©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

MOTION IN TWO DIMENSION

Problems Based On Basic Concept Of Projectile Motion

1. Which of the following quantities remain
constant during projectile motion?
A. Initial velocity inclined to the horizontal
B. Zero velocity at the highest point
C. Constant acceleration perpendicular to
the velocity
D. None of the above

Answer: D

- Watch Video Solution

2. In case of a projectile motion, what is the angle between the velocity and acceleration at the highest point?
A. 0°
B. 45°
C. 90°
D. 180°

Answer: C

D Watch Video Solution
3. If air resistance is not considered in projectiles, the horizontal motion takes place with:
A. constant velocity
B. constant acceleration
C. constant retardation
D. variable velocity

Answer: A

D Watch Video Solution
4. When a projectile is fired at an angle θ w.r.t
horizontal with velocity u, then its vertical component:
A. remains same
B. goes on increasing with height
C. goes on decreasing with height
D. first increase then decreases with height

Answer: C

D Watch Video Solution
5. Two bullets are fired simultaneously,
horizontally and with different speeds from
the same place. Which bullet will hit the ground first?
A. slower one
B. faster one
C. Both will reach simultaneously
D. it cannot be predicted

Answer: C

6. In a projectile motion the velocity

A. no instance
B. one instant
C. two instant
D. all instant

Answer: b

7. Which out of these does not affect the

 maximum height of a projectile?A. Mass of projectile
B. Angle of projection
C. Acceleration due to gravity
D. Magnitude of initial velocity

Answer: A

D Watch Video Solution

8. Three particles A, B and C are projected from
the same point with the same initial speeds making angles $30^{\circ}, 45^{\circ}$ and 60° respectively
with the horizontal. Which of the following statement is correct?
$A . A, B$ and C hava unequal ranges
B. Ranges of A and C are equal and less
than that of B
C. Ranges of A and C are equal and greater
than that of B

D. A, B and C have equal ranges

Answer: b

D Watch Video Solution

9. A particle reaches its highest point when it
has covered exactly one half of its horizontal
range. The corresponding point on the displacement -time graph is charecterized by :
A. negative slope and zero curvature

B. zero slope and negative curvature

C. zero slope and positive curvature
D. positive slope and zero curvature

Answer: c

D Watch Video Solution

10. When air resistance is taken into account while dealing with the motion of the projectile which of the following properties of the projectile, shows an increases?
A. range
B. maximum height
C. speed at which it strikes the ground
D. the angle at which the projectile strikes
the ground

Answer: D

D Watch Video Solution

11. Which of the following sets of factors will affect the horizontal distance covered by an converted by an athlete in a long-jump event?
A. Speed before he jumps and his weight
B. The direction in which he leaps and the
initial speed
C. The force with which he pushes the
ground and his speed
D. The direction in which he leaps and the
weight

Answer: b

- Watch Video Solution

12. A particle projected with velocity u at angle
θ with horizontal at $\mathrm{t}=0$. What is the magnitude of change in the velocity of the particle when it is at maximum height?
A. $\frac{u \cos \theta}{2}$
B. $u \cos \theta$
C. $u \sin \theta$

D. none of these

Answer: c

D Watch Video Solution

13. Two projectiles are fired from the same point with the same speed at angles of projection 60° and 30° respectively. Which one of the following is true?
A. Their range will be the same
B. Their maximum heights will be the same
C. Their velocities at the highest point will be the same.
D. Their time of flight will be the same.

Answer: A

D Watch Video Solution

14. For angles of projection of a projectile at angle $\quad\left(45^{\circ}-\theta\right)$ and $\left(45^{\circ}+\theta\right)$, the
horizontal ranges described by the projectile are in the ratio of :
A. 2:1
B. $1: 2$
C. $1: 1$
D. $2: 3$

Answer: C
(Watch Video Solution
15. Four bodies A, B, C and D are projected with equal velocities having angles of projection
$15^{\circ}, 30^{\circ}, 45^{\circ}$ and 60° with the horizontal respectively. The body having the shortest range is
A. A
B. B
C. C
D. D

- Watch Video Solution

16. Two stones are projected with the same speed but making different angles with the horizontal. Their ranges are equal. If the angles of projection of one is $\pi / 3$ and its maximum height is h_{1} then the maximum height of the other will be:
A. $3 h_{1}$
B. $2 h_{1}$
C. $h_{1} / 2$

D. $h_{1} / 3$

Answer: D

D Watch Video Solution

17. A gun is firing bullets with velocity v_{0} by rotating it through 360° in the horizontal plane. The maximum area covered by the bullets is
A. $\pi\left(\frac{v_{0}^{4}}{g^{2}}\right)$
B. $\pi\left(\frac{v_{0}^{2}}{2 g}\right)^{2}$
C. $\pi\left(\frac{v_{0}}{g}\right)^{2}$
D. $\pi\left(\frac{v_{0}}{2 g}\right)^{2}$

Answer: A

D Watch Video Solution

18. A particle is projected with a velocity u making an angle θ with the horizontal. At any instant its velocity becomes v which is perpendicular to the initial velocity u. Then v is
A. $u \cos \theta$
B. $u \tan \theta$
C. $u \sec \theta$
D. $u \cot \theta$

Answer: D

D Watch Video Solution

19. The range of a projectile launched at an angle of 15° with horizontal is 1.5 km . The
range of projectile when launched at an angle of 45° to the horizontal is
A. 1.5 km
B. 3 km
C. 6 km
D. 0.75 km

Answer: B
(Watch Video Solution
20. A gun fires two bullets at 60° and 30°
with the horizontal. The bullets strike at some
horizontal distance. The ratio of maximum height for the two bullet is
A. $2: 1$
B. $3: 1$
C. $4: 1$
D. 1:1

Answer: B
21. A shell fired from the ground is just able to
cross in a horizontal direction the top of a wall
90 m away and 45 m high. The direction of projection of the shell will be:
A. 25°
B. 30°
C. 45°
D. none of these

Answer: c

- Watch Video Solution

22. In the previous problem, the velocity of the shell will be
A. $30 m s^{-1}$
B. $30 \sqrt{2} m s^{-1}$
C. $30 \sqrt{3} m s^{-1}$
D. none of these

Answer: b

D Watch Video Solution

23. If R is the maximum horizontal range of a particle, then the greatest height attained by it is :
A. R
B. $2 R$
C. $R / 2$
D. $R / 4$

Answer: D

D Watch Video Solution

24. A particle is projected with a velocity v, so
that its range on a horizontal plane is twice
the greatest height attained. If g is acceleration due to gravity, then its range is :
A. $\frac{4 v^{2}}{5 g}$
B. $\frac{4 g}{5 v^{2}}$
C. $\frac{4 v^{3}}{5 g^{2}}$
D. $\frac{4 v}{5 g^{2}}$

Answer: A

D Watch Video Solution

25. During a projectile motion if the maximum
height equal the horizontal range, then the angle of projection with the horizontal is :
A. $\tan ^{-1}(1)$
B. $\tan ^{-1}(2)$

C. $\tan ^{-1}(3)$

D. $\tan ^{-1}(4)$

Answer: D

D Watch Video Solution

26. The point from where a ball is projected is taken as the origin of the coordinate axes. The x and y components of its displacement are given by $x=6 t$ and $y=7 t-5 t^{2}$. What is the velocity of projection?
A. $6 m s^{-1}$
B. $8 m s^{-1}$
C. $10 m s^{-1}$
D. $14 m s^{-1}$

Answer: c

- Watch Video Solution

27. In the previous problem, What is the angle of projection ?
A. $\tan ^{-1}\left(\frac{1}{4}\right)$
B. $\tan ^{-1}\left(\frac{4}{3}\right)$
C. $\tan ^{-1}\left(\frac{1}{8}\right)$
D. $\tan ^{-1}\left(\frac{1}{6}\right)$

Answer: b

D Watch Video Solution

28. A body is projected at an angle of 30° with
the horizontal and with a speed of $30 \mathrm{~ms}^{-1}$.

What is the angle with the horizontal after 1.5
second? $\left(g=10 m s^{-2}\right)$
A. 0°
B. 30°
C. 60°
D. 90°

Answer: A
(Watch Video Solution
29. A body of mass $2 k g$ has an initial velocity of $3 \mathrm{~ms}^{-1}$ along $O E$ and it is subjected to a force of $4 N$ in $O F$ direction perpendicular to
$O E$. Find the distance of the body from O after $4 s$.

A. $12 m$
B. $28 m$
C. $20 m$
D. 48 m

Answer: c

D Watch Video Solution

30. A body has an initial velocity of $3 \mathrm{~m} / \mathrm{s}$ and has an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$ normal to the direction of the initial velocity. Then its velocity 4 seconds after the start is
A. $7 \mathrm{~m} / \mathrm{sec}$ along the direction of initial
velocity
B. $7 \mathrm{~m} / \mathrm{sec}$ along the normal to the direction of initial velocity
C. $7 \mathrm{~m} / \mathrm{sec}$ mid-way between the two

directions

D. $5 \mathrm{~m} / \mathrm{sec}$ at an angle of $\tan ^{-1}(4 / 3)$ with

the direction of initial velocity.

Answer: D

31. A person can throw a stone to a maximum
distance of h meter. The greatest height to which he can throw the stone is:
A. h
B. $h / 2$
C. $2 h$
D. $3 h$

Answer: B

D Watch Video Solution

32. A person can throw a stone to a maximum

 height of h meter. The maximum distance to which he can throw the stone is:A. h
B. $h / 2$
C. $2 h$
D. $3 h$

Answer: C

Watch Video Solution

33. A projectile can have the same range ' R ' for two angles of projection. If ' T_{1} ' and ' T_{2} ' to be times of flights in the two cases, then the product of the two times of flights is directly proportional to .
A. $t_{1} t_{2} \propto R^{2}$
B. $t_{1} t_{2} \propto R$
C. $t_{1} t_{2} \propto \frac{1}{R}$
D. $t_{1} t_{2} \propto \frac{1}{R^{2}}$

Answer: B

D Watch Video Solution

34. The equation of motion of a projectile is $y=12 x-\frac{3}{4} x^{2}$. The horizontal component of velocity is $3 m s^{-1}$. What is the range of the projectile ?
A. $18 m$
B. $16 m$
C. 30.6 m

D. 21.6 m

Answer: B

D Watch Video Solution

35. The trajectory of a projectile in a vertical plane is $y=a x-b x^{2}$, where a and b are constants and x and y are respectively horizontal and vertical distances of the projectile from the point of projection. The maximum height attained by the particle and
the angle of projection form the horizontal are:

$$
\begin{aligned}
& \text { A. } \frac{b^{2}}{2 a}, \tan ^{-1}(b) \\
& \text { B. } \frac{a^{2}}{b}, \tan ^{-1}(2 b) \\
& \text { C. } \frac{a^{2}}{4 b}, \tan ^{-1}(a) \\
& \text { D. } \frac{2 a^{2}}{b}, \tan ^{-1}(a)
\end{aligned}
$$

Answer: C

D Watch Video Solution

36. A projectile is given an initial velocity of
$(\hat{i}+2 \hat{j}) m / s$, where \hat{i} is along the ground and \hat{j} is along the vertical. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the equation of its trajectory is:
A. $y=2 x-5 x^{2}$
B. $y=x-5 x^{2}$
C. $4 y=2 x-5 x^{2}$
D. $y=2 x-25 x^{2}$

Answer: A
37. Two particles are projected obliquely from ground with same speed such that their range
' R ' are same but they attain different maximum heights h_{1} and h_{2} then relation between R, h_{1} and h_{2} is:

$$
\begin{aligned}
& \text { A. } R=\sqrt{h_{1} h_{2}} \\
& \text { B. } R=\sqrt{2 h_{1} h_{2}} \\
& \text { C. } R=2 \sqrt{h_{1} h_{2}} \\
& \text { D. } R=4 \sqrt{h_{1} h_{2}}
\end{aligned}
$$

Answer: D

D Watch Video Solution

38. A stone is thrown at an angle θ to the horizontal reaches a maximum height H . Then the time of flight of stone will be:

$$
\begin{aligned}
& \text { А. } \sqrt{\frac{2 H}{g}} \\
& \text { B. } 2 \sqrt{\frac{2 H}{g}} \\
& \text { С. } \frac{2 \sqrt{2 H \sin \theta}}{g}
\end{aligned}
$$

D. $\frac{\sqrt{2 H \sin \theta}}{g}$

Answer: B

- Watch Video Solution

39. A cricketer can throw a ball to a maximum
horizontal distance of 100 m . With the same
speed how much high above the ground can the cricketer throw the same ball?
A. 50 m
B. 100 m
C. $150 m$
D. 200 m

Answer: A

D Watch Video Solution

40. The speed of a projectile at its maximum height is $\sqrt{3} / 2$ times its initial speed. If the range of the projectile is n times the maximum height attained by it, n is equal to :
A. $\frac{4}{3}$
B. $2 \sqrt{3}$
C. $4 \sqrt{3}$
D. $\frac{3}{4}$

Answer: C

D Watch Video Solution
41. A body is projected at an angle of 60° with ground. It covers a horizontal distance of

100 m . If the same body is projected at 60°
with vertical with same velocity, the new range
is
A. 50 m
B. 100 m
C. 200 m
D. 150 m

Answer: B
(Watch Video Solution
42. Two paper screens A and B are separated by 150 m . A bullet pierces A and B. The hole in B in 15 cm below the hole in A . If the bullet is travelling horizontally at the time of hitting A,
then the velocity of the bullet at A is:
$\left(g=10 m s^{-2}\right)$
A. $100 \sqrt{3} m s^{-1}$
B. $200 \sqrt{3} m s^{-1}$
C. $300 \sqrt{3} m s^{-1}$
D. $500 \sqrt{3} m s^{-1}$

Answer: d

D Watch Video Solution

43. The ceiling of a hall is 40 m high. For maximum horizontal distance, the angle at which the ball may be thrown with a speed of $56 \mathrm{~ms}^{-1}$ without the ceiling of the hall is
A. 25°
B. 30°
C. 45°

D. 60°

Answer: b

D Watch Video Solution

44. In the previous problem, the maximum
horizontal distance will be
A. $160 \sqrt{3} m$
B. $140 \sqrt{3} m$
C. $120 \sqrt{3} m$

D. $100 \sqrt{3} m$

Answer: a

D Watch Video Solution

45. Two bodies are thrown with the same initial velocity at angles θ and $\left(90^{\circ}-\theta\right)$ respectively with the horizontal, then their maximum height are in the ratio
A. $1: 1$
B. $\tan \theta: 1$
C. 1: $\tan \theta$
D. $\tan ^{2} \theta: 1$

Answer: D

D Watch Video Solution

46. If R and H represent horizontal range and maximum height of the projectile, then the angle of projection with the horizontal is
A. $\tan ^{-1}\left(\frac{H}{R}\right)$
B. $\tan ^{-1}\left(\frac{2 H}{R}\right)$
C. $\tan ^{-1}\left(\frac{4 H}{R}\right)$
D. $\tan ^{-1}\left(\frac{4 R}{H}\right)$

Answer: c

D Watch Video Solution

47. If a ston s to at a point which is at a distance d away and at a height h avove the point from where the stone starts, then what
is the value of initial speed u if the stone is
lauched at angle θ ?

A. $\frac{g}{\cos \theta} \sqrt{\frac{d}{2(\operatorname{dtan} \theta-h)}}$
B. $\frac{d}{\cos \theta} \sqrt{\frac{d}{2(d \tan \theta-h)}}$
C. $\sqrt{\frac{g d^{2}}{\left(h \cos ^{2} \theta\right)}}$
D. $\sqrt{\frac{g d^{2}}{(d-h)}}$

Answer: b

D Watch Video Solution

48. A particle is projected from the ground with an initial speed of v at an angle θ with horizontal. The average velocity of the particle between its point of projection and highest point of trajectroy is:

$$
\text { A. } \frac{v}{2} \sqrt{1+2 \cos ^{2} \theta}
$$

B. $\frac{v}{2} \sqrt{1+2 \cos ^{2} \theta}$
 C. $\frac{v}{2} \sqrt{1+3 \cos ^{2} \theta}$
 D. $v \cos \theta$

Answer: c

D Watch Video Solution

49. Two particls are projected in air with speed
u at angles θ_{1} and θ_{2} (both acute) to the horizontal, respectively. If the height reached by the first particle is greater than that of the
second, then which one of the following is
correct? where T_{1} and T_{2} are the time of flight.
A. $\theta_{1}>\theta_{2}$
B. $\theta_{1}=\theta_{2}$
C. $T_{1}<T_{2}$
D. $T_{1}=T_{2}$

Answer: a

D Watch Video Solution

1. A ball is projected from the top of a tower at an angle 60° with the vertical. What happens to the vertical component of its velocity?
A. Increases continuously
B. Decreases continuously
C. Remain unchanged
D. Frist decreases and then increases

Answer: D

- Watch Video Solution

2. From the top of a tower 20 m high, a ball is
thrown horizontally. If the line joining the point of projection to the point where it hits the ground makes an angle of 45° with the horizontal, then the initial velocity of the ball is:
A. $10 m s^{-1}$
B. $4 m s^{-1}$
C. $15 m s^{-1}$

D. $3 m s^{-1}$

Answer: a

D Watch Video Solution

3. A body of mass m thrown horizontally with
velocity v , from the top of tower of height h
touches the level ground at a distance of

250m from the foot of the tower. A body of
mass 2 m thrown horizontally with velocity $v / 2$
, from the top of tower of height 4h will touch
the level ground at a distance x from the foot of tower. The value of x is
A. 250 m
B. 500 m
C. $125 m$
D. $250 \sqrt{2} m$

Answer: a
(Watch Video Solution
4. From the top of a tower of height 40 m , a ball is projected upward with a speed of $20 \mathrm{~ms}^{-1}$ at an angle of elevation of 30°. Then the ratio of the total time taken by the ball to hit the ground to the time taken to ball come at same level as top of tower.
A. $2: 1$
B. $3: 1$
C. $3: 2$
D. $4: 1$

Answer: a

D Watch Video Solution

5. Two tall buildings are 30 m apart. The speed
with which a ball must be thrown horizontally
from a window 150 m above the ground in one building so that it enters a window $27.5 m$ from the ground in the other building is.
A. $2 m s^{-1}$
B. $6 m s^{-1}$

C. $4 m s^{-1}$

D. $8 m s^{-1}$

Answer: b

D Watch Video Solution

6. A body of mass m is projected horizontally
with a velocity v from the top of a tower of
height h and it reaches the ground at a distance x from the foot of the tower. If a second body of mass $2 m$ is projected
horizontally from the top of a tower of height
$2 h$, it reaches the ground at a distance $2 x$ from
the foot of the tower. The horizontal velocity of the second body is :
A. v
B. $2 v$
C. $\sqrt{2} v$
D. $v / 2$

Answer: c

7. A particle is projected under gravity with
velocity $\sqrt{2 a g}$ from a point at a height h above the level plane at an angle θ to it. The maximum range R on the grond is :

$$
\begin{aligned}
& \text { A. } \sqrt{\left(a^{2}+1\right) / h} \\
& \text { B. } \sqrt{\left(a^{2} h\right)} \\
& \text { C. } \sqrt{(a h)} \\
& \text { D. } 2 \sqrt{a(a+h)}
\end{aligned}
$$

Watch Video Solution

8. A ball is thrown from the top of tower with
an initial velocity of $10 \mathrm{~ms}^{-1}$ at an angle of 30° with the horizontal. If it hits the ground of a distance of 17.3 m from the back of the tower, the height of the tower is $\left(\right.$ Takeg $\left.=10 \mathrm{~ms}^{-2}\right)$
A. $5 m$
B. 20 m
C. $15 m$
D. 10 m

Answer: D

- Watch Video Solution

9. A ball rolls off top of a staircase with a
horizontal velocity $u m s^{-1}$. If the steps are h
metre high and b mere wide, the ball will just
hit the edge of $n t h$ step. Find the value of n.

$$
\text { A. } n=\frac{2 h u}{g b^{2}}
$$

B. $n=\frac{2 h u^{2}}{g b}$
C. $n=\frac{2 h u^{2}}{g b^{2}}$
D. $n=\frac{h u^{2}}{g b^{2}}$

Answer: C

- Watch Video Solution

10. A man A is sitting in the rear end of a long
compartment of a train running at constant
horizontal velocity, tosses a coin to a person B, near the front end of the compartment. The
trajectory of the coin is, as seen by B and a person C on the ground, will have:
A. different vertical ranges, but equal
horizontal ranges
B. equal horizontal an equal vertical ranges
C. equal vertical ranges but different horizontal range

D. different vertical and different

horizontal ranges

- Watch Video Solution

11. A person sitting in the rear end of the compartment throws a ball towards the front end. The ball follows a parabolic path. The train is moving with uniform velocity of $20 \mathrm{~ms}^{-1}$. A person standing outside on the ground also observers the ball. How will the maximum heights $\left(h_{m}\right)$ attained and the ranges (R) seen by thrower and the outside observer compare each other?
A. same h_{m} differente R
B. same h_{m} and R
C. different h_{m} same R
D. different h_{m} and R

Answer: a

D Watch Video Solution

12. A bomber moving horizontally with
$500 \mathrm{~m} / \mathrm{s}$ drops a bomb which strikes ground in 10s. The angle of strike with horizontal is
A. $\sin ^{-1}\left(\frac{1}{5}\right)$
B. $\tan ^{-1}(1)$
C. $\tan ^{-1}\left(\frac{1}{5}\right)$
D. $\tan ^{-1}(5)$

Answer: c

D Watch Video Solution

13. An airplane moving horizontally with a speed of $18 k m / h r$ drops a food packet while
flying at a height of 500m. The horizontal range is:
A. $180 m$
B. 980 m
C. 500 m
D. 670 m

Answer: C
(Watch Video Solution
14. A helicopter is flying horizontally at $8 \mathrm{~m} / \mathrm{s}$ at an altitude 180 m when a package fo emergency medical supplies is ejected horizontally backward with a speed fo $12 \mathrm{~m} / \mathrm{s}$ relative to the helicopter. Ignoring air resistance what is horizontal distance between the package and the helicopter when the package hits the ground?
A. $120 m$
B. $24 m$
C. $36 m$
D. $72 m$

Answer: d

D Watch Video Solution

15. A particle is projected form a trolley car with a velocity \vec{v}. If the trolley can moves with an acceleration \vec{a} towards right, which of the following remain unchanged relative to both

ground and trolley car?

A. Range
B. Maximum range
C. Time of flight
D. horizontal velocity

Answer: c
(Watch Video Solution
16. A boy projects a stone vertically perpendicular to the trolley car with a speed v .

If the trolley car moves with a constant velocity u, the time of flight of the stone is:

$$
\begin{aligned}
& \text { A. } \frac{u+v}{g} \\
& \text { B. } \frac{2 v}{g} \\
& \text { C. } \frac{2 u}{g}
\end{aligned}
$$

D. none of these

Answer: B
17. In previous problem, the horizontal range of the stone is:

$$
\begin{aligned}
& \text { A. } \frac{(u+v)^{2}}{g} \\
& \text { B. } \frac{|\vec{u}+\vec{v}|^{2}}{g} \\
& \text { C. } \frac{2 v^{2}}{g} \\
& \text { D. } \frac{2 u v}{g}
\end{aligned}
$$

Answer: d

18. The angle of projection relative to
horizontal in previous problem is:
A. $\sin ^{-1}\left(\frac{v}{u}\right)$
B. $\sin ^{-1}\left(\frac{u}{v}\right)$
C. $\tan ^{-1}\left(\frac{u}{v}\right)$
D. $\tan ^{-1}\left(\frac{v}{u}\right)$

Answer: d

19. A fighter plane is flying horizontally at an altitude of 1.5 km with speed $720 \mathrm{kmh}^{-1}$. At what angle of sight (w.r.t horizontal) when the target is seen, should the pilot drop the bomb in order to attack the target?
$\left(\right.$ Takeg $\left.=10 \mathrm{~ms}^{-2}\right)$
A. $\tan ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
B. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
C. $\tan ^{-1}\left(\frac{1}{2}\right)$
D. $\tan ^{-1}(2)$

Answer: A

- Watch Video Solution

Projection From Inclined Plane

1. A particle is projected up with a velocity of
$v_{0}=10 \mathrm{~m} / \mathrm{s}$ at an angle of $\theta_{0}=60^{\circ}$ with
horizontal onto an inclined plane. The angle of
inclination of the plane is 30°. The time of flight of the particle till it strikes the plane is
(take $g=10 \mathrm{~ms}^{-2}$)
A. $1 s$
B. $1 / 2 s$
C. $\frac{2}{\sqrt{3}} s$
D. $\frac{1}{2 \sqrt{3}} s$

Answer: c

D Watch Video Solution
2. the time after which the particle attains maximum height is :
A. $\frac{1}{2 \sqrt{3}} s$
B. $\frac{\sqrt{3}}{2} s$
C. $\frac{2}{\sqrt{3}} s$
D. $1 s$

Answer: b

- Watch Video Solution

3. The ratio of the range of the particle and its maximum range in the inclined plane is:
A. $1: 2$
B. $1: \sqrt{2}$
C. $1: \sqrt{3}$
D. 1:1

Answer: d

D Watch Video Solution

4. If the particle is projected down onto the inclined plane at same speed and angle with
the inclined plane the ratio of the time of
flight and time of flight for upward projection is :
A. $1: \sqrt{2}$
B. $\sqrt{2}: 1$
C. $1: 1$
D. none of these

Answer: C
(Watch Video Solution

5. The ratio of the range for upward and down

 ward projections is:A. $1: 2$
B. 1:3
C. 1: 4
D. 1:1

Answer: a

D Watch Video Solution
6. The ratio of component of velocity striking perpendicular to the plane for upward and downward projection is:
A. 1:1
B. 1:3
C. 1:3
D. $1: \sqrt{3}$

Answer: a

7. The ratio of speeds of striking for upward

 and downward projection is:A. 1:1
B. $1: \sqrt{3}$
C. $1: \sqrt{5}$
D. $1: \sqrt{7}$

Answer: d

- Watch Video Solution

8. A particle is prjected up an inclined with initial speed $v=20 \mathrm{~m} / \mathrm{s}$ at an angle $\theta=30^{\circ}$ with the plane. The component of its velocity perpendicular to the plane when it strikes the plane is:
A. $10 \sqrt{3} m / s$
B. $10 \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{3} m / s$
D. data is insufficient

- Watch Video Solution

9. A particle is projected from the inclined plane at angle 37° with the inclined plane in upward direction with speed $10 \mathrm{~m} / \mathrm{s}$. The angle of inclined plane with horizontal is 53°.

Then the maximum height attained by the particle from the inclined plane will be-

A. $3 m$
B. $4 m$
C. $5 m$
D. zero

Answer: a

D Watch Video Solution
10. The maximum range of a projectile is 500 m .

If the particle is thrown up a plane is inclined
at an angle of 30° with the same speed, the
distance (in meter) covered by it along the inclined plane will be:

D Watch Video Solution

11. On an inclined plane of inclination 30°, a ball is thrown at angle of 60° with the horizontal from the foot of the incline with a velocity of $10 \sqrt{3} m s^{-1}$. Then the ball will hit the inclined plane in
A. $1 s$
B. $2 s$
C. $2 \sqrt{3} s$
D. $4 \sqrt{3} s$

Answer: b

- Watch Video Solution

12. A particle is projected with a certain velocity at an angle \propto above the horizontal from the foot of an inclined plane of
inclination 30°. If the particle strikes the plane normally, then \propto is equal to.
A. $30^{\circ}+\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
B. 45°
C. 60°
D. $30^{\circ}+\tan ^{-1}(2 \sqrt{3})$

Answer: a

D Watch Video Solution

13. If the time taken by the projectile to reach
from A to B is t. Then the distance $A B$ is
equal to

A. $\frac{u t}{\sqrt{3}}$
B. $\frac{\sqrt{3} u t}{2}$
C. $\sqrt{3} u t$

D. $2 u t$

Answer: A

D Watch Video Solution

14. A particle is projected with velocity 30° above on an inclined plane, inclination of which from horizontal is 37°. Choose the appropriate path (air resistance is negligible)

Answer: D

D Watch Video Solution

15. A ball is thrown at angle $\alpha\left(90^{\circ}>\alpha>\theta\right)$ on inclination plan as shown in figure. The
minimum speed of the ball during the motion
is:

A. $u \cos \alpha$
B. $u \cos \theta$
C. $u \cos (\alpha-\theta)$

D. zero

Answer: C

D Watch Video Solution

16. A particle is projected from the bottom of
an inclined plane of inclination 30°. At what
angle α (from the horizontal) should the particle be projected to get the maximum range on the inclined plane.

$$
\text { A. } 45^{\circ}
$$

B. 53°
C. 76°
D. 60°

Answer: D

- Watch Video Solution

17. A particle is projected at point A from an inclination plane with inclination angle θ as
shown in figure. The magnitude of projection velocity is \vec{u} and its direction is perpendicular
to the plane. After some time it passes from point B which is in the same horizontal level of A, with velocity \vec{v}. Then the angle between \vec{u} and \vec{v} will be

A. θ
B. 2θ
C. $\pi-2 \theta$

D. $90+\theta$

Answer: C

D Watch Video Solution

18. A ball thrown down the incline strikes at a
point on the incline 25 m below the horizontal
as shown in the figure. If the ball rises to a maximum height of 20 m above the point of projection, the angle of projection α (with
horizontal x axis) is

A. $\tan ^{-1}\left(\frac{4}{3}\right)$
B. $\tan ^{-1}\left(\frac{3}{4}\right)$
C. $\tan ^{-1}\left(\frac{3}{2}\right)$
D. $\tan ^{-1}\left(\frac{2}{3}\right)$

Answer: A
19. A ball is projected horizontally with a speed v from the top of the plane inclined at an angle 45° with the horizontal. How far from the point of projection will the ball strikes the plane?
A. $\frac{2 v^{2}}{g}$
B. $\sqrt{2}\left[\frac{2 v^{2}}{g}\right]$
C. $\frac{v^{2}}{g}$
D. $\sqrt{2} \frac{v^{2}}{g}$

Answer: b

D Watch Video Solution

20. A body is projected up a smooth inclined
plane with velocity V from the point A as
shown in the figure. The angle of inclination is
45° and the top is connected to a well of
diameter 40 m . If the body just manages to
across the well, what is the value of V ? Length
of inclined plane is $20 \sqrt{2} m$.

A. $40 m s^{-1}$
B. $40 \sqrt{2} m s^{-1}$
C. $20 m s^{-1}$
D. $20 \sqrt{2} m s^{-1}$

Answer: D

- Watch Video Solution

Relative Velocity In Two Dimensions

1. A person standing on a moving truck, throws
a stone vertically up relative to himself. To a person, standing on the ground, the stone appears to : (immediately after being thrown).
A. Rise vertically up and come down
B. Rise towards the rear of the truck
C. Move along a parabolic path

D. Rise straight and forward but inclined to

the direction of motion of truck

Answer: c

D Watch Video Solution

2. Two particles are projected, between a certain time gap. While both are in air, the velocity of one particle relative to the other:
A. Varies linearly with time
B. Is always constant in magnitude and direction
C. Is always constant in magnitude only
D. Is always constant in direction only

Answer: b

- Watch Video Solution

3. A man runs along a horizontal road holding
his umrella vertical in order to afford maximum protection form rain. The rain is actually.
A. Falling vertical
B. Comming from front of the man
C. Coming from the back of the man
D. Either of (a), (b) or (c)

Answer: c

4. Two persons P and Q are flying in a helicopter horizontally at a constant speed. All of sudden, P falls down. During the fall of P, at any instant, Q locates P :
A. Vertically down
B. Down, at an angle (acute) to the front of
vertical
C. Down at an angle (acute) to the rear of

D. Whose position depends upon the

 speed of the helicopter
Answer: a

D Watch Video Solution

5. To the captain of a ship A travelling with velocity $\vec{v}_{A}=(3 \hat{i}-4 \hat{j}) k m . h$, a second ship B appears to have a velocity $(5 \hat{i}+12 \hat{j}) k m / h$. What is the true velocity of the ship B ?
A. $2 \hat{i}+16 \hat{j} k m / h$
B. $13 \hat{i}+8 \hat{j} k m / h$
C. $-2 \hat{i}-16 \hat{j} k m / h$
D. $8(\hat{i}+\hat{j}) k m / h$

Answer: d

D Watch Video Solution

6. A boat is moving with a velocity $3 \hat{i}+4 \hat{j}$
with respect to ground. The water in the river
is moving with a velocity $-3 \hat{i}-4 \hat{j}$ with
respect to ground. The relative velocity of the boat with respect to water is.
A. $6 \hat{i}+8 \hat{j}$
B. $8 \hat{j}+6 \hat{j}$
C. $6 \hat{i}+6 \hat{j}$
D. none of these

Answer: A

D Watch Video Solution

7. A car ' A ' moves due north at a speed of
$40 \mathrm{~km} / \mathrm{hr}$, while another ' B ' moves due east at
a speed of $30 \mathrm{~km} / \mathrm{hr}$. Find the velocity of car B relative to car A (both in magnitude and direction).
A. $40 k m / h r$, at an angle $\tan ^{-1}\left(\frac{3}{5}\right)$ east of south
B. $50 \mathrm{~km} / \mathrm{hr}$, at an angle $\tan ^{-1}\left(\frac{3}{5}\right)$ east of south
C. $40 \mathrm{~km} / \mathrm{hr}$, at an angle $\tan ^{-1}\left(\frac{3}{4}\right)$ east of south
D. $50 \mathrm{~km} / \mathrm{hr}$, at an angle $\tan ^{-1}\left(\frac{3}{4}\right)$ east of south

Answer: D

D Watch Video Solution

8. A car is going in south with a speed of $5 \mathrm{~m} / \mathrm{s}$. To a man sitting in car a bus appears to
move towards west with a speed of $2 \sqrt{6} \mathrm{~m} / \mathrm{s}$.
What is the actual speed of the bus?
A. $4 m s^{-1}$
B. $3 m s^{-1}$
C. $7 m s^{-1}$
D. none of these

Answer: c
(Watch Video Solution
9. A flag is mounted on a car moving due

North with velocity of $20 \mathrm{~km} / \mathrm{hr}$. Strong winds
are blowing due East with velocity of $20 \mathrm{~km} / \mathrm{hr}$. The flag will point in direction
A. East
B. North-East
C. South-East
D. South-West

Answer: C

10. Wind is blowing in the north direction at speed of $2 \mathrm{~m} / \mathrm{s}$ which causes the rain to fall at some angle with the vertical. With what velocity should a cyclist drive so that the rain appears vertical to him:
A. $2 m / s$ south
B. $2 m / s$ north
C. $4 m / s$ west
D. $4 m / s$ south

Answer: b

D Watch Video Solution

11. A car is moving along a road with a speed of $45 \mathrm{~km} / \mathrm{hr}$. In what direction must a body be projected form it with a velocity of $25 \mathrm{~m} / \mathrm{s}$, so that its resultant motion is at right angles to the direction of car?
A. at an angle 120° with direction of motion of car.
B. at an angle 60° with direction of motion of car.
C. at an angle 90° with direction of motion of car.
D. at an angle 135° with direction of
motion of car.

Answer: a

D Watch Video Solution
12. Three ships A, B and C are in motion. The motion of A as seen by B is with speed v towards north-east. The motion. Of B as seen by C is with speed v towards the north-west.

Then as seen by A, C will be moving towards
A. north
B. south
C. east
D. west

- Watch Video Solution

13. A boat travels from south bank to north
bank of a river with a maximum speed of $8 \mathrm{~km} / \mathrm{h}$. A river current flows from west to east with a speed of $4 \mathrm{~km} / \mathrm{h}$. To arrive at a point opposite to the point of start, the boat should start at an angle:
A. $\tan ^{-1}(1 / 2) \mathrm{W}$ of N
B. $\tan ^{-1}(1 / 2) N$ of W
C. $30^{\circ} \mathrm{W}$ of N

D. $30^{\circ} \mathrm{N}$ of W

Answer: C

D Watch Video Solution

14. A swimmer crosses a flowing stream of
width d to and fro normal to the flow of the
river at time t_{1}. The time taken to cover the same distance up and down the stream is t_{2}. If
t_{3} is the time the swimmer would take to swim
a distance $2 d$ in still water, then relation between $t_{1}, t_{2} \& t_{3}$.

$$
\begin{aligned}
& \text { A. } t_{1}^{2}=t_{2} t_{3} \\
& \text { B. } t_{2}^{2}=t_{1} t_{3} \\
& \text { C. } t_{3}^{2}=t_{1} t_{2} \\
& \text { D. } t_{3}=t_{1}+t_{2}
\end{aligned}
$$

Answer: a

D Watch Video Solution

15. A boat which has a speed of $5 \mathrm{~km} / \mathrm{hr}$ in
still water crosses a river of width 1 km along
the shortest possible path in 15 min utes.
The velocity of the river water in $k m / h r$ is
A. 1
B. 3
C. 4
D. $\sqrt{41}$

Answer: B
16. A man is crossing a river flowing with
velocity of $5 \mathrm{~m} / \mathrm{s}$. He reaches a point directly across at a distance of 60 m in 5 sec . His velocity in still water should be

A. $12 m / s$
B. $13 m / s$
C. $5 m / s$

D. $10 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

17. A river is flowing due east with a speed
$3 m s^{-1}$. A swimmer can swim in still water at a
speed of $4 \mathrm{~ms}^{-1}$. If swimmer starts swimming due north, then the resultant velocity of the swimmer is
A. $3 m s^{-1}$
B. $5 m s^{-1}$
C. $7 m s^{-1}$
D. $2 m s^{-1}$

Answer: B

D Watch Video Solution

18. A boy can swim in still water at $1 m / s$. He swims across a river flowing at $0.6 \mathrm{~m} / \mathrm{s}$ which
is $336 m$ wide. If the travels in shortest
possible time, then what time he takes to

cross the river?

A. $250 s$
B. $420 s$
C. $340 s$
D. $336 s$

Answer: D
(Watch Video Solution
19. A man can swim in still water with a speed of $2 m s^{-1}$. If he wants to cross a river of water
current speed $\sqrt{3} m s^{-1}$ along the shortest possible path, then in which direction should he swim ?
A. at an angle 120° to the water current
B. at an angle 150° to the water current
C. at an angle 90° to the water current
D. none of these

- Watch Video Solution

20. A river is flowing due east with a speed more than the maximum speed with which a person can swim in still water. He intends to cross the river by shortest possible path. Which of the following is correct?
A. He should start normal to the river bank.
B. He should start in such a way that, he moves normal to the bank, relative to
the bank
C. He should starts in a particular (calculated) direction making an obtuse angle with the direction of water current
D. The man cannot cross the river, in that way.

Answer: D

D Watch Video Solution

21. A man crosses a river in a boat. If he cross
the river in minimum time he takes 10 min
with a drift 120 m . If he crosses the river
taking shortest path, he takes 12.5 min , find
(a) width of the river
(b) velocity of the boat with respect to water
(c) speed of the current
A. $20 \mathrm{~m} / \mathrm{min}$
B. $212 m / \min$
C. $10 \mathrm{~m} / \mathrm{min}$
D. $8 m / m i n$

Answer: a

D Watch Video Solution

22. A persons walks at the rate of $3 \mathrm{~km} / \mathrm{hr}$. Rain

appears to him in vertical direction at the rate
of $3 \sqrt{3} \mathrm{~km} / \mathrm{hr}$. Find magnitude and direction of true velocity of rain.
A. $6 \mathrm{~km} / \mathrm{hr}$, inclined at an angle of 45° to
the vertical towards the person's motion.
B. $3 \mathrm{~km} / \mathrm{hr}$, inclined at an angle of 30° to
the vertical towards the person's motion.
C. $6 \mathrm{~km} / \mathrm{hr}$, inclined at an angle of 30° to
the vertical towards the person's motion.
D. $6 \mathrm{~km} / \mathrm{hr}$, inclined at an angle of 60° to
the vertical towards the person's motion.

Answer: C

23. Rain is falling vertically with a speed of $35 \mathrm{~ms}^{-1}$. Winds starts blowing after sometime with the speed of $12 \mathrm{~ms}^{-1}$ in east to west direction. At what angles with the vertical should a boy waiting at a bus stop hold his umbrella to protect himself from rain?

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{12}{35}\right) \\
& \text { B. } \cos ^{-1}\left(\frac{12}{35}\right) \\
& \text { C. } \tan ^{-1}\left(\frac{12}{35}\right)
\end{aligned}
$$

D. $\cot ^{-1}\left(\frac{12}{35}\right)$

Answer: c

- Watch Video Solution

Kinematics Of Circular Motion

1. A particle moves in a plane with uniform
acceleration having direction different form
that of the instantaneous velocity. What is the nature of trajectroy?
A. straight line
B. parabola
C. Circle
D. Ellipse

Answer: b

D Watch Video Solution
2. Velocity vector and acceleration vector in a uniform circular motion are related as
A. both in the same direction
B. perpendicular to each other
C. both in opposite direction
D. not related to each other

Answer: b

- Watch Video Solution

3. A particle moves in a circle of radius 25 cm at two revolutions per sec. The acceleration of the particle in m / s^{2} is:
A. π^{2}
B. $8 \pi^{2}$
C. $4 \pi^{2}$
D. $2 \pi^{2}$

Answer: c

D Watch Video Solution

4. A particle P is moving in a circle of radius r with a uniform speed u. C is the centre of the circle and $A B$ is diameter. The angular velocity
of P about A and C are in the ratio :

A. 1:1
B. 1:2
C. 2:1
D. $4: 1$

Answer: b

- Watch Video Solution

5. A motor car is travelling at $60 \mathrm{~m} / \mathrm{s}$ on a circular road of radius 1200 m . It is increasing its speed at the rate of $4 m / s^{2}$. The acceleration of the car is:
A. $3 m / s^{2}$
B. $5 m / s^{2}$
C. $5 m / s^{2}$
D. $7 m / s^{2}$

Answer: c
6. For a particle performing uniform circular motion, choose the incorrect statement form the following.
A. Magnitude of particle velocity (speed)
remains constant.
B. Particle velocity remains directed perpendicular to radius vector.
C. Direction of acceleration keeps changing
as particle moves.

D. Magnitude of acceleration does not

 remain constant.
Answer: D

- Watch Video Solution

7. A particle covers equal distance around a circular path, in equal intervals of time. Which of the following quantities connected with the motion of the particle remains constant with time?
A. displacement
B. velocity
C. speed
D. acceleration

Answer: C

D Watch Video Solution

8. A car speeds up in a circular path. Which of
the following figures illustrates the acceleration of the car?
A.
(a)

B.

Answer: b
(Watch Video Solution
9. A train 1 moves from east to west and another train 2 moves from west to east on the equator with equal speeds relative to ground. The ratio of their centripetal accelerations $\frac{a_{1}}{a_{2}}$ relative to centre of earth is:
A. >1
B. $=1$
C. <1
D. ≥ 1

Answer: c

- Watch Video Solution

10. Two particles P and Q are located at distance r_{p} and r_{Q} respectively form the centre of rotating disc such that $r_{P}>r_{Q}$. The disc is rotating with constant angular acceleration. We can say
A. both P and Q have the same acceleration
B. both P and Q do not have the same acceleration

C. P has greater acceleration than Q

D. Q has greater acceleration than P

Answer: c

- Watch Video Solution

11. A particle is moving along a circular path with uniform speed. Through what angle does
its angular velocity change when it completes half of the circular path?
A. 0°
B. 45°
C. 180°
D. 360°

Answer: a

D Watch Video Solution

12. A cyclist is riding with a speed of $27 \mathrm{kmh}^{-1}$.

As he approaches a circular turn on the road of radius 80 m , he applies brakes and reduces
his speed at the constant rate of $0.5 m s^{-2}$.

What is the magnitude and direction of the net acceleration of the cyclist on the circular turn?
A. $0.68 m s^{-2}$
B. $0.86 m s^{-2}$
C. $0.56 m s^{-2}$
D. $0.76 m s^{-2}$

Answer: b

13. A stone tied to the end of string 100 cm
long is whirled in a horizontal circle with a
constant speed. If the stone makes 14
revolutions in 22 s , then the acceleration of the
stone is
A. $16 m s^{-2}$
B. $4 m s^{-2}$
C. $12 m s^{-2}$
D. $8 m s^{-2}$

Answer: a

D Watch Video Solution

14. A cyclist starts from the centre O of a
circular park of radius 1 km , reaches the edge P
of the park, then cycles along the $P Q$ cicumference and returns to the centre along

OQ as shown in fig. If the round trip taken ten minute, the net displacement and average speed of the cylists (in kilometer and kinetic
per hour) is

A. $0,2(\pi+4)$
B. $\frac{\pi+4}{2}, 0$
C. $21.4, \frac{\pi+4}{2}$
D. $0,3(\pi+4)$

Answer: d

D Watch Video Solution

15. A particle is moving on a circular path of
radius r with uniform speed v. What is the displacement of the particle after it has described an angle of 60° ?
A. $r \sqrt{2}$
B. $r \sqrt{3}$
C. r

D. $2 r$

Answer: C

D Watch Video Solution

16. What is approximately the centripetal acceleration (in units of acceleration due to gravity on earth, $g=10 m s^{-2}$) of an aircraft flying at a speed of $400 \mathrm{~ms}^{-1}$ through a circular arc of radius 0.6 km ?
A. 26.7
B. 16.9
C. 13.5
D. 30.2

Answer: a

D Watch Video Solution

17. An insect trapped in circular groove of radius 12 cm moves along the groove steadily and completes 7 revolutions in 100s. The linear speed of the insect is
A. $4.3 \mathrm{cms}^{-1}$
B. $5.3 \mathrm{cms}^{-1}$
C. $6.3 \mathrm{cms}^{-1}$
D. $7.3 \mathrm{cms}^{-1}$

Answer: b

D Watch Video Solution

18. The magnitude of displacement of a particle moving in a circle of radius a with constant angular speed ω varries with time t is
A. $2 a \sin \omega t$
B. $2 a \sin \left(\frac{\omega t}{2}\right)$
C. $2 a \cos \omega t$
D. $2 a \cos \left(\frac{\omega t}{2}\right)$

Answer: b

D Watch Video Solution
19. Position vectors of a particle moving in $x y$
plane at time t is
$\vec{r}=a(1-\cos o m \eta t) \hat{i}+a \sin \omega t \hat{j}$. The path of the particle is
A. a circle of radius a and center at (a, O)
B. a circle of radius a and center at $(0,0)$
C. an ellipse
D. neither a circle nor an ellipse

Answer: a

- Watch Video Solution

20. A particle moves in xy plane. The rate of changes of θ at time $\mathrm{t}=2$ second (where θ is the angle which its velocity vector maks with positive x-axis) is

$$
\begin{aligned}
& \text { A. } \frac{2}{17} \mathrm{rad} / \mathrm{s} \\
& \text { B. } \frac{1}{14} \mathrm{rad} / \mathrm{s} \\
& \text { C. } \frac{4}{7} \mathrm{rad} / \mathrm{s} \\
& \text { D. } \frac{6}{5} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Answer: a

21. The figure shows th velocity and acceleration of a point like body at the initial moment of its motion. The acceleration vector of the body remain constant. The minimum radius of curvature of trajectory of the body is

A. $2 m$
B. $3 m$
C. $8 m$
D. $16 m$

Answer: c

D Watch Video Solution

22. A partical is moving along a circular path of
radius $5 m$ and with uniform speed $5 m / s$.

What will be the avarage acceleration when
the partical completes half revoluation?
A. zero
B. $10 m / s^{2}$
C. $10 \pm / s^{2}$
D. $(10 / \pi) m / s^{2}$

Answer: d

- Watch Video Solution

23. A motor car travelling at $30 \mathrm{~m} / \mathrm{s}$ on a circular road of radius 500 m . It is increasing its speed at the rate of $2 m s^{-2}$. What its accleration at that instant ?
A. $1.8 m s^{-2}$
B. $2 m s^{-2}$
C. $3.8 m s^{-2}$
D. $2.7 m s^{-2}$

Answer: d

D Watch Video Solution

24. A car of mass m moves in a horizontal circular path of radius r meter. At an instant its speed is $V m / s$ and is increasing at a rate
of a $m / \sec ^{2}$. Then the acceleration of the car
is:
A. $\frac{V^{2}}{r}$
B. a
C. $\sqrt{a^{2}+\left(\frac{V^{2}}{r}\right)}$
D. $\sqrt{a+\frac{V^{2}}{r}}$

Answer: c

- Watch Video Solution

25. A particle is acted upon by a force of constant magnitude which is always perpendiculr to the velocity of the particle.

The motion of the particle takes place in a plane. It follows that
A. its velocity is constant
B. its acceleration is constant
C. its KE is constant
D. it moves in a straight line
26. The magnitude of displacement of a particle moving in a circle of radius a with constant angular speed ω varries with time t is
A. $2 a \sin \omega t$
B. $2 a \frac{\sin (\omega t)}{2}$
C. $2 a \cos \omega t$
D. $2 a \frac{\cos (\omega t)}{2}$

- Watch Video Solution

Problems Based On Mixed Concepts

1. A ball is thrown from a point with a speed
' $v^{\wedge}(0)$ ' at an elevation angle of θ. From the
same point and at the same instant, a person
starts running with a constant speed ' $\frac{v_{0}}{2}$ ' to
catch the ball. Will the person be able to
catch the ball ? If yes, what should be the angle of projection θ ?
A. yes, 60°
B. yes, 30°
C. No
D. yes, 45°

Answer: a

D Watch Video Solution
2. The path of one projectile as seen by an observer on another projectile is a/an:
A. straight line
B. parabola
C. ellipse
D. circle

Answer: a

D Watch Video Solution
3. A body is projected at 30° with the horizontal. The air offers resistance in
proportional to the veclocity of the body. Which of the following statements is correct?
A. The trajectroy is a symmetrical parabola
B. the time of rise to the maximum height
is equal to the time of return to the
ground
C. The velocity at the highest pint is
directed along the horizontal
D. the sum of the kinetic and potential
energies remains constant

Answer: c

- Watch Video Solution

4. A projectile A is projected from ground. An observer B running on ground with uniform
velocity of magnitude 'v' observes A to move along a straight line. The time of flight of A as measured by B is T. Then the the range R of projectile on ground is
A. $R=v T$
B. $R<v T$
C. $R>v T$
D. Information insufficient to draw inference

Answer: a

D Watch Video Solution

5. The horizontal range and miximum height attained by a projectile are R and H, respectively. If a constant horizontal
acceleration $a=g / 4$ is imparted to the projectile due to wind, then its horizontal range and maximum height will be

$$
\begin{aligned}
& \text { А. }(R+H), \frac{H}{2} \\
& \text { В. }\left(R+\frac{H}{2}\right), 2 H \\
& \text { С. }(R+2 H), H \\
& \text { D. }(R+H), H
\end{aligned}
$$

Answer: d

D Watch Video Solution
6. In the locus diagrams of two projectiles 1
and 2 as shown in the fig.

A. $T_{1}>T_{2}$ and $v_{0_{1}}<v_{0_{2}}$
B. $T_{1}=T_{2}$ and $v_{0_{1}}<v_{0_{2}}$
C. $T_{1}=T_{2}$ and $v_{0_{1}}>v_{0_{2}}$
D. $T_{1}<T_{2}$ and $v_{0_{1}}<v_{0_{2}}$

Answer: B
7. A very broad elevator is going up vertically with a constant acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. At the instant when its velocity is $4 \mathrm{~m} / \mathrm{s}$ a ball is projected form the floor of the lift with a speed of $4 \mathrm{~m} / \mathrm{s}$ relative to the floor at an elevation of 30°. Time taken by the ball to return the floor is $\left(g=10 m s^{2}\right)$

$$
\begin{aligned}
& \text { A. } \frac{1}{2} s \\
& \text { B. } \frac{1}{3} s
\end{aligned}
$$

C. $\frac{1}{4} s$
D. $1 s$

Answer: B

- Watch Video Solution

8. A projectile is fired with initial momentum p
at an angle 45° from a point P as shown in
figure. Neglecting air resistance, the magnitude of change in momentum between
leaving P and arriving at Q is:

A. $p / 2$
B. $p \sqrt{2}$
C. p
D. $2 p$

Answer: b
9. Two identical balls are projected, one
vertically up and the other at an angle of 30°
to the horizontal, with same initial speed. The potential energy at the highest point is in the ratio:
A. $4: 3$
B. 3: 4
C. $4: 1$
D. 1: 4

Answer: C

- Watch Video Solution

10. Two point particles with masses
m_{1} and m_{2} are thrown at angles θ_{1} and θ_{2}
with horizontal with speeds v_{1} and v_{2} respectively. R, H and T are range, height and total time of flight respectively. Let $v_{1} \sin \theta_{1}=v_{2} \sin \theta_{2}$. Then for both particles
A. T,H and R are different
B. H and R will be same but T will be
C. T and R are same but H will be different D. T and H are same but R is different.

Answer: D

D Watch Video Solution

11. In horizontal level ground to projectile if at any instant velocity becomes perpendicular to initial velocity then what can you say about projection angle with horizontal.
A. $\theta=45^{\circ}$
B. $\theta \geq 45^{\circ}$
C. $\theta \leq 45^{\circ}$
D. for any value of θ it is possible

Answer: b

- Watch Video Solution

12. Two particles A and B projected simultaneously from a point situated on a horizontal place. The particle A is projected
vertically up with a velcity v_{A} while the particle
B is projected up at an angle 30° with horizontal with velocity v_{B}. After 5 s the particles were observed moving mutually perpendicular to each other. The velocity of projection of the particle v_{A} and v_{B} respectively are:

> A. $50 \mathrm{~ms}^{-1}, 100 \mathrm{~m} / \mathrm{s}$
> B. $100 \mathrm{~ms}^{-1}, 50 \mathrm{~m} / \mathrm{s}$
C. v_{A} can have any value greater than a certain value, $100 \mathrm{~ms}^{-1}$

D. none of these

Answer: c

D Watch Video Solution

13. The friction of the air causes a vertical retardation equal to 10% of the acceleration due to gravity, take $\left(g=10 m s^{-2}\right)$. The maximum height will be decreased by:
A. 8%
B. 9%
C. 10%
D. 11%

Answer: b

- Watch Video Solution

14. In the previous problem, the time taken to reach the maximum height will be decreased by:
A. 19%
B. 5%
C. 10%
D. none of these

Answer: d

D Watch Video Solution
15. In the problem 150, the time taken to return to the ground from the maximum height:
A. is almost same as in the absence of

friction

B. decreases by 1%
C. increases by 1%
D. increases by 11%

Answer: a
(Watch Video Solution
16. Two balls A and B are thrown with speeds
u and $u / 2$, respectively. Both the balls cover
the same horizontal distance before returning
to the plane of projection. If the angle of projection of ball $B i s 15^{\circ}$ with the horizontal, then the angle of projection of A is.

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{1}{8}\right) \\
& \text { B. } \frac{1}{2} \sin ^{-1}\left(\frac{1}{8}\right) \\
& \text { C. } \frac{1}{3} \sin ^{-1}\left(\frac{1}{8}\right) \\
& \text { D. } \frac{1}{4} \sin ^{-1}\left(\frac{1}{8}\right)
\end{aligned}
$$

Answer: b

D Watch Video Solution

17. A particle is projected with a velocity
$\vec{v}=8 \hat{i}+6 \hat{j} m / s$. The time after which it will
starts moving perpendicular to its initial direction of motions is
A. 0.5 s
B. $1.25 s$
C. $1 s$

D. $5 / 3 s$

Answer: d

D Watch Video Solution

18. The maximum height attained by a projectile is increased by 5%. Keeping the angle of projection constant, what is the percentage increases in horizontal range?

$$
\text { A. } 5 \%
$$

B. 10%
C. 15%
D. 20%

Answer: a

- Watch Video Solution

19. The maximum height attained by a projectile is increased by 10%. Keeping the angle of projection constant, what is the percentage increases in the time of flight?
A. 5%
B. 10%
C. 20%
D. 40%

Answer: A

D Watch Video Solution

20. The ceiling of a hall is 40 m high. For maximum horizontal distance, the angle at which the ball may be thrown with a speed of
$56 \mathrm{~ms}^{-1}$ without hitting the ceiling of the hall is
A. 25°
B. 30°
C. 45°
D. 60°

Answer: b
(Watch Video Solution
21. In the previous problem, the maximum horizontal distance will be
A. $160 \sqrt{3} m$
B. $140 \sqrt{3} m$
C. $120 \sqrt{3} m$
D. $100 \sqrt{3} m$

Answer: a
(Watch Video Solution
22. A shell fired from the ground is just able to
cross in a horizontal direction the top of a wall 90 m away and 45 m high. The direction of projection of the shell will be:
A. 25°
B. 30°
C. 60°
D. 45°

Answer: D
23. In the previous problem, the velocity of the shell will be
A. $42 m s^{-1}$
B. $52 m s^{-1}$
C. $32 m s^{-1}$
D. $62 m s^{-1}$

Answer: a

D Watch Video Solution
24. The angle of which the velocity vector of a projectile thrown with a velocity u at an angle
θ to the horizontal will take with the horizontal after time t of its being thrown up is
A. θ
B. $\tan ^{-1}\left(\frac{\theta}{t}\right)$
C. $\tan ^{-1}\left(\frac{v \cos \theta}{v \sin \theta-\mathrm{gt}}\right)$
D. $\tan ^{-1}\left(\frac{v \sin \theta-\mathrm{gt}}{v \cos \theta}\right)$

Answer: d

- Watch Video Solution

25. Two particles move in a uniform
gravitational field with an acceleration g. At
the initial moment the particles were located over a tower at one point and moved with velocities $\quad v_{1}=3 m / s$ and $v_{2}=4 m / s$
horizontally in opposite directions. Find the distance between the particles at the moment when their velocity vectors become mutually perpendicular.
A. $5 m$
B. $7 \sqrt{3} m$
C. $\frac{7 \sqrt{3}}{5} m$
D. $\frac{7}{2} m$

Answer: c

- Watch Video Solution

26. A boy throws a ball upward with velocity
$v_{0}=20 \mathrm{~m} / \mathrm{s}$. The wind imparts a horizontal
acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ to the left. The angle θ
at which the ball must be thrown so that the ball returns to the boy's hand is : $\left(g=10 m s^{-2}\right)$
A. $\tan ^{-1}(1.2)$
B. $\tan ^{-1}(0.2)$
C. $\tan ^{-1}(2)$
D. $\tan ^{-1}(0.4)$

Answer: D

D Watch Video Solution
27. A particle is moving in a circle of radius R in such a way that any insant the total acceleration makes an angle of 45° with radius. Initial speed of particle is v_{0}. The time taken to complete the first revolution is:

$$
\begin{aligned}
& \text { A. } \frac{2 R}{v_{0}}\left(1-e^{-2 \pi}\right) \\
& \text { B. } \frac{R}{v_{0}}\left(1-e^{-2 \pi}\right) \\
& \text { C. } \frac{R}{v_{0}} \\
& \text { D. } \frac{2 R}{v_{0}}
\end{aligned}
$$

Watch Video Solution

28. A smooth square platform $A B C D$ is moving towards right with a uniform speed v. At what angle θ must a particle be projected from A with speed u so that it strikes the point B

$$
\text { A. } \sin ^{-1}\left(\frac{u}{v}\right)
$$

B. $\cos ^{-1}\left(\frac{v}{u}\right)$
C. $\cos ^{-1}\left(\frac{u}{v}\right)$
D. $\sin ^{-1}\left(\frac{v}{u}\right)$

Answer: b

D Watch Video Solution

29. A train is travelling along a horizontal rail at the rate of $90 \mathrm{~km} / \mathrm{hr}$ and rain, driven by wind blowing in the direction of motion of trani, falls at a velocity of $12.5 \mathrm{~m} / \mathrm{s}$ making an
angle of 30° to the vertical. Find the velocity of rain (in magnitude and direction) as seen
from the train.
A. $\frac{25 \sqrt{2}}{2} m / s$, inclined at an angle of 30°
to the vertical away from train's motion.
B. $\frac{25 \sqrt{3}}{2} \mathrm{~m} / \mathrm{s}$, inclined at an angle of 30°
to the vertical away from train's motion.
C. $\frac{35 \sqrt{2}}{2} m / s$, inclined at an angle of 60°
to the vertical away from train's motion.
D. $\frac{25 \sqrt{3}}{2} m / s$, inclined at an angle of 60° to the vertical away from train's motion.

Answer: d

D Watch Video Solution

30. A wedge is placed on a smooth horizontal plain and a rat runs on its sloping side. The velocity of the wedge is $v=4 m s^{-1}$ towards the right. What should be the velocity of the rat with respect to the wedge (u), so that the
rat appears to ,move in the vertical direction to an observer stading on the ground?

A. $2 m / s$
B. $4 m / s$
C. $8 m / s$
D. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: c

D Watch Video Solution

31. A car 2 m long and 3 m wide is moving at
$13 \mathrm{~m} / \mathrm{sec}$ when a bullet hits it in a direction
making an angle $\theta=\tan ^{-1} 3 / 4$ with the car as seen from the street. The bullet enters one edge of the comer and passes out at the diagonally opposite comer. Neglectingany interaction between bullet and car find the
time for the bullet to cross the car :

A. $1.0 s$
B. $0.4 s$
C. $0.2 s$
D. 0.6 s

Answer: c

D Watch Video Solution

32. Four person $\mathrm{K}, \mathrm{L}, \mathrm{M}$ and N are initally at the corners of a square of side of length d. If every person starts moving, such that K always heads towards L, L heads towards M, M heads directly towards N and N heads towards K, then the four perons will meet after
A. $\frac{d}{v} \sec$
B. $\frac{\sqrt{2 d}}{v} \mathrm{sec}$
C. $\frac{d}{\sqrt{2 v}} \sec$
D. $\frac{d}{2 v} \mathrm{sec}$

Answer: c

D Watch Video Solution

33. A particle P is sliding down a frictionless hemispherical bowl. It passes the point A at
$t=0$. At this instant of time, the horizontal
component of its velocity is v . A bead Q of the
same mass as P is ejected from A at $t=0$ along the horizontal string $A B$, with the speed
v. Friction between the bead and the string may be neglected. Let t_{P} and t_{Q} be the respective times taken by P and Q to reach the point B. Then:

A. $t_{P}<t_{Q}$
B. $t_{P}=t_{Q}$
C. $t_{P}>t_{Q}$
D. All of these

Answer: A

D Watch Video Solution

34. In $1.0 s$, a particle goes from point A to point B, moving in a semicircle of radius 1.0 m (see figure). The magnitude of the average
velocity

A. $3.14 m / s$
B. $2.0 \mathrm{~m} / \mathrm{s}$
C. $1.0 \mathrm{~m} / \mathrm{s}$
D. zero

Answer: b

D Watch Video Solution

35. A simple pendulum is oscillating without damiping, When the displacement of the bob is less than maximum, its acceleration vector \vec{a} is correctly show in:
(a)
a) $\vec{\alpha}$
A.

Answer: c

D Watch Video Solution

Assertion Reasoning

1. Assertion: When the velocity of projection of
a body is made n times, its time of flight becomes n times.

Reason: Range of projectile does not depend on the initial velocity of a body.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: C

2. Assertion: Horizontal range is same for angle of projection θ and $\left(90^{\circ}-\theta\right)$.

Reason : Horizontal range is independent of angle of projection.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: c

D Watch Video Solution

3. Assertion: For projection angle $\tan ^{-1}(4)$,
the horizontal range and the maximum height of a projectile are equal.

Reason: The maximum range of projectile is
directely proportional to square of velocity and inversely proportional to acceleration due to gravity.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: b

D Watch Video Solution

4. Assertion: The trajectory of an object moving under the same accleration due to gravity can be straight line or a parabola depending on the initial conditions.

Reason: The shape of the trajectory of the
motion of an object is determined by the acceleration alone.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: c

D Watch Video Solution

5. Assertion: Two particles of different mass, projected with same velocity at same angles.

The maximum height attained by both the particle will be same.

Reason: The maximum height of projetile is independent of particle mass.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.
Answer: a

D Watch Video Solution

6. Assertion: The height attained by a projectile is twenty five percentage of range, when projected for maximum range.

Reason: The height is independent of initial velocity of projetile.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

7. Assertion: A projectile that traverses a parabolic path show deviation from its idealised trajectory in the presence of air resistance.

Reason: Air resistance affect the motion of the projectile.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: a

D Watch Video Solution

8. Assertion: The maximum horizontal range of
projectile is proportional to square of velocity.
Reason: The maximum horizontal range of projectile is equal to maximum height attained by projectile.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct

explantion of the assertion.

C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: c

D Watch Video Solution
9. Assertion: A uniform circular motion is an acceleration motion.

Reason: Direction of acceleration is parallel to velocity vector.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

 false.
Answer: c

- Watch Video Solution

10. Assertion: Centripetal acceleration is
always direction towards the centre of rotation of an object undergoing uniform circular motion

Reason: Centripetal acceleration is a constant vector
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: c

D Watch Video Solution

11. Assertion: Rain is falling vertically with a certain speed. A boy holding an umbrella rides
a bicycle in east to west direction and does not get wet.

Reason: The boy is holding his umbrella (at
some angles) with the vertical towards the west.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: c

D Watch Video Solution

Neet Questions

1. Two particles of mass M and m are moving in
a circle of radii R and r. if their time period are
the same, what will be the ratio of their linear velocities?
A. $M R: m r$
B. $M: m$
C. $R: r$
D. 1:1

Answer: c
(Watch Video Solution
2. A particle (A) is dropped from a height and another particles (B) is thrown into horizontal direction with speed of $5 \mathrm{~m} / \mathrm{s} \mathrm{sec}$ from the same height. The correct statement is
A. Both partiles will reaches at ground simultaneously
B. Both particles will reaches at ground
with the same speed
C. Particle (A) will reach at ground at first

D. Particle (B) will reach at ground at first

with respect to particle (A)

Answer: a

- Watch Video Solution

3. From a 10 m high building a stone ' A ' is dropped, and simultaneously another identical stone ' B ' is thrown horizontally with an initial speed of $5 \mathrm{~ms}^{-1}$. Which one of the following statement is true?
A. It is not possible to calculate which one
of the two stones will reaches the
ground first
B. Both the stones (A and B) will reaches
the ground simultaneously
C. A' stone reaches the ground earlier then
'B'
D. B' stone reaches the ground earlier then
'A'

- Watch Video Solution

4. Two boys are standing at the ends A and B of a ground, where $A B=a$. The boy at B starts running in a direction perpendicular to

AB with velocity v_{1}. The boy at A starts running simultaneously with velocity v and catches the other boy in a time t, where t is :

$$
\begin{aligned}
& \text { A. } \frac{a}{\sqrt{v+v_{1}^{2}}} \\
& \text { B. } \sqrt{\frac{a}{v^{2}+v_{1}^{2}}}
\end{aligned}
$$

C. $\frac{a}{\left(v-v_{1}\right)}$
D. $\frac{a}{\left(v+v_{1}\right)}$

Answer: b

D Watch Video Solution

5. A stone tied to the end of string 1 m long is
whirled in a horizontal circle with a constant
speed. If the stone makes 22 revolution in 44 s ,

What is the magnitude and direction of acceleration of the ston is ?
A. $\frac{\pi^{2}}{4} m s^{-2}$ and direction along the radius towards the centre
B. $\pi^{2} m s^{-2}$ and direction along the radius
away from centre
C. $\pi^{2} m s^{-2}$ and direction along the radius
towards the centre
D. $\pi^{2} m s^{-2}$ and direction along the tangent to the circle.

Answer: c

6. A car runs at a constant speed on a circular track of radius 100 m , taking 62.8 s for every circular loop. The average velocity and average speed for each circular loop respectively is:
A. 0,0
B. $0,10 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}, 10 \mathrm{~m} / \mathrm{s}$
D. $10 m / s, 0$
7. For angles of projection of a projectile at angle $\left(45^{\circ}-\theta\right)$ and $\left(45^{\circ}+\theta\right)$, the
horizontal ranges described by the projectile are in the ratio of:
A. 1:1
B. 2:3
C. 1:2
D. 2:1

Answer: a

D Watch Video Solution

8. A paricle starting from the origin $(0,0)$ moves in a straight line in (x, y) plane. Its coordinates at a later time are $(\sqrt{3}, 3)$. The path of the particle makes with the x-axis an angle of
A. 30°
B. 45°
C. 60°
D. 0°

Answer: c

- Watch Video Solution

9. A particle moves in a circle of radius 5 cm
with constant speed and time period $0.2 \pi s$.

The acceleration of the particle is
A. $25 m / s^{2}$
B. $36 m / s^{2}$
C. $5 m / s^{2}$
D. $15 \mathrm{~m} / \mathrm{s}^{2}$

Answer: c

D Watch Video Solution

10. A missile is fired for maximum range with
an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$,
the range of the missile is
A. 50 m
B. $60 m$
C. $20 m$
D. 40 m

Answer: d

D Watch Video Solution

11. A projectile is fired at an angle of 45° with
the horizontal. Elevation angle of the
projection at its highest point as seen from
the point of projection is
A. 60°
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
D. 45°

Answer: B

D Watch Video Solution
12. Find the angle of projection of a projectile
for which the horizontal range and maximum
height are equal.

$$
\begin{aligned}
& \text { A. } \theta=45^{\circ} \\
& \text { B. } \theta=\tan ^{-1}\left(\frac{1}{4}\right) \\
& \text { C. } \theta=\tan ^{-1}(4) \\
& \text { D. } \theta=\tan ^{-1}(2)
\end{aligned}
$$

Answer: c

- Watch Video Solution

13. A particle has initial velocity $(2 \hat{i}+3 \hat{j})$ and
acceleration $(0.3 \hat{i}+0.2 \hat{j})$. The magnitude of velocity after 10 second will be
A. $9 u n i t s$
B. $9 \sqrt{2} u n i t s$
C. $5 \sqrt{2}$ units
D. 5units

Answer: c

D Watch Video Solution
14. The velocity of a projectile at the initial point A is $(2 \hat{i}+3 \hat{j}) m / s$. Its velocity (in m / s) at point B is

A. $-2 \hat{i}-3 \hat{j}$
B. $-2 \hat{i}+3 \hat{j}$
C. $2 \hat{i}-3 \hat{j}$

D. $2 \hat{i}+3 \hat{j}$

Answer: C

D Watch Video Solution

15. A ship A is moving Westwards with a speed of $10 \mathrm{kmh}^{-1}$ and a ship B 100 km South of A is moving northwards with a speed of $10 \mathrm{kmh}^{-1}$.

The time after which the distance between them shortest is
A. $0 h$
B. $5 h$
C. $5 \sqrt{2} h$
D. $10 \sqrt{2} h$

Answer: b

D Watch Video Solution
16. The x and y coordinates of the particle at any time are $x=5 t-2 t^{2}$ and $y=10 t$ respectively, where x and y are in meters and t
in seconds. The acceleration of the particle at
$t=2 \mathrm{~s}$ is:
A. $5 m / s^{2}$
B. $-4 m / s^{2}$
C. $-8 m / s^{2}$
D. 0

Answer: b

D Watch Video Solution

1. A stone tied to the a string of 80 cm long is whirled in a horizontal circle with a constant speed. If the stone makes 25 revolutions in $14 s$ then, magnitude of acceleration of the same will be:
A. $650 \mathrm{~cm} / \mathrm{s}^{2}$
B. $680 \mathrm{~cm} / \mathrm{s}^{2}$
C. $750 \mathrm{~cm} / \mathrm{s}^{2}$
D. $990 \mathrm{~cm} / \mathrm{s}^{2}$

Answer: d

D Watch Video Solution

2. Two projectile are projected with the same velocity. If one is projected at an angle of 30° and other at 60° to the horizontal. The ratio of maximum heights reached, is:
A. $2: 1$
B. $1: 3$
C. $3: 1$

D. 1: 4

Answer: B

D Watch Video Solution

3. At the appermost point of a projectile its
velocity and acceleration are at angle of:
A. 45°
B. 60°
C. 90°

D. 180°

Answer: b

- Watch Video Solution

4. A particle is projected with a velocity v so
that its range on a horizontal plane is twice
the greatest height attained. If g is acceleration due to gravity, then its range is
A. $\frac{4 v^{2}}{5 g}$
B. $\frac{4 g}{5 v^{2}}$
C. $\frac{v^{2}}{g}$
D. $\frac{4 v^{2}}{\sqrt{5} g}$

Answer: a

D Watch Video Solution

5. The length of a seconds hand in watch is

1 cm . The change in velocity of its tip in 15 s is
A. zero
B. $\frac{\pi}{30 \sqrt{2}} \mathrm{~cm} / \mathrm{sec}$
C. $\frac{\pi}{30} \mathrm{~cm} / \mathrm{sec}$
D. $\frac{\pi \sqrt{2}}{30} \mathrm{~cm} / \mathrm{sec}$

Answer: d

D Watch Video Solution

6. A car travles 6 km towards north at an angle of 45° to the east and then travles distance of 4 km towards north at an angle of 135° to east
(figure). How far is the point from the starting
point? What angle does the straight line joining its initial and final position makes with the east?

A. $\sqrt{50} \mathrm{~km}$ and $\tan ^{-1}(5)$
B. 10 km and $\tan ^{-1}(\sqrt{5})$
C. $\sqrt{52} \mathrm{~km}$ and $\tan ^{-1}(5)$
D. $\sqrt{52} \mathrm{~km}$ and $\tan ^{-1}(\sqrt{5})$

Answer: c

D Watch Video Solution

7. A stone projected with a velocity u at an angle q with the horizontal reaches maximum heights H_{1}. When it is projected with velocity u at an angle $\left(\frac{\pi}{2}-\theta\right)$ with the horizontal, it reaches maximum height H_{2}. The relations
between the horizontal range R of the projectile, H_{1} and H_{2}, is

$$
\begin{aligned}
& \text { A. } R=4 \sqrt{H_{1} H_{2}} \\
& \text { В. } R=4\left(H_{1}-H_{2}\right) \\
& \text { C. } R=4\left(H_{1}+H_{2}\right) \\
& \text { D. } R=\frac{H_{1}^{2}}{H_{2}^{2}}
\end{aligned}
$$

Answer: a

D Watch Video Solution

8. A man sitting in a bus travelling in a direction from west to east with a speed of
$40 \mathrm{~km} / \mathrm{h}$ observes that the rain-drops are falling vertically down. To the another man standing on ground the rain will appear
A. The fall vertically down
B. To fall at an angle going from west to
east
C. To fall at an angle going from east to
D. The information given is insufficient to decided direction of rain

Answer: b

D Watch Video Solution

9. A projectile can have same range R for two angles of projection. It t_{1} and t_{2} are the times of flight in the two cases, then what is the product of two times of flight?
A. $t_{1} t_{2} \propto R^{2}$
B. $t_{1} t_{2} \propto R$
C. $t_{1} t_{2} \propto \frac{1}{R}$
D. $t_{1} t_{2} \propto \frac{1}{R^{2}}$

Answer: B

D Watch Video Solution

10. A particle is projected with initial velocity of $\hat{i}+2 \hat{j}$. The equation of trajectory is $\left(\right.$ takeg $\left.=10 m s^{-2}\right)$

> A. $y=2 x-15 x^{2}$
> B. $y=2 x-25 x^{2}$
> C. $y=x-5 x^{2}$
> D. $y=2 x-5 x^{2}$

Answer: B

D Watch Video Solution

11. Assertion: When the body is dropped or thrown horizontally from the same height, it would reach the ground at the same time.

Reason: Horizontal velocity has no effect on the vertical direction.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: a

D Watch Video Solution

12. Assertion: The maximum horizontal range
of projectile is proportional to square of
velocity.

Reason: The maximum horizontal range of
projectile is equal to maximum height attained by projectile.
A. If both the assertion and reason are true and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false

D. If both the assertion and reason are

false.

Answer: c

D Watch Video Solution

13. Assertion: When the velocity of projection of a body is made n times, its time of flight becomes n times.

Reason: Range of projectile does not depend on the initial velocity of a body.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

- Watch Video Solution

14. Assertion: For projection angle $\tan ^{-1}(4)$,
the horizontal range and the maximum height of a projectile are equal.

Reason: The maximum range of projectile is directely proportional to square of velocity and inversely proportional to acceleration due to gravity.
A. If both the assertion and reason are true and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: B

15. Assertion: The trajectory of an object moving under the same accleration due to gravity can be straight line or a parabola depending on the initial conditions.

Reason: The shape of the trajectory of the motion of an object is determined by the acceleration alone.
A. If both the assertion and reason are true
and reason is a true explantion of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: c

D Watch Video Solution

1. In a two dimensional motion, instantaneous
speed v_{0} is a positive constant.Then which of the following are necessarily true?
A. The acceleration of the particle is zero.
B. The acceleration of the particle is
bounded
C. The acceleration of the particle is necessarily in the plane of motion.
D. The particle must be undergoing a uniform circular motion.

Answer: c

D Watch Video Solution

2. A body is projected at 30° with the horizontal. The air offers resistance in proportional to the veclocity of the body. Which of the following statements is correct?
A. The trajectroy is a symmetrical parabola
B. the time of rise to the maximum height is equal to the time of return to the ground
C. The velocity at the highest pint is
directed along the horizontal
D. the sum of the kinetic and potential
energies remains constant

Answer: a

3. If a body is projected with an angle θ to the horizontal, then
A. its velocity is always perpendicular to its
acceleration
B. its velocity becomes zero at its maximum
height.
C. its velocity makse zero angle with the horizontal at its maximum height

D. the body just before hitting the ground,

the direction of velocity coincides with the acceleration

Answer: b

D Watch Video Solution

4. Show that there are two values of time for which a projectile is at the same height. Also show mathematically that the sum of these two times is equal to the time of flight.
A. $\frac{3 T}{2}$
B. $\frac{4 T}{3}$
C. $\frac{3 T}{4}$
D. T

Answer: b

D Watch Video Solution
5. At a height $0.4 m$ from the ground the velocity of a projectile in vector form is
$\vec{v}=(6 \hat{i}+2 \hat{j}) m s^{-1}$. The angle of projection is
A. 45°
B. 60°
C. 30°
D. $\tan ^{-1}\left(\frac{3}{4}\right)$

Answer: c

(Watch Video Solution
6. A particle is projected from the ground with
an initial speed of v at an angle θ with
horizontal. The average velocity of the particle between its point of projection and highest point of trajectroy is:

> A. $\frac{v}{2} \sqrt{1+2 \cos ^{2} \theta}$
> B. $\frac{v}{2} \sqrt{1-4 \cos ^{2} \theta}$
> C. $\frac{v}{2} \sqrt{1+3 \cos ^{2} \theta}$
D. $v \cos \theta$

Answer: C

7. At what angle with the horizontal should a ball be thrown so that the range R is related to the time of flight as $R=5 T^{2}$? $\left(\right.$ Take $\left.=10 \mathrm{~ms}^{-2}\right)$.
A. 60°
B. 30°
C. 45°
D. 75°

Answer: a

D Watch Video Solution

8. A projectile is fired at an angle of 30° with
the horizontal such that the vertical
component of its initial velocity is $80 \mathrm{~m} / \mathrm{s}$. Find approximatly the velocity of the projectile at time $T / 4$ where T is time of flight.
A. $180 m / s$
B. $155 m / s$
C. $145 m / s$

D. $140 \mathrm{~m} / \mathrm{s}$

Answer: c

D Watch Video Solution

9. An airplane is flying horizontally at a height of 490 m with a velocity of $150 \mathrm{~ms}^{-1}$. A bag containing food is to be dropped to the Jawans on the ground. How far (in meter) from
them should the bag the dropped so that it directely reaches them?

D Watch Video Solution

10. Jai is standing on the top of a building of height 25 m he wants to throw his gun to

Veeru who stands on top of another building of height 20 m at distance 15 m from first building. For which horizontal speed of projectile, it is possible?

$$
\text { A. } 5 m s^{-1}
$$

B. $10 m s^{-1}$
C. $15 m s^{-1}$
D. $20 m s^{-1}$

Answer: C

D Watch Video Solution
11. The equations of motion of a projectile are
given by $x=36 t m$ and $2 y=96 t-9.8 t^{2} m$
.The angle of projection is
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\sin ^{-1}\left(\frac{3}{5}\right)$
C. $\sin ^{-1}\left(\frac{4}{3}\right)$
D. $\sin ^{-1}\left(\frac{3}{4}\right)$

Answer: a

D Watch Video Solution

12. A plane surface is inclined making an angle
β above the horizon. A bullet is fired with the
point of projection at the bottom of the
inclined plane with velocity u, then the maximum range is given by:
A. $\frac{u^{2}}{g}$
B. $\frac{u^{2}}{g(1+\sin \beta)}$
C. $\frac{u^{2}}{g(1-\sin \beta)}$
D. $\frac{u^{2}}{g(1+\cos \beta)}$

Answer: b

D Watch Video Solution

13. A player kicks a ball at a speed of $20 \mathrm{~ms}^{-1}$
so that its horizontal range is maximum.
Another players 24 m away in the direction of
kick starts running in the same direction at
the same instant of hit. If he has to catch the ball just before it reaches the ground, he should run with a velocity equal to $\left(\right.$ take $\left.=10 \mathrm{~ms}^{-2}\right)$
A. $2 \sqrt{2} m s^{-1}$
B. $4 \sqrt{2} \mathrm{~ms}^{-1}$
C. $6 \sqrt{2} m s^{-1}$

D. $10 \sqrt{2} m s^{-1}$

Answer: b

D Watch Video Solution

14. Two tall buildings are 30 m apart. The speed
with which a ball must be thrown horizontally
from a window 150 m above the ground in one building so that it enters a window $27.5 m$ from the ground in the other building is.

$$
\text { A. } 2 m s^{-1}
$$

B. $6 m s^{-1}$
C. $4 m s^{-1}$
D. $8 m s^{-1}$

Answer: b

- Watch Video Solution

15. Which of the following statements is incorrect?
A. In one dimension motion, the velocity
and the acceleration of an object are
always along the same line.
B. In two or three dimension, the angle
between velocity and acceleration
vectors may have any value of between
0° and 180°
C. The kinematic equations for uniform
acceleration can applied in case of a
uniform circular motion.
D. The resultant acceleration of an object in circular motion is towards the centre only if the speed is constant.

Answer: c

D Watch Video Solution

16. A motor car travelling at $30 \mathrm{~m} / \mathrm{s}$ on a circular road of radius 500 m . It is increasing its speed at the rate of $2 m s^{-2}$. What its accleration at that instant ?
A. $2.5 m s^{-2}$
B. $2.7 m s^{-2}$
C. $2 m s^{-2}$
D. $4.5 m s^{-2}$

Answer: b

D Watch Video Solution
17. A particle moves along a circle of radius R $=1 \mathrm{~m}$ so that its radius vector \vec{r} relative to a point on its circumference rotates with the
constant angular velocity $\omega=2 \mathrm{rad} / \mathrm{s}$. The
linear speed of the particle is
A. $4 m / s$
B. $2 m / s$
C. $1 m / s$
D. $0.5 \mathrm{~m} / \mathrm{s}$

Answer: a
(Watch Video Solution

18. What remains constant in uniform circular

motion ?

A. \vec{r}
B. \vec{a}
C. \vec{v}
D. $|\vec{a}|$

Answer: d

D Watch Video Solution
19. A train is moving towards north. At one place it turn towards north -east. Here, we observe that:
A. the radius of curvature of outer rail will be greater than that of the inner rail
B. the radius of curvature of outer rail will
be greater than that of the outer rail
C. the radius of curvature of one of the rails will be greater

D. the radius of curvature of outer and

inner rail will be same

Answer: a

D Watch Video Solution

20. A motor cyclist is trying to jump across a path as shown by driving horizontally off a cliff

A at a speed of $5 m s^{-1}$. Ignore air resistance and take $g=10 \mathrm{~ms}^{-2}$. The speed with which
he touches the peak B is:

A. $2.0 m s^{-1}$
B. $15 m s^{-1}$
C. $25 m s^{-1}$
D. $20 m s^{-1}$

Answer: B

D Watch Video Solution

21. An aeroplane is flying vertically upwards.

When it is at a height of 1000 m above the
ground and moving at a speed of $367 \mathrm{~m} / \mathrm{s}$., a
shot is fired at it with a speed of $567 \mathrm{~ms}^{-1}$
from a point directly below it. What should be
the acceleration of aeroplane so that it may escape from being hit?
A. $>5 m / s^{2}$
B. $>10 m / s^{2}$
C. $<10 \mathrm{~m} / \mathrm{s}^{2}$
D. Not possible

Answer: b

D Watch Video Solution

22. A passenger in a train drops a ball from the window of a train running at an acceleration
'a'. A pedestrain, on the ground, by the side of the rails, observers the ball falling along
A. a parabola with an acceleration 'g'
B. a parabola with an acceleration

$$
\sqrt{g^{2}+a^{2}}
$$

C. a vertical with an acceleration $\sqrt{g^{2}+a^{2}}$
D. a vertical with an acceleration $\sqrt{g^{2}-a^{2}}$

Answer: a

23. A man can swim with a speed of $4 k m h^{-1}$ in still water. He crosses a river 1 km wise that flows steadily at $3 \mathrm{kmh}^{-1}$. If he makes his strokes normal to the river current, how far down the river does he go when he reaches the other bank?
A. 500 m
B. 600 m
C. 750 m
D. 850 m

Answer: C

D Watch Video Solution

24. A fighter plane flying horizontally at an altitude of 1.5 km with speed of
$720 k m h^{9}-10$ passes directlu overhead an anticraft gun. At what anle fro the gun with muzzle speed $400 \mathrm{~ms}^{-1}$ to hit the plane in shortest time ?`

$$
\text { A. } \sin ^{-1}\left(\frac{1}{3}\right)
$$

B. $\sin ^{-1}\left(\frac{2}{3}\right)$
C. $\cos ^{-1}\left(\frac{1}{3}\right)$
D. $\cos ^{-1}\left(\frac{2}{3}\right)$

Answer: a

D Watch Video Solution

25. A bomber moving horizontally with
$500 m / s$ drops a bomb which strikes ground
in 10s. The angle of strike with horizontal is
A. $\tan ^{-1}\left(\frac{1}{5}\right)$
B. $\tan \left(\frac{1}{5}\right)$
C. $\tan ^{-1}(1)$
D. $\tan ^{-1}(5)$

Answer: a

D Watch Video Solution

26. The path of a projectile in the absence of air drag is shown in the figure by dotted line. If
the air resistance is not ignored then which
one of the paths shown in the figure is appropriate for the projectile?

A. B
B. A
C. D
D. C

Answer: A

- Watch Video Solution

27. Assertion: For motion in two or three diemensions, velocity and acceleration vecotrs must have any angle between 0° and 90° between them.

Reason: For such motion velocity and acceleration of an object is always in the opposite direction.
A. If both the assertion and reason are true and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are
false.

Answer: d
28. Assertion: When range of a projectile is maximum, its angle of projection may be
45° or 135°.
Reason: Whether θ is 45° or 135°, value of range remains the same, only the sign changes.
A. If both the assertion and reason are true
and reason is a true explantion of the
assertion.
B. If both the assertion and reason are true
but the reason is not true the correct explantion of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: A

D Watch Video Solution

29. Assertion: If the speed of a body is constant, the body cannot have path other than a circular or straight line path.

Reason: It is not possible for a body to have a constant speed in an accelerated motion.
A. If both the assertion and reason are true and reason is a true explanation of the assertion.
B. If both the assertion and reason are true
but the reason is not true the correct
explanation of the assertion.
C. If the assertion is true but reason false
D. If both the assertion and reason are false.

Answer: d

- Watch Video Solution

