©゙doubtnut

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

REDOX REACTIONS

Oxidation Number Oxidising And Reducing Agent

1. Oxidation can be defined as the terms
(I) gain of electron and hydrogen
(II) gain of oxygen and loss of electron
(III) increase in oxidation number
(IV) decrease in oxidation number

Select the correct terms
A. I and $I I$
B. I and $I V$
C. I and $I I I$
D. $I I$ and $I I I$

Answer: D

D Watch Video Solution

2. The oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +2
B. +4
C. +6
D. +7

Answer: C

3. In the reaction
$\mathrm{H}_{2} \mathrm{~S}+\mathrm{NO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}+\mathrm{S} . \mathrm{H}_{2} \mathrm{~S}$ is
A. Oxidised
B. Reduced
C. Precipitated
D. None of these

Answer: A

- Watch Video Solution

4. In which of the following processes is nitrogen oxidised?
A. $\mathrm{NH}_{4}^{+} \rightarrow \mathrm{N}_{2}$
B. $\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}$
C. $\mathrm{NO}_{2} \rightarrow \mathrm{NO}_{2}^{-}$
D. $\mathrm{NO}_{3} \rightarrow \mathrm{NH}_{4}^{+}$

Answer: A

D Watch Video Solution

5. Reduction is defined in terms of
(I) electronation and hydrogenation
(II) de-electronation and gain of oxygen
(III) increase in oxidation number
$(I V)$ decrease in oxidation number
Select the correct terms
A. $I I$ and $I I I$
B. I and $I I I$
C. I and $I V$
D. I and $I I$

Answer: C

- Watch Video Solution

6. Which of the following statements is correct?
A. Hydrogen has oxidation number -1 and +1
B. Hydrogen has same electronegativity as halogens
C. Hydrogen will not be liberated at anode
D. Hydrogen has same ionization potential as alkali metals

Answer: A
7. The conversion of $\mathrm{PbO} \mathrm{O}_{2}$ to $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is
A. Oxidation
B. Reduction
C. Neither oxidation nor reduction
D. Both oxidation and reaction

Answer: B

- Watch Video Solution

8. The oxidation number of I in HIO_{4} is
A. +7
B. +6
C. +3
D. +14

D Watch Video Solution

9. Which of the following reactions does not involve either oxidation or reduction?
A. $\mathrm{VO}_{2}^{+} \rightarrow \mathrm{V}_{2} \mathrm{O}_{3}$
B. $N a \rightarrow N a^{+}$
C. $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
D. $\mathrm{Zn}^{2+} \rightarrow \mathrm{Zn}$

Answer: C
10. Which one of the following has the highest oxidation number of iodine?
A. $K_{3} I$
B. $K I$
C. $I F_{5}$
D. KIO_{4}

Answer: D

- Watch Video Solution

11. In the reaction
$3 \mathrm{Br}_{2}+6 \mathrm{CO}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{Br}^{\ominus}+\mathrm{BrO}_{3}^{\ominus}+6 \mathrm{HCO}_{3}^{\ominus}$
A. Bromine is oxidised and carbonate is reduced
B. Bromine is reduced and water is oxidised
C. Bromine is neither reduced nor oxidised
D. Bromine is both reduced and oxidised

Answer: D

D Watch Video Solution

12. In the following reaction,
$4 \mathrm{P}+3 \mathrm{KOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{KH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
A. P is oxidised as well as reduced
B. P is reduced only
C. P is oxidised only
D. None of these

Answer: A
13. In the reaction:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{\oplus}+6 \mathrm{I}^{\ominus} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{I}_{2}$
Which element is reduced?
A. $C r$
B. H
C. O
D. I

Answer: A

D Watch Video Solution

14. If HNO_{3} changes into $\mathrm{N}_{2} \mathrm{O}$, the oxidation number is changed by
A. +2
B. -1
C. 0
D. +4

Answer: D

D Watch Video Solution

15. Oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{5}$ is
A. +2
B. +4
C. +8
D. +6

Answer: D

16. In which of the following cases is the oxidation state of N atom wrongly calculated?
A. (Compound $=\mathrm{NH}_{4} \mathrm{Cl}$, Oxidation state $=-3$)
B. (Compound $=\left(\mathrm{N}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{SO}_{4}$, Oxidation state $=+2$)
C. (Compound $=M g_{3} N_{2}$, Oxidation state $=-3$)
D. (Compound $=\mathrm{NH}_{2} \mathrm{OH}$, Oxidation state $=-1$)

Answer: B

- Watch Video Solution

17. In which one of the following changes there are transfer of five electrons?
A. $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
B. $\mathrm{CrO}_{4}^{2} \rightarrow \mathrm{Cr}^{3+}$
C. $\mathrm{MnO}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+}$
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}$

Answer: A

D Watch Video Solution

18. Oxidation involves
A. Decreases in the valency of positive part
B. Gain of electrons
C. Increase in the valency of negative part
D. Loss of electrons

Answer: D

19. Equation $\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$ represents
A. Acidic nature of $\mathrm{H}_{2} \mathrm{O}_{2}$
B. Basic nature of $\mathrm{H}_{2} \mathrm{O}_{2}$
C. Oxidising nature of $\mathrm{H}_{2} \mathrm{O}_{2}$
D. Reducing nature of $\mathrm{H}_{2} \mathrm{O}_{2}$

Answer: C

20. In the reaction

$$
\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the reductant is
A. $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
B. MnO_{4}^{-}
C. $M n^{2+}$
D. H^{+}

Answer: A

(D) Watch Video Solution

21. In which of the following compounds iron has lowest oxidation state?
A. $\mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $K_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
C. $\mathrm{Fe}(\mathrm{CO})_{5}$
D. $\mathrm{Fe}_{2} \mathrm{O}$

Answer: C

22. When Sn^{2+} changes to Sn^{4+} in a reaction
A. It loses two protons
B. It gains two electrons
C. It loses two electrons
D. It gains two protons

Answer: C

(D) Watch Video Solution

23. Which of the following is the most powerful oxidizing agent?
A. F_{2}
B. $C l_{2}$
C. $B r_{2}$
D. l_{2}

D Watch Video Solution

24. In the chemical reaction $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow 2 \mathrm{HCl}+\mathrm{S}$, the oxidation number of sulphur changes from
A. 0 to 2
B. -2 to 0
C. 2 to 0
D. -2 to -1

Answer: B

- Watch Video Solution

25. When SO_{2} is passed through acidic solution of potassium dichromate, then chromium sulphate is formed. Change in valency of chronium is
A. +4 to +2
B. +5 to +3
C. +6 to +3
D. +7 to +2

Answer: C

D Watch Video Solution

26. The oxidation states of the most electronegative elements in the products of the reaction between BaO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are
A. 0 and -1
B. -1 and -2
C. -2 and 0
D. -2 and +1

Answer: B

27. The highest oxidation state of $M n$ is shown by
A. $\mathrm{K}_{2} \mathrm{MnO}_{4}$
B. KMnO_{4}
C. MnO_{2}
D. $\mathrm{Mn}_{2} \mathrm{O}_{2}$

Answer: B

28. The oxidation number of C in $\mathrm{CH}_{2} \mathrm{O}$ is
A. -2
B. +2
C. 0
D. +4

Answer: C

(D) Watch Video Solution
29. Oxidation number of N in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is
A. -3
B. -1
C. +1
D. $-1 / 3$

Answer: A

D Watch Video Solution

30. In which of the following compounds transition metal is in oxidation state zero
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{SO}_{4}\right]$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right](\mathrm{OH})_{2}$

Answer: C

31. Oxidation number of nickel in $\mathrm{Ni}(\mathrm{CI})_{4}$
A. +2
B. +4
C. -4
D. 0

Answer: D

- Watch Video Solution

32. Which of the following is not a reducing agent?
A. NaNO_{2}
B. NaNO_{3}
C. $H I$
D. SnCl_{2}

D Watch Video Solution

33. The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$. The oxidation state of Fe is
A. 1
B. 2
C. 3
D. 0

Answer: B

- Watch Video Solution

34. The oxidation number of Mn in MnO_{4}^{-1} is
A. +6
B. -5
C. +7
D. +5

Answer: C

- Watch Video Solution

35. In $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as
A. Oxidising agent
B. Reducing agent
C. (a) and (b) both
D. None of these
36. The oxidation numbers of $F e$ and S in iron pyrites are
A. $3,-1$
B. $2,-1$
C. $3,-1.5$
D. $4,-2$

Answer: D

- Watch Video Solution

37. In which of the following cpmpounds the oxidation number of carbon is maximum
A. HCHO
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. CHCl_{3}
D. $C_{12} H_{22} O_{11}$

Answer: C

38. Sulphur has lowest oxidation number in
A. $\mathrm{H}_{2} \mathrm{SO}_{3}$
B. SO_{2}
C. $\mathrm{H}_{2} \mathrm{SO}_{4}$
D. $H_{2} S$

Answer: D

39. A solution of sulphur dioxide in water reacts with $H_{2} S$ precipitating sulphur. Here sulphur dioxide acts as
A. As oxidising agent
B. A reducing agent
C. An acid
D. A catayst

Answer: A

D Watch Video Solution

40. In ferrous ammonium sulhate oxidation number of $F e$ is
A. +3
B. +2
C. +1
D. -2

Answer: B

D Watch Video Solution

41. The oxidation number of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. -2
B. -7
C. +2
D. +6

Answer: D
42. Oxidation number of carbon in $\mathrm{CH}_{3}-\mathrm{Cl}$ is
A. -3
B. -2
C. -1
D. 0

Answer: B

- Watch Video Solution

43. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent?
A. $2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer: B

Watch Video Solution
44. Oxidation numbers of two $C l$ atoms in belaching powder, CaOCl_{2}, are
A. $-1,-1$
B. $+1,-1$
C. $+1,+1$
D. $0,-1$

Answer: B

45. Select the compound in which chlorine is assigned the oxidation
number +5
A. HClO_{4}
B. HClO_{2}
C. HClO_{3}
D. HCl

Answer: C

D Watch Video Solution

46. When NaCl is dissolved in water the sodium ion becomes
A. Oxidised
B. Reduced
C. Hydrolysed
D. Hydrated

Answer: D

- Watch Video Solution

47. Oxidation number of osmium (Os) in OsO_{4} is
A. +8
B. +6
C. +7
D. +4

Answer: A

- Watch Video Solution

48. The oxidation number of iron in the compound $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. +2
B. +4
C. +3
D. +6

Answer: A

- Watch Video Solution

49. Which substance is serving as a reducing agent in the following reaction?
$14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ni}^{2+}$
A. $\mathrm{H}_{2} \mathrm{O}$
B. $N i$
C. H^{+}
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Answer: B

D Watch Video Solution

50. When KMnO_{4} acts as an oxidising agnet and ultimetely from $\mathrm{MnO}_{4}^{2-}, \mathrm{MnO}_{2}, \mathrm{Mn}_{2} \mathrm{O}_{3}$, and Mn^{2+}, then the number of electrons transferred in each case, respectively, are
A. $4,3,1,5$
B. 1,5,3,7
C. 1,3,4,5
D. 3,5,7,1

Answer: C

51. Which of the following acids possesses oxidising, reducing, and complex forming properties ?
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HCl
D. HNO_{2}

Answer: A

- Watch Video Solution

52. Oxidation number of P in $\mathrm{KH}_{2} \mathrm{PO}_{2}$ is
A. -4
B. +3
C. +5
D. +1

Answer: D

- Watch Video Solution

53. Which one is oxidising substance?
A. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
B. $C O$
C. $H_{2} S$
D. CO_{2}

Answer: D
54. The compound that can work both as oxidising and reducing agent is
A. KMnO_{4}
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. BaO_{2}
D. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

Answer: B

- Watch Video Solution

55. Oxidation number of P in $\mathrm{Ba}\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$ is
A. +1
B. -1
C. +2
D. +3

Answer: A

- Watch Video Solution

56. The oxidation number and the electronic configuration of sulphur in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is
A. $+6,1 s^{2} 2 s^{2} 2 p^{6}$
B. $+2,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
C. $+3,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$
D. $+4,1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$

Answer: A
57. The compound which could not act both as oxidising and reducing agent is
A. SO_{2}
B. MnO_{2}
C. $\mathrm{Al}_{2} \mathrm{O}_{3}$
D. CrO

Answer: C

- Watch Video Solution

58. In XeO_{3} and XeF_{6} the oxidation state of Xe is
A. +4
B. +1
C. +6
D. +3

Answer: C

D Watch Video Solution

59. In the reaction
$\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ acts as
A. Reducing agent
B. Oxidising agent
C. Bleaching agent
D. None of the above

Answer: A
60. The oxidation state of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ is
A. 4
B. 6
C. -6
D. -2

Answer: B

- Watch Video Solution

61. A metal ion M^{3+} loses three electrons, its oxidation number will be
A. 0
B. +3
C. +6
D. -3

Answer: C

- Watch Video Solution

62. Oxidation number of sulphur in $\mathrm{S}_{2} \mathrm{SO}_{3}^{2-}$ is
A. -2
B. +6
C. +2
D. 0

Answer: C

- Watch Video Solution

63. Which of the following substances acts as an oxidising as well as a reducing agent?
A. $\mathrm{Na}_{2} \mathrm{O}$
B. SnCl_{2}
C. $\mathrm{Na}_{2} \mathrm{O}_{2}$
D. NaNO_{2}

Answer: D

- Watch Video Solution

64. Oxidation state of oxygen atom in potassium superoxide is
A. 0
B. $-\frac{1}{2}$
C. -1
D. -2

Answer: B

- Watch Video Solution

65. Among the following identify the species with an atom in +6 oxidation state.
A. MnO_{4}^{-}
B. $C r(C N)_{6}^{3-}$
C. $N i F_{6}^{2-}$
D. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$

Answer: D

66. The oxidation number of S in $\mathrm{Na}_{2} S_{4} \mathrm{O}_{6}$ is
A. $\frac{5}{2}$
B. $\frac{3}{2}$
C. $\frac{3}{5}$
D. $\frac{2}{3}$

Answer: A

- Watch Video Solution

67. HNO_{2} acts both as reductant and as oxidant, while HNO_{3} acts only as oxidant. It is due to their
A. Solubility ability
B. Maximum oxidation number
C. Minimum oxidation number
D. Minimum number of valence electrons

Answer: B

- Watch Video Solution

68. In which reaction there is a change in valency
A. $2 \mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
B. $\mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
C. $2 \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{2}+\mathrm{HNO}_{3}$
D. $\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}(2)$

Answer: C

69. Which one of the following reaction is not an example of redox reaction?
A. $\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow 4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}+2 \mathrm{Cl}^{-}$
B. $\mathrm{Cu}^{++}+Z n \rightarrow Z n^{++}+C u$
C. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{Cl}^{-}$

Answer: D

- Watch Video Solution

70. Oxidation numbers of Mn in $\mathrm{K}_{2} \mathrm{MnO}_{4}$ and MnSO_{4} are respectively
A. $+7,+2$
B. $+5,+2$
C. $+6,+2$
D. $+2,+6$

Answer: C

D Watch Video Solution

71. What is the oxidation number of Co in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClNO}_{2}\right]$?
A. +5
B. +3
C. +4
D. +2

Answer: D
72. The valency of Cr in the complex $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
A. 1
B. 3
C. 5
D. 6

Answer: B

73. Oxidation number of N in NH_{3} is
A. +5
B. +3
C. 0
D. -3

Answer: D

Watch Video Solution
74. Oxidation number of nitrogen in NaNO_{2} is
A. +2
B. +4
C. +3
D. -3

Answer: C

75. which of the following is a redox reaction ?
A. $Z n+2 A g C N \rightarrow 2 A g+Z n(C N)_{2}$
B. $\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{NH}_{4} \mathrm{OH}$
C. $\mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. $\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO} \mathrm{N}_{3}+\mathrm{KCl}$

Answer: A

(D) Watch Video Solution

76. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$, the change in the oxidation state of chromium is
A. 0
B. 6
C. 4
D. 3

D Watch Video Solution

77. Which of the following reactions involves oxidation-reaction?
A. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
B. $\mathrm{HBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
C. $\mathrm{NaBr}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{HBr}$
D. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NaSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

78. The oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ and iron in $K_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ is respectively
A. +6 and +4
B. +2 and +2
C. +8 and +2
D. +6 and +2

Answer: D

D Watch Video Solution

79. Oxidation state of chlorine in perchloric acid is
A. -1
B. 0
C. -7
D. +7
80. Carbon is in the lowest oxidation state in
A. CH_{4}
B. CCl_{4}
C. $C F_{4}$
D. CO_{2}

Answer: A

- Watch Video Solution

81. Oxidation number of carbon in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is
A. +4
B. +3
C. +2
D. -2

Answer: B

(D) Watch Video Solution

82. Which of the following can act as an acid as a base?
A. HClO_{3}^{-}
B. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
C. $H S^{-}$
D. All of these

Answer: D

Balancing Of The Equation

1. $\mathrm{H}_{2} \mathrm{O}_{2}$ reduces MnO_{4}^{-}ion to
A. $M n^{+}$
B. $M n^{2+}$
C. $M n^{3+}$
D. $M n^{-}$

Answer: B

- Watch Video Solution

2. The value of x in the partial redox equation
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+x e \Leftrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$ is
A. 5
B. 3
C. 1
D. 0

Answer: A

D Watch Video Solution

3. During the disproportionation of I_{2} to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is
A. 1:5
B. 5:1
C. 3:1
D. 1:3

Answer: A
4. What is ' A ' in the following reaction
$2 F_{(a q)}^{3+}+S n_{(a q)}^{2+} \rightarrow 2 F e_{(a q)}^{2+}+A ?$
A. $S n_{(a q)}^{3+}$
B. $S n_{(a q)}^{2+}$
C. $S n_{(a q)}^{4+}$
D. $S n$

Answer: C

Watch Video Solution

5. In the redox reaction
$x \mathrm{MnO}+y \mathrm{PbO}_{2}+z \mathrm{HNO}_{3} \rightarrow \mathrm{HMnO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
A. $x=2, y=5, z=10$
B. $x=2, y=7, z=8$
C. $x=2, y=5, z=8$
D. $x=2, y=5, z=5$

Answer: A

- Watch Video Solution

6. In the balanced chemical reaction
$\mathrm{IO}_{3}^{\ominus}+a l^{\ominus}+b \mathrm{H}^{\ominus} \rightarrow c \mathrm{H}_{2} \mathrm{O}+d \mathrm{I}_{2}$
a, b, c, and d, respectively, correspond to
A. 5,6,5,5
B. 5,3,6,3
C. 3,5,3,6
D. 5,6,3,3

Answer: D

D Watch Video Solution

7. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\left(\mathrm{MnO}_{4}^{-}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5, \mathrm{H}^{+}=16\right)$
B. $\left(\mathrm{MnO}_{4}^{-}=16, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5, \mathrm{H}^{+}=2\right)$
C. $\left(\mathrm{MnO}_{4}^{-}=5, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16, \mathrm{H}^{+}=2\right)$
D. $\left(\mathrm{MnO}_{4}^{-}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16, \mathrm{H}^{+}=5\right)$

Answer: A

- Watch Video Solution

8. For the redox reaction
$x \mathrm{Fe}^{2+}+y \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+z \mathrm{H}^{+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$
x, y and z are
A. $(x=3, y=1, z=14)$
B. $(x=6, y=1, z=7)$
C. $(x=6, y=2, z=14)$
D. $(x=6, y=1, z=14)$

Answer: D

- Watch Video Solution

9. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+n \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

In this equation, the ratio of the coefficients of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ is
A. 1:1
B. $2: 3$
C. 3:2
D. 1:3

Answer: B

10. Number of electron involved in the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion in acidic solution to Cr^{3+} is:
A. 0
B. 2
C. 3
D. 5
11. $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{-} \rightarrow 2 \mathrm{Z}+5 \mathrm{O}_{2}+8 \mathrm{H}_{2} \mathrm{O}$. In this reaction Z is
A. $M n^{+2}$
B. $M n^{+4}$
C. MnO_{2}
D. $M n$

Answer: A

- Watch Video Solution

12. $\mathrm{H}_{2} \mathrm{O}$ can be oxidised to
A. H_{2} and O_{2}
B. O_{2}
C. OH^{-}
D. O^{2-}

Answer: B

- Watch Video Solution

13. When $Z n S$ is boiled with strong nitric acid, the products are zinc nitrate, sulphuric acid and nitrogen dioxide. What are the changes in the oxidation numbers of $Z n, S$ and N ?
A. $+2,+4,-1$
B. $+2,+6,-2$
C. $0,+4,-2$
D. $0,+8,-1$

Answer: D

- Watch Video Solution

14. Which of the following equations is a balanced one?
A. $5 \mathrm{BiO}_{3}^{-}+22 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
B. $5 \mathrm{BiO}_{3}^{-}+14 \mathrm{H}^{+}+2 \mathrm{Mn}^{2+} \rightarrow 5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}$
C. $2 \mathrm{BiO}_{3}^{-}+4 \mathrm{H}^{+}+\mathrm{Mn}^{2+} \rightarrow 2 \mathrm{Bi}^{3+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MnO}_{4}^{-}$
D. $6 \mathrm{BiO}_{3}^{-}+12 \mathrm{H}^{+}+3 \mathrm{Mn}^{2+} \rightarrow 6 \mathrm{Bi}^{3+}+6 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{MnO}_{4}^{-}$

Answer: B

- Watch Video Solution

15. In the following reaction
$2 \mathrm{I}-+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{Cl}^{3}+7 \mathrm{H}_{2} \mathrm{O}$

Unbalanced parts are
A. $H^{+}, H_{2} O$
B. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{Cr}^{3+}$
C. I^{-}, I_{2}
D. None of them are balanced

Answer: C

- Watch Video Solution

16. For the redox reaction

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{H}^{+}+\mathrm{Ni} \rightarrow \mathrm{Cr}^{3}+\mathrm{Ni}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

The correct coefficients of the reactions for the balanced reaction are
A. $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=1, \mathrm{Ni}=3, \mathrm{H}^{+}=14\right)$
B. $\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=2, \mathrm{Ni}=3, \mathrm{H}^{+}=14\right)$
C. $\left(C r_{2} O_{7}^{2-}=1, N i=1, H^{+}=16\right)$
D. $\left(C r_{2} O_{7}^{2-}=3, N i=3, H^{+}=12\right)$

Answer: A

- Watch Video Solution

17. MnO_{4}^{-}oxidises $\mathrm{H}_{2} \mathrm{O}_{2}$ to O_{2} in acidic medium
$x \mathrm{MnO}_{4}^{-}+y \mathrm{H}_{2} \mathrm{O}_{2}+z \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
Coefficients x, y and z are respectively
A. $(x=1, y=2, z=3)$
B. $(x=3, y=2, z=5)$
C. $(x=2, y=6, z=5)$
D. $(x=2, y=5, z=6)$

Answer: D

18. What is the molecular state of sulphur as reactant in, sulphur $+12 \mathrm{OH}^{-} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+3 \mathrm{H}_{2} \mathrm{O}$?
A. S_{8}^{2-}
B. $2 S_{4}^{3-}$
C. S_{8}
D. S_{8}^{-}

Answer: C

- Watch Video Solution

19. In the following balanced reaction,
$4 \mathrm{O}_{2}^{x}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{OH}^{-}+3 \mathrm{O}_{2}$
A. $x=-4$ and species is oxide
B. $x=-2$ and species is superoxide
C. $x=0$ and species is oxygen
D. $x=-1$ and species is superoxide

Answer: D

(D) Watch Video Solution

20. In balancing the half reaction
$C N^{\ominus} \rightarrow C N O^{\ominus}$ (skeltan)
The number of electrons that must be added is
A. 0
B. 1 on the right
C. 1 on the left
D. 2 on the right

Answer: D

21. In the following equation:
$\mathrm{CIO}_{3}^{-}+6 \mathrm{H}^{+}+. \mathrm{X} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$, then X is
A. O
B. $6 e^{-}$
C. O_{2}
D. $6 e^{-}$

Answer: B

- Watch Video Solution

22. I^{-}reduces IO_{3}^{-}and I_{2} and itself oxidised to I_{2} in acidic medium. Thus, final reaction is
A. $\mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
B. $5 \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
C. $I^{-}+\mathrm{IO}_{3}^{-} \rightarrow I_{2}+O_{3}$
D. None of them

Answer: B

- Watch Video Solution

23. In the reaction
$x \mathrm{HI}+y \mathrm{HNO}_{3} \rightarrow \mathrm{NO}+\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. $x=3, y=2$
B. $x=2, y=3$
C. $x=6, y=2$
D. $x=6, y=1$

Answer: C
24. Balance the following equation stepwise:
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+}++\mathrm{H}^{\oplus} \rightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
A. 6,7
B. 6,14
C. 5,7
D. 5,14

Answer: B

Watch Video Solution

25. Values of p, q, r, s and t are in the following redox reaction
$p \mathrm{Br}_{2}+q \mathrm{OH}^{-} \rightarrow r \mathrm{Br}^{-}+s \mathrm{BrO}_{3}^{-}+t \mathrm{H}_{2} \mathrm{O}$

$$
\text { A. }(p=3, q=6, r=1, s=5, t=3)
$$

B. $(p=3, q=6, r=5, s=3, t=1)$
C. $(p=3, q=6, r=5, s=1, t=3)$
D. $(p=3, q=5, r=1, s=6, t=3)$

Answer: C

- Watch Video Solution

26. In the following reaction:
$x \mathrm{KMnO}_{4}+y \mathrm{NH}_{3} \rightarrow \mathrm{KNO}_{3}+\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}$
x and y are
A. $x=4, y=6$
B. $x=8, y=3$
C. $x=8, y=6$
D. $x=3, y=8$

D Watch Video Solution

27. CuS is dissolved in dil. HNO_{3}. Balanced equation with correct products is
A. $\mathrm{Cus}+2 \mathrm{H}^{+}+3 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$
B.
$3 \mathrm{Cus}+8 \mathrm{H}^{+}+8 \mathrm{NO}_{3}^{-} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+3 \mathrm{~S}+4 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
C. $\mathrm{Cus}+4 \mathrm{NO}_{3}^{-} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
D. None of the above in correct

Answer: B

28. The reaction
$5 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{XClO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{XCl}^{-}+\mathrm{YO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
is balanced if
A. $x=5, y=2$
B. $x=2, y=5$
C. $x=4, y=10$
D. $x=5, y=5$

Answer: B

- Watch Video Solution

Stoichiometry In Redox Reactions

1. When KMnO_{4} is reduced with oxalic acid in acidic solution, the oxidation number of $M n$ changes from
A. 7 to 4
B. 7 to 2
C. 6 to 4
D. 4 to 2

Answer: B

D Watch Video Solution

2. Oxidation of thisulphate $\left(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\right)$ ion by iodine gives
A. SO_{2}^{3-}
B. SO_{4}^{2-}
C. $S_{4} O_{6}^{2-}$
D. $S_{2} O_{6}^{2-}$

Answer: C

3. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions is
A. $2 / 3$
B. $1 / 6$
C. $1 / 3$
D. 1

Answer: C

- Watch Video Solution

4. Which of the following solutions will exactly oxidize $25 m L$ of an acid solution of $0.1 \mathrm{MFe}(I I)$ oxalate?
A. $25 m L$ of $0.1 M K M n O_{4}$
B. 25 mL of $0.2 \mathrm{MKMnO}_{4}$
C. $25 m L$ of $0.6 \mathrm{MKMnO}_{4}$
D. $15 m L$ of $0.1 M K M n O_{4}$

Answer: D

- Watch Video Solution

5. How many moles of O_{2} will be liberated by one mole of $\mathrm{CrO} \mathrm{O}_{5}$ is the following reaction:
$\mathrm{CrO}_{5}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. $5 / 2$
B. $5 / 4$
C. $9 / 2$
D. $7 / 2$

Answer: D

- Watch Video Solution

6. 50 mL of 0.1 M solution of a salt reacted with 25 mL of $0.1 M$ solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is:
$\mathrm{SO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-}$
If the oxidation number of metal in the salt was 3 , what would be the new oxidation number of metal:
A. zero
B. 1
C. 2
D. 4

Answer: C

7. 4.9 g of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is taken to prepare 0.1 L of the solutio. 10 mL of this solution is further taken to oxidise Sn^{2+} ion into $S n^{4+}$ ion so produced is used in second reaction to prepare $F e^{3+}$ ion then the millimoles of Fe^{3+} ion formed will be (assume all other components are in sufficient amount)[Molar mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=294 \mathrm{~g}$].
A. 5
B. 20
C. 10
D. none of these

Answer: C

8. One gram of $\mathrm{Na}_{3} \mathrm{AsO}_{4}$ is boiled with excess of solid KI in presence of strong HCl . The iodine evolved is absorbed in $K I$ solution and titrated against 0.2 N hyposolution. Assuming the reaction to be
$\mathrm{AsO}_{4}^{3-}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow \mathrm{AsO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$,
calculate the volume of thiosilphate hypo consumed. [Atomic weight of $A s=75]$
A. $48.1 m L$
B. $38.4 m L$
C. $24.7 m L$
D. 30.3 mL

Answer: A

9. 25 mL of $0.50 \mathrm{MH}_{2} \mathrm{O}_{2}$ solution is added to 50 mL of $0.20 \mathrm{MKMnO}_{4}$ is acid solution. Which of the following statements is true?
A. 0.010 mole of oxygen is liberated
B. 0.005 mole of KMnO_{4} are left
C. 0.030 g atom of oxygen gas is evolved
D. 0.0025 mole $\mathrm{H}_{2} \mathrm{O}_{2}$ does not react with KMnO_{4}

Answer: B

D Watch Video Solution

10. 0.80 g of sample of impure potassium dichromate was dissolved in water and made up to 500 mL solution. 25 mL of this solution treated with excess of $K I$ in acidic medium and I_{2} liberated required $24 m L$ of a sodium thiosulphate solution. 30 mL of this sodium thiosulphate
solution required $15 m L$ of $N / 20$ solution of pure potassium dichromate. What was the percentage of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in given sample?
A. 73.5%
B. 75.3%
C. 36.75%
D. none of these

Answer: A

- Watch Video Solution

11. One mole of CaOCl_{2} is dissolved in water andexcess of KI added.
$\operatorname{Hypo}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ required to react with the oxidised part completely is
A. 1 mole
B. 2.0 moles
C. 1.5 moles
D. 2.5 moles

Answer: B

- Watch Video Solution

12. An element A in a compound $A B D$ has oxidation number A^{n-}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were used for 3.26×10^{-3} moles of $A B D$. The new oxidation number of A after oxidation is:
A. 3
B. $3-n$
C. $n-3$
D. $+n$
13. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. One-fifth
B. five
C. One
D. Two

Answer: D

Watch Video Solution

14. $0.3 g$ of an oxalate salts was dissolved in 100 mL solution. The solution required 90 mL of $\mathrm{N} / 20 \mathrm{KMnO}_{4}$ for complete oxidation.

The \% of oxalate ion in salt is:
A. 3.3%
B. 66%
C. 70%
D. 40%

Answer: B

(D) Watch Video Solution

15. How many litres of a 0.5 N solution of an oxidising agent are reduced by 2 litres of a 2.0 N solution of a reducing agent?
A. 8
B. 4
C. 6
D. 7

D Watch Video Solution

16. During the disproportionation of I_{2} to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is
A. $1: 5$
B. 5:1
C. 3:1
D. 1:3

Answer: A

D Watch Video Solution

17. If 25.8 ml of $0.101 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is required to titrate 10.0 ml of a liquid iron supplement, calculate the concentration of iron in vitamin solution
A. $0.780 M$
B. $0.261 M$
C. $4.35 \times 10^{-4} M$
D. $1.56 M$

Answer: D

D Watch Video Solution

18.

$28 \mathrm{NO}_{3}^{-}+3 \mathrm{As}_{2} \mathrm{~S}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{AsO}_{4}^{3-}+28 \mathrm{NO}+9 \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}$
What will be the equivalent mass of As_(2)S_(3)' in the above reaction?
A. $\frac{M . w t .}{2}$
B. $\frac{M . w t}{4}$
C. $\frac{M . w t}{24}$
D. $\frac{M . w t .}{28}$

Answer: D

- Watch Video Solution

19. Moles of $\mathrm{KHC}_{2} \mathrm{O}_{4}$ (potassium acid oxalate) required to reduce 100 ml of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ in acidic medium (to Mn^{2+}) is :
A. $x=y$
B. $2 x=y$
C. $x=2 y$
D. none is correct

D Watch Video Solution

20. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ that will be needed to react completely with one mole of ferric sulphite in acidic medium is
A. 0.4
B. 0.6
C. 1.0
D. 0.8

Answer: C

- Watch Video Solution

21. 100 mL of mixture of NaOH and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is neutralised by 10 mL of $0.5 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Hence, NaOH in 100 mL solution is
A. $0.2 g$
B. $0.4 g$
C. $0.6 g$
D. none of these

Answer: B

- Watch Video Solution

22. A $0.518 g$ sample of limestone is dissolved in HCl and then the calcium is precipitated as $\mathrm{CaC}_{2} \mathrm{O}_{4}$. After filtering and washing the precipitate, it requires 40.0 filtering and washing the precipitate, it requires 40.0 mL of $0.250 \mathrm{NKMnO}_{4}$, solution acidified with $\mathrm{H}_{2} \mathrm{SO}_{4}$
to titrate it as. The percentage fo CaO in the sample is:
$\mathrm{MnO}_{4}^{-}+\mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A. 54.0%
B. 27.1%
C. 42%
D. 84%

Answer: A

D Watch Video Solution

23.25ml of a $0.1(M)$ solution of a stable cation of transition metal z reacts exactly with 25 ml of $0.04(\mathrm{M})$ acidified KMnO_{4} solution. Which of the following is most likely to represent the change in oxidation state of Z correctly?
A. $Z^{+} \rightarrow Z^{2+}$
B. $Z^{2+} \rightarrow Z^{3+}$
C. $Z^{3+} \rightarrow Z^{4+}$
D. $Z^{2+} \rightarrow Z^{4+}$

Answer: D

D Watch Video Solution

24. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C
25. In alkaline medium, ClO_{2} oxidises $\mathrm{H}_{2} \mathrm{O}_{2}$ to O_{2} and is itself reduced to Cl^{\ominus}. How many moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ are oxidised by 1 mol of ClO_{2} ?
A. 1.0
B. 1.5
C. 2.5
D. 3.5

Answer: C

Watch Video Solution

26. If equal volumes of $0.1 M K M n O_{4}$ and $0.1 M K_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solutions are allowed to oxidise Fe^{2+} to Fe^{3+} in acidic medium, then Fe^{2+} oxidised will be:
A. more by KMnO_{4}
B. more by $\mathrm{K}_{2} \mathrm{CrO}_{7}$
C. equal in both cases
D. can't be determined

Answer: B

D Watch Video Solution

27. If $10 g$ of $V_{2} O_{5}$ is dissolved in acid and is reduced to V^{2+} by zinc metal, how many mole I_{2} could be reduced by the resulting solution if it is further oxidised to VO^{2+} ions? [Assume no change in state of $Z n^{2+}$ ions] $(V=51, O=16, I=127)$
A. 0.11 mole of I_{2}
B. 0.22 mole of I_{2}
C. 0.055 mole of I_{2}
D. 0.44 mole of I_{2}

Answer: A

- Watch Video Solution

28. 0.45 g of acid (mol. Wt. $=90$) was exactly neutralized by 20 ml of $0.5(\mathrm{M}) \mathrm{NaOH}$.

The basicity of the given acid is
A. 1
B. 2
C. 3
D. 4

Answer: B

29. During the oxidation of arsenite to arsenate ion in alkaline medium, the number of moles of hydroxide ions involved per mole of arsenite ion are
A. 2
B. 3
C. $2 / 3$
D. None of these

Answer: A

- Watch Video Solution

30. KMnO_{4} (purple) is reduced to $\mathrm{K}_{2} \mathrm{MnO}_{4}$ (green) by SO_{3}^{2-} in basic medium. 1 mole of KMnO_{4} is reduced by
A. 1 mole of SO_{3}^{2-}
B. 2 mole of SO_{3}^{2-}
C. 1.5 mole of SO_{3}^{2-}
D. 0.5 mole of SO_{3}^{2-}

Answer: D

- Watch Video Solution

31. In an experiment 50 ml of $0.1(M)$ solution of a salt is reacted with $25 m l$ of $0.1(M)$ solution of sodium sulphite. The half equation for the oxidation of sulphite ion is $\mathrm{SO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-}$If the oxidation number of metal in the salt was 3 , what would be the new oxidation number of metal?
A. 0
B. 1
C. 2
D. 4

Answer: C

- Watch Video Solution

32. How many litres of $C l_{2}$ at STP will be liberated by the oxidation of NaCl with $10 g \mathrm{KMnO}_{4}$ in acidic medium: (Atomic weight: $M n=55$ and $K=39)$
A. 3.54litres
B. 7.08litres
C. 1.77litres
D. none of these

Answer: A

33. When the ion $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ acts as an oxidant in acidic aqueous solution the ion Cr^{3+} is formed. How many mole of Sn^{2+} would be oxidised to Sn^{4+} by one mole $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ ion:
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: D

Watch Video Solution
34. MnO_{4}^{2-} (1 mole) in neutral aqueous medium is disproportionate to
A. $2 / 3$ mole of MnO_{4}^{-}and $1 / 3$ mole of MnO_{2}
B. $1 / 3$ mole of MnO_{4}^{-}and $2 / 3$ mole of MnO_{2}
C. $1 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}
D. $2 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}

Answer: A

- Watch Video Solution

35. What volume of 3 molar HNO_{3} is needed to oxidise $8 g$ of Fe^{3+}, HNO_{3} gets converted to NO ?
A. $8 m l$
B. 15.87 ml
C. $32 m l$
D. $64 m l$

Answer: B

D Watch Video Solution

36. The number of moles of KMnO_{4} that will be needed to react with one mole of ferrous sulphite in acidic solution is
A. 0.6
B. 0.4
C. 0.8
D. 1.0

Answer: A

- Watch Video Solution

37. How many litres of $C l_{2}$ at STP will be liberated by the oxidation of NaCl with $10 \mathrm{gKMnO}_{4}$ in acidic medium: (Atomic weight: $M n=55$ and $K=39)$
A. 3.54litres
B. 7.08litres
C. 1.77litres
D. none of these

Answer: A

D Watch Video Solution

38. HNO_{3} oxidies NH_{4}^{+}ions to nitrogen and itself gets reduced to NO_{2}. The moles of HNO_{3} required by 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is:
A. 4
B. 5
C. 6
D. 2

Answer: C

39. What volume (in ml) at $S T P$ of SO_{2} gas is oxidized by 100 ml of $0.1(\mathrm{M}) \mathrm{H}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acid solution?
A. $672 m l$
B. $224 m l$
C. 448 ml
D. $112 m l$
40. What mass of $\mathrm{N}_{2} \mathrm{H}_{4}$ can be oxidised to N_{2} by 24 g of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ which is reduced to $\mathrm{Cr}(\mathrm{OH})_{4}^{-}$?
A. $2.969 g$
B. 5.25 g
C. $9.08 g$
D. $29.69 g$

Answer: A

Watch Video Solution

41. The number of mole of oxalate ions oxidised by one mole of MnO_{4}^{-}ion is:
A. $1 / 5$
B. $2 / 5$
C. $5 / 2$
D. 5

Answer: C

42. Starch iodide paper is used to test for the presence of
A. Reducing agent
B. Oxidising agent
C. Iodide ion
D. Iodine

Answer: D

43. What weight of HNO_{3} is needed to convert $5 g$ of iodine into iodic acid according to the reaction,
$\mathrm{I}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
A. $12.205 g$
B. $24.8 g$
C. $0.248 g$
D. $49.6 g$

Answer: A

- Watch Video Solution

44. The molar ration of Fe^{++}to Fe^{+++}in a mixture of FeSO_{4} and
$F e_{2}\left(\mathrm{SO}_{4}\right)_{3}$ having equal number of sulphate ions in both ferrous and ferric sulphate is:
A. $1: 2$
B. 3:2
C. 2:3
D. can't be determined

Answer: B

- Watch Video Solution

Type Of Redox Reaction And Equivalent Weight

1. Which is the best description of the behaviour of bromine in the reaction given below
$\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}$
A. Oxidised only
B. Reduced only
C. Proton acceptor only
D. Both oxidised and reduced

Answer: D

D Watch Video Solution

2. Equivalent weight of NH_{3} as a base is
A. 17
B. $17 / 3$
C. 1.7
D. $17 / 2$

Answer: A
3. Equivalent weight of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ is equal to molar mass in the following reaction.

Thus, species (A) is
A.

B.
(b) $\left\langle=\mathrm{CH}_{2} \mathrm{OH}\right.$
C.
(c)
(d)

D.

Answer: B

4. In the reaction $\mathrm{VO}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{FeO}+\mathrm{V}_{2} \mathrm{O}_{5}$, the eq.wt. of $\mathrm{V}_{2} \mathrm{O}_{5}$ is equal to its
A. Mol.Wt.
B. Mol.Wt. / 8
C. Mol.Wt. / 6
D. None of these

Answer: C

- Watch Video Solution

5. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{2}$ in a reaction is found to be half of its molecular weight. It can be due to its
A. oxidation to $\mathrm{H}_{3} \mathrm{PO}_{3}$
B. reaction of two H^{+}ions
C. oxidation to $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. reduction to PH_{3}

Answer: A

D Watch Video Solution

6. The eq.wt. of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, the salt to be used as an oxidant in an acid solution is
A. (mol. wt. $) / 1$
B. (mol. wt.)/2
C. (mol. wt.)/3
D. (mol. wt. $) / 5$

Answer: B
7. The equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the change
$\mathrm{FeC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is
A. M
B. $M / 2$
C. $M / 3$
D. $2 M / 3$

Answer: C

- Watch Video Solution

8. What volume of O_{2} measured at standard condition will be formed by the action of 100 mL of $0.5 \mathrm{NKMnO}_{4}$ on hydrogen peroxide in an acid solution?

The skeleton equation for the reaction is,
$\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KHSO}_{4}+\mathrm{MnSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. $0.12 L$
B. 0.28 L
C. $0.56 L$
D. 1.12 L

Answer: B

- Watch Video Solution

9. The equivalent weight of MnSO_{4} is half its molecular weight when
it is converted to
A. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. MnO_{2}
C. MnO_{4}^{-}
D. MnO_{4}^{2-}

Answer: B

D Watch Video Solution

10. Equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in the following reaction is
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+} \mathrm{Cr}^{3+}$
($M=$ molarmass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$)
A. $\frac{M}{3}$
B. $\frac{M}{6}$
c. $\frac{M}{5}$
D. $\frac{M}{4}$

Answer: B

D Watch Video Solution

11. Which of the following reaction is a redox reaction?
A. $\mathrm{P}_{2} \mathrm{O}_{5}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
B. $2 \mathrm{AgNO}_{3}+\mathrm{BaCl}_{2} \rightarrow 2 \mathrm{AgCl}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{sO}_{4} \rightarrow \mathrm{BaSO}+2 \mathrm{HCl}$
D. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

Answer: D

- Watch Video Solution

12. In the equation $\mathrm{H}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\mathrm{S}$ The equivalent weight of hydrogen sulphide is
A. 17
B. 68
C. 34
D. 16

Answer: A

- Watch Video Solution

13. In the following reaction,
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(g) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(l)$
One equivalent of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ will reduce
A. $1 \mathrm{~mol} \mathrm{SO}_{2}$
B. $0.25 \mathrm{~mol} \mathrm{SO}_{2}$
C. $0.5 \mathrm{~mol} \mathrm{SO}_{2}$
D. $2 \mathrm{~mol} \mathrm{SO}_{2}$

Answer: B

14. 0.05 moles of NaHCO_{3} will react with how many equivalent of $\mathrm{Mg}(\mathrm{OH})_{2}$?
A. 0.2 equivalent
B. 0.05 equivalent
C. 0.02 equivalent
D. 0.01 equivalent

Answer: B

- Watch Video Solution

15. Equivalent weight of S in $S O_{3}^{2-}$ is $(S=32)$
A. 6
B. 8
C. 9
D. 4

Answer: B

- Watch Video Solution

16. The equivalent weight of MnSO_{4} is half its molecular weight when it is converted to
A. $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. MnO_{4}^{-}
C. MnO_{2}
D. MnO_{4}^{2-}

Answer: C

17. In the reaction,
$I_{2}+2 S_{2} O_{3}^{2-} \rightarrow 2 I^{-}+S_{4} O_{6}^{2-}$.
Equivalent wieght of iodine will be equal to
A. its molecular weight
B. $1 / 2$ of its molecular weight
C. $1 / 4$ of its molecular weight
D. twice of its molecular weight

Answer: B

- Watch Video Solution

18. Which has maximum number of equivalent per mole of the oxidant?
A. $I^{-}(a q)+I O_{3}^{-}(a q) \rightarrow I_{3}^{-}(a q)$
B. $\mathrm{Ag}(\mathrm{s})+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{NO}_{2}(g)+\mathrm{Ag}^{+}(a q)$
C. $M g(s)+V O_{4}^{3-}(a q) \rightarrow M g^{2+}(a q)+V^{3+}(a q)$
D. $Z n(s)+V O^{2+}(a q) \rightarrow V^{3+}(a q)+Z n^{2+}(a q)$

Answer: A

(D) Watch Video Solution

19. The equivalent weight of Mohr 's salt $\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} .6 \mathrm{H}_{2} \mathrm{O}$ in redox change is equal to its
A. molecular weight / 2
B. atomic weight
C. molecular weight / 3
D. molecular weight

Answer: D

20. In alkaline medium , KMnO_{4} reacts as follows
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
Therefore, the equivalent mass of KMnO_{4} will be
A. 31.6
B. 52.7
C. 7.0
D. 158.0

Answer: D

D Watch Video Solution

21. An element forms an oxide, in which the oxygen is 20% of the oxide by weight, the equivalent weight of the given element will be
B. 40
C. 60
D. 128

Answer: A

- Watch Video Solution

22. Photosynthesis of carbohydrates in plants takes place as $6 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Sunlight }} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Equivalent weights of CO_{2} and $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ respectively are
A. $11,7.5$
B. 44,90
C. 22,15
D. 44,180

Answer: A

D Watch Video Solution

23. The equivalent weight of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the reaction $\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH} \mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ is
A. 25
B. 98
C. 59
D. 49

Answer: B

- Watch Video Solution

24. The equivalent weight of KIO_{3} in the reaction $2 \mathrm{Cr}(\mathrm{OH})_{3}+4 \mathrm{OH}+\mathrm{KIO}_{3} \rightarrow 2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$ is
A. $\frac{\text { Mol. } w t .}{3}$
B. $\frac{\text { Mol. } w t .}{6}$
C. $\frac{\text { Mol. } w t .}{2}$
D. Molecular weight

Answer: A

- Watch Video Solution

25. What is the equivalent weight of HNO_{3} in the given reaction?
$4 \mathrm{Zn}+10 \mathrm{HNO}_{3} \rightarrow 4 \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
A. $\frac{63}{10}$
B. $\frac{63}{9}$
C. $\frac{63}{8} \times 10$
D. $\frac{63}{4} \times 14$

Answer: C

- Watch Video Solution

26. In the following reaction (unbalanced), equivalent weight of $A s_{2} S_{3}$
is related to molecular weight M by
$\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{H}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}+\mathrm{AsO}_{4}^{3-}+\mathrm{SO}_{4}^{2-}$
A. $\frac{M}{2}$
B. $\frac{M}{4}$
C. $\frac{M}{28}$
D. $\frac{M}{24}$

Answer: C

27. What is the equivalent weight of $C_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ in the following reaction?
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+36 \mathrm{HNO}_{3} \rightarrow 6 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+36 \mathrm{NO}_{2}+23 \mathrm{H}_{2} \mathrm{O}$
A. $\frac{342}{36}$
B. $\frac{342}{12}$
C. $\frac{342}{22}$
D. $\frac{342}{3}$

Answer: A

- Watch Video Solution

28. In the following disproportionation of Cl_{2} in basic medium

$$
\mathrm{Cl}_{2}+2 \mathrm{KOH} \rightarrow \mathrm{KCl}+\mathrm{KClO}+\mathrm{H}_{2} \mathrm{O}
$$

Equivalent mass of $C l_{2}$ is
A. 35.50
B. 71.00
C. 47.33
D. 11.83

Answer: B

(D) Watch Video Solution

29. What is the equivalent weight of P in the following reaction?
$\mathrm{P}_{4}+\mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
A. $\frac{31}{4}$
B. $\frac{31}{3}$
C. $\frac{31}{2}$
D. $31 \times 4 / 3$

Answer: D

Watch Video Solution
30. Equivalent mass of oxidizing agent in the reaction, $\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}$ is
A. 32
B. 64
C. 16
D. 8

Answer: C

31. Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{2}$ when it disproportionates into PH_{3} and $\mathrm{H}_{3} \mathrm{PO}_{3}$ is (mol.wt. of $\mathrm{H}_{3} \mathrm{PO}_{2}=\mathrm{M}$)
A. M
B. $\frac{3 M}{4}$
C. $\frac{M}{2}$
D. $\frac{M}{4}$

Answer: B

- Watch Video Solution

32. In the following unbalanced redox reaction,

$$
\mathrm{Cu}_{3} \mathrm{P}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow \mathrm{Cu}^{2+}+\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Cr}^{3+}
$$

Equivalent weight of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is
A. $\frac{M}{3}$
B. $\frac{M}{6}$
C. $\frac{M}{7}$
D. $\frac{M}{8}$

Answer: D

- Watch Video Solution

33. 5 L of KMnO_{4} solution contains 0.01 equiv. of $\mathrm{KMnO}_{4} .50 \mathrm{ml}$ of the given solution contain, how many moles of KMnO_{4} ?
$\mathrm{KMnO}_{4} \rightarrow \mathrm{MnO}_{2}$
A. $\frac{10^{-6}}{4}$
B. $\frac{10^{-4}}{3}$
C. 3×10^{-5}
D. 10^{-5}

Answer: B

Watch Video Solution
34. What is the equivalent mass of IO_{4}^{-}when it is converted into I_{2} in acid medium ?
A. $M / 6$
B. $M / 7$
C. $M / 5$
D. $M / 4$

Answer: B

- Watch Video Solution

35. The reaction
$3 \mathrm{ClO}^{\ominus}(a q) \rightarrow \mathrm{ClO}_{3}(a q)+2 \mathrm{Cl}^{\ominus}(a q)$
is an example of
A. Oxidation reaction
B. reduction reaction
C. disproportionation reaction
D. decomposition reaction

Answer: C

- Watch Video Solution

36. Which reaction does not represent auto-redox or disproportionation?

$$
\text { A. } \mathrm{Cl}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

B. $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
C. $2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

37. Which of the following species does not show disproportionation reaction?
A. ClO_{4}^{-}
B. ClO_{2}^{-}
C. ClO_{3}^{-}
D. ClO^{-}
38. Among the following select the disproportionation reaction ?
(i) $2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
(ii) $\mathrm{I}_{2} \rightarrow \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}$
(iii) $3 \mathrm{Cl}_{2}+6 \mathrm{NaOH} \rightarrow 5 \mathrm{NaCl}+\mathrm{NaClO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
(iv) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}$
A. $(i),(i i),(i i i)$
B. $(i i),(i i i),(i v)$
C. $(i),(i i i),(i v)$
D. All of these

Answer: B

- Watch Video Solution

39. Which is the intramolecular oxidation-reduction reaction?
A. $2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$
B. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{CrO}_{3}+4 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
D. All of the above

Answer: D

- Watch Video Solution

40. Based on the following reaction,
$\mathrm{XeO}_{6}^{4-}(a q)+2 \mathrm{~F}^{-}(a q)+6 \mathrm{H}^{+}(a q) \rightarrow \mathrm{XeO}_{3}(a q)+\mathrm{F}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
$\left(\Delta(G)^{\circ}<o\right)$
It can be concluded that
A. oxidising power of F^{-}is grater than that of XeO_{6}^{4-}
B. it is not a redox reaction
C. it is a disproportionation reaction
D. oxidising power of XeO_{6}^{4-} is greater than that of F^{-}

Answer: D

D Watch Video Solution

41. Equivalent weight of N_{2} in the change
$N_{2} \rightarrow \mathrm{NH}_{3}$ is
A. $28 / 6$
B. 28
C. $28 / 2$
D. $28 / 3$
42. What is the equivalent weight of NH_{3} in the given reaction?
$3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+\mathrm{N}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
A. 17
B. $\frac{17}{4}$
C. $\frac{17}{2}$
D. $\frac{17}{3}$

Answer: D

- Watch Video Solution

1. Assertion (A): $S O_{2}$ and $C l_{2}$ are both bleaching agents.

Reason (R): Both are reducing agents.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

2. Assertion(A): Fluorine exists only in -1 oxidation state.

Reason(R): Fluorine has $2 s^{2} 2 p^{5}$ configuration.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

3. Assertion: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride to mercury

Reason: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not do so.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

4. Assertion: HClO_{4} is a stronger acid than HClO_{3}.

Reason: Oxidation state of Cl in HClO_{4} is +VII and in $\mathrm{HClO}_{3}+V$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

5. Assertion: Copper liberates hydrogen from a solution of dilute hydrochloric acid.

Reason: Hydrogen is above copper in the electro-chemical series.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

6. Assertion: Reaction of white phosphorus with $\mathrm{NaOH}(a q)$ gives PH_{3}.

Reason: The reaction is disproportionation of P in alkaline medium.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

D Watch Video Solution

7. Assertion: The passage of $\mathrm{H}_{2} \mathrm{~S}$ through aqueous solution of SO_{2} gives yellow turbidty of S in solution. Reason: The yellow turbidity of S is in colloidal state due to oxidation of $\mathrm{H}_{2} \mathrm{~S}$ by $\mathrm{SO}_{2}(a q)$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.
8. Assertion: Bleaching action of SO_{2} is temporary whereas bleaching action of $C l_{2}$ is permanent.

Reason: Bleaching by SO_{2} and Cl_{2} is due to oxidation.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

9. Assertion: Conversation of black lead painting is made to white by the action of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Reason: Sulphur is oxidised to SO_{4}^{2-}
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

10. Assertion: CrO_{5} on decomposition undergoes disproportionation.

Reason: $\mathrm{CrO} \mathrm{O}_{5}$ undergoes intermolecular redox reaction.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

11. Assertion: $\mathrm{NH}_{4} \mathrm{NO}_{3}$ on heating give $\mathrm{N}_{2} \mathrm{O}$.

Reason: $\mathrm{NH}_{4} \mathrm{NO}_{3}$ on heating shows disproportionation.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

12. Assertion: In azide ion average oxidation number of N is $-1 / 3$.

Reason: In azide ion two N atoms have zero oxidation number and one has oxidation number -1 .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

13. Assertion: Oxygen atom in both O_{2} and O_{3} has oxidation number zero.

Reason: In $\mathrm{Fe}_{2} \mathrm{O}$, oxidation number of O is +2 .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

14. Assertion: N atom has two different oxidation states in $\mathrm{NH}_{4} \mathrm{NO}_{2}$.

Reason: One N atom has - ve oxidation number as it is attached with less electronegative H atom and other has $+v e$ oxidation number as it is attached with more electronegative atom.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.
15. Statement $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ is autoredox change.

Explanation One oxygen atom is oxidised and one oxygen atom is reduced.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

16. Statement VO_{2}^{+}and VO^{2+} both are called vanadyl ions.

Explanation $V O_{2}^{+}$is dioxovanadium (V) ion and VO^{2+} is oxovanadium (IV) ion.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

17. Assertion:	In
$3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}_{3} \mathrm{SAsO}_{4}+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}$	

electrons transferred are 84 .

Reason: As is oxidised from +3 to +5 and sulphur from -2 to +6 .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

18. Assertion: If a strong acid is added to a solution of potassium chromate it changes its colour from yellow to orange.

Reason: The colour change is due to the oxidation of potassium chromate.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

19. Assertion: Nitrous acid $\left(\mathrm{HNO}_{2}\right)$ may act as an oxidising as well as a reducing agent.

Reason: The oxidation number of nitrogen remains same in all the compounds.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

(D) Watch Video Solution

20. Assertion: A reducing agent is a substance which can donate electron.

Reason: A substance which helps in oxidation is known as reducing agent.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

D Watch Video Solution

21. Assertion: In the redox reaction
$8 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{NO}_{3}^{-}+6 \mathrm{Cl}^{-}+\mathrm{Sn}(\mathrm{s}) \rightarrow \mathrm{SnCl}_{6}^{2-}+4 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$. the reducing agent is $S n(s)$.

Reason In balacing half-reaction, $\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow S(s)$, the number of electrons added on the left is 4.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

22. Assertion: Among $\mathrm{Br}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{H}^{-}$and NO_{3}^{-}, the ions that cannot act as oxidising agents are Br^{-}and H^{-}.

Reason: Br^{-}and H^{-}cannot be reduced.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

23. Assertion: In the reaction,
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}+\rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{MnO}_{4}^{-}$ acts as oxidising agent.

Reason: In the above reaction, n - factor is 5 .
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

24. Assertion: If 200 mL of 0.1 NNaOH is added to 200 mL of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution. Then the resulting solution is acidic.

Reason: If milliequivalent of acid is greater than milliequivalents of base, then upon mixing the solution is acidic.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

25. Assertion: Equivalent weight of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ in the reaction, $\mathrm{FeC}_{2} \mathrm{O}_{4}+$ Oxidising agent $\rightarrow \mathrm{Fe}^{3+}+\mathrm{CO}_{2}$ is $\mathrm{M} / 3$, where M is molar mass of $\mathrm{FeC}_{2} \mathrm{O}_{4}$.

Reason: In theabove reaction, total two mole of electrons are given up by 1 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ to the oxidising agent.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

Aipmt Neet Questions

1. Zn gives H_{2} gas with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl but not with HNO_{3} because
A. Zn acts as an oxidising agent when it reacts with HNO_{3}
B. HNO_{3} is weaker acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl
C. In electrochemical series, $Z n$ is above hydrogen
D. $N O_{3}^{\Theta}$ is reduced in preference to hydronium ion.

Answer: D

(Watch Video Solution

2. The oxidation states of sulphur in the anions $\mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $S_{2} \mathrm{O}_{6}^{2-}$ follow the order
A. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
B. $\mathrm{SO}_{3}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}$
C. $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{SO}_{3}^{2-}$
D. $\mathrm{S}_{2} \mathrm{O}_{6}^{2-}<\mathrm{S}_{2} \mathrm{O}_{4}^{2-}<\mathrm{SO}_{3}^{2-}$

Answer: A

3. Which is the best description of the behaviour of bromine in the reaction given below

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}
$$

A. Proton acceptor only
B. Both oxidised and reduced
C. Oxidised only
D. Reduced only

Answer: B

- Watch Video Solution

4. Oxidation numbers of P in PO_{4}^{3-}, of S in SO_{4}^{2-}, and that of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are respectively,
A. $-3,+6,+6$
B. $+5,+3,+6$
C. $+3,+6,+5$
D. $+5,+6,+6$

Answer: D

- Watch Video Solution

5. Oxidation no. of P in $H_{4} P_{2} O_{5}, H_{4} P_{2} O_{6}$, and $H_{4} P_{2} O_{7}$ are respectively
A. $+3,+4,+5$
B. $+4,+3,+5$
C. $+3,+5,+4$
D. $+5,+3,+4$

D Watch Video Solution

6. The most common and stable oxidation state of a lanthanide is
A. 4
B. 2
C. 5
D. 3

Answer: D

Watch Video Solution
7. Standard reduction potentails of the half reactions are given below:
$F_{2}(g)+2 e^{-} \rightarrow 2 F^{-}(a q),. E^{\Theta}=+2.87$
$C l_{2}(g)+2 e^{-} \rightarrow 2 C l^{-}(a q),., E^{\ominus}=+1.36 V$
$B r_{2}(g)+2 e^{-} \rightarrow 2 B r^{-}(a q),., E^{\ominus}=+1.09 V$
$I_{2}(s)+2 e^{-} \rightarrow 2 l^{-}(a q),., E^{\ominus}=+0.54 V$
The strongest oxidizing and reducing agents respectively are:
A. F_{2} and I^{-}
B. $B r_{2}$ and $C l^{-}$
C. Cl_{2} and Br^{-}
D. $C l_{2}$ and I_{2}

Answer: A

- Watch Video Solution

8. In which of the following compounds, nitrogen exhibits the highest oxidation state?
A. $N_{3} H$
B. $\mathrm{NH}_{2} \mathrm{OH}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. NH_{3}

Answer: A

- Watch Video Solution

9. When Cl_{2} gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
A. Zero to -1 and zero to +3
B. Zero to +1 and zero to -3
C. Zero to +1 and zero to -5
D. Zero to -1 and zero to +5

Answer: D

10. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?
A. $C l$
B. C
C. S
D. H

Answer: A

- Watch Video Solution

11. The pair of compounds that can exist together is:
A. $\mathrm{FeCl}_{3}, \mathrm{SnCl}_{2}$
B. $\mathrm{HgCl}_{2}, \mathrm{SnCl}_{2}$
C. $\mathrm{FeCl}_{2}, \mathrm{SnCl}_{2}$
D. $\mathrm{FeCl}_{3}, \mathrm{KI}$

Answer: C

D Watch Video Solution

12. Role of hydrogen peroxide iin the following reaction is respectively.
(i) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{ZO}_{2}$
(ii) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Ag}_{2} \mathrm{O} \rightarrow \mathrm{Aag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
A. oxidizing in (I) and reducing in (II)
B. reducing in (I) and oxidizing in (II)
C. reducing in (I) and (II)
D. oxidizing in (I) and (II)
13. In acidic medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ changes $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ to CrO_{5} which has two
($-\mathrm{O}-\mathrm{O}-$) bonds. Oxidation state of Cr in CrO_{5} is
A. +5
B. +3
C. +6
D. -10

Answer: C

14. The reaction of aqueus KMnO_{4} with $\mathrm{H}_{2} \mathrm{O}_{2}$ in acidic conditions gives
A. Mn^{4+} and O_{2}
B. Mn^{2+} and O_{2}
C. Mn^{2+} and O_{3}
D. Mn^{4+} and MnO_{2}

Answer: B

- Watch Video Solution

15. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\left(1 \mathrm{MnO}_{4}^{-}=16, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5, H^{+}=2\right)$
B. $\left(1 \mathrm{MnO}_{4}^{-}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5, \mathrm{H}^{+}=16\right)$
C. $\left(1 \mathrm{MnO}_{4}^{-}=2, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16, \mathrm{H}^{+}=5\right)$
D. $\left(1 \mathrm{MnO}_{4}^{-}=5, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16, \mathrm{H}^{+}=2\right)$

Answer: B

D Watch Video Solution

16. Which ordering of compound is according to the decreasing order of the oxidation state of nitrogen?
A. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
B. $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
C. $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
D. $\mathrm{NH}_{4 \mathrm{Cl}}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$

Answer: A

Aims Questions

1. Following reaction describes the rusting of iron
$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 4 \mathrm{Fe}^{3+}+6 \mathrm{O}_{2-}$
Which one of the following statements is incorrect?
A. This is an example of a redox reaction
B. Metallic iron is reduced to Fe^{3+}
C. $F e^{3+}$ is an oxidising agent
D. Metallic iron is a reducing agent

Answer: B
2. Identify the correct statement about $\mathrm{H}_{2} \mathrm{O}_{2}$
A. It acts as reducing agent only
B. It acts as both ocidising and reducing agent
C. It is neither an oxidiser nor reduces
D. It acts as oxidising agent only

Answer: B

- Watch Video Solution

3. In $\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}$ acts as
A. oxidising agent
B. reducing agent
C. both (a) and (b)
D. none of these

Answer: A

Watch Video Solution
4. Which substance is serving as a reducing agent in the following reaction?

$$
14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+3 \mathrm{Ni} \rightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Ni}^{2+}
$$

A. $\mathrm{H}_{2} \mathrm{O}$
B. $N i$
C. H^{+}
D. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$

Answer: B

5. HNO_{2} acts both as reductant and as oxidant, while HNO_{3} acts only as oxidant. It is due to their
A. Solubility ability
B. Maximum oxidation number
C. Minimum oxidation number
D. Minimum number of valence electrons

Answer: B

- Watch Video Solution

6. Oxidation number if nickel in $\mathrm{Ni}\left(\mathrm{CO}_{4}\right)$ is
A. 0
B. +4
C. -4
D. +2

Answer: A

- Watch Video Solution

7. The oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is
A. 0
B. +2
C. -2
D. +4

Answer: A

- Watch Video Solution

8. Which of the following statements is correct?
A. Hydrogen has oxidation number -1 and +1
B. Hydrogen has same electronegativity as halogens
C. Hydrogen will not be liberated at anode
D. Hydrogen has same ionization potential as alkali metals

Answer: A

- Watch Video Solution

9. An element which never has a positive oxidation number in any of its compounds
A. Boron
B. Oxygen
C. Chlorine
D. Fluorine

Answer: D

- Watch Video Solution

10. If HNO_{3} changes into $\mathrm{N}_{2} \mathrm{O}$, the oxidation number is changed by
A. +2
B. -1
C. 0
D. +4

Answer: D

- Watch Video Solution

11. The oxidation number of iron in the compound $K_{4}\left[F e(C N)_{6}\right]$ is
A. +6
B. +4
C. +3
D. +2

Answer: D

(D) Watch Video Solution

12. The brown ring complex compound is formulated as $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$. The oxidation state of Fe is
A. 1
B. 2
C. 3
D. 0

Answer: B

- Watch Video Solution

13. The oxidation number of S in $N a_{2} S_{4} O_{6}$ is
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{3}{5}$
D. $\frac{5}{2}$

Answer: D

- Watch Video Solution

14. Identify the element which can have highest oxidation numbers
A. N
B. O
C. Cl
D. C

Answer: C

- Watch Video Solution

15. What is the net charge on ferrous ion ?
A. +2
B. +3
C. +4
D. +5

D Watch Video Solution

16. Which of the following reaction involves oxidation reduction?
A. $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$
B. $\mathrm{HBr}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
C. $\mathrm{NaBr}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{HBr}$
D. $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

17. What is the equivalent weight of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ according to the equation
$\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
A. 25
B. 49
C. 59
D. 98

Answer: D

18. For decolourisation of 1 mol of KMnO_{4}, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is
A. $1 / 2$
B. $3 / 2$
C. $5 / 2$
D. $7 / 2$

Answer: C

- Watch Video Solution

19. The oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ and iron in $K_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ is respectively
A. +6 and +2
B. +2 and +2
C. +8 and +2
D. +6 and +4

Answer: A
20. MnO_{4}^{2-} in neutral aqueous medium is disproportionate to
A. $2 / 3$ mole of MnO_{4}^{-}and $1 / 3$ mole of MnO_{2}
B. $1 / 3$ mole of MnO_{4}^{-}and $2 / 3$ mole of MnO_{2}
C. $1 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}
D. $2 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}

Answer: A

D Watch Video Solution

Assertion Reasoning Questions

1. Assertion: Amongest the halogens, fluorine can oxidise the elements to the highest oxidation- state.

Reason: Due to small size of fluoride ion, it is difficult to oxidise fluoride ion to fluorine. Hence reverse reaction takes place more easily.
A. If both the assertion and reason are true and reason is the true
explanation of the assertion.
B. If both the assertion and reason are ture but the reason is not the correct explanation of assertion
C. If the assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

2. Assertion: Cl_{2} gas belaches the articles permanently.

Reason: $C l_{2}$ is a strong reducing agent.
3. Assertion: In some cases oxygen shows positive oxidation number though it is an electronegative element.

Reason: Fluorine is more electronegative than oxygen.

- Watch Video Solution

4. Assertion: Reaction of SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$ in the presence of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ catalyst gives elemental sulphur.

Reason: $S O_{2}$ is a reducing agent.

- Watch Video Solution

5. Assertion: $C u$ is stronger reducing agent than H^{+}.

Reason: E^{0} of $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is negative.

- Watch Video Solution

Section D Chapter End Test

1. For $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ the correct choice is
A. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and reducing
B. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is dibasic and non-reducing
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$ is tribasic and reducing
D. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is tribasic and non-reducing

Answer: A

- Watch Video Solution

2. The oxidation number of sulphur in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ and iron in $K_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ is respectively
A. +6 and +2
B. +2 and +2
C. +8 and +2
D. +6 and +4

Answer: A

D Watch Video Solution

3. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)
A. +3
B. -3
C. -1
D. +5

Answer: A

D Watch Video Solution

4. In the compound $Y B a_{2} C u_{3} O_{7}$ which shows superconductivity, what is the oxidation state of Cu ?

Assume that the rare earth element yttrium is in its usual +3 oxidation state.
A. $3 / 7$
B. $7 / 3$
C. 3
D. 7

Answer: B

5. The oxidation number of S in $S_{8}, S_{2} F_{2}$, and $H_{2} S$, respectively, are
A. $0,+1$ and -2
B. $+2,+1$ and -2
C. $0,+1$ and +2
D. $-2,+1$ and -2

Answer: A

- Watch Video Solution

6. Which one of the following reactions is not an example of redox reaction?
A. $\mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2} \rightarrow 4 \mathrm{H}^{+}+\mathrm{SO}^{4-} 2 \mathrm{Cl}^{-}$
B. $\mathrm{Cu}^{++}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{++}+\mathrm{Cu}$
C. $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{-}+\mathrm{Cl}^{-}$

Answer: D

- Watch Video Solution

7. For the reaction, $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta \mathrm{H}=-393 \mathrm{~J}$
$2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}, \Delta H=-412 \mathrm{~J}$
A. Carbon can oxidise $Z n$
B. Oxidation of carbon is not feasible
C. Oxidation of $Z n$ is not fesible
D. $Z n$ can oxidise carbon

Answer: D

8. In the reaction $\mathrm{B}_{2} \mathrm{H}_{6}+2 \mathrm{KOH}+2 \mathrm{X} \rightarrow 2 \mathrm{Y}+6 \mathrm{H}_{2}, \mathrm{X}$ and Y are respectively
A. $\mathrm{H}_{2}, \mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{HCl}, \mathrm{KBO}_{3}$
C. $\mathrm{H}_{2} \mathrm{O}, \mathrm{KBO}_{3}$
D. $\mathrm{H}_{2} \mathrm{O}, \mathrm{KBO}_{2}$

Answer: D

D Watch Video Solution

9. In a balanced equation $\mathrm{H}_{2} \mathrm{SO}_{4}+x \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+\mathrm{YI}_{2}+z \mathrm{H}_{2} \mathrm{O}$, the value of x, y, z are
A. $x=3, y=5, z=2$
B. $x=4, y=8, z=5$
C. $x=8, y=4, z=4$
D. $x=5, y=3, z=4$

Answer: C

- Watch Video Solution

10. MnO_{4}^{2-} (1 mole) in neutral aqueous medium is disproportionate to
A. $2 / 3$ mole of MnO_{4}^{-}and $1 / 3$ mole of MnO_{2}
B. $1 / 3$ mole of MnO_{4}^{-}and $2 / 3$ mole of MnO_{2}
C. $1 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}
D. $2 / 3$ mole of $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and $1 / 3$ mole of MnO_{2}

Answer: A
11. The conductivity of a saturated solution of BaSO_{4} is
$3.06 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and its equivalent conductance is $1.53 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \equiv^{-1}$. The $K_{s p}$ for BaSO_{4} will be .
A. 4×10^{-12}
B. 2.5×10^{-9}
C. 2.5×10^{-13}
D. 4×10^{-6}

Answer: D

- Watch Video Solution

12. $\mathrm{H}_{2} \mathrm{O}_{2}$ reduces $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$
A. In neutral solution
B. In acidic solution
C. In non-polar solution
D. In alkaline solution

Answer: B

- Watch Video Solution

13. When sodium metal is dissolved in liquid ammonia, blue colour solution is formed. The blue colour is due to
A. Solvated Na^{+}ions
B. Solvated electrons
C. Solvated NH_{2}^{-}ions
D. Solvated protons

Answer: B

14. Which of the following is redox reaction ?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ with NaOH
B. In atmosphere, O_{3} from O_{2} by lightning
C. Evaporation of $\mathrm{H}_{2} \mathrm{O}$
D. Nitrogen oxides from nitrogen and oxygen by lightning

Answer: D

- Watch Video Solution

15. In which of the following reactions $\mathrm{H}_{2} \mathrm{O}_{2}$ is a reducing agent?
A. $2 \mathrm{FeCl}_{2}+2 \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
C. $2 \mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer: B

D Watch Video Solution

16. Which is the best description of the behaviour of bromine in the reaction given below

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{Br}_{2} \rightarrow \mathrm{HOBr}+\mathrm{HBr}
$$

A. Oxidised only
B. Reduced only
C. Proton acceptor only
D. Both oxidised and reduced

Answer: D

(D) Watch Video Solution

17. Which of the following substances acts as an oxidising as well as a reducing agent?
A. $\mathrm{Na}_{2} \mathrm{O}$
B. SnCl_{2}
C. $\mathrm{Na}_{2} \mathrm{O}_{2}$
D. NaNO_{2}

Answer: D

- Watch Video Solution

18. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$, the change in the oxidation state of chromium is
A. 0
B. 6
C. 4
D. 3

Answer: A

D Watch Video Solution

19. Oxidation state of chlorine in perchloric acid is
A. -1
B. 0
C. -7
D. +7

Answer: D

20. The oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is
A. +2
B. +4
C. +6
D. +7

Answer: C

21. The oxidation state of nitrogen in $N_{3} H$ is
A. $+\frac{1}{3}$
B. +3
C. -1
D. $-\frac{1}{3}$

Answer: D

D Watch Video Solution

22. In XeO_{3} and XeF_{6} the oxidation state of Xe is
A. +4
B. +6
C. +1
D. +3

Answer: B

23. The number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by 1 mol of Sn^{2+} ions
A. $1 / 3$
B. $1 / 6$
C. $2 / 3$
D. 1

Answer: A

(D) Watch Video Solution

24. For the redox reaction
$\mathrm{MnO}_{4}^{\ominus}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{\oplus} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactions for the balanced reaction are
A. $\left(\mathrm{MnO}_{4}^{-}=2\right),\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=5\right),\left(\mathrm{H}^{+}=16\right)$
B. $\left(\mathrm{MnO}_{4}^{-}=16\right),\left(C_{2} O_{4}^{2-}=5\right),\left(H^{+}=2\right)$
C. $\left(\mathrm{MnO}_{4}^{-}=5\right),\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16\right),\left(H^{+}=2\right)$
D. $\left(\mathrm{MnO}_{4}^{-}=2\right),\left(\mathrm{C}_{2} \mathrm{O}_{4}^{2-}=16\right),\left(H^{+}=5\right)$

D Watch Video Solution

25. Which of the following is the strongest oxidising agent?
A. $\mathrm{BrO}_{3}^{-} / \mathrm{Br}^{2}, E^{0}=+1.50$
B. $F e^{3+} / F e^{2+}, E^{0}=+0.76$
C. $M n O_{4}^{-} / M n^{2+}, E^{0}=+1.52$
D. $C r_{2} O_{7}^{2-} / C r^{3+}, E^{0}=+1.33$

Answer: C

D Watch Video Solution

26. The equivalent weight of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ in the reaction $\mathrm{NaOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{NaH} \mathrm{H}_{2} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$ is
A. 25
B. 49
C. 59
D. 98

Answer: D

- Watch Video Solution

27. Assertion: Fluorine exists only in -1 oxidation state.

Reason: Fluorine has $2 s^{2} 2 p^{5}$ configuration.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If the assertion false and reason is true.

Answer: B

- Watch Video Solution

28. Assertion: HClO_{4} is a stronger acid than HClO_{3}.

Reason: Oxidation state of Cl in HClO_{4} is +VII and in $\mathrm{HClO}_{3}+V$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If the assertion false and reason is true.

Answer: B

29. Assertion: Oxidation number of carbon in $\mathrm{CH}_{2} \mathrm{O}$ is zero.

Reason: $\mathrm{CH}_{2} \mathrm{O}$ formaldehyde, is a covalent compound.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and reason is not the correct explantion of the assertion.
C. If assertion is true but reason is false.
D. If the assertion false and reason is true.

Answer: B

