

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

REDOX REACTIONS

Oxidation Number Oxidising And Reducing Agent

- 1. Oxidation can be defined as the terms
- (I) gain of electron and hydrogen
- (II) gain of oxygen and loss of electron
- (III) increase in oxidation number
- (IV) decrease in oxidation number

Select the correct terms

A. \it{I} and \it{II}

B. I and IV

 $\mathsf{C}.\,I$ and III

D. II and III

Answer: D

Watch Video Solution

- **2.** The oxidation number of S in $H_2S_2O_8$ is
 - A. + 2
 - B. + 4
 - C. + 6
 - D. + 7

Answer: C

3. In the reaction

$$H_2S+NO_2
ightarrow H_2O+NO+S$$
. H_2S is

- A. Oxidised
- B. Reduced
- C. Precipitated
- D. None of these

Answer: A

- 4. In which of the following processes is nitrogen oxidised?
 - A. $NH_4^{\,+}\, o N_2$
 - B. $NO_3^- o NO$

$$\mathsf{C.}\,NO_2\to NO_2^-$$

D.
$$NO_3
ightarrow N{H_4^+}$$

Answer: A

Watch Video Solution

- 5. Reduction is defined in terms of
- (I) electronation and hydrogenation
- (II) de-electronation and gain of oxygen
- (III) increase in oxidation number
- (IV) decrease in oxidation number

Select the correct terms

- A. II and III
- $\operatorname{B.}I\operatorname{and}III$
- C. \boldsymbol{I} and $\boldsymbol{I}\boldsymbol{V}$

D.	I	and	II

Answer: C

Watch Video Solution

- **6.** Which of the following statements is correct?
 - A. Hydrogen has oxidation number -1 and +1
 - B. Hydrogen has same electronegativity as halogens
 - C. Hydrogen will not be liberated at anode
 - D. Hydrogen has same ionization potential as alkali metals

Answer: A

7. The conversion of PbO_2 to $Pb(NO_3)_2$ is

A. Oxidation

B. Reduction

C. Neither oxidation nor reduction

D. Both oxidation and reaction

Answer: B

8. The oxidation number of I in HIO_4 is

A. + 7

B. + 6

 $\mathsf{C.} + 3$

 $\mathsf{D.} + 14$

Answer: A

Watch Video Solution

9. Which of the following reactions does not involve either oxidation or reduction ?

A.
$$VO_2^+
ightarrow V_2O_3$$

B.
$$Na
ightarrow Na^+$$

C.
$$CrO_4^{2-}
ightarrow Cr_2O_7^{2-}$$

D.
$$Zn^{2+}
ightarrow Zn$$

Answer: C

10. Which one of the following has the highest oxidation number of iodine?

- A. K_3I
- $\mathsf{B.}\,KI$
- $\mathsf{C}.\,IF_5$
- D. KIO_4

Answer: D

Watch Video Solution

11. In the reaction

$$3Br_2+6CO_3^{2-}+3H_2O
ightarrow5Br^{oldsymbol{e}}+BrO_3^{oldsymbol{e}}+6HCO_3^{oldsymbol{e}}$$

- A. Bromine is oxidised and carbonate is reduced
- B. Bromine is reduced and water is oxidised

C. Bromine is neither reduced nor oxidised

D. Bromine is both reduced and oxidised

Answer: D

Watch Video Solution

12. In the following reaction,

 $4P + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$

A. P is oxidised as well as reduced

 ${\it B.\,P}$ is reduced only

 ${\it C.\,P}$ is oxidised only

D. None of these

Answer: A

13. In the reaction:

$$Cr_2O_7^{2\,-} + 14H^{\,\oplus} + 6I^{\,\Theta} \,
ightarrow \, 2Cr^{3\,+} + 3H_2O + 3I_2$$

Which element is reduced?

- A. Cr
- $\mathsf{B}.\,H$
- $\mathsf{C}.\,O$
- D. I

Answer: A

- **14.** If HNO_3 changes into N_2O , the oxidation number is changed by
 - $\mathsf{A.} + 2$
 - B.-1

C. 0

D. + 4

Answer: D

Watch Video Solution

15. Oxidation number of sulphur in H_2SO_5 is

A. + 2

B. + 4

C. + 8

D.+6

Answer: D

16. In which of the following cases is the oxidation state of N atom wrongly calculated?

A. (Compound
$$= NH_4Cl$$
, Oxidation state $= -3$)

B. (Compound
$$= (N_2H_5)_2SO_4$$
, Oxidation state $= +2$)

C. (Compound
$$= Mg_3N_2$$
, Oxidation state $= -3$)

D. (Compound
$$= NH_2OH$$
, Oxidation state $= -1$)

Answer: B

17. In which one of the following changes there are transfer of five electrons?

A.
$$MnO_{4}^{-}
ightarrow Mn^{2+}$$

B.
$$CrO_4^2 o Cr^{3+}$$

C.
$$MnO_4^{2\,-}
ightarrow Mn^{2\,+}$$

D.
$$Cr_2O_7^{2-}
ightarrow 2Cr^{3+}$$

Answer: A

Watch Video Solution

18. Oxidation involves

- A. Decreases in the valency of positive part
- B. Gain of electrons
- C. Increase in the valency of negative part
- D. Loss of electrons

Answer: D

19. Equation $H_2S+H_2O_2 o S+2H_2O$ represents

A. Acidic nature of H_2O_2

B. Basic nature of $H_2{\cal O}_2$

C. Oxidising nature of $H_2 O_2$

D. Reducing nature of H_2O_2

Answer: C

Watch Video Solution

20. In the reaction

$$C_2 O_4^{2\,-} + Mn O_4^{-} + H^{\,+}
ightarrow Mn^{2\,+} + C O_2 + H_2 O$$

the reductant is

A.
$$C_2 O_4^{2\,-}$$

B.
$$MnO_4^-$$

C. Mn^{2+}

D. H^+

Answer: A

Watch Video Solution

21. In which of the following compounds iron has lowest oxidation state?

A. $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$

B. $K_4Fe(CN)_6$

 $\mathsf{C}.\,Fe(CO)_5$

D. Fe_2O

Answer: C

22. When Sn^{2+} changes to Sn^{4+} in a reaction

A. It loses two protons

B. It gains two electrons

C. It loses two electrons

D. It gains two protons

Answer: C

23. Which of the following is the most powerful oxidizing agent?

A. F_2

B. Cl_2

C. Br_2

D. l_2

Answer: A

Watch Video Solution

24. In the chemical reaction $Cl_2+H_2S o 2HCl+S$, the oxidation number of sulphur changes from

 $\mathsf{A.}\ 0\ \mathsf{to}\ 2$

 $\mathsf{B.}-2 \ \mathsf{to} \ 0$

 $\mathsf{C.}\,2\,\mathsf{to}0$

D.-2 to -1

Answer: B

25. When SO_2 is passed through acidic solution of potassium dichromate, then chromium sulphate is formed. Change in valency of chronium is

- $\mathsf{A.} + 4 \, \mathsf{to} + 2$
- $\mathsf{B.} + 5 \mathsf{\,to} + 3$
- C. + 6 to + 3
- $\mathsf{D.} + 7 \, \mathsf{to} + 2$

Answer: C

Watch Video Solution

26. The oxidation states of the most electronegative elements in the products of the reaction between BaO_2 and H_2SO_4 are

A. $0 \ \mathsf{and} \ -1$

 $\mathsf{B.}-1$ and -2

 $\mathsf{C.} - 2 \;\mathsf{and}\; 0$

 $\mathsf{D.}-2$ and +1

Answer: B

Watch Video Solution

27. The highest oxidation state of Mn is shown by

A. K_2MnO_4

B. $KMnO_4$

 $\mathsf{C}.\,MnO_2$

D. Mn_2O_2

Answer: B

28. The oxidation number of C in CH_2O is A.-2B. + 2 $\mathsf{C}.\,0$ D.+4**Answer: C Watch Video Solution 29.** Oxidation number of N in $(NH_4)_2SO_4$ is A. -3B.-1C. + 1

$$D. - 1/3$$

Answer: A

Watch Video Solution

30. In which of the following compounds transition metal is in oxidation state zero

- A. $\lceil Co(NH_3)_6 \rceil Cl_2$
- B. $\left[Fe(H_2O)_6SO_4\right]$
- C. $\left[Ni(CO)_4\right]$
- D. $\left\lceil Fe(H_2O)_3 \right\rceil (OH)_2$

Answer: C

Answer: B

Watch Video Solution

33. The brown ring complex compound is formulated as $\left[Fe(H_2O)_5NO\right]SO_4$. The oxidation state of Fe is

A. 1

B. 2

C. 3

D. 0

Answer: B

A. + 6

B.-5

C. + 7

D. + 5

Answer: C

Watch Video Solution

35. In $C+H_2O o CO+H_2$, H_2O acts as

A. Oxidising agent

B. Reducing agent

C. (a) and (b) both

D. None of these

Answer: A

36. The oxidation numbers of Fe and S in iron pyrites are

- A. 3, -1
- B. 2, -1
- C. 3, -1.5
- D. 4, -2

Answer: D

Watch Video Solution

37. In which of the following cpmpounds the oxidation number of carbon is maximum

 $\mathsf{A.}\,HCHO$

C. $CHCl_3$

D. $C_{12}H_{22}O_{11}$

Answer: C

Watch Video Solution

38. Sulphur has lowest oxidation number in

A. H_2SO_3

B. SO_2

 $\mathsf{C}.\,H_2SO_4$

D. H_2S

Answer: D

39. A solution of sulphur dioxide in water reacts with H_2S precipitating sulphur. Here sulphur dioxide acts as

- A. As oxidising agent
- B. A reducing agent
- C. An acid
- D. A catayst

Answer: A

- **40.** In ferrous ammonium sulhate oxidation number of Fe is
 - $\mathsf{A.} + 3$
 - $\mathsf{B.}+2$

$$C. + 1$$

$$D.-2$$

Answer: B

Watch Video Solution

41. The oxidation number of Cr in $K_2Cr_2O_7$ is

A.-2

B. - 7

 $\mathsf{C.} + 2$

D. + 6

Answer: D

42. Oxidation number of carbon in CH_3-Cl is

 $\mathsf{A.}-3$

 $\mathsf{B.}-2$

C. -1

D. 0

Answer: B

43. In which of the following reactions H_2O_2 is a reducing agent?

A.
$$2FeCl_2 + 2HCl + H_2O_2
ightarrow 2FeCl_3 + 2H_2O$$

B.
$$Cl_2 + H_2O_2
ightarrow 2HCl + O_2$$

C.
$$2HI + H_2O_2
ightarrow 2H_2O + I_2$$

D.
$$H_2SO_3 + H_2O_2
ightarrow H_2SO_4 + H_2O$$

Answer: B

Watch Video Solution

44. Oxidation numbers of two Cl atoms in belaching powder,

 $CaOCl_2$, are

A.
$$-1, -1$$

$$B. + 1, -1$$

$$C. +1, +1$$

D. 0,
$$-1$$

Answer: B

45. Select the compound in which chlorine is assigned the oxidation number + 5A. $HClO_4$ B. $HClO_2$ $C.HClO_3$ D. HCl**Answer: C Watch Video Solution 46.** When NaCl is dissolved in water the sodium ion becomes

A. Oxidised

B. Reduced

C. Hydrolysed

l

Answer: D

Watch Video Solution

- **47.** Oxidation number of osmium (Os) in OsO_4 is
 - A. + 8
 - $\mathsf{B.}+6$
 - $\mathsf{C.} + 7$
 - D.+4

Answer: A

48. The oxidation number of iron in the compound $K_4 igl[Fe(CN)_6 igr]$ is

A. +2

B. + 4

C. + 3

D.+6

Answer: A

Watch Video Solution

49. Which substance is serving as a reducing agent in the following reaction?

$$14H^{\,+} + Cr_2O_7^{2\,-} + 3Ni
ightarrow 2Cr^{3\,+} + 7H_2O + 3Ni^{2\,+}$$

A.
$$H_2O$$

B. Ni

C. H^+

D. $Cr_2O_7^{2\,-}$

Answer: B

Watch Video Solution

50. When $KMnO_4$ acts as an oxidising agnet and ultimetely from MnO_4^{2-} , MnO_2 , Mn_2O_3 , and Mn^{2+} , then the number of electrons transferred in each case, respectively, are

A. 4,3,1,5

B. 1,5,3,7

C. 1,3,4,5

D. 3,5,7,1

Answer: C

Match Mides Colution

watch video Solution

51. Which of the following acids possesses oxidising, reducing, and complex forming properties ?

- A. HNO_3
- $\operatorname{B.}H_2SO_4$
- $\mathsf{C}.\,HCl$
- D. HNO_2

Answer: A

Watch Video Solution

52. Oxidation number of P in KH_2PO_2 is

A.-4

B. + 3

$$C. + 5$$

$$D. + 1$$

Answer: D

Watch Video Solution

53. Which one is oxidising substance?

A. $C_2H_2O_2$

B.CO

 $\mathsf{C}.\,H_2S$

D. CO_2

Answer: D

54. The compound that can work both as oxidising and reducing agent is

- A. $KMnO_4$
- B. H_2O_2
- C. BaO_2
- D. $K_2Cr_2O_7$

Answer: B

55. Oxidation number of P in $Ba(H_2PO_2)_2$ is

- $\mathbf{A.}+\mathbf{1}$
- $\mathsf{B.}-1$
- $\mathsf{C.} + 2$

$$D. + 3$$

Answer: A

Watch Video Solution

56. The oxidation number and the electronic configuration of sulphur in H_2SO_4 is

A.
$$+6$$
, $1s^22s^22p^6$

B.
$$+2$$
, $1s^22s^22p^63s^23p^2$

$$\mathsf{C.} + 3$$
, $1s^2 2s^2 2p^6 3s^2 3p^1$

D.
$$+4$$
, $1s^22s^22p^63s^2$

Answer: A

$$D. + 3$$

Answer: C

Watch Video Solution

59. In the reaction

$$Ag_2O+H_2O_2
ightarrow 2Ag+H_2O+O_2$$
, H_2O_2 acts as

- A. Reducing agent
- B. Oxidising agent
- C. Bleaching agent
- D. None of the above

Answer: A

60. The oxidation state of Cr in $Cr_2O_7^{2-}$ is A. 4 B. 6 $\mathsf{C.}-6$ D.-2**Answer: B Watch Video Solution 61.** A metal ion $\boldsymbol{M}^{3\,+}$ loses three electrons , its oxidation number will be **A.** 0 B. + 3C. + 6

\Box		9
v.	_	O

Answer: C

Watch Video Solution

62. Oxidation number of sulphur in $S_2SO_3^{2-}$ is

A.-2

 $\mathsf{B.}+6$

 $\mathsf{C.} + 2$

D. 0

Answer: C

63. Which of the following substances acts as an oxidising as well as a reducing agent?

- A. Na_2O
- B. $SnCl_2$
- C. Na_2O_2
- D. $NaNO_2$

Answer: D

Watch Video Solution

64. Oxidation state of oxygen atom in potassium superoxide is

- **A.** 0
- $\mathsf{B.}-\frac{1}{2}$
- C. -1

Answer: B

Watch Video Solution

65. Among the following identify the species with an atom in +6 oxidation state.

- A. MnO_4^-
- B. $Cr(CN)_6^{3-}$
- C. $NiF_6^{\,2\,-}$
- D. CrO_2Cl_2

Answer: D

66. The oxidation number of S in $Na_2S_4O_6$ is

A.
$$\frac{5}{2}$$

$$\mathsf{B.}\;\frac{3}{2}$$

$$\mathsf{C.}\,\frac{3}{5}$$

D. $\frac{2}{3}$

Answer: A

Watch Video Solution

only as oxidant. It is due to their

67. HNO_2 acts both as reductant and as oxidant, while HNO_3 acts

A. Solubility ability

B. Maximum oxidation number

C. Minimum oxidation number

D. Minimum number of valence electrons

Answer: B

Watch Video Solution

68. In which reaction there is a change in valency

A.
$$2NO_2
ightarrow N_2O_4$$

B.
$$NH_4OH
ightarrow NH_4^{\ +} + OH^{\ -}$$

C.
$$2NO_2 + H_2O
ightarrow HNO_2 + HNO_3$$

D.
$$CaCO_3
ightarrow CaO + CO(2)$$

Answer: C

69. Which one of the following reaction is not an example of redox reaction?

A.
$$Cl_2+2H_2O+SO_2
ightarrow 4H^++SO_4^{2-}+2Cl^-$$

B.
$$Cu^{+\,+} + Zn
ightarrow Zn^{+\,+} + Cu$$

C.
$$2H_2+O_2
ightarrow 2H_2O$$

D.
$$HCl + H_2O
ightarrow H_3O^- + Cl^-$$

Answer: D

Watch Video Solution

70. Oxidation numbers of Mn in K_2MnO_4 and $MnSO_4$ are respectively

$$A. + 7, +2$$

$$B. + 5, +2$$

$$C. + 6 + 2$$

$$D. + 2, +6$$

Answer: C

Watch Video Solution

71. What is the oxidation number of Co in $\left[Co(NH_3)_4ClNO_2\right]$?

A. + 5

 $\mathsf{B.} + 3$

 $\mathsf{C.}+4$

D. + 2

Answer: D

Answer: D

Watch Video Solution

74. Oxidation number of nitrogen in $NaNO_2$ is

A. + 2

B. + 4

 $\mathsf{C.} + 3$

D.-3

Answer: C

Watch Video Solution

75. which of the following is a redox reaction?

A.
$$Zn+2AgCN
ightarrow2Ag+Zn(CN)_2$$

B.
$$Mg(OH)_2 + 2NH_4Cl
ightarrow MgCl_2 + 2NH_4OH$$

C.
$$CaC_2O_4 + 2HCl
ightarrow CaCl_2 + H_2C_2O_4$$

D.
$$NaCl + KNO_3
ightarrow NaNO_3 + KCl$$

Answer: A

Watch Video Solution

76. When $K_2Cr_2O_7$ is converted to K_2CrO_4 , the change in the oxidation state of chromium is

A. 0

В. 6

 $\mathsf{C.}\,4$

D. 3

Answer: A

Watch Video Solution

77. Which of the following reactions involves oxidation-reaction?

A.
$$H_2 + Br_2
ightarrow 2HBr$$

B.
$$HBr + AgNO_3
ightarrow AgBr + HNO_3$$

C.
$$NaBr + HCl
ightarrow NaCl + HBr$$

D.
$$2NaOH + H_2SO_4
ightarrow NaSO_4 + 2H_2O$$

Answer: A

Watch Video Solution

78. The oxidation number of sulphur in $H_2S_2O_7$ and iron in

 $K_4 Fe(CN)_6$ is respectively

- A. +6 and +4
- $\mathsf{B.} + 2 \ \mathsf{and} + 2$
- $\mathsf{C.} + 8 \, \mathsf{and} + 2$
 - $\mathsf{D.}+6 \ \mathsf{and} +2$

Answer: D

Watch Video Solution

- 79. Oxidation state of chlorine in perchloric acid is
 - A. 1
 - $\mathsf{C.}-7$

B. 0

D. + 7

Answer: D

80. Carbon is in the lowest oxidation state in

- A. CH_4
- B. CCl_4
- $\mathsf{C}.\,CF_4$
- D. CO_2

Answer: A

Watch Video Solution

81. Oxidation number of carbon in $H_2C_2O_4$ is

- $\mathsf{A.}+4$
- B.+3

 $\mathsf{C.} + 2$

D.-2

Answer: B

Watch Video Solution

82. Which of the following can act as an acid as a base?

A. $HClO_3^-$

 $\mathsf{B.}\,H_2PO_4^-$

 $\mathsf{C}.\,HS^-$

D. All of these

Answer: D

Balancing Of The Equation

1. H_2O_2 reduces MnO_4^- ion to

A. Mn^+

B. Mn^{2+}

C. Mn^{3+}

D. Mn^-

Answer: B

Watch Video Solution

2. The value of x in the partial redox equation

 $MnO_4^- + 8H^+ + xe \Leftrightarrow Mn^{2+} + 4H_2O$ is

A. 5

- В. 3
- **C**. 1
- **D**. 0

Answer: A

Watch Video Solution

3. During the disproportionation of I_2 to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is

- A. 1:5
- B.5:1
- C. 3:1
- $\mathsf{D}.\,1\!:\!3$

Answer: A

 $2F^{3+}_{(aq)} + Sn^{2+}_{(aq)} o 2Fe^{2+}_{(aq)} + A$?

4. What is
$$^{\prime}A^{\prime}$$
 in the following reaction

 $xMnO + yPbO_2 + zHNO_3
ightarrow HMnO_4 + Pb(NO_3)_2 + H_2O$

A.
$$Sn^{3\,+}_{(\,aq\,)}$$

B.
$$Sn^{2\,+}_{(\,aq\,)}$$

C.
$$Sn^{4\,+}_{(\,aq)}$$

D.
$$Sn$$

Answer: C

Watch Video Solution

5. In the redox reaction

A.
$$x = 2, y = 5, z = 10$$

B.
$$x = 2, y = 7, z = 8$$

C.
$$x = 2, y = 5, z = 8$$

D.
$$x = 2, y = 5, z = 5$$

Answer: A

Watch Video Solution

6. In the balanced chemical reaction

$$IO_3^{\, \Theta} \, + al^{\, \Theta} \, + bH^{\, \Theta} \,
ightarrow cH_2O + dI_2$$

a, b, c, and d, respectively, correspond to

- A. 5,6,5,5
- B. 5,3,6,3
- C. 3,5,3,6
- D. 5,6,3,3

Answer: D

Watch Video Solution

7. For the redox reaction

$$MnO_4^{\,\Theta} + C_2O_4^{2\,-} + H^{\,\oplus} o Mn^{2\,+} + CO_2 + H_2O_4^{\,-}$$

the correct coefficients of the reactions for the balanced reaction are

A. (
$$MnO_4^- = 2$$
, $C_2O_4^{2-} = 5$, $H^+ = 16$)

B. (
$$MnO_4^- = 16, C_2O_4^{2-} = 5, H^+ = 2$$
)

C. (
$$MnO_4^- = 5, C_2O_4^{2-} = 16, H^+ = 2$$
)

D. (
$$MnO_4^-=2, C_2O_4^{2-}=16, H^+=5$$
)

Answer: A

8. For the redox reaction

$$xFe^{2+} + yCr_2O_7^{2-} + zH^+
ightarrow Fe^{3+} + Cr^{3+} + H_2O$$

x, y and z are

A.
$$(x = 3, y = 1, z = 14)$$

B.
$$(x = 6, y = 1, z = 7)$$

C.
$$(x = 6, y = 2, z = 14)$$

D.
$$(x = 6, y = 1, z = 14)$$

Answer: D

Watch Video Solution

9. $C_2H_6(g)+nO_2
ightarrow CO_2(g)+H_2O(l)$

In this equation, the ratio of the coefficients of CO_2 and $\mathcal{H}_2\mathcal{O}$ is

A. 1:1

B. 2:3

C.3:2

D. 1:3

Answer: B

Watch Video Solution

10. Number of electron involved in the reduction of $Cr_2O_7^{2-}$ ion in acidic solution to $Cr^{3\,+}\,$ is:

A. 0

B. 2

C. 3

D. 5

Answer: C

11.
$$2MnO_4^- + 5H_2O_2 + 6H^-
ightarrow 2Z + 5O_2 + 8H_2O.$$
 In this reaction Z is

A.
$$Mn^{+2}$$

B.
$$Mn^{+4}$$

C.
$$MnO_2$$

D. Mn

Answer: A

Watch Video Solution

12. H_2O can be oxidised to

A. H_2 and O_2

$$B.O_2$$

$$\mathsf{C}.\,OH^{\,-}$$

D.
$$O^{2-}$$

Answer: B

Watch Video Solution

13. When ZnS is boiled with strong nitric acid, the products are zinc nitrate, sulphuric acid and nitrogen dioxide. What are the changes in the oxidation numbers of Zn, S and N?

$$A. +2, +4, -1$$

$$B. + 2, +6, -2$$

$$C. 0, +4, -2$$

D.
$$0, +8, -1$$

Answer: D

Watch Video Solution

14. Which of the following equations is a balanced one?

A.
$$5BiO_3^- + 22H^+ + Mn^{2+}
ightarrow 5Bi^{3+} + 7H_2O + MnO_4^-$$

B.
$$5BiO_{3}^{-} + 14H^{+} + 2Mn^{2+} \rightarrow 5Bi^{3+} + 7H_{2}O + 2MnO_{4}^{-}$$

C.
$$2BiO_3^- + 4H^+ + Mn^{2+} o 2Bi^{3+} + 2H_2O + MnO_4^-$$

D.
$$6BiO_3^- + 12H^+ + 3Mn^{2+}
ightarrow 6Bi^{3+} + 6H_2O + 3MnO_4^-$$

Answer: B

Watch Video Solution

15. In the following reaction

$$2I- \ + Cr_2O_7^{2-} + 14H^{+}
ightarrow I_2 + 2Cl^3 + 7H_2O_1^{-}$$

Unbalanced parts are

A. $H^{\,+}$, H_2O

B. $Cr_2O_7^{2\,-}$, $Cr^{3\,+}$

C. $I^{\,-}$, I_2

D. None of them are balanced

Answer: C

16. For the redox reaction

$$Cr_2O_7^{-2} + H^+ + Ni
ightarrow Cr^3 + Ni^{2+} + H_2O$$

The correct coefficients of the reactions for the balanced reaction are

A. (
$$Cr_2O_7^{2\,-}=1, Ni=3, H^{\,+}=14$$
)

B. (
$$Cr_2O_7^{2\,-}=2, Ni=3, H^{\,+}=14$$
)

C. (
$$Cr_2O_7^{2\,-}=1, Ni=1, H^{\,+}=16$$
)

D. (
$$Cr_2O_7^{2-}=3, Ni=3, H^+=12$$
)

Answer: A

Watch Video Solution

17. MnO_4^- oxidises H_2O_2 to O_2 in acidic medium

$$xMnO_{4}^{-} + yH_{2}O_{2} + zH^{+}
ightarrow Mn^{2+} + O_{2} + H_{2}O$$

Coefficients x, y and z are respectively

A.
$$(x = 1, y = 2, z = 3)$$

B.
$$(x = 3, y = 2, z = 5)$$

C.
$$(x = 2, y = 6, z = 5)$$

D.
$$(x = 2, y = 5, z = 6)$$

Answer: D

18. What is the molecular state of sulphur as reactant in, sulphur

$$+12OH^{-}
ightarrow4S^{2-}+2S_{2}O_{3}^{2-}+3H_{2}O$$
?

- A. $S_8^{2\,-}$
- B. $2S_4^{3\,-}$
- $\mathsf{C}.\,S_8$
- D. $S_8^{\,-}$

Answer: C

Watch Video Solution

19. In the following balanced reaction,

$$4O_2^x+2H_2O
ightarrow4OH^-+3O_2$$

- A. $x=\,-\,4$ and species is oxide
- B. $x=\,-\,2$ and species is superoxide

 $\mathrm{C.}\,x=0$ and species is oxygen

D. x=-1 and species is superoxide

Answer: D

Watch Video Solution

20. In balancing the half reaction

$$CN^{\, \Theta} \,
ightarrow \, CNO^{\, \Theta}$$
 (skeltan)

The number of electrons that must be added is

A. 0

B. 1 on the right

C. 1 on the left

 ${\sf D.}\ 2$ on the right

Answer: D

Match Wides Colution

21. In the following equation:

$$CIO_3^- + 6H^+ +$$
 . $X
ightarrow Cl^- + 3H_2O$, then X is

- A. *O*
- B. $6e^-$
- $C.O_2$
- D. $6e^-$

Answer: B

Watch Video Solution

22. I^- reduces IO_3^- and I_2 and itself oxidised to I_2 in acidic medium.

Thus, final reaction is

A.
$$I^{\,-} + IO_3^{\,-} + 6H^{\,+}
ightarrow I_2 + 3H_2O$$

B. $5I^{\,-} + IO_3^{\,-} + 6H^{\,+}
ightarrow 3I_2 + 3H_2O$

C.
$$I^- + IO_3^-
ightarrow I_2 + O_3$$

D. None of them

Answer: B

Watch Video Solution

23. In the reaction

$$xHI + yHNO_3 \rightarrow NO + I_2 + H_2O$$

A.
$$x=3$$
, $y=2$

C.
$$x = 6, y = 2$$

B. x = 2, y = 3

D.
$$x = 6, y = 1$$

Answer: C

24. Balance the following equation stepwise:

$$Cr_2O_7^{2\,-} + Fe^{2\,+} \, + \, + H^{\,\oplus}
ightarrow Cr^{3\,+} + Fe^{3\,+} + H_2O$$

- A. 6, 7
- B. 6, 14
- C. 5, 7

D. 5, 14

Answer: B

Watch Video Solution

 $pBr_2 + qOH^-
ightarrow rBr^- + sBrO_3^- + tH_2O$

25. Values of p, q, r, s and t are in the following redox reaction

A. (
$$p=3, q=6, r=1, s=5, t=3$$
)

B.
$$(p = 3, q = 6, r = 5, s = 3, t = 1)$$

C.
$$(p = 3, q = 6, r = 5, s = 1, t = 3)$$

D.
$$(p = 3, q = 5, r = 1, s = 6, t = 3)$$

Answer: C

Watch Video Solution

26. In the following reaction:

$$xKMnO_4 + yNH_3
ightarrow KNO_3 + MnO_2 + KOH + H_2O$$

 \boldsymbol{x} and \boldsymbol{y} are

A.
$$x = 4, y = 6$$

B.
$$x = 8, y = 3$$

C.
$$x = 8, y = 6$$

D.
$$x = 3, y = 8$$

Answer: B

Watch Video Solution

27. CuS is dissolved in dil. HNO_3 . Balanced equation with correct products is

A.
$$Cus+2H^{+}+3NO_{3}^{-}
ightarrow Cu(NO_{3})_{2}+H_{2}S+H_{2}O+NO_{2}$$

В.

$$3Cus + 8H^{+} + 8NO_{3}^{-}
ightarrow 3Cu(NO_{3})_{2} + 3S + 4H_{2}O + 2NO$$

C.
$$Cus + 4NO_3^-
ightarrow Cu(NO_3)_2 + H_2S + H_2O$$

D. None of the above in correct

Answer: B

Watch Video Solution

28. The reaction

$$5H_2O_2 + XClO_2 + 2OH^-
ightarrow XCl^- + YO_2 + 6H_2O$$

is balanced if

A.
$$x = 5, y = 2$$

B.
$$x = 2, y = 5$$

C.
$$x = 4, y = 10$$

D.
$$x = 5, y = 5$$

Answer: B

Watch Video Solution

Stoichiometry In Redox Reactions

1. When $KMnO_4$ is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from

- A. 7 to 4
- B. 7 to 2
 - $\mathsf{C.}\,6$ to 4
 - $\mathsf{D.}\,4\,\mathsf{to}\,2$

Answer: B

Watch Video Solution

- **2.** Oxidation of thisulphate $\left(S_2O_3^{2\,-}
 ight)$ ion by iodine gives
- A. SO_2^{3-}
 - B. $SO_4^{2\,-}$
 - C. $S_4O_6^{2\,-}$
 - D. $S_2O_6^{2\,-}$

Answer: C

3. The number of moles of $K_2Cr_2O_7$ reduced by 1mol of $Sn^{2\,+}$ ions is

A. 2/3

B.1/6

C.1/3

D. 1

Answer: C

Watch Video Solution

4. Which of the following solutions will exactly oxidize 25mL of an acid solution of $0.1MFe\ (II)$ oxalate?

A. 25mL of $0.1MKMnO_4$

B. 25mL of $0.2MKMnO_4$

C. 25mL of $0.6MKMnO_4$

D. 15mL of $0.1MKMnO_4$

Answer: D

Watch Video Solution

5. How many moles of ${\cal O}_2$ will be liberated by one mole of ${\cal C}r{\cal O}_5$ is the following reaction:

$$CrO_5 + H_2SO_4
ightarrow Cr_2(SO_4)_3 + H_2O + O_2$$

A. 5/2

B.5/4

 $\mathsf{C}.\,9/2$

D. 7/2

Answer: D

Watch Video Solution

6. 50mL of 0.1M solution of a salt reacted with 25mL of 0.1M solution of sodium sulphite. The half reaction for the oxidation of sulphite ion is:

$$SO_3^{2\,-}(aq) + H_2O(l)
ightarrow (aq) + 2H^{\,+}(aq) + 2e^{\,-}$$

If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal:

A. zero

B. 1

 $\mathsf{C.}\ 2$

D. 4

Answer: C

7. 4.9g of $K_2Cr_2O_7$ is taken to prepare 0.1L of the solutio. 10mL of this solution is further taken to oxidise Sn^{2+} ion into $Sn^{4+}ion$ so produced is used in second reaction to prepare Fe^{3+} ion then the millimoles of Fe^{3+} ion formed will be (assume all other components are in sufficient amount)[Molar mass of $K_2Cr_2O_7=294g$].

- A. 5
- B.20
- C. 10
- D. none of these

Answer: C

Watch Video Solution

8. One gram of Na_3AsO_4 is boiled with excess of solid KI in presence of strong HCl. The iodine evolved is absorbed in KI solution and titrated against 0.2N hyposolution. Assuming the reaction to be

$$AsO_{4}^{3\,-}\,+2H^{\,+}\,+2I^{\,-}\,
ightarrow\,AsO_{3}^{2\,-}\,+H_{2}O\,+\,I_{2}$$
 ,

calculate the volume of thiosilphate hypo consumed. [Atomic weight of As=75]

A. 48.1mL

B. 38.4mL

 $\mathsf{C.}\ 24.7mL$

D. 30.3mL

Answer: A

9. 25mL of $0.50MH_2O_2$ solution is added to 50mL of $0.20MKMnO_4$ is acid solution. Which of the following statements is true?

A. 0.010 mole of oxygen is liberated

B. 0.005 mole of $KMnO_4$ are left

 ${\sf C.}\ 0.030g$ atom of oxygen gas is evolved

D. 0.0025 mole H_2O_2 does not react with $KMnO_4$

Answer: B

Watch Video Solution

10. 0.80g of sample of impure potassium dichromate was dissolved in water and made up to 500mL solution. 25mL of this solution treated with excess of KI in acidic medium and I_2 liberated required 24mL of a sodium thiosulphate solution. 30mL of this sodium thiosulphate

solution required 15mL of N/20 solution of pure potassium dichromate. What was the percentage of $K_2Cr_2O_7$ in given sample?

A. 73.5~%

 $\mathsf{B.}\ 75.3\ \%$

 $\mathsf{C.}\ 36.75\ \%$

D. none of these

Answer: A

11. One mole of $CaOCl_2$ is dissolved in water and excess of KI added.

 $Hypo(Na_2S_2O_3)$ required to react with the oxidised part completely

A. 1 mole

is

B. 2.0 moles

 $\mathsf{C.}\ 1.5\ \mathsf{moles}$

 $\mathsf{D.}\ 2.5\ \mathsf{moles}$

Answer: B

Watch Video Solution

12. An element A in a compound ABD has oxidation number A^{n-} . It is oxidised by $Cr_2O_7^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $K_2Cr_2O_7$ were used for 3.26×10^{-3} moles of ABD. The new oxidation number of A after oxidation is:

A. 3

B.3-n

 $\mathsf{C.}\,n-3$

 $\mathsf{D.}+n$

13. The number of moles of $KMnO_4$ reduced by $1\mathrm{mol}\ \mathrm{of}KI$ in alkaline medium is

A. One-fifth

B. five

C. One

D. Two

Answer: D

Watch Video Solution

14. 0.3g of an oxalate salts was dissolved in 100mL solution. The solution required 90mL of $N/20KMnO_4$ for complete oxidation.

The % of oxalate ion in salt is:

A. $3.3~\%$
B. $66~\%$
C. 70%
D. 40%
Answer: B
Watch Video Solution
15. How many litres of a $0.5N$ solution of an oxidising agent are
reduced by 2 litres of a $2.0N$ solution of a reducing agent?
A. 8
B. 4
C. 6
D. 7

Answer: A

Watch Video Solution

16. During the disproportionation of I_2 to iodide and iodate ions, the ratio of iodate and iodide ions formed in alkaline medium is

- A. 1:5
- B.5:1
- C.3:1
- D. 1:3

Answer: A

Watch Video Solution

17. If 25.8ml of $0.101MK_2Cr_2O_7$ is required to titrate 10.0ml of a liquid iron supplement, calculate the concentration of iron in vitamin solution

- A. 0.780M
- B. 0.261M
- C. $4.35 imes 10^{-4} M$
- D. 1.56M

Answer: D

Watch Video Solution

18.

 $28NO_3^- + 3As_2S_3 + 4H_2O
ightarrow 6AsO_4^{3-} + 28NO + 9SO_4^{2-} + H^+$

What will be the equivalent mass of As_(2)S_(3)` in the above reaction?

A.
$$\frac{M.\ wt.}{2}$$

B. $\frac{M. wt.}{4}$

C. $\frac{M. wt.}{24}$

D. $\frac{M. wt.}{28}$

Answer: D

Watch Video Solution

- **19.** Moles of KHC_2O_4 (potassium acid oxalate) required to reduce
- 100ml of 0.02M $KMnO_4$ in acidic medium (to $Mn^{2\,+}$) is :

$$\mathsf{A.}\, x = y$$

B.2x = y

 $\mathsf{C}.\,x=2y$

D. none is correct

Answer: A

Watch Video Solution

20. The number of moles of $K_2Cr_2O_7$ that will be needed to react completely with one mole of ferric sulphite in acidic medium is

- A.0.4
- $\mathsf{B.}\,0.6$
- $\mathsf{C.}\ 1.0$
- D.0.8

Answer: C

Watch Video Solution

21. 100mL of mixture of NaOH and Na_2SO_4 is neutralised by 10mL of $0.5MH_2SO_4$. Hence, NaOH in 100mL solution is

 $\mathsf{A.}\ 0.2g$

B. 0.4g

 $\mathsf{C}.\,0.6g$

D. none of these

Answer: B

22. A 0.518g sample of limestone is dissolved in HCl and then the calcium is precipitated as CaC_2O_4 . After filtering and washing the precipitate, it requires 40.0 filtering and washing the precipitate, it requires 40.0mL of $0.250NKMnO_4$, solution acidified with H_2SO_4

to titrate it as. The percentage fo CaO in the sample is:

$$MnO_4^{\,-} + H^{\,+} + C_2O_4^{2\,-}
ightarrow Mn^{2\,+} + CO_2 + 2H_2O$$

A. 54.0~%

B. 27.1~%

 $\mathsf{C.}\,42\,\%$

D. $84\,\%$

Answer: A

23. 25ml of a 0.1(M) solution of a stable cation of transition metal z reacts exactly with 25ml of 0.04(M) acidified $KMnO_4$ solution. Which of the following is most likely to represent the change in oxidation state of Z correctly?

A.
$$Z^+
ightarrow Z^{2+}$$

B. $Z^{2+}
ightarrow Z^{3+}$

C. $Z^{3+}
ightarrow Z^{4+}$

D. $Z^{2+}
ightarrow Z^{4+}$

Answer: D

Watch Video Solution

24. For decolourisation of $1 \text{mol of } KMnO_4$, the moles of H_2O_2 required is

A. 1/2

B.3/2

C.5/2

D. 7/2

Answer: C

25. In alkaline medium, ClO_2 oxidises $H_2O_2\mathrm{to}O_2$ and is itself reduced to $Cl^{\,\Theta}$. How many moles of H_2O_2 are oxidised by $1\mathrm{mol}$ of ClO_2 ?

- A. 1.0
- B. 1.5
- C. 2.5
- $D. \ 3.5$

Answer: C

Watch Video Solution

26. If equal volumes of $0.1MKMnO_4$ and $0.1MK_2Cr_2O_7$ solutions are allowed to oxidise Fe^{2+} to Fe^{3+} in acidic medium, then Fe^{2+} oxidised will be:

A. more by $KMnO_4$

B. more by K_2CrO_7

C. equal in both cases

D. can't be determined

Answer: B

Watch Video Solution

27. If 10g of V_2O_5 is dissolved in acid and is reduced to V^{2+} by zinc metal, how many mole I_2 could be reduced by the resulting solution if it is further oxidised to VO^{2+} ions? [Assume no change in state of Zn^{2+} ions] (V=51, O=16, I=127)

A. 0.11 mole of I_2

B. 0.22 mole of I_2

C. 0.055 mole of I_2

D. 0.44 mole of I_2

Answer: A

Watch Video Solution

28. 0.45g of acid (mol. Wt. =90) was exactly neutralized by 20ml of 0.5(M)NaOH.

The basicity of the given acid is

A. 1

 $\mathsf{B.}\ 2$

C. 3

D. 4

Answer: B

Watch Video Solution

29. During the oxidation of arsenite to arsenate ion in alkaline medium, the number of moles of hydroxide ions involved per mole of arsenite ion are

- A. 2
- B.3
- C.2/3
- D. None of these

Answer: A

Watch Video Solution

30. $KMnO_4$ (purple) is reduced to K_2MnO_4 (green) by $SO_3^{2\,-}$ in basic medium. 1 mole of $KMnO_4$ is reduced by

A. 1 mole of SO_3^{2-}

B.
$$2$$
 mole of $SO_3^{2\,-}$

C.
$$1.5$$
 mole of SO_3^{2-}

D.
$$0.5$$
 mole of $SO_3^{2\,-}$

Answer: D

Watch Video Solution

31. In an experiment 50ml of 0.1(M) solution of a salt is reacted with 25ml of 0.1(M) solution of sodium sulphite. The half equation for the oxidation of sulphite ion is $SO_3^{2-}(aq) + H_2O \rightarrow SO_4^{2-}(aq) + 2H^+(aq) + 2e^-$ If the oxidation number of metal in the salt was 3, what would be the new oxidation number of metal?

A. 0

B. 1

 $\mathsf{C}.\,2$

D.4

Answer: C

Watch Video Solution

32. How many litres of Cl_2 at STP will be liberated by the oxidation of NaCl with $10gKMnO_4$ in acidic medium: (Atomic weight:

Mn = 55 and K = 39

 ${\sf A.}\ 3.54 litres$

 ${\tt B.}\ 7.08 litres$

 $\mathsf{C}.\ 1.77 litres$

D. none of these

Answer: A

Watab Widaa Calutian

33. When the ion $Cr_2O_7^{2-}$ acts as an oxidant in acidic aqueous solution the ion Cr^{3+} is formed. How many mole of Sn^{2+} would be oxidised to Sn^{4+} by one mole $Cr_2O_7^{2-}$ ion:

- A. 2/3
- B.3/2
- C. 2
- D. 3

Answer: D

Watch Video Solution

34. $MnO_4^{2\,-}$ (1 mole) in neutral aqueous medium is disproportionate to

A. 2/3 mole of MnO_4^- and 1/3 mole of MnO_2

B. 1/3 mole of $MnO_4^-\,$ and 2/3 mole of $MnO_2\,$

C. 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2

D. 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2

35. What volume of 3 molar HNO_3 is needed to oxidise 8g of $Fe^{3\,+}$,

Answer: A

Watch Video Solution

 HNO_3 gets converted to NO?

A. 8ml

 $\mathsf{B.}\ 15.87ml$

 $\mathsf{C}.\,32ml$

D. 64ml

Answer: B

Watch Video Solution

36. The number of moles of $KMnO_4$ that will be needed to react with one mole of ferrous sulphite in acidic solution is

 $\mathsf{A.}\ 0.6$

 $\mathsf{B.}\ 0.4$

 $\mathsf{C.}\,0.8$

 $\mathsf{D.}\ 1.0$

Answer: A

Watch Video Solution

37. How many litres of Cl_2 at STP will be liberated by the oxidation of NaCl with $10gKMnO_4$ in acidic medium: (Atomic weight: Mn=55 and K=39)

- A. 3.54 litres
- $B. \, 7.08 litres$
- C. 1.77 litres
- D. none of these

Answer: A

Watch Video Solution

38. HNO_3 oxidies $NH_4^{\,+}$ ions to nitrogen and itself gets reduced to

 NO_2 . The moles of HNO_3 required by 1 mole of $(NH_4)_2SO_4$ is:

A. 4

- B. 5
 - **C**. 6
 - D. 2

Answer: C

Watch Video Solution

39. What volume (in ml) at STP of SO_2 gas is oxidized by 100ml of $0.1(M)H_2Cr_2O_7$ in acid solution?

- A. 672ml
- $B.\,224ml$
- $\mathsf{C.}\,448ml$
- D. 112ml

Answer: A

40. What mass of N_2H_4 can be oxidised to N_2 by 24g of K_2CrO_4 which is reduced to $Cr(OH)_{4}^{-}$?

A. 2.969g

B. 5.25g

C. 9.08g

D. 29.69g

Answer: A

Watch Video Solution

41. The number of mole of oxalate ions oxidised by one mole of

 MnO_4^- ion is:

A. 1/5

- A. Reducing agent
- B. Oxidising agent
- C. Iodide ion
- D. Iodine

Answer: D

43. What weight of HNO_3 is needed to convert 5g of iodine into iodic acid according to the reaction,

$$I_2 + HNO_3
ightarrow HIO_3 + NO_2 + H_2O$$

- $\mathsf{A.}\ 12.205g$
- B. 24.8g
- C. 0.248q
- D. 49.6q

Answer: A

Watch Video Solution

44. The molar ration of Fe^{++} to Fe^{+++} in a mixture of $FeSO_4$ and $Fe_2(SO_4)_3$ having equal number of sulphate ions in both ferrous and ferric sulphate is:

- A. 1:2
- B. 3:2
- C. 2:3
- D. can't be determined

Answer: B

Watch Video Solution

Type Of Redox Reaction And Equivalent Weight

1. Which is the best description of the behaviour of bromine in the reaction given below

$$H_2O+Br_2 o HOBr+HBr$$

- A. Oxidised only
- B. Reduced only

- C. Proton acceptor only
- D. Both oxidised and reduced

Answer: D

Watch Video Solution

- **2.** Equivalent weight of NH_3 as a base is
 - A. 17
 - $\mathsf{B.}\,17/3$
 - C. 1.7
 - D. 17/2

Answer: A

3. Equivalent weight of C_6H_5CHO is equal to molar mass in the following reaction.

Thus, species (A) is

Answer: B

4. In the reaction $VO+Fe_2O_3 o FeO+V_2O_5$, the eq.wt. of V_2O_5

is equal to its

A. Mol.Wt.

B. Mol.Wt. / 8

C. Mol.Wt. /6

D. None of these

Answer: C

Watch Video Solution

5. Equivalent weight of H_3PO_2 in a reaction is found to be half of its molecular weight. It can be due to its

A. oxidation to H_3PO_3

B. reaction of two $H^{\,+}\,$ ions

C. oxidation to H_3PO_4

D. reduction to PH_3

Answer: A

Watch Video Solution

6. The eq.wt. of $Fe_2(SO_4)_3$, the salt to be used as an oxidant in an acid solution is

A. (mol. wt.)/1

B. (mol. wt.)/2

C. (mol. wt.)/3

D. (mol. wt.) / 5

Answer: B

7. The equivalent weight of FeC_2O_4 in the change

$$FeC_2O_4
ightarrow Fe^{3\,+}+CO_2$$
 is

- $\mathsf{A.}\,M$
- $\mathsf{B}.\,M/2$
- $\mathsf{C}.\,M/3$
- $\mathsf{D.}\,2M/3$

Answer: C

Watch Video Solution

8. What volume of O_2 measured at standard condition will be formed by the action of 100mL of $0.5NKMnO_4$ on hydrogen peroxide in an acid solution?

The skeleton equation for the reaction is,

 $KMnO_4 + H_2SO_4 + H_2O_2
ightarrow KHSO_4 + MnSO_4 + H_2O + O_2$

A.	U	1	9	T.
\neg	\mathbf{v}	_	4 .	ப

 ${\rm B.}\ 0.28L$

 $\mathsf{C.}\ 0.56L$

 $\mathsf{D}.\,1.12L$

Answer: B

- **9.** The equivalent weight of $MnSO_4$ is half its molecular weight when it is converted to
 - A. Mn_2O_3
 - $\mathsf{B.}\,MnO_2$
 - $\mathsf{C.}\,MnO_4^{\,-}$
 - D. $MnO_4^{2\,-}$

Watch Video Solution

10. Equivalent weight of $K_2Cr_2O_7$ in the following reaction is

$$Cr_2O_7^{2-}Fe^{2+} o Fe^{3+}Cr^{3+}$$

(M=molarmass of $K_2Cr_2O_7$)

- A. $\frac{M}{3}$
- B. $\frac{M}{6}$
- $\operatorname{C.}\frac{M}{5}$
- D. $\frac{M}{4}$

Answer: B

11. Which of the following reaction is a redox reaction?

A.
$$P_2O_5+2H_2O o H_4P_2O_7$$

В.
$$2AgNO_3+BaCl_2
ightarrow 2AgCl+Ba(NO_3)_2$$

C.
$$BaCl_2 + H_2sO_4
ightarrow BaSO_4 + 2HCl$$

D.
$$Cu + 2AgNO_3
ightarrow 2Ag + Cu(NO_3)_2$$

Answer: D

- **12.** In the equation $H_2S+2HNO_3 o 2H_2O+2NO_2+S$ The equivalent weight of hydrogen sulphide is
 - A. 17
 - B. 68
 - C.34

Answer: A

Watch Video Solution

13. In the following reaction,

$$2H_2S(g)+SO_2(g)
ightarrow 3S(s)+2H_2O(l)$$

One equivalent of $H_2S(g)$ will reduce

A. $1 \mod SO_2$

 $\operatorname{B.}0.25 \operatorname{mol} SO_2$

 $\mathsf{C.}\,0.5\,\mathsf{mol}\,SO_2$

D. $2 \operatorname{mol} SO_2$

Answer: B

14. 0.05 moles of $NaHCO_3$ will react with how many equivalent of

 $Mg(OH)_2$?

A. 0.2 equivalent

B. 0.05 equivalent

 $\mathsf{C.}\ 0.02$ equivalent

D. 0.01 equivalent

Answer: B

Watch Video Solution

15. Equivalent weight of S in $SO_3^{2\,-}$ is (S=32)

A. 6

B. 8

C. 9

Answer: B

Watch Video Solution

16. The equivalent weight of $MnSO_4$ is half its molecular weight when it is converted to

- A. Mn_2O_3
- B. MnO_4^-
- $\mathsf{C}.\,MnO_2$
- D. $MnO_4^{2\,-}$

Answer: C

17. In the reaction,

$$I_2 + 2 S_2 O_3^{2-}
ightarrow 2 I^- + S_4 O_6^{2-}.$$

Equivalent wieght of iodine will be equal to

- A. its molecular weight
- B. 1/2 of its molecular weight
- C. 1/4 of its molecular weight
- D. twice of its molecular weight

Answer: B

- **18.** Which has maximum number of equivalent per mole of the oxidant?
 - A. $I^-(aq) + IO_3^-(aq)
 ightarrow I_3^-(aq)$
 - B. $Ag(s) + NO_3^-(aq)
 ightarrow NO_2(g) + Ag^+(aq)$

 $\mathsf{C.}\, Mg(s) + VO_4^{3\,-}(aq) \rightarrow Mg^{2\,+}(aq) + V^{3\,+}(aq)$

D. $Zn(s) + VO^{2+}(aq)
ightarrow V^{3+}(aq) + Zn^{2+}(aq)$

Answer: A

Watch Video Solution

19. The equivalent weight of Mohr's salt $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$ in redox change is equal to its

A. molecular weight /2

B. atomic weight

C. molecular weight /3

D. molecular weight

Answer: D

20. In alkaline medium , $KMnO_4$ reacts as follows

$$2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$$

Therefore, the equivalent mass of $KMnO_4$ will be

- A.31.6
- B.52.7
- C.7.0
- D.158.0

Answer: D

Watch Video Solution

21. An element forms an oxide, in which the oxygen is $20\,\%$ of the oxide by weight, the equivalent weight of the given element will be

A. 32

- B. 40
- $\mathsf{C.}\,60$
- $\mathsf{D.}\,128$

Answer: A

Watch Video Solution

22. Photosynthesis of carbohydrates in plants takes place as

$$6CO_2 + 12H_2O \xrightarrow{Sunlight} C_6H_{12}O_6 + 6O_2 + 6H_2O$$

Equivalent weights of CO_2 and $C_6H_{12}O_6$ respectively are

- A. 11, 7.5
- B. 44, 90
- C. 22, 15
- D. 44, 180

Answer: A

Watch Video Solution

23. The equivalent weight of phosphoric acid (H_3PO_4) in the reaction $NaOH+H_3PO_4 o NaH_2PO_4+H_2O$ is

A. 25

 $\mathsf{B.}\,98$

C. 59

D.49

Answer: B

24. The equivalent weight of KIO_3 in the reaction

$$2Cr(OH)_3 + 4OH + KIO_3
ightarrow 2CrO_4^{2\,-} + 5H_2O + KI$$
 is

- A. $\frac{Mol. wt.}{3}$
- B. $\frac{Mol.\ wt.}{6}$
- C. $\frac{Mol.\ wt.}{2}$

D. Molecular weight

Answer: A

- **25.** What is the equivalent weight of HNO_3 in the given reaction?
- $4Zn+10HNO_3
 ightarrow 4Zn(NO_3)_2+NH_4NO_3+3H_2O_3$
 - A. $\frac{63}{10}$
 - B. $\frac{63}{9}$

D.
$$rac{63}{4} imes14$$

C. $\frac{63}{8} imes 10$

is related to molecular weight M by

$$As_2S_3 + H + NO_3^-
ightarrow NO + H_2O + AsO_4^{3-} + SO_4^{2-}$$

26. In the following reaction (unbalanced), equivalent weight of As_2S_3

B.
$$\frac{M}{4}$$

A. $\frac{M}{2}$

$$\frac{M}{4}$$

$$\mathsf{C.}\,\frac{M}{28}$$

D.
$$\frac{M}{24}$$

Answer: C

watch video Solution

27. What is the equivalent weight of $C_{12}H_{22}O_{11}$ in the following reaction?

$$C_{12}H_{22}O_{11} + 36HNO_3
ightarrow 6H_2C_2O_4 + 36NO_2 + 23H_2O_3$$

A.
$$\frac{342}{36}$$

B.
$$\frac{342}{12}$$

$$\mathsf{C.}\ \frac{342}{22}$$

D.
$$\frac{342}{3}$$

Answer: A

Watch Video Solution

28. In the following disproportionation of ${\it Cl}_2$ in basic medium

 $Cl_2 + 2KOH
ightarrow KCl + KClO + H_2O$

Equivalent mass of Cl_2 is

B.71.00

C. 47.33

D. 11.83

Answer: B

Watch Video Solution

29. What is the equivalent weight of P in the following reaction?

$$P_4 + NaOH
ightarrow NaH_2PO_2 + PH_3$$

A.
$$\frac{31}{4}$$

B.
$$\frac{31}{3}$$

c.
$$\frac{31}{2}$$

D.
$$31 imes 4/3$$

Answer: D

Watch Video Solution

30. Equivalent mass of oxidizing agent in the reaction,

$$SO_2 + 2H_2S
ightarrow 3S + 2H_2O$$
 is

A. 32

B.64

C. 16

D. 8

Answer: C

31. Equivalent weight of H_3PO_2 when it disproportionates into PH_3 and H_3PO_3 is (mol.wt. of $H_3PO_2=M$)

A. M

B. $\frac{3M}{4}$

 $\operatorname{C.}\frac{M}{2}$

D. $\frac{M}{4}$

Answer: B

Watch Video Solution

32. In the following unbalanced redox reaction,

$$Cu_3P + Cr_2O_7^{2-}
ightarrow Cu^{2+} + H_3PO_4 + Cr^{3+}$$

Equivalent weight of H_3PO_4 is

A.
$$\frac{M}{3}$$

$$\mathrm{B.}~\frac{M}{6}$$

$$\mathsf{C.}\,\frac{M}{7}$$

D.
$$\frac{M}{8}$$

Answer: D

Watch Video Solution

33. 5L of $KMnO_4$ solution contains 0.01 equiv. of $KMnO_4$. 50ml of the given solution contain, how many moles of $KMnO_4$?

 $KMnO_4 \rightarrow MnO_2$

A.
$$\frac{10^{-6}}{4}$$

B.
$$\frac{10^{-4}}{3}$$

C.
$$3 imes 10^{-5}$$

D.
$$10^{-5}$$

Answer: B

Watch Video Solution

34. What is the equivalent mass of IO_4^- when it is converted into I_2 in acid medium ?

- A. M/6
- B.M/7
- $\mathsf{C}.\,M/5$
- D.M/4

Answer: B

35. The reaction

$$3ClO^{\Theta}(aq) \rightarrow ClO_3(aq) + 2Cl^{\Theta}(aq)$$

is an example of

- A. Oxidation reaction
- B. reduction reaction
- C. disproportionation reaction
- D. decomposition reaction

Answer: C

Watch Video Solution

36. Which reaction does not represent auto-redox or disproportionation?

A.
$$Cl_2 + OH^-
ightarrow Cl^- + ClO_3^- + H_2O$$

B. $2H_2O_2
ightarrow H_2O + O_2$

C. $2Cu^+ o Cu^{2+}+Cu$

D. $(NH_4)_2Cr_2O_7
ightarrow N_2+Cr_2O_3+4H_2O$

Answer: D

Watch Video Solution

37. Which of the following species does not show disproportionation reaction?

A. ClO_4^-

 $C.ClO_3^-$

 $\operatorname{B.}ClO_2^-$

D. ClO^-

Answer: A

38. Among the following select the disproportionation reaction?

(i)
$$2Pb(NO_3)_2
ightarrow 2PbO + 4NO_2 + O_2$$

(ii)
$$I_2
ightarrow I^- + IO_3^-$$

(iii)
$$3Cl_2+6NaOH
ightarrow5NaCl+NaClO_3+3H_2O$$

(iv)
$$P_4 + 3NaOH + 3H_2O
ightarrow 3NaH_2PO_2 + PH_3$$

D. All of these

Answer: B

39. Which is the intramolecular oxidation-reduction reaction?

A.
$$2KClO_3
ightarrow 2KCl + 3O_2$$

B. $\left(NH_4
ight)_2Cr_2O_7
ightarrow N_2+CrO_3+4H_2O$

C. $PCl_5 o PCl_3 + Cl_2$

D. All of the above

Answer: D

40. Based on the following reaction,

40. based on the following reaction,

($\Delta(G)^{\,\circ} < o$)

It can be concluded that

A. oxidising power of $F^{\,-}$ is grater than that of $XeO_6^{4\,-}$

 $XeO_{6}^{4\,-}(aq) + 2F^{\,-}(aq) + 6H^{\,+}(aq)
ightarrow XeO_{3}(aq) + F_{2}(g) + 3H_{2}O(l)$

B. it is not a redox reaction

C. it is a disproportionation reaction

D. oxidising power of $XeO_6^{4\,-}$ is greater than that of $F^{\,-}$

Answer: D

Watch Video Solution

41. Equivalent weight of N_2 in the change

 $N_2
ightarrow N H_3$ is

A. 28/6

B.28

c. 28/2

D. 28/3

Answer: A

42. What is the equivalent weight of NH_3 in the given reaction?

$$3CuO+2NH_3
ightarrow3Cu+N_2+3H_2O$$

- A. 17
- B. $\frac{17}{4}$
- c. $\frac{17}{2}$
- D. $\frac{17}{3}$

Answer: D

Watch Video Solution

Section B Assertion Reasoning

1. Assertion (A): SO_2 and Cl_2 are both bleaching agents.

Reason (R): Both are reducing agents.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

Watch Video Solution

2. Assertion(A): Fluorine exists only in -1 oxidation state.

Reason(R): Fluorine has $2s^22p^5$ configuration.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: B

Watch Video Solution

3. Assertion: Stannous chloride is a powerful oxidising agent which oxidises mercuric chloride to mercury

Reason: Stannous chloride gives grey precipitate with mercuric chloride, but stannic chloride does not do so.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: D

Watch Video Solution

4. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3+V$.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

- B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
- C. If assertion is true but reason is false.
- D. If assertion is false but reason is true.

Answer: B

Watch Video Solution

- **5.** Assertion: Copper liberates hydrogen from a solution of dilute hydrochloric acid.
- Reason: Hydrogen is above copper in the electro-chemical series.
 - A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
 - B. If both assertion and reason are true but reason is not the

correct explantion of the assertion.

- C. If assertion is true but reason is false.
- D. If assertion is false but reason is true.

Answer: D

- **6.** Assertion: Reaction of white phosphorus with NaOH(aq) gives PH_3 .
- Reason: The reaction is disproportionation of ${\cal P}$ in alkaline medium.
 - A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
 - B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
 - C. If assertion is true but reason is false.
 - D. If assertion is false but reason is true.

Answer: A

7. Assertion: The passage of H_2S through aqueous solution of SO_2 gives yellow turbidty of S in solution. Reason: The yellow turbidity of S is in colloidal state due to oxidation of H_2S by $SO_2(aq)$.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

8. Assertion: Bleaching action of SO_2 is temporary whereas bleaching action of Cl_2 is permanent.

Reason: Bleaching by SO_2 and Cl_2 is due to oxidation.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

Watch Video Solution

9. Assertion: Conversation of black lead painting is made to white by the action of H_2O_2 .

Reason: Sulphur is oxidised to SO_4^{2-}

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

Watch Video Solution

10. Assertion: CrO_5 on decomposition undergoes disproportionation.

Reason: CrO_5 undergoes intermolecular redox reaction.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

11. Assertion: NH_4NO_3 on heating give N_2O .

Reason: NH_4NO_3 on heating shows disproportionation.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

Watch Video Solution

12. Assertion: In azide ion average oxidation number of N is -1/3.

Reason: In azide ion two N atoms have zero oxidation number and one has oxidation number -1.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the

correct explantion of the assertion.

- C. If assertion is true but reason is false.
- D. If assertion is false but reason is true.

Answer: A

Watch Video Solution

13. Assertion: Oxygen atom in both ${\cal O}_2$ and ${\cal O}_3$ has oxidation number zero.

Reason: In Fe_2O , oxidation number of O is +2.

- A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
- B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
- C. If assertion is true but reason is false.
- D. If assertion is false but reason is true.

Answer: B

14. Assertion: N atom has two different oxidation states in NH_4NO_2 . Reason: One N atom has -ve oxidation number as it is attached with less electronegative H atom and other has +ve oxidation number as it is attached with more electronegative atom.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

- B. If both assertion and reason are true but reason is not the correct explantion of the assertion.
- C. If assertion is true but reason is false.
- D. If assertion is false but reason is true.

Answer: A

15. Statement $2H_2O_2 o 2H_2O + O_2$ is autoredox change.

Explanation One oxygen atom is oxidised and one oxygen atom is reduced.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

Watch Video Solution

16. Statement VO_2^+ and VO^{2+} both are called vanadyl ions.

Explanation VO_2^+ is dioxovanadium (V) ion and VO^{2+} oxovanadium (IV) ion.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: B

Watch Video Solution

Assertion: 17. the reaction, In

 $3As_2S_3 + 28HNO_3 + 4H_2O
ightarrow 6H_3SAsO_4 + 9H_2SO_4 + 28NO_3$

electrons transferred are 84.

Reason: As is oxidised from +3 to +5 and sulphur from -2 to +6.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

Watch Video Solution

18. Assertion: If a strong acid is added to a solution of potassium chromate it changes its colour from yellow to orange.

Reason: The colour change is due to the oxidation of potassium chromate.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

19. Assertion: Nitrous acid (HNO_2) may act as an oxidising as well as a reducing agent.

Reason: The oxidation number of nitrogen remains same in all the compounds.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

20. Assertion: A reducing agent is a substance which can donate electron.

Reason: A substance which helps in oxidation is known as reducing agent.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

Watch Video Solution

21. Assertion: In the redox reaction $8H^+(aq)+4NO_3^-+6Cl^-+Sn(s) o SnCl_6^{2-}+4NO_2+4H_2O.$ the reducing agent is Sn(s).

Reason In balacing half-reaction, $S_2O_3^{2-} o S(s)$, the number of electrons added on the left is 4.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: B

Watch Video Solution

22. Assertion: Among Br^- , O_2^{2-} , H^- and NO_3^- , the ions that cannot act as oxidising agents are Br^- and H^- .

Reason: Br^- and H^- cannot be reduced.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: A

Watch Video Solution

23. Assertion: In the reaction,

 $MnO_4^- + 5Fe^{2+} + 8H +
ightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O, ~~MnO_4^-$

acts as oxidising agent.

Reason: In the above reaction, n- factor is 5.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: B

Watch Video Solution

24. Assertion: If 200mL of 0.1NNaOH is added to 200mL of $0.1NH_2SO_4$ solution. Then the resulting solution is acidic.

Reason: If milliequivalent of acid is greater than milliequivalents of base, then upon mixing the solution is acidic.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: D

Watch Video Solution

25. Assertion: Equivalent weight of FeC_2O_4 in the reaction, FeC_2O_4+ Oxidising agent $\to Fe^{3+}+CO_2$ is M/3, where M is molar mass of FeC_2O_4 .

Reason: In the above reaction, total two mole of electrons are given up by 1mole of FeC_2O_4 to the oxidising agent.

B. If both assertion and reason are true but reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

Aipmt Neet Questions

1. Zn gives H_2 gas with H_2SO_4 and HCl but not with HNO_3 because

A. Zn acts as an oxidising agent when it reacts with HNO_3

B. HNO_3 is weaker acid than H_2SO_4 and HCl

C. In electrochemical series, ${\it Zn}$ is above hydrogen

D. NO_3^{Θ} is reduced in preference to hydronium ion.

Answer: D

Watch Video Solution

2. The oxidation states of sulphur in the anions $SO_3^{2-}, S_2O_4^{2-}$, and $S_2O_6^{2-}$ follow the order

A.
$$S_2 O_4^{2\,-} < S O_3^{2\,-} < S_2 O_6^{2\,-}$$

B.
$$SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

C.
$$S_2 O_4^{2\,-} < S_2 O_6^{2\,-} < S O_3^{2\,-}$$

D.
$$S_2 O_6^{2\,-} < S_2 O_4^{2\,-} < S O_3^{2\,-}$$

Answer: A

3. Which is the best description of the behaviour of bromine in the reaction given below

$$H_2O+Br_2 o HOBr+HBr$$

A. Proton acceptor only

B. Both oxidised and reduced

C. Oxidised only

D. Reduced only

Answer: B

Watch Video Solution

4. Oxidation numbers of P in PO_4^{3-} , of S in SO_4^{2-} , and that of Cr in $Cr_2O_7^{2-}$ are respectively ,

A.
$$-3, +6, +6$$

$$B. +5, +3, +6$$

$$C. +3, +6, +5$$

$$D. +5, +6, +6$$

Answer: D

Watch Video Solution

5. Oxidation no. of P in $H_4P_2O_5$, $H_4P_2O_6$, and $H_4P_2O_7$ are respectively

$$A. +3, +4, +5$$

$$B. +4, +3, +5$$

$$\mathsf{C.} + 3, + 5, + 4$$

D.
$$+5, +3, +4$$

Answer: A

Watch Video Solution

- 6. The most common and stable oxidation state of a lanthanide is
 - A. 4
 - B. 2
 - **C**. 5
 - D. 3

Answer: D

Watch Video Solution

7. Standard reduction potentails of the half reactions are given below:

$$F_2(g) + 2e^-
ightarrow 2F^-(aq.\,),\,, E^{\,f e} = \,+\,2.87$$

$$Cl_2(g) + 2e^- o 2Cl^-(aq.\,),\,, E^{\,m{ heta}} = \,+\,1.36V$$

 $Br_2(g) + 2e^- \rightarrow 2Br^-(aq.), E^{\Theta} = +1.09V$

 $I_2(s) + 2e^- \rightarrow 2l^-(aq.), E^{\Theta} = +0.54V$

The strongest oxidizing and reducing agents respectively are:

A.
$$F_2$$
 and $I^{\,-}$

B. Br_2 and Cl^-

C. Cl_2 and Br^-

D. Cl_2 and I_2

Answer: A

Watch Video Solution

8. In which of the following compounds, nitrogen exhibits the highest oxidation state?

A. N_3H

B. NH_2OH

 $\mathsf{C}.\,N_2H_4$

D. NH_3

Answer: A

Watch Video Solution

- **9.** When Cl_2 gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
 - A. Zero to -1 and zero to +3
 - B. Zero to +1 and zero to -3
 - C. Zero to +1 and zero to -5
 - D. Zero to -1 and zero to +5

Answer: D

10. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?

A. Cl

B.C

 $\mathsf{C}.\,S$

D. H

Answer: A

Watch Video Solution

11. The pair of compounds that can exist together is:

A. $FeCl_3$, $SnCl_2$

B. $HgCl_2$, $SnCl_2$

C. $FeCl_2$, $SnCl_2$

D. $FeCl_3$, KI

Answer: C

Watch Video Solution

12. Role of hydrogen peroxide iin the following reaction is respectively.

$$(i) \quad H_2O_2+O_3 o H_2O+ZO_2$$

$$(ii) \hspace{0.5cm} H_2O_2 + Ag_2O
ightarrow Aag + H_2O + O_2$$

A. oxidizing in (\it{II}) and reducing in (\it{II})

B. reducing in (\it{II}) and oxidizing in (\it{II})

C. reducing in (I) and (II)

D. oxidizing in (I) and (II)

Answer: A

Watch Video Solution

13. In acidic medium, H_2O_2 changes $Cr_2O_7^{2-}$ to CrO_5 which has two $(\,-O-O-)$ bonds. Oxidation state of Cr in CrO_5 is

- A. + 5
- $\mathsf{B.}+3$
- C. + 6
- D. 10

Answer: C

Watch Video Solution

14. The reaction of aqueus $KMnO_4$ with H_2O_2 in acidic conditions gives

A. $Mn^{4\,+}$ and O_2

B. $Mn^{2\,+}$ and O_2

C. $Mn^{2\,+}$ and O_3

D. $Mn^{4\,+}$ and MnO_2

Answer: B

Watch Video Solution

15. For the redox reaction

 $MnO_4^{\,\Theta} + C_2O_4^{2-} + H^{\,\oplus} o Mn^{2+} + CO_2 + H_2O_4^{\,}$

the correct coefficients of the reactions for the balanced reaction are

A. (1
$$MnO_4^- = 16$$
, $C_2O_4^{2\,-} = 5$, $H^{\,+} = 2$)

B. (1 $MnO_4^-=2$, $C_2O_4^{2-}=5$, $H^+=16$)

C. (1 $MnO_4^-=2$, $C_2O_4^{2-}=16$, $H^+=5$)

D. (1 $MnO_4^- = 5$, $C_2O_4^{2-} = 16$, $H^+ = 2$)

Answer: B

Watch Video Solution

16. Which ordering of compound is according to the decreasing order of the oxidation state of nitrogen?

A. HNO_3 , NO, N_2 , NH_4Cl

B. HNO_3 , NO, NH_4Cl , N_2

 $C. HNO_3, NH_4Cl, NO, N_2$

D. NH_{4Cl} , N_2 , NO, HNO_3

Answer: A

Aiims Questions

1. Following reaction describes the rusting of iron

$$4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O_{2-}$$

Which one of the following statements is incorrect?

- A. This is an example of a redox reaction
- B. Metallic iron is reduced to Fe^{3+}
- C. $Fe^{3\,+}$ is an oxidising agent
- D. Metallic iron is a reducing agent

Answer: B

Watch Video Solution

2. Identify the correct statement about $H_2 {\cal O}_2$

A. It acts as reducing agent only

B. It acts as both ocidising and reducing agent

C. It is neither an oxidiser nor reduces

D. It acts as oxidising agent only

Answer: B

Watch Video Solution

3. In $C+H_2O o CO+H_2$, H_2O acts as

A. oxidising agent

B. reducing agent

C. both (*a*) and (*b*)

D. none of these

Answer: A

Watch Video Solution

4. Which substance is serving as a reducing agent in the following reaction?

$$14H^{\,+}\,+Cr_2O_7^{2\,-}\,+3Ni\,
ightarrow\,2Cr^{3\,+}\,+7H_2O\,+\,3Ni^{2\,+}$$

- A. H_2O
- B. Ni
- $\mathsf{C}.\,H^{\,+}$
- D. $Cr_2O_7^{2\,-}$

Answer: B

Watch Video Solution

5. HNO_2 acts both as reductant and as oxidant, while HNO_3 acts only as oxidant. It is due to their

A. Solubility ability

B. Maximum oxidation number

C. Minimum oxidation number

D. Minimum number of valence electrons

Answer: B

6. Oxidation number if nickel in $Ni(CO_4)$ is

A.0

B.+4

 $\mathsf{C.}-4$

$$D. + 2$$

Answer: A

Watch Video Solution

7. The oxidation number of carbon in CH_2Cl_2 is

A. 0

 $\mathsf{B.}+2$

 $\mathsf{C.}-2$

D. + 4

Answer: A

Watch Video Solution

- **8.** Which of the following statements is correct?
 - A. Hydrogen has oxidation number -1 and +1
 - B. Hydrogen has same electronegativity as halogens
 - C. Hydrogen will not be liberated at anode
 - D. Hydrogen has same ionization potential as alkali metals

Answer: A

- **9.** An element which never has a positive oxidation number in any of its compounds
 - A. Boron
 - B. Oxygen
 - C. Chlorine

Answer: D

Watch Video Solution

10. If HNO_3 changes into N_2O , the oxidation number is changed by

A. + 2

 $\mathsf{B.}-1$

 $\mathsf{C.}\,0$

D. + 4

Answer: D

Watch Video Solution

11. The oxidation number of iron in the compound $K_4igl[Fe(CN)_6igr]$ is

A.+6

 $\mathsf{B.}+4$

 $\mathsf{C.} + 3$

D. + 2

Answer: D

12. The brown ring complex compound is formulated as

 $igl[Fe(H_2O)_5NOigr]SO_4.$ The oxidation state of Fe is

A. 1

B. 2

C. 3

Answer: B

Watch Video Solution

13. The oxidation number of S in $Na_2S_4O_6$ is

- A. $\frac{2}{3}$ B. $\frac{3}{2}$ C. $\frac{3}{5}$
- D. $\frac{5}{2}$

Answer: D

14. Identify the element which can have highest oxidation numbers
A. N
B. O
C.Cl
D. C
Answer: C
Watch Video Solution
15. What is the net charge on ferrous ion ?
15. What is the net charge on ferrous ion ? $ A. + 2 $
A.+2

Answer: A

Watch Video Solution

16. Which of the following reaction involves oxidation reduction?

A.
$$H_2 + Br_2
ightarrow 2HBr$$

B.
$$HBr + AgNO_3
ightarrow AgBr + HNO_3$$

C.
$$NaBr + HCl
ightarrow NaCl + HBr$$

D.
$$2NaOH + H_2SO_4
ightarrow Na_2SO_4 + 2H_2O$$

Answer: C

Watch Video Solution

17. What is the equivalent weight of phosphoric acid (H_3PO_4) according to the equation

$$NaOH + H_3PO_4
ightarrow NaH_2PO_4 + H_2O$$

A. 25

B. 49

C. 59

D. 98

Answer: D

18. For decolourisation of $1 \operatorname{mol} \operatorname{of} KMnO_4$, the moles of H_2O_2

A 1 /

required is

A. 1/2

 $\mathsf{B.}\,3/2$

 $\mathsf{C.}\,5/2$

Answer: C

Watch Video Solution

19. The oxidation number of sulphur in $H_2S_2O_7$ and iron in

 $K_4 Fe(CN)_6$ is respectively

$$\mathsf{A.}+6$$
 and $+2$

$$\mathsf{B.} + 2 \ \mathsf{and} + 2$$

$$\mathsf{C.} + 8 \, \mathsf{and} + 2$$

$$\mathsf{D.}+6\,\mathsf{and}+4$$

Answer: A

20. $MnO_4^{2\,-}$ in neutral aqueous medium is disproportionate to

A. 2/3 mole of MnO_4^- and 1/3 mole of MnO_2

B. 1/3 mole of $MnO_4^-\,$ and 2/3 mole of $MnO_2\,$

C. 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2

D. 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2

Answer: A

Assertion Reasoning Questions

1. Assertion: Amongest the halogens, fluorine can oxidise the elements to the highest oxidation-state.

Reason: Due to small size of fluoride ion, it is difficult to oxidise fluoride ion to fluorine. Hence reverse reaction takes place more easily.

A. If both the assertion and reason are true and reason is the true explanation of the assertion.

B. If both the assertion and reason are ture but the reason is not the correct explanation of assertion

C. If the assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: B

2. Assertion: Cl_2 gas belaches the articles permanently.

Reason: Cl_2 is a strong reducing agent.

3. Assertion: In some cases oxygen shows positive oxidation number though it is an electronegative element.

Reason: Fluorine is more electronegative than oxygen.

Watch Video Solution

4. Assertion: Reaction of SO_2 and H_2S in the presence of Fe_2O_3 catalyst gives elemental sulphur.

Reason: SO_2 is a reducing agent.

5. Assertion: Cu is stronger reducing agent than H^+ .

Reason: E^0 of $Cu^{2\,+}$ $/\,Cu$ is negative.

Section D Chapter End Test

- **1.** For H_3PO_3 and H_3PO_4 the correct choice is
 - A. H_3PO_3 is dibasic and reducing
 - B. H_3PO_3 is dibasic and non-reducing
 - C. H_3PO_4 is tribasic and reducing
 - D. H_3PO_3 is tribasic and non-reducing

Answer: A

- **2.** The oxidation number of sulphur in $H_2S_2O_7$ and iron in
- $K_4Fe(CN)_6$ is respectively
 - A.+6 and +2

$$\mathsf{B.} + 2 \mathsf{\ and\ } + 2$$

$$\mathsf{C.} + 8 \, \mathsf{and} + 2$$

$$\mathsf{D.}+6$$
 and $+4$

Answer: A

Watch Video Solution

3. One mole of N_2H_4 loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A? (There is no change in the oxidation state of hydrogen.)

$$\mathsf{A.} + 3$$

$$B.-3$$

$$\mathsf{C.}-1$$

$$D. + 5$$

Answer: A

Watch Video Solution

4. In the compound $YBa_2Cu_3O_7$ which shows superconductivity, what is the oxidation state of Cu ?

Assume that the rare earth element yttrium is in its usual ± 3 oxidation state.

A. 3/7

B. 7/3

C. 3

D. 7

Answer: B

5. The oxidation number of S in $S_8,\,S_2F_2$, and H_2S , respectively, are

A.
$$0$$
, $+1$ and -2

$$\mathsf{B.} + 2\mathsf{,} + 1 \mathsf{ and } -2$$

$$\mathsf{C.}\ \mathsf{0,} + 1\ \mathsf{and}\ + 2$$

$$\mathsf{D}.-2$$
, $+1$ and -2

Answer: A

Watch Video Solution

6. Which one of the following reactions is not an example of redox reaction?

A.
$$Cl_2+2H_2O+SO_2
ightarrow 4H^++SO^{4-}2Cl^-$$

B.
$$Cu^{+\,+} + Zn
ightarrow Zn^{+\,+} + Cu$$

C.
$$2H_2+O_2
ightarrow 2H_2O$$

D.
$$HCl + H_2O
ightarrow H_3O^- + Cl^-$$

Answer: D

Watch Video Solution

7. For the reaction, $C+O_2 o CO_2$, $\Delta H=-393J$

$$2Zn + O_2 \rightarrow 2ZnO, \Delta H = -412J$$

A. Carbon can oxidise ${\it Zn}$

B. Oxidation of carbon is not feasible

C. Oxidation of $\mathbb{Z}n$ is not fesible

D. Zn can oxidise carbon

Answer: D

8. In the reaction $B_2H_6+2KOH+2X o 2Y+6H_2$, X and Y are respectively

A.
$$H_2, H_3BO_3$$

B. HCl, KBO_3

C. H_2O , KBO_3

D. H_2O , KBO_2

Answer: D

- **9.** In a balanced equation $H_2SO_4+xHI o H_2S+YI_2+zH_2O$, the value of x,y,z are
- A. x=3,y=5,z=2
 - B. x = 4, y = 8, z = 5
 - C. x = 8, y = 4, z = 4

D.
$$x = 5, y = 3, z = 4$$

Answer: C

Watch Video Solution

10. MnO_4^{2-} (1 mole) in neutral aqueous medium is disproportionate to

- A. 2/3 mole of MnO_4^- and 1/3 mole of MnO_2
- B. 1/3 mole of MnO_4^- and 2/3 mole of MnO_2
- C. 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
- D. 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2

Answer: A

 $3.~06 imes10^{-6}{
m ohm}^{-1}cm^{-1}$ and its equivalent conductance is $1.53{
m ohm}^{-1}cm^2\equiv^{-1}$. The K_{sp} for $BaSO_4$ will be .

11. The conductivity of a saturated solution of $BaSO_4$ is

A.
$$4 imes10^{-12}$$

B.
$$2.5 imes 10^{-9}$$

 $\mathsf{C.}\,2.5\times10^{-13}$

D.
$$4 imes 10^{-6}$$

Answer: D

12. H_2O_2 reduces $K_4Fe(CN)_{\kappa}$

- A. In neutral solution
- B. In acidic solution
- C. In non-polar solution

D. In alkaline solution
Answer: B
Watch Video Solution
13. When sodium metal is dissolved in liquid ammonia, blue colour solution is formed. The blue colour is due to
A. Solvated Na^+ions
B. Solvated electrons

C. Solvated $NH_2^{\,-}\,$ ions

Watch Video Solution

D. Solvated protons

Answer: B

14. Which of the following is redox reaction?

A. H_2SO_4 with NaOH

B. In atmosphere, ${\cal O}_3$ from ${\cal O}_2$ by lightning

C. Evaporation of H_2O

D. Nitrogen oxides from nitrogen and oxygen by lightning

Answer: D

15. In which of the following reactions H_2O_2 is a reducing agent?

A.
$$2FeCl_2+2HCl+H_2O_2
ightarrow 2FeCl_3+2H_2O$$

B.
$$Cl_2 + H_2O_2
ightarrow 2HCl + O_2$$

C.
$$2HI+H_2O_2
ightarrow 2H_2O+I_2$$

D.
$$H_2SO_3 + H_2O_2
ightarrow H_2SO_4 + H_2O_3$$

Answer: B

Watch Video Solution

16. Which is the best description of the behaviour of bromine in the reaction given below

$$H_2O + Br_2 o HOBr + HBr$$

- A. Oxidised only
- B. Reduced only
- C. Proton acceptor only
- D. Both oxidised and reduced

Answer: D

- A. Na_2O
- $\operatorname{B.}SnCl_2$
- C. Na_2O_2
- D. $NaNO_2$

Answer: D

- **18.** When $K_2Cr_2O_7$ is converted to K_2CrO_4 , the change in the oxidation state of chromium is
 - **A.** 0
 - $\mathsf{B.}\,6$

•	/

D. 3

Answer: A

Watch Video Solution

19. Oxidation state of chlorine in perchloric acid is

A. - 1

B. 0

 $\mathsf{C.}-7$

D. + 7

Answer: D

20. The oxidation number of S in $H_2S_2O_8$ is

$$\mathsf{A.} + 2$$

$$\mathsf{B.}+4$$

$$C. + 6$$

$$D. + 7$$

Answer: C

Watch Video Solution

21. The oxidation state of nitrogen in N_3H is

A.
$$+\frac{1}{3}$$

$$\mathsf{B.}+3$$

$$\mathsf{C}.-1$$

D.
$$-\frac{1}{3}$$

Answer: D

Watch Video Solution

22. In XeO_3 and XeF_6 the oxidation state of Xe is

A. + 4

B.+6

C. + 1

D. + 3

Answer: B

Watch Video Solution

23. The number of moles of $K_2Cr_2O_7$ reduced by 1mol of Sn^{2+} ions

A.
$$1/3$$

B.1/6

C.2/3

D. 1

Answer: A

Watch Video Solution

24. For the redox reaction

$$MnO_4^{\, \Theta} \, + C_2O_4^{2\, -} \, + H^{\, \oplus} \,
ightarrow \, Mn^{2\, +} \, + CO_2 + H_2O$$

the correct coefficients of the reactions for the balanced reaction are

A. (
$$MnO_{4}^{-}=2$$
), ($C_{2}O_{4}^{2-}=5$), ($H^{+}=16$)

B. (
$$MnO_4^- = 16$$
), ($C_2O_4^{2-} = 5$), ($H^+ = 2$)

C. (
$$MnO_4^-=5$$
), ($C_2O_4^{2\,-}=16$), ($H^+=2$)

D. (
$$MnO_4^-=2$$
), ($C_2O_4^{2-}=16$), ($H^+=5$)

Answer: A

Watch Video Solution

25. Which of the following is the strongest oxidising agent?

A.
$$BrO_3^-\,/Br^2$$
 , $E^0=\,+\,1.50$

B.
$$Fe^{3+}\,/Fe^{2+}$$
 , $E^0=\,+\,0.76$

C.
$$MnO_4^- / Mn^{2+}$$
 , $E^0 = +1.52$

D.
$$Cr_2O_7^{2\,-}\,/Cr^{3\,+}$$
 , $E^0=\,+\,1.33$

Answer: C

Watch Video Solution

26. The equivalent weight of phosphoric acid (H_3PO_4) in the reaction $NaOH+H_3PO_4 o NaH_2PO_4+H_2O$ is

- A. 25
- B. 49
- $\mathsf{C.}\,59$
- D. 98

Answer: D

Watch Video Solution

27. Assertion: Fluorine exists only in -1 oxidation state.

Reason: Fluorine has $2s^22p^5$ configuration.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true and reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If the assertion false and reason is true.

Answer: B

Watch Video Solution

28. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3+V$.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true and reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If the assertion false and reason is true.

Answer: B

29. Assertion: Oxidation number of carbon in CH_2O is zero.

Reason: CH_2O formaldehyde, is a covalent compound.

A. If both assertion and reason are true and the reason is the correct explanation of the assertion.

B. If both assertion and reason are true and reason is not the correct explantion of the assertion.

C. If assertion is true but reason is false.

D. If the assertion false and reason is true.

Answer: B

