© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

MOCK TEST

Mock Test 1

1. Wave number of spectral line for a given transition is $x \mathrm{~cm}^{-1}$ for He^{+}, then its value for Be^{3+}
(isoelectronic of He^{+}) for same transition is:
A. (a) $x \mathrm{~cm}^{-1}$
B. (b) $4 x \mathrm{~cm}^{-1}$
C. (c) $\frac{x}{4} c m^{-1}$
D. (d) $2 x \mathrm{~cm}^{-1}$

Answer: B

- Watch Video Solution

2. Given J-tube has 2.4 mL of air at a pressure of 1 atm. On adding mercury, volume of air is reduced to
1.9 mL as shown. Difference in the level of mercury in
two columns is:

A. (a) 700 mm
B. (b) 200 mm
C. (c) 900 mm
D. (d) 760 mm

Answer: B

D Watch Video Solution

3. Which of the following is not a planar molecule?

$$
\begin{aligned}
& \text { A. (a) } \mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2} \\
& \text { B. (b) } \mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2} \\
& \text { С. (c) } \mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O} \\
& \text { D. (d) } N C-H C=\mathrm{CH}-\mathrm{CN}
\end{aligned}
$$

Answer: A

- Watch Video Solution

4. How many alkenes are possible with molecular formula $\mathrm{C}_{4} \mathrm{H}_{8}$?
A. (a) 2
B. (b) 3
C. (c) 4
D. (d) 6

Answer: C

- Watch Video Solution

5. A solution is a mixture of 0.05 M NaCl and 0.05 M

Nal. The concentration of iodide in the solution when AgCl just starts precipitating is equal to:
$\left(K_{s p} A g C l=1 \times 10^{-10} M^{2}, K_{s p} A g I=4 \times 10^{-16} M^{2}\right)$
A. (a) $4 \times 10^{-6} \mathrm{M}$
B. (b) $2 \times 10^{-8} \mathrm{M}$
C. (c) $2 \times 10^{-7} \mathrm{M}$
D. (d) $8 \times 10^{-15} \mathrm{M}$

Answer: C

- Watch Video Solution

6. Which of the following is the correct order of dipole moment?

(I)

(II)

(III)
A. (a) $I=I I=I I I$
B. (b) $I<I I<I I I$
C. (c) $I>I I>I I I$
D. (d) $I I<I I I<I$

Answer: D

- Watch Video Solution

7. The reactivity of alkyl halides for Wurtz reaction is:
A. (a) $1^{\circ}>2^{\circ}>3^{\circ}$
B. (b) $3^{\circ}>2^{\circ}>1^{\circ}$
C. (c $) 2^{\circ}>3^{\circ}>1^{\circ}$
D. $(\mathrm{d}) 1^{\circ}>3^{\circ}>2^{\circ}$

Answer: A

- Watch Video Solution

8. 1 mol of $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ will neutralise x mol NaOH , y mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ and z mol of $\mathrm{Al}(\mathrm{OH})_{2}$ respectively (assuming all as strong electrolytes). x, y, z are in the ratio of:
A. (a) $3: 1.5: 1$
B. (b) $1: 2: 3$
C. (c) $3: 2: 1$
D. (d) $1: 1: 1$

Answer: D

- Watch Video Solution

9. For the reaction at 298 K

$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{kJmol}^{-1}$ and $\Delta S=0.2 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$

At what temperature will the reaction becomes
spontaneous considering ΔH and ΔS to be content over the temperature range.
A. (a) 2000 K
B. (b) 1800 K
C. (c) 2100 K
D. (d) $1900 K$

Answer: C

- Watch Video Solution

10. The equilibrium constant for the reaction $A_{(g)}+2 B_{(g)} \rightarrow C_{(g)}$ is $0.25 \mathrm{dm}^{6} \mathrm{~mole}^{-2}$. In a
volume of $5 \mathrm{dm}^{3}$, what amount of A must be mixed with 4 moles of B to yield 1 mole of C at equilibrium.
A. (a) 12.5 moles
B. (b) 26 moles
C. (c) 25 moles
D. (d) 13 moles

Answer: B

- Watch Video Solution

11. 12.825 gm of a sample of $\mathrm{Ba}(\mathrm{OH})_{2}$ is dissolved in 10 ml of 0.5 NHCl solution. The excess of HCl was
titrated with 0.2 NNaOH . The volume of NaOH used was $10 c c$. The percentage of $\mathrm{Ba}(\mathrm{OH})_{2}$ in the sample is
A. (a) 2.58
B. (b) 6.4
C. (c) 8
D. (d) 2

Answer: D

12. In a saturated solution of calcium phosphate, the

 concentration of PO_{4}^{-3} ions is 3.3×10^{-7}. The $K_{s p}$ of $C a_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will beA. (a) 1.32×10^{-31}
B. (b) 1.32×10^{-32}
C. (c) 1.32×10^{-33}
D. (d) 1.32×10^{-33}

Answer: B

- Watch Video Solution

13. A ' is an oxide of xenon. ' A ' is hygroscopic and explosive. The number of non-bonded electron paris in the molecule of A and hydridisation of central atom is
A. (a) $1, s p^{3}$
B. (b) $3, s p^{3}$
C. (c) $7, s p^{3}$
D. (d) $6, s p^{3}$

Answer: C

14. $\mathrm{CH}_{4} \xrightarrow{1000^{\circ} \mathrm{C}} A+B_{(g)}$,
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa} \xrightarrow[\Delta]{\text { Soda lime }} \mathrm{C}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
$C \xrightarrow[450^{\circ} \mathrm{C}]{\Delta} B+E, E+B \xrightarrow{N i} X$
If E is a hydrocarbon, then X is identical with
A. (a) A
B. (b) B
C. (c) C
D. (d) D

Answer: C

15.

$\mathrm{C}_{2} \mathrm{H}_{2} \xrightarrow[\mathrm{Hg}^{2+} / \mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}} A, \mathrm{CH}_{2}=\mathrm{CH}_{2} \xrightarrow[200-400^{\circ} \mathrm{C}]{\frac{1}{2} \mathrm{O}_{2}, \mathrm{Ag}} B$
A. (a)A and B are same compounds
B. (b) A and B are isomers
C. (c)A and B are different compounts with
different formula
D. (d)A and B are unsaturated

Answer: B

- Watch Video Solution

16. The solubility product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is
2.0×10^{-15}. The molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 MNaOH solution is
A. (a) 1.0×10^{-5}
B. (b) $2.0 \times 10^{-13} \mathrm{M}$
C. (c) $4.44 \times 10^{-8} M$
D. (d) $2.0 \times 10^{-12} M$

Answer: B

- Watch Video Solution

17. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of

Iatoms, Calculate K_{p} for the equilibrium.
$I_{2(g)} \Leftrightarrow 2 I_{(g)}$
A. (a) 2.67×10^{4}
B. (b) 2.67×10^{6}
C. (c) 4×10^{3}
D. (d) 6×10^{3}

Answer: A

18. Which of the following compounds will show

aromatic

 character?

IV
A. (a) $I I$ and $I V$
B. (b) $I, I I$ and $I V$
C. (c)II and $I I I$
D. (d) I and $I I$

Answer: A
19. In a hydrocarbon the mass ratio of hydrogen to carbon is $1: 3$. The empirical formula of the hydrocarbon is
A. (a) CH_{2}
B. (b) $C_{2} H$
C. (c) CH_{3}
D. (d) CH_{4}

Answer: D

- Watch Video Solution

20. Compressibility factor (Z) for a van der Waals real

gas at critical point is

$$
\begin{aligned}
& \text { A. (a) } \frac{3}{8} \\
& \text { B. (b) } \frac{8}{3} \\
& \text { C. (c) } \frac{8}{27} \\
& \text { D. (d) } \frac{27}{8}
\end{aligned}
$$

Answer: A

21. How many open chain isomers are possible are with the formula $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Cl}_{2}$?
A. (a) 8
B. (b) 6
C. (c) 7
D. (d) 5

Answer: C

- Watch Video Solution

22. The designation of a sub-shell with $n=4$ and $l=3$ is
A. (a) $4 s$
B. (b) $4 p$
C. (c) $4 d$
D. (d) $4 f$

Answer: D

- Watch Video Solution

23. Which of the following is not a linear species?
A. (a) NO_{2}^{+}
B. (b) $C_{2} H^{-}$
C. (c) $A g(C N)_{2}^{-}$
D. (d) BH_{2}^{-}

Answer: D

- Watch Video Solution

24. The decreasing basic character of the following is
(I) PhO^{\ominus}
(II) $\mathrm{CH}_{3} S^{\ominus}$
(III) OH
(IV) $M e O^{\ominus}$.
A. (a) $I>I I>I I I>I V$
B. (b) $I I I>I V>I I>I$
C. (c) $I V>I I I>I I>I$
D. (d) $I>I I>I V>I I I$

Answer: B
25. $K_{s p}$ of $\mathrm{Mg}(\mathrm{OH})_{2}$ is 4.0×10^{-6}. At what minimum $p H, M g^{2+}$ ions starts precipitating 0.01 MgCl
A. (a) $2+\log 2$
B. (b) $2-\log 2$
C. (c) $12+\log 2$
D. (d) $12-\log 2$

Answer: C

- Watch Video Solution

26. The equilibrium constant for a reaction

$A+2 B \Leftrightarrow 2 C$ is 40 . The equilibrium constant for reaction $C \Leftrightarrow B+1 / 2 A$ is
A. (a) $1 / 40$
B. (b) $(1 / 40)^{1 / 2}$
C. (c) $(1 / 40)^{2}$
D. (d) 40

Answer: B

- Watch Video Solution

27. $1 g H_{2}$ gas $S T P$ is expanded so that the volume is doubled. Hence, work done is
A. (a) 22.4 L-atm
B. (b) 5.6 L -atm
C. (c) 11.2 L -atm
D. (d) 44.8 L-atm

Answer: C

- Watch Video Solution

28. At the top of the mountain, the thermometer reads $0^{\circ} \mathrm{C}$ and the barometer reads 710 mmHg . At the bottom of the mountain the temperature is
$30^{\circ} \mathrm{C}$ and the pressure is 760 mmHg . The ratio of the density of air at the top with that at the bottom is
A. (a) $1: 1$
B. (b) $1.04: 1$
C. (c) $1: 1.04$
D. (d) $1: 1.5$

Answer: B
29. The limiting line Balmer series will have a frequency of

$$
\begin{aligned}
& \text { A. (a) } 32.29 \times 10^{15} s^{-1} \\
& \text { B. (b) } 3.65 \times 10^{14} s^{-1} \\
& \text { C. (c) }-8.22 \times 10^{14} s^{-1} \\
& \text { D. (d) } 8.22 \times 10^{14} s^{-1}
\end{aligned}
$$

Answer: C

30. If an our sample containing $M n$ is treated with 50 mL of $0.2750 \mathrm{MNa} \mathrm{N}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and the unreacted $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ required 18.28 mL of $0.1232 \mathrm{MKMnO}_{4}$ in acidic medium, the number of moles of $M n$ in the ore is
A. (a) 1.38×10^{-2}
B. (b) 1.49×10^{-3}
C. (c) 1.15×10^{-2}
D. (d) 8.12×10^{-3}

Answer: D

31. The oxidation number of oxygen in $O F_{2}$ is
A. (a) +2
B. (b) -2
C. (c) +1
D. (d) -1

Answer: C
32. The $M w$ of a oxide of an element is 44 . The $E w$ of the element is 14 . The atomic weight of the element is
A. (a) 14
B. (b) 28
C. (c) 42
D. (d) 56

Answer: A

- Watch Video Solution

33. At low pressure the van der Waals' equation is written as .

$$
\begin{aligned}
& \text { A. (a) } \frac{P V}{R T}=\left[1-\frac{a}{R T V}\right] \\
& \text { B. (b) } \frac{P V}{R T}=\left[1-\frac{R T V}{a}\right] \\
& \text { C. (c) } \frac{P V}{R T}=\left[1+\frac{a}{R T V}\right] \\
& \text { D. (d) } \frac{P V}{R T}=\left[1+\frac{R T V}{a}\right]
\end{aligned}
$$

Answer: A

- Watch Video Solution

34. Hydrogen gas will not reduce:
A. (a)Heated cupric oxide
B. (b)Heat ferric oxide
C. (c)Heated stannic oxide
D. (d)Heated aluminium oxide

Answer: D

- Watch Video Solution

35. The equilibrium constant $\left(K_{p}\right)$ at $27^{\circ} C$ for a homegenous gasesous reaction is 10^{-8}. The standard free energy change ΔG° for the reaction is: (Use $R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$)
A. (a) 11.05 kcal
B. (b) -1.8 kcal
C. (c) $-4.1454 k c a l$
D. (d) $+4.1454 k c a l$

Answer: A

D Watch Video Solution

36. In a flask, colourless $\mathrm{N}_{2} \mathrm{O}_{4}$ is in equilibrium with brown-coloured NO_{2}. At equilibrium, when the flask is heated to $100^{\circ} \mathrm{C}$ the brown colour deepens and
on cooling, the brown colour became less coloured.
The change in enthalpy ΔH for the ayatem is
A. (a)Negative
B. (b)Positive
C. (c)Zero
D. (d)Undefined

Answer: B

- Watch Video Solution

37. The atomic number of vanadium (V), chromium
$(C r)$, manganese $(M n)$ and iron $(F e)$ are
respectively $23,24,25,26$. Which out of these may be expected to have the jump in second ionisation enthalpy?
A. (a) $M n$
B. (b) $F e$
C. (c) V
D. (d) $C r$

Answer: D
38. The Lassaigne's solution when heated with ferrous sulphate and acidified with sulphuric acid gave intense blue colour indicating the presence of nitrogen. The blue colour is due to formation of:

> A. (a) $N a_{4}\left[F e(C N)_{6}\right]$
> B. (b) $F e_{3}\left[F e(C N)_{6}\right]_{2}$
> C. (c) $F e_{2}\left[F e(C N)_{6}\right]$
> D. (d) $F e_{4}\left[F e(C N)_{6}\right]_{3}$

Answer: D

39. Which one is used as propellants for rokets?
A. (a)Liq. $\mathrm{H}_{2}+$ Liq. O_{2}
B. (b)Liq. $N_{2}+$ Liq. O_{2}
C. (c) Liq. $\mathrm{H}_{2}+$ Liq. N_{2}
D. (d)Liq. $O_{2}+$ Liq. Air

Answer: A

- Watch Video Solution

40. A metal M readily forms its sulphate MSO_{4} which is water soluble. It forms oxide $M O$ which
becomes inert on heating. It forms insoluble hydroxide which is soluble in NaOH . The metal M is:
A. (a) Mg
B. (b) Ba
C. (c)Ca
D. (d) Be

Answer: D
41. Assertion: Volume of a gas is inversely proportional to the number of moles of a gas.

Reason: The ratio by volume of gaseous reactants
and products is in agreement with their molar ratio.
A. (a)If both assertion and reason are true and
the reason is the correct explanation of the
assertion.
B. (b)If both assertion and reason are true and
the reason is not the correct explanation of
the assertion.
C. (c)If assertion is true but reason is false.

D. (d)If assertion is false but reason is true.

Answer: D

- Watch Video Solution

42. Assertion : The dipole moment helps to predict whether a molecule is polar or non- polar.

Reason : The dipole moment helps to predict geometry of molecule.
A. (a)If both assertion and reason are true and
the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and
the reason is not the correct explanation of
the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

43. Assertion: A reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$, has K_{p} at 298 K and 500 K as 4.0×10^{24} and 8.5×10^{10} respectively.

Reason: The E_{a} for the forward reaction is lesser than E_{b} for the backward reaction.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and
the reason is not the correct explanation of
the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

44. Assertion : H_{2} exists in two isomeric forms known as ortho and para forms

Reason : The ortho and para H_{2} differ in the spin of theire electron.
A. (a)If both assertion and reason are true and
the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and
the reason is not the correct explanation of
the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: C

- Watch Video Solution

45. Assertion: Greenhouse effect was observed in houses used to grow plants and these are made of green glass.

Reason: Greebhouse name has been given because glass are of green glass.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and
the reason is not the correct explanation of the assertion.
C. (c) If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

Mock Test 2

1. Ethylene combines with sulphur monochloride to form.
A. Phosgene
B. Mustard gas
C. Methyl isocyanate
D. Lewisite

Answer: B
2. Benzene reacts with acetyl chloride in the prescence of anhydrous AlCl_{3} to give
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$

Answer: D

- Watch Video Solution

3. $R-C \equiv C-H \xrightarrow{N a N H_{2}} A \xrightarrow{R X} B \xrightarrow{N a / L i q N H_{3}} C$.

The "product" 'C' is.

C. ${ }_{\mathrm{H}}^{\mathrm{R}} \mathrm{C}_{\mathrm{C}=\mathrm{C}_{-}^{\mathrm{R}}}^{\mathrm{NH}_{2}}$
D. ${ }^{\mathrm{H}}<{ }_{\mathrm{C}}^{\mathrm{C}}=\mathrm{C}_{\mathrm{R}}^{\mathrm{NH}_{2}}$

Answer: B

- Watch Video Solution

4. 20 ml of an $\mathrm{H}_{2} \mathrm{O}_{2}$ solution on reaction with excess of acidified KMnO_{4} released 224 cc of O_{2}. What is the volume strength of that $\mathrm{H}_{2} \mathrm{O}_{2}$?
A. 5.6 vol
B. 11.2 vol
C. 22.4 vol
D. 2.8 vol

Answer: A

- Watch Video Solution

5. Hydrogen diffuses six times faster than gas A. The molar mass of gas A is
A. 72
B. 6
C. 24
D. 36

Answer: A
6. Which of the following forms a homologous series
A. Ethane, ethylene, acetylene
B. Ethane, propane, butanone
C. Methanan, ethanol, propanoic acid
D. Butane, 2-methylbutane, 2,3-dimethyl butane

Answer: D

- Watch Video Solution

7. Which of the following alkanes cannot be produced by Kolbe's electrolysis of sodium or potassium salts of carboxylic acids ?
A. CH_{4}
B. $C_{2} H_{6}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. $C_{2} H_{4}$

Answer: A

- Watch Video Solution

8. Which is not a tetrahedral species ?

A. $B F_{4}^{-}$
B. $P C l_{4}^{+}$
C. ICl_{4}^{+}
D. NH_{4}^{+}

Answer: C

D Watch Video Solution

9. A mixture of $\mathrm{CO}, \mathrm{CO}_{2}$ and He on passing over red hot coke shows 40% increment in volume.

What is the mole fraction of CO_{2} in the given mixture ?
A. 0.6
B. 0.4
C. 0.2
D. 0.8

Answer: B

- Watch Video Solution

10. A gas with negligible intermolecular interactions shows compressibility factor 2 at a pressure 'P'.

What is its van der Waals constant ' b ' ?
A. PRT
B. $\frac{P}{R T}$
C. $\frac{R T}{P}$
D. $\frac{T}{P R}$

Answer: C

- Watch Video Solution

11.
12.

A.

B.

C.

D.

Answer: C

D View Text Solution
12. The conductivity of a saturated solution of BaSO_{4} is $3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its
equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \equiv^{-1}$.
The $K_{s p}$ for BaSO_{4} will be .
A. 4×10^{-6}
B. 2.5×10^{-9}
C. 2.5×10^{-13}
D. 4×10^{-12}

Answer: A

- Watch Video Solution

13.

The reaction proceeds through \qquad
A. Electrophilic addition
B. Nucleophilic addition
C. Free radical addition
D. Electrophilic subsitution

Answer: A

14. $I E$ for He^{+}is $1.96 \times 10^{-19} \mathrm{Jatom}^{-1}$. Calculate the energy of first stationary state of $B e^{+3}$.

A. $6.84 \times 10^{-19} \mathrm{Jatom}^{-1}$
B. $6.84 \times 10^{-23} \mathrm{Jatom}^{-1}$
C. 7.84×1019 Jatom $^{-1}$
D. $7.84 \times 1023 \mathrm{Jatom}^{-1}$

Answer: A

- Watch Video Solution

15. Which of the following compounds will exhibit dorbital resonance?
A.

B.

C.

Answer: B

D View Text Solution
16. The heat of atomisation of $P H_{3(g)}$ is $228 \mathrm{kcalmol}^{-1}$ and that of $P_{2} H_{4}$ is $355 \mathrm{kcalmol}^{-1}$.

Calculate the average bond energy of $P-P$ bond.
A. $63 \mathrm{kcal} / \mathrm{mol}$
B. $58 \mathrm{kcal} / \mathrm{mol}$
C. $5 \mathrm{kcal} / \mathrm{mol}$
D. $45 \mathrm{kcal} / \mathrm{mol}$

Answer: C

- Watch Video Solution

17. Which of the following pairs of compounds may be regarded both as position isomers and functional isomers?
A. Benzyl alcohol and methoxy benzene
B. o-cresol and p-cresol
C. Benzyl alcohol and o-cresol
D. Benzyl alcohol and benzyl methyl ether

Answer: C

- Watch Video Solution

18. The correct decreasing order of ionic size among the following species is $\mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{S}^{-2}$ and Ca^{+2}.

$$
\begin{aligned}
& \text { A. } \mathrm{Ca}^{+2}>\mathrm{K}^{+}>\mathrm{Cl}^{-}>S^{-2} \\
& \text { B. } \mathrm{K}^{+}>\mathrm{Ca}^{+2}>\mathrm{Cl}^{-}>\mathrm{S}^{-2} \\
& \text { C. } \mathrm{S}^{-1}>\mathrm{Cl}^{-}>\mathrm{K}^{+}>\mathrm{Ca}^{+2} \\
& \text { D. } S^{-2}>\mathrm{Cl}^{-}>\mathrm{Ca}^{+2}>K^{+}
\end{aligned}
$$

Answer: C

- Watch Video Solution

19. One mole of symmetrical alkene on ozonolysis gives two moles of an aldehyde having a molecular mass 58. The alkene
A. 1-Butene
B. 3-hexene
C. 2-hexene
D. 3-pentene

Answer: B

- Watch Video Solution

20. The Gibbs energy for the decomposition of FeO at $600^{\circ} C$ is as follows
$\mathrm{FeO} \rightarrow \mathrm{Fe}+\frac{1}{2} \mathrm{O}_{2} \Delta_{r} G=856 \mathrm{~kJ} /$ mole the potential difference needed for electrolytic reduction of FeO at $600^{\circ} \mathrm{C}$ is at least.

$$
\begin{aligned}
& \text { A. }-3.6 \mathrm{~V} \\
& \text { B. }-4.73 \mathrm{~V} \\
& \text { C. }-5.2 \mathrm{~V} \\
& \text { D. }-4.42 \mathrm{~V}
\end{aligned}
$$

Answer: D
21. How many gem dihalides with different formulas are possible for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{CI}_{2}$?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

22. A solution of $0.1 M N a Z$ has $P H=8.90$. The K_{a}

 of $H Z$ is.A. 6.3×10^{-11}
B. 6.3×10^{-10}
C. 1.6×10^{-5}
D. 1.6×10^{-6}

Answer: C
23. Inert gas has been added to the following equilibrium system at constant volume
$S O_{2}(g)+1 / 2 O_{2}(g) \Leftrightarrow S_{3}(g)$
To which direction will the equilibrium shift?
A. Forward
B. Backward
C. No effect
D. Unpredictable

Answer: C

24. 1 mol of NH_{3} gas at $27^{\circ} \mathrm{C}$ is expanded under adiabatic condition to make volume 8 times
($\gamma=1.33$). Final temperature and work done, respectively, are
A. $150 \mathrm{~K}, 900 \mathrm{cal}$
B. $150 \mathrm{~K}, 400 \mathrm{cal}$
C. $250 \mathrm{~K}, 1000 \mathrm{cal}$
D. $200 \mathrm{~K}, 800 \mathrm{cal}$

Answer: A
25. What weight of hydrogen at $S T P$ could be contained in a vessel that holds $4.8 g$ oxygen at $S T P$?
A. 4.8 g
B. 3.0 g
C. 0.6 g
D. 0.3 g

Answer: D
26. A cricket ball of 0.5 kg moving with a velocity of $100 \mathrm{~ms}^{-1}$. The wavelength associated with its motion is
A. $1 / 100 \mathrm{~cm}$
B. $66 \times 10^{-34} \mathrm{~m}$
C. $1.32 \times 10^{-35} m$
D. $6.6 \times 10^{-28} \mathrm{~m}$

Answer: C

- Watch Video Solution

27. $\mathrm{K}_{2} \mathrm{CrO}_{4}$ oxidises KI in the presence of HCl to

 I_{2}. The equivalent weight of the $\mathrm{K}_{2} \mathrm{CrO}_{4}$ is.$$
\begin{aligned}
& \text { A. } \frac{M_{w}}{2} \\
& \text { B. } M_{w} \times \frac{2}{3} \\
& \text { C. } \frac{M_{w}}{3} \\
& \text { D. } \frac{M_{w}}{6}
\end{aligned}
$$

Answer: C

- Watch Video Solution

28. Which of the following is the strongest reducing

 agent in aqueous medium?A. Mg
B. Na
C. Li
D. Ca

Answer: C

- Watch Video Solution

29. Potassium selenate is isomorphous with potassium sulphate and contains 50.0% of $S e$. The atomic weight of $S e$ is
a. 142 , b. 71 , c. 47.33 , d. 284
A. 142
B. 71
C. 47.33
D. 284

Answer: A

30. $8 g$ of sulphur are burnt to form SO_{2}, which is oxidised by Cl_{2} water. The solution is treated with BaCl_{2} solution. The amount of BaSO_{4} precipitated is:
A. 1.0 mole
B. 0.5 mole
C. 0.75 mole
D. 0.25 mole

Answer: D

31. The maximum number of electrons in an orbital having same spin quantum number will be:
A. $l+2$
B. $2 l+1$
C. $l(l+1)$
D. $\sqrt{l(l+1)}$

Answer: B

- Watch Video Solution

32. Which of the following correctly explains the nature of boric acid in aqueous medium :

$$
\begin{aligned}
& \text { A. } \mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{H}_{2} \mathrm{BO}_{3}^{-} \\
& \text {B. } \mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{2 \mathrm{H}_{2} \mathrm{O}} 2 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{HBO}_{3}^{2-} \\
& \text { C. } \mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{3 \mathrm{H}_{2} \mathrm{O}} 3 \mathrm{H}_{3}^{+} \mathrm{O}+\mathrm{HBO}_{3}^{3-} \\
& \text { D. } \mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{~B}(\mathrm{OH})_{4}^{-}+\mathrm{H}^{+}
\end{aligned}
$$

Answer: D

D Watch Video Solution

33. Molecular shape of $S F_{4}, C F_{4}$ and $X e F_{4}$ are :
A. The same with 2,0 and 1 lone pair of electron respectively.
B. The same with 1,1 and 1 lone pair of electron
respectively.
C. Different with 0,1 and 2 lone pair of electrons
respectively.

D. Different with 1,0 and 2 lone pair of electrons

respectively.

Answer: D

34. Which reaction is possible at anode?

$$
\begin{aligned}
& \text { A. } 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{-} \\
& \text {B. } \mathrm{F}_{2} \rightarrow 2 \mathrm{~F}^{-} \\
& \text {C. } \mathrm{O}_{2}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

D. None of these

Answer: A

- Watch Video Solution

35. Uncertainty in position of mass $25 g$ in space is
$10^{-5} \mathrm{~m}$. The uncertainty in it's velocity (in $m s^{-1}$ is :
A. 2.1×10^{-34}
B. 0.5×10^{-34}
C. 2.1×10^{-28}
D. 0.5×10^{-23}

Answer: C

- Watch Video Solution

36. Out of the five isomeric hexanes, the isomer that
can give two monochlorinated compounds is:
A. n-hexane
B. 2,3-Dimethyl butane

C. 2,2-Dimethyl butane

D. 2-methyl pentane

Answer: B

- Watch Video Solution

37. Density of $2.05 M$ solution of acetic acid in water is $1.02 g / m L$. The molality of same solution is:
A. $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$
B. $1.14 \mathrm{~mol} \mathrm{~kg}^{-1}$
C. $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
D. $2.28 \mathrm{~mol} \mathrm{~kg}^{-1}$

Answer: D

- Watch Video Solution

38. A heat engine absorbs heat Q_{1} at temperature
T_{1} and Q_{2} at temperature T_{2}. Work done by the engine is $\left(Q_{1}+Q_{2}\right)$. This data:
A. Violates first law of thermodynamics
B. Violates first law of thermodynamics if
$Q_{1}=-v e$
C. Violates first law of thermodynamics if
$Q_{2}=-v e$
D. Does not violate first law of thermodynamics.

Answer: D

- Watch Video Solution

39. Which of the alkali metal chlorides is expected to have the highest melting point ?
A. LiCl
B. NaCl

C. KCl

D. RbCl

Answer: A

- Watch Video Solution

40. Which will produce hard water ?

A. Saturation og water with CaSO_{4}
B. Addition of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to water
C. Saturation of water with CaCO_{3}
D. Saturation of water with MgCO_{3}.

Answer: A

- Watch Video Solution

41. The atoms of different elements having same mass number but different atomic number are known as isobars.

The sum of protons and neutrons, in the isobars is always different.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

42. Assertion: Compressibility factor for hydrogen
varies with pressure with positive slope at all pressures.

Reason: Event at low pressures, repulsive forces dominate hydrogen gas.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

43. One mixing 500 mL of $10^{-6} M C a^{2+}$ ion and 500 mL of $10^{-6} \mathrm{MF}{ }^{-}$ion, no precipitate of $C a F_{2}$ will be obtained. $K_{s p}\left(C a F_{2}=10^{-18}\right)$.

If $K_{s p}$ is greater than ionic product, a percipitate will develop.
A. If both assertion and reason are true and the reason is the correct explanation of the
assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

44. Assertion : Density of $M g$ is more than that of $C a$.

Reason: It is due to the presence of $3 d-$ orbital.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

45. Assertion: Neopentane forms one mono substitutes compound

Reason: Neopentane is an isomer of pentane.
A. If both assertion and reason are true and the
reason is the correct explanation of the
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

