© 'doubtnut

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

GRAVITATION

Gravitational Field And Acceleration Due To
Gravity

1. An astronaut experiences weightlessness in
a space satellite It is because .
A. the gravitational force is small at that location in space.
B. the gravitational force is large at that location in space.
C. the astronaut experiences no gravity.
D. the gravitational force is infinitely large
at that location in space.

Answer: C

D Watch Video Solution

2. Which one of the following plots represents the variation of the gravitational field on a particle with distance r due to a thin spherical shell of raduis R ? (r is measured from the centre of the spherical shell).
(a)

A.
B.

C.

Answer: D

D Watch Video Solution

3. At the surface of a certain planet acceleration due to gravity is one - quarter of that on earth If a brass ball is transported to
this planet, then which one of the following statements is not correct ? .
A. The mass of the brass ball on this planet
is a quarter
B. The weight of the brass ball on this
planet is a quarter of the weight as
measured on earth.
C. The brass ball has the same mass on the other planet as on earth
D. The brass ball has the same volume on
the other planet as on earth
4. The mass of the moon is $\frac{1}{8}$ of the earth but the gravitational pull is $\frac{1}{6}$ earth It is due to the fact that .
A. The radius of the moon is $\frac{81}{6}$ of the
earth
B. The radius of the earth is $\frac{9}{\sqrt{6}}$ of the
moon
C. Moon is the satellite of the earth

D. none of these

Answer: B

D Watch Video Solution

5. Which of the following statements is correct
?.
A. Acceleration due to gravity increase with
increase altitude
B. Acceleration due to gravity increases
with increasing depth.
C. Acceleration due to gravity increases
with increasing latitude.
D. Acceleration due to gravity is
independent of the mass of the earth.

Answer: C

D Watch Video Solution

6. The earth is an approximate sphere. If the interior contained matter which is not of the same density every where, then on the surface of the earth, the acceleration due to gravity
A. will be directed towards the centre but
the same every where
B. will have the same value everywhere but not directed towards the centre
C. will be same everywhere in magnitude
directed towards the centre

D. cannot be zero at any point

Answer: D

D Watch Video Solution

7. Which graph correctly presents the variation of acceleration due to gravity with the distance form the centre of the earth?

(b) g
B.

(d) g

Answer: C

D Watch Video Solution

8. The change in the value of ' g ' at a height ' h ' above the surface of the earth is the same as
at a depth ' d ' below the surface of earth. When both ' d ' and ' h ' are much smaller then the radius of earth, then which one of the following is correct?
A. $x=h$
B. $x=2 h$
C. $x=\frac{h}{2}$
D. $x=h^{2}$

Answer: B
9. Weight fo a body of a mass m decreases by
1% when it is raised to height h above the earth's surface. If the body is taken to depth h in a mine, change in its weight is
A. 2% decreases
B. 0.5% decreases
C. 1% increases
D. 0.5% increases

- Watch Video Solution

10. Let g be the acceleration due to gravity at the earth's surface and K the rotational kinetic energy of the earth. Suppose the earth's radius decreases by 2%. Keeping all other quantities constant, then
A. g decreases by 2% and K decreased by 4%
B. g decreases by 4% and K increased by
C. g increases by 4% and K increased by
4%
D. g decreases by 4% and K increased by

$$
4 \%
$$

Answer: C

D Watch Video Solution

11. At what depth below the surface of the earth, acceleration due to gravity g will be half
its value 1600 km above the surface of the

earth

A. $4.2 \times 10^{6} m$
B. $3.91 \times 10^{6} \mathrm{~m}$
C. $1.59 \times 10^{6} \mathrm{~m}$
D. none of these

Answer: A
(Watch Video Solution
12. Cosider earth to be a homogeneous sphere. Scientist A goes deep down in a mine and scientist B goes high up in a bollon. The value of g measured by
A. A goes on decreasing and that by B goes on increasing
B. B goes on decreasing and that by A goes on increasing
C. Each decreases at same rates
D. Each decreases at different rates

Answer: D

D Watch Video Solution

13. If a planet consits of a satellite whose mass
and radius were both half that of the earth, the acceleration due to gravity at its surface would be (g on earth $=9.8 \mathrm{~m} / \mathrm{sec}^{2}$)
A. $4.9 \mathrm{~m} / \mathrm{sec}^{2}$
B. $8.9 \mathrm{~m} / \mathrm{sec}^{2}$
C. $19.6 \mathrm{~m} / \mathrm{sec}^{2}$

D. $29.4 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: C

D Watch Video Solution

14. Acceleration due to gravity on moon is $1 / 6$ of the acceleration due to gravity on earth. If the ratio of densities of earth $\left(\rho_{e}\right)$ and moon $\left(\rho_{m}\right)$ is $\left(\frac{\rho_{e}}{\rho_{m}}\right)=\frac{5}{3}$ then radius of moon
(R_{m}) in terms of R_{e} will be

$$
\text { A. } \frac{5}{18} R_{e}
$$

B. $\frac{1}{6} R_{e}$
C. $\frac{7}{18} R_{e}$
D. $-\frac{1}{2 \sqrt{3}} R_{e}$

Answer: A

- Watch Video Solution

15. The moon's radius is $1 / 4$ that of the earth
and its mass $1 / 80$ times that of the earth. If generates the acceleration due to gravity on
the surface of the earth, that on the surface of
the moon is

> A. $\frac{g}{4}$
> B. $\frac{g}{5}$
> C. $\frac{g}{6}$
> D. $\frac{g}{8}$

Answer: B
(Watch Video Solution
16. Mass of moon is $7.34 \times 10^{22} \mathrm{~kg}$. If the acceleration due gravity on the moon is
$1.4 m / s^{2}$, the radius of the moon
$\left(G=6.667 \times 10^{-11} N m^{2} / k g^{2}\right)$
A. $0.56 \times 10^{4} m$
B. $1.87 \times 10^{6} m$
C. $1.92 \times 10^{6} \mathrm{~m}$
D. $1.01 \times 10^{8} \mathrm{~m}$

Answer: B
17. The radii of two planets are respectively
R_{1} and R_{2} and their densities are respectively ρ_{1} and ρ_{2}. The ratio of the accelerations due to gravity at their surface is

$$
\begin{aligned}
& \text { A. } g_{1}: g_{2}=\frac{\rho_{1}}{R_{1}^{2}}: \frac{\rho_{2}}{R_{2}^{2}} \\
& \text { B. } g_{1}: g_{2}=R_{1} R_{2}: \rho_{1} \rho_{2} \\
& \text { C. } g_{1}: g_{2}=R_{1} \rho_{2}^{2}: R_{2} \rho_{1} \\
& \text { D. } g_{1}: g_{2}=R_{1} \rho_{1}^{2}: R_{2} \rho_{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

18. The height of the point vertically above the earth's surface, at which acceleration due to gravity becomes 1% of its value at the surface is (Radius of the earth $=R$)
A. $8 R$
B. $9 R$
C. $10 R$

D. $20 R$

Answer: B

D Watch Video Solution

19. The depth at which the effective value of acceleration due to gravity is $\frac{g}{4}$ is ($\mathrm{R}=$ radius of the earth)
A. R
B. $\frac{3 R}{4}$
C. $\frac{R}{2}$
D. $\frac{R}{4}$

Answer: B

D Watch Video Solution

20. The depth at which the value of acceleration due to gravity is $\frac{1}{n}$ times the
value at the surface, is ($R=$ radius of the earth)

$$
\text { A. } \frac{R}{n}
$$

B. $R\left(\frac{n-1}{n}\right)$
C. $\frac{R}{n^{2}}$
D. $R\left(\frac{n}{n+1}\right)$

Answer: B

D Watch Video Solution

21. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass m falling freely near the surface of this planet
will experience an accelertion due to gravity which is equal to
A. $G M_{0} / D_{0}^{2}$
B. $4 m G M_{0} / D_{0}^{2}$
C. $4 G M_{0} / D_{0}^{2}$
D. $G m M_{0} / D_{0}^{2}$

Answer: C

D Watch Video Solution
22. A planet has mass $1 / 10$ of that of earth,
while radius is $1 / 3$ that of earth. If a person
can throw a stone on earth surface height of 90 m , then he will be able to throw the stone on that planet to a height
A. 90 m
B. $40 m$
C. 100 m
D. 45 m
23. The acceleration of a body due to the attraction of the earth (radius R) at a distance $2 R$ form the surface of the earth is ($\mathrm{g}=$ acceleration due to gravity at the surface of the earth)
A. $\frac{g}{9}$
B. $\frac{g}{3}$
C. $\frac{g}{4}$
D. g

Answer: A

D Watch Video Solution

24. At surface of earth weight of a person is

72 N then his weight at height $R / 2$ from
surface of earth is ($\mathrm{R}=$ radius of earth)
A. $28 N$
B. $16 N$
C. $32 N$
D. 72 N

Answer: C

D Watch Video Solution

25. Assuming earth to be a sphere of a uniform density, what is the value of gravitational acceleration in mine 100km below the earth's surface (Given
$R=6400 \mathrm{~km})$
A. $9.66 m / s^{2}$
B. $7.64 m / s^{2}$
C. $5.06 m / s^{2}$
D. $3.10 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

26. The acceleration due to gravity g and density of the earth ρ are related by which of the following relations? (where G is the
gravitational constant and R_{E} is the radius of
the earth)

$$
\begin{aligned}
& \text { A. } \rho=\frac{4 \pi G R_{E}}{3 g} \\
& \text { B. } \rho=\frac{3 g}{4 \pi G R_{E}} \\
& \text { C. } \rho=\frac{3 g}{4 \pi g R_{E}} \\
& \text { D. } \rho=\frac{4 \pi g R_{E}}{3 G}
\end{aligned}
$$

Answer: B

27. Mass remaining constant, the radius of the earth shrinks by 1%. The acceleration due to gravity on the earth's surface would
A. increase by 2%
B. increase by 1%
C. decrease by 1%
D. decrease by $\frac{1}{2} \%$

Answer: A

D Watch Video Solution
28. The mass of the moon is $\frac{1}{8}$ of the earth but the gravitational pull is $\frac{1}{6}$ earth It is due to the fact that .
A. moon is the satellite of the earth
B. the radius of the earth is $\frac{8}{6}$ of the moon
C. the radius of the earth is $(\sqrt{8 / 6})$ of the moon
D. the radius of the moon is $(6 / 8)$ of the
earth

Answer: C

- Watch Video Solution

29. A body hanging from a spring strethces it
by 1 cm at the earth's surface. How much will
the same body stretch the spring at a place

16400 km above the earth's surface? (Radius of
the earth 6400 km)
A. $1.28 m$
B. $0.64 m$
C. $3.6 m$
D. $0.12 m$

Answer: B

D Watch Video Solution

30. A body weighs 250 N on the surface of the earth. How much will it weighs half way down to the centre of the earth?
A. $125 N$
B. 150 N
C. $175 N$
D. 250 N

Answer: A

D Watch Video Solution

31. At surface of earth weight of a person is

72 N then his weight at height $R / 2$ from
surface of earth is ($\mathrm{R}=$ radius of earth)
A. $16 N$
B. $28 N$
C. $32 N$
D. $72 N$

Answer: C

D Watch Video Solution

32. The acceleration due to gravity g and density of the pols and the equator is g_{p} and g_{e} respectively. If the earth is a sphere
of radius R_{E} and rotating about its axis with angular speed ω and $g_{p}-g_{e}$ given by
A. $\frac{\omega^{2}}{R_{E}}$
B. $\frac{\omega^{2}}{R_{E}^{2}}$
C. $\omega^{2} R_{E}^{2}$
D. $\omega^{2} R_{E}$

Answer: D
(Watch Video Solution
33. The radius of earth is about 6400 Km and that of mars is about 3200 km The mass of the earth is about 10times the mass of mars. An object weight 200 N on earth 's surface, then its weight on the surface of mars will be:
A. $6 N$
B. 20 N
C. 40 N
D. 80 N
34. Infinite bodies, each of mass 3 kg are situated at distance
$1 \mathrm{~m}, 2 \mathrm{~m}, 4 \mathrm{~m}, 8 \mathrm{~m} . .$. respectively on x -axis. The resultant intensity of gravitational field at the origin will be
A. G
B. $2 G$
C. $3 G$
D. $4 G$

Answer: D

(D) Watch Video Solution

Gravitational Potential Energyand Escape Velocity

1. There is no atomosphere on moon because
A. it is closer to earth
B. it revolves round the earth
C. it get light from the sun
D. the escape velocity of the gas molecules
is less than their root mean square velocity here

Answer: D

D Watch Video Solution

2. A projectile is launched from the surface of earth with a velocity less than the escape velocity. Its total mechanical energy is
A. positive
B. negative
C. zero
D. dependes upon initial velocity

Answer: B

D Watch Video Solution

3. The intensity of gravitational field at a point situated at a distance of 8000 km form the
centre of the earth is $6 / \mathrm{kg}$. The gravitational potential at that point is -(in joule $/ \mathrm{kg}$)
A. 8×10^{6}
B. 2.4×10^{3}
C. 4.8×10^{7}
D. 6.4×10^{14}

Answer: C
(Watch Video Solution
4. A body of mass m kg starts falling from a point $2 R$ above the earth's surface. Its kinetic energy when its has fallen to a point ' R ' above the earth's surface [R Radius of earth M-mass of earth, G-gravitational constant]

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{G M m}{R} \\
& \text { B. } \frac{1}{6} \frac{G M m}{R} \\
& \text { C. } \frac{2}{3} \frac{G M m}{R} \\
& \text { D. } \frac{1}{3} \frac{G M m}{R}
\end{aligned}
$$

- Watch Video Solution

5. The escape velocity for a body projected vertically upwards from the surface of earth is
$11 \mathrm{~km} / \mathrm{s}$. If the body is projected at an angle of
45° with the vertical, the escape velocity will be
A. $11 \mathrm{~km} / \mathrm{s}$
B. $11 \sqrt{3} \mathrm{~km} / \mathrm{s}$
C. $\frac{11}{\sqrt{3}} \mathrm{~km} / \mathrm{s}$

D. $33 \mathrm{~km} / \mathrm{s}$

Answer: A

D Watch Video Solution

6. A body of mass m is situated at a distance
$4 R_{e}$ above the earth's surface, where R_{e} is the
radius of earth. How much minimum energy be given to the body so that may escape
A. $m g R_{e}$
B. $2 m g R_{e}$
C. $\frac{m g R_{e}}{5}$
D. $\frac{m g R_{e}}{16}$

Answer: C

D Watch Video Solution

7. Assuming earth as a uniform sphere of radius R, if we project a body along the smooth diametrical chute form the centre of
earth with a speed v such that it will just reach
the earth's surface then v is equal to :

> A. $\sqrt{g R}$
> B. $\sqrt{2 g R}$
> C. $\sqrt{\frac{g R}{2}}$
D. none of these

Answer: A

D Watch Video Solution
8. In the above question, escape speed from
the centre of earth is :
A. $\sqrt{2 g R}$
B. $\sqrt{g R}$
C. $\sqrt{3 g R}$
D. $\sqrt{\frac{3 g R}{2}}$

Answer: C

D Watch Video Solution
9. Let the minimum external work done in shifting a particle from centre of earth to earth's surface be W_{1} and that from surface of earth to infinity be W_{2}. Then $\frac{W_{1}}{W_{2}}$ is equal to
A. 1:1
B. 1:2
C. 2:1
D. 1:3

Answer: B

10. The escape velocity form the centre of a unifrom ring of mass M and radius R is :

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 G M}{R}} \\
& \text { B. } \sqrt{\frac{G M}{R}} \\
& \text { C. } \sqrt{\frac{G M}{2 R}} \\
& \text { D. } \sqrt{\frac{G M}{R}}
\end{aligned}
$$

Answer: A

D Watch Video Solution
11. A shell of mass M and radius R has point mass m placed at a distance r from its centre.

The gravitational potential energy $U(r)$ vs r will be

Answer: C

D Watch Video Solution

12. A projectile is launched from the surface of earth with a velocity less than the escape velocity. Its total mechanical energy is
A. positive
B. negative
C. zero
D. May be positive or negative depending

upon its initial velocity

Answer: B

D Watch Video Solution

13. The gravitational potential energy of body of mass 'm' at the earth's surface $m g R_{e}$. Its gravitational potential energy at a height R_{e}
fromt the earth's surface will be (here R_{e} is
the radius of the earth)

$$
\begin{aligned}
& \text { A. }-2 m g R_{e} \\
& \text { B. } 2 m g R_{e} \\
& \text { C. } \frac{1}{2} m g R_{e} \\
& \text { D. }-\frac{1}{2} m g R_{e}
\end{aligned}
$$

Answer: D

D Watch Video Solution

14. A rocket is launched vertically from the surface of earth with an initial velocity v. How far above the surface of earth it will go? Neglect the air resistance.

$$
\begin{aligned}
& \text { A. } R /\left(\frac{g R}{2 V^{2}}-1\right) \\
& \text { B. } R\left(\frac{g R}{2 V^{2}}-1\right) \\
& \text { C. } R /\left(\frac{2 g R}{V^{2}}-1\right) \\
& \text { D. } R\left(\frac{2 g R}{V^{2}}-1\right)
\end{aligned}
$$

Answer: C

15. A body of mass m kg starts falling from a point $2 R$ above the earth's surface. Its kinetic energy when its has fallen to a point ' R ' above the earth's surface [R-Radius of earth M-mass of earth, G-gravitational constant]

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{G M m}{R} \\
& \text { B. } \frac{1}{6} \frac{G M m}{R} \\
& \text { C. } \frac{2}{3} \frac{G M m}{R} \\
& \text { D. } \frac{1}{3} \frac{G M m}{R}
\end{aligned}
$$

Answer: B

D Watch Video Solution

16. Maximum height reached by a rocket fired
with a speed equal to 50% of the escape
velocity from earth's surface is:
A. $R / 2$
B. $16 R / 9$
C. $R / 3$
D. $R / 8$

Answer: C

- Watch Video Solution

17. The potential energy of interaction between the semi-circular ring of mass M and radius R, and the particle of mass M placed at
the centre of curvature of the semi-circular arc
is:

$$
\begin{aligned}
& \text { A. }-\frac{G M^{2}}{R} \\
& \text { B. }-\frac{2 G M^{2}}{R} \\
& \text { C. }-\frac{G M^{2}}{\pi R}
\end{aligned}
$$

D. none of these

Answer: A

- Watch Video Solution

18. Two oppositely rotating satellities of same are launched in the same orbit round the earth. The collide idealistically. What is the
ratio of gravitational potential energy before and after collistion?
A. 2
B. $\frac{1}{2}$
C. $\sqrt{2}$
D. $\frac{1}{\sqrt{2}}$

Answer: B
(Watch Video Solution
19. A body of mass m is lifted up from the surface of earth to a height three times the radius of the earth R. The change in potential energy of the body is

$$
\begin{aligned}
& \text { A. } \frac{m g R}{4} \\
& \text { B. } \frac{2}{3} m g R \\
& \text { C. } \frac{3}{4} m g R \\
& \text { D. } \frac{m g R}{2}
\end{aligned}
$$

Answer: C

20. Four particles each of mass m are kept at the four vertices of a square of side 'a' . Find gravitational potential energy of this system.

$$
\begin{aligned}
& \text { A. }-\frac{\sqrt{2} G m^{2}}{l}\left(2-\frac{1}{\sqrt{2}}\right) \\
& \text { B. }-\frac{2 G m^{2}}{l}\left(2+\frac{1}{\sqrt{2}}\right) \\
& \text { C. }-\frac{2 G m^{2}}{l}\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right) \\
& \text { D. }-\frac{2 G m^{2}}{l}\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

21. Four particles each of mass m are placed at the vertices of a square of side l. the potential at the centre of square is

$$
\begin{aligned}
& \text { A. }-2 \sqrt{2} \frac{G m}{l} \\
& \text { B. }-3 \sqrt{2} \frac{G m}{l} \\
& \text { C. }-2 \frac{G m}{l} \\
& \text { D. }-4 \sqrt{2} \frac{G m}{l}
\end{aligned}
$$

- Watch Video Solution

22. The change in the gravitational potential energy when a body of a mass m is raised to a height $n R$ above the surface of the earth is (here R is the radius of the earth)
A. $m g R_{E} \frac{n}{(n-1)}$
B. $m g R_{E}$
C. $\left(m g R_{E}\right) \frac{n}{(n+1)}$
D. $\frac{m g R_{E}}{n}$

Answer: C

D Watch Video Solution

23. A particle of mass m is placed at the centre of a unifrom spherical shell of mass 3 m and radius R The gravitational potential on the surface of the shell is .

$$
\begin{aligned}
& \text { A. }-\frac{G m}{R} \\
& \text { B. }-\frac{3 G m}{R} \\
& \text { C. }-\frac{4 G m}{R}
\end{aligned}
$$

D. $-\frac{2 G m}{R}$

Answer: C

D Watch Video Solution

24. Two spheres each of mass M and radius R
are separated by a distance of r. The gravitational potential at the midpoint of the line joining the centres of the spheres is

$$
\text { A. }-\frac{G M}{r}
$$

> B. $-\frac{2 G m}{r}$
> C. $-\frac{G M}{2 r}$
> D. $-\frac{4 G M}{r}$

Answer: D

- Watch Video Solution

25. The mass of the earth is $6 \times 10^{24} \mathrm{~kg}$ and that of the moon is $7.4 \times 10^{22} \mathrm{~kg}$. The potential energy of the system is
$-7.79 \times 10^{28} \mathrm{~J}$. The mean distance between
the
earth
$\left(G=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}\right)$
A. $3.8 \times 10^{8} m$
B. $3.37 \times 10^{6} \mathrm{~m}$
C. $7.6 \times 10^{4} m$
D. $1.9 \times 10^{2} m$

Answer: A
(Watch Video Solution
26. A particle of mass M is placed at the centre of a uniform spherical shell of equal mass and radius a. Find the gravitational potential at a point P at a distance $\frac{a}{2}$ from the centre.

$$
\begin{aligned}
& \text { A. }-\frac{3 G M}{R} \\
& \text { B. }-\frac{2 G M}{R} \\
& \text { C. }-\frac{G M}{R} \\
& \text { D. }-\frac{4 G M}{R}
\end{aligned}
$$

Answer: A

27. The escape velocity of a body form the earth depends on
(i) the mass of the body.
(ii) the location from where it is projected.
(iii) the direction of projection.
(iv) the height of the location form where the body is launched.
A. (i) and (ii)
B. (ii) and (iv)
C. (i) and (iii)
D. (iii) and (iv)

Answer: B

D Watch Video Solution

28. The escapoe speed of a body on the earth's
surface is $11.2 \mathrm{kms}^{-1}$. A body is projected with thrice of this speed. The speed of the body when it escape the gravitational pull of earth is
A. $11.2 \mathrm{kms}^{-1}$
B. $22.4 \sqrt{2} k m s^{-1}$
C. $\frac{22.4}{\sqrt{2}} k m s^{-1}$
D. $22.4 \sqrt{3} k m s^{-1}$

Answer: B

D Watch Video Solution
29. The escape velocity for a body of mass 1 kg from the earth surface is $11.2 \mathrm{kms}^{-1}$. The
escape velocity for a body of mass 100 kg would be
A. $11.2 \times 10^{-2} \mathrm{kms}^{-1}$
B. $111 \mathrm{~km} \mathrm{~s}^{-1}$
C. $11.2 \mathrm{kms}^{-1}$
D. $11.2 \times 10^{-2} \mathrm{kms}^{-1}$

Answer: C
(Watch Video Solution
30. The mass of a planet is six times that of
the earth. The radius of the planet is twice
that of the earth. It's the escape velocity from
the earth is v, then the escape velocity from
the planet is:
A. $\sqrt{3} v$
B. $\sqrt{2} v$
C. $\sqrt{5} v$
D. $\sqrt{12} v$

Answer: A
31. If v_{e} is escape velocity and v_{0}, is orbital velocity of satellite for orbit close to the earth's surface. Then are related by

> A. $v_{0}=\sqrt{2} v_{e}$
> B. $n_{0}=n_{e}$
> C. $v_{e}=\frac{v_{0}}{2}$
> D. $v_{e}=\sqrt{2} v_{0}$

- Watch Video Solution

32. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is
very small compared to the mass of the earth.
A. The acceleration of S is always directed
towards the centre of the earth.
B. The angular momentum of S about the
centre or the earth changes in direction,
but its magnitude remains constant.
C. The total mechanical energy of S varies
perodically will time.
D. The linear momentum S remains
constant in magnitude

Answer: A

- Watch Video Solution

Motion Of Satellite

1. In a satellite if the time of revolution is T,
then kinetic energy is proportional to
A. $\frac{1}{T}$
B. $\frac{1}{T^{2}}$
C. $\frac{1}{T^{3}}$
D. $T^{2 / 3}$

Answer: D

D Watch Video Solution
2. Which of the following statement is correct about satellites?
A. A satellite cannot move in a stable orbit in a plane passing through the earth's
centre.
B. Geostationary satellites are launched in
the equatorial plane.
C. We can use just one geostationary
satellite for global communication
around the globe

D. The speed of satellite increases with an

 increase in the radius of its orbit.Answer: B

D Watch Video Solution

3. A satellite is moved from one circular orbit around the earth, to another of lesser radius.

Which of the following statement is true?
A. The kinetic energy of satellite increases
and the gravitational potential energy of
satellite -earth system increases,
B. The kinetic energy of satellite increases
and the gravitational potential energy of
satellite -earth system decreases,
C. The kinetic energy of satellite decreases
and the gravitational potential energy of
satellite -earth system decreases,
D. The kinetic energy of satellite decreases
and the gravitational potential energy of
satellite -earth system increases,

Answer: B

D Watch Video Solution

4. Which of the following statement is correct regarding a geostationary satellite?
A. A geostationary satellite goes around
the earth in east-west direction.
B. A geostatioanry satellite goes around
the earth in west-east direction.
C. The time periode of a geostationary
satellite is 48 hours
D. The angle between the equatorial plane
and the orbital plane of geostationary
satellite is 90°

- Watch Video Solution

5. The mean radius of the earth is R, its angular speed on its own axis is ω and the acceleration due to gravity at earth's surface is g. The cube of the radius of the orbit of a geostationary satellite will be
A. $R^{2} g / \omega$
B. $R^{2} \omega^{2} / g$
C. $R g / \omega^{2}$

D. $R^{2} g / \omega^{2}$

Answer: D

- Watch Video Solution

6. The correct graph representing the variation of total energy $\left(E_{t}\right)$, kinetic energy
$\left(E_{k}\right)$ and potential energy (U) of a satellite with its distance form the centre of earth is

Answer: C

- Watch Video Solution

7. A satellite is seen every $6 h$ over the equator.

It is known that it rotates opposite to that of earth's direction. Then, the angular velocity (in radius per hour) of satellite about the centre of earth will be
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{8}$

- Watch Video Solution

8. A satellite is seen after every 8 hours over the equator at a place on the earth when its sense of rotation is opposite to the earth. The time interval after which it can be seen at the same place when the sense of rotation of earth and satellite is same will be:
A. 8 hours
B. 12 hours
C. 24hours

D. 6hours

Answer: C

D Watch Video Solution

9. Two satellites of masses of m_{1} and $m_{2}\left(m_{1}>m_{2}\right)$ are revolving round the earth in circular orbits of radius r_{1} and $r_{2}\left(r_{1}>r_{2}\right)$ respectively. Which of the following statements is true regarding their speeds v_{1} and v_{2} ?
A. $v_{1}=v_{2}$
B. $v_{1}<v_{2}$
C. $v_{1>v_{2}}$
D. $\frac{v_{1}}{r_{1}}=\frac{v_{2}}{r_{2}}$

Answer: B

D Watch Video Solution
10. The ratio of the K.E. required to the given
to the satellite to escape earth's gravitational
field to the K.E. required to be given so that
the satellite moves in a circular orbit just above earth atmosphere is
A. One
B. Two
C. Half
D. Infinity

Answer: B
(Watch Video Solution
11. The orbital velocity of an satellite in a circular orbit just above the earth's surface is
v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital velocity is
A. $\frac{3}{2} v$
B. $\sqrt{\frac{3}{2}} v$
C. $\sqrt{\frac{2}{3}} v$
D. $\frac{2}{3} v$

Answer: C

12. A satellite is moving around the earth's with speed v in a circular orbit of radius r. If the orbit radius is decreases by 1%, its speed will
A. Increases by 1%
B. Increases by 0.5%
C. decreases by 1%
D. decreases by 0.5%

Answer: B

D Watch Video Solution

13. A satellite revolves in elliptical orbit around
a planet of mass M. Its time period is T and
M is at the centre of the path. The length of
the major axis of the path is: (neglect the gravitational effect of other object in space)
A. $2\left[\frac{G M T^{2}}{4 \pi^{2}}\right]^{1 / 3}$
B. $\left[\frac{G M T^{2}}{4 \pi^{2}}\right]^{1 / 3}$
C. $\frac{1}{2}\left[\frac{G M T^{2}}{4 \pi^{2}}\right]^{1 / 3}$
D. none of these

Answer: A

D Watch Video Solution

14. Two identical satellite are at R and $7 R$ away from earth surface, the wrong statement is ($R=$ radius of earth)
A. Ratio of total energy will be 4
B. Ratio of kinetic energy will be 4
C. Ratio of potential energy will be 4
D. Ratio of total energy will be 4 but ratio
of potential and kinetic energies will be

2

Answer: D

D Watch Video Solution

15. In the following four periods
(i) Time of revolution of a satellite just above
the earth's surface $\left(T_{s t}\right)$
(ii) Period of oscillation of mass inside the
tunnel bored along the diameter of the earth
$\left(T_{m a}\right)$
(iii) Period of simple pendulam having a length equal to the earth's raduis in a unifrom field of
$9.8 N / k g\left(T_{s p}\right)$
(iv) Period of an infinite length simple pendulam in the earth's real gravitational field $\left(T_{i s}\right)$
A. $T_{s t}>T_{m a}$
B. $T_{m a}>T_{s t}$
C. $T_{s p}>T_{i s}$
D. $T_{s t}=T_{m a}=T_{s p}=T_{i s}$

Answer: C

D Watch Video Solution

16. A satellite with kinetic energy E_{k} is revolving round the earth in a circular orbit.

How much more kinetic energy should be
given to it so that it may just escape into

outer space

A. E_{k}
B. $2 E_{k}$
C. $\frac{1}{2} E_{k}$
D. $3 E_{k}$

Answer: A

- Watch Video Solution

17. The little prince (the main charcter of the novel written by Antione de saint-Exupery)
lives on the spherical planet named $B-612$,
the density of which is $5200 \mathrm{~kg} / \mathrm{m}^{3}$. The little prince noticed that if he quickens his pace, he
feels himself ligheter. when he reached the speed of $2 \mathrm{~m} / \mathrm{s}$ he became weightless, and began to orbit about the planet as a satellite. what is escape speed on the surface of planet?
A. $2 \sqrt{2} m / s$
B. $2 m / s$
C. $4 \sqrt{2} m / s$
D. $8 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

18. A satellite moves estwards very near the
surface of the Earth in equitorial plane with
speed $\left(v_{0}\right)$. Another satellite moves at the
same height with the same speed in the equatorial plane but westwards. If $R=$ radius
of the Earth and ω be its angular speed of the

Earth about its own axis. Then find the approximate difference in the two time period as observed on the earth.

$$
\begin{aligned}
& \text { A. } \frac{4 \pi \omega R^{2}}{v_{0}^{2}+R^{2} \omega^{2}} \\
& \text { B. } \frac{2 \pi \omega R^{2}}{v_{0}^{2}-R^{2} \omega^{2}} \\
& \text { C. } \frac{4 \pi \omega R^{2}}{v_{0}^{2}-R^{2} \omega^{2}} \\
& \text { D. } \frac{2 \pi \omega R^{2}}{v_{0}^{2}+R^{2} \omega^{2}}
\end{aligned}
$$

Answer: C
19. Two satellites S_{1} and S_{2} revole round a planet in coplanar circular orbits in the same sanse. Their periods of revolution are 1 hour and 8 hour respectively. The radius of the orbit of $S_{1} i s 10^{4} \mathrm{~km}$, When $S_{2} i s c l o s e s t \rightarrow S_{1}$ find
(i) the speed of S_{2} relative $\rightarrow \mathrm{S}_{-} 1$
(ii)theangar speedofS_2
asactuallyobservedbyan * ronautisS_1.'

$$
\text { A. } 2 \pi \times 10^{4} k m p h
$$

$$
\text { B. } \pi \times 10^{4} \mathrm{kmph}
$$

C. $\frac{\pi}{2} \times 10^{4} k m p h$
D. $\frac{\pi}{3} \times 10^{4} k m p h$

Answer: B

D Watch Video Solution

20. The orbital velocity of an satellite in a circular orbit just above the earth's surface is
v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital velocity is
A. $(3 / 2) v$
B. $\sqrt{(3 / 2)} v$
C. $\sqrt{(2 / 3)} v$
D. $(2 / 3) v$

Answer: C

D Watch Video Solution
21. The time period of an artificial satellite in a circular orbit of radius R is 2 days and its
orbital velocity is v_{0}. If time period of another satellite in a circular orbit is 16 days then
A. Its radius of orbit is $4 R$ and orbital
velocity is v_{0}
B. Its radius of orbit is $4 R$ and orbital
velocity is $\frac{v_{0}}{2}$
C. Its radius of orbit is $2 R$ and orbital
velocity is n_{0}
D. Its radius of orbit is $2 R$ and orbital
velocity is $\frac{v_{0}}{2}$

Answer: B

- Watch Video Solution

22. The orbit velocity of a satellite at a height
R above the surface of Earth is v. The escape
velocity from the location is
A. $\sqrt{2} v$
B. $2 v$
C. $4 v$
D. none of these

Answer: A

D Watch Video Solution

23. A satellite of mass m is in a circular orbit of
radius $2 R_{E}$ about the earth. The energy required to transfer it to a circular orbit of radius $4 R_{E}$ is (where M_{E} and R_{E} is the mass and radius of the earth respectively)

$$
\begin{aligned}
& \text { A. } \frac{G M_{E} m}{2 R_{E}} \\
& \text { B. } \frac{G M_{E} m}{4 R_{E}}
\end{aligned}
$$

c. $\frac{G M_{E} m}{8 R_{E}}$
D. $\frac{G M_{E} m}{16 R_{E}}$

Answer: C

D Watch Video Solution

24. in the previous question, the change in potential energy.

> A. $\frac{G M_{E} m}{2 R_{E}}$
> B. $\frac{G M_{E} m}{4 R_{E}}$

> C. $\frac{G M_{E} m}{8 R_{E}}$
> D. $\frac{G M_{E} m}{R_{E}} s$

Answer: B

D Watch Video Solution

25. Two stars each of mass M and radius R are approaching each other for a head-on collision. They start approaching each other when their separation is $r \gg R$. If their
speed at this separation are negligible, the speed v with which they collide would be

$$
\begin{aligned}
& \text { A. } v=\sqrt{G M\left(\frac{1}{R}-\frac{1}{r}\right)} \\
& \text { B. } v=\sqrt{G M\left(\frac{1}{2 R}-\frac{1}{r}\right)} \\
& \text { C. } v=\sqrt{G M\left(\frac{1}{R}+\frac{1}{r}\right)} \\
& \text { D. } v=\sqrt{G M\left(\frac{1}{2 R}+\frac{1}{r}\right)}
\end{aligned}
$$

Answer: B

D Watch Video Solution

26. A satellite is orbiting the earth in a circular orbit of radius r. Its
A. kinetic energy veries as r
B. angular momentum varies as r^{-1}
C. linear momentum varies as r^{2}
D. frequency of revolution varies as $r^{-3 / 2}$

Answer: D

- Watch Video Solution

27. The time period T of the moon of planet mars (mass M_{m}) is related to its orbital radius
R as ($G=$ gravitational constant)

$$
\begin{aligned}
& \text { А. } T^{2}=\frac{4 \pi^{2} R^{3}}{G M_{m}} \\
& \text { B. } T^{2}=\frac{4 \pi^{2} G R^{3}}{M_{m}} \\
& \text { C. } T^{2}=\frac{2 \pi G R^{3}}{M_{m}} \\
& \text { D. } T^{2}=\left(4 \pi M_{m} G R^{3}\right)
\end{aligned}
$$

Answer: A

28. The additional kinetic energy to be provided to a satellite of mass m revolving around a planet of mass M, to transfer it
forms a circular orbit of radius R_{1} to another of radius $R_{2}\left(R_{2}>R_{1}\right)$ is

$$
\begin{aligned}
& \text { A. } G m M\left(\frac{1}{R_{1}^{2}}-\frac{1}{R_{2}^{2}}\right) \\
& \text { B. } G m M\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \text { C. } 2 G m M\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \text { D. } \frac{1}{2} G m M\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

29. A satellite of a mass m orbits the earth at a
hight h above the surface of the earth. How much energy must be expended to rocket the satellite out of earth's gravitational influence?
(where M_{E} and R_{E} be mass and radius of the earth respectively)

$$
\begin{aligned}
& \text { A. } \frac{G M_{E} m}{4\left(R_{E}+h\right)} \\
& \text { B. } \frac{G M_{E} m}{2\left(R_{E}+h\right)} \\
& \text { C. } \frac{G M_{E} m}{\left(R_{E}+h\right)}
\end{aligned}
$$

D. $\frac{2 G M_{E} m}{\left(R_{E}+h\right)}$

Answer: B

D Watch Video Solution

30. An artificial satellite moving in a circular orbit around the earth has a total energy E_{0}.

Its potential energy is

$$
\text { A. }-E_{0}
$$

B. E_{0}

C. $2 E_{0}$

$$
\text { D. }-2 E_{0}
$$

Answer: C

- Watch Video Solution

31. For a satellite moving in a circular orbit around the earth, the ratio of its potential energy to kinetic energy is
A. 1
B. -1
C. 2
D. -2

Answer: D

- Watch Video Solution

32. Two satellites of earth S_{1} and S_{2} are moving in the same orbit. The mass of S_{1} is
four times the mass of S_{2}. Which one of the following statements is true?
A. The potential energies of earth and satellite in the two cases are equal
B. S_{1} and S_{2} are moving with the same
period
C. The kinetic energy of two satellites are
equal
D. The time period of S_{1} is four times that
S_{2}.

Answer: B

33. The orbit of geostationary satellite is circular, the time period of satellite depeds on
(i) mass of the satellite, (ii) mass of earth, (iii)
readius of the orbit and (iv) height of the satellite from the surface of the earth
A. (i) only
B. (i) and (ii)
C. (i), (ii) and (iii)
D. (ii), (iii) and (iv)

Answer: D

- Watch Video Solution

Problems Based On Mixed Concepts

1. A body is fired with a velocity of magnitude
$\sqrt{g R}<V \sqrt{2 g R}$ at an angle of 30° with the
radius vector of earth. If at the highest point
the speed of the body is $V / 4$, the maximum height attained by the body is equal to:
A. $V^{2} / 8 g$
B. R
C. $\sqrt{2} R$
D. none of these

Answer: A

D Watch Video Solution
2. The gravitational field intensity at a point
$10,000 \mathrm{~km}$ from the centre of the earth is
$4.8 \mathrm{Nkg}^{-1}$. The gravitational potential at that point is

$$
\begin{aligned}
& \text { A. }-4.8 \times 10^{-7} \mathrm{Jkg}^{-1} \\
& \text { B. }-2.4 \times 10^{7} \mathrm{Jkg}^{-1} \\
& \text { C. } 4.8 \times 10^{6} \mathrm{Jkg}^{-1} \\
& \text { D. } 3.6 \times 10^{6} \mathrm{Jkg}^{-1}
\end{aligned}
$$

Answer: A
3. A small body of superdense material, whose mass is twice the mass of the earth but whose size is very small compared to the size of the earth, starts form rest at a height $H \ll R$ above the earth's surface, and reaches the earth's surface in time t. then t is equal to
A. $\sqrt{2 H / g}$
B. $\sqrt{H / g}$
c. $\sqrt{2 H / 3 g}$
D. $\sqrt{4 H / 3 g}$

Answer: A

D Watch Video Solution

4. The density of the core a planet is ρ_{1} and
that of the outer shell is ρ_{2}. The radii of the core and that of the planet are R and $2 R$ respectively. The acceleration due to gravity at
the surface of the planet is same as at a depth
R. Find the ratio of $\underline{\rho_{1}}$

A. $3 / 4$
B. $5 / 3$
C. $7 / 3$
D. $3 / 5$

Answer: C

D Watch Video Solution

5. Work done by an external agent in bringing
three particles each of mass m at the vertices
of an equilateral triangle of length l is

> A. $\frac{3 G m^{2}}{l}$
> B. $-\frac{3 G m^{2}}{l}$
> C. $\frac{3 G m^{2}}{2 l}$
D. none of these

Answer: B

- Watch Video Solution

6. The ratio of KE of a planet at the points 1 and 2 is :

A. $\left(\frac{r_{1}}{r_{2}}\right)^{2}$
B. $\left(\frac{r_{2}}{r_{1}}\right)^{2}$
C. $\frac{r_{1}}{r_{2}}$
D. $\frac{r_{2}}{r_{1}}$

Answer: B

D Watch Video Solution

7. If radius of the earth contracts to half of its present value without change in its mass, what will be the new duration of the day?
A. $12 h r$
B. $6 h r$
C. 42 min
D. none of these

Answer: B

D Watch Video Solution
8. Find the escape velocity of particle of mass m which is situated at a radial distance r
(from centre of earth) above the earth's surface. M is the mass earth.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{G M}{2 r}} \\
& \text { B. } \sqrt{\frac{G M}{r}} \\
& \text { C. } \sqrt{\frac{2 G M}{r}}
\end{aligned}
$$

D. none of these

Answer: C
(Watch Video Solution
9. If a particles of mass m is projected with minimum velocity form the surface of a star with kinetic energy $\frac{K_{1} G M m}{a}$ and potential energy at surface of the star $\frac{K_{2} G M m}{a}$ towards the star of same mass m and radius a
(K_{1} and K_{2} are constant) to reach the other
star. Find the distance between the centre of the two stars:
A. $\frac{2 a}{\left(K_{2}-K_{1}\right)}$
B. $\frac{4 a}{\left(K_{2}-K_{1}\right)}$
C. $\frac{2 a}{\left(K_{1}-K_{2}\right)}$
D. $\frac{a}{\left(K_{1}-K_{2}\right)}$

Answer: B

D Watch Video Solution

10. The mass of a satellite is $M / 81$ and radius
is $R / 4$ where M and R are the mass and radius of the planet. The distance between the surfaces of planet and its satellite will be atleast greter than:
A. $1.25 R$
B. $12.5 R$
C. $10.5 R$
D. $5 R$

Answer: A

- Watch Video Solution

11. The orbital velocity of a satellite at point B
with radius r_{B} and n. The radius of a point A
is r_{A}. If the orbit is increased in radial distance
so that r_{A} becomes $.12 r_{A}$ find the orbital
velocity at $\left(1.2 r_{A}\right)$:

A. $\frac{v r_{B}}{r_{A} \sqrt{1.2}}$
B. $\frac{v r_{A}}{1.2 r_{B}}$
C. $\frac{v r_{B}}{1.2 r_{A}}$
D. $\frac{v r_{A}}{r_{B} \sqrt{2}}$

Answer: A

Watch Video Solution

12. An asteroid of mass m is approaching earth, initially at a distance $10 R_{E}$ with speed v_{i}. It hits earth with a speed v_{f} (R_{E} and M_{E} are radius and mass of earth),. Then

$$
\begin{aligned}
& \text { A. } v_{f}^{2}=v_{i}^{2}+\frac{2 G M}{R_{E}}\left(1+\frac{1}{10}\right) \\
& \text { B. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m_{E}}{R_{E}}\left(1+\frac{1}{10}\right) \\
& \text { C. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m_{E}}{R_{E}}\left(1-\frac{1}{10}\right) \\
& \text { D. } v_{f}^{2}=v_{i}^{2}+\frac{2 G M}{R_{E}}\left(1-\frac{1}{10}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

13. A projectile rises upto a maximum height of
$R /\left(1-K^{2}\right)$ where K is a constant and R is
the radius of earth. If the velocity of projectile with which it should be fired upwards form the surface of the earth to reach this height is equal to the product of a coeffiecient and escape velocity then this coeffiecient is equal to:
A. K
B. K^{2}
C. $K^{3 / 2}$
D. $K^{1 / 2}$

Answer: A

D Watch Video Solution

14. A particle is projected from the surface of one star towards other star of same radius a and mass with such a minimum velocity
$K \sqrt{\frac{G M}{a}}$, so that it is attracted towards other star. Find the value of K if two stars are
$2 r$ distance apart:

$$
\text { D. } \frac{r+a}{[r(r-a)]^{1 / 2}}
$$

Answer: A

D Watch Video Solution

15. Two stars of mass m_{1} and m_{2} are parts of a binary star system. The radii of their orbits are r_{1} and r_{2} respective, measured from the centre of mass of the system. The magnitude of gravitational force m_{1} exerts on m_{2} is

$$
\text { A. } \frac{m_{1} m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}
$$

> B. $\frac{m_{1} G}{\left(r_{1}+r_{2}\right)^{2}}$
> C. $\frac{m_{2} G}{\left(r_{1}+r_{2}\right)^{2}}$
> D. $\frac{G\left(m_{1}+m_{2}\right)}{\left(r_{1}+r_{2}\right)^{2}}$

Answer: A

D Watch Video Solution

16. Binary stars of comparable masses rotates under the influence of each other's gravity at a distance $\left[\frac{2 G}{\omega^{2}}\right]^{1 / 3}$ where ω is the angular
velocity of each of the system. If difference between the masses of two stars is 6 units.

Find the ratio of the masses of smaller to bigger star.

A. $4: 10$
B. 1:7
C. 2:8

D. $3: 9$

Answer: B

D Watch Video Solution

17. The ratio of cube of circumferences of the orbit of a satellite to the volume of the earth
is $6 \times 10^{10}(g / R)$, where g is the acceleration of gravity. Find the time period of satellite (in secods). R is the radius of earth

$$
\text { A. } 2 \times 10^{5}
$$

B. 10^{5}
C. 4×10^{4}
D. 10^{4}

Answer: A

- Watch Video Solution

18. Two planets revolve with same angular velocity about a star. The radius of orbit of outer planet is twice the radius of orbit of the inner planet. If T is time period of the
revolution of outer planet, find the time in which inner planet will fall into the star. If it was suddenly stopped.

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{23 g R}{11}} \\
& \text { B. } \sqrt{\frac{25 g R}{11}} \\
& \text { C. } \frac{v_{a}^{2}}{g R^{2}}-R \\
& \text { D. } \frac{v_{a}^{2}}{2 g R^{2}}-R
\end{aligned}
$$

Answer: B

D View Text Solution
19. What would be the projections velocity of a satellite so that intersteller (interspace with no gravitation) velocity of the satellite becomes the orbital velocity when it is in the orbit at height of $10 R$ from earth's surface, where R is the radius of the earth?
A. $\frac{T \sqrt{2}}{8}$
B. $\frac{T \sqrt{2}}{16}$
c. $\frac{T \sqrt{2}}{4}$
D. $\frac{T \sqrt{2}}{32}$

Answer: A

D Watch Video Solution

20. A satellite in equatorial plane is rotating in
the direction of earth's rotation with time interval between its two consecutive appearence over head of an observer as time period of rotation of the earth, T_{E}. What is the time period of the satellite?
A. T_{E}
B. $2 T_{E}$
C. $\frac{T_{E}}{2}$
D. $\frac{2 T_{E}}{3}$

Answer: C

- Watch Video Solution

21. A satellite is orbiting with areal velocity v_{a}.

At what height form the surface of the earth,
it is rotating, if the radius of earth is R ?
A. $\frac{4 v_{a}^{2}}{g R^{2}}-R$
B. $\frac{2 v_{a}^{2}}{g R^{2}}-R$
C. $\frac{v_{a}^{2}}{g R^{2}}-R$
D. $\frac{v_{a}^{2}}{2 g R^{2}}-R$

Answer: A

D Watch Video Solution
22. The magnitude of the gravitational field at distance r_{1} and r_{2} from the centre of a
uniform sphere of radius R and mass M are F_{1} and F_{2} respectively. Then:

$$
\begin{aligned}
& \text { A. } \frac{F_{1}}{F_{2}}=\frac{r_{1}}{r_{2}} \text { if } r_{1}>R \text { and } r_{2}<R \\
& \text { B. } \frac{F_{1}}{F_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}} \text { if } r_{!}>R \text { and } r_{2}>R \\
& \text { C. } \frac{F_{1}}{F_{2}}=\frac{r_{1}^{3}}{r_{2}^{3}} \text { if } r_{1}<R \text { and } r_{2}<R \\
& \text { D. } \frac{F_{1}}{F_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}} \text { if } \eta<R \text { and } r_{2}<R
\end{aligned}
$$

Answer: B

D Watch Video Solution

23. A spherical planet has uniform density $\frac{\pi}{2} \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$. Find out the minimum period for a satellite in a circular orbit around it in seconds (Use $G=\frac{20}{3} \times 10^{-11} \frac{N-m^{2}}{k g^{2}}$).
A. 7500
B. 3000
C. 4500
D. 6000

- Watch Video Solution

24. A particle is projected from point A, that is at a distance $4 R$ form the centre of the earth, with speed V_{1} in a direction making 30° with the line joining the centre of the earth and point A, as shown. Consider gravitational interaction only between thesetwo. (Use $\frac{G M}{R}=6.4 \times 10^{7} \mathrm{~m}^{2} / \mathrm{s}^{2}$). The speed V_{1} if particle pasess grazing the surface of the earth is

A. $2 \sqrt{2} \times 10^{3} \mathrm{~m} / \mathrm{s}$
B. $4 \sqrt{2} \times 10^{3} \mathrm{~m} / \mathrm{s}$
C. $4 \times 10^{3} \mathrm{~m} / \mathrm{s}$
D. $4 \sqrt{3} \times 10^{3} \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

25. Three identical stars, each of mass M, from
an equilateral triangle (stars are positioned at
the corners) that rotates around the centre of
the triangle. The system is isolated and edge
length of the triangle is L. The amount of work done, that is required ot dismantle the system, is:

$$
\begin{aligned}
& \text { A. } \frac{3 G M^{2}}{L} \\
& \text { B. } \frac{3}{2} \frac{G M^{2}}{L} \\
& \text { C. } \frac{3}{4} \frac{G M^{2}}{L} \\
& \text { D. } \frac{G M^{2}}{2 L}
\end{aligned}
$$

Answer: B

26. A satellite can be in a geostationary orbit around earth in an orbit of radius r. If the angular velocity of earth about its axis doubles, a satellite can now be in a geostationary orbit aroun earth radius
A. $\frac{r}{2}$
B. $\frac{r}{2 \sqrt{2}}$
C. $\frac{r}{(4)^{1 / 3}}$
D. $\frac{r}{(2)^{1 / 3}}$

Answer: C

D Watch Video Solution

27. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of
the earth is R, the radius of the planet would be
A. $2 R$
B. $4 R$
C. $\frac{1}{4} R$
D. $\frac{1}{2} R$

Answer: D

- Watch Video Solution

28. Imagine a new planet having the same density as that of earth but 3 times bigger than the earth in size. If the acceleration due
to gravity on the surface of earth is g and that on the new plane is g, then :

$$
\begin{aligned}
& \text { A. } g^{\prime}=3 g \\
& \text { B. } g^{\prime}=9 g \\
& \text { C. } g^{\prime}=g / 7 \\
& \text { D. } g^{\prime}=27 g
\end{aligned}
$$

Answer: A
(Watch Video Solution
29. A cavity of radius $R / 2$ is made inside a solid sphere of radius R. The centre of the cavity is located at a distance $R / 2$ from the centre of the sphere. The gravitational force on a particle of a mass ' m ' at a distance $R / 2$
from the centre of the sphere on the line joining both the centres of sphere and cavity is (opposite to the centre of cavity). [Here $g=G M / R^{2}$, where M is the mass of the solid sphere]

$$
\text { A. } \frac{m g}{2}
$$

B. $\frac{3 m g}{8}$
C. $\frac{m g}{16}$
D. none of these

Answer: B

D Watch Video Solution

Assertion Reasoning

1. Assertion: The time period of revolution of a satellite close to surface of earth is smaller
then that revolving away from surface of earth.

Reason: The square of time period of revolution of a satellite is directely proportioanl to cube of its orbital radius.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

2. Assertion: Geostationary satellite appear fixed from any point on earth.

Reason: The time period of geostationary satellite is 24 hrs
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

3. Assertion: The motion of a particle under the central force is always confined to a plane. Reason: Angular momentum is always conserved in the motion under a central force.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

4. Assertion: There is no effect of rotation of a earth on acceleration due to gravity at poles.

Reason : Rotation of earth is about polar axis.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: A

- Watch Video Solution

5. Assertion: The ratio of intertial mass to gravitational mass is equal to one.

Reason: The inertial mass and gravitational mass of a body are equivalent.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

6. Assertion : Gravitational potential of earth at every place body are equal to one.

Reason: Everybody on earth is bound by the attraction of earth.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

7. Assertion : Even when orbit of a satellite is elliptical, its plane of rotation passes through
the centre of earth.

Reason: According to law of conservation of angular momentum plane of rotation of satellite always remin same.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

8. Assertion: if an earth satellite moves to a
lower orbit, there is some dissipation of energy but the satellite speed increases.

Reason: The speed of satellite is a constant quantity.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct

explantion of the assertion.

C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: C

- Watch Video Solution

9. Assertion: The time period of geostationary satellite is 24 hrs .

Reason: Geostationary satellite must have the
same time period as the time taken by the earth to complete on revolution about its axis.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.Answer: B

D Watch Video Solution

10. Assertion: When distance between bodies
is doubled and also mass of each body is also
doubled, gravitational force between them remains the same.

Reason: According to Neweton's law
gravitational, force is directely proportional to mass of bodies and inversely proportional to square of distance between them.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.Answer: A

D Watch Video Solution

11. Assertion: Generally the path of projectile
form the earth is parabolic but it is elliptical
for projection going to a very large height.
Reason: The path of projectile is independent of the gravitational force of earth.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

12. Assertion: A body becomes weightless at the centre of earth.

Reason: As the distance form centre of earth decreases, acceleration due to gravity increases.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: C

D Watch Video Solution

13. Assertion: Space rockets are usually lauched in the the equitorial line from west to east.

Reason: The acceleration due to gravity is minimum at the equatore.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct

explantion of the assertion.

C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: B

D Watch Video Solution

14. Assertion: A person sitting in an artificial satellite revolving around the earth feels weightless.

Reason: There is no gravitational force on the satellite.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: C

D Watch Video Solution

15. Assertion: The speed of revolution of an artificial satellite revoving very near the earth is $8 \mathrm{kms}^{-1}$.

Reason: Orbital velocity of a satellite, becomes independent of height of near satellite.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

16. Assertion: For the plantes orbiting around
the sun, angular speed, linear speed, K.E. changes with time, but angular momentum remains constant.

Reason: No torque is acting on the rotating planet. So its angular momentum is constant.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

Neet Questions

1. Potential energy of a satellite having mass m and rotating at a height of $6.4 \times 10^{6} \mathrm{~m}$ from the earth surface is
A. $-0.5 m g R_{e}$
B. $-m g R_{e}$
C. $-2 m g R_{e}$
D. $4 m g R_{e}$

D Watch Video Solution

2. With what velocity should a particle be projected so that its height becomes equal to radius of earth?
A. $\left(\frac{G M}{R}\right)^{1 / 2}$
B. $\left(\frac{G M}{2 R}\right)^{1 / 2}$
C. $\left(\frac{2 G M}{R}\right)^{1 / 2}$
D. $\left(\frac{4 G M}{R}\right)^{1 / 2}$

D Watch Video Solution

3. The period of a satellite in a circular orbit of

radius R is T, the period of another satellite in a circular orbit of radius $4 R$ is
A. $4 T$
B. $T / 4$
C. $8 T$
D. $T / 8$

Answer: C

D Watch Video Solution

4. The acceleration due to gravity is g at a point distant r from the centre of earth of radius R. If $r<R$, then
A. $g \propto r$
B. $g \propto r^{2}$
C. $g \propto r^{-1}$
D. $g \propto r^{-2}$

Answer: A

- Watch Video Solution

5. A body of mass m is lifted up from the
surface of earth to a height three times the
radius of the earth R. The change in potential energy of the body is
A. $\frac{2}{3} m g R$
B. $\frac{3}{4} m g R$
C. $\frac{m g R}{2}$
D. $\frac{m g R}{4}$

Answer: B

- Watch Video Solution

6. The acceleration due to gravity on the planet A is 9 times the acceleration due to gravity on planet B. A man jumps to a height of $2 m$ on the surface of A. What is the height of jump by the same person on the planet B ?

$$
\text { A. } \frac{2}{3} m
$$

B. $\frac{2}{9} m$
C. $18 m$
D. $6 m$

Answer: C

D Watch Video Solution

7. Two sphere of masses m and M are situated
in air and the gravitational force between
them is F. The space around the masses in
now filled with a liquid of specific gravity 3 . The gravitational force will now be
A. $\frac{F}{9}$
B. $3 F$
C. F
D. $\frac{F}{3}$

Answer: C
(Watch Video Solution
8. The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of
the earth is R, the radius of the planet would be
A. $2 R$
B. $4 R$
C. $\frac{1}{4} R$
D. $\frac{1}{2} R$

Answer: D

D Watch Video Solution

9. Radius of orbit of satellite of earth is R. Its
kinetic energy is proportional to

$$
\begin{aligned}
& \text { A. } \frac{1}{R} \\
& \text { B. } \frac{1}{\sqrt{R}} \\
& \text { C. } R \\
& \text { D. } \frac{1}{R^{3 / 2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

10. If the density of a small planet is the same
as that of earth while the radius of the planet
is 0.2 times that of the earth the gravitational on the surface of that planet is :
A. $0.2 g$
B. $0.4 g$
C. $2 g$

D. $4 g$

Answer: A

D Watch Video Solution

11. Imagine a new planet having the same density as that of earth but 3 times bigger
than the earth in size. If the acceleration due to gravity on the surface of earth is g and that on the new plane is g, then :

$$
\text { A. } g^{\prime}=3 g
$$

$$
\begin{aligned}
& \text { B. } g^{\prime}=\frac{g}{9} \\
& \text { C. } g^{\prime}=9 g \\
& \text { D. } g^{\prime}=27 g
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. For a satellite moving in an orbit around
the earth, ratio of kinetic energy to potential energy is
A. 2
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

13. The earth is assumed to be a sphere of raduis R. A platform is arranged at a height R from the surface of the $f v_{e}$, where v_{e} is its
escape velocity from the surface of the earth.

The value of f is

> A. $\sqrt{2}$
> B. $\frac{1}{\sqrt{2}}$
> C. $\frac{1}{3}$
> D. $\frac{1}{2}$

Answer: B
(Watch Video Solution
14. Two satellites of earth S_{1} and S_{2} are moving in the same orbit. The mass of S_{1} is
four times the mass of S_{2}. Which one of the following statements is true?
A. The time period of S_{1} is four times that of S_{2}
B. The potential energies of earth and
satellite in the two cases are equal
C. S_{1} and S_{2} are moving with the speed

D. The kinetic energies of the two satellites

are equal

Answer: C

D Watch Video Solution

15. A roller coaster is designed such that riders experience "weightlessness" as they go round the top of a hill whose radius of curvature is 20 m . The speed of the car at the top of the hill is between
A. $14 m / s$ and $15 m / s$
B. $15 m / s$ and $16 m / s$
C. $16 m / s$ and $17 m / s$
D. $13 m / s$ and $14 m / s$

Answer: A

D Watch Video Solution

16. The figure represents an elliptical orbit of a planet around sun. The planet takes time T_{1} to travel from A to B and it takes time T_{2} to
travel from C to D. If the area $C S D$ is double
that of area $A S B$, then

A. $t_{1}>t_{2}$
B. $t_{1}=4 t_{2}$
C. $t_{1}=2 t_{2}$

$$
\text { D. } t_{1}=t_{2}
$$

Answer: C

D Watch Video Solution

17. The radii of circular orbits of two satellite A
and B of the earth are $4 R$ and R, respectively.

If the speed of satellite A is $3 v$, then the speed of satellite B will be
A. $3 v / 4$
B. $6 v$
C. $12 v$
D. $3 v / 2$

Answer: B

D Watch Video Solution

18. A particle of mass M is placed at the centre of a uniform spherical shell of equal mass and radius a. Find the gravitational potential at a point P at a distance $\frac{a}{2}$ from the centre.

$$
\begin{aligned}
& \text { A. }-\frac{3 G M}{a} \\
& \text { B. }-\frac{2 G M}{a} \\
& \text { C. }-\frac{G M}{a} \\
& \text { D. }-\frac{4 G M}{a}
\end{aligned}
$$

Answer: A

- Watch Video Solution

19. A plenet moving along an elliptical orbit is
closest to the sun at a distance r_{1} and
farthest away at a distance of r_{2}. If v_{1} and v_{2}
are the linear velocities at these points
respectively, then the ratio $\frac{v_{1}}{v_{2}}$ is
A. r_{2} / r_{1}
B. $\left(r_{2} / r_{1}\right)^{2}$
C. r_{1} / r_{2}
D. $\left(r_{1} / r_{2}\right)^{2}$

Answer: A
(Watch Video Solution
20. A particle of mass m is thrown upwards
from the surface of the earth, with a velocity u.

The mass and the radius of the earth are, respectively, M and $R . G$ is gravitational constant g is acceleration due to gravity on the surface of earth. The minimum value of u so that the particle does not return back to earth is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{2 G M}{R}} \\
& \text { B. } \sqrt{\frac{2 G M}{R^{2}}} \\
& \text { C. } \sqrt{2 g R^{2}}
\end{aligned}
$$

D. $\sqrt{\frac{4 G M}{R^{2}}}$

Answer: A

D Watch Video Solution

21. A particle of mass M is placed at the centre of a uniform spherical shell of equal mass and radius a. Find the gravitational potential at a point P at a distance $\frac{a}{2}$ from the centre.

$$
\text { A. }-\frac{2 G M}{a}
$$

$$
\begin{aligned}
& \text { B. }-\frac{3 G M}{a} \\
& \text { C. }-\frac{4 G M}{a} \\
& \text { D. }-\frac{G M}{a}
\end{aligned}
$$

Answer: B

D Watch Video Solution

22. The height a which the weight of a body becomes $1 / 16 t h$ its weight on the surface of earth (radius R) is
A. $4 R$
B. $5 R$
C. $15 R$
D. $3 R$

Answer: D

D Watch Video Solution

23. A spherical planet far out in space has a mass M_{0} and diameter D_{0}. A particle of mass
m falling freely near the surface of this planet
will experience an accelertion due to gravity which is equal to
A. $4 G M_{p} m / D_{p}^{2}$
B. $4 G M_{p} / D_{p}^{2}$
C. $G M_{p} m / D_{p}^{2}$
D. $G M_{p} / D_{p}^{2}$

Answer: B

D Watch Video Solution
24. A geostationary satellite is orbiting the earth at a height of $5 R$ above the surface of the earth, R being the radius of the earth. The time period of another satellite in hours at a height of $2 R$ form the surface of the earth is

$$
\begin{aligned}
& \text { A. } \frac{6}{\sqrt{2}} \\
& \text { B. } 5 \\
& \text { C. } 10 \\
& \text { D. } 6 \sqrt{2}
\end{aligned}
$$

25. If v_{e} is escape velocity and v_{0}, is orbital velocity of satellite for orbit close to the earth's surface. Then are related by

> A. $v_{0}=\sqrt{2} v_{e}$
> B. $v_{0}=v_{e}$
> C. $v_{e}=\sqrt{2 v_{0}}$
> D. $v_{e}=\sqrt{2} v_{0}$

- Watch Video Solution

26. Which one of the following plots represents the variation of the gravitational
field on a particle with distance r due to a thin spherical shell of raduis R ? (r is measured from the centre of the spherical shell).
(a)
A. $\xrightarrow{\text { (}}$
B.

(c)

Answer: B

- Watch Video Solution

27. A body of mass m taken form the earth's
surface to the height is equal to twice the radius (R) of the earth. The change in potential energy of body will be
A. $m g 2 R$
B. $\frac{2}{3} m g R$
C. $3 m g R$
D. $\frac{1}{3} m g R$

Answer: B

D Watch Video Solution

28. Infinite number of bodies, each of mass
$2 k g$, are situated on x-axis at distance
$1 m, 2 m, 4 m, 8 m \ldots \ldots \ldots$ respectively, from the
origin. The resulting gravitational potential the to this system at the origing will be

$$
\begin{aligned}
& \text { A. }-G \\
& \text { B. }-\frac{8}{3} G \\
& \text { C. }-\frac{4}{3} G \\
& \text { D. }-4 G
\end{aligned}
$$

Answer: D

29. a projectile is fired from the surface of the earth with a velocity of $5 m s^{-1}$ and angle θ with the horizontal. Another projectile fired from another planet with a velocity of $3 \mathrm{~ms}^{-1}$ at the same angle follows a trajectory which is identical with the trajectory of the projectile fired from the earth.The value of the acceleration due to gravity on the planet is in $m s^{-2}$ is given $\left(g=9.8 m s^{-2}\right)$
A. 3.5
B. 5.9
C. 16.3

D. 110.8

Answer: A

D Watch Video Solution

30. A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass $=5.98 \times 10^{24} \mathrm{~kg}$) have to be compresed to be a black hole?
A. $10^{-9} m$
B. $10^{-6} m$
C. $10^{-2} m$
D. 100 m

Answer: C

D Watch Video Solution

31. Dependence of intensity of gravitational
field (E) of earth with distance (r) from
centre of earth is correctly represented by
A.
(a) $\stackrel{\rightarrow}{\square}$

C.
(c) $\mathrm{O} \stackrel{+}{\leftarrow} \rightarrow$
(d)

Answer: A

- Watch Video Solution

32. Kepler's third law states that square of period revolution (T) of a planet around the
sun is proportional to third power of average distance i between sun and planet i.e.
$T^{2}=K r^{3}$
here K is constant
if the mass of sun and planet are M and m respectively then as per Newton's law of gravitational the force of alteaction between them is $F=\frac{G M m}{r^{2}}$, here G is gravitational constant. The relation between G and K is described as
A. $G K=4 \pi^{2}$
B. $G M K=4 \pi^{2}$
C. $K=G$
D. $K=\frac{1}{G}$

Answer: B

D Watch Video Solution
33. Two spherical bodies of mass M and $5 M$ \&
radii $R \& 2 R$ respectively are released in free
space with initial separation between their
centres equal to $12 R$. If they attract each other due to gravitational force only, then the distance covered by the smallar body just before collision is
A. $2.5 R$
B. $4.5 R$
C. $7.5 R$
D. $1.5 R$

Answer: C

34. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is
very small compared to the mass of the earth.
A. The acceleration of S is always directed
towards the centre of the earth.
B. The angular momentum of S about the
centre or the earth changes in direction,
but its magnitude remains constant.
C. The total mechanical energy of S varies
perodically will time.
D. The linear momentum of S remains
costant is magnitude

Answer: A

D Watch Video Solution

35. A remote-sensing satellite of earth revolves
in a circular orbit at a hight of $0.25 \times 10^{6} \mathrm{~m}$
above the surface of earth. If earth's radius is
$6.38 \times 10^{6} m$ and $g=9.8 m s^{-2}$, then the orbital speed of the satellite is
A. $6.67 \mathrm{kms}^{-1}$
B. $7.76 \mathrm{kms}^{-1}$
C. $8.56 \mathrm{kms}^{-1}$
D. $9.13 \mathrm{kms}^{-1}$

Answer: B
(Watch Video Solution
36. The ratio of escape velocity at earth $\left(v_{e}\right)$ to
the escape velocity at a planet $\left(v_{y}\right)$ whose radius and density are twice
A. $1: \sqrt{2}$
B. 1:2
C. $1: 2 \sqrt{2}$
D. 1: 4

Answer: C

D Watch Video Solution
37. Which graph correctley presents the variation of acceleration due to gravity with the distance form the centre of the earth?
A.

(b)

B.
c.

D.
(d)

Answer: D

D Watch Video Solution

38. A satellite of mass m is orbiting the earth
(of radius R) at a height h from its surface.

The total energy of the satellite in terms of g_{0}, the value of acceleration due to gravity at the earth's surface,

$$
\begin{aligned}
& \text { A. } \frac{2 m g_{0} R^{2}}{R+h} \\
& \text { B. }-\frac{2 m g_{0} R^{2}}{R+h}
\end{aligned}
$$

C. $\frac{m g_{0} R^{2}}{2(R+h)}$
D. $-\frac{m g_{0} R^{2}}{2(R+h)}$

Answer: D

D Watch Video Solution

39. The acceleration due to gravity at a height

1 km above the earth is the same as at a depth
d below the surface of earth. Then :
A. $d=1 k m$

> B. $d=\frac{3}{2} k m$
> C. $d=2 k m$
> D. $d=\frac{1}{2} k m$

Answer: C

D Watch Video Solution

40. Two astronauts are floating in gravitational free space after having lost contanct with their spaceship. The two will:
A. Move towards each other
B. Move away from each other
C. Will becomes stationary
D. Keep floating at the same distance
between them

Answer: A

D Watch Video Solution

41. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions
A, B and C are K_{A}, K_{B} and K_{C} respectively.
AC is the major axis and $S B$ is perpendicular to $A C$ at the position of the sun as shown in the figure. Then

A. $K_{B}>K_{A}>K_{C}$
B. $K_{A}<K_{B}<K_{C}$
C. $K_{B}<K_{A}<K_{C}$

$$
\text { D. } K_{A}>K_{B}>K_{C}
$$

Answer: D

D Watch Video Solution

42. If the massn of the sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
A. ' g ' on the earth will not change
B. rain drops will fall faster
C. time period of a simple pendulam on the earth would decreases
D. walking on the ground would becomes
more difficult

Answer: A

D Watch Video Solution

1. The escape Velocity from the earth is
$11.2 \mathrm{Km} / \mathrm{s}$. The escape Velocity from a planet
having twice the radius and the same mean density as the earth, is :
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $15.00 \mathrm{~km} / \mathrm{s}$
C. $22.4 \mathrm{~km} / \mathrm{s}$
D. $5.8 \mathrm{~km} / \mathrm{s}$

Answer: C

- Watch Video Solution

2. The radius of earth is about 6400 Km and that of mars is about 3200 km The mass of the earth is about 10times the mass of mars. An object weight 200 N on earth 's surface, then its weight on the surface of mars will be:
A. $8 N$
B. 80 N

C. 40 N

D. 20 N

Answer: A

D Watch Video Solution

3. A satellite is launched into a circular orbit of radius R around the earth. While a second is
lunched into an orbit of radius $1.01 R$ The period of the second satellite is longer than the first one by approximately:
A. 1.0%
B. 3.0%
C. 1.5%
D. 0.7%

Answer: C

D Watch Video Solution

4. The velocity with which a projectile must be
fired so that it escape earth's gravitational does not depend on
A. mass of the earth
B. radius of the projectile's orbit
C. mass of the projectile
D. gravitational constant

Answer: C

D Watch Video Solution

5. The difference in the lengths of a mean solar day and a sidereal day is about
A. $4 \min$
B. 1 min
C. 15 min
D. 56 min

Answer: A

D Watch Video Solution
6. The condition for a uniform spherical mass m of a radius r to be a black hole is [G
=gravitational constant and $g=$ acceleration due to gravity]

$$
\begin{aligned}
& \text { A. }\left(\frac{2 G m}{r}\right)^{1 / 2} \leq c \\
& \text { B. }\left(\frac{2 G m}{r}\right)^{1 / 2} \geq c \\
& \text { C. }\left(\frac{2 g m}{r}\right)^{1 / 2}=c \\
& \text { D. }\left(\frac{g m}{r}\right)^{1 / 2} \geq c
\end{aligned}
$$

Answer: B

D Watch Video Solution

7. The motion of planets in the solar system is

 an exmaple of the conservation ofA. mass
B. linear momentum
C. energy

D. angular momentum

Answer: D

(Watch Video Solution
8. Two masses m_{1} and m_{2} at an infinite distance from each other are initially at rest, start interacting gravitationally. Find their velocity of approach when they are at a distance r apart.

$$
\begin{aligned}
& \text { A. }\left[2 G \frac{\left(m_{1}-m_{2}\right)}{r}\right]^{1 / 2} \\
& \text { B. }\left[\frac{r}{2 G\left(m_{1}-m_{2}\right)}\right]^{1 / 2} \\
& \text { C. }\left[\frac{2 G}{r}\left(m_{1}+m_{2}\right)\right]^{1 / 2} \\
& \text { D. }\left[\frac{2 G}{r} m_{1} m_{2}\right]^{1 / 2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

9. Acceleration due to gravity on moon is $1 / 6$ of the acceleration due to gravity on earth. If the ratio of densities of earth $\left(\rho_{e}\right)$ and moon $\left(\rho_{m}\right)$ is $\left(\frac{\rho_{e}}{\rho_{m}}\right)=\frac{5}{3}$ then radius of moon $\left(R_{m}\right)$ in terms of R_{e} will be

$$
\begin{aligned}
& \text { A. } \frac{5}{18} R_{e} \\
& \text { B. } \frac{1}{6} R_{e} \\
& \text { C. } \frac{3}{18} R_{e}
\end{aligned}
$$

D. $/(2 \sqrt{3}) R_{e}$

Answer: A

D Watch Video Solution

10. The gravitational potential energy of body of mass 'm' at the earth's surface $-m g R_{e}$. Its gravitational potential energy at a height R_{e} from the earth's surface will be (here R_{e} is the radius of the earth)

$$
\text { A. }-2 m g R_{e}
$$

B. $2 m g R_{e}$

$$
\begin{aligned}
& \text { C. } \frac{1}{2} m g R_{e} \\
& \text { D. }-\frac{1}{2} m g R_{e}
\end{aligned}
$$

Answer: D

D Watch Video Solution

11. The orbital velocity of an satellite in a circular orbit just above the earth's surface is
v. For a satellite orbiting at an altitude of half of the earth's radius, the orbital velocity is
A. $\frac{3}{2} v$
B. $\sqrt{\frac{3}{2}} v$
C. $\sqrt{\frac{2}{3}} v$
D. $\frac{2}{3} v$

Answer: C

- Watch Video Solution

12. Given raduis of earth ' R ' and length of a day ' T ' the height of a geostationary satellite is [G-Gravitational constant M-mass of earth]
A. $\left(\frac{4 \pi^{2} G M}{T^{2}}\right)^{1 / 3}$

$$
\text { B. }\left(\frac{4 \pi^{2} G M}{R^{2}}\right)^{1 / 3}-R
$$

C. $\left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}-R$
D. $\left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{1 / 3}+R$

Answer: C

D Watch Video Solution

13. The ratio of the K.E. required to the given to the satellite to escape earth's gravitational
field to the K.E. required to be given so that
the satellite moves in a circular orbit just above earth atmosphere is
A. 1
B. 2
C. $1 / 2$
D. ∞

Answer: B

D Watch Video Solution
14. A communication satellite of mass 500 kg revolves around the earth in a circular orbit of radius $4.0 \times 10^{7} \mathrm{~m}$ in the equatorial plane of the earth in the direction from west to east.

The magnitude of angular momentum of the satellite is

$$
\begin{aligned}
& \text { A. } \sim 1.3 \times 10^{14} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& \text { B. } \sim 0.58 \times 10^{14} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& \text { C. } \sim 2.58 \times 10^{14} \mathrm{~m}^{2} \mathrm{~s}^{-1} \\
& \text { D. } \sim 0.13 \times 10^{14} \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

15. The change in the gravitational potential energy when a body of a mass m is raised to a
height $n R$ above the surface of the earth is
(here R is the radius of the earth)
A. $\frac{m g R}{n}$
B. $m m g R$
C. $\left(\frac{n}{n-1}\right) m g R$
D. $\left(\frac{n}{n+1}\right) m g R$

Answer: D

D Watch Video Solution

16. Assertion: The length of the day is slowly
increasing.

Reason: The dominant effect causing a slowdown in the rotation of the earth is the gravitational pull of other planets in the solar system.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

17. Assertion: The value of acceleration due to
gravity does not depends upon mass of the body on which force is applied.

Reason: Acceleration due to gravity is a constant quantity.
A. If both the assertion and reason are true and reason is a true explanation of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explanation of the assertion.
C. If the assertion is true but reason false.
D. If both the assertion and reason are false.

Answer: C

D Watch Video Solution

18. Assertion: Two different planets have same escape velocity.

Reason: Value of escape velocity is a universal constant.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: D

D Watch Video Solution

19. Assertion: The centre of gravity of a body coincides with its centre of mass only if the gravitational field does not vary form one part of the body to the other.

Reason: Centre of gravity is independent of the gravitational field.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.
Answer: C

- Watch Video Solution

20. Assertion: The speed of revolution of an artificial satellite revoving very near the earth is $8 \mathrm{kms}^{-1}$.

Reason: Orbital velocity of a satellite, becomes independent of height near earth.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

21. Assertion: Kepler's second law can be understood by conservation of angular momentum principle.

Reason: Kepler's second law is related with areal velocity which can further be proved to be used on coservation of angular momentum
as $(d A / d t)=\left(r^{2} \omega\right) / 2$.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

Answer: A

1. A satellite of the earth is revolving in a circular orbit with a uniform speed v. If the gravitational force suddenly disappears, the satellite will
A. Continue to move with velocity v along
the original orbit
B. Move with a velocity v tangentially to
the original orbit
C. Fall down with increases velocity

D. Ultimately come to rest somewhere on

the original orbit

Answer: B

D Watch Video Solution

2. The earth E moves in an elliptical orbit with
the sun S at one of the foci as shown in figure.

Its speed of motion will be maximum at the
point

A. C
B. A
C. B
D. D

Answer: B
3. Different points in the earth are at slightly different distance from the sun and hence experience different force due to gravitation.

For a rigid body, we know that if various forces act at various points in it, the resultant motion is as if a net force acts on the $C M$
(centre of mass) causing translation and a net torque at the $C M$ causing rotation around an axis through the $C M$. for the earth-sun
system (approximating the earth as a uniform density sphere).
A. the torque is zero
B. the torque causes the earth to spin
C. the rigid body result is not applicable
since the earth is not even
approximately a rigid body
D. the torque causes the earth to move
around the sun

Answer: A

D Watch Video Solution

4. A body weighs 700 gm wt on the surface of
the earth. How much will it weigh on the surface of a planet whose mass is $\frac{1}{7}$ and radius is half that of the earth
A. $200 g m w t$
B. 400 gmwt
C. 50 gmwt
D. 300 gmwt

Answer: B
5. If the mass of a planet is 10% less than
that of the earth and the radius is 20% greater than that of the earth, the acceleration due to gravity on the planet will be

5
A. $\frac{5}{8}$ times that on the surface of the earth
B. $\frac{3}{4}$ times that on the surface of the earth
C. $\frac{1}{2}$ times that on the surface of the earth

9
D. $\frac{9}{10}$ times that on the surface of the earth

Answer: A

D Watch Video Solution

6. Determine the speed with which the earth
would have to rotate on its axis, so that a person on the equator would weigh $\frac{3}{5}$ th as much as the person. Take $R=6400 \mathrm{~km}$.
A. $\sqrt{\frac{g}{3 R}}$
B. $\sqrt{\frac{2 g}{3 R}}$
C. $\sqrt{\frac{2 g}{5 R}}$
D. $\sqrt{\frac{2 g}{7 R}}$

Answer: C

- Watch Video Solution

7. In order to shift a body of mass m from a circular orbit of radius $3 R$ to a higher orbit of radius $5 R$ around the earth, the work done is

A. $\frac{3 G M m}{5 R}$
 B. $\frac{G M m}{2 R}$
 C. $\frac{2}{15} \frac{G M m}{R}$
 D. $\frac{G M m}{5 R}$

Answer: C

- Watch Video Solution

8. A tunnel is dug along a diameter of the earth. Find the force on a particle of mass m
placed in the tunnel at a distance x from the centre.

$$
\begin{aligned}
& \text { A. } \frac{G M_{e} m}{R_{e}^{3}} r \\
& \text { B. } \frac{G M_{e} m}{R_{e}^{3} r} \\
& \text { C. } \frac{G M_{e} m R_{e}^{3}}{r} \\
& \text { D. } \frac{G M_{e} m}{R_{e}^{2}} r
\end{aligned}
$$

Answer: A

D Watch Video Solution

9. The value of g at a certain height h above
the free surface of the earth is $x / 4$ where x is
the value of g at the surface of the earth. The height h is
A. R
B. $2 R$
C. $3 R$
D. $4 R$

Answer: A
10. Suppose that the acceleration of a free fall at the surface of a distant planet was found to be equal to that at the surface of the earth. If the diameter of the planet were twice the diameter of the earth, then the ratio of mean density of the planet to that of the earth would be
A. $4: 1$
B. 2:1
C. $1: 1$
D. 1:2

Answer: D

D Watch Video Solution

11. Three uniform spheres each having a mass
M and radius a are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any of the spheres due to the other two.
A. $\frac{G m^{2}}{r^{2}}$
B. $\frac{G m^{2}}{4 r^{2}}$
C. $\sqrt{2} \frac{G m^{2}}{4 r^{2}}$
D. $\sqrt{3} \frac{G m^{2}}{4 r^{2}}$

Answer: D

- Watch Video Solution

12. A body of mass m rises to a height $h=R / 5$ from the earth's surface where R is earth's radius. If g is acceleration due to
gravity at the earth's surface, the increase in potential energy is
A. $m g h$
B. $\frac{4}{5} m g h$
C. $\frac{5}{6} m g h$
D. $\frac{6}{7} m g h$

Answer: C

- Watch Video Solution

13. A man weighs 80 kg on the surface of earth of radius r. At what height above the surface of earth his weight will be 40 kg ?
A. $\frac{R}{2}$
B. $\sqrt{2} R$
C. $(\sqrt{2}-1) R$
D. $(\sqrt{2}+1) R$

Answer: C

D Watch Video Solution
14. The gravitational potential energy of an isolated system of three particles, each of mass m, at the three corners of an equilateral triangle of side l is

$$
\begin{aligned}
& \text { A. }-\frac{G m^{2}}{l} \\
& \text { B. }-\frac{G m^{2}}{2 l} \\
& \text { C. }-\frac{2 G m^{2}}{l} \\
& \text { D. }-\frac{3 G m^{2}}{l}
\end{aligned}
$$

Answer: D

15. Consider two solid uniform spherical objects of the same density ρ. One has radius
R and the other has radius $2 R$. They are in outer space where the gravitational fields from other objects are negligible. If they are arranged with their surface touching, what is
the contact force between the objects due to their traditional attraction?
A. $G \pi^{2} \rho^{4}$

$$
\text { B. } \frac{128}{81} G \pi^{2} R^{2} \rho^{2}
$$

> C. $\frac{128}{81} G \pi^{2}$
> D. $\frac{128}{87} \pi R^{2} G$

Answer: B

D Watch Video Solution

16. A body starts from rest from a point distant r_{0} from the centre of the earth. It reaches the surface of the earth whose radius is R. The velocity acquired by the body is
A. $2 G M \sqrt{\frac{1}{R}-\frac{1}{r_{0}}}$
B. $\sqrt{2 G M\left(\frac{1}{R}-\frac{1}{r_{0}}\right)}$
C. $G M \sqrt{\frac{1}{R}-\frac{1}{r_{0}}}$
D. $\sqrt{G M\left(\frac{1}{R}-\frac{1}{r_{0}}\right)}$

Answer: B

- Watch Video Solution

17. If the radius of the earth decreases by 10%, the mass remaining unchanged, what
will happen to the acceleration due to gravity?
A. Decreases by 19%
B. Increases by 19%
C. Decreases more than 19%

D. Increases more than 19%

Answer: D

18. Suppose the gravitational force varies
inversely as the nth power of distance. Then
the time period of a planet in circular orbit of
radius ' R ' around the sun will be proportional
to
A. R^{n}
B. $R^{(n+1) / 2}$
C. $R^{(n-1) / 2}$
D. R^{-n}

- Watch Video Solution

19. A satellite of mass m revolves around the
earth of radius R at a hight x from its surface.
If g is the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is
A. $g x$
B. $\frac{g R}{R-x}$
C. $\frac{g R^{2}}{R-x}$
D. $\left(\frac{g R^{2}}{R+x}\right)^{1 / 2}$

Answer: D

D Watch Video Solution

20. A spaceship is launched into a circular orbit close to the earth's surface . What additional velocity has now to be imparted to
the spaceship in the orbit to overcome the gravitational pull. Radius of earth $=6400 \mathrm{~km}$, $g=9.8 m / s^{2}$.
A. $11.2 \mathrm{~km} / \mathrm{s}$
B. $8 \mathrm{~km} / \mathrm{sec}$
C. $3.2 \mathrm{~km} / \mathrm{sec}$
D. $1.414 \times 8 \mathrm{~km} / \mathrm{sec}$

Answer: C

D Watch Video Solution

21. A satellite of mass m is orbiting around the earth at a height h above the surface of the earth. Mass of the earth is M and its radius is
R. The angular momentum of the satellite is independent of:
A. m
B. M
C. h
D. none of these

Answer: D

D Watch Video Solution

22. Two concentric shells have masses M and

 m and their radii are R and r, respectively, where $R>r$. What is the gravitational potential at their common centre?$$
\begin{aligned}
& \text { A. }-\frac{G M}{R} \\
& \text { B. }-\frac{G M}{r} \\
& \text { C. }-G\left[\frac{M}{R}-\frac{m}{r}\right] \\
& \text { D. }-G\left[\frac{M}{R}+\frac{m}{r}\right]
\end{aligned}
$$

Answer: D

23. The escape velocity corresponding to a planet of mass M and radius R is $50 \mathrm{kms}^{-1}$. If the planet's mass and radius were $4 M$ and R, respectively, then the corresponding escape velocity would be
A. $100 \mathrm{~km} / \mathrm{sec}$
B. $50 \mathrm{~km} / \mathrm{sec}$
C. $200 \mathrm{~km} / \mathrm{sec}$
D. $25 \mathrm{~km} / \mathrm{sec}$

Answer: A

D Watch Video Solution

24. A planet is revolving around the Sun in an elliptical orbit. Its closest distance from the

Sun is r and farthest distance is R. If the orbital velocity of the planet closest to the

Sun is v, then what is the velocity at the farthest point?
A. $\frac{v r}{R}$
B. $\frac{v R}{r}$
C. $v \sqrt{\frac{r}{R}}$
D. $v \sqrt{\frac{R}{r}}$

Answer: A

D Watch Video Solution

25. Energy required to move a body of mass m
from an orbit of radius $2 R$ to $3 R$ is
A. $G M m / 12 R^{2}$
B. $G M m / 3 R^{2}$
C. $G M m / 8 R$
D. $G M m / 6 R$

Answer: D

D Watch Video Solution

26. A particle of mass 10 g is kept on the surface of a uniform sphere of masss 100 kg and radius 10 cm . Find the work to be done against the gravitational force between them
to take the particel far away from the sphere
(you may take $G=6.67 \times 10^{-11} N \frac{m^{2}}{k} g^{2}$)

$$
\text { A. } 6.67 \times 10^{-9} J
$$

B. $6.67 \times 10^{-10} J$
C. $13.34 \times 10^{-10} J$
D. $3.33 \times 10^{-10} J$

Answer: B

D Watch Video Solution

27. Assertion: The gravitational force on a particle inside a spherical shell is zero.

Reason: The shell shields other bodies outside it form exerting gravitational forces on a particle inside.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: B

D Watch Video Solution
28. Assertion: The total energy of a satellite is
negative.

Reason: Gravitational potential energy of an object is negative.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.Answer: A

D Watch Video Solution

29. Assertion: When distance between bodies
is doubled and also mass of each body is also
doubled, gravitational force between them remains the same.

Reason: According to Neweton's law
gravitational, force is directely proportional to mass of bodies and inversely proportional to square of distance between them.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: C

D Watch Video Solution

