for $B O H=1.0 \times 10^{-12} .0 .01 M$ solution of BOH has $\left[\mathrm{OH}^{-}\right]$:
A. $2.0 \times 10^{-6} \mathrm{~mol}^{-1}$
B. $1.0 \times 10^{-5} \mathrm{~mol}^{-1}$
C. $1.0 \times 10^{-6} \mathrm{~mol}^{-1}$

$$
\text { D. } 1.0 \times 10^{-7} \mathrm{~mol} L^{-1}
$$

Answer: D

- Watch Video Solution

13. $H_{2} S$ gas when passed through a solution of cations containing HCl precipitates the cations of second group in qualitative analysis but not those belonging to the fourth group. It is because
A. the presence of HCl decreases the sulphide ion concentration
B. the presence of HCl increases the sulphide ion
C. the solubility product of group $I I$ sulphides is more

than that of group $I V$ sulphides

D. The sulphides of group $I V$ cations are unstable in HCl

Answer: A

- Watch Video Solution

14. Which of the following pairs consitutes buffer?
A. HNO_{3} and $\mathrm{NH}_{4} \mathrm{NO}_{3}$
B. HCl and KCl
C. HNO_{2} and NaNO_{2}

D. NaOH and NaCl

Answer: C

- Watch Video Solution

15. The hydrogen ion concentration of a $10^{-8} \mathrm{MHCl}$ aqueous soultion at $298 K\left(K_{w}=10^{-14}\right)$ is
A. $1.0 \times 10^{-6} M$
B. $1.0525 \times 10^{-7} M$
C. $9.525 \times 10^{-8} \mathrm{M}$
D. $1.0 \times 10^{-8} M$

Answer: B
16. Calculate the $p O H$ of solution at $25^{\circ} \mathrm{C}$ that contains $1 \times 10^{-10} \mathrm{M}$ of hydronium ions, i.e., $\mathrm{H}_{3} \mathrm{O}^{+}$
A. 4
B. 9
C. 1
D. 7

Answer: A
17. A monoprotic acid in $0.1 M$ solution has $K_{a}=1.0 \times 10^{-5}$. The degree of dissociation for acid is
A. 1.0%
B. 99.9%
C. 0.1%
D. 99%

Answer: A

- Watch Video Solution

18. Equimolar solution of the following were prepared in water separately. Which one of the solutions will record the
highest $p H$?
A. $B a C l_{2}$
B. $M g C l_{2}$
C. $C a C l_{2}$
D. SrCl_{2}

Answer: A

- Watch Video Solution

19. Equal volumes of three acid solutions of $\mathrm{pH} 3,4$ and 5 are mixed in a vessel. What will be the H^{+}ion concentration in the mixture?
A. $3.7 \times 10^{-4} M$
B. $3.7 \times 10^{-3} \mathrm{M}$
C. $1.11 \times 10^{-3} M$
D. $1.11 \times 10^{-4} M$

Answer: A

- Watch Video Solution

20. At temperature T , a compound $A B_{2}(g)$ dissociates according to the reaction
$2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$
with degree of dissociation α, which is small compared with unity. The expression for K_{p} in terms of α and the total pressure P_{T} is
A. $\left(2 K_{p} / p\right)$
B. $\left(2 K_{p} / p\right)^{1 / 3}$
C. $\left(2 K_{p} / p\right)^{1 / 2}$
D. $\left(K_{p} / p\right)$

Answer: B

- Watch Video Solution

21. The equilibrium constants $K_{p 1}$ and $K_{p 2}$ for the reactions $\mathrm{X} \Leftrightarrow 2 \mathrm{Y}$ and $\mathrm{Z} \Leftrightarrow \mathrm{P}+\mathrm{Q}$, respectively, are in the ratio of $1: 9$. If the degree of dissures at these equilibria is:
A. 3:1
B. 1:9
C. $36: 1$
D. 1:1

Answer: C

- Watch Video Solution

22. Which of the following molecules acts as a Lewis acid?
A. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~B}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
D. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}$
23. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 MHCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. 0.10 M
B. 0.40 M
C. 0.0050 M
D. 0.12 M

Answer: A

24. The ionization constant of ammonium hydroxide is 1.77×10^{-5} at $298 K$. Hydrolysis constant of ammonium chloride is
A. 5.65×10^{-12}
B. 5.65×10^{-10}
C. 6.50×10^{-12}
D. 5.65×10^{-13}

Answer: B

- Watch Video Solution

25. The dissociation constants for acetic acid and HCN at $25^{\circ} C$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The
equilibrium constant for the equilibirum
$\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. 3.0×10^{4}
B. 3.0×10^{-5}
C. 3.0×10^{5}
D. 3.0×10^{-4}

Answer: A

26. Which of the following molecular hydride act as a Lewis acid?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. $B_{2} H_{6}$
D. CH_{4}

Answer: A

- Watch Video Solution

27. Which of the following describes correct sequence for decreasing Lewis acid nature?
A. $B C l_{3}>B F_{3}>B B r_{3}$
B. $B B r_{3}>B C l_{3}>B F_{3}$
C. $B B r_{3}>B F_{3}>B C l_{3}$
D. $B F_{3}>B C l_{3}>B B r_{3}$

- Watch Video Solution

28. What is $\left[\mathrm{H}^{+}\right]$in mol / L of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.1 M in $\mathrm{CH}_{3} \mathrm{COOH}$? K_{a} for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5} ?
A. 3.5×10^{-4}
B. 1.1×10^{-5}
C. 1.8×10^{-5}
D. 9.0×10^{-6}

Answer: D
29. In a buffer solution containing equal concentration of B^{-}and $H B$, the K_{b} for B^{-}is 10^{-10}. The $p H$ of buffer solution is
A. 10
B. 7
C. 6
D. 4

Answer: D
30. A buffer solution is prepared in which the concentration of NH_{3} is 0.30 M and the concentration of NH_{4}^{+}is 0.20 M . If the equilibrium constant, K_{b} for $N H_{3}$ equals 1.8×10^{-5}, what is the $p H$ of this solution? $(\log 2.7=0.43)$
A. 8.73
B. 9.08
C. 9.43
D. 11.72

Answer: C

31. Which of the following is least likely to behave as Lewis acid?
A. $O H^{-}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. NH_{3}
D. $B F_{3}$

Answer: D

D Watch Video Solution
32. Buffer solutions have constant acidity and alkalinity
A. they have large excess of H^{+}or OH^{-}ions
B. they have fixed value of $p H$
C. these give unionized acid or base on reaction with added acid or alkali
D. acids and alkaliesin these solutions are shielded from attack by other ions

Answer: C

- Watch Video Solution

33. $p H$ of saturated solution of $B a(O H)_{2}$ is 12 . The value of solubility product $\left(K_{s p}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. 4.0×10^{-6}
B. 5.0×10^{-6}
C. 3.3×10^{-7}
D. 5.0×10^{-7}

Answer: D

- Watch Video Solution

34. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest $p H$ value?
A. LiCl
B. $B e C l_{2}$
C. $B a C l_{2}$
D. AlCl_{3}

Answer: C

- Watch Video Solution

35. In which of the following arrangements the given sequence is not strict according to the property indicated against it?
A. $H F<H C l<H B r<H I \quad$: increasing acidic strength
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$: increasing $p K_{a}$
C. $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: increasing acidic character
D. $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{SnO}_{2}<\mathrm{PbO}_{2}$: increasing oxidizing power.

Answer: B

- Watch Video Solution

36. Which of the following strongest acid in the following?
A. HCIO_{3}
B. HCIO_{4}
C. $\mathrm{H}_{2} \mathrm{SO}_{3}$
D. $\mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: B

- Watch Video Solution

37. Indentify the correct order of solubility in aqueous medium
A. $Z n S>N a_{2} S>C u S$
B. $N a_{2} S>C u S>Z n S$
C. $N a_{2}>Z n S>C u S$
D. $C u S>Z n S>N a_{2} S$

Answer: C
38. Which of these is least likely to act as Lewis base?
A. F^{-}
B. $B F^{3}$
C. $P F^{3}$
D. $C O$

Answer: B

(Watch Video Solution

39. Which of the following salts will give highest $p H$ in water?
A. KCl
B. Nacl
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. CuSO_{4}

Answer: C

- Watch Video Solution

40. Using the Gibbs energy change, $\Delta G^{\circ}=+63.3 k J$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(s)$ in water at $25^{\circ} \mathrm{C}$ is
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 3.2×10^{-26}
B. 8.0×10^{-12}
C. 2.9×10^{-3}
D. 7.9×10^{-2}

Answer: B

D Watch Video Solution

41. Which one of the following pairs of solution is not an acidic buffer?
A. $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. $\mathrm{H}_{2} \mathrm{PO}_{4}$ and $\mathrm{Na}_{2} \mathrm{PO}_{4}$
C. HClO_{4} and NaClO_{4}

D. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

Answer: C

- Watch Video Solution

42. What is the $p H$ of the resulting solution when equal volumes of 0.1 MNaOH and 0.01 MHCl are mixed?
A. 7.0
B. 1.04
C. 12.65
D. 2.0
43. Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{CO}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{molL} L^{-1}$ Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is:
A. 2.66×10^{-12}
B. 4.5×10^{-11}
C. 5.3×10^{-12}
D. 2.42×10^{-8}

Answer: C

44. The solubility of BaSO_{4} in water is $2.42 \times 10^{-3} g L^{-1}$ at $298 K$. The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{gmol}^{-1}$)
A. $1.08 \times 10^{-10} \mathrm{~mol}^{2} L^{-2}$
B. $1.08 \times 10^{-12} \mathrm{~mol}^{2} L^{-2}$
C. $1.08 \times 10^{-14} \mathrm{~mol}^{2} L^{-2}$
D. $1.08 \times 10^{-8} \operatorname{mol}^{2} L^{-2}$

Answer: A

- Watch Video Solution

45. Which of the following is Lewis acid?
A. $B F_{3}$
B. $C l^{-}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: A

(Watch Video Solution

46. Solubility product of $B a C l_{2}$ is 4×10^{-9}. Its solubility in moles//litre would be
A. 1×10^{-3}
B. 1×10^{-9}
C. 4×10^{-27}
D. 1×10^{-27}

Answer: A
(D) Watch Video Solution
47. If $K_{s p}$ for HgSO_{4} is 6.4×10^{-5}, then solubility of this substance in mole per m^{3} is
A. 8×10^{-3}
B. 8×10^{-6}
C. 6.4×10^{-5}
D. 6.4×10^{-27}

Answer: A
48. The solubility of BaSO_{4} in water is $2.33 \times 10^{-3} \mathrm{~g} /$ litre
. Its solubility product will be (molecular weight of $\left.\mathrm{BaSO}_{4}=233\right)$
A. 1×10^{-5}
B. 1×10^{-10}
C. 1×10^{-15}
D. 1×10^{-20}

Answer: B

49. The precipitation occurs if ionic concentration is
A. less than solubility product
B. more than solubility product
C. equal to solubility product
D. None of these

Answer: B

- Watch Video Solution

50. In the reaction : $\mathrm{H}_{2} \mathrm{~S} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{S}^{--}$, when $\mathrm{NH}_{4} \mathrm{OH}$ is added, then
A. S^{2-} is precipitated
B. no action takes place
C. concentration of S^{2-} decreases
D. concentration of S^{2-} increases

Answer: D

- Watch Video Solution

51. Solubilty of a salt $M^{2} X^{3}$ is Y moldm ${ }^{-3}$. The solubility product of the salt will be
A. $6 y^{4}$
B. $64 y^{4}$
C. $36 y^{5}$
D. $108 y^{5}$

- Watch Video Solution

52. $p H$ value of a solution, whose hydronium ion concentration is a6.2 $\times 10^{-9} \mathrm{~mol} / l$, is
A. 6.21
B. 7.21
C. 7.75
D. 8.21

Answer: D
53. Which is a buffer solution?

A. $\mathrm{CH} 3 \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$
B. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONH}_{4}$
C. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{CL}$
D. $\mathrm{NaOH}+\mathrm{NaCl}$

Answer: A

- Watch Video Solution

54. A solution has $p H=5$, it is diluted 100 times, then it will become
A. neutral
B. basic
C. unaffected
D. more acidic

Answer: A

- Watch Video Solution

55. When 10 ml of $0.1 M$ acitec acid $\left(p k_{a}=5.0\right)$ is titrated against 10 ml of $0.1 M$ ammonia solution $\left(p k_{b}=5.0\right)$,the equivalence point occurs at $p H$
A. 5.0
B. 6.0
C. 7.0
D. 9.0

Answer: C

- Watch Video Solution

56. The $p H$ of solution having $\left[O H^{-}\right]=10^{-7}$ is
A. 7
B. 14
C. zero
D. -7

Answer: A
57. At $80^{\circ} \mathrm{C}$ distilled water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$concentration equal ${ }^{\text {'+ }} O 1 \times 10^{-6} \mathrm{~mole} /$ litre. The value of K_{w} at this temperature will be
A. 1×10^{-6}
B. 1×10^{-9}
C. 1×10^{-12}
D. 1×10^{-15}

Answer: C

- Watch Video Solution

58. A base dissolved in water yields a solution with a hydroxide ion concentration of 0.05 mollitre ${ }^{-1}$. The solution is
A. basic
B. acid
C. neutral
D. both (a) and (b)

Answer: A

D Watch Video Solution

59. The $p H$ of 10^{-8} molar aqueous solution of HCl is
A. -8
B. 8
C. $6>7$ (between 6 and 7)
D. $7>8$ (between 7 and 8)

Answer: C

D Watch Video Solution

60. The H^{+}ion concentration is 1.0×10^{-6} mole/litre in solution. Its $p H$ value will be
A. 12
B. 6
C. 18
D. 24

Answer: B

- Watch Video Solution

61. If $p H$ of A, B, C and D are $9.5,2.5,3.5$ and 5.5 respectively, then strongest acid is
A. A
B. C
C. D
D. B

Answer: D
62. One weak acid (like $\mathrm{CH}_{3} \mathrm{COOH}$) and its strong base together with salt (like $\mathrm{CH}_{3} \mathrm{COONa}$) is a buffer solution. In which pair this type of characterstic is found?
A. HCl and NaCl
B. NaOH and NaNO_{3}
C. KOH and KCl
D. $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$

Answer: D

63. The hydrogen ion concentration of 0.001 MNaOH solution is
A. $1 \times 10^{-2} \mathrm{~mol} /$ litre
B. $1 \times 10^{-11} \mathrm{~mol} /$ litre
C. $1 \times 10^{-14} \mathrm{~mol} /$ litre
D. $1 \times 10^{-12} \mathrm{~mol} /$ litre

Answer: B

- Watch Video Solution

64. The strongest Bronsted base in the following anion is
A. ClO^{-}
B. ClO_{2}^{-}
C. ClO_{3}^{-}
D. ClO_{4}^{-}

Answer: A

- Watch Video Solution

65. Which equilibrium can be described as an acid- base reaction using the Lewis acid-base definition but not using the Bronsted-Lowry definition
A. $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \Leftrightarrow 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{2-}$
B. $\mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{NH}_{4}^{+} \mathrm{CH}_{3} \mathrm{COO}^{-}$
C. $\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$
D.

$$
\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}
$$

Answer: D

- Watch Video Solution

66. The solubility of CuBr is 2×10^{-4} at $25^{\circ} \mathrm{C}$. The $K_{s p}$ value for CuBr is
A. $4 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{l}^{-2}$
B. $4 \times 10^{-11} \mathrm{~mol}^{2} L^{-1}$
C. $4 \times 10^{-4} \mathrm{~mol}^{2} \mathrm{l}^{-2}$
D. $4 \times 10^{-15} \mathrm{~mol}^{2} l^{-2}$

- Watch Video Solution

67. Solubility of AgCl at $20^{\circ} \mathrm{C}$ is 1.435×10^{-3} gperlitre.

The solubility product of AgCl is
A. 1×10^{-5}
B. 1×10^{-10}
C. 1.435×10^{-5}
D. 108×10^{-3}

Answer: B
68. The $p H$ of a solution at $25^{\circ} C$ containing $0.10 m$ sodium acetate and $0.03 m$ acetic acid is $\left(p K_{a}\right.$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.57\right)$
A. 4.09
B. 5.09
C. 6.10
D. 7.09

Answer: B
69. What is the $p H$ of $0.01 M$ glycine solution? For glycine, $K_{a_{1}}=4.5 \times 10^{-3}$ and $K_{a_{2}}=1.7 \times 10^{-10}$ at $298 K$
A. 3.0
B. 10.0
C. 6.1
D. 7.2

Answer: C

- Watch Video Solution

70. At 298 K a0.01MCH COOH_{3} solution is 1.34% ionized. The ionization constant K_{a} for acetic acid will be
A. 1.82×10^{-5}
B. 18.2×10^{-5}
C. 0.182×10^{-5}
D. None of these

Answer: A

- Watch Video Solution

71. Which one of the following is not a buffer solution?
A. $0.8 M H_{2} S+0.8 M K H S$
B. $2 \mathrm{MC}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+3 \mathrm{MKHCO}_{3}$
C. $3 \mathrm{MH}_{2} \mathrm{CO}_{3}+3 \mathrm{MKHCO}_{3}$

D. $0.05 \mathrm{MKClO}_{4}+0.05 \mathrm{MHClO}_{4}$

Answer: D

- Watch Video Solution

72. When a solution of benzoic acid was titrated with
$N a O H$ the $p H$ of the solution when half the acid neutralized was 4.2. Dissociation constant of the acid is
A. 6.31×10^{-5}
B. 3.2×10^{-5}
C. 8.7×10^{-8}
D. 6.42×10^{-4}

- Watch Video Solution

73. Amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ which must be added to 50 mL of $0.2 \mathrm{MNH}_{4} \mathrm{OH}$ solution to yield a solution of pH 9.26 is ($p K_{b}$ of $\left.\mathrm{NH}_{4} \mathrm{OH}=4.74\right)$
A. 0.10 mol
B. 0.20 mol
C. 0.05 mol
D. 0.40 mol

Answer: C
74. When $\mathrm{NH}_{3}(0.1 \mathrm{M}) 50 \mathrm{ml}$ mix with $\mathrm{HCl}(0.1 \mathrm{M}) 10 \mathrm{ml}$ then what is $p H$ of resultant solution $\left(p K_{b}=4.75\right)$
A. 9.25
B. 10
C. 9.85
D. 4.15

Answer: C
75. When $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{HCl}$ is titrated with NaOH then at neutral point the colour of phenopthalein becomes colourless form pink due to:
A. due to formation of $\mathrm{CH}_{3} \mathrm{OH}$
B. due to formation of $\mathrm{CH}_{3} \mathrm{COOH}$ which act as a weak acid.
C. Phenolpthalein vaporizes.
D. due to presence of HCl

Answer: B

76. Which of the following have maximum $p H$?
A. Black coffee
B. blood
C. Gastric juice
D. Saliva

Answer: B

- Watch Video Solution

77. Assertion: Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will
first precipitate AgBr rather than AgCl .
Reason : $K_{s p}$ of $\mathrm{AgCl}<K_{s p}$ of AgBr .
A. If both the assertion and reason are true and reason is the true explanation of the assertion.
B. If both the assertion and reason are true but the reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

78. Assertion: Heat given out during neutralisation of NaOH and $H F$ is $-13.7 k c a l / e q$.

Reason : F^{-}ion is more easily hydrated and thus heat of neutralisation of $H F$ and $N a O H$ is more.
A. If both the assertion and reason are true and reason is the true explanation of the assertion.
B. If both the assertion and reason are true but the reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

79. Assertion: $0.1 \mathrm{MNaCN}+0.05 \mathrm{MHCl}$ solution on mixing in equal volume forms a buffer solution.

Reason : The solution after mixing contains a weak acid and its conjugate base and thus acts as buffer.
A. If both the assertion and reason are true and reason is the true explanation of the assertion.
B. If both the assertion and reason are true but the reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A
80. Assertion: The pH of $\mathrm{NH}_{4} \mathrm{OH}$ remains unchanged on addition of $\mathrm{NH}_{4} \mathrm{Cl}$.

Reason : Addition of $\mathrm{NH}_{4} \mathrm{Cl}$ suppresses the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ due to common ion effect.
A. If both the assertion and reason are true and reason is the true explanation of the assertion.
B. If both the assertion and reason are true but the reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If assertion is false but reason is true.

Watch Video Solution

Section D - Chapter End Test

1. If the degree of ionization of water be 1.8×10^{-9} at
$298 K$. Its ionization constant will be
A. 1.8×10^{-16}
B. 1×10^{-14}
C. 1×10^{-16}
D. 1.67×10^{-14}

Answer: A
2. When a solution of benzoic acid was titrated with $N a O H$ the $p H$ of the solution when half the acid neutralized was 4.2 . Dissociation constant of the acid is
A. 6.31×10^{-5}
B. 3.2×10^{-5}
C. 8.7×10^{-8}
D. 6.42×10^{-4}

Answer: A
3. 10^{-2} mole of NaOH was added to 10 litres of water. The $p H$ will change by
A. 4
B. 3
C. 11
D. 7

Answer: A

- Watch Video Solution

4. If an acidic indicator H In ionies as $H I n \Leftrightarrow H^{+}+I n^{-}$.

To which maximum $p H$ value its solution has distinct
colour characterstic of H In
A. $p K_{\text {in }}-1$
B. $p K_{\text {in }} \pm 1$
C. $p K_{\text {in }}$
D. 7

Answer: B

- Watch Video Solution

5. Let the solubilities of $A g C l$ in pure water be 0.01 $M C a C l_{2}, 0.01 M N a C l$ and $0.05 M A g N O_{3}$ be s_{1}, s_{2}, s_{3} and s_{4} respectively. What is the correct order of these quantities? Neglect any complexation.
A. $S_{1}>S_{2}>S_{3}>S_{4}$
B. $S_{1}>S_{3}>S_{2}>S_{4}$
C. $S_{1}>S_{2}=S_{3}>S_{4}$
D. $S_{1}>S_{3}>S_{4}<S_{2}$

Answer: B

- Watch Video Solution

6. What would be the $p H$ of an ammonia solution if that of an acetic acid solution of equal strength is 3.2 ? Assume dissociation constants for NH_{3} and acetic acid are equal.
A. 3.2
B. 6.4
C. 9.6
D. 10.8

Answer: D

- Watch Video Solution

7. $p H$ of saturated solution of $B a(O H)_{2}$ is 12 . The value of solubility product $\left(K_{s p}\right)$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is
A. $10^{-6} M^{3}$
B. $4 \times 10^{-6} M^{3}$
C. $0.5 \times 10^{-7} M^{3}$
D. $5 \times 10^{-7} M^{3}$

- Watch Video Solution

8. The hydrolysis constant for $Z n C l_{2}$ will be
where K_{b} is effective dissociation constant of base $Z n^{++}$
A. $K_{h}=\frac{K_{w}}{K_{b}}$
B. $K_{h}=\frac{K_{w}^{2}}{K_{b}}$
C. $K_{h}=\frac{K_{w}^{2}}{K_{b}^{2}}$
D. $K_{h}=\frac{K_{b}}{K_{w}^{2}}$

Answer: B
9. In which case $p H$ will not change on dilution
A. $0.01 \mathrm{MCH}_{3} \mathrm{COONa}+0.01 \mathrm{MCH}_{3} \mathrm{COOH}$ buffer
B. $0.01 \mathrm{MCH}_{3} \mathrm{COONH}_{4}$
C. $0.01 \mathrm{MNaH}_{2} \mathrm{PO}_{4}$
D. in all cases

Answer: D

- Watch Video Solution

10. $M(O H)_{X}$ has $K_{S P} 4 \times 10^{-12}$ and solubility $10^{-4} M$.

The value of x is:
A. 1
B. 2
C. 3
D. -4

Answer: B

(Watch Video Solution

11. 1 M benzoic acid $\left(p K_{a}=4.20\right)$ and $1 \mathrm{M} C_{6} H_{5} \mathrm{COONa}$ solutions are given separately What is the volume of benzoic acid required to prepare a 300 ml buffer solution of $\mathrm{pH}=4.5 ?[\log 2=0.3]$
A. 200 ml
B. 150 ml

C. 100 ml

D. 50 ml

Answer: C

- Watch Video Solution

12. The $p H$ of an aqueous solution of $0.1 M$ solution of a weak monoprotic acid which is 1% ionised is
A. 1
B. 2
C. 3
D. 11

(Watch Video Solution

13. pH of a $10^{-10} \mathrm{MNaOH}$ is nearest to
A. 10
B. 7
C. 4
D. 10

Answer: B

- Watch Video Solution

14. The dissocication constant of a weak acid is 1.0×10^{-5}, the equilibrium constant for the reaction with strong base is
A. 1.0×10^{-5}
B. 1.0×10^{-9}
C. 1.0×10^{9}
D. 1.0×10^{14}

Answer: C
15. The $p H$ of $0.1 M$ solution of the following salts increases in the order
A. $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
B. $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCN}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
D. $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$

Answer: D

- Watch Video Solution

16. In
the
equilibrium
$A^{-}+H_{2} O \Leftrightarrow H A+O H^{-}\left(K_{a}=1.0 \times 10^{-5}\right)$.
The
degree of hydrolysis of $0.001 M$ solution of the salt is
A. 10^{-3}
B. 10^{-4}
C. 10^{-5}
D. 10^{-6}

Answer: A

(Watch Video Solution

17. The sulphide ion concentration $\left[S^{2-}\right]$ in saturated $H_{2} S$
solution is 1×10^{-22}. Which of the following sulphides
should be quantitavely precipitated by $H_{2} S$ in the presence
of dil. HCl ?
Sulphide Solubility Product
(I)
1.4×10^{16}
(II)
1.2×10^{-22}
(III)
8.2×10^{-46}
(IV)
5.0×10^{-34}
A. I,II
B. III,IV
C. II,III,IV
D. Only I

Answer: B
18. The $K_{s p}$ of CuS, $A g_{2} S$ and $H g S$ are $10^{-31}, 10^{-44}$ and 10^{-54} respectively. The solubility of these sulphides are in the order.
A. $A g_{2} S>H g S>C u S$
B. $H g S>C u S>A g_{2} S$
C. `HgSgtAg_(2)SgtCuS
D. $A g_{2} S>C u S>H g S$

Answer: D
(Watch Video Solution
19. For a weak acid $H A$ with dissociation constant 10^{-9}, $p O H$ of its $0.1 M$ solution is
A. 9
B. 3
C. 11
D. 10

Answer: D

- Watch Video Solution

20. The concentration of $\left[H^{+}\right]$and concentration of [OH^{-}] of a 0.1 aqueous solution of 2% ionised weak acid
is [lonic product of water $=1 \times 10^{-14}$]
A. $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$
B. $1 \times 10^{-3} M$ and $3 \times 10^{-11} M$
C. $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$
D. $3 \times 10^{-2} M$ and $4 \times 10^{-13} M$

Answer: A

- Watch Video Solution

21. If 50 ml of 0.2 MKOH is added to 40 ml of 0.05 MHCOOH , the pH of the resulting solution is ($\left.K_{a}=1.8 \times 10^{-4}\right)$
A. 3.4
B. 7.5
C. 5.6
D. 3.75

Answer: A

- Watch Video Solution

22. What is the $p H$ of a $1 M C H_{3} \mathrm{COOH}$ a solution K_{a} of acetic acid $=1.8 \times 10^{-5}$?

$$
K=10^{-14} \text { mol }^{2} \text { litre }^{-2}
$$

A. 9.4
B. 4.8
C. 3.6
D. 2.4

Answer: A

- Watch Video Solution

23. What will be the $p H$ of a solution formed by mixing 40 ml of 0.10 MHCl with 10 ml of 0.45 MNaOH ?
A. 12
B. 10
C. 8
D. 6
24. By adding 20 ml 0.1 NHCl to 20 ml 0.001 NKOH , the pH of the obtained solution will be
A. 2
B. 1.3
C. 0
D. 7

Answer: B

- Watch Video Solution

25. The solubility product of a sparingly soluble salt $A B$ at room temperature is 1.21×10^{-6}. Its molar solubility is
A. 1.21×10^{-6}
B. 1.21×10^{-3}
C. 1.1×10^{-4}
D. 1.1×10^{-3}

Answer: D

- Watch Video Solution

26. According to Bronsted principle, an aqueous solution of HNO_{3} will contain
A. NO_{2}^{-}
B. NO_{3}^{-}
C. NO_{2}^{+}
D. NO^{+}

Answer: B

- Watch Video Solution

27. Orthoboric acid in aqueous medium is
A. Monobasic
B. Dibasic
C. Tribasic

D. All are correct

Answer: A

- Watch Video Solution

28. Assertion: A solution of FeCl_{3} in water produces brown precipitate on standing.

Reason: Hydrolysis of FeCl_{3} takes place in water.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both the assertion and reason are true and reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.

D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

29. Assertion (A): BaCO_{3} is more soluble in HNO_{3} than in water.

Reason (R): Carbonate is a weak base and reacts with H^{\oplus} ions to form strong acid causing barium salt to dissociate.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both the assertion and reason are true and reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

30. Assertion: CHCl_{3} is more acidic than CHF_{3}.

Reason: The conjugate base of CHCl_{3} is more stable than
CHF_{3}.
A. If both assertion and reason are true and the reason is the correct explantion of the assertion.
B. If both the assertion and reason are true and reason is not the correct explanation of assertion.
C. If the assertion is true but reason is false.
D. If the assertion and reason both are false.

Answer: A

- Watch Video Solution

Others

1. Dissociation constants of two acids $H A$ and $H B$ are respectively 4×10^{-10} and 1.8×10^{-5}, whose $p H$ value will be higher for a given molarity:
A. $H A$
B. $H B$
C. Both same
D. Can't say

Answer: A

- Watch Video Solution

2. A monoprotic acid in $1.00 M$ solution is 0.01% ionised.

The dissociation constant of this acid is
A. 1×10^{-8}
B. 1×10^{-4}
C. 1×10^{-6}
D. 10^{-5}

Answer: A

- Watch Video Solution

3. The dissociation constants of two acids $H A_{1}$ and $H A_{2}$
are 3.0×10^{-4} and 1.8×10^{-5} respectively. The relative strengths of the acids will be approximately
A. $1: 4$
B. $4: 1$
C. $1: 16$
D. 16:1

Answer: B
4. Which of the following can act both as Bronsted acid and as Bronsted base ?
A. Cl^{-}
B. HCO_{3}^{-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. OH^{-}

Answer: B
5. pH of water is 7.0 at $25^{\circ} \mathrm{C}$. If water is heated to $70^{\circ} \mathrm{C}$, the:
A. $p H$ will decrease and solution becomes acidic
B. $p H$ will increase
C. $p H$ will remain constant as 7
D. $p H$ will decrease but solution will be neutral

Answer: D

- Watch Video Solution

6. The equivalent conductance at infinite dilution of a weak acid such as $H F$
A. Can be determined by measurement of very dilute

$H F$ solution

B. Can be determined by extrapoltaion of measurements on dilute solutions of $\mathrm{HCl}, \mathrm{HBr}$ and HI
C. Can best be determined from measurements on dilute solutions of $\mathrm{NaF}, \mathrm{NaCl}$ and HCl
D. Is an underfined quantity

Answer: C

- Watch Video Solution

7. 100 ml of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ is added to 100 ml of 0.2 MNaOH

.The resulting solution will be
A. Acidic
B. Basic
C. Neutral
D. Slightly basic

Answer: A

- Watch Video Solution

8. K_{a} for formic acid and acetic acid are 2.1×10^{-4} and 1.1×10^{-5} respectively. The relative strength of acids is:
A. $19: 1$
B. 2.3: 1
C. 1:2.1
D. $4.37: 1$

Answer: D

(Watch Video Solution

9. In
the
following
reaction
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-}(a q)+\mathrm{PO}_{4}^{3-}(a q) \Leftrightarrow \mathrm{HPO}_{4}^{-2}(a q)+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}(a q)$
, which are the two Bronsted bases?
A. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and PO_{4}^{3-}
B. $H P O_{4}^{2-}$ and $C_{2} O_{4}^{2-}$
C. $\mathrm{HC}_{2} \mathrm{O}_{4}^{-}$and HPO_{4}^{2-}
D. PO_{4}^{3-} and $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

Answer: D

- Watch Video Solution

10. The following equilibrium is established when HClO_{4} is dissolved in weak acid $H F$,
$\mathrm{HF}+\mathrm{HClO}_{4} \Leftrightarrow \mathrm{ClO}_{4}^{-}+\mathrm{H}_{2} \mathrm{~F}^{+}$
Which of the following is correct set of conjugate acid base pair?
A. HF and HClO_{4}
B. HF and ClO_{4}^{-}
C. $H F$ and $H_{2} F^{+}$
D. HClO_{4} and $\mathrm{H}_{2} \mathrm{~F}^{+}$

Answer: C

- Watch Video Solution

11. 10 ml of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ will completely neutralise

A. 10 ml of 1 MNaOH solution

B. 10 ml of 2 MNaOH solution
C. 5 ml of 2 MKOH solution
D. 5 ml of $1 \mathrm{MNa}_{2} \mathrm{CO}_{3}$ solution
12. Boric acid $\mathrm{H}_{3} \mathrm{BO}_{3}$ is a:
A. Arrhenius acid
B. Bronsted acid
C. Lewis acid
D. All of these

Answer: C

- Watch Video Solution

13. The hydrogen ion concentration in weak acid of dissociation constant K_{a} and concentration c is nearly equal to
A. $\sqrt{K_{a} / c}$
B. c / K_{a}
C. $K_{a} c$
D. $\sqrt{K_{a} c}$

Answer: D
14. For $10^{-2}(M) H_{3} \mathrm{PO}_{3}$ solution which of the following relations is correct?
A.

$$
\left[H_{3} P O_{3}\right]+\left[H_{2} P O_{3}^{-}\right]+\left[H P O_{3}^{2-}\right]+\left[P O_{3}^{2-}\right]=10^{-2}
$$

B. $\left[\mathrm{H}_{3} \mathrm{PO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+\left[\mathrm{HPO}_{3}^{2-}\right]=10^{-2}$
C. $\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+\left[\mathrm{HPO}_{3}^{2-}\right]+\left[\mathrm{PO}_{3}^{3-}\right]=10^{-2}$
D. $\left[\mathrm{H}_{3} \mathrm{PO}_{3}\right]+\left[\mathrm{H}_{2} \mathrm{PO}_{3}^{-}\right]+2\left[\mathrm{HPO}_{3}^{2-}\right]=10^{-2}$

Answer: B
15. When 100 ml of 1 MNaOH solution is mixed with 10 ml of $10 \mathrm{MH}_{2} \mathrm{SO}_{4}$, the resulting mixture will be
A. Acidic
B. Alkaline
C. Neutral
D. Strongly alkaline

Answer: A

- Watch Video Solution

16. What is the concentration of $A g^{+}$ion in a $1 L$ solution containing 0.02 mol of AgNO_{3} and 0.14 mol of NH_{3} ? For
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}, K_{\text {Instal }}=10^{8}$
A. $2 \times 10^{-7}(M)$
B. $10^{-8}(M)$
C. $2 \times 10^{-8}(M)$
D. $2 \times 10^{-9}(M)$

Answer: C

- Watch Video Solution

17. In a solution total concentration of M^{3+} is $2 \times 10^{-3}(M)$ and total concentration of $S C N^{-}$is $1.51 \times 10^{-3}(M)$ and free $S C N^{-}$concentration $=1 \times 10^{-5}(M)$

What is the dissociation constant of the complex $M(S C N)^{2+}$?
A. 2×10^{5}
B. 2×10^{-5}
C. 3.33×10^{5}
D. 3.33×10^{-6}

Answer: D

Watch Video Solution

18. The salt that forms neutral solution in water is
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. NaCl
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $K_{3} B O_{3}$

Answer: B

(Watch Video Solution

19. The dissociation constant of a monobasic acid which is
3.5% dissociated in $\frac{N}{20}$ solution at $20^{\circ} \mathrm{C}$ is
A. 3.5×10^{-2}
B. 5×10^{-3}
C. 6.34×10^{-5}
D. 6.75×10^{-2}

- Watch Video Solution

20. Which of the following substance is an electrolyte?
A. Chloroform
B. Benzene
C. Toluene
D. Magnesium chloride

Answer: D

D Watch Video Solution
21. The species among the following which can act as an acid and as a base is
A. HSO_{4}^{-}
B. SO_{4}^{2-}
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. Cl^{-}

Answer: A

- Watch Video Solution

22. The dissociation constant of weak acid $H A$ is 4.9×10^{-8}. After making the necessary approximations,
calculate $p H$ in $0.1 M$ acid.
A. 1.155
B. 2.155
C. 3.155
D. 4.155

Answer: D

- Watch Video Solution

23. The K_{a} for formic acid and acetic acid are 2×10^{-4} and 2×10^{-5} respectively. Calculate the relative strength of acids with same molar concentration
A. $\sqrt{10}$
B. $\sqrt{7}$
C. $\sqrt{8}$
D. $\sqrt{5}$

Answer: A

- Watch Video Solution

24. Which among the following is strongest acid ?
A. $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{2}$
B. $\mathrm{H}(\mathrm{ClO}) \mathrm{O}_{3}$
C. $\mathrm{H}(\mathrm{ClO}) O$
D. $\mathrm{H}(\mathrm{ClO})$

Answer: B

- Watch Video Solution

25. Calculate $p H$ of $0.002 \mathrm{NNH}_{4} \mathrm{OH}$ having 2% dissociation
A. 7.6
B. 8.6
C. 9.6
D. 10.6

Answer: C

26. What concentration of acetic acid is needed to give a hudrogen ion concentration of $3.5 \times 10^{-4} M$?
$\left(K_{a}=1.8 \times 10^{-5}\right) ?$
A. $3.5 \times 10^{-4} M$
B. $6.80 \times 10^{-3} M$
C. $4.2 \times 10^{-4} M$
D. $7.2 \times 10^{-4} M$

Answer: B
27. A solution of acetic acid is 1.0% ionised. Determine the molar concentration of acid $\left(K_{a}=1.8 \times 10^{-5}\right)$ and also the $\left[H^{+}\right]$.
A. $1.8 \times 10^{-1} M$ and $1.8 \times 10^{-3} M$
B. $0.18 \times 10^{-1} M$ and $1.8 \times 10^{-4} M$
C. $0.18 \times 10^{-2} M$ and $1.8 \times 10^{-2} M$
D. $0.18 \times 10^{-3} M$ and $1.8 \times 10^{-1} M$

Answer: A
28. $B O H$ is a weak base, molar concentration of $B O H$ that provides a $[O H]^{-}$
$1.5 \times 10^{-3} M\left[K_{b}(B O H)=1.5 \times 10^{-5} M\right]$ is
A. $0.15 M$
B. $0.1515 M$
C. $0.0015 M$
D. $1.5 \times 10^{-5} M$

Answer: A
29. Lemon juice normally has a $p H$ of 2 . If all the acid the lemon juice is citric acid and there are no citrate salts present, then what will be the citric acid concentration [Hcit] in the lemon juice? (Assume that only the first hydrogen of citric acid is important)

HCit $\Leftrightarrow H^{+}+$Cit $^{-}, K_{a}=8.4 \times 10^{-4} \mathrm{molL} L^{-1}$
A. $8.4 \times 10^{-4} M$
B. $4.2 \times 10^{-4} M$
C. $16.8 \times 10^{-4} M$
D. $11.9 \times 10^{-2} M$

Answer: D
30. Strongest conjugate base is
A. $C 1^{-}$
B. $B r^{-}$
C. F^{-}
D. I^{-}

Answer: C

- Watch Video Solution

31. $0.2 M$ solution of a weak acid $H A$ is 1% ionised $25^{\circ} C$.
K_{a} for the acid is equal to
A. $\frac{0.002 \times 0.002}{0.198}$
B. $\frac{0.02 \times 0.02}{0.18}$
C. $\frac{0.01 \times 0.01}{0.19}$
D. $\frac{0.19}{0.01 \times 0.01}$

Answer: A

- Watch Video Solution

32. An aqueous solution of aluminium sulphate would show
A. An acidic reaction
B. An neutral reaction
C. An basic reaction
D. Both acidic and basic reaction

(Watch Video Solution

33. Which of the following has highest proton affinity?
A. NH_{3}
B. PH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. $H_{2} S$

Answer: A
34. The conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is :
A. $H P O_{4}^{2-}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}$
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. PO_{4}^{3-}

Answer: A

- Watch Video Solution

35. According to Bronsted principle, an aqueous solution of HNO_{3} will contain
A. NO_{2}^{-}
B. NO_{3}^{-}
C. NO_{2}^{+}
D. NO^{+}

Answer: B

(D) Watch Video Solution

36. The conjugate base of OH^{-}is :
A. O_{2}
B. $\mathrm{H}_{2} \mathrm{O}$
C. O^{-}
D. O^{2-}

- Watch Video Solution

37. Would gaseous HCl be considered as an Arrhenius acid?
A. Yes
B. No
C. Not known
D. Gaseous HCl does not exist

Answer: B
38. The first and second dissociation constant of an acid $H_{2} A$ are 1.0×10^{-5} and 5.0×10^{-10} respectively. The overall dissociation constant of the acid will be
A. 5.0×10^{-5}
B. 5.0×10^{15}
C. 5.0×10^{-15}
D. 0.2×10^{5}

Answer: C

- Watch Video Solution

39. An aqueous solution of sodium carbonate is alkaline because sodium carbonate is a salt of
A. Weak acid and weak base
B. Strong acid and weak base
C. Weak acid and strong base
D. Strong acid and strong base

Answer: C

- Watch Video Solution

40. Four species are listed below:
(i) HCO_{3}^{-}
(ii) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iii) HSO_{4}^{-}
(iv) $\mathrm{HSO}_{3} \mathrm{~F}$

Which one of the following is the correct sequence of their acid strength?
A. $i v<i i<i i i<i$
B. $i i<i i i<i<i v$
C. $i<i i i<i i<i v$
D. $i i i<i<i v<i i$

Answer: C

- Watch Video Solution

41. Ammonia gas dissolves in water to form $\mathrm{NH}_{4} \mathrm{OH}$. In this reaction water acts as
A. A conjugate base
B. A non-polar solvent
C. An acid
D. A base

Answer: C

- Watch Video Solution

42. The $p H$ of a 0.1 molar solution of the acid $H Q$ is 3 . The value of the ionisation constant, K_{a} of the acid is
A. 3×10^{-1}
B. 1×10^{-3}
C. 1×10^{-5}
D. 1×10^{-7}

Answer: C

(Watch Video Solution

43. Orthoboric acid in aqueous medium is
A. Monobasic
B. Dibasic
C. Tribasic

D. All are correct

Answer: A

- Watch Video Solution

44. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below
I. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
II. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
III. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2+}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
A. II only
B. I and $I I$
C. III only
D. I only

Answer: A
(D) Watch Video Solution

