© 'doubtnut

CHEMISTRY

BOOKS - A2Z CHEMISTRY (HINGLISH)

STATES OF MATTER

Gas Law (Boyle'S Law, Gay - Lussac'S Law, Avogadro'S Law)

1. Which of the following is true about gaseous state?
A. Thermal energy = Molecular attraction
B. Thermal energy > Molecular attraction
C. Thermal energy < Molecular attraction
D. None of these

Answer: B

- Watch Video Solution

2. A cylinder containing cooking gas can withstand a pressure of 15 atm . The pressure gauge of the cylinder indicates 12 atm at $27^{\circ} \mathrm{C}$. Due to a sudden
fire in the building, the temperature starts rising. At what temperature will the cylinder explode?
A. $42.5^{\circ} \mathrm{C}$
B. $67.8^{\circ} \mathrm{C}$
C. $99.5^{\circ} \mathrm{C}$
D. $25.7^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

3. The product of $P V$ is potted aginst P at two temperatures T_{1} and T_{2} and the 'result is shown in
the figure. What is correct about T_{1} and T_{2} ?

A. $T_{1}>T_{2}$
B. $T_{2}>T_{1}$
C. $T_{1}=T_{2}$
D. $T_{1}+T_{2}=1$

Answer: B
4. Which of the following statements is wrong for gases?
A. Gases do not have a definite shape and volume
B. Volume of the gas is equal to the volume of the container the gas
C. Confined gas exerts uniform pressure on the walls of its container in all directions.
D. Mass of the gas cannot be determined by
weighing a container in which it is enclosed

Answer: D

- Watch Video Solution

5. If P, V, and T represent pressure, volume and temperature of the gas, the correct representation of Boyle's law is
A. $V \propto \frac{1}{T}$ (at constant P)
B. $P V=R T$
C. $V \propto 1 / P($ at constant $T)$
D. $P V=n R T$

Answer: C

- Watch Video Solution

6. If V_{0} is the Volume of a given mass of gas at 273 K at constant pressure, then according to Charles's law,
the volume at $10^{\circ} C$ will be:
A. $10 V_{0}$
B. $\frac{2}{273}\left(V_{0}+10\right)$
C. $V_{0}+\frac{10}{273}$
D. $\frac{283}{273} V_{0}$

Answer: D

D Watch Video Solution

7. Which of the following curves does not represent Boyle's law?
A.
(a)
(b)
B.

C.
(c)
(d)

D.

Answer: D

Watch Video Solution

8. Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by define fraction of its volume at
A. $0^{\circ} C$
B. Its critical temperature

C. Absolute zero

D. Its Boyle temperature

Answer: A

- Watch Video Solution

9. O_{2} gas at $S T P$ contained in a flask was replaced by SO_{2} under same conditions. The weight of SO_{2} will be
A. half
B. one-fourth

C. twice

D. four times

Answer: C

- Watch Video Solution

10. For the given ideal gas equation $P V=n R T$, answer the following questions:

At constant temperature, in a given mass of an ideal gas
A. The ratio of pressure and volume always
B. Volume always remains constant
C. Pressure always remains constant
D. The product of pressure and volume always remains constant.

Answer: D

D Watch Video Solution

11. According to Charles's law

> А. $\left(\frac{d V}{d T}\right)_{p}=K$
> В. $\left(\frac{d V}{d T}\right)_{p}=-K$
c. $\left(\frac{d V}{d T}\right)_{p}=-\frac{K}{T}$
D. none

Answer: A

- Watch Video Solution

12. A gas at a pressure of 5.0 atm is heated from $0^{\circ} \mathrm{C}$
to $546^{\circ} \mathrm{C}$ and simultaneously compressed to onethird of its original volume. Hence final pressure is
A. 10.0 atm
B. 30.0 atm
C. 45.0 atm
D. 5.0 atm

Answer: C

- Watch Video Solution

13. I, II, and III are three istherms, respectively, at
T_{1}, T_{2}, and T_{3}. Temperature will be in order

A. $T_{1}=T_{2}=T_{3}$
B. $T_{1}<T_{2}<T_{3}$
C. $T_{1}>T_{2}>T_{3}$
D. $T_{1}>T_{2}=T_{3}$

Answer: C
14. A certain sample of gas has a volume of 0.2 litre measured at 1 atm pressure and $0^{\circ} \mathrm{C}$. At the same pressure but at $273^{\circ} \mathrm{C}$, its volume will be
A. 0.4litres
B. 0.8 litres
C. $27.8^{\circ} \mathrm{C}$,
D. 55.6 litres

Answer: A
(D) Watch Video Solution
15. An open vessel containing air is heated form 300 K to 400 K . The fraction of air originally present which goes out of it is at 400 K
A. $3 / 4$
B. $1 / 3$
C. $2 / 3$
D. $1 / 8$

Answer: B

- Watch Video Solution

16. Air at sea level is dense. This is a practical application of
A. Boyle's law
B. Charles's law
C. Avogardo's law
D. Dalton's law

Answer: A
17. $400 \mathrm{~cm}^{3}$ of oxygen at $27^{\circ} \mathrm{C}$ were cooled to $-3^{\circ} \mathrm{C}$ without change in pressure. The contraction in volume will be as per Boyle's law?
A. $40 \mathrm{~cm}^{3}$
B. $30 \mathrm{~cm}^{3}$
C. $44.4 \mathrm{~cm}^{3}$
D. $360 \mathrm{~cm}^{3}$

Answer: A

- Watch Video Solution

18. Which of the following represent $\log P v s . \log V$ variation as per Boyle's law?

(b)

B.

19. If $20 \mathrm{~cm}^{3}$ gas at 1 atm is expanded to $50 \mathrm{~cm}^{3}$ at constant T, then what is the final pressure
A. $20 \times \frac{1}{50}$
B. $50 \times \frac{1}{20}$
C. $1 \times \frac{1}{20} \times 50$
D. None of these

Answer: A

Watch Video Solution

20. If the pressure of a gas contined in closed vessel in increased by 0.4% when heated by $1 K$, its initial temperature must be:
A. 250 K
B. $250^{\circ} \mathrm{C}$
C. $25^{\circ} \mathrm{C}$
D. 25 K

Answer: A
21. 300 ml of a gas at $27^{\circ} \mathrm{C}$ is cooled to $-3^{\circ} \mathrm{C}$ at constant pressure, the final volume is
A. 540 ml
B. 135 ml
C. 270 ml
D. 350 ml

Answer: C

- Watch Video Solution

22. A sample of gas at $35^{\circ} \mathrm{C}$ and 1 atm pressure occupies a volume of 3.75 litres. At what temperature should the gas be keep if it si required should the gas be keep if it is required to reduce the volume to 3 litres a the same pressure:
A. $-26.6^{\circ} C$
B. $0^{\circ} \mathrm{C}$
C. $3.98^{\circ} \mathrm{C}$
D. $28^{\circ} \mathrm{C}$

Answer: A
23. Which of the following statement is false?
A. The product of pressure and volume of fixed amount of a gas is independent of temperature
B. Molecules of different gases have the same
$K E$ at a given temperatue
C. The gas equation is not valid at high pressure
and low temperature
D. The gas constant per molecule is known as

Answer: A

- Watch Video Solution

24. Two closed vessels of equal volume containing air at pressure P_{1} and temperature T_{1} are connected to each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_{1} and that in the other at T_{2}, what will be the pressure in the vessels?
A. $\frac{2 P_{1} T_{1}}{T_{1}+T_{2}}$
B. $\frac{T_{1}}{2 P_{1} T_{2}}$
C. $\frac{2 P_{1} T_{2}}{T_{1}+T_{2}}$
D. $\frac{2 P_{1}}{T_{1}+T_{2}}$

Answer: C

D Watch Video Solution

25. As per Boyle's law which of the following is/are kept constant?
A. Pressure
B. Mass
C. Temperature

D. Mass and temperature both

Answer: D

- Watch Video Solution

26. Which of the folloiwng graph is/are correct as per charles law?
A.

B.

D. Both (b) and (c) are correct

Answer: B

- Watch Video Solution

27. Volume of the air that will be expelled from a vessel of $300 \mathrm{~cm}^{3}$ when it is heated from $27^{\circ} \mathrm{C}$ to $37^{\circ} C$ at the same pressure will be
A. $310 \mathrm{~cm}^{3}$
B. $290 \mathrm{~cm}^{3}$

C. $10 \mathrm{~cm}^{3}$

D. $37 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

28. As per Charles law which of the following is/are correct
A. Pressure remains definite
B. Mass remains definite
C. volume is proportional to the absolute temperature
D. All of the above are correct

Answer: D

D Watch Video Solution

29. To determine the value of R, which of the $P V$ value is considered to be equal for every gas at 273 K ?
A. $\lim _{P \rightarrow 1 a t m}\left(P V_{m}\right)$
B. $\lim _{P \rightarrow 0}\left(P V_{m}\right)$
C. $\lim _{P \rightarrow \infty}\left(P V_{m}\right)$
D. $\lim _{V \rightarrow 0}\left(P V_{m}\right)$

Answer: B

D Watch Video Solution

30. For 1 mol of an ideal gas, $V_{1}>V_{2}>V_{3}$ in fig. (I),
$T_{1}>T_{2}>T_{3}$ in fig. (II), $P_{1}>P_{2}>P_{3}$ in fig. (III), and $T_{1}>T_{2}>T_{3}$ in fig. (IV), then which curves are

A. I, II
B. I, II, III
C. II, IV
D. I, III, IV

Answer: C
31. At definite temperature the volume of a definite mass of gas is $10 L$ at $5 a t m$ pressure, at the same temperature if the pressure of the gas is decreased to 1 atm , the volume of same gas becomes
A. 50 L
B. $2 L$
C. $5 L$
D. 0.5 L

Answer: A

Ideal Gas Equation

1. If the pressure of a given mass of gas is reduced to half and temperature is doubled simultaneously the volume will be
A. Same as before
B. Twice as before
C. $1 / 4$ the as before
D. None

Answer: D

- Watch Video Solution

2. Calculate the total pressure in a mixture of $4 g$ of oxygen and $2 g$ of hydrogen confined in a total volume of $1 L$ at $0^{\circ} C$.
A. $25.184 a t m$
B. 31. 205 atm
C. 45.215 atm
D. 15. 210atm

Answer: A

- Watch Video Solution

3. A $0.5 d m^{3}$ flask contains gas A and $1 d m^{3}$ flask contains gas B at the same temperature. If density of $A=3 \mathrm{~g} / \mathrm{dm} \mathrm{m}^{3}$ and that of $B=1.5 \mathrm{~g} / \mathrm{dm}^{3}$ and the molar mass of $A=1 / 2$ of B, the ratio of pressure excerted by gases is:

$$
\begin{aligned}
& \text { A. } \frac{P_{A}}{P_{B}}=2 \\
& \text { B. } \frac{P_{A}}{P_{B}}=1 \\
& \text { C. } \frac{P_{A}}{P_{B}}=4
\end{aligned}
$$

D. $\frac{P_{A}}{P_{B}}=3$

Answer: C

- Watch Video Solution

4. In the equaiton $P V=n R T$, which one cannot be the numerical value of R
A. $8.31 \times 10^{7} \mathrm{ergK}^{-1} \mathrm{~mol}^{-1}$
B. 8.31×10^{7} dyne $\mathrm{cmK}^{-1} \mathrm{~mol}^{-1}$
C. $8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. 8.31atm. $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Answer: D

D Watch Video Solution

5. Which of the following graphs correctly represents the variation of $\beta=-\left(\frac{d V}{d P}\right) / V$ with P for an ideal gas at constant temperature

Answer: A

- Watch Video Solution

6. When 100 ml sample of methane and ethane along
with excess of O_{2} is subjected to electric spark, the contraction in volume was observed to be 212 ml .

When the resulting gases were passed through KOH solution, further contraction in volume was
A. 60 ml
B. 96 ml
C. 108 ml
D. $124 m l$

Answer: D

- Watch Video Solution

7. Densities of two gases are in the ratio $1: 2$ and their temperatures are in the ratio $2: 1$, then the
ratio of their respective pressure is
A. 1:1
B. 1:2
C. 2: 1
D. $4: 1$

Answer: A

- Watch Video Solution

8. Which of the following is/are incorrect regarding the universal gas constant (R) ?
A. R is independent of pressure
B. R is independent of temperature
C. R is independent of volume of gas
D. R is dependent on nature of gas

Answer: D

- Watch Video Solution

9. Liquefied natural gas $(L N G)$ is mainly methane. A $10 m^{3}$ tank is constructed to store $L N G$ at $-164{ }^{\circ} C$ and 1 atm pressure, under this condition density of

LNG is $415 \mathrm{~kg} / \mathrm{m}^{3}$. The volume of strorage tank
capable of holding Mass of $L N G$ as a gas at $20^{\circ} \mathrm{C}$ and 1 atm pressure will be
A. $1250 m^{3}$
B. $5280 \mathrm{~m}^{3}$
C. $6230 m^{3}$
D. $9870 m^{3}$

Answer: C

- Watch Video Solution

10. Two separate bulbs contain ideal gas A and B.

The density of a gas A is twice that of a gas B. The
molecular mass of A is half that of gas B. The two gases are at the same temperature. The ratio of the pressure of A to that gas B is
A. 2
B. $1 / 2$
C. 4
D. $1 / 4$

Answer: C

11. If two mole of an ideal gas at $546 K$ occupies a volume of 44.8 litres, the pressure must be :
A. $2 a t m$
B. 3atm
C. $4 a t m$
D. 1 atm

Answer: A

D Watch Video Solution

12. The volume of a gas increased by a factor of 2
while the pressure decrease by a factor of 3 . Given
that the number of moles is unaffected, the factory by which the temperature changes is:
A. $\frac{3}{2}$
B. 3×2
C. $\frac{2}{3}$
D. $\frac{1}{2} \times 3$

Answer: C

13. A closed vessel contains equal number of nitrogen and oxygen molecules at pressure of Pmm .

If nitrogen is removed from the system, then the pressure will be:
A. P
B. $2 P$
C. $P / 2$
D. P^{2}

Answer: C

14. If $10 g$ of a gas at atmospheric pressue is cooled from $273^{\circ} C$ to $0^{\circ} C$, keeping the volume constant, its pressure would become
A. $1 / 2 a t m$
B. $1 / 273 \mathrm{~atm}$
C. $2 a \mathrm{tm}$
D. 273 atm

Answer: A

15. Under what conditions will a pure sample of an

 ideal gas not only exhibit a pressure of 1 atm but also a concentration of 1 mollitre ${ }^{-1}$$$
\left[R=0.082 \text { iltre atm } \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]
$$

A. at $S T P$
B. when $V=22.42 L$
C. when $T=12 K$
D. impossible under any condition

Answer: C

16. A constant volume and temperature conditions,
the rate of diffusion D_{A} and D_{B} of gases A and B having densities ρ_{A} and ρ_{B} are related by the expression

$$
\begin{aligned}
& \text { A. } D_{A}=\left[D_{B} \cdot \frac{\rho_{A}}{\rho_{B}}\right]^{1 / 2} \\
& \text { B. } D_{A}=\left[D_{B} \cdot \frac{\rho_{B}}{\rho_{A}}\right]^{1 / 2} \\
& \text { C. } D_{A}=D_{B}\left(\frac{\rho_{A}}{\rho_{B}}\right)^{1 / 2} \\
& \text { D. } D_{A}=D_{B}\left(\frac{\rho_{B}}{\rho_{A}}\right)^{1 / 2}
\end{aligned}
$$

Answer: D
17. What is the molecular weight of a gas whose density $40^{\circ} \mathrm{C}$ and 785 mm of Hg pressure is $1.3 g L^{-1}$?
A. 32
B. 40
C. 15
D. 98

Answer: A

- Watch Video Solution

18. $120 g$ of an ideal gas of molecular weight 40 is confirmed to a volume of 20litreat 400 K , then the pressure of is:
A. 490 atm
B. 4.92 atm
C. 2236atm
D. 22.4atm

Answer: B

- Watch Video Solution

19. Oxygen is present in a $1 L$ flask at a pressure of
$7.6 \times 10^{-10} \mathrm{mmHg}$. Calculate the number of oxygen molecules in the flask at $0^{\circ} \mathrm{C}$.
A. 2.7×10^{9} molecules
B. 2.7×10^{10} molecules
C. 2.7×10^{11} molecules
D. 2.7×10^{12} molecules

Answer: B

- Watch Video Solution

20. At a temperature T, K, the pressure of 4.0 gm argon in a bulb is P. The bulb is put in a bath having temperature higher by 50 K than the first one 0.8 of argon gas had to be removed to maintain original pressure. The temperature T is
A. 510 K
B. 200 K
C. 100 K
D. 73 K

Answer: B
21. A hydrocarbon contains 10.5 g of carbon per gram of hydrogen. $1 L$ of vapour of the hydrocarbon at $127^{\circ} C$ and 1 atm pressure weighs $2.8 g$. Find the molecular formula of the hydrocarbon.
A. $C_{6} H_{8}$
B. $\mathrm{C}_{7} \mathrm{H}_{8}$
C. $C_{5} H_{12}$
D. $C_{8} H_{4}$

Answer: B
22. A cylinder contains accetylene gas at $27^{\circ} \mathrm{C}$ and 4.05Mpa. The pressure in the cylinder after half the mass of gas is used up and temperature has fallen to $12^{\circ} C$ will be:
A. $4.05 M P a$
B. $2.025 M P a$
C. $3.84 M P a$
D. 1.92 MPa

Answer: D
23. For a definite amount of gas, pressure and volume are increased to triple of the initial amount, Therefore
A. Temperature increased to nine times of its initial value
B. Temperature increased to thrice of its initial
value
C. Temperature remains unaltered
D. Temperature reduced to thrice of its initial
value
24. $3.2 g$ of S is heated to occupy a volume of 780 ml at $450^{\circ} \mathrm{C}$ and 723 mm pressure. Formula of sulphure is
A. S_{2}
B. S
C. S_{4}
D. S_{8}

Answer: D
25. The pressure and temperature of $4 d m^{3}$ of carbon dioxide gas are doubled. Then the volume of carbon dioxide gas would be
A. $2 d m^{3}$
B. $3 d m^{3}$
C. $4 d m^{3}$
D. $8 d m^{3}$

Answer: C
26. The weight of 350 mL of a diatomic gas at $0^{\circ} \mathrm{C}$ and 2 atm pressure is $1 g$. The weight in g of one atom at $N T P$ is:
A. $2.64 \times 10^{-23} g$
B. $2.64 \times 10^{-22} g$
C. $5.28 \times 10^{-23} g$
D. $0.82 \times 10^{-22} g$

Answer: A

- Watch Video Solution

27. The volume of 10 moles of an ideal gas at 10 atm

 and 500 K isA. $82 L$
B. $41 L$
C. 20.5 L
D. $\frac{82}{3} L$

Answer: B

D Watch Video Solution

Dalton'S Law Of Partial Pressure, Graham'S Law Of
Diffusion/ Effusion

1. The molecules of a gas A travel four times faster than the molecules of gas B at same temperature.

The ratio of molecular weights $\left(M_{A} / M_{B}\right)$ is
A. $1 / 16$
B. 4
C. $1 / 4$
D. 16

Answer: A
2. A pre-weighed vessel was filled with oxygen at
$N T P$ weighted. It was the evacuated, filled with SO_{2}
at the same temperature and pressure, and again
weighted. The weight of oxygen will be
A. The same as that of SO_{2}
B. $\frac{1}{2}$ that of SO_{2}
C. Twice that of SO_{2}
D. One-fourth that of SO_{2}

Answer: B

D Watch Video Solution

3. Equal weights of methane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is
A. $1 / 2$
B. $8 / 9$
C. $16 / 19$
D. $1 / 9$

Answer: B

- Watch Video Solution

4. XmL of H_{2} gas effuses through a hole in a container in $5 s$. The time taken for the effusion of the same volume of the gas specified below, under identical conditions, is
A. $10 \sec s: H e$
B. $20 \sec s: O_{2}$
C. $25 \sec s: C O$
D. $55 \sec s: \mathrm{CO}_{2}$

Answer: B

5. Which of the following pair will diffuse at the same

 rate?A. CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
B. CO_{2} and NO
C. CO_{2} and CO
D. $\mathrm{N}_{2} \mathrm{O}$ and NO

Answer: A
6. The rate of effusion of two gases ' a ' and ' b ' under identical conditions of temperature and pressure are in the ratio of $2: 1$ What is the ratio of $r m s$ velocity of their molecules if T_{a} and T_{b} are in the ratio of $2: 1$?
A. 2:1
B. $\sqrt{2}: 1$
C. $2 \sqrt{2}: 1$
D. 1: $\sqrt{2}$

Answer: C
7. A glass bulb contains $2.24 o f H_{2}$ and $1.12 L$ of D_{2} at $S T P$. It is connected a fully evacuated bulb by a stop-cock with a small opening. The stop-cock is opened for sometime and then closed. The first bulb now contains 0.10 g of H_{2}. The percentage of H_{2} in the mixture is
A. 41.6%
B. 58.4%
C. 46.2%
D. 50%
8. Equal moles of $\mathrm{CO}, \mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2}$ and CH_{4} are placed in a container. If a hole was made in container after 5minute, partial pressure of gases in container would be
(Atomic weights of C, O, B and H are $12,16,11,1$ respectively)

$$
\begin{aligned}
& \text { A. } P_{C O}>P_{B_{2} H_{6}}>P_{H_{2}}>P_{C H_{4}} \\
& \text { B. } P_{C O}=P_{B_{2} H_{6}}>P_{C H_{4}}>P_{H_{2}} \\
& \text { C. } P_{C O}>P_{B_{2} H_{6}}=P_{H_{2}}>P_{C H_{4}} \\
& \text { D. } P_{B_{2} H_{6}}>P_{H_{2}}>P_{C H_{4}}>P_{C O}
\end{aligned}
$$

Answer: B

- Watch Video Solution

9. N_{2} is found in a litre flask under $100 k P a$ pressure and O_{2} is found in another 3litre flask under 20 KPa pressure. If the two flask are connected, the resultant pressure is
A. $310 k P a$
B. $210 k P a$
C. $420 k P a$
D. $265 k P a$

Answer: D

- Watch Video Solution

10. When a jar containing gaseous mixture of equal volumes of CO_{2} and H_{2} is placed in a solution of sodium hydroxide, the solution level will
A. Rise
B. Fall
C. Remain constant
D. Become zero

- Watch Video Solution

11. A mixture of H_{2} and O_{2} in $2: 1$ volume is allowed to diffuse through a porous partition what is the composition of gas coming out initially
A. $1: 2$
B. $4: 1$
C. 8:1
D. 1: 4

Answer: C

- Watch Video Solution

12. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5 atm .

Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. 1:1
B. 1:2
C. 2:3
D. 1: 4

Answer: C

- Watch Video Solution

13. A cylinder is filled with a gaseous mixture containing equal masses of CO and N_{2}. The partial pressure ratio is:
A. $P_{N_{2}}=P_{C_{O}}$
B. $P_{C O}=0.875 P_{N_{2}}$

$$
\begin{aligned}
& \text { C. } P_{C_{O}}=2 P_{N_{2}} \\
& \text { D. } P_{C O}=\frac{1}{2} P_{N_{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

14. A and B are two idential vessels. A contains $15 g$ ethane at 1 atm and 298 K . The vessel B contains 75 g of a gas X_{2} at same temperature and pressure. The vapour density of X_{2} is:
A. 75
B. 150
C. 37.5
D. 45

Answer: A

- Watch Video Solution

15. A mixture of hydrogen and oxygen at one bar pressue contains 20% by weight of hydrogen . Partial pressure of hydrogen will be
A. $0.2 b a r$
B. $0.4 b a r$
C. $0.6 b a r$

D. $0.8 b a r$

Answer: D

- Watch Video Solution

16. $20 \mathrm{dm}^{3}$ of $S O_{2}$ diffuse through a porous partition in 60 s . what volume of O_{2} will diffuse under similar conditions in 30 s ?
A. $12.14 L$
B. $14.14 L$

C. $18.14 L$

D. $28.14 L$

Answer: B

- Watch Video Solution

17. A bottle of dry NH_{3} and another bottle of dry

HCl connected through a long tube are opened simultaneously at both ends of the tube. The white ring $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ first formed will be
A. A
B. B
C. C

D. A, B \&C simultaneously

Answer: C

- Watch Video Solution

18. The vapour density of a mixture containing NO_{2}
and $\mathrm{N}_{2} \mathrm{O}_{4}$ is $38.3 \mathrm{at} 27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2}
in 100 g mixture.
A. 0.043
B. 4.4
C. 3.4
D. 0.437

Answer: D

D Watch Video Solution

19. A vessel is filled with a mixture of oxygen and nitrogen. At what ratio of partial pressures will the mass of gases be identical?
A. $P\left(O_{2}\right)=0.785 P\left(N_{2}\right)$
B. $P\left(O_{2}\right)=8.75 P\left(N_{2}\right)$

$$
\begin{aligned}
& \text { C. } P\left(O_{2}\right)=11.4 P\left(N_{2}\right) \\
& \text { D. } P\left(O_{2}\right)=0.875 P\left(N_{2}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

20. A sample of gas is at $0^{\circ} C$. The temperature at which its rms speed of the molecule will be doubled is
A. $103^{\circ} \mathrm{C}$
B. $273^{\circ} \mathrm{C}$

C. $723{ }^{\circ} \mathrm{C}$

D. $819^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

21. A vessel contains 0.1 moleof $\mathrm{He}, 0.1$ mole of O_{2}
and 0.3 mole of N_{2}. The total pressure is 1 atomosphere. The pressure exerted by O_{2} is
A. 380 mm of Hg
B. 456 mm of Hg
C. 304 mm of Hg
D. 152 mm of Hg

Answer: D

- Watch Video Solution

22. A vessel has N_{2} gas and water vapours at a total pressure of 1 atm . The partial pressure of water vapours is 0.3 atm . The contents of this vessel are transferred to another vessel having one-third of the
capacity of original volume, completely at the same temperature the total pressure of this system in the new vessel is
A. 3.0 atm
B. 1 atm
C. 3.33 atm
D. 2.4atm

Answer: D

Watch Video Solution

23. The rates of diffusion of $\mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{PCl}_{3}$ and
SO_{2} are the following order:
A. $\mathrm{PCl}_{3}>\mathrm{SO}_{3}>\mathrm{SO}_{2}>\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{PCl}_{3}>\mathrm{SO}_{3}$
C. $\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}>\mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}$

Answer: D

D Watch Video Solution

24. A sample of air contains only $\mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$. It saturated with water vapours and total pressure is

6 torr. The vapour pressure of water is 40 torr and the mol ratio of $N_{2}: O_{2}$ is $3: 1$. The partial pressure of N_{2} in the sample is
A. 540torr
B. 900torr
C. 1080torr
D. 450 torr

Answer: D

- Watch Video Solution

25. An effusion experiment requires $40 s$ of a certain number of moles of a gas of unknown molar mass to pass through a small orifice into a vaccum. Under the same conditions, $16 s$ was required for the same
number of moles of O_{2} to effuse. What is the molar mass of the unknown gas?
A. $5.1 \mathrm{~g} / \mathrm{mol}$
B. $12.8 \mathrm{~g} / \mathrm{mol}$
C. $80 \mathrm{~g} / \mathrm{mol}$
D. $200 \mathrm{~g} / \mathrm{mol}$

Answer: D

- Watch Video Solution

26. Under identical conditions of temperature, the density of a gas X is three times that of gas Y while
molecular mass of gas Y is twice that of X. The ratio of pressure of X and Y will be
A. 6
B. $1 / 6$
C. $2 / 3$
D. $3 / 2$

Answer: A

- Watch Video Solution

27. NH_{3} and SO_{2} gases are being prepared at two corners of a laboratory. The gas that will be detected
first in the middle of the laboratory is:
A. NH_{3}
B. SO_{2}
C. both at the same time
D. can't determine

Answer: A

D Watch Video Solution

28. Dalton's law of partial pressure are applicable to
A. Non-reacting gases
B. Ideal gases
C. Temperature of the component gases in the mixture

D. All of the above

Answer: D

D Watch Video Solution

29. 1000 ml of a gas A at 600 torr and 500 ml of a gas

B at 800 torr are placed in a $2 L$ flask. The final
pressure will be
A. 2000 torr

B. 1000torr

C. 500torr
D. 1400torr

Answer: C

- Watch Video Solution

30. Which of the following is/are true regarding vapour pressure?
A. Vapour pressure is surface property of the solvent

B. Vapour pressure is independent of temperature

C. The saturation vapour pressure is
corresponding to the liquid vapour equilibrium
D. Both (a) and (c) are correct

Answer: C

- Watch Video Solution

31. Hydrogen gas diffuses four times as rapidly as a mixture of $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO_{2}. The molar ration of ${ }_{.2} \mathrm{H}_{4}$ to CO_{2} in the mixture is
A. 1:1
B. 2: 1
C. 3: 1
D. $3: 2$

Answer: C
(D) Watch Video Solution
32. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is
A. $1 / 3$
B. $1 / 2$
C. $2 / 3$
D. $(1 / 3)(273 / 298)$

Answer: A
(D) Watch Video Solution
33. Which of the following differentiate between diffusion and effusion?
A. Diffusion is the intermixing of the gas molecules at any direction and effusion is the reverse of diffusion
B. Diffusion is the property of the gas molecules
and effusion is the property of the gas
container only
C. Diffusion occurs at any direction, whereas
effusion occurs under the potential difference
D. Diffusion is the intermixing gas molecules, whereas effusion is the passage of gas molecules through the pores in one direction

Answer: D

D Watch Video Solution

34. The ratio of rates of diffusion of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and CH_{4} is
A. $1: \sqrt{2}: 2$
B. 1:2:4
C. $2: \sqrt{2}: 1$
D. 1:2: $\sqrt{2}$

Answer: A

- Watch Video Solution

35. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is
A. 64.0
B. 32.0
C. 4.0
D. 8.0

Answer: A

D Watch Video Solution

36. The ratio of rates of diffusion of CO_{2} and SO_{2} at the same pressure and temperatue is:
A. $4: \sqrt{11}$
B. 11: 4
C. 1: 4

D. $1: 6$

Answer: A

D Watch Video Solution

37. To a given container having a pore of definite size,
gas A (mol. wt. 81) is filled till the final pressure become 10 atm . It was seen that in 50 minutes 10 g of

A was effused out. Now the container was compelety evacuated and filled with gas $B(m o l . w t .100)$ till the final pressure becomes 20 atm . In 75 minuter how many gram of B will be effused out?

Answer: B

D Watch Video Solution

Kinectic Theory Of Gases, Maxwell Distribution Of Speed

1. Root mean square velocity of a gas molecule is proprotional to
A. $m^{1 / 2}$
B. m^{0}
C. $m^{-1 / 2}$
D. m

Answer: C
2. The r.m.s. velocity of hydrogen at $27^{\circ} C, R=8.314 \mathrm{Jmol}^{-1} K^{-1}$ is:
A. $1.934 m / s$
B. $19.34 m / s$
C. $193.4 \mathrm{~m} / \mathrm{s}$
D. $1934 m / s$

Answer: D
3. In a closed vessel, a gas is heated from 300 K to $600 K$ the kinetic energy becomes/remains
A. half
B. double
C. same
D. four times

Answer: B

- Watch Video Solution

4. The ratio between enrgies of $16 g$ of O_{2} and $28 g$ of N_{2} respectively at 300 K will be
A. 1:1
B. 1:2
C. 2: 1
D. $4: 7$

Answer: B

5. The ratio among most probable velocity, mean

 velocity and root mean velocity is given byA. 1:2:3
B. $1: \sqrt{2}: \sqrt{3}$
C. $\sqrt{2}: \sqrt{3}: \sqrt{8 / \pi}$
D. $\sqrt{2}: \sqrt{8 / \pi}: \sqrt{3}$

Answer: D

D Watch Video Solution

6. The r.m.s velocity of hydrogen is $\sqrt{7}$ times the r.m.s velocity of nitrogen. If T is the temperature of the gas, then

$$
\begin{aligned}
& \text { A. } T\left(H_{2}\right)=T\left(N_{2}\right) \\
& \text { B. } T\left(H_{2}\right)>T\left(N_{2}\right) \\
& \text { С. } T\left(H_{2}\right)<T\left(N_{2}\right) \\
& \text { D. } T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)
\end{aligned}
$$

Answer: C

- Watch Video Solution

7. Temperature at which r.m.s speed of O_{2} is equal to that of neon at $300 K$ is:
A. 280 K
B. 480 K
C. 680 K
D. 180 K

Answer: B

- Watch Video Solution

8. At $S T P$, the order of mean square velocity of molecules of $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}$, and HBr is
A. $\mathrm{H}_{2}>\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{HBr}$
B. $\mathrm{HBr}>\mathrm{O}_{2}>\mathrm{N}_{2}>\mathrm{H}_{2}$
C. $\mathrm{HBr}>\mathrm{H}_{2}>\mathrm{O}_{2}>\mathrm{N}_{2}$
D. $N_{2}>\mathrm{O}_{2}>\mathrm{H}_{2}>\mathrm{HBr}$

Answer: A

- Watch Video Solution

9. A large cylinder of helium filled at 200 mm of Hg has small orifice through which helium escaped into evacuated space at the rate of 6.4 moles $/$ hour. How long would it take for 10 moles of $C O$ to leak through a similar orifice if the $C O$ was confined at the same pressure?
A. 2.1hour
B. 4.2 hour
C. 5.6hour
D. 11.2hour

Answer: B
10. Four particles have speed $2,3,4$ and $5 \mathrm{~cm} / \mathrm{s}$ respectively Their $R M S$ speed is .
A. $3.5 \mathrm{~cm} / \mathrm{s}$
B. $(27 / 2) \mathrm{cm} / \mathrm{s}$
C. $\sqrt{54} \mathrm{~cm} / \mathrm{s}$
D. $\sqrt{54} / 2 \mathrm{~cm} / \mathrm{s}$

Answer: D

D Watch Video Solution
11. For two gases A and B with molecular weights
M_{A} and M_{B}, respectively, it is observed that at a certain temperature T, the mean velocity of A is equal to the $V_{r m s}$ of B. Thus, the mean velocity of A
can be made equal to the mean velocity of B, if
A. P is lowered to a temperature T_{2} and
$T_{2}<T$ and Q is maintained at temperature

T

B. P is at a temperature T and Q at a temperature T_{2} where $T>T_{2}$
C. both p and Q are raised to higher temperature

D. both P and Q are placed at lower

 temperature
Answer: A

- Watch Video Solution

12. The ratio between the root mean square speed of
H_{2} at 50 K and that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $1 / 4$

Answer: C

- Watch Video Solution

13. Under similar conditions, which of the following gas will have same value of $\mu_{r m s}$ as CO_{2} ?
A. $N O$
B. $C_{3} H_{8}$
C. $C O$
D. N_{2}

Answer: B

(Watch Video Solution

14. Which of the following gases would have the highest $r m s$ speed at $0^{\circ} C$?
A. O_{2}
B. CO_{2}
C. SO_{3}
D. $C O$

Answer: D
15. If two gases of moleuclar weight M_{1} and M_{2} at temperature T_{1} and $T_{2}, T_{1} M_{2}=T_{2} M_{1}$, then which property has the same magnitude of both the gases?
A. Temperature
B. Pressure
C. $K E$ per mole
D. Root mean square velocity

Answer: D

16. The ratio, $\frac{\mathrm{rms} \text { velocity of } \mathrm{SO}_{2}}{\mathrm{rms} \text { velocity of } \mathrm{He}}$, of sulpur dioxide and helium gases at $30^{\circ} C$ is equal to:
A. 4
B. 0.25
C. 0.10
D. 8

Answer: B
17. The most probable velocity of a neutron at $20^{\circ} \mathrm{C}$ is nearby:
A. $220 \mathrm{~m} / \mathrm{s}$
B. $2124 m / s$
C. $22200 \mathrm{~m} / \mathrm{s}$
D. $22 m / s$

Answer: B

- Watch Video Solution

18. At what temperature, the average speed of gas molecules be double of that at temperature, $27^{\circ} C$?
A. $120^{\circ} \mathrm{C}$
B. $108^{\circ} \mathrm{C}$
C. $927^{\circ} \mathrm{C}$
D. $300^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

19. At the same temperature and pressure, which of the following will have highest $K E$ per mole
A. H_{2}
B. O_{2}
C. CH_{4}
D. All have same $K E$

Answer: D

20. At what temperature will the total $K E$ of 0.3 mol

 of He be the same as the total KE of 0.40 mol of Ar at 400 KA. 533 K
B. 400 K
C. $346 K$
D. 300 K

Answer: A
21. The R. M. S. Speed of the molecules of a gas of density kgm^{-3} and pressure $1.2 \times 10^{5} \mathrm{Nm}^{-2}$ is:
A. $120 m s^{-1}$
B. $300 \mathrm{~ms}^{-1}$
C. $600 \mathrm{~ms}^{-1}$
D. $900 \mathrm{~ms}^{-1}$

Answer: B

- Watch Video Solution

22. When a gas is compressed as constant temperature:
A. the speeds of the molecule increase
B. the collisions between the molecules increase
C. the speeds of the molecules decrease
D. the collisions between the molecule decrease

Answer: B

- Watch Video Solution

23. The root mean square velocity of an ideal gas to constant pressure varies with density (d) as
A. d^{2}
B. d
C. \sqrt{d}
D. $1 / \sqrt{d}$

Answer: D

- Watch Video Solution

24. The average speed of an ideal gas molecule at $27^{\circ} \mathrm{C}$ is $0.3 \mathrm{~m}, \mathrm{sec}^{-1}$. The average speed at $927^{\circ} \mathrm{C}$
A. $0.15 m \mathrm{sec}^{-1}$
B. $0.6 m \mathrm{sec}^{-1}$
C. $1.2 m \mathrm{sec}^{-1}$
D. $0.6 \mathrm{~cm} \mathrm{sec}-1$

Answer: B

- Watch Video Solution

25. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. two times that of hydrogen molecule
B. Same as that of the hydrogen molecule
C. four times that of a hydrogen molecule
D. half that of a hydrogen molecule

Answer: B

D Watch Video Solution
26. The temperature at which CO_{2} has the same R. M. S. Speed to that of O_{2} at $S T P$ is/are:
A. $375.38 K$
B. $102.38^{\circ} C$
C. 275.38 K
D. $202.38^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

27. The $r m s$ speed of N_{2} molecules in a gas in u. If the temperature is doubled and the nitrogen molecules dissociate into nitrogen atom, the rms speed becomes
A. $u / 2$
B. $2 u$
C. $4 u$
D. $14 u$

Answer: B

28. At what temperature root mean sqaure of N_{2} gas

 is equal to that of propance gas at $S T P$ conditions.A. $173.7^{\circ} \mathrm{C}$

B. 173.7 K
C. $S T P$
D. $-40^{\circ} C$

Answer: B
29. The temperature at which the most probable speed of CO_{2} molecules be twice as that of $50^{\circ} \mathrm{C}$ is:
A. $200^{\circ} \mathrm{C}$
B. 1292 K
C. $100^{\circ} \mathrm{C}$
D. $646 K$

Answer: B

D Watch Video Solution

30. The ratio of most probable velocity to that of average velocity is
A. $\pi / 2$
B. $2 / \pi$
C. $\sqrt{\pi} / 2$
D. $2 / \sqrt{\pi}$

Answer: C

- Watch Video Solution

31. Calculate the average kinetic energy (in joule) per molecule in 8.0 g of methane at $27^{\circ} \mathrm{C}$.
A. $6.21 \times 10^{-20} \mathrm{~J} /$ molecule
B. $6.21 \times 10^{-21} \mathrm{~J} /$ molecule
C. $6.21 \times 10^{-22} \mathrm{~J} /$ molecule
D. $3.1 \times 10^{-22} \mathrm{~J} /$ molecule

Answer: B

- Watch Video Solution

32. A temperature at which rms speed of SO_{2} molecule is half of that of helium molecules at 300 K
A. $1200 K$
B. 600 K
C. 800 K
D. 900 K

Answer: A

D Watch Video Solution

33. At what temperature will the total $K E$ of 0.3 mol of He be the same as the total KE of 0.40 mol of Ar at 400 K
A. 533 K
B. 400 K
C. 346 K
D. 300 K

Answer: A
34. The average molecular speed is gretest in which of the following gas samples?
A. 1.0 mol of O_{2} at 560 K
B. 0.50 mol of Ne at 500 K
C. 0.20 mol of CO_{2} at 440 K
D. 2.0 mol of He at 140 K

Answer: D

- Watch Video Solution

35. At what temperature most probable speed of O_{2} molecules have the same value of root mean square speed of O_{2} molecules at 300 K ?
A. 150 K
B. 600 K
C. 750 K
D. 450 K

Answer: D

D Watch Video Solution
36. What is the pressure of 2 moles of NH_{3} at $27^{\circ} \mathrm{C}$ when its voulume is 5 litre in van der waals equation

$$
(a=4,17, b=0.03711) ?
$$

A. 10.33 atm
B. 9.33 atm
C. 9.74atm
D. 9.2 atm

Answer: B
(D) Watch Video Solution
37. At what temperature, the root-mean-square velocity of SO_{2} will be the same as that of CH_{4} at $27^{\circ} C ?$
A. $3000 K$
B. 1345 K
C. 1200 K
D. 1700 K

Answer: C

- Watch Video Solution

38. If $C_{1}, C_{2}, C_{3} \ldots$. represent the speeds on $n_{1}, n_{2}, n_{3} \ldots$. molecules, then the root mean square speed is

$$
\begin{aligned}
& \text { A. }\left(\frac{n_{1} C_{1}^{2}+n_{2} C_{2}^{2}+n_{3} C_{3}^{2}+\ldots \ldots \ldots}{n_{1}+n_{2}+n_{3}+\ldots .}\right)^{1 / 2} \\
& \text { B. } \frac{\left(n_{1} C_{1}^{2}+n_{2} C_{2}^{2}+n_{3} C_{3}^{2}+\ldots \ldots\right)^{1 / 2}}{n_{1}+n_{2}+n_{3}+\ldots .} \\
& \text { C. } \frac{\left(n_{1} C_{1}^{2}\right)^{1 / 2}}{n_{1}}+\frac{\left(n_{2} C_{2}^{2}\right)^{1 / 2}}{n_{2}}+\frac{\left(n_{3} C_{3}^{2}\right)^{1 / 2}}{n_{3}} \\
& \text { D. }\left[\frac{\left(n_{1} C_{1}+n_{2} C_{2}+n_{3} C_{3}+\ldots .\right)^{2}}{\left(n_{1}+n_{2}+n_{3} \ldots .\right)}\right]^{1 / 2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

39. The KE of N molecule of O_{2} is x joules at $-123^{\circ} \mathrm{C}$. Another sample of O_{2} at $27^{\circ} \mathrm{C}$ has a $K E$ of $2 x$ joules. The latter sample contains
A. N molecules of O_{2}
B. 2 N molecules of O_{2}
C. $N / 2$ molecules of O_{2}
D. $N / 4$ molecules of O_{2}

Answer: A

- Watch Video Solution

40. If two gases of moleuclar weight M_{1} and M_{2} at temperature T_{1} and $T_{2}, T_{1} M_{2}=T_{2} M_{1}$, then which property has the same magnitude of both the gases?
A. density
B. pressure
C. $K E$ per mole
D. $V_{r m s}$

Answer: D

- Watch Video Solution

41. If the $v_{r m s}$ is $30 R^{1 / 2}$ at $27^{\circ} C$ then calculate the molar mass of gas in kilogram.
A. 1
B. 2
C. 4
D. 0.001

Answer: D

42. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. two times that of hydrogen molecule
B. Same as that of the hydrogen molecule
C. four times that of a hydrogen molecule
D. half that of a hydrogen molecule

Answer: B

- Watch Video Solution

43. Distribution of molecules with velocity is represented by the curve

Velocity corresponding to point A is
A. $\sqrt{\frac{3 R T}{M}}$
B. $\sqrt{\frac{2 R T}{M}}$
C. $\sqrt{\frac{8 R T}{\pi M}}$
D. $\sqrt{\frac{R T}{M}}$

Answer: B

D Watch Video Solution

44. What is the relationship between the average velocity (v), root mean square velocity (u) and most probable velocity
A. ?
B. $a: v: u:: 1: 1.128: 1.224$
C. $a: v: u: 1.128: 1.224$
D. $a: v: u:: 1.124: 1.228: 1$

Answer: A

- Watch Video Solution

45. Temperature at which most probable speed of O_{2}
becomes equal to root mean square speed of N_{2} is
[Given : N_{2} at $427^{\circ} C$]
A. 732 K
B. 1200 K
C. $927 K$

D. 800 K

Answer: B

- Watch Video Solution

Van Der Waals Gas Equation And Liquefaction Of Gases

1. For the non-zero value of the force of attraction

 between gas molecules, gas equation will beA. $P V=n R T-\frac{n^{2} a}{V}$
B. $P V=n R T+n b P$
C. $P V=n R T$
D. $P=\frac{n R T}{V-B}$

Answer: A

D Watch Video Solution

2. NH_{3} is liquefied more easily than N_{2}. Hence
A. a and b of $\mathrm{NH}_{3}>$ that of N_{2}
B. $a\left(\mathrm{NH}_{3}\right)>a\left(\mathrm{~N}_{2}\right)$ but $b\left(\mathrm{NH}_{3}\right)<b\left(\mathrm{~N}_{2}\right)$
C. $a\left(\mathrm{NH}_{3}\right)<a\left(\mathrm{~N}_{2}\right)$ but $b\left(\mathrm{NH}_{3}\right)>b\left(\mathrm{~N}_{2}\right)$
D. None
3. At low pressure, the van der Waals equation is reduced to
$\begin{aligned} \text { A. } Z & =\frac{p V_{m}}{R T}=1-\frac{a p}{R T} \\ \text { B. } Z & =\frac{p V_{m}}{R T}=1+\frac{b}{R T} P\end{aligned}$
C. $p V_{m}=R T$
D. $Z=\frac{p V_{m}}{R T}=1-\frac{a}{R T}$

Answer: A
4. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called
A. critical temperature
B. Boyle temperature
C. boiling temperature
D. reduced temperature

Answer: B

- Watch Video Solution

5. Actual graph for the given parameters in (Q.25) will

 be
A. I, III
B. $I, I I$
C. II
D. I

Answer: C

- Watch Video Solution

6. A real gas at a very pressure occupies
A. more volume than that of an ideal gas under
identical conditions
B. less volume than of an ideal under indentical
conditions
C. same volume than that of an ideal gas under

D. can't predict

Answer: A

- Watch Video Solution

7. Calculate the compressibility factor for CO_{2} if one mole of it occupies 0.4 litre at 300 K and 40 atm . Comment on the result:
A. $0.40, \mathrm{CO}_{2}$ is more compressible than ideal gas
B. $0.65, \mathrm{CO}_{2}$ is more compressible than ideal gas
C. $0.55, \mathrm{CO}_{2}$ is more compressible than ideal gas

D. $0.62, \mathrm{CO}_{2}$ is more compressible than ideal gas

Answer: B

D Watch Video Solution

8. For the non-zero value of the force of attraction between gas molecules, gas equation will be

$$
\text { A. } P V-n R T-\frac{n^{2} a}{V}
$$

B. $P V=n R T+n b P$
C. $P V=n R T$
D. $P=\frac{n R T}{V-b}$

Answer: A

D Watch Video Solution

9. The compressibility of a gas is less than unity at $S T P$, therefore,
A. $V_{m}>22.4$ litres
B. $V_{m}<22.4$ litres
C. $V_{m}=22.4$ litres
D. $V_{m}=44.8$ litres

Answer: A
10. Compressibility factor for H_{2} behaving as real gas is:
A. 1
B. $\left(1-\frac{a}{R T V}\right)$
C. $\left(1+\frac{P b}{R T}\right)$
D. $\frac{R T V}{(1-a)}$

Answer: C

- Watch Video Solution

11. The value of compressibility factor at the critical state the gas matches with the Z_{c} is
A. $C H_{4}, Z_{c}=0.29$
B. $C F_{4}, Z_{c}=0.375$
C. $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Z}_{c}=0.29$
D. $H_{2} O, Z_{c}=0.35$

Answer: A
12. Pressure exerted by 1 mole of methane, in a 0.25
litre container at $300 K$ using van der Waals' equation
(given
$\left.a=2.253 \mathrm{~atm} L^{2} \mathrm{~mol}^{-2}, b=0.0428 \mathrm{Lmol}^{-}\right)$is
A. $82.82 a t m$
B. 152.51 atm
C. 190.52 atm
D. 70.52 atm

Answer: A

- Watch Video Solution

13. If \bar{V} is the observed molor volume of real gas and $\bar{V}_{i d}$ is the molar volume of an ideal gas, then Z is
A. $\bar{V} \bar{V}_{i d}$
B. $\frac{\bar{V}}{\bar{V}_{i d}}$
C. $\frac{\bar{V}}{\bar{V}_{i d}}$
D. $\frac{\bar{V}}{\bar{V}_{i d}}$

Answer: B

- Watch Video Solution

14. Which of the following is the correct set of volume calculated by ideal gas equation and van der Waals equation respectively for 1 mole CO_{2} gas at $\begin{array}{lll}300 \mathrm{~K} & \text { and } & 10 \mathrm{~atm} \\ \left(R=0.0821 \mathrm{LatmK}^{-1} \mathrm{~mol}^{-1}\right)\end{array}$
A. $2.463 L, 2.56 L$
B. $2.463 L, 2.38 L$
C. $2.463 L, 2.463 L$,
D. $2.463 L, 2.5 L$

Answer: B
15. A gas can be liquefied by pressure alone when its temperature
A. higher than its critical temperature
B. lower than its critical temperature
C. either of these
D. none

Answer: B

- Watch Video Solution

16. Regarding the van der Waals constant which of the following is/are correct?
A. ' ' a '' depends on the intermolecular interactions
B. ' ' b ' ' depends on the size of the gas molecules
C. ' ' a ' ' and ' ' b ' ' are the characterstic constant
not the universal gas constant
D. All of the above are correct

Answer: D

17. Which of the following satisfies the greater compressibility of real gas?
A. $Z<1$
B. At the higher pressure
C. Above the Boyle's temperature
D. Lesser the value of '' a '' but higher value of
''b' '

Answer: A

Watch Video Solution

18. The correct order of normal boiling of
$\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$ and CH_{4} for whom the values of van der Waals constant ' a ' are $1.360,1.390,4.170$ and $2.253 L^{2}$ atmmol $^{-2}$ respectively, is:
A. $\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{NH}_{3}<\mathrm{CH}_{4}$
B. $\mathrm{O}_{2}<\mathrm{N}_{2}<\mathrm{CH}_{4}<\mathrm{NH}$
C. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{N}_{2}<\mathrm{O}_{2}$
D. $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{O}_{2}<\mathrm{N}_{2}$

Answer: B
19. Which of the following characterstics the critical point?
A. At the critical point both liquid and solid phase coexist
B. At the critical point, solid, liquid and gas phase

coexist

C. At the critical point liquid and gas phase coexist together
D. At the critical point liquid and gas phase have
unequal density.

Answer: C

20. A real gas most closely approaches the behaviour of an ideal gas at:
A. 15 atm and 200 K
B. 1 atm and 273 K
C. 0.5 atm and 500 K
D. 15 atm and 500 K

Answer: C
21. Which of the following is true at the critical point?
A. At the critical point three roots of van der

Waals equation are equal
B. Below the critical point two roots of the van
der Waals equation are equal and imaginary
but one root is real
C. Above the critical point density of gas is greater than density of liquid
D. Above the critical point three roots of van der

Waals equation are real but unequal.

D Watch Video Solution

22. Which of the given sets of temperature and pressure will cause a gas to exhibit the greatest deviation from ideal gas behaviour?
A. $100^{\circ} \mathrm{C}$ and 4 atm
B. $100^{\circ} \mathrm{C}$ and 2 atm
C. $-100^{\circ} \mathrm{C}$ and $4 a t m$
D. $0^{\circ} \mathrm{C}$ and $2 a t m$

Answer: C

D Watch Video Solution

23. The ratio a / b (the terms used in van der Waals' equation) has the unit .
A. atm litre mol^{-1}
B. atm $d m^{3} \mathrm{~mol}^{-1}$
C. dyne cmmol^{-1}

D. All of these

Answer: D
24. Which of the following is most suitable for liquefaction?
A. $T>T_{C} \& P>P C$
B. $T<T_{C} \& P<P_{C}$
C. $T<T_{C} \& P>P_{C}$
D. $T<T_{C} \& P=0$

Answer: C

- Watch Video Solution

25. Under critical conditions, the compressibility
factor for a gas is .

$$
\begin{aligned}
& \text { A. } \frac{3}{8} \\
& \text { B. } \frac{8}{3} \\
& \text { C. } 1 \\
& \text { D. } \frac{1}{4}
\end{aligned}
$$

Answer: A
26. For which of the following gas/gases, $\frac{P_{C} V_{C}}{R T_{C}}$ close to 0.22 ?
A. $C l_{2}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $C_{2} H_{4}$
D. CH_{4}

Answer: B
27. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Inversion temperature
C. Boyle's temperature
D. kinding temperature

Answer: C

- Watch Video Solution

28. Weight of $112 m l$ of oxygen at $N T P$ on
liquefaction would be
A. $0.32 g$
B. $0.64 g$
C. 0.16 g
D. 0.96 g

Answer: C

- Watch Video Solution

29.

$P V_{M}=R T\left[A+\frac{B}{V_{M}}+\frac{C}{V_{M^{2}}}+\ldots\right]$, where A, B,
C, are first second,third, ... virial coefficent, respectively, For an ideal gas
A. $A=$ unity and B, C are zero.
B. A, B, C are all equal to unity
C. A is dependent of temperature
D. All A, B, C depend on temperature.

Answer: A
30. It is eaiser to liquefy oxygen than hydrogen because.
A. oxygen has a higher T_{c} and lower inversion temperature $\left(T_{i}\right)$
B. oxygen has lower T_{c} and higher T_{i} than hydrogen
C. oxygen has a high T_{c} and high T_{i} than hydrogen
D. oxygen has lower T_{c} and low T_{i} than hydrogen

Answer: C

31. Which of the following statements is incorrect?
A. Joul-Thomson coefficient is zero at inversion temperature of a real gas
B. Ideal gas do not show, Joule-Thomson effect
C. Inversion temperature of H_{2} and He is very -
very low
D. Joule-Thomson coefficient $\mu=\left(\frac{\delta T}{\delta P}\right)_{H}$

Answer: D
32. It is possible to liquefy a gas
A. at a temperature above critical temperature and at a pressure above critical pressure
B. at a temperature at critical temperature and at
a pressure lower than critical pressure
C. at critical temperature and a pressure equal to
critical pressure
D.at a temperature above critical temperature
and pressure below critical pressure.
33. The correct order of temperature for a real gas is Boyle temp. Critical temp. Inversion temp. (I)
(II)
(III)
A. $I I I>I>I I$
B. $I>I I>I I I$
C. $I I>I>I I I$
D. $I>I I I>I I$

Answer: A
34. Ratio of C_{p} and C_{v} of a gas X is 1.4 , the number of atom of the gas ' X ' present in 11.2 litres of it at NTP will be
A. 6.02×10^{23}
B. 1.2×10^{24}
C. 3.0×10^{23}
D. 2.01×10^{23}

Answer: A

- Watch Video Solution

35. Which of the following exhibits the weakest intermolecular forces?
A. NH_{3}
B. HCl
C. He
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

1. The surface tension of water at $20^{\circ} \mathrm{C}$ is 73 dynes
cm^{-1}, The minimum value of work done needed to increases surface are of water from $2 \mathrm{~cm}^{2}$ to $5 \mathrm{~cm}^{2}$ is
A. 192 dynes cm
B. 219 dynes cm
C. 921 dynes cm
D. 912 dynes cm

Answer: B

- Watch Video Solution

2. Association of molecules in water is due to:
A. covalent bonding
B. hydrogen bonding
C. ionic bonding
D. van der Waals forces

Answer: B

- Watch Video Solution

3. Which of the following statements is wrong?
A. Evaporation is a spontaneous process
B. Evaporation is a surface phenomenon
C. Vapour pressure decreases with increase temperature
D. The vapour pressure of a solution is always less than the vapour pressure of pure solvent.

Answer: C

- Watch Video Solution

4. Normal boiling point of a liquid is that temperature which vapour pressure of the liquid is
A. zero
B. 380 mm of Hg
C. 760 mm of Hg
D. 100 mm of Hg

Answer: C

D Watch Video Solution

5. A liquid is in equilibrium with its vapour at its boiling point. On average, the molecules in the two phases have equal
A. Intermolecular
B. kinetic energy
C. Total energy

D. Potential energy

Answer: B

- Watch Video Solution

6. Water boils at lower temperature on high altitude because:
A. atomspheric pressure is low there
B. atomospheric pressure is high there
C. water is weakly hydrogen bonded there
D. water in pure form is found there

Answer: A

D Watch Video Solution

7. When a student was given a viscometer, the liquid was sucked with difficulty, the liquid may be:
A. benzene
B. toluene
C. water
D. glycerine

Answer: D

- Watch Video Solution

8. Mark the correct statement.
A. Surface tension of a liquid increases with temperature
B. Addition of chemicals reduces the surface tension of liquid
C. Stalagmometer is used for measuring viscosity of liquid
D. Viscosity of the liquid does not depend intermolecular forces

Answer: B

- Watch Video Solution

9. With the increasing molecular mass of a liquid the velocity:
A. decreases
B. increases
C. no effect
D. all wrong

Answer: B

D Watch Video Solution

10. The viscosity of which of the following liquid is the maximum.
A. water
B. glycol

C. acetone

D. ethanol

Answer: B

- Watch Video Solution

11. The rise of a liquid in a capillary tube is due to :
A. viscosity
B. osmosis
C. diffusion
D. surface tension

Answer: B

- Watch Video Solution

12. With increase in temperature, the fluidity of liquids
A. increases
B. decreases
C. remains constant
D. may increase of decrease

Answer: A
13. If η_{1} and η_{2} are the coefficients of viscosity of two liquids, d_{1} and d_{2} their densities and t_{1} and t_{2} the flow times in Ostwald viscometer, then:

$$
\begin{aligned}
& \text { A. } \frac{\eta_{1}}{\eta_{2}}=\frac{d_{1} t_{2}}{d_{2} t_{1}} \\
& \text { B. } \frac{\eta_{1}}{\eta_{2}}=\frac{d_{2} t_{2}}{d_{1} t_{1}} \\
& \text { C. } \frac{\eta_{1}}{\eta_{2}}=\frac{d_{1} t_{1}}{d_{2} t_{2}} \\
& \text { D. } \frac{\eta_{1}}{\eta_{2}}=\frac{d_{2} t_{1}}{d_{1} t_{2}}
\end{aligned}
$$

Answer: C

14. Which of the following expressions regarding the unit of coefficient of viscosity is not true?
A. dyne $\mathrm{cm}^{-2} \mathrm{sec}$
B. dyne $\mathrm{cm}^{2} \mathrm{sec}^{-1}$
C. $N m^{-2} \mathrm{sec}$
D. 1 poise $=10^{-1} \mathrm{Nm}^{-2} \mathrm{sec}$

Answer: C

- Watch Video Solution

15. The boiling point of water, ethyl alcohol and diethyl ether are $100^{\circ} \mathrm{C}, 78.5^{\circ} \mathrm{C}$ respectively. The intermolecular forces will be in the order of:
A. water gt ethyl alcohol gt diethyl ether
B. ethyl gt alcohol gt water gt diethyl ether
C. diethyl gt ethyl alcohol gt water
D. diethyl ethar gt water gt ethyl alcohol

Answer: A

- Watch Video Solution

16. Viscosity of a liquid is increased by:
A. increases in temperature
B. decreases in molecular size
C. increase in molecular size
D. none of the above

Answer: C

- Watch Video Solution

17. Which of the following statements is correct if the intermolecular forces in liquid A, B and C are in
the order $A<B<C$?
A. B evaporates more readily than A
B. B evaporates less readily than C
C. A and B evaporates at the same rate
D. A evaporates more readily than C

Answer: D

D Watch Video Solution

Section B - Assertion Reasoning

1. Assertion: Compressibility factor for hydrogen
varies with pressure with positive slope at all pressures.

Reason: Even at low pressures, repulsive forces dominate hydrogen gas.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

D Watch Video Solution

2. Assertion:Pressure is exerted by gas in a container with increasing temperature of the gas.

Reason: With the rise in temperature, the average
speed of gas molecules increases.
A. If both assertion and reason are true and the reason is the correct explanation of the
assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

3. Assertion: Gases do not settle at the bottom of container.

Reason: Gases have high kinetic energy.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

4. Assertion: A mixture of He and O_{2} is used for respiration for deep sea divers.

Reason: $H e$ is soluble in blood.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

5. Assertion: Wet air is heavier than dry air.

Reason: The density of the dry air is more than density of water.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

D Watch Video Solution

6. Assertion: The increase in compressibility factor with increasing pressure in due to a.

Reason: $Z=1+\frac{b P}{R T}$ for real gas can be obtained by neglecting a / V^{2} term in van der Waals equation.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.
7. Assertion: A gas can be liquefied at
$T=T_{c}$ and $P<P_{c}$
Reason: A gas can be liquefied when
$T<T_{c}$ and $P<P_{c}$.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

8. Assertion: The gas heated, if its temperature is less
than its inversion temperature in Joule-Thomson effect.

Reason: Heating in gas is noticed durting Joule-
Thomson effect when $T>Y_{i}$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

9. Assertion: All molecules in a gas are moving with same speed.

Reason: Speed of molecules in a gas follows
Maxwell's distribution law.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

10. Assertion: The compressibility factor for H_{2} and
$H e$ is
$\left[1+\frac{b P}{R T}\right]$
Reason: The compressibility factor H_{2} and He can be derived from van der Waal's equation.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

11. Assertion: The numerical values of P_{c}, V_{c} and T_{c} are $\frac{a}{27 b^{2}}, 3 b$ and $\frac{8 a}{27 R b}$ respectively.

Reason: The compressibility factor Z at critical conditions is $3 / 8$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

12. Assertion: At low pressure van der Waal's equaiton is ruduced to $\left[P+\frac{a}{V^{2}}\right] V=R T$

Reason: The compressibility factor corresponding to low pressure is given by: $1-\frac{R T V}{a}$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

13. Assertion: Molar specific heat at constant volume of an ideal diatomic gas is $\left[\frac{3}{2} R+R\right]$.

Reason: On heating 1 mole an ideal diatomic gas at constant pressure of $1^{\circ} \mathrm{C}$ rise in temperature, the increase in internal energy of gas is $\frac{7}{2} R$.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

14. Assertion: The gas on subjecting to Joule-

Thomson effect gets heated if its temperature is less
than its inversion temperature.
Reason: Hetaing effect has $-v e$ Joule-Thomson coefficient.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.

D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

15. Assertion: On heating a sample of gas collision frequency increases.

Reason: Heat is produced by the collision of gas molecules against each other.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

D Watch Video Solution

16. Assertion: The coefficient of isothermal expansion at critical point is zero.

Reason: $\left(\frac{\partial V_{c}}{\partial T_{c}}\right)_{P_{c}}=0$
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

17. Assertion: Poisson ratio of atmospheric gases is approximately equal to 1.4 .

Reason: Gases present in atomosphere are mainly diatomic.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

18. Assertion: Absolute zero temperature is a theoretically possible temperature at which the volume of the gas becomes zero.

Reason: The total kinetic energy of molecules is zero at this temperature.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

19. Assertion: In a container containing gas ' A ' at temperature $400 K$, some more gas A at temperature $300 K$ is introduced. The pressure of the
system increases.
Reason: Increase in gaseous particle increses the number of collisions among the molecules.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

20. Assertion: Pressure exerted by a mixture of gases is equal to the sum of their partial pressure.

Reason: Reacting gases react to form a new gas having pressure equal to the sum of both.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

D Watch Video Solution

21. Assertion: Gases like N_{2}, O_{2} behave as ideal gases at high temperature and low pressure.

Reason: Molecular interaction diminihes at high temperature and low pressure.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

- Watch Video Solution

22. Assertion: Most probable velocity of particles of gas is the velocity possessed by maximum fraction of particels at the same temperature.

Reason: On collision, more and more molecules acquire higher speed at the same temperature.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

23. Assertion: The diffusion rate of oxygen is smaller
than that of nitrogen under identical conditions.
Reason: Molecular mass of nitrogen is smaller than that of oxygen.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

AIPMT/ NEET Questions

1. What is the density of N_{2} gas at $227^{\circ} \mathrm{C}$ and 5.00atm pressure?
$\left(R=0.0821 \mathrm{atmK}^{-1} \mathrm{~mol}^{-1}\right)$
A. $0.29 \mathrm{~g} / \mathrm{ml}$
B. $1.40 \mathrm{~g} / \mathrm{ml}$
C. $2.81 \mathrm{~g} / \mathrm{ml}$
D. $3.41 \mathrm{~g} / \mathrm{ml}$

Answer: D

2. Van der Waals real gas acts an ideal gas at which conditions?
A. High temperature, low pressure
B. Low temperature, high pressure
C. High temperature, high pressure
D. Low, temperature, low pressure

Answer: A

- Watch Video Solution

3. The surface tension of which of the following
liquid is maximum?
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $C_{6} H_{6}$

Answer: C

- Watch Video Solution

4. If a gas expands at constant temperature, it indicates that
A. Pressure of the gas increases
B. number of the molecules of gas increases
C. kinetic energy of molecules remains the same
D. kinetic energy of molecules decreases

Answer: C

- Watch Video Solution

5. Three moles of an ideal gas expanded spontaneously into vacuum. The work done will be
A. 9 joules
B. 3 joules
C. Zero
D. Infinite

Answer: C
6. The pressure exerted by 6.0 g of methane gas in a $0.03 \mathrm{~m}^{3}$ vessel at $129^{\circ} \mathrm{C}$ is: (Atomic masses of $C=12.01, H=1.01$ and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
A. $215216 P a$
B. $13409 P a$
C. $41648 P a$
D. $31684 P a$

Answer: C

7. Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molar mass of A is $49 u$.

Molar mass of B will be
A. $25.00 u$
B. $50.00 u$
C. $12.25 u$
D. $6.50 u$

Answer: C

8. A gaseous mixture was prepared by taking equal moles of $C O$ and N_{2}. If the total pressure of the mixture was found to be 1 atomosphere, the partical pressure of the nitrogen $\left(N_{2}\right)$ in the mixture is
A. 1 atm
B. 0.9 atm
C. 0.8 atm
D. 0.5 atm

Answer: D

9. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled?
A. 1.4
B. 2.0
C. 2.8
D. 4.0

Answer: A
10. A bubble of air is underwater at temperature
$15^{\circ} C$ and the pressure 1.5 bar. If the bubble rises to
the surface where the temperature is $25^{\circ} \mathrm{C}$ and the pressure is 1.0 bar, what will happen to the volume of the bubble?
A. Volume will become smaller by a factor of 0.70
B. Volume will become greater by a factor of 1.1
C. Volume will become greater by a factor of 1.6
D. Volume will become greater by a factor of 2.5

Answer: C

11. Which of the following is correct option for the free expansion of an ideal gas under adiabatic condition?

$$
\begin{aligned}
& \text { A. } q \neq 0, \Delta T=0, w=0 \\
& \text { B. } q \neq 0, \Delta T=0, w=0 \\
& \text { C. } q=0, \Delta T=0, w=0 \\
& \text { D. } q=0, \Delta T<0, w \neq 0
\end{aligned}
$$

Answer: C

12. A certain gas takes three times as long to effuse out as helium. Its molar mass will be
A. $27 u$
B. $36 u$
C. $64 u$
D. $9 u$

Answer: B
13. For real gases, van der Waals' equation is written
as
$\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T$
where a and b are van der Waals' constants.

Two sets of gases are:
$(I) O_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \quad$ and $\quad \mathrm{He}(I I) \mathrm{CH}_{4}, \mathrm{O}_{2} \quad$ and
O_{2} and H_{2}

The gases given in set I in increasing order of b and gases given in set $I I$ in decreasing order of a are arranged below. Select the correct order from the following:
A.

$$
\text { (I) } \mathrm{He}<\mathrm{H}_{2}<\mathrm{CO}_{2}<\mathrm{O}_{2},(\mathrm{II}) \mathrm{CH}_{4}>\mathrm{H}_{2}>\mathrm{O}_{2}
$$

B.

$$
(I) O_{2}<H e<H_{2}<\mathrm{CO}_{2}(I I) H_{2}>O_{2}>\mathrm{CH}_{4}
$$

C.

$$
(\mathrm{I}) \mathrm{H}_{2}<\mathrm{He}<\mathrm{O}_{2}<\mathrm{CO}_{2},(\mathrm{II}) \mathrm{CH}_{4}>\mathrm{O}_{2}>\mathrm{H}_{2}
$$

D.

$$
(\mathrm{I}) \mathrm{H}_{2}<\mathrm{O}_{2}<\mathrm{He}<\mathrm{CO}_{2},(\mathrm{II}) \mathrm{O}_{2}>\mathrm{CH}_{4}>\mathrm{H}_{2}
$$

Answer: C

14. 50 mL of each gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar conditon. If molecular mass of gas B is 36 , then the molecular mass of gas A will be
A. 96
B. 128
C. 32
D. 64

Answer: C
15. Maximum deviation from ideal gas is expected from
A. $N_{2}(g)$
B. $C H_{4}(g)$
C. $\mathrm{NH}_{3}(\mathrm{~g})$
D. $H_{2}(g)$

Answer: C

16. Dipole-induced dipole interaction are present in

 which of the following pairsA. $C l_{2}$ and $C C l_{4}$
B. HCl and He atoms
C. SiF_{4} and He atoms
D. $\mathrm{H}_{2} \mathrm{O}$ and alcohole

Answer: B

- Watch Video Solution

17. Equal masses of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and methane have been taken in a container of volume V at temperature $27^{\circ} C$ in identical conditions. The ratio of the volume of gases $\mathrm{H}_{2}: \mathrm{O}_{2}$: methane would be A. $8: 16: 1$
B. 16:8:1
C. $16: 1: 2$
D. $8: 1: 2$

Answer: C

18. A gas such as carbon monoxide would be most
likely to obey the ideal gas law at
A. high temperature and high pressure
B. low temperature and low pressure
C. high temperature and low pressure
D. low temperature and low pressure

Answer: C

- Watch Video Solution

19. Equal moles of hydrogen and oxygen gases are
placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape?
A. $1 / 2$
B. $1 / 8$
C. $1 / 4$
D. $3 / 8$

Answer: B
20. Consider the following liquid-vapour equilibrium.

Liquid \Leftrightarrow Vapour

Which of the following relations is correct?

$$
\begin{aligned}
& \text { A. } \frac{d \ln P}{d T}=\frac{\Delta H_{v}}{R T^{2}} \\
& \text { B. } \frac{d \ln G}{d T^{2}}=\frac{\Delta H_{v}}{R T^{2}} \\
& \text { с. } \frac{d \ln P}{d T}=\frac{-\Delta H_{v}}{R T^{2}} \\
& \text { D. } \frac{d \ln P}{d T^{2}}=\frac{-\Delta H_{v}}{T^{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

21. A gas is allowed to expand in a well insulated container against a constant external pressure of
2.5 atm from an initial volume of 2.50 L to a final volume of $4.50 L$. The change in internal energy ΔU of the gas in joules will be:
A. $-500 J$
B. -505 J
C. +505 J
D. 1136.25 J

Answer: B
22. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container, when pressure of CO_{2} attains its maximum value, will be:
(Given
that:
$\left.\mathrm{SrCO}_{3}(s) \Leftrightarrow \operatorname{SrO}(s)+\mathrm{CO}_{2}(g) K_{p}=1.6 \mathrm{~atm}\right)$
A. 10litre
B. 4litre
C. 2litre
D. 5litre

Answer: D

D Watch Video Solution

23. Given van der Waals constant for
$\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and CO_{2} are respectively
$4.17,0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
A. NH_{3}
B. H_{2}
C. O_{2}
D. CO_{2}

- Watch Video Solution

24. The correction factor a to the ideal gas equation corresponds to
A. density of the gas molecules
B. volume of the gas molecules
C. electric field present between the gas molecules
D. forces of attraction between the gas molecules

Answer: D

D Watch Video Solution

AllMS Questions

1. The pressure p of a gas is plotted against its absolute temperature T for two different constant volumes, V_{1} and V_{2} when $V_{1}>V_{2}$, the
A.curves have the same slope and do not intersect
B. curves must intersect at some point other than

$$
T=0
$$

C. curves for V_{2} has a greater slope than that for
V_{1}
D. curve for V_{1} has a greater slope than that for

$$
V_{2}^{\prime}
$$

Answer: C

D Watch Video Solution

2. Two closed vessels of equal volume containing air at pressure P_{1} and temperature T_{1} are connected to
each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_{1} and that in the other at T_{2}, what will be the pressure in the vessels?

$$
\begin{aligned}
& \text { A. } \frac{2 P_{1} T_{1}}{T_{1}+T_{2}} \\
& \text { B. } \frac{T_{1}}{2 P_{1} T_{2}} \\
& \text { C. } \frac{2 P_{1} T_{2}}{T_{1}+T_{2}} \\
& \text { D. } \frac{2 P_{1}}{T_{1}+T_{2}}
\end{aligned}
$$

Answer: C

3. Which of the following exhibits the weakest intermolecular forces?
A. NH_{3}
B. HCl
C. He
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C
4. If rate of diffusion of A is 5 times that of B, what will be the density ratio of A and B ?
A. $1 / 25$
B. $1 / 5$
C. 25
D. 4

Answer: A
5. Containers A and B have same gases. Pressure, volume and temperature of A are all twice that of B, then the ratio of number of molecules of A and B are

- Watch Video Solution

6. The ratio γ for inert gases is
A. 1.33
B. 1.66
C. 2.13
D. 1.99

Answer: B

- Watch Video Solution

7. The temperature at which a real gas obeys the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Boyle temperature
C. Inversion temperature
D. Reduced temperature

Answer: B

8. A gas can be liquefied by pressure alone when its

 temperatureA. above its critical temeprature
B. at its critical temperature
C. below its critical temperature
D. at any temperature

Answer: C

- Watch Video Solution

9. What is the relationship between the average velocity (v), root mean square velocity (u) and most probable velocity (a) ?

A. $a: v: u:: 1: 1.128: 1.224$
B. $a: v: u:: 1.128: 1: 1: 1.224$
C. $a: v: u:: 1.128: 1.224: 1$
D. $a: v: u:: 1.124: 1.228: 1$

Answer: A

D Watch Video Solution

10. At high temperature and low pressure the van der

Waals equation is reduced to .

$$
\begin{aligned}
& \text { A. }\left(p+\frac{a}{V_{m}^{2}}\right)\left(V_{m}\right)=R T \\
& \text { B. } p V_{m}=R T \\
& \text { C. } p\left(V_{m}-b\right)=R T \\
& \text { D. }\left(p+\frac{a}{V_{m}^{2}}\right)=\left(V_{m}-b\right)=R T
\end{aligned}
$$

Answer: B

- Watch Video Solution

11. In van der Waals' equation of state of the gas law the constnat ' b ' is a measure of .
A. volume occupied by the molecules
B. intermolecular attraction
C. intermolecular repulsions
D. intermolecular collisions per unit volume

Answer: A

- Watch Video Solution

12. Calculate the total pressure in a mixture of $4 g$ of oxygen and $2 g$ of hydrogen confined in a total volume of $1 L$ at $0^{\circ} C$.
A. 25.215 atm
B. 31.205 atm
C. 45.215 atm
D. 15.210atm

Answer: A

- Watch Video Solution

13. If pressure becomes double at the same absolute

 temperature on $2 \mathrm{LCO}_{2}$, then the volume of CO_{2} becomesA. $2 L$
B. $4 L$
C. $25 L$
D. $1 L$

Answer: D

14. If the inversion temperature of a gas is $-80^{\circ} \mathrm{C}$, then it will produce cooling under Joule-Thomson effect at
A. 298 K
B. 273 K
C. $193 k$
D. 173 K

Answer: D

15. Ratio of C_{p} and C_{v} of a gas ' $X^{\prime} i s 1.4$. The number of atoms of the gas ' X ' presents in 11.2litres of it a $N T P$ is
A. 6.02×10^{23}
B. 1.2×10^{24}
C. 3.01×10^{23}
D. 2.01×10^{23}

Answer: A
16. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has
A. fewer electrons than oxygen
B. two covalent bonds
C. V-shape structure
D. dipole moment

Answer: D

- Watch Video Solution

17. A gas $(1 g)$ at 4 bar pressure. If we add $2 g m$ of gas
B then the total pressure inside the container is 6 bar. Which of the following is true?
A. $M_{A}=2 M_{B}$
B. $M_{B}=2 M_{A}$
C. $M_{A}=4 M_{B}$
D. $M_{B}=4 M_{A}$

Answer: D

D Watch Video Solution

Assertion - Reasoning Questions

1. Assertion: Ideal gas does not show Joule-Thomson effect as well as they cannot be liquefied.

Reason: $\left(\frac{\partial E}{\partial V}\right)_{T}$ and $\left(\frac{\partial T}{\partial P}\right)_{H}$ for ideal gas is zero.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

D Watch Video Solution

2. Assertion: Andrews worked on a temporary gas (so called at that time) and derived the condition to
liquefy the permanent gases (so called at that time).
Reason: Andrews studied isotherms of CO_{2} and obtained the required conditions of liquefaction of gas as $T g a s<T c$ (critical temperature).
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

3. Assertion: Effusion rate of oxygen is smaller than nitrogen.

Reason: Molecular size of nitrogen is smaller than oxygen.
A. If both assertion and reason are true and the
reason is the correct explanation of the
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

4. Assertion: The value of van der Waals constant a is
larger for ammonia than for nitrogen.
Reason: Hydrogen bonding is present in ammonia.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

D Watch Video Solution

5. Assertion: The Poisson's ratio for diatomic gases is more than for monoatomic gases.

Reason: Diatomic gases possess more degree of freedom.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

Section D - Chapter End Test

1. A gas can be liquefied by pressure alone when its
temperature
A. higher than its critical temperature
B. lower than its critical temperature
C. either of these
D. none

Answer: B
2. Boyle's law may be experssed as .
A. $\left(\frac{d P}{d V}\right)_{T}=\frac{K}{V}$
B. $\left(\frac{d P}{d V}\right)_{T}=-\frac{K}{V^{2}}$
c. $\left(\frac{d P}{d V}\right)_{T}=-\frac{K}{V}$
D. none

Answer: B

- Watch Video Solution

3. A vessel has N_{2} gas and water vapours at a total pressure of 1 atm. The partial pressure of water
vapours is 0.3 atm . The contents of this vessel are transferred to another vessel having one-third of the capacity of original volume, completely at the same temperature the total pressure of this system in the new vessel is
A. 3.0 atm
B. 1 atm
C. 3.33 atm
D. 2.4 atm

Answer: D
4. For two gases A and B with molecular weights
M_{A} and M_{B}, respectively, it is observed that at a certain temperature T, the mean velocity of A is equal to the $V_{r m s}$ of B. Thus, the mean velocity of A
can be made equal to the mean velocity of B, if
A. A is at temperature T and B at $T^{\prime}, T>T^{\prime}$
B. A is lowered to a temperature $T_{2}, T_{2}<T$ while B is at T
C. Both A and B are raised to higher temperature
D. Both A and B are placed at lower temperature

- Watch Video Solution

5. The circulation of blood in human body supplies
O_{2} and releases CO_{2} The concentration of O_{2} and
CO_{2} is variable but on the average 100 mL blood contains $0.02 g$ of O_{2} and 0.08 g of CO_{2} Calcultate the volume of O_{2} and CO_{2} at 1 atm and body temperature $37^{\circ} \mathrm{C}$ assuming 10 litre blood in human body.
A. $2 L, 4 L$
B. $1.5 L, 4.5 L$

C. $1.59 L, 4.62 L$

D. $3.82 L, 4.62 L$

Answer: C

- Watch Video Solution

6. At $100^{\circ} \mathrm{C}$ and 1 atm , if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.0006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecules in $1 L$ steam at this temperature is
A. $6 c c$
B. $60 c c$
C. $0.6 c c$

D. 0.06 cc

Answer: C

- Watch Video Solution

7. The KE of N molecule of O_{2} is x joules at $-123^{\circ} C$.

Another sample of O_{2} at $27^{\circ} C$ has a $K E$ of $2 x$ joules. The latter sample contains
A. N molecules of O_{2}
B. 2 N molecules of O_{2}
C. $N / 2$ molecules of O_{2}
D. $N / 4$ molecules of O_{2}

Answer: A

- Watch Video Solution

8. If for two gases of molecular weights M_{A} and M_{B} at temperature T_{A} and T_{B}, respectively,
$T_{A} M_{B}=T_{B} M_{A}$, then which property has the same magnitude for both the gases?
A. density
B. Pressure
C. $K E$ per mole
D. $V_{r m s}$

Answer: D

- Watch Video Solution

9. A helium atom is two times heavier than a hydrogen molecule. At $298 K$, the average kinetic energy of a helium atom is
A. two times that of hydrogen molecule
B. Same as that of the hydrogen molecule
C. four times that of a hydrogen molecule

D. half that of a hydrogen molecule

Answer: B

- Watch Video Solution

10. Dalton's law of partial pressures is not applicable to
A. H_{2} and N_{2} mixture
B. H_{2} and Cl_{2} mixture
C. H_{2} and CO_{2} mixture
D. H_{2} and O_{2} mixture

Answer: B

- Watch Video Solution

11. The ratio between the root mean square speed of H_{2} at 50 K and that of O_{2} at 800 K is
A. 4
B. 2
C. 1
D. $1 / 4$

Answer: C

- Watch Video Solution

12. Which of the following curves does not represent Boyle's law?
(a)

A.
V
(b)
B.

Answer: D

- Watch Video Solution

13. The temperature of an ideal gas is increased from
$140 K$ to $560 K$. If a $140 K$ the root mean square
A. 5 V
B. 2 V
C. $V / 2$
D. $V / 4$

Answer: B

- Watch Video Solution

14. The behaviour of a real gas is usually depicted by plotting compressibility factor Z versus P at a constant temperature At high temperature and high
pressure Z is usually more than one This fact can be explained by van der Waals' equation when .
A. the constant ' a ' is negligible and not b
B. the constant ' b ' is negligible and not a
C. both constants ' a ' and ' b ' are negligible
D. both the constants ' a ' and ' b ' are not negligible.

Answer: A

- Watch Video Solution

15. $X m L$ of H_{2} gas effuses through a hole in a container is 5 second. The time taken for the effusion of the same volume of the gas specified below under identical conditions is.
A. 10 seconds: $H e$
B. 20 seconds: O_{2}
C. 25 seconds: $C O$
D. 35 seconds: $C O_{2}$

Answer: B
16. NH_{3} is liquefied more easily than N_{2}. Hence
A. a and b of $\mathrm{NH}_{3}>$ that of N_{2}
B. $a\left(\mathrm{NH}_{3}\right)>a\left(\mathrm{~N}_{2}\right)$ but $b\left(\mathrm{NH}_{3}\right)<b\left(\mathrm{~N}_{2}\right)$
C. $a\left(\mathrm{NH}_{3}\right)<a\left(\mathrm{~N}_{2}\right)$ but $b\left(\mathrm{NH}_{3}\right)>b\left(\mathrm{~N}_{2}\right)$
D. none

Answer: B

D Watch Video Solution

17. 0.2 mole sample of hydrocarbon $C_{x} H_{y}$ yields after complete combustion with excess O_{2} gas, 0.8 mole
of $\mathrm{CO}_{2} 1.1$ mole of $\mathrm{H}_{2} \mathrm{O}$. Hence hydrocarbon is
A. $C_{4} H_{10}$
B. $C_{4} H_{8}$
C. $C_{4} H_{5}$
D. $C_{8} H_{16}$

Answer: A

D Watch Video Solution

18. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in
the same flask, the total pressure becomes 1.5 atm .

Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. 1:1
B. 1:2
C. 2:3
D. 1:4

Answer: C

19. Air open vessel at $127^{\circ} \mathrm{C}$ is heated until $1 / 5^{\text {th }}$ of air in it has been expelled. Assuming that the volume of vessel remains constant the temperature to which the vessel has been heated is
A. $177^{\circ} C$
B. $277^{\circ} \mathrm{C}$
C. $377^{\circ} \mathrm{C}$
D. $477^{\circ} \mathrm{C}$

Answer: D

20. $3.2 g$ of S is heated to occupy a volume of 780 ml at $450^{\circ} \mathrm{C}$ and 723 mm pressure. Formula of sulphure is
A. S_{2}
B. S
C. S_{4}
D. S_{8}

Answer: D

- Watch Video Solution

21. A gas cyclinder containing cooking gas can withstand a pressure of 14.9 atm . The pressure gauge of cyclinder indicates 12 atm at $27^{\circ} \mathrm{C}$. Due to sudden fire in building the temperature starts rising.

The temperature at which the cyclinder will explode is
A. $42.5^{\circ} \mathrm{C}$
B. $67.8^{\circ} \mathrm{C}$
C. $99.5^{\circ} \mathrm{C}$
D. $25.7^{\circ} \mathrm{C}$

Answer: C

22. A sample of gas is at $0^{\circ} C$. The temperature at which its rms speed of the molecule will be doubled is
A. $103^{\circ} \mathrm{C}$
B. $273^{\circ} \mathrm{C}$
C. $723^{\circ} \mathrm{C}$
D. $1092 K$

Answer: D
23. In a closed vessel, a gas is heated from 300 K to 600 K the kinetic energy becomes/remains
A. half
B. double
C. same
D. four times

Answer: B

- Watch Video Solution

24. Air contains $79 \% N_{2}$ and $21 \% O_{2}$ by volume. If the barometric pressure is 750 mmHg . The partial pressure of oxygen is
A. 157.7 mmHg
B. 175.5 mmHg
C. 315.0 mmHg
D. none

Answer: A

D Watch Video Solution
25. Which of the following gases would have the highest $r m s$ speed at $0^{\circ} C$?
A. O_{2}
B. CO_{2}
C. SO_{3}
D. $C O$

Answer: D

- Watch Video Solution

26. Two gases A and B present separately in two vessels X and Y at the same temperature with molecular weights M and $2 M$ respectively are effused out. The orifice in vessel X is circular while that in Y is a square. If the radius of the circular orifice is equal to that of the length of the square orifice the ratio of rates of effusion of gas A to that of gas B
A. $\sqrt{2} \pi$
B. $\sqrt{\frac{\pi}{2}}$
C. 2π
D. $\sqrt{\frac{2}{\pi}}$

Answer: A

- Watch Video Solution

27. $X m L$ of H_{2} gas effuses through a hole in a container is 5 second. The time taken for the effusion of the same volume of the gas specified below under identical conditions is .
A. $10 \sec s: H e$
B. $20 \sec s: O_{2}$
C. $25 \sec s: C O$
D. $55 \mathrm{sec} s: \mathrm{CO}_{2}$

Answer: B

- Watch Video Solution

28. Assertion: A mixture of He and O_{2} is used for respiration for deep sea divers.

Reason: $H e$ is soluble in blood.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

D Watch Video Solution

29. Assertion: Compressibility factor for hydrogen varies with pressure with positive slope at all pressures.

Reason: Event at low pressures, repulsive forces dominate hydrogen gas.
A. If both assertion and reason are true and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

30. Assetion: Carbon dioxide has greater value of root mean square velocity $\mu_{r m s}$ than carbon monoxide.

Reason: $\mu_{r m s}$ is inversely proportional to molar mass.
A. If both assertion and reason are true and the
reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

Others

1. Which of the following is true about gaseous state?
A. Thermal energy $=$ Molecular attraction
B. Thermal energy > Molecular attraction
C. Thermal energy < Molecular attraction
D. None of these

Answer: B

- Watch Video Solution

2. A cylinder containing cooking gas can withstand a pressure of 15 atm . The pressure gauge of the cylinder indicates $12 a t m$ at $27^{\circ} \mathrm{C}$. Due to a sudden fire in the building, the temperature starts rising. At what temperature will the cylinder explode?
A. $42.5^{\circ} \mathrm{C}$
B. $67.8^{\circ} \mathrm{C}$
C. $99.5^{\circ} \mathrm{C}$
D. $25.7^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution
3. The product of $P V$ is potted aginst P at two temperatures T_{1} and T_{2} and the 'result is shown in
the figure. What is correct about T_{1} and T_{2} ?

A. $T_{1}>T_{2}$
B. $T_{2}>T_{1}$
C. $T_{1}=T_{2}$
D. $T_{1}+T_{2}=1$

Answer: B
4. Which of the following statements is wrong for gases?
A. Gases do not have a definite shape and volume
B. Volume of the gas is equal to the volume of the container the gas
C. Confined gas exerts uniform pressure on the walls of its container in all directions.
D. Mass of the gas cannot be determined by
weighing a container in which it is enclosed

Answer: D

D Watch Video Solution

5. If P, V, and T represent pressure, volume and temperature of the gas, the correct representation of Boyle's law is
A. $V \propto \frac{1}{T}$ (at constant P)
B. $P V=R T$
C. $V \propto 1 / P($ at constant $T)$
D. $P V=n R T$

Answer: C

D Watch Video Solution

6. If V_{0} is the Volume of a given mass of gas at 273 K at constant pressure, then according to Charles's law,
the volume at $10^{\circ} C$ will be:
A. $10 V_{0}$
B. $\frac{2}{273}\left(V_{0}+10\right)$
C. $V_{0}+\frac{10}{273}$
D. $\frac{283}{273} V_{0}$

Answer: D

D Watch Video Solution

7. Which of the following curves does not represent Boyle's law?
A.
(a)
(b)
B.

C.
(c)
(d)

D.

Answer: D

- Watch Video Solution

8. Pressure remaining the same, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by define fraction of its volume at
A. $0^{\circ} C$
B. Its critical temperature

C. Absolute zero

D. Its Boyle temperature

Answer: A

- Watch Video Solution

9. O_{2} gas at $S T P$ contained in a flask was replaced by SO_{2} under same conditions. The weight of SO_{2} will be
A. half
B. one-fourth

C. twice

D. four times

Answer: C

- Watch Video Solution

10. For the given ideal gas equation $P V=n R T$, answer the following questions:

At constant temperature, in a given mass of an ideal gas
A. The ratio of pressure and volume always
B. Volume always remains constant
C. Pressure always remains constant
D. The product of pressure and volume always remains constant.

Answer: D

D Watch Video Solution

11. According to Charles's law

> А. $\left(\frac{d V}{d T}\right)_{p}=K$
> В. $\left(\frac{d V}{d T}\right)_{p}=-K$
c. $\left(\frac{d V}{d T}\right)_{p}=-\frac{K}{T}$
D. none

Answer: A

- Watch Video Solution

12. A gas at a pressure of 5.0 atm is heated from $0^{\circ} \mathrm{C}$
to $546^{\circ} \mathrm{C}$ and simultaneously compressed to onethird of its original volume. Hence final pressure is
A. 10.0 atm
B. 30.0 atm
C. 45.0 atm
D. 5.0 atm

Answer: C

- Watch Video Solution

13. I, II, and III are three istherms, respectively, at
T_{1}, T_{2}, and T_{3}. Temperature will be in order

A. $T_{1}=T_{2}=T_{3}$
B. $T_{1}<T_{2}<T_{3}$
C. $T_{1}>T_{2}>T_{3}$
D. $T_{1}>T_{2}=T_{3}$

Answer: C
14. A certain sample of gas has a volume of 0.2 litre measured at 1 atm pressure and $0^{\circ} \mathrm{C}$. At the same pressure but at $273^{\circ} \mathrm{C}$, its volume will be
A. 0.4litres
B. 0.8 litres
C. $27.8^{\circ} \mathrm{C}$,
D. 55.6 litres

Answer: A

D Watch Video Solution
15. An open vessel containing air is heated form 300 K to 400 K . The fraction of air originally present which goes out of it is at 400 K
A. $3 / 4$
B. $1 / 3$
C. $2 / 3$
D. $1 / 8$

Answer: B

D Watch Video Solution
16. Air at sea level is dense. This is a practical application of
A. Boyle's law
B. Charles's law
C. Avogardo's law
D. Dalton's law

Answer: A
17. $400 \mathrm{~cm}^{3}$ of oxygen at $27^{\circ} \mathrm{C}$ were cooled to $-3^{\circ} \mathrm{C}$ without change in pressure. The contraction in volume will be as per Boyle's law?
A. $40 \mathrm{~cm}^{3}$
B. $30 \mathrm{~cm}^{3}$
C. $44.4 \mathrm{~cm}^{3}$
D. $360 \mathrm{~cm}^{3}$

Answer: A

D Watch Video Solution
18. Which of the following represent $\log P v s . \log V$ variation as per Boyle's law?

(b)

B.

19. If $20 \mathrm{~cm}^{3}$ gas at 1 atm is expanded to $50 \mathrm{~cm}^{3}$ at constant T, then what is the final pressure
A. $20 \times \frac{1}{50}$
B. $50 \times \frac{1}{20}$
C. $1 \times \frac{1}{20} \times 50$
D. None of these

Answer: A

Watch Video Solution

20. If the pressure of a gas contined in closed vessel in increased by 0.4% when heated by $1 K$, its initial temperature must be:
A. 250 K
B. $250^{\circ} \mathrm{C}$
C. $25^{\circ} \mathrm{C}$
D. 25 K

Answer: A
21. 300 ml of a gas at $27^{\circ} \mathrm{C}$ is cooled to $-3^{\circ} \mathrm{C}$ at constant pressure, the final volume is
A. 540 ml
B. 135 ml
C. 270 ml
D. 350 ml

Answer: C

- Watch Video Solution

22. A sample of gas at $35^{\circ} \mathrm{C}$ and 1 atm pressure occupies a volume of 3.75 litres. At what temperature should the gas be keep if it si required should the gas be keep if it is required to reduce the volume to 3 litres a the same pressure:
A. $-26.6^{\circ} C$
B. $0^{\circ} \mathrm{C}$
C. $3.98^{\circ} \mathrm{C}$
D. $28^{\circ} \mathrm{C}$

Answer: A
23. Which of the following statement is false?
A. The product of pressure and volume of fixed amount of a gas is independent of temperature
B. Molecules of different gases have the same
$K E$ at a given temperatue
C. The gas equation is not valid at high pressure
and low temperature
D. The gas constant per molecule is known as

Answer: A

- Watch Video Solution

24. Two closed vessels of equal volume containing air at pressure P_{1} and temperature T_{1} are connected to each other through a narrow tube. If the temperature in one of the vessels is now maintained at T_{1} and that in the other at T_{2}, what will be the pressure in the vessels?
A. $\frac{2 P_{1} T_{1}}{T_{1}+T_{2}}$
B. $\frac{T_{1}}{2 P_{1} T_{2}}$
C. $\frac{2 P_{1} T_{2}}{T_{1}+T_{2}}$
D. $\frac{2 P_{1}}{T_{1}+T_{2}}$

Answer: C

D Watch Video Solution

25. As per Boyle's law which of the following is/are kept constant?
A. Pressure
B. Mass
C. Temperature

D. Mass and temperature both

Answer: D

- Watch Video Solution

26. Which of the folloiwng graph is/are correct as per charles law?
A.

B.

D. Both (b) and (c) are correct

Answer: B

- Watch Video Solution

27. Volume of the air that will be expelled from a vessel of $300 \mathrm{~cm}^{3}$ when it is heated from $27^{\circ} \mathrm{C}$ to $37^{\circ} C$ at the same pressure will be
A. $310 \mathrm{~cm}^{3}$
B. $290 \mathrm{~cm}^{3}$

C. $10 \mathrm{~cm}^{3}$

D. $37 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

28. As per Charles law which of the following is/are correct
A. Pressure remains definite
B. Mass remains definite
C. volume is proportional to the absolute temperature
D. All of the above are correct

Answer: D

D Watch Video Solution

29. To determine the value of R, which of the $P V$ value is considered to be equal for every gas at 273 K ?
A. $\lim _{P \rightarrow 1 a t m}\left(P V_{m}\right)$
B. $\lim _{P \rightarrow 0}\left(P V_{m}\right)$
C. $\lim _{P \rightarrow \infty}\left(P V_{m}\right)$
D. $\lim _{V \rightarrow 0}\left(P V_{m}\right)$

Answer: B

D Watch Video Solution

30. For 1 mol of an ideal gas, $V_{1}>V_{2}>V_{3}$ in fig. (I),
$T_{1}>T_{2}>T_{3}$ in fig. (II), $P_{1}>P_{2}>P_{3}$ in fig. (III), and $T_{1}>T_{2}>T_{3}$ in fig. (IV), then which curves are

A. I, II
B. I, II, III
C. II, IV
D. I, III, IV

Answer: C
31. At definite temperature the volume of a definite mass of gas is $10 L$ at $5 a t m$ pressure, at the same temperature if the pressure of the gas is decreased to 1 atm , the volume of same gas becomes
A. 50 L
B. $2 L$
C. $5 L$
D. 0.5 L

Answer: A
32. The molecules of a gas A travel four times faster than the molecules of gas B at same temperature. The ratio of molecular weights $\left(M_{A} / M_{B}\right)$ is
A. $1 / 16$
B. 4
C. $1 / 4$
D. 16

Answer: A
33. A pre-weighed vessel was filled with oxygen at $N T P$ weighted. It was the evacuated, filled with SO_{2}
at the same temperature and pressure, and again weighted. The weight of oxygen will be
A. The same as that of SO_{2}
B. $\frac{1}{2}$ that of SO_{2}
C. Twice that of SO_{2}
D. One-fourth that of SO_{2}

Answer: B

34. Equal weights of methane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is
A. $1 / 2$
B. $8 / 9$
C. $16 / 19$
D. $1 / 9$

Answer: B

- Watch Video Solution

35. $X m L$ of H_{2} gas effuses through a hole in a container in $5 s$. The time taken for the effusion of the same volume of the gas specified below, under identical conditions, is

A. $10 \sec s: H e$

B. $20 \sec s: O_{2}$
C. $25 \sec s: C O$
D. $55 \sec s: \mathrm{CO}_{2}$

Answer: B
36. Which of the following pair will diffuse at the same rate?
A. CO_{2} and $\mathrm{N}_{2} \mathrm{O}$
B. CO_{2} and NO
C. CO_{2} and CO
D. $\mathrm{N}_{2} \mathrm{O}$ and NO

Answer: A

- Watch Video Solution

37. The rate of effusion of two gases ' a ' and ' b ' under identical conditions of temperature and pressure are in the ratio of $2: 1$ What is the ratio of $r m s$ velocity of their molecules if T_{a} and T_{b} are in the ratio of $2: 1$?
A. 2:1
B. $\sqrt{2}: 1$
C. $2 \sqrt{2}: 1$
D. 1: $\sqrt{2}$

Answer: C
38. A glass bulb contains $2.24 o f \mathrm{H}_{2}$ and 1.12 L of D_{2}
at $S T P$. It is connected a fully evacuated bulb by a stop-cock with a small opening. The stop-cock is opened for sometime and then closed. The first bulb now contains 0.10 g of H_{2}. The percentage of H_{2} in the mixture is
A. 41.6%
B. 58.4%
C. 46.2%
D. 50%
39. Equal moles of $\mathrm{CO}, \mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2}$ and CH_{4} are placed in a container. If a hole was made in container after 5minute, partial pressure of gases in container would be
(Atomic weights of C, O, B and H are $12,16,11,1$ respectively)

$$
\begin{aligned}
& \text { A. } P_{C O}>P_{B_{2} H_{6}}>P_{H_{2}}>P_{C H_{4}} \\
& \text { B. } P_{C O}=P_{B_{2} H_{6}}>P_{C H_{4}}>P_{H_{2}} \\
& \text { C. } P_{C O}>P_{B_{2} H_{6}}=P_{H_{2}}>P_{C H_{4}} \\
& \text { D. } P_{B_{2} H_{6}}>P_{H_{2}}>P_{C H_{4}}>P_{C O}
\end{aligned}
$$

Answer: B

D Watch Video Solution

40. N_{2} is found in a litre flask under 100 kPa pressure and O_{2} is found in another 3litre flask under $20 K P a$ pressure. If the two flask are connected, the resultant pressure is
A. $310 k P a$
B. 210 kPa
C. $420 k P a$
D. $265 k P a$

Answer: D

- Watch Video Solution

41. When a jar containing gaseous mixture of equal volumes of CO_{2} and H_{2} is placed in a solution of sodium hydroxide, the solution level will
A. Rise
B. Fall
C. Remain constant
D. Become zero

D Watch Video Solution

42. A mixture of H_{2} and O_{2} in $2: 1$ volume is allowed to diffuse through a porous partition what is the composition of gas coming out initially
A. 1:2
B. $4: 1$
C. 8:1
D. 1: 4

Answer: C

- Watch Video Solution

43. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5 atm .

Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. 1:1
B. 1:2
C. 2:3
D. 1: 4

Answer: C

- Watch Video Solution

44. A cylinder is filled with a gaseous mixture containing equal masses of CO and N_{2}. The partial pressure ratio is:
A. $P_{N_{2}}=P_{C_{O}}$
B. $P_{C O}=0.875 P_{N_{2}}$

$$
\begin{aligned}
& \text { C. } P_{C_{O}}=2 P_{N_{2}} \\
& \text { D. } P_{C O}=\frac{1}{2} P_{N_{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

45. A and B are two idential vessels. A contains $15 g$ ethane at 1 atm and 298 K . The vessel B contains 75 g of a gas X_{2} at same temperature and pressure. The vapour density of X_{2} is:
A. 75
B. 150
C. 37.5
D. 45

Answer: A

- Watch Video Solution

46. A mixture of hydrogen and oxygen at one bar pressue contains 20% by weight of hydrogen . Partial pressure of hydrogen will be
A. $0.2 b a r$
B. $0.4 b a r$
C. 0.6 bar

D. $0.8 b a r$

Answer: D

- Watch Video Solution

47. $20 \mathrm{dm}^{3}$ of SO_{2} diffuse through a porous partition in 60 s . what volume of O_{2} will diffuse under similar conditions in 30 s ?
A. $12.14 L$
B. $14.14 L$

C. $18.14 L$

D. $28.14 L$

Answer: B

- Watch Video Solution

48. A bottle of dry NH_{3} and another bottle of dry

HCl connected through a long tube are opened simultaneously at both ends of the tube. The white ring $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$ first formed will be A. A
B. B
C. C

D. A, B \&C simultaneously

Answer: C

- Watch Video Solution

49. The vapour density of a mixture containing NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is $38.3 \mathrm{at} 27^{\circ} \mathrm{C}$. Calculate the mole of NO_{2} in 100 g mixture.
A. 0.043
B. 4.4
C. 3.4
D. 0.437

Answer: D

D Watch Video Solution

50. A vessel is filled with a mixture of oxygen and nitrogen. At what ratio of partial pressures will the mass of gases be identical?
A. $P\left(O_{2}\right)=0.785 P\left(N_{2}\right)$
B. $P\left(O_{2}\right)=8.75 P\left(N_{2}\right)$

$$
\begin{aligned}
& \text { C. } P\left(O_{2}\right)=11.4 P\left(N_{2}\right) \\
& \text { D. } P\left(O_{2}\right)=0.875 P\left(N_{2}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

51. A sample of gas is at $0^{\circ} C$. The temperature at which its rms speed of the molecule will be doubled is
A. $103^{\circ} \mathrm{C}$
B. $273^{\circ} \mathrm{C}$

C. $723{ }^{\circ} \mathrm{C}$

D. $819^{\circ} \mathrm{C}$

Answer: D

- Watch Video Solution

52. A vessel contains 0.1 moleof $\mathrm{He}, 0.1$ mole of O_{2}
and 0.3 mole of N_{2}. The total pressure is 1 atomosphere. The pressure exerted by O_{2} is
A. 380 mm of Hg
B. 456 mm of Hg
C. 304 mm of Hg
D. 152 mm of Hg

Answer: D

- Watch Video Solution

53. A vessel has N_{2} gas and water vapours at a total pressure of 1 atm . The partial pressure of water vapours is 0.3 atm . The contents of this vessel are transferred to another vessel having one-third of the
capacity of original volume, completely at the same temperature the total pressure of this system in the new vessel is
A. 3.0 atm
B. 1 atm
C. 3.33 atm
D. 2.4atm

Answer: D

Watch Video Solution

54. The rates of diffusion of $\mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{PCl}_{3}$ and SO_{2} are the following order:
A. $\mathrm{PCl}_{3}>\mathrm{SO}_{3}>\mathrm{SO}_{2}>\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{PCl}_{3}>\mathrm{SO}_{3}$
C. $\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}>\mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}>\mathrm{SO}_{2}>\mathrm{SO}_{3}>\mathrm{PCl}_{3}$

Answer: D

D Watch Video Solution

55. A sample of air contains only $\mathrm{N}_{2}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$. It saturated with water vapours and total pressure is

6 torr. The vapour pressure of water is 40 torr and the mol ratio of $N_{2}: O_{2}$ is $3: 1$. The partial pressure of N_{2} in the sample is
A. 540torr
B. 900torr
C. 1080torr
D. 450 torr

Answer: D

- Watch Video Solution

56. An effusion experiment requires $40 s$ of a certain number of moles of a gas of unknown molar mass to pass through a small orifice into a vaccum. Under the same conditions, $16 s$ was required for the same
number of moles of O_{2} to effuse. What is the molar mass of the unknown gas?
A. $5.1 \mathrm{~g} / \mathrm{mol}$
B. $12.8 \mathrm{~g} / \mathrm{mol}$
C. $80 \mathrm{~g} / \mathrm{mol}$
D. $200 \mathrm{~g} / \mathrm{mol}$

Answer: D

- Watch Video Solution

57. Under identical conditions of temperature, the density of a gas X is three times that of gas Y while
molecular mass of gas Y is twice that of X. The ratio of pressure of X and Y will be
A. 6
B. $1 / 6$
C. $2 / 3$
D. $3 / 2$

Answer: A

- Watch Video Solution

58. NH_{3} and SO_{2} gases are being prepared at two corners of a laboratory. The gas that will be detected
first in the middle of the laboratory is:
A. NH_{3}
B. SO_{2}
C. both at the same time
D. can't determine

Answer: A

D Watch Video Solution

59. Dalton's law of partial pressure are applicable to
A. Non-reacting gases
B. Ideal gases
C. Temperature of the component gases in the mixture

D. All of the above

Answer: D

D Watch Video Solution

60. 1000 ml of a gas A at 600 torr and 500 ml of a gas

B at 800 torr are placed in a $2 L$ flask. The final
pressure will be
A. 2000 torr
B. 1000torr
C. 500torr

D. 1400torr

Answer: C

Watch Video Solution

61. Which of the following is/are true regarding vapour pressure?
A. Vapour pressure is surface property of the solvent

B. Vapour pressure is independent of temperature

C. The saturation vapour pressure is
corresponding to the liquid vapour equilibrium
D. Both (a) and (c) are correct

Answer: C

- Watch Video Solution

62. Hydrogen gas diffuses four times as rapidly as a mixture of $\mathrm{C}_{2} \mathrm{H}_{4}$ and CO_{2}. The molar ration of ${ }_{.2} \mathrm{H}_{4}$ to CO_{2} in the mixture is
A. 1:1
B. 2: 1
C. 3: 1
D. $3: 2$

Answer: C

D Watch Video Solution
63. Equal weights of methane and oxygen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by oxygen is
A. $1 / 3$
B. $1 / 2$
C. $2 / 3$
D. $(1 / 3)(273 / 298)$

Answer: A
(D) Watch Video Solution
64. Which of the following differentiate between diffusion and effusion?
A. Diffusion is the intermixing of the gas molecules at any direction and effusion is the reverse of diffusion
B. Diffusion is the property of the gas molecules
and effusion is the property of the gas
container only
C. Diffusion occurs at any direction, whereas
effusion occurs under the potential difference

D. Diffusion is the intermixing gas molecules,

 whereas effusion is the passage of gas molecules through the pores in one direction
Answer: D

D Watch Video Solution

65. The ratio of rates of diffusion of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and CH_{4} is
A. $1: \sqrt{2}: 2$
B. 1:2:4
C. $2: \sqrt{2}: 1$
D. 1:2: $\sqrt{2}$

Answer: A

- Watch Video Solution

66. The rate of diffusion of methane at a given temperature is twice that of a gas X. The molecular weight of X is
A. 64.0
B. 32.0
C. 4.0
D. 8.0

Answer: A

- Watch Video Solution

67. The ratio of rates of diffusion of CO_{2} and SO_{2}
at the same pressure and temperatue is:
A. $4: \sqrt{11}$
B. 11: 4
C. 1: 4

D. $1: 6$

Answer: A

- Watch Video Solution

68. To a given container having a pore of definite size,
gas A (mol. wt. 81) is filled till the final pressure become 10 atm . It was seen that in 50 minutes 10 g of

A was effused out. Now the container was compelety evacuated and filled with gas $B(m o l . w t .100)$ till the
final pressure becomes 20 atm . In 75 minuter how many gram of B will be effused out?

100
 A. $\frac{10}{6} g$
 B. $\frac{100}{3} g$
 C. $\frac{200}{3} g$
 D. $\frac{250}{3} g$

Answer: B

- Watch Video Solution

