©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

MOCK TEST

Mock Test

1. Two spheres of same size, one of mass $2 k g$ and another of mass $4 k g$ are dropped smalltanausly from the top of is 72 as light
tower When they are $1 m$ above the ground the two sphers have the same
A. momentum
B. kinetic energy
C. potential energy
D. acceleration

Answer: d

- Watch Video Solution

2. The moment of inertia of a rod about an axis through its centre and perpendicular to it is $1 / 12 \mathrm{ML}^{2}$ (where M is the mass and L is te length of the rod). The rod is bent in the middle so that the two halves make an angle of 60°. the moment of inertia of the bent rod about the same axis would be

$$
\begin{aligned}
& \text { A. } \frac{1}{48} M L^{2} \\
& \text { B. } \frac{1}{12} M L^{2} \\
& \text { C. } \frac{1}{24} M L^{2}
\end{aligned}
$$

D. $\frac{M L^{2}}{8 \sqrt{3}}$

Answer: b

D Watch Video Solution

3. A boat at unchore by waves whose crests
are 100 m apart and velocity is $25 \mathrm{~m} / \mathrm{s}$ The hour bounces up once in every
A. $2500 s$
B. 75 s
C. $4 s$
D. $0.25 s$

Answer: c

- Watch Video Solution

4. By sucking a straw a student can reduce the pressure in his lungs 750 mm of
$H g($ density $\left.)=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right)$ Using the straw,
he can drink water from a glass up to a maximum depth of:
A. 10 cm
B. 75 cm
C. 13.6 cm
D. 1.36 cm

Answer: c

D Watch Video Solution
5. The magnetic moment has dimensions of
A. $[L A]$
B. $\left[L^{2} A\right]$
C. $\left[L T^{-1} A\right]$
D. $\left[L^{2} T^{-1} A\right]$

Answer: b

D Watch Video Solution
6. For inclestic collsion between two spherical rigid bodies
A. the total kinetic energy is conserved
B. the total machanical energy is not

conserved

C. the linearmomentum is not conserved
D. the linearmomentum is conserved

Answer: d

D Watch Video Solution

7. A person used force (F), shown in figure to move a load with constant velocity on given
surface. Identify the correct surface profile:

A. (a)

B. (b)

C. (c) $\longleftarrow L \longrightarrow$

Answer: a
8. There obujects coloured black, gray and white can withstand hostile condition upto $2800^{\circ} C$ These object are throw into a farance where each of them attanit a temperature of $2800^{\circ} C$ Which object will glow brightess?
A. The white object
B. The black object
C. All glow with equal beightness
D. Gray object

Answer: b

D Watch Video Solution

9. Two ballons are filled one with pure he gas
and the other by six repectively If the pressure
and temperature of these bellows are same
then the number of molecales per unit volum
is
A. mass in the He filled balloop
B. mass in both filled balloop
C. mass in air filled balloop
D. in the ratio of 1.4

Answer: b

D Watch Video Solution

10. A weight w is sasponded from the mid point of a tope whose ends are at the same
level In after in make the rope perfectly horizontalthe force applied to each of its ends must be
A. less then w
B. equal to w
C. equal to $2 w$
D. infinitly large

Answer: d

D Watch Video Solution
11. If asteel light of mass M is suspended from for end of a uniform rod of Ikength L in
diffrence possible patents as shown in figure

A. Pettern A is more then study
B. Pettern B is more then study
C. Pettern C is more then study

D. all will have same standients

Answer: a

12. A bimetaltic stop constants of metals A and

V it is montedrigully at the base as shown The motel A has a bigher coefficient of expernsions component to that for metal V when himetalic stop is that for placed in a cold bath.

A. It will bend toward the right
B. It will bend toward the left
C. It will not bend but shrink
D. It will nether bend not shrink

Answer: b

D Watch Video Solution
13. The density of a body because four times
its initial value. The new linear momentum will
be
A. 10^{-4}
B. 10^{-2}
C. 10^{-1}
D. 10^{2}

Answer: a

D Watch Video Solution
14. The kinetic energy of a body because four
times its initial value ..The new linear momentum will be
A. eight times that of initial value
B. four times that of initial value
C. twice of the initial value
D. remain as the initial value

Answer: c

D Watch Video Solution
15. The dimension of torque
A. $\left[M L^{2} T^{-3}\right]$

> B. $\left[M L^{-1} T^{1}\right]$
> C. $\left[M L^{2} T^{-2}\right]$
> D. $\left[M T^{-2}\right]$

Answer: c

D Watch Video Solution

16. If equation of a sound wave is
A. $2 u n i t$
B. $0.3 u n i t$

C. 0.1unit

D. $0.2 u n i t$

Answer: c

D Watch Video Solution

17. The letent heat of caporisation of water is
$2240 J$ if the work done in the precess of caporization of $1 g$ is $148 \jmath^{\jmath}$ then increases in initial energy will be
A. $1904 J$
B. 2072 J
C. $2240 J$
D. $2408 J$

Answer: b

D Watch Video Solution
18. If v_{0} orbital velocity of a surface to a circular orbital close in the earth's surface and
v_{1} scape velocity from earth then relation between the two is

$$
\begin{aligned}
& \text { A. } v_{e}=2 v_{o} \\
& \text { B. } v_{e}=\sqrt{3 v_{o}} \\
& \text { C. } v_{e}=v_{o} \sqrt{2} \\
& \text { D. } v_{o}=v_{e}
\end{aligned}
$$

Answer: c

D Watch Video Solution

19. At the topmost point of a trajectory, its velocity and acceleration are an angle of
A. 180°
B. 90°
C. 60°
D. 45°

Answer: b

D Watch Video Solution
20. if the vectors $P=\alpha \hat{i}+\alpha j+3 \hat{k}$ and
$Q=\alpha \hat{i}-2 \hat{j}-\hat{k}$ are perpendicular to each other, then the positive value of α is
A. zero
B. 1
C. 2
D. 3

Answer: d
21. A siren emiting sound of frequency 800 Hz
is going away from a static listence with a speed of $30 \mathrm{~m} / \mathrm{sfrequency} \mathrm{of} \mathrm{sound} \mathrm{to} \mathrm{be}$ beand by the listener is
(velocity of sound $=330 \mathrm{~m} / \mathrm{s}$)
A. 286.5 Hz
B. 481.2 Hz
C. 733.3 Hz
D. 644.8 Hz

Answer: c

- Watch Video Solution

22. The volume of a gas is reduced adibatically to (1/4) of its volume at $27^{\circ} C$ if $y=1.4$ The new temperature will be
A. $300 \times(4)^{0.4} K$
B. $150 \times(4)^{0.4} K$
C. $250 \times(4)^{0.4} K$
D. None of these
23. The velocities of sound at same temperature in two monoatomic gases of density ρ_{1} and ρ_{2} are v_{1} and v_{2} repectively, if $\frac{\rho_{1}}{\rho_{2}}=4$, then the value of $\frac{v_{1}}{v_{2}}$ will be ρ_{2} v_{2}
A. 4
B. 2
C. $\frac{1}{2}$
D. $\frac{1}{4}$

Answer: c

- Watch Video Solution

24. The maximum range of a gun from
horizontal terms is 16 km If $g=10 \mathrm{~m} / \mathrm{s}^{2}$ what must be the muzele velocity of the sheet?
A. $400 \mathrm{~m} / \mathrm{s}$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $100 \mathrm{~m} / \mathrm{s}$
D. $50 \mathrm{~m} / \mathrm{s}$

Answer: a

D Watch Video Solution

25. There different objective of masses m_{1}, m_{2}
and m_{2} are allowed to fall from rest and from
the same point O along three difference frictionless path .The speeds of three objects on reaching the ground will be

$$
\text { A. } \frac{1}{m_{1}}: \frac{1}{m_{2}}: \frac{1}{m_{3}}
$$

B. 1:1:1

$$
\text { C. } m_{1}: 2 m_{2}: 3 m_{3}
$$

D. $m_{1}: m_{2}: m_{3}$

Answer: b

D Watch Video Solution

26. The radius of earth is about 6400 Km and
that of mars is about 3200 km The mass of the earth is about 10times the mass of mars An object weight $200 N$ on earth 's surface, then its weight on the surface of mars will be
A. $80 N$
B. 40 N
C. 20 N
D. 8 N

Answer: a

D Watch Video Solution

27. A stelite is launched into a circular orbit of
radius R around the earth .While a second is
lunched into an orbit of radius $1.01 R$ The
period of the second satellite is longer than
the first one by approximatly
A. 3.0%
B. 1.5%
C. 0.7%
D. 1.0%

Answer: b
(Watch Video Solution
28. As shown in figure in a simple barmonic motion obscillator having identical four springs has time period

A. $T=2 \pi \sqrt{\frac{m}{4 k}}$
B. $T=2 \pi \sqrt{\frac{m}{2 k}}$
C. $T=2 \pi \sqrt{\frac{m}{k}}$

$$
\text { D. } T=2 \pi \sqrt{\frac{m}{8 k}}
$$

Answer: c

- Watch Video Solution

29. A soup bubble in vacume has a redius 3 cm
and another soup bubble in vacume has
radius 4 cm If two bubble coulese under isothermal condition, then the radius of the new bubble will be
A. 7 cm
B. 5 cm
C. 4.5 cm
D. 2.3 cm

Answer: b

D Watch Video Solution

30. As what temperature the speed of sound in air will because double of its value at 27° ?
A. $54^{\circ} C$
B. $627^{\circ} \mathrm{C}$
C. $927^{\circ} C$
D. $327^{\circ} C$

Answer: c

D Watch Video Solution

31. A string in a musical instrument is 50 cm
long and its fundanmental frequency is 800 Hz
If the frequency of 1000 Hz is to be produced then required length of spring is
A. 37.5 cm
B. 40 cm
C. 50 cm
D. 62.5 cm

Answer: b

- Watch Video Solution

32. Bernoulli's equation is a consequence of conseevation of
A. energy
B. linear momentum
C. angular momentum
D. mass

Answer: a

D Watch Video Solution
33. A neutron makes is a head - on elastic
collision with a stationary deuteron The
fraction energy loss of the neutron in the collision is
A. $16 / 81$
B. $8 / 9$
C. $8 / 27$
D. $2 / 3$

Answer: b

- Watch Video Solution

34. The motion of plants in the solar system is
radius R coalesece to from a single large drop
.The radius of the tatal surface energies before and after the change is
A. mass
B. linear momentum
C. angular momentum
D. energy

Answer: c

35. Two small drop of mencury, each of radius

R coulesece in from a simple large drop the ratio of the total surface energies before and after the change is
A. $1: 2^{1 / 3}$
B. $2^{1 / 3}: 1$
C. 2:1
D. 1:2

Answer: b

D Watch Video Solution

36. A black body at a temperature of $227^{\circ} \mathrm{C}$
radius head at a rate of $20 \mathrm{calm}^{-2} \mathrm{~s}^{-1}$. When
its temperature is raised to $727^{\circ} \mathrm{C}$ the radiated by it in cal $m^{-2} s^{-1}$ will be closet
A. 40
B. 160
C. 320
D. 640

Answer: c

D Watch Video Solution

37. A body starting from rest moves along a string line with a constant acceleration The variation of speed (v) with distance (s) is repressed by the graph

Answer: c

38. A ball is thrown vertically upwards. Which
of the following plots represent the speed graph of the ball during its flight if the air resistence is not ignored?

C.

Answer: d

D Watch Video Solution

39. An earhquake generates both transverse
(S) and logitudinal (P) sound wave in the earth
.The speed of (S) wave is about $4.5 \mathrm{~km} / \mathrm{s}$ and that of (P) wave is about $8.0 \mathrm{~km} / \mathrm{s} \mathrm{A}$ seimsograph records P and S wave fr5om an earthquake The first P wave arrives 4.0 min
before the first S wave The epicenter of the earthpake is located at a distance of about
A. 25 km
B. 250 km
C. 2500 km
D. 5000 km

Answer: c

(Watch Video Solution
40. During SHM, A particle has displacement a from mean position If acceleration Kinetic energy and excess potential repressented by a K and U respectively then chose the appropriate graph
A.
(a) $\underbrace{\kappa}$
B.
(b)
C.
(c)
U

Answer: d

D View Text Solution

41. Assertion : The root mean sguar and most probable speed of the molecules in a gas are the same

Reason : The Maxwell distribation for the speed of molecules in a gas is symentrical
A. If both assertion and reason are true
and the reason is the correct
explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true statement but reason is false.
D. If both assertion and reason are false.

- Watch Video Solution

42. Assertion: In adiabatic compression, the internal energy and temperature of the system get decreased.

Reason: The adiabatic compression is a slow process.
A. If both assertion and reason are true and the reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true statement but reason
is false.

D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

43. Assertion : A thin staindess steel needle can by floating on a still water surface

Reason : Any object floats when the bayancey force balace the weight of the object
A. If both assertion and reason are true
and the reason is the correct
explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.

C. If assertion is true statement but reason

is false.

D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

44. Assertion : A hollow metallic closed container maintained at a uniform temperature cab act as a source of black body
radiation.

Reason : All metals act as a black body.
A. If both assertion and reason are true
and the reason is the correct
explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true statement but reason
is false.
D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

45. Assertion: The ratio of intertial mass to gravitational mass is equal to one.

Reason: The inertial mass and gravitational mass of a body are equivalent.
A. If both assertion and reason are true
and the reason is the correct
explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true statement but reason is false.
D. If both assertion and reason are false.
46. A paricle starting from the origin (0,0) moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 30°
B. 45°
C. 60°

D. 0°

Answer: C

D Watch Video Solution

47. A particle executes simple harmonic oscilliation with an amplitude a. The period of oscillations is T. The minimum time taken by the particle to travel half to the amplitude from the equlibrium position is

$$
\text { A. } \frac{T}{4}
$$

B. $\frac{T}{8}$
C. $\frac{T}{12}$
D. $\frac{T}{2}$

Answer: C

D Watch Video Solution

48. A particle of mass m moves in the XY plane
with a velocity v along the straight line AB. If
the angular momentum of the particle with respect to origin O is L_{A} when it is at A and
L_{B} when it is at B , then

A. $L_{A}>L_{B}$
B. $L_{A}=L_{B}$
C. the relationship between L_{A} and L_{B}
depends upon the slope of the line $A B$

D. $L_{A}<L_{B}$

Answer: B

D Watch Video Solution

49. A mass of 2.0 kg is put on a flat pan attached to a vertical spring fixed on the ground as shown in figure. The mass of the spring and the pan is negligible. When pressed slightly and realeased the mass executes a simple contant is $200 \mathrm{~N} / \mathrm{m}$. What
should be the minimum amplitude of the
motion, so that the mass gets the detached
from the pan? $\left(\right.$ Takeg $\left.=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

A. 8.0 cm
B. 10.0 cm
C. Any value less than 12.0 cm
D. 4.0 cm

Answer: B

D Watch Video Solution

50. The phase difference between the instantaneous Velocity and acceleration of a particle executing simple harmonic motion is
A. 0.5π
B. π
C. 0.707π
D. Zero

Answer: A

D Watch Video Solution
51. Dimension of resistance in an elecatrical circuit, in terms of dimension of mass M, of
length L, of time T, and of current I, would be
A. $\left[M L^{2} T^{3} I^{-I}\right]$
B. $\left[M L^{2} T^{2}\right]$
C. $\left[M L^{2} L^{-1}\right]$
D. $\left[M L^{2} T^{3}\right]$

Answer: D

D Watch Video Solution

52. When a body falls in a air, the resistance of air depends to a great extent on the shape of
the body. The different shapes are givne.

Identify the combination of air resistance which truly represents the physical situation?
(The cross-sectional areas are the same)

(1) disc

(2) ball
(3) cigar shaped
A. $1<2<3$
B. $2<3<1$
C. $3<2<1$
D. $3<1<2$

Answer: C

- Watch Video Solution

53. A beam of parallel rays is brought to focus
by a planoconvex. A thin Concave lens of the
same focal length is joined to the first lens.

The effect of this is
A. the focus shifts to infinity
B. the focal point shifts towards the lens by
a small distance

C. the focal point shifts away from the lens

 by a small distanceD. the focus remains undisturbed

Answer: A

D Watch Video Solution

54. Fig shows of $P V / T$ versus P for $1.00 \times 10^{-3} \mathrm{~kg}$ of oxygen gas at two different temperatures.
(a) What does the dotted plot signify ?
(b) Which is true : $T_{1}<T_{2}$ or $T_{2}<T_{1}$?
(c) What is the value of $P V / T$ where the curves meet on the Y -axis ?
(d) If we obtained similar plot for $1.00 \times 10^{-3} \mathrm{~kg}$ of hydrogen, would we get the same value of $P V / T$ at the point where the curves meet on the y-axis ? If not, what mass of hydrogen yield the same value of $P V / T$
(for low pressure high temperature region of
the plot) ? (Molecular mass of $H=2.02 u$, of
$O=32.0 u, R=8.31 \mathrm{Jmol}^{-1} K^{-1}$

A. (i) only
B. (i) and (ii) only
C. All of the above
D. None of the above

- Watch Video Solution

55. An asteroid of mass m is approaching earth, initially at a distance $10 R_{E}$ with speed v_{i}. It hits earth with a speed v_{f} (R_{E} and M_{E} are radius and mass of earth), Then

$$
\begin{aligned}
& \text { A. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m}{M_{e} R_{e}}\left(1-\frac{1}{10}\right) \\
& \text { B. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m_{e}}{R_{e}}\left(1+\frac{1}{10}\right) \\
& \text { C. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m_{e}}{R_{e}}\left(1-\frac{1}{10}\right) \\
& \text { D. } v_{f}^{2}=v_{i}^{2}+\frac{2 G m}{R_{e}}\left(1-\frac{1}{10}\right)
\end{aligned}
$$

D Watch Video Solution

56. A spherical ball of mass 20 kg is stationary at the top of a hill of height 100 m , it rolls down a smooth surface to the ground, then
climbs up another bill of height of 30 m and
final rolls down to a horizontal base at a height of 20 m about the ground. The velocity attained by the ball is
A. $40 m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $10 \sqrt{30} \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

57. A sound absorber attenuates the sound
level by $20 d B$. The intensity decreases by a
factor of
A. 1000

B. 10000

C. 10
D. 100

Answer: D

D Watch Video Solution

58. A particle is thrown above, then correct $v-t$ graph will be
(b)

C.
(c)

(d)

D.

Answer: A

- Watch Video Solution

59. The speed (v) of ripples on the surface of

waterdepends on surface tension (σ), density
(ϕ) and wavelength (λ). The square of speed
(v) is proportional to
A. $\frac{\sigma}{\rho \lambda}$
B. $\frac{\rho}{\sigma \lambda}$
C. $\frac{\lambda}{\sigma \rho}$
D. $\rho \lambda \sigma$

Answer: a

60. Simple pendulum is executing simple harmonic motion with time period T. If the length of the pendulum is increased by 21%, then the increase in the time period of the pendulum of the increased length is:
A. 22%
B. 13%
C. 50%
D. 10%

Answer: D

D Watch Video Solution

61. A gun fires a bullet of mass $50 g$ with a
velociy of $30 \mathrm{~m} / \mathrm{s}$. Due to this, the gun is
pushed back with a velocity of $1 \mathrm{~m} / \mathrm{s}$, then the mass of the gun is:
A. 1.5 kg
B. 5.5 kg
C. 0.5 kg

D. 3.5 kg

Answer: A

D Watch Video Solution

62. Which of the following pairs does not hace similar dimensions?
A. Tension and surface tension
B. Stress and Pressure
C. Planck's constant and angular
momentum
D. Angle and strin

Answer: A

D Watch Video Solution

63. The escape Velocity from the earth is
$11.2 \mathrm{Km} / \mathrm{s}$. The escape Velocity from a planet
having twice the radius and the same mean density as the earth, is :
A. $11.2 \mathrm{Km} / \mathrm{s}$
B. $22.4 K m / s$
C. $15.00 K m / s$
D. $5.8 K \mathrm{Km} / \mathrm{s}$

Answer: B

D Watch Video Solution

64. A metal ball of mass $2 k g$ moving with speed of $36 K m / h$ has a collision with a stationary ball of mass 3 kg . If ater collision,
both the ball move together, the loss in Kinetic energy due to collision is:
A. 80 J
B. 40 J
C. 60 J
D. 160 J

Answer: C
(Watch Video Solution
65. The length and breadth of a metal sheet
are 3.124 m and 3.002 m respectively. The area of this sheet upto correct significant figure is
A. $9.378 m^{2}$
B. $9.37 m^{2}$
C. $9.378248 m^{2}$
D. $9.3782 m^{2}$

Answer: A

D Watch Video Solution
66. Two equal vector have a resultant equal to
either of them, then the angle between them
will be:
A. 110°
B. 120°
C. 60°
D. 150°

Answer: B

D Watch Video Solution
67. A stone tied to a string of 80 cm long is
whireled in a horizontal circle with a constant
speed. If the stone makes 25 revolutions in $14 s$
then, magnitude of acceleration of the same
will be:
A. $990 \mathrm{~cm} / \mathrm{s}^{2}$
B. $680 \mathrm{~cm} / \mathrm{s}^{2}$
C. $750 \mathrm{~cm} / \mathrm{s}^{2}$
D. $650 \mathrm{~cm} / \mathrm{s}^{2}$

Answer: A
68. The tension in a piano wire is 10 N . The tension ina piano wire to produce a node of double frequency is
A. $20 N$
B. 40 N
C. 10 N
D. 120 N
69. Two sound waves have phase difference of 60°, then they will have the path difference of:
A. 3λ
B. $\frac{\lambda}{3}$
C. $\frac{\lambda}{6}$
D. λ

Answer: C
70. A string with a frequency n and B string with a frequency $1 / 8$ that of A. If the energy remains the same and the amplitude of A is a, then amplitude of B will be
A. $2 a$
B. $8 a$
C. $4 a$
D. a

Answer: B

- Watch Video Solution

71. The velocity of a bullet is reduce from $200 \mathrm{~m} / \mathrm{s}$ to $100 \mathrm{~m} / \mathrm{s}$ while travelling through
a wodden block of thickness 10 cm Assuming it to be uniform, the retardation will be
A. $15 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
B. $10 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$
C. $12 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$

D. $14.5 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

72. Two projectile are projected with the same velocity. If one is projected at an angle of 30° to the horizontal. The ratio if maximum heights reached, is:
A. $1: 3$
B. $2: 1$
C. 3:1
D. : 4

Answer: A

- Watch Video Solution

73. In an adiabatic change, the pressure and temperature of a monoatomic gas are related with relation as $P \propto T^{C}$, where C is equal to:

5

A. $\frac{5}{4}$
B. $\frac{5}{3}$
C. $\frac{5}{2}$
D. $\frac{3}{5}$

Answer: C

D Watch Video Solution

74. If in a wire of Young's moduls Y, longitudinal strain X is produced then the
potential energy stored in its unit volume will be:

A. $0.5 Y X^{2}$
B. $0.5 Y^{2} X$
C. $2 Y X^{2}$
D. $Y X^{2}$

Answer: A
(Watch Video Solution
75. A stone tied to a string is rotated with a uniform speed in a vertical plane. If mass of the stone is m, the length of the string is r and linear speed of the stone is v when the stone is at its lowest point, then the tension in
the string will be
($\mathrm{g}=$ acceleration due to gravity)

$$
\begin{aligned}
& \text { A. } \frac{m v^{2}}{r}+m g \\
& \text { B. } \frac{m v^{2}}{r}-m g \\
& \text { C. } \frac{m v}{r}
\end{aligned}
$$

D. $m g$

Answer: A

D Watch Video Solution

76. A black body is heated from $27^{\circ} C$ to
$127^{\circ} \mathrm{C}$. The ratio of their energies of radiation emitted will be
A. $9: 16$
B. $27: 64$
C. $81: 256$
D. 3:4

Answer: C

D Watch Video Solution

77. A spherical drop of water has 1 mm radius.

If the surface tension of water is 70×10^{-3}
$\mathrm{N} / / \mathrm{m}$, then the difference of pressure between inside and outside of the spherical drop is:
A. $140 \mathrm{~N} / \mathrm{m}^{2}$
B. $14 N / m^{2}$
C. $35 N / M^{2}$
D. None of the above

Answer: A

- Watch Video Solution

78. A body A starts from rest with an acceleration a_{1}. After 2 seconds, another body
B starts from rest with an acceleration a_{2}. If
they travel equal distances in the $5^{\text {th }}$ second, after the start of A, then the ratio $a_{1}: a_{2}$ is equal to :
A. 9:5
B. 5:7
C. 5:9
D. $7: 9$

Answer: C

- Watch Video Solution

79. In a sinusoidal wave the time required for a particular point to moce from equilibrium pasition to maximum diaplacement is 0.17 s , then the frequency of wave is:
A. 1.47 Hz
B. 0.36 Hz
C. $2.94 H z$
D. 2.48 Hz

Answer: A

D Watch Video Solution
80. The velocity with which a projectile must be fired so that is escapes earth's gravitation does not depend on:
A. mass of the earth
B. mass of the projectile
C. radius of the projectile

D. gravitational constant

Answer: B

81. A lead shot of a 1 mm diameter falls
through a long column of glycerine.The variation of its velocity v with distance coverd is represented by,

C.

Answer: A

- Watch Video Solution

82. The pressure on a square plate is measured by measuring the force on the plate and the length of the sides of the plate by
using the formula $p=\frac{F}{l^{2}}$. If the maximum errors in the measurment of force and length are 4% and 2% respectively. Then the
maximum error in the measurment of

pressure is

A. 1%
B. 2%
C. 8%
D. 10%

Answer: C
(Watch Video Solution
83. A block has been placed on an inclined
plane with the slope angle θ. Block slide down
the plane at constant speed. The cofficient of
Kinetic friction is equal to
A. $\sin \theta$
B. $\cos \theta$
C. g
D. $\tan \theta$

Answer: D

84. A particle moves along a curve of unknown
shape but magnitude of force F is constant and always acts along tangent to the curve.Then
A. F may be conservative
B. F must be conservative
C. F may be non conservative
D. F must be non-conservative

Answer: D

D Watch Video Solution

85. A rod of length L is hinged from one end.

It is brought to a horizontal position and released. The angular velocity of the rod, When it is in verticle position is
A. $\sqrt{\frac{2 g}{L}}$
B. $\sqrt{\frac{3 g}{L}}$
C. $\sqrt{\frac{g}{2 L}}$

D. $\sqrt{\frac{g}{L}}$

Answer: B

D Watch Video Solution

86. Assertion: A ladder is more apt to slip,
when you are high up on it than when you just
begin to climb.

Reason: At the high up on the ladder, the torque is large and on climbing up the torque is small.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion
C. If assertion is true but reason is false.
D. If both aseertion and reason are false.

Answer: A

87. Assertion: Water in a U-tube executes
$S H M$, the time period for mercury filled up to
the same height in the U-tube be greater then
that in case of water.
Reason:The amplitude of an oscilliating pendulum goes on increasing.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion

C. If assertion is true but reason is false.
D. If both aseertion and reason are false.

Answer: D

D Watch Video Solution

88. Assertion: In taking into account the fact
that any object which floats must have an average density less than that of water, during

World war I, a number of cargo vessels are made of concrete.

Reason : Conctere cargo Vessel were filled with air.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion

C. If assertion is true but reason is false.
D. If both aseertion and reason are false.

Answer: A

D Watch Video Solution

89. Assertion: The acceleration of a body down
a rough inclined plane is grater than the acceleration due to gravity.

Reason: The body is able to slide on an inclined plane only when its acceleration is greater than acceleration due to gravity.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion

C. If assertion is true but reason is false.
D. If both aseertion and reason are false.

Answer: D

D Watch Video Solution

90. Assertion: The temperature of the surface of the sun is approximately $6000 K$. If we take a
big lens and focus the sun rays, we can produce a temperature at $8000 K$

Reason: This highest temperature can be produced according to second law of thermodynamics.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but reason is not the correct explanation of

assertion

C. If assertion is true but reason is false.
D. If both aseertion and reason are false.

Answer: D

- Watch Video Solution

General Kinematics

1. A string is stretched between fixed points separated by 75.0 cm . It is observed to have resonant frequencies of 420 Hz and 315 Hz .

There are no other resonant frequencies between these two. Then, the lowest resonant frequency for this string is
A. 105 Hz
B. 1.05 Hz
C. 1050 Hz
D. 10.5 Hz

Answer: A

- Watch Video Solution

2. If the terminal speed of a sphere of gold (density $=19.5 \mathrm{~kg} / \mathrm{m}^{3}$) is $0.2 \mathrm{~m} / \mathrm{s}$ in a viscous liquid (density $=1.5 \mathrm{~kg} / \mathrm{m}^{3}$), find the terminal speed of a sphere of silver (density $=10.5 \mathrm{~kg} / \mathrm{m}^{3}$) of the same size in the same liquid
A. $0.4 m / s$
B. $0.133 m / s$
C. $0.1 \mathrm{~m} / \mathrm{s}$
D. $0.2 m / s$

Answer: C

D Watch Video Solution

3. A coin is placed on a horizontal platform which undergoes vertical simple harmonic motion of angular frequency ω. The amplitude of oscillation is gradually increased. The coin
will leave contact with the platform for the first time
A. at time mean position of the platform
B. for an amplitude of g / ω^{2}
C. for an amplitude of g^{2} / ω^{2}

D. at the highest position of the platform

Answer: B
(Watch Video Solution
4. Four point masses, each of value m, are placed at the corners of a square $A B C D$ of side
I. The moment of inertia of the is system about an axis passing through A and parallel to $B D$ is
A. $2 m l^{2}$
B. $\sqrt{3} m l^{2}$
C. $3 m l^{2}$
D. $m l^{2}$

Answer: C

5. Two rigid boxes containing different ideal gases are placed on a table. Box A contains one mole of nitrogen at temperature T_{0}, while Box contains one mole of helium at temperature $\left(\frac{7}{3}\right) T_{0}$. The boxes are then put into thermal contact with each other, and heat
flows between them until the gasses reach a common final temperature (ignore the heat capacity of boxes). Then, the final temperature of the gasses, T_{f} in terms of T_{0} is

> A. $T_{f}=\frac{3}{7} T_{0}$
> в. $T_{f}=\frac{7}{3} T_{0}$
> с. $T_{f}=\frac{3}{2} T_{0}$
> д. $T_{f}=\frac{5}{2} T_{0}$

Answer: C

- Watch Video Solution

6. For the given uniform square lamina $A B C D$,
whose centre is O ,

A. $\sqrt{2} I_{A C}=I_{E F}$
B. $I_{A D}=3 I_{E F}$
C. $I_{A C}=I_{E F}$
D. $I_{A C}=\sqrt{2} I_{E F}$

Answer: C
7. A particle of mass 10 g is kept on the surface of a uniform sphere of masss 100 kg and radius

10 cm . Find the work to be done against the gravitational force between them to take the particel far away from the sphere (you may take $\left.G=6.67 \times 10^{-11} N \frac{m^{2}}{k} g^{2}\right)$

$$
\begin{aligned}
& \text { А. } 13.34 \times 10^{-10} J \\
& \text { B. } 3.33 \times 10^{-10} J \\
& \text { C. } 6.67 \times 10^{-9} J
\end{aligned}
$$

$$
\text { D. } 6.67 \times 10^{-10} J
$$

Answer: D

D Watch Video Solution

8. A projectile can have the same range ' R ' for two angles of projection. If ' T_{1} ' and ' T_{2} ' to be times of flights in the two cases, then the product of the two times of flights is directly proportional to .
A. R^{2}
B. $\frac{1}{R^{2}}$
C. $\frac{1}{R}$
D. R

Answer: D

D Watch Video Solution

9. A parachutist after bailing out falls 50 m
without friction. When parachute opens, it decelerates at $2 m / s^{2}$. He reaches the ground
with a speed of $3 \mathrm{~m} / \mathrm{s}$. At what height, did the

bail out?

A. 91 m
B. 182 m
C. 293 m
D. 111 m

Answer: C
(Watch Video Solution
10. The function $\sin ^{2}(\omega t)$ represents:
A. a periodic but one simple harmonic motion with a period $2 \pi / \omega$
B. a periodic but not simple harmonic motion with a period π / ω
C. a simple harmonic motion with a period

$$
2 \pi / \omega
$$

D. a simple harmonic motion with a period

$$
\pi / \omega
$$

Answer: B

- Watch Video Solution

11. A vertical spring with force constant k is
fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance d. The net work done in the process is

$$
\text { A. } m g(h+d)+\frac{1}{2} k d^{2}
$$

$$
\begin{aligned}
& \text { B. } m g(h+d)-\frac{1}{2} k d^{2} \\
& \text { C. } m g(h-d)-\frac{1}{2} k d^{2} \\
& \text { D. } m g(h-d)+\frac{1}{2} k d^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

12. A car travles 6 km towards north at an angle of 45° to the east and then travles distance of 4 km towards north at an angle of 135° to east
(figure). How far is the point from the starting
point? What angle does the straight line joining its initial and final position makes with the east?

A. $\sqrt{50} \mathrm{~km}$ and $\tan ^{-1}(5)$
B. 10 km and $\tan ^{-1}(\sqrt{5})$
C. $\sqrt{52} k m$ and $\tan ^{-1}(5)$
D. $\sqrt{5} k m$ and $\tan ^{-1}(\sqrt{5})$

Answer: C

D Watch Video Solution

13. The speed of light (c), gravitational constant (G) and plank's constant (h) are taken
as fundamental units in a system. The dimensions of time in this new system should be.
A. $G^{1 / 2} h^{1 / 2} c^{1 / 2}$
B. $G^{1 / 2} h^{1 / 2} c^{1 / 2}$
C. $G^{1 / 2} h^{1 / 2} c^{-3 / 2}$
D. $G^{1 / 2} h^{1 / 2} c^{1 / 2}$

Answer: A

D Watch Video Solution

14. Two bodies of mass m_{1} and m_{2} are initially at rest placed infinite distance apart.

They are then allowed to move towards each
other under mutual gravitational attaction.

Show that their relative velocity of approach
at separation r betweeen them is
$v=\frac{\sqrt{2 G\left(m_{1}+m_{2}\right)}}{r}$
A. $\left[2 G \frac{\left(m_{1}-m_{2}\right)}{r}\right]^{1 / 2}$
B. $\left[\frac{2 G}{r}\left(m_{1}-m_{2}\right)\right]^{1 / 2}$
C. $\left[\frac{r}{2 G\left(m_{1} m_{2}\right)}\right]^{1 / 2}$
D. $\left[\frac{2 G}{r} m_{1} m_{2}\right]^{1 / 2}$

Answer: B
15. The adjacent graph shows the estension
(Δl) of a wire of length 1 m suspended from
the top of a roof at one end and with a load W connected to the other end. If the crosssectional area of the wire is $10^{-6} \mathrm{~m}^{2}$, calculate the Young's modulus of the material of the wire.

A. $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
B. $2 \times 10^{-11} \mathrm{~N} / \mathrm{m}^{2}$
C. $3 \times 10^{-12} \mathrm{~N} / \mathrm{m}^{2}$
D. $2 \times 10^{-13} \mathrm{~N} / \mathrm{m}^{2}$

Answer: A

D Watch Video Solution

16. What is filled in a cylindrical container to a height of 3 m . The ratio of the cross-sectional area of the orifice and the beaker is 0.1 . The
square of the speed of the liquid coming out from the orifice is $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. $50 m^{2} / s^{2}$
B. $50.5 m^{2} / s^{2}$
C. $51 m^{2} / s^{2}$
D. $52 m^{2} / s^{2}$

Answer: A

D Watch Video Solution
17. A particle of mass (m) is executing oscillations about the origin on the (x) axis. Its
potential energy is $V(x)=k|x|^{3}$ where (k) is
a positive constant. If the amplitude of oscillation is a, then its time period (T) is.
A. alphaortional to $\frac{1}{\sqrt{a}}$
B. independent of a
C. alphaortional to \sqrt{a}
D. alphaortional to $a^{3 / 2}$

Answer: A
18. A person speaking normally produces a sound intensity of 40 dB at a distance of 1 m . If
the threshold intensity for reasonable audibility is $20 d B$, the maximum distance at which he can be heard cleary is.
A. 4 m
B. 5 m
C. 10 m

D. 20 m

Answer: C

D Watch Video Solution

19. $v_{r m s}, v_{a v}$ and $v_{m p}$ are root mean square average and most probable speeds of molecules of a gas obeying Maxwellian velocity distribution. Which of the following statements is correct ?

$$
\text { A. } v_{r m s}<v_{a v}<v_{m p}
$$

$$
\begin{aligned}
& \text { B. } v_{r m s}>v_{a v}>v_{m p} \\
& \text { C. } v_{m p}<v_{r m s}<v_{a v} \\
& \text { D. } v_{m p}>v_{r m s}>v_{a v}
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. N moles of a monoatomic gas is carried round the reversible rectangular cycle
$A B C D A$ as shown in the diagram. The temperature at A is T_{0}

The thermodynamic efficiency of the cycle is :

A. 15%
B. 50%
C. 20%
D. 25%

Answer: B

D Watch Video Solution

21. An organ pipe is closed at one end has
fundamental frequency of 1500 Hz . The maximum number of overtones generated by this pipe which a normal person can hear is
A. 4
B. 13
C. 6
D. 9

Answer: C

D Watch Video Solution

22. A bomb of mass 3.0 kg explodes in air into
two pieces of masses 2.0 kg and 1.0 kg . The smaller mass goes at a speed of $80 \mathrm{~m} / \mathrm{s}$. The total energy impared to the two fragments is :
A. 1.07 kJ

B. 2.14 kJ

C. 2.4 kJ
D. 4.8 kJ

Answer: D

D Watch Video Solution

23. Suppose the sun expands so that its radius

becomes 100 times its present radius and its
surface temperature becomes half of its
present value. The total energy emited by it then will increase by a factor of :
A. 10^{4}
B. 625
C. 256
D. 16

Answer: B
(Watch Video Solution
24. The temperature (T) dependence of resistivity (rho) of a semiconductor is represented by :

Answer: B

D Watch Video Solution

25. Which of the following velocity-time graphs

shows a realistic situation for a body in
motion ?
A.

Answer: B

- Watch Video Solution

26. In an orbital motion, the angular momentum vector is :
A. along the radius vector
B. parallel to the linear momentum
C. in the orbital plane
D. perpendicular to the orbital plane

Answer: D
(D) Watch Video Solution
27. A sphere of mass M and radius R is falling in a viscous fluid. The terminal velocity attained by the falling object will be alphaortional to :
A. R^{2}
B. R
C. $1 / R$
D. $1 / R^{2}$

Answer: A

28. In the figure given below, the position-time graph of a particle of mass 0.1 kg is shown.

The impuslse at $t=2 \mathrm{sec}$ is

A. $0.2 \mathrm{kgms}^{-1}$

$$
\text { B. }-0.2 \mathrm{kgms}^{-1}
$$

C. $0.1 \mathrm{kgms}^{-1}$

$$
\text { D. }-0.4 \mathrm{kgms}^{-1}
$$

Answer: A

D Watch Video Solution

29. A bolck of mass 10 kg is moving in x direction with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. it is subjected to a retardeng force
$F=-0.1 x J / m$. During its travel from
$x=20 m$ to $x=30 m$. Its final kinetic energy will be .
A. 475 J
B. 450 J
C. 275 J
D. 250 J

Answer: A
(Watch Video Solution
30. Which of the following functionss represents a simple harmonic oscillation ?
A. $\sin \omega t-\cos \omega t$
B. $\sin ^{2} \omega t$
C. $\sin \omega t+\sin 2 \omega t$
D. $\sin \omega t-\sin 2 \omega t$

Answer: A
(Watch Video Solution

Motion With Constant Acceleration

1. A candle of diameter d is floating on a liquid in a cylindrical container of diameter
$D(D \ll d)$ as shown in figure. If is burning
at the rate of $2 \mathrm{~cm} / \mathrm{h}$ then the top of the
candle will :

A. remain at the same height
B. fall at the rate of $1 \mathrm{~cm} / \mathrm{h}$
C. fall at the rate of $2 \mathrm{~cm} / \mathrm{h}$
D. go up at the rate of $1 \mathrm{~cm} / \mathrm{h}$

Answer: B

- Watch Video Solution

2. A given shaped glass tube having uniform cross-section is filled with water and is mounted on a rotatable shaft as shown in
figure. If the tube is rotated with a constant
angular velocity ω then :

A. water levels in both sections A and B go
up
B. water level in section A goes up and
that in B comes down
C. water level in section A comes down and that in B it goes up
D. water level remain same in both sections

Answer: A

D Watch Video Solution

3. When a ball is thrown up vertically with velocity v_{0}, it reaches a maximum height of h.

If one wishes to triple the maximum height then the ball should be thrown with velocity
A. $\sqrt{3} v_{0}$
B. $3 v_{0}$
C. $9 v_{0}$
D. $3 / 2 v_{0}$

Answer: A

D Watch Video Solution

4. A solid sphere is rolling on a frictionless
surface, shown in figure with a translational
velocity vm / s. If is to climb the inclind surface
then v should be :

> A. $(1) \geq \sqrt{\frac{10}{7} g h}$
> В. $\geq \sqrt{2 g h}$
C. $2 g h$
D. $\frac{10}{7} g h$

Answer: A

D Watch Video Solution

5. A horizontal platform is rotating with uniform angular velcity around the vertical axis passing through its centre. At some instant of time a viscous fluid of mass m is dropped at the centre and is allowed to spread out and finally fall. The angular velocity during this period :
A. decrease continuously
B. decreases initially and increases again
C. remains unaltered
D. increases continuously

Answer: B

D Watch Video Solution

6. A ladder is leaned against a smooth wall and
it is allowed to slip on a frictionless floor.

Which figure represents the track of its centre of mass?
A.

B.

Answer: C

- Watch Video Solution

7. A person is standing in an elevator. In which situation he finds his weight less?
A. When the elevator moves upward with
constant acceleration
B. When the elevator moves downward
with constant acceleration
C. When the elevator moves upward with
uniform velocity
D. When the elevator moves downward
with uniform velocity.

Answer: B

D Watch Video Solution

8. A particle having change q and m is projected with velocity $\vec{v}=2 \hat{i}-3 \hat{j}$ in uniform electric field $\vec{E}=E_{0} \cdot \hat{j}$ change in momentum $|\Delta \vec{p}|$ during any time interval t is given by :
A. $\sqrt{13} M$
B. $q E_{0} t$
C. $\frac{q E_{0} t}{m}$
D. zero

Answer: B

D Watch Video Solution

9. The velocity of a particle moving in the
$x-y$ plane is given by
$\frac{d x}{d t}=8 \pi \sin 2 \pi t$ and $\frac{d y}{d t}=5 \pi \sin 2 \pi t$
where, $t=0, x=8$ and $y=0$, the path of
the particle is.
A. a straight line
B. an ellipse
C. a circle
D. a parabola

Answer: B

D Watch Video Solution

10. A ball is droped from a high rise platform
$t=0$ starting from rest. After $6 s$ another ball
is thrown downwards from the same platform
with a speed v. The two balls meet at $t=18 s$.

What is the value of v ?

A. $74 m / s$
B. $64 m / s$
C. $84 m / s$
D. $94 m / s$

Answer: A
(Watch Video Solution
11. Assertion: The error in the measurement of radius of sphere is 0.3%. The permissible error in its surface area is 0.6%.

Reason: The permissible error is calculated by
the formula $\frac{\Delta A}{A}=\frac{4 \Delta r}{r}$.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion: The isothermal curves intersect each other at a certain point.

Reason: The isothermal changes takes place
rapidly, so the isothermal curves have very little slope.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

13. Assertion: The velocity of a body at the bottom of an inclind plane of given height is more when is slides down the plane, compared to, when it rolling down the same plane.

Reason: In rolling down a body acquires both, kinetic energy of translation and rotation.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
14. Assertion: A body of mass 1 kg is making $1 r p s$ in a circle of radius $1 m$. Centrifugal force acting on it is $4 \pi^{2} N$.

Reason: Centrifugal force is given by

$$
F=\frac{m v^{2}}{r}
$$

A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

15. Assertion: The change in air pressure effects the speed of sound.

Reason: The speed of sound in gases is alphaortional to the square of pressure.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

