©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

SOME BASIC CONCEPTS OF CHEMISTRY

Daltons Theory Laws Of Chemical Cobination And Various Types Of

 Masses1. The isotopic abundance of $C-12$ and $C-14 \mathrm{is} 98 \%$ and 2% respectively. What would be the number of $C-14$ isotope in $12 g$ carbon sample?
A. (a) 1.032×10^{22}
B. (b) 1.20×10^{22}
C. (c) 5.88×10^{23}
D. (d) 6.02×10^{23}

Answer: B

- Watch Video Solution

2. An oxide of metal have 20% oxygen. The eq.wt. of oxide is:
A. 32
B. 40
C. 48
D. 52

Answer: B
3. 1.0 g of an oxide of A contained 0.5 g of A .4 .0 g of another oxide of A contained 1.6 g of A . The data indicate the law of-
A. (a)Reciprocal proportions
B. (b)Constant proportions
C. (c)Conservation of energy
D. (d)Multiple proportions

Answer: D

- Watch Video Solution

4. Equivalent weight of carbon in CO and CO_{2} are in the ratio of:
A. (a) $1: 1$
B. (b) $1: 2$
C. (c) $2: 1$
D. (d) $1: 4$

Answer: C

- Watch Video Solution

5. Two oxides of a metal contain 50% and 40% metal M respectively. If the formula of the first oxide is $M O_{2}$, the formula of the second oxide will be
A. (a) $M O_{2}$
B. (b) MO_{3}
C. (c) $M_{2} O$
D. (d) $M_{2} O_{5}$

- Watch Video Solution

6. In the following reaction:
$3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$, if the atomic weight of iron is 56 , then its equivalent weight will be
A. 42
B. 21
C. 63
D. 84

Answer: B

7. Among the following pairs of compounds, the one that illustrates the law of multiple proportions is
A. (a) NH_{3} and NCI_{3}
B. (b) $\mathrm{H}_{2} \mathrm{~S}$ and SO_{2}
C. (c) CuO and $\mathrm{Cu}_{2} \mathrm{O}$
D. (d) CS_{2} and FeSO 4

Answer: C

- Watch Video Solution

8. In an ionic compound moles ratio of cation to anion is $1: 2$. If atomic masses of metal and non-metal respectively are 138 and 19 , then correct statement is
A. (a)molecular mass of compound is 176
B. (b)formula mass of compound is 176
C. (c)formula mass of compound is 157
D. (d)molecular mass of compound is 157

Answer: B

- Watch Video Solution

9. Two samples of lead oxide were separately reduced to metallic lead by heating in a current of hydrogen. The weight of lead from one oxide was half the weight of lead obtained from the other oxide. The data illustrates
A. (a)Law of reciprocal proportions
B. (b)Law of constant proportions
C. (c)Law of multiple proportions
D. (d)Law of equivalent proportions

Answer: C

- Watch Video Solution

10. If $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one one of a substance will:
A. (a)Decrease twice
B. (b)Increase two folds
C. (c)Remains unchanged
D. (d)Be a function of the molecular mass of element

Answer: C

- Watch Video Solution

11. When 10 ml of propane (gas) is combusted completely, volume of $\mathrm{CO}_{2}(\mathrm{~g})$ obtained in similar condition is
A. (a) 10 ml
B. (b) 20 ml
C. (c) 30 ml
D. (d) 40 ml

Answer: C

12. Two elements X and Y have atomic weight of 14 and 16. They from a series of compounds A, B, C, D and E in which the same amount of element X, Y is present in the ratio $1: 2: 3: 4: 5$. If the compound A has 28 parts by weight of X and 16 parts by weight of Y, then the compound of C will have 28 parts weight of X and
A. (a) 32 parts by weight of Y
B. (b) 48 parts by weight of Y
C. (c) 64 parts by weight of Y
D. (d) 80 parts by weight of Y

Answer: B

- Watch Video Solution

13. Iron forms two oxides, in first oxide 56 grams. Iron is found to be combined with 16 grams oxygen and in second oxide 112 grams iron is found to be combined with 48 grams oxygen. This data satisfy the law of
A. (a)Conservation of mass
B. (b)Reciprocal proportion
C. (c)Multiple proportion
D. (d)Combining volume

Answer: C

D Watch Video Solution

14. A sample of calcuium carbonate $\left(\mathrm{CaCO}_{3}\right)$ has the following percentage composition: $C a=40 \%, C=12 \%, O=48 \%$ If
the law of constant proportions is true. Then the weight of calcium in $4 g$ of a sample of calcium carbonate obtained from another source will be
A. (a) $0.016 g$
B. (b) $0.10 g$
C. (c) $1.6 g$
D. (d) $16 g$

Answer: C

D Watch Video Solution

15. $n g$ of substance X reacts with $m g$ of substance Y to from $p g$ of substance R and q g of substance S . This reaction can be represented as, $X+Y=R+S$. The relation which can be
established in the amounts of the reactants and the products will be
A. (a) $n-m=p-q$
B. (b) $n+m=p+q$
C. (c) $n=m$
D. (d) $p=q$

Answer: B

- Watch Video Solution

16. Which of the following is the best example of law of conservation of mass
A. (a) $12 g$ of carbon combines with $32 g$ of oxygen to from $44 g$
B. (b)When $12 g$ of carbon is heated in a vacuum there is no change in mass
C. (c)A sample of air increase in volume when heated at constant pressure but its mass remains unaltered
D. (d)The weight of a piece of platinum is the same before and after heating in air

Answer: A

- Watch Video Solution

17. There are two common oxides of sulphur, one of which contains $50 \% \mathrm{O}_{2}$ by weight, the other almost exactly 60%. The weight of sulphur which combine with $1 g$ of O_{2} (fixed) are in the ratio of
A. (a) $1: 1$
B. (b) $2: 1$
C. (c) $2: 3$
D. (d)3:2

Answer: D

- Watch Video Solution

18. In compound A, 1.00 g nitrogen units with 0.57 g oxygen. In compound $B, 2.00 g$ nitrogen combines with $2.24 g$ oxygen. In compound $C, 3.00 \mathrm{~g}$ nitrogen combines with 5.11 g oxygen. These results obey the following law
A. (a)Law of constant proportion
B. (b)Law of multiple proportion
C. (c)Law of reciprocal proportion
D. (d)Dalton's Law of partial pressure

Answer: B

- Watch Video Solution

19. Hydrogen combines with oxygen with oxygen to form $\mathrm{H}_{2} \mathrm{O}$ in which $16 g$ of oxygen combine with $2 g$ of hydrogen. Hydrogen also combines with carbon to form CH_{4} in which $2 g$ of hydrogen combine with $6 g$ of carbon. If carbon and oxygen combine togather then they will do show in the ratio of
A. (a) $6: 16$ or $12: 32$
B. (b) $6: 18$
C. (c) 1: 2
D. (d) $12: 24$

Answer: A

- Watch Video Solution

20. $2 g$ hydrogen combine with $16 g$ of oxygen to from water and with $6 g$ of carbon to form methane. In carbon dioxide $12 h$ of carbon are combined with $32 g$ of oxygen. These figures illustrate the law of
A. (a)Multiple proportions
B. (b)Constant proportions
C. (c)Reciprocal proportions
D. (d)Conservation of mass

Answer: C

- Watch Video Solution

21. An element forms two oxides containing respectively 53.33 and 36.36 percent of oxygen. These figures illustrate the law of
A. (a)Conservation of mass
B. (b)Constant proportions
C. (c)Reciprocal proportions
D. (d)Multiple proportions

Answer: D

- Watch Video Solution

22. A sample of pure carbon dioxide, irrespective of its source contains 27.27% carbon and 72.73% oxygen. The data support
A. (a)Law of constant composition
B. (b)Law of conservation of mass
C. (c)Law of reciprocal proportions
D. (d)Law of multiple proportions

Answer: A

- Watch Video Solution

23. Which one of the following pairs of compound illustrates the law of multiple proportion
A. (a) $\mathrm{H}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$
B. (b) $\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$
C. (c) $\mathrm{Na}_{2} \mathrm{O}, \mathrm{BaO}$
D. (d) $S n C 1_{2}, S n C 1_{4}$

- Watch Video Solution

24. 1 amu is equal to
A. $\frac{1}{12}$ mass of $C-12$
B. $\frac{1}{14}$ mass of $O-16$
C. 1 g of H_{2}
D. $1.6 \times 10^{-23} \mathrm{~kg}$

Answer: A

- Watch Video Solution

25. Sulphur forms the chlorides S_{2} Cl $_{2}$ and $S C l_{2}$. The equivalent mass of sulphur in $S C l_{2}$ is
A. (a) $8 \mathrm{~g} / \mathrm{mol}$
B. (b) $16 \mathrm{~g} / \mathrm{mol}$
C. (c) $64.8 \mathrm{~g} / \mathrm{mol}$
D. (d) $32 \mathrm{~g} / \mathrm{mol}$

Answer: B

- Watch Video Solution

26. The sulphate of a metal M contains 9.87% of M, This sulphate is isomorphous with $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$. The atomic weight of M is
A. (a) 40.3
B. (b) 36.3
C. (c) 24.3
D. (d) 11.3

Answer: C

- Watch Video Solution

27. In chemical scale, the relative mass of the isotopic mixture of oxygen atoms $\left(O^{16}, O^{17}, O^{18}\right)$ is assumed to be equal to
A. (a) 16.002
B. (b) 16.00
C. (c) 17.00
D. (d) 11.00

- Watch Video Solution

28. Boron has two stable isotopes, ${ }^{10} B(19 \%)$ and ${ }^{11} B(81 \%)$.

The atomic mass that should appear for boron in the periodic table is
A. 10.8
B. 10.2
C. 11.2
D. 10.0

Answer: A
29. 74.5 g of a metallic chloride contain 35.5 g of chlorine. The equivalent weight of the metal is
A. (a) 19.5
B. (b) 35.5
C. (c) 39.0
D. (d) 78.0

Answer: C

- Watch Video Solution

30. Equivalent weight of crystalline oxalic acid is
A. (a) 30
B. (b) 63
C. (c) 53
D. (d) 45

Answer: B

- Watch Video Solution

31. The equivelent weight of an element is 4 . Its chloride has a $V . D 59.25$. Then the valency of the element is
A. (a) 4
B. (b) 3
C. (c) 2
D. (d) 1

Answer: B

32. The oxide of a metal has 32% oxygen. Its equivalent weight would be
A. (a) 34
B. (b) 32
C. (c) 17
D. (d) 8

Answer: C

- Watch Video Solution

33. 1.520 g of the hydroxide of a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is
A. (a) 1.520
B. (b) 0.995
C. (c)19.00
D. (d) 9.00

Answer: D

- Watch Video Solution

34. The specific heat of a metal os 0.16 its approximate atomic weight would be
A. (a) 32
B. (b) 16
C. (c) 40
D. (d) 64

Answer: C

- Watch Video Solution

35. Vapour density of a metal chloride is 6.6 . Its oxide contains
53% metal. The atomic weight of metal is:
A. (a) 21
B. (b) 54
C. (c)27.06
D. (d) 2.086

Answer: C

36. The molecular weight of a gas is 45 . Its density at STP is
A. (a) 22.4
B. (b) 11.2
C. (c) 5.7
D. (d) 2.0

Answer: D

- Watch Video Solution

37. Equivalent weight of a bivalent metal is 37.2 . The molecular weight of its chloride is
A. (a) 412.2
B. (b) 216
C. (c)145.4
D. (d) 108.2

Answer: C

- Watch Video Solution

38. On reduction with hydrogen, 3.6 g of an oxide of matel left
$3.2 g$ of metal. If the vapour density of metal is 32 , the simplest formula of the oxide would be
A. (a) $M O$
B. (b) $\mathrm{M}_{2} \mathrm{O}_{3}$
C. (c) $M_{2} O$
D. (d) $M_{2} O_{5}$

- Watch Video Solution

39. The percentage of oxygen in NaOH is
A. (a) 40
B. (b) 60
C. (c) 8
D. (d) 10

Answer: A

- Watch Video Solution

40. A compound (80 g) on analysis gave $C=24 g, H=4 g, O=32 g$. Its empirical formula is
A. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$
B. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CH}_{2} \mathrm{O}_{2}$
D. $\mathrm{CH}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

41. The empirical formula of a compound is $\mathrm{CH}_{2} \mathrm{O} .0 .0835$ moles of the compound contains 1.0 g of hydrogen Molecular formula of the compound is
A. (a) $\mathrm{C}_{2} \mathrm{H}_{12} \mathrm{O}_{6}$
B. (b) $C_{5} H_{10} O_{5}$
C. (c) $C_{4} H_{8} O_{8}$
D. (d) $C_{3} H_{6} O_{3}$

Answer: A

- Watch Video Solution

42. The empirical formula of an acid is $\mathrm{CH}_{2} \mathrm{O}_{2}$, the probable molecular formula of acid may be
A. (a) $\mathrm{CH}_{2} \mathrm{O}$
B. (b) $\mathrm{CH}_{2} \mathrm{O}_{2}$
C. (c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D. (d) $C_{3} H_{6} O_{4}$

- Watch Video Solution

43. In which of the following pairs of compounds the ratio of C, H and O is same
A. (a)Acetic acid and methyl alcohol
B. (b)Glucose and acetic acid
C. (c)Fructose and sucrose
D. (d)All of these

Answer: B

44. Given that the abundacne of isotopes $.{ }^{54} \mathrm{Fe}, ~ .{ }^{56} \mathrm{Fe}$, and
.${ }^{57} \mathrm{Fe}$ is $5 \%, 90 \%$ and 5% respectively. The atomic mass of $F e$ is
A. (a) 55.85
B. (b) 55.95
C. (c) 55.75
D. (d) 55.05

Answer: B

- Watch Video Solution

45. Approximate atomic weight of an element is 26.89 . If its equivalent weight is 8.9 , the exact atomic weight of element would be
A. 26.89
B. 8.9
C. 17.8
D. 26.7

Answer: D

- Watch Video Solution

46. Irrespective of the source, pure sample of water always yields 88.89% mass of oxygen and 11.11% mass of hydrogen. This is explained by the law of
A. (a)Conservation of mass
B. (b)Constant composition
C. (c)Multiple proportions
D. (d)Constant volume

Answer: B

- Watch Video Solution

47. Zinc sulphate contains 22.65% of zinc and 43.9% of water of crystallization. If the law of constant proportions is true, then the the weight of zinc required to produce $20 g$ of the crystals will be
A. (a) $45.3 g$
B. (b) $4.53 g$
C. (c) $0.453 g$
D. (d) $453 g$

(D) Watch Video Solution

Mole Concept Empirical Formula And Molecular Formula

1. 1 mol of CH_{4} contains
A. (a) 6.02×10^{23} atoms of H
B. (b) $4 g$ atom of Hydrogen
C. (c) 1.81×10^{23} molecules of CH_{4}
D. (d) 3.0 g of carbon

Answer: B

- Watch Video Solution

2. 20 g of an acid furnishes 0.5 mole of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in its aqueous solution. The value of 1 equivalent of the acid will be:
A. $40 g$
B. $20 g$
C. $10 g$
D. $100 g$

Answer: A

- Watch Video Solution

3. The largest number of molecules in
A. (a) $36 g$ of water
B. (b) $28 g$ of carbon monoxide
C. (c) 46 g of ethyl alcohol
D. (d) $54 g$ of nitrogen pentoxide

Answer: A

- Watch Video Solution

4. An ion is reduced to the element when it absorbs 6×10^{20} electrons. The number of equivalents of the ion is:
A. 0.1
B. 0.01
C. 0.001
D. 0.0001

Answer: C

5. The total number of electrons in one molecule of carbon dioxide is
A. 22
B. 44
C. 66
D. 88

Answer: A

- Watch Video Solution

6. 510 mg of liquid on vaporization in Victor Meyer's apparatus displaces $67.2 \mathrm{~cm}^{3}$ of at (STP). The molecular weight of the liquid
A. (a) 130
B. (b) 17
C. (c) 170
D. (d) 1700

Answer: C

- Watch Video Solution

7. Number of atoms in $558.5 \mathrm{~g} F e(a t . w t .55 .85)$ is:
A. (a) Twice that in $60 g$ carbon
B. (b) 6.023×10^{22}
C. (c)Half in $8 g$ He
D. (d) $558.5 \times 6.023 \times 10^{23}$

Answer: A

- Watch Video Solution

8. 7.5 grams of a gas occupy 5.8 litres of volume at STP the gas is
A. (a) $N O$
B. (b) $\mathrm{N}_{2} \mathrm{O}$
C. (c) CO
D. (d) CO_{2}

Answer: A

9. In a compound C, H, N atoms are present in $9: 1: 3.5$ by weight. Molecular weight of compound is 108 . Its molecular formula is:
A. (a) $C_{2} H_{6} N_{2}$
B. (b) $C_{3} H_{4} N$
C. (c) $C_{6} H_{8} N_{2}$
D. (d) $C_{9} H_{12} N_{3}$

Answer: C

- Watch Video Solution

10. A given sample of pure compound contains $9.81 g$ of Zn , 1.8×10^{23} atoms of chromium, and 0.60 mol of oxygen atoms.

What is the simplest formula?
A. (a) $\mathrm{ZnCr}_{2} \mathrm{O}_{7}$
B. (b) $\mathrm{ZnCr}_{2} \mathrm{O}_{4}$
C. (c) $\mathrm{ZnCrO} \mathrm{O}_{4}$
D. (d) ZnCrO_{6}

Answer: B

- Watch Video Solution

11. A compound was found to contain nitrogen and oxygen in the ratio $28 g$ and $80 g$ respectively. The formula of compound is
A. (a) $N O$
B. (b) $\mathrm{N}_{2} \mathrm{O}_{3}$
C. (c) $\mathrm{N}_{2} \mathrm{O}_{5}$
D. (d) $\mathrm{N}_{2} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

12. Four one litre flask are separately filled with the gases $\mathrm{H}_{2}, \mathrm{He}, \mathrm{O}_{2} \mathrm{and} \mathrm{O}_{3}$ at the same temperature and pressure. The ratio of total number of atoms of these gases present in different flask would be:
A. (a) $1: 1: 1: 1$
B. (b) $1: 2: 2: 3$
C. (c) $2: 1: 2: 3$
D. (d) $3: 2: 2: 1$

Answer: C

13. The number of atoms in $4.25 \mathrm{gNH}_{3}$ is approximately:
A. 1×10^{23}
B. 2×10^{23}
C. 4×10^{23}
D. 6×10^{23}

Answer: D

- Watch Video Solution

14. How many mole of magnesium phosphate $M g_{3}\left(P O_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
A. (a) 2.5×10^{-2}
B. (b) 0.02
C. (c) 3.125×10^{-2}
D. (d) 1.25×10^{-2}

Answer: C

- Watch Video Solution

15. At room temperature ratio of pressures of CH_{4} and CO_{2} kept in two separate containers of equal volume is $3: 5$. Then two containers have equal number of-
A. (a)moles
B. (b)electrons
C. (c)atoms
D. (d)molecules

Answer: C

- Watch Video Solution

16. One litre of a gas at STP weight 1.16 g it can possible be
A. (a) $\mathrm{C}_{2} \mathrm{H}_{2}$
B. (b) CO
C. (c) O_{2}
D. (d) CH_{4}

Answer: A

- Watch Video Solution

17. A gases mixture contains oxygen and nitrogen in the ratio 1:4 by weight. Therefore, the ratio of the number of molecules is:
A. (a) 1:4
B. (b) $1: 8$
C. (c) 7:32
D. (d)3:16

Answer: C

- Watch Video Solution

18. The vapour density of a gas is 11.2 . The volume occupied by
11.2 g of the gas at STP will be
B. 22.4 L
C. 1 L
D. 44.8 L

Answer: A

- Watch Video Solution

19. Under the same conditions, two gases have the same number of molecules. They must
A. (a)be noble gases
B. (b)have equal volume
C. (c)have a volume of $22.4 d \mathrm{~m}^{3}$ each
D. (d)have an equal number of atoms

- Watch Video Solution

20. The mass of a molecule of water is
A. $3 \times 10^{-26} \mathrm{~kg}$
B. $3 \times 10^{-25} \mathrm{~kg}$
C. $1.5 \times 10^{-26} \mathrm{~kg}$
D. $2.5 \times 10^{-26} \mathrm{~kg}$

Answer: A

- Watch Video Solution

21. 1.24 g P is present in 2.2 g
A. (a) $P_{4} S_{3}$
B. (b) $P_{2} S_{2}$
C. (c) $P S_{2}$
D. (d) $P_{2} S_{4}$

Answer: A

- Watch Video Solution

22. A gaseous mixture contain CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{6}$ in equimolecular proportion. The weight of 2.24 litres of this mixture at NTP is
A. (a) 4.6 g
B. (b) 2.3 g
C. (c) 1.6 g
D. (d) 23 g

- Watch Video Solution

23. Assuming fully decomposed, the volume of CO_{2} released at STP on heating 9.85 g of BaCO_{3} (Atomic mass of $\mathrm{Ba}=137$) will be
A. (a) $0.84 L$
B. (b) $2.24 L$
C. (c) $4.06 L$
D. (d) $1.12 L$

Answer: D

24. A gaseous hydrocarbon gives upon combustion, 0.72 g of water and 3.08 g of CO_{2}. The empirical formula of the hydrocarbon is
A. (a) $C_{2} H_{4}$
B. (b) $C_{3} H_{4}$
C. (c) $C_{6} H_{5}$
D. (d) $\mathrm{C}_{7} \mathrm{H}_{8}$

Answer: D

- Watch Video Solution

25. How many moles of electrons weigh one kilogram?
A. (a) 6.023×10^{23}
B. (b) $\frac{1}{9.108} \times 10^{23}$
C. (c) $\frac{6.023}{9.108} \times 10^{54}$
D. (d) $\frac{1}{9.108 \times 6.023} \times 10^{8}$

Answer: D

- Watch Video Solution

26. Which of the following has the maximum number of atoms?
A. (a) 24 g of $C(12)$
B. (b) 56 g of $F e(56)$
C. (c $) 27 \mathrm{~g}$ of o $\mathrm{Al}(27)$
D. (d) 108 g of $\mathrm{Ag}(108)$
27. If N_{A} is Avogadro's number then number of valence electrons in 4.2 g of nitride ions $\left(\mathrm{N}^{3-}\right)$
A. (a) $2.4 N_{A}$
B. (b) $4.2 N_{A}$
C. (c) $1.6 N_{A}$
D. (d) $3.2 N_{A}$

Answer: A

- Watch Video Solution

28. How many gram ions of SO_{4}^{-2} are present in 1 gram molecule of $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$?
A. (a) 2
B. (b) 3
C. (c) 1
D. (d) 4

Answer: D

- Watch Video Solution

29. The weight of 1×10^{22} molecules of $\mathrm{CuSO}, 5 \mathrm{H}_{2} \mathrm{O}$ is
A. 41.59 g
B. 415.9 g
C. 4.159 g
D. None of these

Answer: C

- Watch Video Solution

30. Arrange the following in order of increasing masses.
i. 1 molecules of oxygen ii. 1 atom of nitrogen
iii. 1 mol of water iv. 1×10^{-10} of iron
a. ii, i, iii, iv b. i, ii, iv, iii
c. ii, i, iv, iii d. i, ii, iii, iv
A. (a) IIIt IIt IIIIt IV
B. (b)IVIt IIIIt IIIt I
C. (c)IIIt IIIIt IIt IV
D. (d)IIIIt IVIt IIt II
31. The vapour density of a gas A is twice that of a gas B. If the molecular weight of B is M, the molecular weight of A will be:
A. (a)M
B. (b) 2 M
C. (c) 3 M
D. (d) $M / 2$

Answer: B

- Watch Video Solution

32. The charge in coulombs on 1 g ion of N^{3-} is
A. (a) $5.2 \times 10^{6} C$
B. (b) $2.894 \times 10^{5} \mathrm{C}$
C. (c) $6.6 \times 10^{6} C$
D. (d) $8.2 \times 10^{6} C$

Answer: B

- Watch Video Solution

33. Ratio of C_{p} and C_{v} of a gas X is 1.4 , the number of atom of the gas ' X ' present in 11.2 litres of it at NTP will be
A. (a) 6.02×10^{23}
B. (b) 1.2×10^{23}
C. (c) 3.01×10^{23}
D. (d) 2.01×10^{23}

- Watch Video Solution

34. The weight of a molecule of the compound $C_{60} H_{122}$ is
A. (a) $1.4 \times 10^{-21} g$
B. (b) $1.09 \times 10^{-21} g$
C. (c) $5.025 \times 10^{23} g$
D. (d) $16.023 \times 10^{23} g$

Answer: A

- Watch Video Solution

35. The atomic weights of two alements A and B are 40 and 80 reapectively. If x g of A contains y atoms, how many atoms are present in 2 xg of B ?
A. (a) $\frac{y}{2}$
B. (b) $\frac{y}{4}$
C. (c) y
D. (d) 2 y

Answer: C

- Watch Video Solution

36. If the density of water is $1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$ then the volume occupied by one molecule of water is approximately
A. (a) $18 \mathrm{~cm}^{3}$
B. (b) $22400 \mathrm{~cm}^{3}$
C. (c) $6.02 \times 10^{-23} \mathrm{~cm}^{3}$
D. (d) $3.0 \times 10^{-23} \mathrm{~cm}^{3}$

Answer: D

- Watch Video Solution

37. Caffeine has a molecular weight of 194. If it contains 28.9 \% by mass of nitrogen, number of atoms of nitrogen in one molecule of caffeine is
A. (a) 4
B. (b) 6
C. (c) 2
D. (d) 3

Answer: A

- Watch Video Solution

38. A 400 mg iron capsule contains 100 mg of ferrous fumarate, $(\mathrm{CHCOO})_{2} \mathrm{Fe}$. The percentage of iron present in it is approximately
A. (a) 33%
B. (b) 25%
C. (c) 14%
D. (d) 8%

Answer: D

39. Volume of a gas at STP is 1.12×10^{-7} c c. Calculate the number of molecules in it
A. (a) 3.01×10^{20}
B. (b) 3.0×10^{12}
C. (c) 3.01×10^{23}
D. (d) 3.0×10^{24}

Answer: B

- Watch Video Solution

40. The number of electrons in a mole of hydrogen molecule is
A. (a) 6.02×10^{23}
B. (b) 12.046×10^{23}
C. (c) 3.0115×10^{23}
D. (d)Indefinite

Answer: A

- Watch Video Solution

41. The number of moles of BaCO_{3} which contains 1.5 moles of oxygen atoms is
A. (a) 0.5
B. (b) 1
C. (c) 3
D. (d) 6.02×10^{23}

- Watch Video Solution

42. The total number of gram-molecules of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ in 13.5 g of sulphuryl chloride is
A. (a) 0.1
B. (b) 0.2
C. (c) 0.3
D. (d) 0.4

Answer: A
43. How many atoms are comtained in one mole of sucrose $\left(C_{12} H_{22} O_{11}\right) 1 ?$
A. (a) $45 \times 6.02 \times 10^{23}$ atoms $/$ mole
B. (b) $5 \times 6.62 \times 10^{23}$ atoms $/ \mathrm{mole}$
C. (c) $5 \times 6.02 \times 10^{23}$ atoms $/$ mole
D. (d)None of these

Answer: A

- Watch Video Solution

44. Haemoglobin contains 0.33% of iron by weight. The molecular weight of heamoglobin is approximately 67200. The number of iron atoms (At. Wt. of $\mathrm{Fe}=56$) present in one molecule of haemoglobin is
A. (a) 6
B. (b) 1
C. (c) 4
D. (d) 2

Answer: C

- Watch Video Solution

45. What is the \% of $\mathrm{H}_{2} \mathrm{O}$ in $\mathrm{Fe}(\mathrm{CNS})_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$?
A. (a) 45
B. (b) 30
C. (c) 19
D. (d) 25

Answer: C

- Watch Video Solution

46. A hydrocarbon contain 86% carbon, 488 ml of the hydrocarbon weight 1.68 g at STP. Then the hydrocarbon is an
A. (a)Alkane
B. (b)Alkene
C. (c)Alkyne
D. (d)Arene

Answer: B

47. The simplest formula of a compound containing 50% of an element X (atomic weight 10) and 50% of element Y (atomic weight 20) is:
A. (a) $X Y$
B. (b) $X_{2} Y$
C. (c) $X Y_{3}$
D. (d) $X_{2} Y_{3}$

Answer: B

- Watch Video Solution

Stoichiometry And Limiting Reagents

1. 12 g of Mg (at. Mass 24) on reacting completely with acid gives hydrogen gas, the volume of which at STP would be
A. (a) 22.4 L
B. (b) 11.2 L
C. (c) 44.8 L
D. (d) 6.1 L

Answer: B

- Watch Video Solution

2. $27 g$ of $A l$ will react completely with...... g of O_{2}
A. (a) 8 g
B. (b) 16 g
C. (c) 32 g
D. (d) 24 g

Answer: D

- Watch Video Solution

3. If 10 g of Ag reacts with 1 g of sulfur, the amount of $A g_{2} S$ formed will be [Atomic weight of $\mathrm{Ag}=108, \mathrm{~S}=32$]?
A. 7.75 g
B. 0.775 g
C. 11 g
D. 10 g

Answer: A

4. What volume of H_{2} at 273 K and 1 atm will be consumed in obtaining 21.6 g of elemental boron (atomic mass of $B=10.8$) from the reduction of BCl_{3} with H_{2}.
A. (a) 44.8 L
B. (b) 22.4 L
C. (c) 89.6 L
D. (d) 67.2 L

Answer: D

5. When $2.76 g$ of silver carbonate is strongly heated, it yields a residue weighing
A. (a) 2.16 g
B. (b) 2.48 g
C. (c) 2.64 g
D. (d) 2.32 g

Answer: A

- Watch Video Solution

6. In the reaction, $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$, when 1 mole of ammonia and 1 mole of O_{2} are made to react to completion
A. (a) 1.0 mole of $\mathrm{H}_{-}(2) \mathrm{O}$ is produced
B. (b) 1.0 mole of NO will be produced
C. (c)All the oxygen will be consumed
D. (d)All the ammonia will be consumed

Answer: C

- Watch Video Solution

7. Equal weights of X (atomic weight $=36$) and Y (atomic weight
$=24)$ are reacted to form the compound $X_{2} Y_{3}$, which of the following is/are correct
A. (a) X is the limiting reagent
B. (b) Y is the limiting reagent
C. (c)No reactant is left over and mass of $X_{2} Y_{3}$ formed is double the mass of ' X ' taken
D. (d)None of these

Answer: C

- Watch Video Solution

8. What quanitity of ammonium sulphate is necessary for the production of NH_{3} gas sufficient to neutralize a solution containing 292 g of $\mathrm{HC1}$?

$$
\left[\mathrm{HCl}=36.5,\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}=132, \mathrm{NH}_{3}=17\right]
$$

A. (a) 272 g
B. (b) 403 g
C. (c) 528 g
D. (d) 1056 g

Answer: C

- Watch Video Solution

9. When the same amount of zinc is treated separately with excess of sulphric acid and excess of sodium hydroxide, the ratio of volume of hydrogen evolved is
A. (a) $1: 1$
B. (b) $1: 2$
C. (c) 2:1
D. (d) 9:4

Answer: A
10. Calculate the weight of lime (CaO) obtained by heating 200 kg of 95% pure lime stone $\left(\mathrm{CaCO}_{3}\right)$.
A. (a) 104.4 kg
B. (b) 105.4 kg
C. (c) 212.8 kg
D. (d) 106.4 kg

Answer: D

- Watch Video Solution

11. The percentage of $P_{2} O_{5}$ in diammonium hydrogen phosphate is:
A. (a) 23.48
B. (b) 46.96
C. (c)53.78
D. (d) 71.00

Answer: C

- Watch Video Solution

12. In the reaction:
$2 A l_{(s)}+6 \mathrm{HCl}_{(a q .)} \rightarrow 2 A l_{(a q .)}^{3+}+6 \mathrm{Cl}_{(a q .)}^{-}+3 \mathrm{H}_{2(g)}$
A. (a)6 litres $\mathrm{HCl}_{(a q .)}$ is consumed for every $3 L H_{2(g)}$
produced
B. (b) 33.6 litres $H_{2(g)}$ is produced regardless of temperature and pressure for every mole Al that reacts
C. (c)67.2 litres $\mathrm{H}_{2} g$)) at STP is produced for every mole Al that reacts
D. (d) 11.2 litres $H_{2(g)}$ at STP is produced for every mole $H C I_{(\text {aq. })}$ consumed

Answer: D

- Watch Video Solution

13. If $1 \frac{1}{2}$ moles of oxygen combine with Al to form $A l_{2} \mathrm{O}_{3}$ the weight of $A l$ used in the reaction is $(A l=27)$
A. 27 g
B. 54 g
C. 49.5 g
D. 31 g

- Watch Video Solution

14. Calculate the amount of Ni needed in the Mond's process given below
$\mathrm{Ni}+4 \mathrm{CO} \rightarrow \mathrm{Ni}(\mathrm{CO})_{4}$
If CO used in this process is obtained through a process, in which 6 g of carbon is mixed with 4 gCO .
A. (a) 14.675 g
B. (b) 29 g
C. (c) 58 g
D. (d) 28 g

Answer: A

15. If 0.50 mol of BaCl_{2} is mixed with 0.20 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $B a_{3}\left(P O_{4}\right)_{2}$ that can be formed is
A. 0.70 mol
B. 0.50 mol
C. 0.20 mol
D. 0.10 mol

Answer: D

- Watch Video Solution

16. H_{2} evolved at STP on complete reaction of 27 g of aluminium with excess of aqueous NaOH would be
A. (a) 22.4 litres
B. (b) 44.8 litres
C. (c) 67.2 litres
D. (d) 33.6 litres

Answer: D

- Watch Video Solution

17. What weight of SO_{2} can be made by burning sulphur in 5.0 moles of oxygen?
A. (a) 640 grams
B. (b) 160 grams
C. (c) 80 grams
D. (d) 320 grams

Answer: D

- Watch Video Solution

18. An electric discharge is passed through a mixture containing

50 c.c. of O_{2} and $50 \mathrm{c} . \mathrm{c}$. of H_{2}. The volume of the gases formed (i) at room temperature and (ii) at $110^{\circ} \mathrm{C}$ will be
A. (a)(i) 25 c.c. (ii) 50 c.c.
B. (b)(i) 50 c.c. (ii) 75 c.c.
C. (c)(i) 25 c.c. (ii) 75 c.c.
D. (d)(i) 75 c.c. (ii) 75 c.c.

Answer: C

19. The following process has been used to obtain iodine from oil-field drines in California.

$$
\begin{equation*}
\mathrm{NaI}+\mathrm{AgNO}_{3} \rightarrow \mathrm{AgI}+\mathrm{NaNO}_{3} \tag{1}
\end{equation*}
$$

$2 \mathrm{AgI}+\mathrm{Fe} \rightarrow \mathrm{FeI}_{2}+2 \mathrm{Ag} \ldots(2)$
$2 \mathrm{FeI}_{2}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}+2 \mathrm{I}_{2} \ldots(3)$
How many grams of AgNO_{3} are required in the first step for every $254 \mathrm{kgI}_{2}$ produced in the third step?
A. (a) 340×10^{3}
B. (b) 240×10^{3}
C. (c) 440×10^{3}
D. (d) 540×10^{3}

Answer: A

20. If isobutane and n-butane are present in a gas, then how much oxygen should be required for complete combustion of 5 kg of this gas
A. (a) 17.9 kg
B. (b) 9 kg
C. (c) 27 kg
D. (d) 1.8 kg

Answer: A

- Watch Video Solution

21. 1.12 ml of a gas is produced at STP by the action of 4.12 mg of alcohole, with methyl magnesium iodide. The molecular mass of alcohol is
A. (a) 16.0
B. (b) 41.2
C. (c) 84.2
D. (d) 156.0

Answer: C

- Watch Video Solution

22. What will be the volume of CO_{2} at NTP obtained on heating 10 grams of (90% pure) limestone?
A. (a) 22.4 litres
B. (b)2.016 litres
C. (c) 2.24 litres
D. (d) 20.16 litres

- Watch Video Solution

23. In a cartain operation 358 g of TiCl_{4} is reacted with 96 g of Mg. Calculate \% yield of Ti if 32 g of Ti is actually obtained [At. Wt. Ti=48, $\mathrm{Mg}=24$][Hint: $\frac{358}{190}=1.88$]
A. (a) 35.38%
B. (b) 66.6%
C. (c) 100%
D. (d) 60%

Answer: A

24. 12 g of Mg (at. Mass 24) will react completely with acid to give
A. (a)One mole of H_{2}
B. (b) $1 / 2$ mole of H_{2}
C. (c) $2 / 3$ mole of O_{2}
D. (d)Both $1 / 2 \mathrm{~mol}$ of H_{2} and $1 / 2 \mathrm{~mol}$ of O_{2}

Answer: B

- Watch Video Solution

25. 1.5 mol of O_{2} combines with Mg to form oxide MgO . The mass of Mg (at. Mass 24) that has combined is
A. (a) 72 g
B. (b) 36 g
C. (c) 48 g
D. (d) 24 g

Answer: A

- Watch Video Solution

26. $N X$ is produced by the following step of reactions
$M+X_{2} \rightarrow M X_{2}$
$3 M X_{2}+X_{2} \rightarrow M_{3} X_{8}$
$\mathrm{M}_{3} \mathrm{X}_{8}+\mathrm{N}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NX}+\mathrm{CO}_{2}+\mathrm{M}_{3} \mathrm{O}_{4}$

How much M (metal) is consumed to produce 206 gm of NX ?
(Take at. wt of $\mathrm{M}=56, \mathrm{~N}=23, \mathrm{X}=80$]
A. (a) 42 g
B. (b) 56 g
C. (c) $\frac{14}{3} \mathrm{~g}$
D. (d) $\frac{7}{4}$ g

Answer: A

- Watch Video Solution

27. Complete combustion of 0.858 g of compound X gives 2.63 g of CO_{2} and 1.28 g of $\mathrm{H}_{2} \mathrm{O}$. The lowest molecular mass X can have
A. (a) 43 g
B. (b) 86 g
C. (c) 129 g
D. (d) 172 g

Answer: A

Mole Concepts In Solution

1. The density (in $\mathrm{g} m L^{-1}$) of a $3.60 M$ sulphuric acid solution that is $29 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (Molar mass $=98 \mathrm{gmol}^{-1}$) by mass will be
A. (a) 1.64
B. (b) 1.88
C. (c) 1.22
D. (d) 1.45

Answer: C

2. The number of molecules in 100 mL of $0.02 \mathrm{NH}_{2} \mathrm{SO}_{4}$ is:
A. (a) 6.02×10^{20}
B. (b) 6.02×10^{18}
C. (c) 6.02×10^{21}
D. (d) 6.02×10^{22}

Answer: A

- Watch Video Solution

3. The mass of oxalic acid crystals $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ required to prepare 50 mL of a 0.2 N solution is:
A. (a) 4.5 g
B. (b) 6.3 g
C. (c) 0.63 g
D. (d) 0.45 g

Answer: C

- Watch Video Solution

4. How many millilitres of $0.1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution will be required for complete reaction with a solution containing 0.125 g of pure $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
A. (a) 23.6 mL
B. (b) 25.6 mL
C. (c) 26.3 mL
D. (d) 32.6 mL

- Watch Video Solution

5. What volume of NH_{3} gas at STP would be needed to prepare 100 ml of 2.5 molal (2.5 m) ammonium hydroxide solution?
A. (a) 0.056 litre
B. (b) 0.56 litre
C. (c) 5.6 litres
D. (d) 11.2 litres

Answer: C

6. One litre of a solution contains 18.9 g of HNO_{3} and one litre of another solution contains 3.2 g of NaOH . In what volume ratio must these solution be mixed to obtain a neutral solution?
A. (a)3:8
B. (b) $8: 3$
C. (c) $15: 4$
D. (d) $4: 15$

Answer: D

- Watch Video Solution

7. In the reaction $\mathrm{CA}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$, the equivalent mass of $\mathrm{H}_{2} \mathrm{O}$ is: (M molecular mass)
A. (a)M
B. (b) $M / 2$
C. (c) M/3
D. (d) $M / 6$

Answer: A

- Watch Video Solution

8. The amount of wet NaOH containing 15% water required to prepare 70 liters of 0.5 N solution is:
A. (a) 1.65 kg
B. (b) 1.4 kg
C. (c) 16.5 kg
D. (d) 140 kg

- Watch Video Solution

9. The molarity of the solution containing 2.8% (mass/volume) solution of KOH is: (Given atomic mass of $\mathrm{K}=39$) is:
A. 0.1 M
B. 0.5 M
C. 0.2 M
D. 1 M

Answer: B

10. Which of the following relations is incorrect for solutions?
A. (a) $3 N A l_{2}\left(\mathrm{SO}_{4}\right)_{3}=0.5 \mathrm{Mal}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
B. (b) $3 \mathrm{MH}_{2} \mathrm{SO}_{4}=6 \mathrm{NH}_{2} \mathrm{SO}_{4}$
C. (c) $1 \mathrm{MH}_{3} \mathrm{PO}_{4}=1 / 3 \mathrm{NH}_{3} \mathrm{PO}_{4}$
D. (d) $1 M A l_{2}\left(\mathrm{SO}_{4}\right)_{3}=6 \mathrm{NAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Answer: C

- Watch Video Solution

11. A molal solution is one that contains 1 mol of a solute in
A. (a) 1000 g of the solvent
B. (b) one litre of the solvent
C. (c) one litre of the solution
D. (d) 22.4 litres of the solution

Answer: A

- Watch Video Solution

12. 10 mL of 1 NHCl is mixed with 20 mL of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ and 30 mL of 1 M NaOH . The resultant solution has:
A. (a) 20 meq of H^{+}ions
B. (b) 20 meq of OH^{-}
C. (c)0 meq of H^{+}or OH^{-}
D. (d) 30 millimoles of H^{+}

Answer: A

13. Which of the following increases with increase in temperature?
A. (a)Molality
B. (b)Weight fraction of solute
C. (c)Fraction of solute present in water
D. (d)Mole fraction

Answer: C

- Watch Video Solution

14. The molarity of a solution obtained by mixing 750 mL of 0.5 M HCl with 250 mL of 2 M HCl will be
A. (a) 0.875 M
B. (b) 1.00 M
C. (c) 1.75 M
D. (d) 0.0975 M

Answer: A

- Watch Video Solution

15. In which mode of expression, the concentration of a solution remains independent of temperature?
A. (a)Molarity
B. (b)Normality
C. (c)Formality
D. (d)Molality

Answer: D

- Watch Video Solution

16. 250 ml of a sodium carbonate solution contains 2.65 grams of $N a_{2} \mathrm{CO}_{3}$. If 10 ml of this solution is diluted to one litre, what is the concentration of the resultant solution (mol. Wt. of Na_{-}(a) $\left.C O_{3}=106\right)$
A. (a) 0.1 M
B. (b) 0.001 M
C. (c) 0.01 M
D. (d) $10^{-4} M$

Answer: B

17. $25 m L$ of a solution of barium hydroxide on titration with 0.1 molar solution of hydrochloric acid give a titre value of $35 m L$.

The molarity of barium hydroxide is:
A. (a) 0.28
B. (b) 0.35
C. (c) 0.07
D. (d) 0.14

Answer: C

- Watch Video Solution

18. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density
$1.84 \mathrm{~g} / \mathrm{c} \mathrm{c}$ at $35^{\circ} \mathrm{C}$ and contains 98% by weight?
A. (a) 4.18 M
B. (b) 8.14 M
C. (c) 18.4 M
D. (d) 18 M

Answer: C

- Watch Video Solution

19. Two solutions of a substance (non-electroyte) are mixed in the following manner 480 mL of $1.5 M$ of first solution with 520 mL or $1.2 M$ of second solution. The molarity of final solution is:
A. (a) 1.20 M
B. (b) 1.50 M
C. (c) 1.344 M
D. (d) 2.70 M

Answer: C

- Watch Video Solution

20. The volume strength of $1.5 \mathrm{NH}_{2} \mathrm{O}_{2}$ solution is
A. (a) 4.8
B. (b) 8.4
C. (c)3.0
D. (d) 8.0

Answer: B
21. The density of a solution prepared by dissolving 120 g of urea (mol. Mass=60 u) in 1000 g of water is $1.15 \mathrm{~g} / \mathrm{mL}$. The molarity if this solution is
A. (a) 0.50 M
B. (b) 1.78 M
C. (c) 1.02 M
D. (d) 2.05 M

Answer: D

- Watch Video Solution

22. A molar solution is one that contains one mole of a solute in
B. (b) one litre of the solvent
C. (c)one litre of the solution
D. (d) 22.4 litres of the solution

Answer: C

- Watch Video Solution

23. The normality of $0.3 M$ phosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ is
A. (a) 0.1
B. (b) 0.9
C. (c) 0.3
D. (d) 0.6
24. Mole fraction of I_{2} in $C_{6} H_{6}$ is 0.2 . Calculate molality of I_{2} in $C_{6} H_{6} .\left(M w o f C_{6} H_{6}=78 \mathrm{gmol}^{-1}\right)$
A. (a) 0.32
B. (b) 3.2
C. (c) 0.032
D. (d) 0.48

Answer: B

- Watch Video Solution

25. What is the normlity of a 1 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
A. (a) 0.5 N
B. (b) 1.0 N
C. (c) 2.0 N
D. (d) 3.0 N

Answer: D

- Watch Video Solution

26. Normality of 2 M sulphuric acid is
A. (a) 2 N
B. (b) 4 N
C. (c) $\frac{N}{2}$
D. (d) $\frac{N}{4}$

- Watch Video Solution

27. 6.02×10^{20} molecules of urea are present in 100 mL solution. The concentration of urea solution is:
A. (a) 0.1 M
B. (b) 0.01 M
C. (c) 0.02 M
D. (d) 0.001 M

Answer: B

28. The molality of a urea solution in which 0.0100 g of urea, $\left[\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right]$ is added to $0.3000 \mathrm{dm}^{3}$ of water at STP is
A. (a) $5.55 \times 10^{-4} M$
B. (b) 33.3 M
C. (c) $3.33 \times 10^{-2} M$
D. (d) 0.555 M

Answer: A

- Watch Video Solution

29. $\mathrm{H}_{3} \mathrm{PO}_{4}\left(98 \mathrm{gmol}^{-1}\right)$ is 98% by mass of solution. If the density is $1.8 \mathrm{~g} / \mathrm{ml}$, the molarity is:
B. (b) 36 M
C. (c) 54 M
D. (d) 0.18 M

Answer: A

- Watch Video Solution

30. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ of steam at this temperature is
A. (a) $6 \mathrm{~cm}^{3}$
B. (b) $60 \mathrm{~cm}^{3}$
C. (c) $0.6 \mathrm{~cm}^{3}$
D. (d) $0.06 \mathrm{~cm}^{3}$

Answer: D

- Watch Video Solution

31. Amount of oxalic acid present in a solution can be determined by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl because HCl :
A. (a) Gets oxidized by oxalic acid to chlorine
B. (b) Furnishes H^{+}ions in addition to those from oxalic acid
C. (c) Reduces permanganate to Mn^{2+}
D. (d) Oxidises oxalic acid to carbon dioxide and water

- Watch Video Solution

32. To neutralize completely $20 m L$ of $0.1 M$ aqueous solution of phosphorus $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$ acid the volume of 0.1 M aqueous KOH solution required is:
A. (a) 60 mL
B. (b) 20 mL
C. (c) 40 mL
D. (d) 10 mL

Answer: C

- Watch Video Solution

33. How many grams of a dibasic acid (Mol. Wt. $=200$) should be present in 100 ml of its aqueous solution to give decinormal strength
A. (a) 1 g
B. (b) 2 g
C. (c) 10 g
D. (d) 20 g

Answer: A

- Watch Video Solution

34. The solution of sulphuric acid contains 80% by weight
$\mathrm{H}_{2} \mathrm{SO}_{4}$. Specific gravity of this solution is 1.71 . Its normality is about
A. (a) 18.0
B. (b) 27.9
C. (c) 1.0
D. (d) 10.0

Answer: B

- Watch Video Solution

35. An aqueous solution of $6.3 g$ oxalic acid dihydrate is made up to 250 mL . The volume of 0.1 NNaOH required to completely neutralise 10 mL of this solution is
A. (a) 40 mL
B. (b) 20 mL
C. (c) 10 mL
D. (d) 4 mL

Answer: A

- Watch Video Solution

36. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.
$1 L$ of mixture $X+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $B a C l_{2} \rightarrow Z$

The number of moles of Y and Z are
A. (a) $0.01,0.01$
B. (b) $0.02,0.01$
C. (c) 0.01, 0.02
D. (d) 0.02, 0.02

- Watch Video Solution

37. Density of $2.05 M$ solution of acetic acid in water is $1.02 \mathrm{~g} / \mathrm{mL}$. The molality of same solution is:
A. (a) $0.44 \mathrm{~mol} \mathrm{~kg}^{-1}$
B. (b) $1.14 \mathrm{~mol} k^{-1}$
C. (c) $3.28 \mathrm{~mol} \mathrm{~kg}^{-1}$
D. (d) $2.28 \mathrm{~mol}_{\mathrm{kg}} \mathrm{K}^{-1}$

Answer: D

38. One litre hard water contains $12.00 \mathrm{mg} \mathrm{Mg}{ }^{2+}$ millieqivalent of washing soda required to remove its hardness is
A. (a) 1
B. (b) 12.15
C. (c) 1×10^{-3}
D. (d) 12.5×10^{-3}

Answer: A

- Watch Video Solution

39. How much of NaOH is reuired to neutralise $1500 \mathrm{~cm}^{3}$ of 0.1 N $\mathrm{HCl}(\mathrm{Na}=23)$?
A. (a) 40 g
B. (b) 4 g
C. (c) 6 g
D. (d) 60 g

Answer: C

- Watch Video Solution

40. How much water should be added to 200 c.c of seminormal solution of NaOH to make it exactly decinormal?
A. (a)200 c c
B. (b) 400 cc
C. (c) 800 c c
D. (d) 600 cc

Answer: C

- Watch Video Solution

41. 0.16 g of dibasic acid required 25 ml of decinormal NaOH solution for complete neutralisation. The molecular weight of the acid will be
A. (a) 32
B. (b) 64
C. (c) 128
D. (d) 256

Answer: C

42. To neutralise 20 ml of $\mathrm{M} / 10$ sodium hydroxide, the volume of $\mathrm{M} / 20$ hydrochloric acid required is
A. (a) 10 ml
B. (b) 15 ml
C. (c) 20 ml
D. (d) 40 ml

Answer: D

- Watch Video Solution

43. Hydrolic acid solution A and B have concentration of 0.5 N and 0.1 N respectively. The volume of solutions A and B required to make 2 litres of 0.2 N hydrochloric are
A. (a) $0.5 \operatorname{Lof} A+1.5 \operatorname{Lof} B$
B. (b) $1.5 \operatorname{Lof} A+0.5 \operatorname{Lof} B$
C. (c) $1.0 \operatorname{Lof} A+1.0 \operatorname{LofB}$
D. (d) $0.75 \operatorname{Lof} A+1.25 \operatorname{Lof} B$

Answer: A

- Watch Video Solution

44. $5 m L$ of $N-H C l, 20 m L$ of $N / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ and $30 m L$ of $\mathrm{N} / 3$ HNO_{3} are mixed together and the volume is made to $1 L$. The normality of the resulting solution is
A. (a) $\mathrm{N} / 5$
B. (b) $\mathrm{N} / 10$
C. (c) $\mathrm{N} / 20$
D. (d) $\mathrm{N} / 40$

Answer: D

- Watch Video Solution

45. 30 ml of acid solution is netralized by 15 ml of a 0.2 N base.

The srength of acid solution is
A. (a) 0.1 N
B. (b) 0.15 N
C. (c) 0.3 N
D. (d) 0.4 N

Answer: A

46. How many ml of 1 (M) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required neutralise 10 ml of 1 (M) NaOH solution?
A. (a) 2.5
B. (b) 5.0
C. (c) 10.0
D. (d) 20.0

Answer: B

- Watch Video Solution

47. The amount of water that should be added to 500 ml of 0.5 N solution of NaOH to give a concentration of 10 mg per ml is
B. (b) 200
C. (c) 250
D. (d) 500

Answer: D

- Watch Video Solution

Redox Titration And Stoichiometry In Various Types Of Reaction

1. In the reaction $2 N a_{a} S_{2} O_{3}+I_{2} \rightarrow N a_{2} S_{4} O_{6}+2 N a I$, the equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mol} . \mathrm{Wt} .=M)$ is equal to
A. (a) M
B. (b) $M / 2$
C. (c) $M / 3$
D. (d) $M / 4$

Answer: A

- Watch Video Solution

2. The equivalent weight of MnSO_{4} is half its molecular weight when it is converted to
A. (a) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
B. (b) MnO_{2}
C. (c) MnO_{4}^{-}
D. (d) MnO_{4}^{2-}

Answer: B

3. When HNO_{3} is converted into NH_{3}, the equivalent weight of HNO_{3} will be:
A. (a) $M / 2$
B. (b) $M / 1$
C. (c) $M / 6$
D. (d) $M / 8$

Answer: D

- Watch Video Solution

4. In the conversion $\mathrm{NH}_{2} \mathrm{OH} \rightarrow \mathrm{N}_{2} \mathrm{O}$, the equivalent weight of $\mathrm{NH}_{2} \mathrm{OH}$ will be:
A. (a) $M / 4$
B. (b) $M / 2$
C. (c) $M / 5$
D. (d) $M / 1$

Answer: B

- Watch Video Solution

5. The mass of potassium dichromate crystal required to oxidise $750 \mathrm{~cm}^{3}$ of 0.6 M Mohr's salt solution is (molarmass $\left.=392\right)$
A. (a) $0.49 g$
B. (b) $0.45 g$
C. (c) 22.05 g
D. (d) $2.2 g$

Answer: C

- Watch Video Solution

6. When potassium permanganate is titrated against ferrous ammonoum sulphate, the equivalent weight of potassium permanganent is
A. (a)Molecular weight / 10
B. (b)Molecular weight / 5
C. (c)Molecular weight / 2
D. (d)Molecular weight

Answer: B

7. A substance which participates readily in both acid-base and oxidation-reduction reactions is:
A. (a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. (b) KOH
C. (c) KMnO_{4}
D. (d) $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: D

- Watch Video Solution

8. The number of moles of KMnO_{4} that will be needed to react with 1 mol of sulphite ion in acidic solution is
A. (a) $\frac{2}{5}$
B. (b) $\frac{3}{5}$
C. (c) $\frac{4}{5}$
D. (d) 1

Answer: A

- Watch Video Solution

9. $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as both oxidising and reducing agent. As oxidising agent, its product is $\mathrm{H}_{2} \mathrm{O}$ but as redusing agent, its product is
O_{2}. Volume strength has great significance for chemical reactions. The strength of ' 10 V means 1 volume (or litre) of $\mathrm{H}_{2} \mathrm{O}_{2}$ on decomposition $\left(\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2}\right)$ gives 10 volumes (or litre) of oxygen at NTP.
$15 \mathrm{gBa}\left(\mathrm{MnO}_{4}\right)_{2}$ sample containing inert impurity is completely reacting with 100 mL of ' $11.2 \mathrm{~V} \mathrm{H}_{2} \mathrm{O}_{2}$, then what will be the $\%$
purity of $\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}$ in the sample: (Atomic mass:

$$
B a=137, M n=55)
$$

A. (a) 5%
B. (b) 10%
C. (c) 50%
D. (d)None of these

Answer: C

- Watch Video Solution

10. The valency factor of I_{2} when, (i) it is formed by the reaction of potassium iodide and potassium iodate in acid medium and
(ii) when it reacts with hypo, are respectively:
A. (a) 2,2
B. (b) $\frac{5}{3}, 2$
C. (c) $\frac{3}{5}, 2$
D. (d) 5,2

Answer: B

- Watch Video Solution

11. In the neutralization of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ using $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ by idometry, the equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
A. (a)molecular weight / 2
B. (b)molecular weight / 6
C. (c)molecular weight / 3
D. (d)same as molecular weight

- Watch Video Solution

12. When N_{2} is converted into NH_{3}, the equivalent weight of nitrogen will be:
A. (a) 1.67
B. (b) 2.67
C. (c) 3.67
D. (d) 4.67

Answer: D

13. Equivalent weight of KMnO_{4} acting as an oxidant in acidic medium is
A. The same as its molecular weight
B. (b)Half of its molecular weight
C. (c)One-third of its molecular weight
D. (d)One-fifth of its molecular weight

Answer: D

- Watch Video Solution

14.

the
reaction:
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+4 \mathrm{Cl}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+8 \mathrm{HCl}$, the equivalent weight of $N a_{2} S_{2} O_{3}$ will be: ($\mathrm{M}=$ molecular weight of $\left.N a_{2} S_{2} O_{3}\right)$
A. (a) $M / 4$
B. (b) $M / 8$
C. (c) $M / 1$
D. (d) $M / 2$

Answer: B

- Watch Video Solution

15. In the reaction
$2 \mathrm{CuSO}+4 \mathrm{KI} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{I}_{2}+\mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}$ the equivalent weight of CuSO 4 will be:
A. (a) 79.75
B. (b) 159.5
C. (c) 329
D. (d) None of these

Answer: B

- Watch Video Solution

16. KMnO_{4} react with oxalic acid according to the equation,
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$, here 20 ml of $0.1 \mathrm{MKMnO}_{4}$ is equivalemt to
A. (a) 20 ml of0. $5 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
B. (b) 50 ml of0. $1 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
C. (c) 50 ml of $0.5 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
D. (d) 20 ml of0. $1 \mathrm{MH}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$

Answer: B

17. $28 \mathrm{NO}_{3}^{-}+3 \mathrm{As}_{2} \mathrm{~S}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{AsO}_{4}^{3-}+28 \mathrm{NO}+9 \mathrm{SO}_{4}^{2-}+\mathrm{H}^{+}$ What will be the equivalent mass of As_(2)S_(3)' in the above reaction?
A. (a) $\frac{M}{2}$
B. (b) $\frac{M}{4}$
C. (c) $\frac{M}{24}$
D. (d) $\frac{M}{28}$

Answer: D

18. In order to prepare one litre normal solution of KMnO_{4}, how many grams of KMnO_{4} are required if the solution is used in acidic medium for oxidation
A. (a) $158 g$
B. (b) $31.6 g$
C. (c) 790 g
D. (d) $62 g$

Answer: B

- Watch Video Solution

19. HNO_{3} oxidies NH_{4}^{+}ions to nitrogen and itself gets reduced to NO_{2}. The moles of HNO_{3} required by 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is:
A. (a) 4
B. (b) 5
C. (c) 6
D. (d) 2

Answer: C

- Watch Video Solution

20. What is the concentration of nitrate ions if equal volumes of
$0.1 \mathrm{MAgNO}_{3}$ and 0.1 MNaCl are mixed together?
A. (a) $0.1 N$
B. (b) $0.2 M$
C. (c) 0.05 M
D. (d) $0.25 M$

Answer: C

- Watch Video Solution

21. How many litres of $C l_{2}$ at STP will be liberated by the oxidation of NaCl with $10 \mathrm{gKMnO} \mathrm{O}_{4}$ in acidic medium: (Atomic weight: $M n=55$ and $K=39$)
A. (a) 3.54
B. (b) 7.08
C. (c) 1.77
D. (d) None of these

Answer: A

22. A solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH requires 300 ml of 0.1 NHCl using phenolphthalein as an indicator. Methyl orange is then added to the above titrated solution when a further 25 ml of 0.2 NHCl is required. The amount of NaOH present in solution is $\left(\mathrm{NaOH}=40, \mathrm{Na}_{2} \mathrm{CO}_{3}=106\right)$
A. (a) $0.6 g$
B. (b) $1.0 g$
C. (c) $1.5 g$
D. (d) $2.0 g$

Answer: B

- Watch Video Solution

23. Which of the following cannot give iodometric titrations?
A. (a) $F e^{3+}$
B. (b) $C u^{3+}$
C. (c) $P b^{2+}$
D. (d) $A g^{+}$

Answer: C

- Watch Video Solution

24. KMnO_{4} reacts with ferrous ammonium sulphate according to the equation
$\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$, here
10 ml of $0.1 \mathrm{MKMnO} \mathrm{M}_{4}$ is equivalent to
A. (a) 20 ml of $0.1 \mathrm{MFeSO}_{4}$
B. (b) 30 ml of0.1 MFeSO_{4}
C. (c) 40 ml of $0.1 \mathrm{MFeSO}_{4}$
D. (d) 50 ml of $0.1 \mathrm{MFeSO}_{4}$

Answer: D

- Watch Video Solution

25. Calculate the mass of BaCO_{3} produced when excess CO_{2} is bubbled through a solution containing 0.205 moles of $\mathrm{Ba}(\mathrm{OH})_{2}$
A. (a) $81 g$
B. (b) $40.5 g$
C. (c) $20.25 g$
D. (d) $162 g$

- Watch Video Solution

26. The number of moles of KMnO_{4} required to oxidise 1 mol of
$\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ in acidic medium is
A. (a) 0.6
B. (b) 0.167
C. (c) 0.2
D. (d) 0.4

Answer: A
27. The ratio of amounts of $\mathrm{H}_{2} \mathrm{~S}$ needed to precipitate all the metal ions from 100 ml of $1 \mathrm{MAgNO}_{3}$ and 100 ml of 1 MCuSO 4 will be
A. (a) $1: 1$
B. (b) $1: 2$
C. (c) $2: 1$
D. (d) None of these

Answer: B

- Watch Video Solution

28. 100 ml of 0.1 N hypo decolourised iodine by the addition of x g of crystalline copper sulphate to excess of KI. The value of ' x ' is (molecular wt. of $\mathrm{CuSO} 4.5 \mathrm{H}_{2} \mathrm{Ois} 250$)
A. (a) $5.0 g$
B. (b) $1.25 g$
C. (c) $2.5 g$
D. (d) $4 g$

Answer: C

- Watch Video Solution

29. How many grams of caustic potash required to completely neutralise $12.6 \mathrm{gHNO} \mathrm{g}_{3}$?
A. (a) 22.4 KOH
B. (b) 1.01 KOH
C. (c) 6.02 KOH
D. (d) 11.2 KOH

- Watch Video Solution

30. What should be the weight and moles of AgCl precipitate obtained on adding 500 ml of 0.20 MHCl in 30 g of AgNO solution? $\left(a g N O_{3}=170\right)$
A. (a) $14.35 g$
B. (b) $15 g$
C. (c) $18 g$
D. (d) $19 g$

Answer: A
31. A solution of $10 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{FeSO}_{4}$ war titrated with KMnO_{4} solution in acidic medium. The amount of KMNO_{4} used will be
A. (a) 5 ml of $0.1 M$
B. (b) 10 ml of 1.1 M
C. (c) 10 ml of 0.5 M
D. (d) 10 ml of 0.02 M

Answer: D

- Watch Video Solution

32. $100 \mathrm{gCaCO} \mathrm{C}_{3}$ reacts with 1 litre 1 NHCl . On completion of reaction how much weight of CO_{2} will be obtain
B. (b) $11 g$
C. (c) $22 g$
D. (d) $33 g$

Answer: C

- Watch Video Solution

33. 3.92 g of ferrous ammonium sulphate crystals are dissolved in 100 mL of water, 20 mL of this solution requires 18 mL of KMnO_{4} during titration for complete oxidation. The weight of $K \mathrm{MnO}_{4}$ present in one litre of the solution is
A. $3.476 g$
B. $12.38 g$
C. (c) $34.76 g$

Answer: A

- Watch Video Solution

34. A 100 ml solution of 0.1 NHCl was titrated with 0.2 ? NNaOH solution. The titration. The remaining titration war completed by adding 0.25 NKOH solution. The volume of KOH required for completing the titration is
A. (a) 70 ml
B. (b) $32 m l$
C. (c) 35 ml
D. (d) 16 ml

Answer: D

Watch Video Solution

Significant Figures Rounding Off And Dimentional Analysis

1. One fermi is
A. (a) $10^{-13} m$
B. (b) $10^{-15} \mathrm{~m}$
C. (c) $10^{-10} m$
D. (d) $10^{-12} m$

Answer: A

- Watch Video Solution

2. A picometre is written as
A. (a) $10^{-9} m$
B. (b) $10^{-10} \mathrm{~m}$
C. (c) $10^{-11} m$
D. (d) $10^{-12} m$

Answer: D

- Watch Video Solution

3. One atmosphere is equal to
A. (a) $101.325 K P a$
B. (b) $1013.25 K p a$
C. (b) $10^{5} \mathrm{Nm}$
D. (d) None of these

- Watch Video Solution

4. Dimensions of pressure are same as that of
A. (a)Energy
B. (b)Force
C. (c)Energy per unit volume
D. (d)Force per unit volume

Answer: C

- Watch Video Solution

5. The prefix 10^{18} is
A. (a)Giga
B. (b)Nano
C. (c)Mega
D. (d)Exa

Answer: D

- Watch Video Solution

6. Given the number: $161 \mathrm{~cm}, 0.161 \mathrm{~cm}, 0.0161 \mathrm{~cm}$. The number of significant figures for the three numbers are
A. (a)3, 4 and 5 respectively
B. (b)3, 3 and 3 respectively
C. (c) 3,3 and 4 respectively
D. (d) 3, 4 and 4 respectively

- Watch Video Solution

7. Significant figures in 0.00051 are
A. (a) 5
B. (b) 3
C. (c) 2
D. (d) 4

Answer: C

8. In the final answer of the expression $\frac{(29.2-20.2)\left(1.79 \times 10^{5}\right)}{1.37}$. The number of significant figures is
A. (a) 1
B. (b) 2
C. (c) 3
D. (d) 4

Answer: B

- Watch Video Solution

9. $81.4 g$ sample of enthyl ethyl alcohol contains $0.002 g$ of water.

The amount of pure ethyl alcohol to the proper number of significant figures is
A. (a) $81.398 g$
B. (b) $71.40 g$
C. (c) $91.4 g$
D. (d) $81 g$

Answer: A

- Watch Video Solution

10. The unit $J P a^{-1}$ is equivalent to
A. (a) m^{3}
B. (b) cm^{3}
C. (c) $d m^{3}$
D. (d)None of these

- Watch Video Solution

11. From the following masses, the one which is expressed nearest to the milligram is
A. (a) $16 g$
B. (b) $16.4 g$
C. (c) $16.428 g$
D. (d) $16.4284 g$

Answer: C

12. The number of significant figures in 6.02×10^{23} is
A. (a) 23
B. (b) 3
C. (c) 4
D. (d) 26

Answer: B

- Watch Video Solution

13. The prefix zepto stands for
A. (a) 10^{9}
B. (b) 10^{-12}
C. (c) 10^{-15}
D. (d) 10^{-21}

Answer: D

- Watch Video Solution

14. The significant figures in 3400 are
A. (a) 2
B. (b) 5
C. (c) 6
D. (d) 4

Answer: A

Watch Video Solution
15. The number of significant figures in 6.0023 are
A. (a) 5
B. (b) 4
C. (c) 3
D. (d) 1

Answer: A

D Watch Video Solution

16. Given $P=0.0030 m, Q=2.40 m, R=3000 m$, Significant figures in P, Q and R are respectively
A. (a) $2,2,1$
B. (b) $1,3,4$
C. (c) $4,2,1$
D. (d) $4,2,3$

Answer: B

- Watch Video Solution

17. The number of significant figures in 60.0001 is
A. (a) 5
B. (b) 6
C. (c) 3
D. (d) 2

Answer: B
18. A sample was weighted using two different balances. The results were (i) $3.929 g$ and (ii) 4.0 g . How would the weight of the sample be reported?
A. (a) $3.929 g$
B. (b) $3 g$
C. (c) $3.9 g$
D. (d) $3.93 g$

Answer: D

D View Text Solution

Section B Assertion Reasoning

1. Assertion: Volume of a gas is inversely proportional to the number of moles of a gas.

Reason: The ratio by volume of gaseous reactants and products is in agreement with their molar ratio.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: D

2. Assertion: Molecular weight of oxygen is 16.

Reason: Atomic weight of oxygen is 16 .
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: D

- Watch Video Solution

3. Assertion: Atoms can neither be created nor destroyed.

Reason: Under similar condition of temperature and pressure,
equal volume of gases does not contain equal number of atoms.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: C

- Watch Video Solution

4. Assertion: Equivalent mass of ozone in the change $O_{3} \rightarrow O_{2} i s 8$.

Reason: 1 moles of O_{3} on decomposition gives $3 / 2$ mole of O_{2}.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

- View Text Solution

5. Assertion: Equivalent mass of $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{Na}_{3} \mathrm{BO}_{3}$ are $\mathrm{M} / 3$

Reason: Equivalent mass of $H_{3} B O_{3}$ is $M / 1$ and $N a_{3} B O_{3}$ is $M / 3$
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: D

- Watch Video Solution

6. Assertion: 1 equivalent of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 1 equivalent of H, S and O each

Reason: A species contains same number of equivalents of its components.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

7. Assertion: Acidimetry and alkalimetry are the terms used in volumetric analysis.

Reason: The reactant left the chemical reaction is called limiting
reagent.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: C

- Watch Video Solution

8. Assertion: NaNO_{3} has no definite molecule.

Reason: Its formula mass is 85 .
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

- Watch Video Solution

9. Assertion: 31.26 mL of 0.165 M solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is exactly neutralised by $25 m L$ of citric acid $C_{6} H_{8} O_{7}$ of molarity 0.138 .

Reason: The acid is tribasic in nature.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

10. Statement $H_{3} B O_{3}$ is monobasic Lewis acid but its salt $\mathrm{Na}_{3} \mathrm{BO}_{3}$ exist.

Explanation $\mathrm{H}_{3} \mathrm{BO}_{3}$ reacts with NaOH to give $\mathrm{Na}_{3} \mathrm{BO}_{3}$.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: C

- Watch Video Solution

11. Assertion: In the titration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with HCl using methyl orange indicator, the volume of acid required is twice that of the acid required using phenolphthalein as indicaton.

Reason: Two moles of HCl are required for the complete neutralisation of one mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

- Watch Video Solution

12. Assertion (A): pure water obtained from different states of india always contains hydrogen and oxygen in the ration of 1:8 by mass.

Reason (R): Total mass of reactants and products during chemical change is always the same.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

- Watch Video Solution

13. Statement $1 \mathrm{~mole}_{3}=\mathrm{Nmolecule} \mathrm{O}_{3}=3 \mathrm{~N}$ atoms of
$O=48 g$
Explanation A mole is the amount of matter that contains as many as objects as the amount of atoms exactly in $12 g C^{12}$.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

14. Assertion (A): The standard unit of expressing the mass of atom is amu.

Reason (R): amu is also called as avogram.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

- Watch Video Solution

15. Statement Equivalent weight of a species can be written as molecular weight of species divided by valence factor.

Explanation Valence factor represents valence in element, acidity in bases, basicity in acids and total charge on cation or anion in an ionic compound.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

16. Statement $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid and its salt $\mathrm{Na}_{2} \mathrm{PO}_{3}$ does not exist.

Explanation Being dibasic nature, only two H are replaceable.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

17. Statement Addition of water to a solution containing solute and solvent changes its normality or molarity only.

Explanation The milli-equivalent and milli-moles of solutes are not changed on dilution.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

18. Assertion: The weight percentage of a compound A in a solution is given by

$$
\% \text { of } A=\frac{\text { Mass A }}{\text { Total mass of solution }} \times 100
$$

Reason: The mole fraction of a component A is given by, Mole
fraction of A

$$
=\frac{\text { No. of moles of A }}{\text { Total no. of moles of all components }}
$$

A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: B

D Watch Video Solution

19. Assertion: The ratio of the mass of 100 billion atoms of magnesium to the mass of 100 billion atoms of lead can be
expressed as $\frac{27}{207}$.
Reason: Atomic weight are relative masses.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

20. Assertion: The average mass of one Mg atom is $24.305 a \mu$, which is not actual mass of one Mg atom.

Reason: Three isotopes, $24 M g, 25 M g$ and $26 M g$, of Mg are found in nature.
A. (a)lf both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

21. Assertion: A molecule of butane, $C_{4} H_{10}$ has a mass of $58.12 a \mu$

Reason: One mole of butane contains 6.022×10^{23} molecules and has a mass of $58.12 g$.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

Watch Video Solution

22. Assertion: Both $12 g$. of carbon and $27 g$. of aluminium will have 6.02×10^{23} atoms.

Reason: Gram atomic mass of an element contains Avogadro's number of atoms.
A. (a)lf both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

23. Assertion: The molality and molarity of very dilute aqueous solutions differ very little.

Reason: The density of water is about $1.0 \mathrm{gcm}^{-3}$ at room temperature.
A. (a)lf both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

24. Assertion: Laboratory reagents are usually made up to a specific molarity rather than a given molality.

Reason: The volume of a liquid is more easily measured than its mass.
A. (a)lf both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

25. Assertion: Molality and mole fraction concentration units do
not change with temperature.

Reason: These units are not defined in terms of any volume.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

26. Assertion: A one mola solution prepared at $20^{\circ} \mathrm{C}$ will retain the same molality at $100^{\circ} \mathrm{C}$, provided there is no loss of solute or
solvent on heating.
Reason: Molality is independent of temperature.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: A

- Watch Video Solution

Aipmt Neet Questions

1. Molarity of liquid HCl with density equal to $1.17 \mathrm{~g} / \mathrm{mL}$ is:
A. (a) 36.5
B. (b) 18.25
C. (c) 32.05
D. (d) 4.65

Answer: C

- Watch Video Solution

2. Specific volume of cylindrical virus particle is $6.02 \times 10^{-2} c c / g$ whose radius and length $7 \AA$ and $10 \AA$ respectively. If $N_{A}=6.02 \times 10^{23}$, find molecular weight of virus:
A. (a) $3.08 \times 10^{3} \mathrm{~kg} / \mathrm{mol}$
B. (b) $15.4 \mathrm{~kg} / \mathrm{mol}$
C. (c) $1.54 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$
D. (d) $3.08 \times 10^{4} \mathrm{~kg} / \mathrm{mol}$

Answer: B

- Watch Video Solution

3. Percentage of Se in peroxidase anhydrase enzyme is 0.5% by weight (at. Wt. $=78.4$), then minimum molecular weight of peroxidase anhydrase enzyme is:
A. (a) 1.568×10^{3}
B. (b) 15.68
C. (c) 1.568×10^{4}
D. (d) 2.136×10^{4}

Answer: C

- Watch Video Solution

4. Which has maximum number of molecules?
A. (a) $7 g N_{2}$
B. (b) $2 g H_{2}$
C. (c) $16 \mathrm{gNO} \mathrm{N}_{2}$
D. (d) $16 g O_{2}$

Answer: B

- Watch Video Solution

5. In Haber process 30 litre of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end ?
A. (a)20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
B. (b)20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen
C. (c)10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen
D. (d)20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen

Answer: C

- Watch Video Solution

6. The maximum number of molecules is present in :
A. (a) 15 L of H_{2} gas at STP
B. (b) 5 L of N_{2} gas at STP
C. (c) 0.5 g of $\mathrm{H}_{2} \mathrm{gas}$
D. (d) 10 g of $\mathrm{O}_{2} \mathrm{gas}$

Answer: A

- Watch Video Solution

7. The mole fraction of the solute in one molal aqueous solution is:
A. (a) 1.7700
B. (b) 0.1770
C. (c) 0.0177
D. (d) 0.0344

Answer: C

- Watch Video Solution

8. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is (Atomic mass: $A l=27$):
A. (a) 90 kg
B. (b) 540 kg
C. (c) 270 kg
D. (d) 180 kg

Answer: A

9. The number of moles of KMnO_{4} reduced by 1 mol of $K I$ in alkaline medium is
A. (a)one
B. (b)two
C. (c)five
D. (d)one-fifth

Answer: a

- Watch Video Solution

10. The ionic stregth of Na^{+}on mixing 100 mL 0.1 NaCl and $100 \mathrm{mLO.1} \mathrm{NNa}_{2} \mathrm{SO}_{4}$ is:
A. (a) 0.2
B. (b) 0.1
C. (c) 0.3
D. (d) 0.075

Answer: d

- Watch Video Solution

11. Concentrated aqueous solution of sulphuric acid is 98% by mass and has density of $1.80 \mathrm{~g} \mathrm{~mL}^{-1}$. What is the volume of acid required to make one liter $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution ?
A. (a) $16.65 m L$
B. (b) 22.20 mL
C. (c) $5.55 m L$
D. (d) 11.10 mL

- Watch Video Solution

12. An element X has the following isotopic composition:
${ }^{200} X: 90 \%{ }^{199} X: 8.0 \%{ }^{202} X: 2.0 \%$
The weight average atomic mass of the naturally occurring element X is closest to
A. 201 amu
B. 202 amu
C. 199 amu
D. 200 amu

Answer: D

13. The number of moles of KMnO_{4} that will be needed to react with 1 mol of sulphite ion in acidic solution is
A. (a) $4 / 5$
B. (b) $3 / 5$
C. (c) 1
D. (d) $2 / 5$

Answer: d

- Watch Video Solution

14. What volume of oxygen gas $\left(O_{2}\right)$ measured at $0^{\circ} C$ and 1 atm is needed to burn completely $1 L$ of propane gas $\left(C_{3} H_{8}\right)$ measured under the same condition?
A. (a) $6 L$
B. (b) $5 L$
C. (c) $10 L$
D. (d) $7 L$

Answer: b

- Watch Video Solution

15. How many moles of lead (II) choride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
A. (a) 0.333
B. (b) 0.011
C. (c) 0.029
D. (d) 0.044

Answer: C

- Watch Video Solution

16. If the density of water is $1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$ then the volume occupied by one molecule of water is approximately
A. (a) $6.023 \times 10^{-3} \mathrm{~cm}^{3}$
B. (b) $3.0 \times 10^{-3} \mathrm{~cm}^{3}$
C. (c) $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
D. (d) $9.0 \times 10^{-23} \mathrm{~cm}^{3}$

Answer: B

17. The number of mole of KMnO_{4} that will be needed to react completely with one mole of ferrous oxalate in acidic solution is:
A. (a) 0.6 mole
B. (b) 0.4 mole
C. (c) 7.5 mole
D. (d) 0.2 mole

Answer: a

- Watch Video Solution

18. 10 g of hygrogen and 64 g of oxygen were filled in a steel vessel and exploded. Amount of water produced in this reaxtion will be:
A. (a) 1 mole
B. (b) 2 moles
C. (c)3 moles
D. (d) 4 moles

Answer: D

- Watch Video Solution

19. What is the $\left[\mathrm{OH}^{-}\right]$in the final solution prepared by mixing 20.0 mL of 0.050 MHCl with 30.0 mL of $0.10 \mathrm{MBa}(\mathrm{OH})_{2}$?
A. (a) $0.12 M$
B. (b) 0.10 M
C. (c) $0.40 M$
D. (d) 0.0050 M

- Watch Video Solution

20. 25.3 g sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, was dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of Na^{+}and carbonate ions are respectively:
A. (a) $0.9555 M$ and $1.910 M$
B. (b) $1.910 M$ and $0.955 M$
C. (c) $1.90 M$ and $1.090 M$
D. (d) $0.477 M$ and $0.477 M$

Answer: b
21. The number of atoms in 0.1 mol of a triatomic gas is:
A. (a) 6.026×10^{23}
B. (b) 1.806×10^{23}
C. (c) 3.600×10^{23}
D. (d) 1.80×10^{23}

Answer: B

- Watch Video Solution

22. How many grams of concentrated nitric acid solution should be used to prepare 250 mL of $2.0 \mathrm{MHNO}_{3}$? The concentrated acid is $70 \% \mathrm{HNO}_{3}$:
A. (a) 90.0 g conc. HNO_{3}
B. (b) 70.0 g conc. HNO_{3}
C. (c) 54.0 g conc. HNO_{3}
D. (d) 45.0 g conc. HNO_{3}

Answer: D

- Watch Video Solution

23. 6.02×10^{20} molecules of urea are present in 100 mL solution.

The concentration of urea solution is:
A. (a) $0.01 M$
B. (b) $0.001 M$
C. (c) $0.1 M$
D. (d) $0.02 M$

- Watch Video Solution

24. In an experiment it is shown that 10 mL of 0.05 M solution of chloride required 10 mL of 0.1 M solution of AgNO_{3}, which of the following will be the formula of the chloride (X stands for the symbol of the element other than chlorine):
A. (a) $X_{2} \mathrm{Cl}$
B. (b) $\mathrm{X}_{2} \mathrm{Cl}_{2}$
C. (c) $X C l_{2}$
D. (d) $X C l_{4}$

Answer: c

25. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temperature $27^{\circ} C$ in identical conditions. The ratio of the volume of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$: methane would be
A. (a) $8: 16: 1$
B. (b) $16: 8: 1$
C. (c) $16: 1: 2$
D. (d) $8: 1: 2$

Answer: c

- Watch Video Solution

26. When $22.4 L$ of $H_{2}(g)$ is mixed with 11.2 of $\mathrm{Cl}_{2}(\mathrm{~g})$, each at STP, the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to
A. (a)1 mole of $\mathrm{HCl}(\mathrm{g})$
B. (b)2 moles of $\mathrm{HCl}(\mathrm{g})$
C. (c) 0.5 mole of $\mathrm{HCl}(\mathrm{g})$
D. (d) 1.5 mole of $\mathrm{HCl}(\mathrm{g})$

Answer: a

- Watch Video Solution

27. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} O_{2}$ in a closed vessel.

Which reactant is left in excess and how much?
A. (a) $M g, 0.16 g$
B. (b) $O_{2}, 0.16 g$
C. (c) $M g, 0.44 g$
D. (d) $O_{2}, 0.28 g$

Answer: A

- Watch Video Solution

28. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(w / w)$. What is the molar ratio of the two gases in the mixture?
A. (a) $16: 1$
B. (b) $2: 1$
C. (c) $1: 4$
D. (d) $4: 1$

- Watch Video Solution

29. The number of water molecules is maximum in
A. (a) 18 grams of water
B. (b) 18 moles of water
C. (c) 18 molecules of water
D. (d) 1.8 grams of water

Answer: B

30. If Avogadro number N_{A} is changed from $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to $6.022 \times 10^{20} \mathrm{~mol}^{-1}$, this would change:
A. (a)the ratio of chemical species to each other in a balance equation
B. (b)the ratio of elements to each other in a compound
C. (c)the definition of mass in unit of gram
D. (d)the mass of one mole of grams

Answer: D

- Watch Video Solution

31. 20.0 g of a magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g magnesium oxide. What
be the percentage purity of magnsesium carbonate in the sample?
A. (a) 60
B. (b) 84
C. (c) 75
D. (d) 96

Answer: a

- Watch Video Solution

32. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of $5.8 \% \mathrm{NaCl}$ solution?
A. (a) $7 g$
B. (b) $14 g$
C. (c) $28 g$
D. (d) 3.5 g

Answer: a

- Watch Video Solution

33. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
A. (a) 1.4
B. (b) 3.0
C. (c) 2.8
D. (d) 4.4

Answer: a

- Watch Video Solution

34. In which case is the number of molecules of water maximum?
A. (a) 18 mL of water
B. (b) 0.18 g of water
C. (c) 0.00224 L of water vapour at 1 atm and 273 K
D. (d) $10^{-3} \mathrm{~mol}$ of water

Answer: D

Aims Questions

1. Which of the following equation does not obey the law of conservation of mass?
A. (a) $4 \mathrm{H}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
B. (b) $\mathrm{H}_{2}+\mathrm{O} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. (c) $2 \mathrm{H}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
D. (d) $\operatorname{Both}(b)$ and (c)

Answer: a

D Watch Video Solution

2. The specific heat of a metal os 0.16 its approximate atomic weight would be
A. (a) 40
B. (b) 16
C. (c) 32
D. (d) 64

Answer: a

- Watch Video Solution

3. Percentage of Se in peroxidase anhydrase enzyme is 0.5% by weight (at. Wt. $=78.4$), then minimum molecular weight of peroxidase anhydrase enzyme is:
A. (a) 1.576×10^{4}
B. (b) 1.576×10^{3}
C. (c) 15.76
D. (d) 2.136×10^{4}

Answer: c

- Watch Video Solution

4. What is the molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that has a density 1.84 $\mathrm{g} / \mathrm{c} \mathrm{c}$ at $35^{\circ} \mathrm{C}$ and contains 98% by weight?
A. (a) $4.18 M$
B. (b) $8.14 M$
C. (c) $18.4 M$
D. (d) $18 M$

Answer: C

5. 2.5 g of the carbonate of a metal war treated with 100 ml of
$1 \mathrm{NH}_{2} \mathrm{SO}_{4}$. After the completion of the reaction, the solution was boiled off to expel CO_{2} and was then titrated against 1 N NaOH solution. The volume of alkali that would be consumed, if the equivalent weight of the metal is 20.
A. (a) 50
B. (b) 25
C. (c) 75
D. (d) 100

Answer: d

- Watch Video Solution

6. To a $25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}$ solution excess of an acidified solution of potassium iodide was added. The iodine liberated required 20 " mL of " 0.3 N sodium thiosulphate solution Calculate the volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.
A. (a) $1.344 g / L$
B. (b) $3.244 g / L$
C. (c) $5.4 g / L$
D. (d) $4.08 g / L$

Answer: d

- Watch Video Solution

7. The compound which does not exist as hydrate form
A. (a)ferrous sulphate
B. (b)copper sulphate
C. (c)magnesium sulphate
D. (d)sodium chloride

Answer: a

- Watch Video Solution

8. The weight of a molecule of the compound $C_{60} H_{122}$ is
A. (a) $1.4 \times 10^{-21} g$
B. (b) $1.09 \times 10^{-21} g$
C. (c) $5.025 \times 10^{23} g$
D. (d) $16.023 \times 10^{23} g$

- Watch Video Solution

9. The volume occupied by 4.4 g of CO_{2} at STP is
A. (a) $22.4 L$
B. (b) $2.24 L$
C. (c) $0.224 L$
D. (d) $0.1 L$

Answer: b

- Watch Video Solution

10. How many molecules are present in one in one gram of hydrogen?
A. (a) 6.02×10^{23}
B. (b) 3.01×10^{23}
C. (c) 2.5×10^{23}
D. (d) 1.5×10^{23}

Answer: b

- Watch Video Solution

11. The empirical formula of an acid is $\mathrm{CH}_{2} \mathrm{O}_{2}$, the probable molecular formula of acid may be
A. (a) $\mathrm{CH}_{2} \mathrm{O}$
B. (b) $\mathrm{CH}_{2} \mathrm{O}_{2}$
C. (c) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D. (d) $C_{3} H_{6} O_{4}$

Answer: c

- Watch Video Solution

12. How much water should be added to 200 c.c of seminormal solution of NaOH to make it exactly decinormal?
A. (a) $200 c c$
B. (b) $400 c c$
C. (c) $800 c c$
D. (d) $600 c c$

Answer: d

- Watch Video Solution

13. What is the normlity of a 1 M solution of $\mathrm{H}_{3} \mathrm{PO}_{4}$?
A. (a) $0.5 N$
B. (b) 1.0 N
C. (c) 2.0 N
D. (d) 3.0 N

Answer: b

- Watch Video Solution

14. Normality of 2 M sulphuric acid is
A. (a) $2 N$
B. (b) $4 N$
C. (c) $\frac{N}{2}$
D. (d) $\frac{N}{4}$

Answer: a

- Watch Video Solution

15. How many grams of a dibasic acid (Mol. Wt. $=200$) should be present in 100 ml of its aqueous solution to give decinormal strength
A. (a) $1 g$
B. (b) $2 g$
C. (c) $10 g$
D. (d) $20 g$

Answer: c

- Watch Video Solution

16. Vapour density of a gas is 22 . What is its molecular mass?
A. (a) 33
B. (b) 22
C. (c) 44
D. (d) 11

Answer: c

17. Which of the following cannot give iodometric titrations?
A. (a) $F e^{3+}$
B. (b) $C u^{2+}$
C. (c) $P b^{2+}$
D. (d) $A g^{+}$

Answer: b

D Watch Video Solution

18. A compound possesses 8% sulphur by mass. The least molecular mass is?
A. (a) 200
B. (b) 400
C. (c) 155
D. (d) 355

Answer: B

- Watch Video Solution

19. 116 mg of a compound on vaporisation in a Victor - Meyer's apparatus displaced $44.8 m L$ of air measured at S.T.P. The molecular mass of the compound is
A. (a) 116
B. (b) 232
C. (c) 58
D. (d) 44.8

- Watch Video Solution

20. The density of a gas A is thrice that of a gas B at the same temperature. The molecular weight of gas B is twice that of A. What will be the ratio of the pressure acting on B and A ?
A. (a) $\frac{1}{4}$
B. (b) $\frac{7}{8}$
C. (c) $\frac{2}{5}$
D. (d) $\frac{1}{6}$

Answer: D

Assertion Reasoning Questions

1. Assertion: Analytical molarity of 1 MHCl is zero.

Reason: Equilibrium molarity of 1 MHCl is zero.
A. (a)If both assertion and reason are true and the reason is the true explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: d
2. Statement Addition of water to a solution containing solute and solvent changes its normality or molarity only.

Explanation The milli-equivalent and milli-moles of solutes are not changed on dilution.
A. (a)If both assertion and reason are true and the reason is the true explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: b

D Watch Video Solution

3. Assertion: Volume of a gas is inversely proportional to the number of moles of a gas.

Reason: The ratio by volume of gaseous reactants and products is in agreement with their molar ratio.
A. (a)lf both assertion and reason are true and the reason is the true explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: d

- Watch Video Solution

4. Assertion: Molecular weight of oxygen is 16.

Reason: Atomic weight of oxygen is 16 .
A. (a)If both assertion and reason are true and the reason is the true explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: d

5. Assertion: Atoms can neither be created nor destroyed.

Reason: Under similar condition of temperature and pressure, equal volume of gases does not contain equal number of atoms.
A. (a)If both assertion and reason are true and the reason is the true explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: c

1. The number of meutrons in a drop water (20 drops $=1 m L$) at $4^{\circ} C$
A. (a) 6.023×10^{22}
B. (b) 1.338×10^{22}
C. (c) 6.023×10^{20}
D. (d) 7.338×10^{22}

Answer: b

- Watch Video Solution

2. Assuming that petrol is octane $\left(C_{8} H_{18}\right)$ and has density $0.8 \mathrm{~g} / \mathrm{ml}, 1.425 l i t r e$ of petrol on complete combustion will consume
A. (a) 50 mole of O_{2}
B. (b) 125 mole of O_{2}
C. (c) 100 mole of O_{2}
D. (d) 200 mole of O_{2}

Answer: b

- Watch Video Solution

3. Weight of one atom an element is $6.44 \times 10^{-23} g$. Calculate g atom of elements in 40 kg .
A. (a) $10^{3} g$ atom
B. (b) $10^{2} g$ atom
C. (c) $10^{4} g$ atom
D. (d) $10 g$ atom

- Watch Video Solution

4. A compound contains 3.2% of oxygen. The minimum mol. Wt. of the compound is
A. (a) 300
B. (b) 440
C. (c) 350
D. (d) 500

Answer: D

5. Arrange the following in order of increasing mass
(i) 3.0115×10^{23} molecules of white phosphorus
(ii) 10 mole of H_{2} gas
(iii) 1 g molecule of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(iv) 33.6 L of CO_{2} gas at STP
A. (a) $i i<i<I v<i i i$
B. (b) $i i i>i v>i>i i$
C. (c) $i<i i<i v<i i i$
D. (d) $i<i v<i i i<i i$

Answer: a

- Watch Video Solution

6. Calculate the number of oxalic acid molecules in 100 mL of 0.02

N oxalic acid
A. 6.023×10^{20}
B. 6.023×10^{21}
C. 6.023×10^{22}
D. 6.023×10^{23}

Answer: A

- Watch Video Solution

7. Arrange the following in order of decreasing mass
(i) 1 F atom
(ii) 1 N atom
(iii) 10 atoms
(iv) 1 H atom
A. (a) $i>i i i>i v>i i$
B. (b) $i v<i i<i i i<i$
C. (c) $i>i i i>i i>i v$
D. (d) $i i i>i>i i>i v$

Answer: c

- Watch Video Solution

8. The number of millimoles contained in 0.160 g of NaOH is
A. (a) 0.04
B. (b). 4
C. (c) 4
D. (d) 40

Answer: c

- Watch Video Solution

9. Number of mole of $1 m^{3}$ gas at $N T P$ are:
A. (a) 32.4
B. (b) 54.6
C. (c) 44.6 g
D. (d) 28.2

Answer: c

Watch Video Solution
10. 0.5 g of fuming sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{3}\right)$, called oleum, is diluted with water. Thus solution completely neutralised $26.7^{\prime \prime}$ mL of " 0.4 M NaOH . Find the percentage of free SO_{3} in the sample solution.
A. (a) 30.6%
B. (b) 40.6%
C. (c) 20.6%
D. (d) 50%

Answer: c

- Watch Video Solution

11. The minimum quantity of $H_{2} \mathrm{~S}$ needed to precipitate 64.5 g of $C u^{2+}$ will be nearly.
A. (a) 63.5 g
B. (b) 31.75 g
C. (c) 34 g
D. (d) 2.0 g

Answer: c

- Watch Video Solution

12. 34 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ is present in 1120 ml of $\mathrm{H}_{2} \mathrm{O}$ solution. This solution is called.
A. (a) 10 volume solution
B. (b) 20 volume
C. (c)30 volume
D. (d) 32 volume

- Watch Video Solution

13. 1.82 g of a metal required 32.5 mL of $\mathrm{N}-\mathrm{HCl}$ to dissolve it what is the equivalent weight of metal?
A. (a) 54
B. (b) 56
C. (c) 28
D. (d) 86

Answer: b
14. What volume at $S T P$ of ammonia gas will be required to be passed into 30 mL of $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution to bring down the acid normality to $0.2 N$?
A. (a) $556.5 m L$
B. (b) $480.5 m L$
C. (c) $537.6 m L$
D. (d) $438.4 m L$

Answer: c

- Watch Video Solution

15. How many grams of NaHSO_{3} will be required to react with one litre of NaIO_{3} solution containing $5.8 \mathrm{~g} \mathrm{NaIO}_{3}$ according to the reaction?
A. (a) 10.2 g
B. (b) 9.8 g
C. (c) 9.14 g
D. (d) 8.2 g

Answer: c

- Watch Video Solution

16. A 5.0 mL of solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ liberates 0.508 g of iodine from acidified KI solution. Calculate the strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution in terms of volume strength at $S T P$.
A. (a) 2.2%
B. (b) 3.8%
C. (c) 4.48%
D. (d) None of these

Answer: c

- Watch Video Solution

17. 1.5 litre of a solution of normality N and 2.5 litre of 2 M HCl are mixed together. The resutant solution had a normality 5 . The value of N is
A. (a) 6
B. (b) 10
C. (c) 8
D. (d) 4

Answer: b
18. The volume of $0.25 \mathrm{MH}_{3} \mathrm{PO}_{3}$ required to neutralise 25 ml of $0.03 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ is
A. (a) 1.32 mL
B. (b) 3 mL
C. (c) 26.4 mL
D. (d) 2.0 mL

Answer: b

- Watch Video Solution

19. A 0.1097 g sample of $\mathrm{As}_{2} \mathrm{O}_{3}$ requried 26.10 mL of KMnO_{4} solution for its titration. The molarity of KMnO_{4} solution is
molarity $=0.017 M \approx 0.018$
A. (a) 0.02
B. (b) 0.04
C. (c) 0.018
D. (d) 0.3

Answer: c

- Watch Video Solution

20. Borax in water gives
$\mathrm{B}_{4} \mathrm{O}_{7}^{2-}+7 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{BO}_{3}+2 \mathrm{OH}^{-}$
How many grams of Borax $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$ are required to prepare 50 ml of 0.2 M solution.

$$
\text { A. (a) } 0.32 \mathrm{~g}
$$

B. (b) 3.82 g
C. (c) 0.28 g
D. (d)None of these

Answer: b

- Watch Video Solution

21. 50 mL of a solution containing 1 g each of $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO} 3$ and NaOH was titrated with $\mathrm{N}-\mathrm{HCl}$. What will be the titre reading when only phenolphalein is used as indicator?
A. (a) 35 mL
B. (b) 32.5 mL
C. (c) 24.5 mL
D. (d) 34.4 mL

Answer: d

- Watch Video Solution

22. Density of water at room temperature is $1 \mathrm{~g} / \mathrm{ml}$. How many molecules are there in a drop of water, if its volume is 0.05 ml ?
A. (a) 1.67×10^{21}
B. (b) 16.7×10^{21}
C. (c) 6.023×10^{23}
D. (d) 1.67×10^{23}

Answer: a

23. How many molecule are present in 12 L of liquid $\mathrm{CCl} l_{4}$? The density of the liquid is $1.59 \mathrm{~g} \mathrm{~cm}^{-3}$?
A. (a) 7.44×10^{26}
B. (b) $0.74 \times X 10^{26}$
C. (c) 1.59×10^{26}
D. (d) 15.9×10^{26}

Answer: b

- Watch Video Solution

24.13.4g of a sample of unstable hydrated salt $\mathrm{Na}_{2} \mathrm{SO}_{4} . \mathrm{XH}_{2} \mathrm{O}$ was found to contains $6.3 g$ of $\mathrm{H}_{2} \mathrm{O}$. The number of molecular of water of crystalistion is
A. (a) 6
B. (b) 5
C. (c) 7
D. (d) 8

Answer: c

- Watch Video Solution

25. A solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH requires 300 ml of 0.1 NHCl using phenolphthalein as an indicator. Methyl orange is then added to the above titrated solution when a further 25 ml of 0.2 NHCl is required. The amount of NaOH present in solution is $\left(\mathrm{NaOH}=40, \mathrm{Na}_{2} \mathrm{CO}_{3}=106\right)$
A. (a) 0.6 g
B. (b) 1.0 g
C. (c) 1.5 g
D. (d) 2.0 g

Answer: b

- Watch Video Solution

26. The amount of water that should be added to 500 ml of 0.5 N solution of NaOH to give a concentration of 10 mg per ml is
A. (a) 100
B. (b) 200
C. (c) 250
D. (d) 500

Answer: d

- Watch Video Solution

27. 100 gCaCO 3 reacts with 1 litre 1 NHCl . On completion of reaction how much weight of CO_{2} will be obtain
A. (a) 5.5 g
B. (b) 11 g
C. (c) 22 g
D. (d) 33 g

Answer: c

28. Assertion: For calculating the molality or the mole fraction of solute, if the molarity is known, it is necessary to know the density of the solution.

Reason: Molality, molarity and the mole fraction of solute can be calculated from the weight percentage and the density of the solution.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: b

29. Assertion: As mole is the basic chemical unit, the concentration of the dissolved solute is usually specified in terms of number of moles of solute.

Reason: The total number of molecules of reactants involved ina balanced chemical equation is known as molecularity of the reaction.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

Answer: b

- Watch Video Solution

30. Assertion: Isomorphous substances from crystals of same shape and can grow in saturated solution of each other.

Reason: They have similar constitution and chemical formulae.
A. (a)If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. (b)If both assertion and reason are true and the reason is not the correct explanation of the assertion.
C. (c)If the assertion is true but reason is false.
D. (d)If assertion is false but reason is true.

