© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

NEWTONS LAWS OF MOTION

Basics Of Newton'S Laws Of Motion

1. Inertia is that property of a body by virtue of
which the body is
A. unable to change by itself the state of rest.
B. unable to change by itself the state of uniform motion.
C. unable to change by itself the direction of motion.
D. unable to change by itself the state of rest or of uniform motion.

Answer: D

2. A ball is travelling with uniform translatory motion. This means that .
A. it is at rest.
B. the path can be a straight line or circular and the ball travels with uniform speed.
C. all parts of the ball have the same
velocity (magnitude and direction) and
the velocity is constant.
D. the centre of the ball moves with constant velocity and the ball spine about its centre uniformly.

Answer: C

D Watch Video Solution

3. when a body is stationary:
A. there is no force acting on it
B. the force acting on its are not in contact

with it

C. the combination of force acting on it
balance each other
D. the body is in vacuum

Answer: C

- Watch Video Solution

4. The relation $\vec{F}=m \vec{a}$, cannot be deduced from Newton's second law, if
A. force depend on time
B. momentum depend on time
C. acceleration depend on time
D. mass depend on time

Answer: D

5. An astronaut accidentally gets separated
out his small spaceship accelerating in interstellar space at a constant rate of $100 \mathrm{~ms}^{-2}$. What is the acceleration of the astronaut the instant after he is outside the spaceship? (Assume that there are no nearby stars to exert gravitational force on him)
A. zero
B. $10 m s^{-2}$
C. $50 m s^{-2}$
D. $100 \mathrm{~ms}^{-2}$

Answer: A

- Watch Video Solution

6. In which of the following cases the net force acting on the body is not zero?
A. A drop of rain falling down with a constant speed.
B. A cork of mass 10 g floating on the
surface of water.
C. A car moving with a contant speed of $20 \mathrm{kmh}^{-1}$ on a rough road.

D. A pebble of mass 0.05 kg is thrown

vertically upwards.

Answer: D

D Watch Video Solution

7. Which one of the following statement is not ture about Newton's second law of motion $\vec{F}=\overrightarrow{m a} ?$
A. The second law of motion is consistent
with the first law.
B. The second law of motion is a vector law.
C. The second law of motion is applicable
to a single point particle.
D. The second law of motion is not a local
law.

Answer: D
8. A boy sitting on the topmost berth in the compartment of a train which is just going to stop on a railway station, drop an apple aiming at the open hand of his brother sitting
vertically below his hands at a distnace of about 2 meter. The apple willl fall
A. Preciselt on the hand of his brother B. Slightly away from the hand of his brother in the direction of motion of the train
C. Slightly away from the hand of his
brother in the direction opposite of the
direction of motion of the train
D. None of these

Answer: B

D Watch Video Solution
9. A person sitting in an open car moving at constant velocity throws a ball vertically up into air. The ball falls
A. Outside the car
B. In the car ahead of the person
C. In the car to the side of the person
D. Exactly in the hand which threw it up

Answer: D

- Watch Video Solution

10. On a stationary sail-boat, air is blown at the sails from a fan attached to the boat. The boat
A. Remain stationary
B. spin around
C. Move in a direction opposite to that in
which air is blown
D. Move in the direction in which the air is
blown

Answer: A
(Watch Video Solution
11. A mass of 1 kg is suspended by a string A.

Another string C is connected to its lower end
(see figure). If a sudden jerk is given to C, then
A. The portion $A B$ of the string will break
B. The portion BC of the string will break
C. None of the string will break
D. The mass will start rotating

Answer: B

D Watch Video Solution
12. In the previous problem, If the string C is stretched slowly, then
A. The portion $A B$ of the string will break
B. The portion BC of the string will break
C. None of the string will break
D. None of the above

Answer: A

D Watch Video Solution
13. Which of the following conclusion is correct regarding a stationary body?
A. No force is acting on the body.
B. Vector sum of force acting on the body is zero.
C. The body is in vacuum.
D. The force acting on the body, do not constitute a couple.

Answer: B

D Watch Video Solution

14. A locomotive (engine) pulls a series of wagons. Which is the correct analysis of the situation?
A. The train moves forward because the
locative pulls foeward slightly harder on
the wagons than the wagons pull
backward on the locomotive.
B. Because action always equal reaction,
the locomotive cannot pull the wagons.

The wagons pull backward just as hard
as the locomotive pulls forward, there is
no motion.
C. The locomotive's force on the wagons is
an strong as the force of the wagons on
the locomotive, but the frictional force
on the locomotive is forward and large
while the backward frictional force on
the wagons is small.
D. The locomotive can pull the wagons
forward only if it weighs more than the
wagons.

Answer: C

D Watch Video Solution

15. When a speeding bus stop suddenly, passengers are thrown forward from their seats because
A. the back of seat suddenly puushes the passengers forward.
B. inertia of rest stops the bus and takes
the body forward.
C. upper part of the body continues to be
in the state of motion whereas the lower
part of the body in contact with seat
remains at crest.
D. upper part of the body come to resst
whereas the lower part of the body in
contact with seat begins to move.
A. second and third laws from the first law.
B. first and second laws from the first law.
C. third and first laws from the second law.
D. all the three laws are independent of each other.

Watch Video Solution

17. Which of the following statement is not true regarding the Newton's third law of motion?
A. To every action there is always an equal
and opposite reaction.
B. Action and reaction act on the same
body.
C. There is no cause-effect relation
between action and reaction.
D. Action and reaction forces are
simultaneous forces.

Answer: B

D Watch Video Solution
18. A constant retarding force of 50 N is allied to a body of mass 10 kg moving initially with a
speed of $10 \mathrm{~ms}^{-1}$. The body comes to rest after
A. 2 s
B. 4 s
C. 6 s
D. 8 s

Answer: A
(Watch Video Solution
19. A body A mass m_{1} exerts a force on another body B of mass m_{2}. If the acceleration of B be a_{2}, then the acceleration
(in magnitude) of A is

$$
\begin{aligned}
& \text { A. } \frac{m_{2}}{m_{1}} a_{2} \\
& \text { B. } m_{1} m_{2} a_{2} \\
& \text { C. } \frac{m_{1}}{m_{2}} a_{2} \\
& \text { D. }\left(m_{1}+m_{2}\right) a_{2}
\end{aligned}
$$

Answer: A

20. When forces F_{1}, F_{2}, F_{3} are acting on a particle of mass m such that F_{2} and F_{3} are mutually prependicular, then the particle remains stationary. If the force F_{1} is now rejmoved then the acceleration of the particle is
A. F_{1} / m
B. $F_{2} F_{3} / m F_{1}$
C. $\left(F_{2}-F_{3}\right) / m$
D. F_{2} / m

Answer: A

D Watch Video Solution

21. A body under the action of a force
$\vec{F}=6 \hat{i}-8 \hat{j} N$ acquires an acceleration of
$5 m s^{-2}$. The mass of the body is
A. 2 kg
B. 5 kg

C. 4 kg

D. 6 kg

Answer: A

D Watch Video Solution

22. A constant force acting on a body of mass

5 kg change its speed from $5 \mathrm{~ms}^{-1}$ in 10 s without changing the direction of motion. The force acting on the body is
A. 1.5 N
B. 2 N
C. 2.5 N
D. 5 N

Answer: C

D Watch Video Solution

23. A body of mass 0.4 kg starting at origin at
$t=0$ with a speed of $10 \mathrm{~ms}^{-1}$ in the positive
x-axis direction is subjected to a constant $F=8 \mathrm{~N}$ towards negative x -axis.
A. $-6000 m$
B. $-8000 m$
C. $+4000 m$
D. +7000 m

Answer: A
(Watch Video Solution

24. Three forces start acting simultaneously on

a particle moving with velocity, \bar{v}. These forces
are respresented in magnitude and direction by the three sides of a triangle $A B C$. The particle will now move with velocity

A. \vec{v} remaining unchanged
B. less than \vec{v}
C. Greater than \vec{v}
D. \vec{v} in the direction of the larges force BC

Answer: A

D Watch Video Solution

25. Five forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \vec{F}_{4}$, and \vec{F}_{5}, are acting on a particle of mass 2.0 kg so that is moving with $4 m / s^{2}$ in east direction. If \vec{F}_{1}
force is removed, then the acceleration
becomes $7 m / s^{2}$ in north, then the acceleration of the block if only \vec{F}_{1} is action will be:
A. $16 m / s^{2}$
B. $\sqrt{65} m s^{2}$
C. $\sqrt{260} m s^{2}$
D. $\sqrt{233} m s^{2}$

Answer: B
26. Ten one-rupee coins are put on top each other on a table. Each coin has a mass m. The rection of the $6^{\text {th }}$ coin (counted from the bottom) on the $7^{\text {th }}$ coin is
A. 4 gm
B. 6 gm
C. 7 gm
D. 3 gm

27. A cork of mass 10 g is floating on water. The

 net force acting on the cork isA. 10 N
B. $10^{-3} N$
C. $10^{-2} N$
D. zero

Answer: D
28. A bullet of mass 40 g moving with a speed of $90 \mathrm{~ms}^{-1}$ enters a heavy wooden block and is stopped after a direction of 60 cm . The average resistive force exerted by the block on the bullet is
A. 180 N
B. 220 N
C. 270 N
D. 320 N

Answer: C

- Watch Video Solution

29. Five persons A, B, C, D, and E, are pulling a cart of mass 100 kg on a smooth surface and cart is moving with acceleration $3 \mathrm{~m} / \mathrm{s}^{2}$ in east direction. When person A stops pulling, it moves with acceleration $24 \mathrm{~m} / \mathrm{s}^{2}$ in the north direction. The magnitude of acceleration of
the cart when only A and B pull the cart keeping their direction, is:
A. $26 m / s^{2}$
B. $3 \sqrt{71} m / s^{2}$
C. $25 m / s^{2}$
D. $30 \mathrm{~m} / \mathrm{s}^{2}$

Answer: C

D Watch Video Solution

30. A machine gun is mounted on a 2000 kg car on a horizontal frictionless surface. At some
with a velocity of $500 \mathrm{~m} / \mathrm{sec}$ with respect to
the car. The number of bullets fired per second
is ten. The average thrust on the system is
A. 550 N
B. 50 N
C. 250 N
D. 250 N dyne

Answer: B

D Watch Video Solution
31. A machine gun fires a bullet of mass 40 g
with a velocity $1200 \mathrm{~ms}^{-1}$. The man holding it
can exert a maximum force of 144 N on the
gun. How many bullets can be fire per second at the most?
A. one
B. four
C. two
D. three
32. If a bullet of mass 5 gm moving with velocity $100 \mathrm{~m} / \mathrm{sec}$, penertates the wooden block upto 6 cm . Then the average force imposed by the bullet on the block is
A. 8300 N
B. 417 N
C. 830 N
D. zero

Answer: B

- Watch Video Solution

33. A 500kg rocket is set for verticle firing. The exhaust speed is $800 \mathrm{~ms}(-2)$. To give an initial upward acceleration of $20 \mathrm{~ms}(-2)$, the amount of gas ejected per second to supply the needed thrust will be $(g=10 m s(-2)$

$$
\text { A. } 127.5 \mathrm{kgs}^{-1}
$$

B. $187.5 \mathrm{kgs}^{-1}$

C. $185.5 \mathrm{kgs}^{-1}$
 D. $137.5 \mathrm{kgs}^{-1}$

Answer: B

- Watch Video Solution

34. A cricket ball of mass 250 g collides with a bat with velocity $10 \mathrm{~m} / \mathrm{s}$ and returns with the same velocity within 0.01 second. The force acted on bat is
A. 25 N
B. 50 N
C. 250 N
D. 500 N

Answer: D

D Watch Video Solution

35. N bullet each of mass mkg are fired with a velocity $\mathrm{vms}(-2)$ at the rate of n bullets per
second upon a wall. The reaction offered by
the wall to the bullets is given by
A. $n m v$
B. $\frac{N m v}{n}$
C. $n \frac{N m}{v}$
D. $n \frac{N v}{m}$

Answer: A
(Watch Video Solution
36. A ball of the mass 400 gm is dropped from
a height of 5 m . A boy on the ground hits the ball vertically upwards with a bat with an average force of 100 N so that it attains a vertical height of 20 m . The time for which the ball remains in contect with the bat is [$\left.g=10 \mathrm{~m} / \mathrm{s}^{-2}\right]$
A. $0.12 s$
B. 0.08 s
C. $0.04 s$
D. $12 s$

Answer: A

D Watch Video Solution

37. A gardener waters the plants with a pipe of
dimeter 1 mm . The water comes out at the rate of $10 \mathrm{~cm}^{3} / \mathrm{sec}$. The reactionary force exerted on the hand of the gardener is
A. Zero
B. $1.27 \times 10^{-2} N$
C. $1.27 \times 10^{-4} N$
D. $0.127 N$

Answer: D

D Watch Video Solution

38. A 100 g iron ball having velocity $10 \mathrm{~m} / \mathrm{s}$ collides with a wall at an angle 30° and rebounds with the same angle. If the period of contact between the ball and wall and wall is
0.1 second, then the force experienced by the wall is
A. 10 N
B. 100 N
C. 1.0 N
D. 0.1 N

Answer: A
(Watch Video Solution
39. At a certant of time the mass of a roket going up vertically is 100 kg . If it is ejecting 5 kg of gas per second at a speed of $400 \mathrm{~m} / \mathrm{s}$, the acceleration of the rocket would be (talking $\left.g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)^{\wedge}$
A. $20 m / s^{2}$
B. $10 m / s^{2}$
C. $2 m / s^{2}$
D. $1 m / s^{2}$
40. A block of metal weighing 2 kg is resting on
a frictionless plane. It is struck by a jet releasing water at a rate of $1 \mathrm{kgs}^{-1}$ and at a speed of $5 \mathrm{~ms}^{-1}$. The initial acceleration of the block is

A. $2.5 m / s^{2}$
B. $5 m / s^{2}$
C. $10 m / s^{2}$
D. $20 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

41. A lift is going up. The total mass of the lift and the passenger is 1500 kg . The variation in the speed of the graph. The tension in the
rope pulling the lift at $t=11^{\text {th }} \mathrm{sec}$ will be

A. 17400 N

B. 14700 N

C. 12000 N

D. Zero
42. A contant force starts acting on a body of mass m at rest. The velocity v acquired in treveling a specific distance depends on m as

$$
\begin{aligned}
& \text { A. } c \frac{1}{m} \\
& \text { B. } v \propto \frac{1}{\sqrt{m}} \\
& \text { C. } v \propto m \\
& \text { D. } v \propto \sqrt{m}
\end{aligned}
$$

Linear Momentum And Impulse

1. Which one of the following statement s in not ture?
A. The same force for the same time cause
the same change in momentum for different bodies.
B. The rate of change of momentum of
body is directly proportinal to the applied force and takes place in the direction in which the force acts.
C. A greater opposite force is needed to
stop a heavy body than a light body in
the same time, if they are moving with
the same speed.
D. The greater the change in the momentum in a given time, the lesser is
the force that needs to be applied.

Answer: D

D Watch Video Solution

2. A body at rest breaks into two pieces of equal masses. The parts will move
A. move in the same direction with equal
speeds
B. move in any direction with any speed
C. move in opposite direction with equal

speeds

D. move in opposite direction with unequal
speeds

Answer: C

D Watch Video Solution

3. A nuclide at rest emits an alpha-particle. In
this process:
A. alpha-particle moves with large velocity
and the nuclesus remains at rest
B. both alpha-particle and nucleus move with equal speed in opposite direction
C. both move in opposite direction but nucleus with greater speed
D. both move in opposite direction but alpha-particle with greater speed.

Answer: D

4. A vessel at rest explodes breaking it into
three pieces. Two pieces having equal mass fly off perpendicular to one another with the same speed of $30 \mathrm{~m} / \mathrm{s}$. The third pieces has
three times the mass of each other piece.

What is the direction (w.r.t. the piece having equal masses) and magnitude of its velocity immediately after the explosion?

$$
\text { A. } 10 \sqrt{2}, 135^{\circ}
$$

B. $10 \sqrt{2}, 90^{\circ}$
C. $10 \sqrt{2}, 60^{\circ}$

D. $10 \sqrt{2}, 30^{\circ}$

Answer: A

D Watch Video Solution

5. A radioactive nucleus initially at rest decays
by emitting an electron and neutron at right angle to one another. The momentum of neutron is $3.2 \times 10^{-24} \mathrm{kgm} / \mathrm{s}$ and the
$6.4 \times 10^{-24} \mathrm{kgm} / \mathrm{sec}$. The direction of the recoiling nucleus with that of the electron motion is:

$$
\begin{aligned}
& \text { A. } \pi-\tan ^{-1}(2) \\
& \text { B. } \tan ^{-1}(2) \\
& \text { C. } \tan ^{-1}(0.5) \\
& \text { D. } \frac{\pi}{2}+\tan ^{-1}(2)
\end{aligned}
$$

Answer: A

D Watch Video Solution
6. A shell is fired from a cannon with a velocity
$v(m / s e c$.$) at an angle \theta$ with the horizontal
direction. At the highest point in its path it explodes into two pieces of equal mass. One of the pieces retraces its path to the cannon and the speed (in $m / s e c$.) of the other piece immediately after the explosion is
A. $3 v \cos \theta$
B. $2 v \cos \theta$
C. $\frac{3 v}{2} \cos \theta$
D. $\frac{\sqrt{3 v} \cos \theta}{2}$

Answer: A

D Watch Video Solution

7. Three particles A, B and C of equal mass move with equal speed V along the medians of an equilateral triangle as shown in hgure. They collide at the centroid G of the triangle. After the collision, A comes to test, B retraces its path with the speed V. What is the velocity of

C ?

A. v, direction $\overline{O A}$
B. 2v, direction $\overline{O A}$
C. 2 v , direction $\overline{O B}$
D. 2 v , direction $\overline{B O}$

Answer: D

- Watch Video Solution

8. A shell of mass 200 g is fired by a gun of mass 100 kg . If the muzzle speed of the shell is $80 \mathrm{~ms}^{-1}$, then the recoil speed of the gun is
A. $16 \mathrm{cms}^{-1}$
B. $8 \mathrm{cms}^{-1}$
C. $8 m s^{-1}$
D. $16 m s^{-1}$
9. a 100kg gun fires a ball of 1 kg horizontally
from a cliff of height 500 m . If falls on the ground at a distance of 400 m from the bottom of the cliff. The recoil velocity of the gun is (Take g: $10 \mathrm{~ms}^{-2}$
A. $0.2 m s^{-1}$
B. $0.4 m s^{-1}$
C. $0.6 m s^{-1}$

D. $0.8 m s^{-1}$

Answer: B

D Watch Video Solution

10. A body of mass M at rest explodes into
three pieces, two of which of mass $M / / 4$ each are thrown off in prependicular directions eith velocities of $3 / s$ and $4 m / s$ respectively. The third piece will be thrown off with a velocity of
A. $1.5 m / s$
B. $2.0 m / s$
C. $2.5 m / s$
D. $3.0 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

11. A bullet is fired from a gun. The force on the bullet is given by $F=600-2 \times 10^{5} \mathrm{t}$, where
F is in newtons and t in seconds. The force on
the bullet becomes zero as soon as it leaves
the barrel. What is the average impulse imparted to the bullet?
A. 9 Ns
B. zero
C. 0.9 Ns
D. 1.8 Ns

Answer: C

D Watch Video Solution
12. A particle moves in the xy-plane under the action of a force F such that the components of its linear momentum p at any time t are $p_{x}=2 \cos t, p_{y}=2 \sin t$. The angle between F and p at time t is
A. 90°
B. 0°
C. 180°
D. 30°

- Watch Video Solution

13. Figure shows the position-time ($\mathrm{x}-\mathrm{t}$) graph of one dimensional motion of a mass 500 g .

What is the time interval between two consecutive impulses received by the body?

A. 2 s
B. 4 s
C. 6 s
D. 8 s

Answer: A

D Watch Video Solution

14. Figure shows the position-time graph of a particle of mass 4 kg . Let the force on the particle for $t<0,0<t \mathrm{lt}, 4 s, t>4 s$ be
F_{1}, F_{2} and F_{3} respectively. Then

A. $F_{1}=F_{2}=F_{3}=0$
B. $F_{1}>F_{2}=F_{3}$
C. $F_{1}>F_{2}>F_{3}$
D. $F_{1}<F_{2}<F_{3}$

Answer: A
15. In the figure given below, the position-time graph of a particle of mass 0.1 kg is shown.

The impuslse at $t=2 \mathrm{sec}$ is

A. $0.2 \mathrm{kgm} / \mathrm{sec}$

$$
\text { B. }-0.2 \mathrm{kgm} / \mathrm{sec}
$$

C. $-0.1 \mathrm{kgm} / \mathrm{sec}$
D. $-0.4 \mathrm{kgm} / \mathrm{sec}$

Answer: B

D Watch Video Solution

16. A body of 2 kg has an initial speed $5 \mathrm{~ms}^{-1}$.

A force acts on it for some time in the direction of motion. The force time graph is shown in figure. The force time graph is shown
in figure. The final speed of the body is

A. $9.25 m s^{-}(-1)$
B. $5 m s^{-}(-1)$
C. $14.25 m s^{-}(-1)$
D. $4.25 m s^{-}(-1)$

Answer: C
17. A force-time graph for the motion of a body
is shown in the figure. The change in the momentum of the body between zero and 10sec is

A. zero
B. $4 \mathrm{kgm} / \mathrm{s}$
C. $5 \mathrm{kgm} / \mathrm{s}$
D. $3 \mathrm{kgm} / \mathrm{s}$

Answer: D

D Watch Video Solution

18. A 2 kg toy car can move along an x axis.

Graph shows force F_{x}, acting on the car which being at rest at time $t=0$. The velocity
of the particle at $t=0 s$ is:

A. $-i m / s$
B. $-1.5 i m / s$
C. $6.5 \mathrm{im} / \mathrm{s}$
D. $13 i m / s$
19. A particle of mass ' m ' and initially at rest is acted by a force $F=a \mathrm{t}$. Newtons best representation of force-displacement graph is:

Answer: A

D Watch Video Solution

20. A 15 kg block is initially moving along a smooth horizontal surface with a speed of $v=4 m / s$ to the left. It is acted by a force F, which varies in the manner shown. Determine
the velocity of the block at $t=15$ seconds.

A. $12.5 m / s$
B. $8.5 \mathrm{~m} / \mathrm{s}$
C. $20 \mathrm{~m} / \mathrm{s}$
D. $9.5 \mathrm{~m} / \mathrm{s}$

Answer: A

1. A body subjected to three concurrent force
is found to be in equilibrium. The resultant of any two force
A. is equal to third force.
B. is oposite to third force
C. is collinear with the third force
D. all of these

Answer: D

- Watch Video Solution

2. A block of mass 3 kg is at rest on a rough inclined plane as shown in the figure. The magnitude of net force exerted by the surface on the block will be

B. 19.5 N

C. 10 N

D. 30 N

Answer: D

- Watch Video Solution

3. A body of mass 1 kg lies on smooth inclined plane. The block of mass m is given force $F=10 \quad N$ horizontally as shown. The magnitude of net normal reaction on the
block is:

A. $10 \sqrt{2} N$
B. $\frac{10}{\sqrt{2}} N$
C. 10 N
D. none of these

Answer: A

- Watch Video Solution

4. A body of mass 2.0 kg is placed on a smooth horizontal surface. Two force $F_{1}=20 N$ and
$F_{2}=N$ are acting on the body in directions making angles of 30° and 60° to the surface.

The reaction of the surface om the body will be

A. 20 N
B. 25 N
C. 5 N
D. zero

Answer: D

D Watch Video Solution
5. Three concurrent co-planer force $1 N, 2 N$
and $3 N$ acting along different directions on a
body
A. can keep the body in equilibrium if $2 N$ and $3 N$ act at right angle.
B. can keep the body in equilibrium if $1 N$ and $2 N$ act
C. connot keep the body in equilibrium.
D. can keep the body in equilibrium if $1 N$ and $3 N$ act at an acute angle.

Answer: C

D Watch Video Solution

6. In the figure shown ' p ' is a plate on which a
wedge B is placed and on B a block A of mass
$\mathrm{m} m$ is placed. The plate is suddenly removed
and system of B and A is allowed to fall under
gravity. Neglecting any force due to air on A
and B, the normal force on A due to B is

$$
\text { A. } \frac{m g}{\cos \theta}
$$

C. zero
D. $\frac{2 m g}{\cos \theta}$

Answer: C

D Watch Video Solution

7. Which of the following sets of concurrent

 force may be in equilibrium?$$
\text { A. } F_{1}=3 N, F_{2}=5 N, F_{3}=9 N
$$

$$
\text { B. } F_{1}=3 N, F_{2}=5 N, F_{3}=1 N
$$

$$
\text { C. } F_{1}=3 N, F_{2}=5 N, F_{3}=19 N
$$

$$
\text { D. } F_{1}=3 N, F_{2}=5 N, F_{3}=6 N
$$

Answer: D

- Watch Video Solution

8. A uniform sphere of weight W and radius 3 m is being held by a frictionless wall as shown
in the figure. The tension in the string will be:

A. $5 W / 4$
B. $15 W / 4$

C. $15 W / 16$

D. none of these

Answer: A

D Watch Video Solution

9. A metal sphere is hung by a string fixed to a
will. The force acting on the sphere are shown
in figure. Which of the following statement is

NOT corrent?

B. $T^{2}=T^{2}+W^{2}$
C. $T=N+W$
D. $\mathrm{N}=\mathrm{W} \tan \theta$

Answer: C

D Watch Video Solution

10. Figure shows a man of mass 50 kg standing on a light weighing machine kept in a box of mass 30kg. The box is hanging from a pulley
fixed to the ceiling through a light rope, the other end of which is held by the man himself.

If the man manages to keep the box at rest,
the weight shown by the machine is.

A. 10 N

B. 100 N

C. 800 N
D. 200 N

Answer: B

D Watch Video Solution

11. A weight w is supported by two strings inclined at 60° and 30° to the vertical. The tensions in the strings are T_{1} and T_{2} as
shown. If these tensions are to be determined
in terms of W using a triangle of force, which of these triangles should you draw? (block is in equilibrium)

A. (b)

B.

C.

Answer: C

- Watch Video Solution

12. A block of mass 5 kg is suspended by a massless rope of length $2 m$ from the ceiling.

A force of $50 N$ is applied in the horizontal direction at the midpoint P of the rope, as
shown in the figure. The angle made by the rope with the vertical in equilibrium is (Take
$g=10 m s^{-2} m$.

A. 30°
B. 40°
C. 60°
D. 45°

Answer: D

D Watch Video Solution

13. There are four force acting at a point p produced by strings as shown in figure, which
is at rest. The force F_{1} and F_{2} are .

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{2}} N, \frac{3}{\sqrt{2}} N \\
& \text { B. } \frac{3}{\sqrt{2}} N, \frac{1}{\sqrt{2}} N \\
& \text { C. } \frac{1}{\sqrt{2}} N, \frac{1}{\sqrt{2}} N \\
& \text { D. } \frac{3}{\sqrt{2}} N, \frac{3}{\sqrt{2}} N
\end{aligned}
$$

Answer: A

- Watch Video Solution

14. In the following figure the pulley P_{1} is fixed
and the pulley P_{2} is movable. If
$W_{1}=W_{2}=100 N$, what is the angle $A P_{2} P_{1}$
? The pulleys are frictionless.

A. 30°
B. 60°
C. 90°
D. 120°
15. The pulleys and strings shown in the figure are smooth and of negligible mass. For the system to remain in equilibrium, the angle θ should be

A. 0°
B. 30°
C. 45°
D. 60°

Answer: C

D Watch Video Solution

16. A string of negligible mass going over a clamped pulley of mass m supports a block of mass M as shown in the figure. The force on
the pulley by the clamp is given by

A. $\sqrt{2} M g$

> B. $\sqrt{2} m g$
> C. $\sqrt{(M+m)^{2}+m^{2} g}$
> D. $\sqrt{(M+m)^{2}+M^{2} g}$

Answer: D

D Watch Video Solution

17. Two masses m and M are attached with strings as shown. For the system to be in
equilibrium we have.

A. $\tan \theta=1+\frac{2 M}{m}$
B. $\tan \theta=1+\frac{2 m}{M}$
C. $\tan \theta=1+\frac{M}{2 m}$
D. $\tan \theta=1+\frac{m}{2 M}$

Answer: A

D Watch Video Solution

18. Two smooth sphere each of radius 5 cm and
weight W rest one on the other inside a fixed
smooth cylinder of radius 8 cm . The reaction between the sphere and the vertical side of
the cylinder are:

A. $W / 4$ and $3 W / 4$

B. $W / 4$ and $W / 4$

C. $3 W / 4$ and $3 W / 4$
D. W and W

Answer: C

D Watch Video Solution

19. Three identical rigid circular cylinder $A B$
and C are arranged on smooth inclined
surfaces as shown in figure. The least value of
theta that prevent the arrangement from

collapse is.

A. $\tan ^{-1}(1 / 2)$
B. $\tan ^{-1}(1 / 2 \sqrt{3})$
C. $\tan ^{-1}(1 /(3 \sqrt{3})$
D. $\tan ^{-1}(1 / 4 \sqrt{3})$

Answer: C

Applications Of Newton'S Laws Of Motion

1. Two persons are holding a rope of negligible weight tightly at its ends so that is horizontal.

A 15 kg weight is attached to the mid point which how no longer remains horizontal. The minimum tension required to completely straighten the rope is:
A. 15 kg
B. $15 / 2 \mathrm{~kg}$
C. 5 kg

D. Infinitely large

Answer: D

- Watch Video Solution

2. M is a fixed wedge. Masses m_{1} and m_{2} are connected by a light string. The wedge is smooth and the pulley is smooth and fixed $m_{1}=10 \mathrm{~kg}$ and $m_{1}=7.5 \mathrm{~kg}$. When m_{2} is just released, the distance it will travel in 2 second
is.

A. $2.8 m$
B. $7.5 m$
C. $4.0 m$
D. 6.0 m

- Watch Video Solution

3. With what acceleration 'a' should the box of
figure moving up so that the block of mass M
exerts a force $7 M g / 4$ on the floor of the box?

A. $g / 4$
B. $g / 2$

C. $3 g / 4$

D. $4 g$

Answer: C

D Watch Video Solution

4. The elevator shown in fig. is descending
with an acceleration of $2 m s^{-2}$. The mass of
the block $A=0.5 \mathrm{~kg}$. Find the force (in

Newton) exerted by block A on block B.

A. 2
B. 4
C. 6

D. 8

Answer: B

D Watch Video Solution

5. An elevator is accelerating upwards with an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$. Inside it a person of mass 50 kg is standing on a weighing machine which is kept on an inclined plane having angle of inclination 60°. The reading of the
weighing machine is:

A. 40 kg
B. 160 kg
C. 80 kg
D. 50 kg

Answer: A

- Watch Video Solution

6. In the given diagram, with what force must
the man pull the rope to hold the plank in position? Mass of the man is 80 kg . Neglect the
weights of plank, rope and pulley. Take.

A. 200 N
B. 300 N

C. 600 N

D. 150 N

Answer: A

D Watch Video Solution

7. Consider the three cases given in figures
shown. Assume the friction to be absent everywhere and the pulleys to be light, the string connecting the blocks to other block or fixed vertical wall to be light and inextensible.

Let T_{A}, T_{B} and T_{C} be the etnsion in the strings in figure A, figure B and figure C respectively. Then pick the correct comparison between the given tension (for the instant shown) from options below.

Fig. (A)
Fig. (B)

A. $T_{A}=T_{B}=T_{C}$
B. $T_{B}=T_{C}<T_{A}$
C. $T_{A}<T_{B}<T_{c}$

$$
\text { D. } T_{B}<T_{C}<T_{A}
$$

Answer: D

D Watch Video Solution

8. Consider the system as shown in the figure.

The pulley and the string are light and all the
surfaces are frictionless. The tension in the
string is $\left(g=10 m / s^{2}\right)$.

Horizontal surface

1 kg \square
A. ON
B. 1 N
C. 2 N
D. 5 N

Answer: D

- Watch Video Solution

9. A boy and a block, both of same mass, are suspended at the same horizontal level, from each end of a light string that moves over a frictionless pulley as shown. The boy start moving upward with an acceleration $2.5 \mathrm{~m} / \mathrm{s}^{2}$ relative the rope. If the block is to travel a total distance 10 m before reaching at the pulley, the time taken by the block in doing so
is equal to:

A. $\sqrt{8} s$
B. 4 s
C. $\frac{10}{\sqrt{8}} s$
D. 8 s

Answer: B

- Watch Video Solution

10. In order to raise a mass of 100kg a of mass

60 kg fastens a rope to it and passes the rope over a smooth pulley. He climbs the rope with
acceleration $5 g / 4$ relative to the rope. The tension in the rope is: Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. 1432 N
B. 928 N
C. 1219N
D. 642 N

Answer: C

- Watch Video Solution

11. Two masses of 1 kg and 5 kg are attached to
the ends of a massless string passing over a pulley of negligible weight. The pulley itself is attached to a light spring balance as shown in
figure. The masses start moving during this interval, the reading of spring balance will be:

A. more than 6 kg
B. less than 6kg
C. equal 6 kg
D. none of the above

Answer: B

D Watch Video Solution

12. Three equal weight A, B and C of mass
$2 k g$ each are hanging on a string passing over
a fixed frictionless pulley as shown in the
figure. The tension in the string connecting weights B and C is approximately

A. zero
B. 13 N
C. $3.3 N$
D. $19.6 N$

Answer: B
(Watch Video Solution
13. Two bodies of mass 4 kg and 6 kg are attached to the ends of a string passing over a pulley. The 4 kg mass is attached to the table top by another string. The tension in this string T_{1} is equal to: Take

 ㄴ․ T_{1} 6 kg
A. 20 N

B. 25 N

C. 10.6 N

D. 10N

Answer: A

D Watch Video Solution

14. Figure shown two pulley arrangements for
lifting a mass m. In case-1, the mass is lifting by attaching a mass 2 m while in case- 2 the mass is lifted by pulling the other end with a downward force $F=2 m g$. If a_{a} and a_{b} are the accelerations of the two masses then
(Assume string is massless and pulley is ideal).

A. $a_{a}=a_{b}$
B. $a_{a}=\frac{a_{b}}{2}$
C. $a_{a}=\frac{a_{b}}{3}$

$$
\text { D. } a_{a}=2 a_{b}
$$

15. In fig the blocks A, B, and C of mass m each
have acceleration a_{1}, a_{2}, and a_{3}, respectively.
F_{1} and F_{2} are external force of magnitude
$2 m g$ and $m g$, respectively. Then

A. $a_{1}=a_{2}=a_{3}$

$$
\text { B. } a_{1}>a_{2}>a_{3}
$$

$$
\begin{aligned}
& \text { C. } a_{1}=a_{2}, a_{2}>a_{3} \\
& \text { D. } a_{1}>a_{2}, a_{2}=a_{3}
\end{aligned}
$$

Answer: B

D Watch Video Solution

16. Two block are connected by a string as
shown in the diagram. The upper block is hung
by another string. A force F applied on the upper string produces an acceleration of $2 m / s^{2}$ in the upward direction in both the
blocks. If T and T^{t} be the tension in the two
part of the string, then

A. $T=70.8 N$ and $T^{t}=47.2 N$
 B. $T=58.8 N$ and $T^{t}=47.2 N$
 C. $T=70.8 N$ and $T^{t}=58.8 N$
 D. $T=70.8 N$ and ${ }^{\top}{ }^{\wedge}(\mathrm{t})=0$

Answer: A

D Watch Video Solution

17. Three blocks are connected as shown in
figure on a horizontal frictionless table. If $m_{1}=1 \mathrm{~kg} \quad, \quad m_{2}=8 \mathrm{~kg} \quad, \quad m_{3}=27 \mathrm{~kg} \quad$ and
$T_{3}=36 N, T_{2}$ will be.

A. 18 N
B. 9 N
C. $3.375 N$
D. 1.75 N

Answer: B

D Watch Video Solution
18. A force F is applied on block A as shown in
the figure. The contact force between A and B
and between the blocks B and C respectively
are (Assume frictionless surface)

A. $\frac{F}{7}, \frac{2 F}{7}$
B. $\frac{6 F}{7}, \frac{4 F}{7}$
C. $F, \frac{F}{7}$
D. $\frac{4 F}{7}, \frac{6 F}{7}$

Answer: B

D Watch Video Solution

19. Two small sphere each of mass m connected by a string of length 21 are kept on
a smooth horizontal surface. A vertical force F
is applied at the middle of the string. What is maximum value of F for which the sphere do

not lose contact with the surface?

A. 2 mg
B. $m g$
C. $\frac{3 m g}{2}$
D. 4 mg

- Watch Video Solution

20. A perfectly straight portion of a uniform rope has mass M and length L. At end A of the segment, the tension in the rope is T_{A} and at end B it is $T_{B}\left(T_{B}>T_{A}\right.$. Neglect effect of gravity and no contact force acts on the rope in between points A and B. The tension in the rope at a distance $L / 5$ from end A is.
A. $T_{B}-T_{A}$
B. $\left(T_{A}+T_{B}\right) / 5$
C. $\left(4 T_{A}+T_{B}\right) / 5$
D. $\left(T_{A}-T_{B}\right) / 5$

Answer: C

D Watch Video Solution

21. A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. Force P is applied at one end of rope.

The force which the rope exerts on the block is:
A. $\frac{P}{(M-m)}$
B. $\frac{P}{M(m+M)}$
C. $\frac{P M}{(m+M)}$
D. $\frac{P M}{(M-m)}$

Answer: C

- Watch Video Solution

22. A uniform of rope length L and mass M is placed on a smooth fixed wedge as shown. Both ends of rope are at same horizontal level.

The rope is initially released from rest, then
the magnitude of initial acceleration of rope is.

A. zero
B. $m(\cos \alpha-\cos \beta) g$
C. $m(\tan \alpha-\tan \beta) g$

D. none of these

Answer: A

D Watch Video Solution

23. A wedge of height ' h ' is released from rest with a light particle P placed on it as shown.

The wedge slides down an incline which makes
an angle theta with the horizontal. All the
surface are smooth, P will reach the surface of
the incline in time:

A. $\sqrt{\frac{2 h}{g \sin ^{2} \theta}}$
B. $\sqrt{\frac{2 h}{g \sin \theta \cos \theta}}$
C. $\sqrt{\frac{2 h}{g \tan \theta}}$
D. $\sqrt{\frac{2 h}{g \cos ^{2} \theta}}$

Answer: A

D Watch Video Solution

24. A cylinder rests in a supporting carriage as
shown. The side $A B$ of carriage makes an angle
30° with the horizontal and side $B C$ is vertical.

The carriage lies on a fixed horizontal surface and is being puplled towards left with an horizontal acceleration a. The magnitude of
normal reactions exerted by side $A B$ and $B C$ of
carriage on the cylinder be $N_{A B}$ and $N_{B C}$ resectively. Neglect friction everywhere. Then as the madnnitude of acceleration a of the carriage is increased, pick up the correct statement:

A. $N_{A B}$ increases and $N_{B C}$ decreases.
B. Both $N_{A B}$ and $N_{B C}$ increases..
C. $N_{A B}$ remains constant and $N_{B C}$
increases.
D. $N_{A B}$ increases and $N_{B C}$ remains
contant.

Answer: C

- Watch Video Solution

25. A ball is suspended on a thread from the ceiling of a car. The brakes are applied and the speed of car changes from $5 \mathrm{~m} / \mathrm{sec}$ to $5 / 3$ $\mathrm{m} / \mathrm{sec}$ during the time interval of 3 seconds.

Find the angle that the thread with the ball will deviate from vertical.

$$
\begin{aligned}
& \text { A. } \theta=\tan ^{-1}\left(\frac{1}{9}\right) \\
& \text { B. } \theta=\tan ^{-1}\left(\frac{8}{9}\right) \\
& \text { C. } \theta=\sin ^{-1}\left(\frac{1}{9}\right) \\
& \text { D. } \theta=\cos ^{-1}\left(\frac{1}{9}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

26. A block of mass 2 kg slides down the face of
a smooth 45° wedge of mass 9 kg as shown in
the figure. The wedge is placed on a frictionless horizontal surface. Determine the

A. $2 m / s^{2}$

$$
\text { B. } \frac{11}{\sqrt{2}} m / s^{2}
$$

C. $1 m / s^{2}$
D. none of these

- Watch Video Solution

27. A body of mass m is placed over a smooth inclined plane of inclination theta. Which iis placed over a lift which is moving up with an acceleration a_{0}. Base length of the inclined plane is L. Calculate the velocity of the block with respect to lift at the bottom, if it is allowed to slide down from the top o fthe plane from rest.

$$
\text { A. } \sqrt{2\left(a_{0}+g\right) L \sin \theta}
$$

B. $\sqrt{2\left(a_{0}+g\right) L \cos \theta}$
C. $\sqrt{2\left(a_{0}+g\right) L \tan \theta}$
D. $\sqrt{2\left(a_{0}+g\right) L \cot \theta}$

Answer: C

D Watch Video Solution

28. Two wooden blocks are moving on a smooth horizontal surface such that the mass
m remains stationary with respect too block of mass M as shown in the figure. The
magnitude of force P is:

A. $(M+m) g \tan \beta$
B. $g \tan \beta$
C. $m g \cos \beta$
D. $(M+m) g \cos e s \beta$

Answer: A
29. A block is kept on a frictionless inclined
surface with angle of inclination α. The incline is given an acceleration 'a' to keep the block stationary. Then a is equal to

A. g
B. $g \tan \alpha$
C. $g / \tan \alpha$
D. $g \cos e c \alpha$

Answer: B

D Watch Video Solution

30. A bob is hanging over a pulley inside a car through a string. The second end of the string
is in the hands of a person standing in the car.

The car is moving with constant acceleration a directed horizontally as shown in fig. The other end of the string is pulled with constant acceleration a vertically. The tension in the string is equal to

car

A. $m \sqrt{g^{2}+a^{2}}$
B. $m \sqrt{g^{2}+a^{2}}-m a$

> C. $m \sqrt{g^{2}+a^{2}}+m a$
> D. $m(g+a)$

Answer: C

- Watch Video Solution

31. A large cubical shaped block of mass M rests on a fixed horizontal surface. Two blocks of mass m_{1} and m_{2} are connected by a light inextensible string passing over a light pulley as shown. Neglect friction everywhere. Then
the constant horizontal force of magnitude F
that should be applied to M so that m_{1} and m_{2} do not mov relative to M is:

$$
\begin{aligned}
& \text { A. } F=\frac{m_{2}}{m_{1}}\left(m_{1}+m_{2}+M\right) g \\
& \text { B. } F=\frac{m_{1}}{m_{2}}\left(m_{1}+m_{2}+M\right) g \\
& \text { C. } F=\frac{m_{1}}{m_{2}}\left(m_{1}+M\right) g \\
& \text { D. } F=\frac{m_{2}}{m_{1}}\left(m_{1}+M\right) g
\end{aligned}
$$

Answer: B

- Watch Video Solution

32. A block of mass m is kept on a wedge of mass M. Initially the system is held. At certain time the system is released and the wedge is observed to move with acceleration A on inclined surface as shown. There is no friction anywhere. The acceleration of block (m) with respect to wedge (M) will be.
A. A rightward
B. $A \cos \theta$ rightward
C. $A \cos \theta$ leftward
D. none of these

Answer: B

D Watch Video Solution

33. A block of mass m_{1} lies on a smooth horizontal table and is connected to another freely hanging block of mass m_{2} by a light
inextensible string passing over a smooth
fixed pulley situated at the edge of the table.
Initially the system is at rest with m_{1} a distance d from the pulley. Then the time taken for m_{1} to reach the pulley is.

A. $\frac{m_{2} g}{m_{1}+m_{2}}$
B. $\sqrt{\frac{2 d\left(m_{1}+m_{2}\right)}{m_{2} g}}$
C. $\sqrt{\frac{2 m_{2} d}{\left(m_{1}+m_{2}\right) g}}$
D. None of thess

Answer: B

- Watch Video Solution

Basic Concept Of Static And Kinetic Frictions

1. A rectangular wooden block
$5 \times \mathrm{cm} 10 \mathrm{~cm} \times 10 \mathrm{~cm}$ in size is kept on a
horizontal surface with its face of largeest
area on the surface. A minimum force of 1.5 N
applied parallel to the surface. Sets the block in sliding motion along the surface. If the block is now kept with its face of smaller area
in contant with the surface, the minimum
force applied parallel to the surface, to set the block in motion, is.
A. greater than 1.5 N
B. less than 1.5 N
C. equal 1.5 N

D. may be greater of less than 1.5 N

Answer: C

D Watch Video Solution

2. A body of mass 2 kg is at rest on a horizontal
table. The coefficient of friction between the body and the table is 0.3 . A force of 5 N is applied on the body. The acceleration of the body is.

$$
\text { A. } 0 m s^{-2}
$$

B. $2.5 m s^{-2}$
C. $5 m s^{-2}$
D. $7.5 m s^{-2}$

Answer: A

D Watch Video Solution

3. A body of mass 2 kg at rest on a horizontal
table. The coefficient of friction between the body and the table is 0.3 . A force of 5 N is applied on the body. The force of friction is
A. 5 N
B. 5.88 N
C. 6 N
D. 20 N

Answer: A

D Watch Video Solution

4. A block of mass 3 kg is placed on a rough horizontal surface ($\mu_{s}=0.4$). A force of $8.7 N$
is applied on the block. The force of friction between the block and floor is .
A. $8.7 N$
B. 12 N
C. 10 N
D. zero

Answer: A
(Watch Video Solution
5. A horizontal force F acts on the block of mass m and the block remains stationary, thr value of friction force is.

m

A. $\mu m g$
B. $\mu m g-F$
C. F
D. zero

Answer: C

- Watch Video Solution

6. In previous question, if we pull the block by
the force F making an angle theta and the block remains stationary, the value of friction force is.
A. $\mu m g$
B. $F \cos \theta$
C. $\frac{\mu m g}{\sin \theta+\mu \cos \theta}$
D. $\frac{\mu m g}{\sqrt{1+\mu^{2}}}$

Answer: B

D Watch Video Solution

7. In $Q .120$, the minimum force F required to pull it. $\left(\mu=\frac{1}{2}\right)$ is:
A. $\frac{m g}{2}$
B. $\frac{m g}{2} \cos \theta$
C. $\frac{m g}{\sqrt{5}}$
D. None of these

Answer: C

D Watch Video Solution

8. A block of mass m is stationary on a horizontal surface. It is connected with a string which has no tension. The coefficient of
friction between the block and surface is m.

Then, the frictional force between the block and surface is:

A. zero
B. $\mu m g$
C. $\frac{\mu m g}{\mu}$
D. None of these
9. In previous question, if a horizontal force $F=\mu m g / 2$ act on the block and the block remains stationary, then tension in string is.

A. zero
B. $\frac{3 \mu m g}{2}$
C. $\frac{\mu m g}{2}$
D. none of thses

Answer: A

D Watch Video Solution

10. A body of mass 2 kg is placed on a
horizontal surface having kinetic friction 0.4
and static friction 0.5 . If the force applied on
the body is $2.5 N$, then the frictional force acting on the body will be
A. 8 N

B. 10 N

C. 20 N
D. 2.5 N

Answer: D

D Watch Video Solution

11. In previous question, if the force applied on the body is $20 N$, the acceleration of the body will be.
A. $10 m s^{-2}$
B. $6 m s^{-2}$
C. $5 m s^{-2}$
D. $8.75 m s^{-2}$

Answer: B

D Watch Video Solution

12. A rectanglar body is held at rest by pressing it againts a vertical wall for which
$\mu<1$. Which of the following is generally ture?
A. It will be easier to hold the body If the
surface in contant are smooth.
B. Pressing force reuired is smaller than
weight mg of the body
C. Pressing force reuired is geater than
weight mg of the body
D. The required pressing force is
independent of coefficienet of friction
between surface in contact.

Answer: C

D Watch Video Solution

13. A block of weight W is held against a
vertical wall by applying a horizontal force of
$75 N$. The surface 3 of the wall is rough. Now
(conside $\mu<1$)
A. $W<75 N$
B. $W=75 N$
C. $W>75 N$
D. None of these

Answer: A

- Watch Video Solution

14. A block pressed against the vertical wall is
in equilibrium. The minimum coefficient of

friction is:

A. 0.4
B. 0.2
C. 0.5

D. none of these

Answer: C

D Watch Video Solution

15. In previous question, if $\mu=0.3$ the acceleration of the block will be:
A. zero
B. $\frac{g}{10} \uparrow$
C. $\frac{g}{4} \downarrow$
D. $\frac{g}{5} \downarrow$

Answer: D

D Watch Video Solution

16. A force of 100 N is applied on a block of mass 3 kg as shown in the figure. The coefficient of friction between the surface and
the block is $\mu=\frac{1}{\sqrt{3}}$. The friction force acting
on the bock is.

A. 15 N downward
B. 25 N upward
C. 20 N downword
D. 30 N upward
17. In previous problem the acceleration o fbolck is.
A. zero
B. $10 \mathrm{~m} / \mathrm{s}^{2}$ upward
C. $10 \mathrm{~m} / \mathrm{s}^{2}$ downward
D. none of these

Answer: A
18. Figure shows two block A and B pushed against the wall with the force F. The wall is smooth but the surfaces in contact of A and
B are rough. Which of the following is true for the system of blocks to be at rest againts wall?
A. F should be equal to weight of A and B
B. F should be less than weight of A and

B
C. F should be more than weight of A and

B
D. System connot be in rquilibrium (at
rest).

Answer: D

19. A block of mass 1 kg is at rest on a horizontal table. The coefficient of static friction between the block and the table is 0.5
. The magnitude of the force acting upward at an angle of 60° from the horizontal that will just start the block moving is.
A. 5 N

$$
\begin{aligned}
& \text { B. } \frac{20}{2+\sqrt{3}} N \\
& \text { C. } \frac{20}{2-\sqrt{3}} N \\
& \text { D. } 10 \mathrm{~N}
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. A box mass $m \mathrm{~kg}$ is placed on the rear side of an open truck acceleration at $4 m s^{-2}$. The coefficient of friction between the box ant the surface below it is 0.4 . The net acceleration of
the box with respect to the truck is zero. The value of m is.
A. 4 kg
B. 8 kg
C. 9.78 kg
D. It could be any value

Answer: D

D Watch Video Solution

21. A body of mass 8 kg lies on a rough
horizontal table. It is observed that a certain
horizontal force gives the body an
acceleration of the body is $16 m s^{-2}$. The coefficient of friction is.
A. 0.2
B. 0.3
C. 0.4
D. 0.8

Answer: D

D Watch Video Solution
22. A body of mass 40 kg resting on a rough
horizontal surface is subjected to a force P which is just enough to start the motion of
the body. If $\mu_{s}=0.5 \mu_{k}=0.4, g=10 \mathrm{~ms}^{-2}$
an dthe force P is continuously applied on the body, then the accceleration of the body is.
A. zero
B. $1 m s^{-2}$
C. $2 m s^{-2}$
D. $2.4 m s^{-2}$

Answer: B

- Watch Video Solution

23. A 3kg block is pulled by a force which is inclined at 37° to the horizontal table. The friction coefficient between the table and block is $1 / 3$. For what minimum value of this force, will the block start sliding?

A. 5 N

B. 10 N

C. 20 N
D. 25 N

Answer: B

D Watch Video Solution

24. A block of mass m is placed in equilibrium
on a moving plank. The maximum horizontal
acceleration of the plank for $\mu=0.2$ is:
A. $2 m / s^{2}$
B. $3 m / s^{2}$
C. dependent on the mass m
D. none of these

Answer: A

D Watch Video Solution
25. A block of mass $m=2 k g$ is placed in equilibrium on a moving plank accelerating with $a=4 m / s^{2}$. If coefficient of friction
between plank and block $\mu=0.2$. The friction
force acting on the block is:
A. 8 N
B. 6 N
C. zero
D. 4 N

Answer: D

D Watch Video Solution
26. A block of mass $m=2 k g$ is placed in
equilibrium on a moving plank accelerating
with $a=1 m / s^{2}$. If coefficient of friction
between plank and block $\mu=0.2$. The friction
force acting on theblock is:
A. 2 N
B. 4 N
C. 3 N
D. None of these

- Watch Video Solution

27. A block of mass 70 kg is kept on a rough
horizontal surface $(\mu=0.4)$. A person is
trying to pull the block by applying a horizontal force, but the block is not moving.

The net contact force exerted by the surface on the block is F, then:
A. $F=700 N$
B. $F=280 N$
C. $700 N \leq F \leq 750 N$

D. $F=754 N$

Answer: C

D Watch Video Solution

28. A block of mass 2 kg rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficient of static friction between the block and the plane is 0.7 . The frictional force on the block is
B. $7 \sqrt{3} N$
C. $10 \times \sqrt{3} N$
D. 7 N

Answer: A

D Watch Video Solution

29. For the arrangment shown in the fig. the tension in the string is [Given:
$\left.\tan ^{-1}(0.8)=39^{\circ}\right]$.

A. 6 N
B. $6.4 N$
C. $0.4 N$
D. zero

Answer: D

D Watch Video Solution

30. A block of mass 4 kg rests on an an inclined
plane. The inclination of the plane is gradually increased. It is found that when the inclination is 3 in $5\left(\sin \theta=\frac{3}{5}\right)$ the block just begins to slide down the plane. The coefficient of friction between the block and the plane is.
A. 0.4
B. 0.6
C. 0.8
D. 0.75

Answer: D

- Watch Video Solution

31. A block of mass m is placed on a rough inclined plane. When the inclination of the plane is θ, the block just beging to slide down the plane under its own weight. The minimum
force applied parallel to the plane, to move the block up the plane, is.
A. $m g \sin \theta$
B. $2 m g \sin \theta$
C. $m g \cos \theta$
D. $m g \tan \theta$

Answer: B
(Watch Video Solution
32. In the arrangement shown in the figure $\left[\sin 37^{\circ}=3 / 5\right]$.

A. direction of force of friction is up the
plane
B. the mangnitude of force of friction is

zero

C. the tension in the string is $20 N$
D. magnitude of force of friction is 56 N

Answer: A

D Watch Video Solution

33. A block of mass $m=4 k g$ is placed oner a rough inclined plane as shown in figure. The coefficient of friction between the block and
the plane is $\mu=0.5$. A force $F=10 N$ is applied on the block at an angle of 30°.

A. static in nature in the direction up the plane and have the value 30.2 N
B. static in nature in the direction down
the plane and have the value $30.2 N$
C. kinetic in nature in the direction up the plane and have the value 30.2 N

D. None of these

Answer: C

D Watch Video Solution

34. A block of mass $m \mathrm{~m}$ remains stationary on
a fixed inclined plane of inclination θ. If $\mu=$ coefficient of static friction the reaction of ground on the block is:
A. $\mu g \cos \theta$
B. $m g \cos \theta$
C. $m g \sin \theta$
D. $m g \downarrow$

Answer: D

D Watch Video Solution

35. Find the maximum value of $(\mathrm{m} / / \mathrm{m})$ in the situation shown in figure so that the system remains at rest. Friction coefficient of both the
contacts is μ, string is massless an pulley is
friction less.

$\cos \theta$
A.
$\sin \theta-\mu \cos \theta$
B. $\frac{\sin \theta}{\sin \theta-\mu \cos \theta}$
C. $\frac{\mu \cos \theta}{\sin \theta-\mu \cos \theta}$
D. $\frac{\mu}{\sin \theta-\mu \cos \theta}$

Answer: D
36. A body of mass 10 kg lies on a rough inclined plane of inclination $\theta=\sin ^{-1}\left(\frac{3}{5}\right)$ with the horizontal. When the force of $30 N$ is
applied on the block parallel to and upward the plane, the total force by the plane on the block is nearly along

A. $O A$
B. $O B$
C. $O C$
D. $O D$

Answer: A

D Watch Video Solution
37. A small mass slide down an inclined plane of inclination theta with the horizontal. The coefficent of friction is $\mu=\mu_{0} x$ where x is
the distance through which the mass slide down and μ_{0}, a contant. Then the speed is maxmum after the mass covers a distance of.

$$
\begin{aligned}
& \text { A. } \frac{\cos \theta}{\mu_{0}} \\
& \text { B. } \frac{\sin \theta}{\mu_{0}} \\
& \text { C. } \frac{\tan \theta}{\mu_{0}} \\
& \text { D. } \frac{2 \tan \theta}{\mu_{0}}
\end{aligned}
$$

Answer: C

D Watch Video Solution
38. A block of mass m lying on a horizontal
plane, is acted upon by a horizontal force p
and another force Q inclined at an angle θ to
the vertical .The block will remain in
equilibrium if the coefficient of friction between it and the surface is (assume $p>Q$)

A. $(P+Q \sin \theta) /(m g+Q \cos \theta)$
B. $(P \cos \theta+Q) /(m g-Q \sin \theta)$
C. $(P+Q \cos \theta) /(m g+Q \sin \theta)$
D. $(P \sin \theta-Q)-(m g-Q \cos \theta)$

Answer: A

D Watch Video Solution

39. The minimum acceleration that must be impprted to the cart in the figure so that the block A will not fall (given μ is the coefficient if friction between the surface of block and
cart) is given by:

A. μg
B. g / μ
C. $\frac{g}{\sqrt{\mu}}$
D. $\frac{\mu}{g}$

Answer: B
40. A particle is projected along the line of greatest slope up a rough plane inclined at an angle of 45° with the horizontal. If the coefficient of friction is $1 / 2$. Their retardation is:

$$
\begin{aligned}
& \text { A. } \frac{g}{2 \sqrt{2}} \\
& \text { B. } \frac{g}{\sqrt{2}} \\
& \text { C. } \frac{g}{\sqrt{2}}\left(1-\frac{1}{2}\right) \\
& \text { D. } \frac{g}{\sqrt{2}}\left(1+\frac{1}{2}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

41. A block of mass 15 kg is resting on a rough
inclined plane as shown in figure, The block is
tied by a horizontal string which has a tension
$50 N$ The coefficient of friction of contact is

A. $1 / 2$
B. $2 / 3$
C. $3 / 4$

D. $1 / 4$

Answer: A

D Watch Video Solution

42. A horizontal force just sufficient to move a
body of mass 4 kg lying on a rought horizontal
surface is applied on it .The coefficient of static and kinetic friction the body and the surface are 0.8 and 0.6 respectively If the force contines to act even after the block has
started moving the acceleration of the block in
$m s^{-2}$ is $\left(g=10 m s^{-2}\right)$
A. $1 / 4$
B. $1 / 2$
C. 2
D. 4

Answer: C
(Watch Video Solution
43. Blocks A and B in the Fig are connected by
a bar of negligible weight .Mass of each block is 170 kg and $\mu_{A}=0.2$ and $\mu_{B}=0.4$ where
μ_{A} and μ_{B} are the coefficient of limiting friction between bloock and plane calculate the force developed in the $\operatorname{bar}\left(g=10 \mathrm{~ms}^{-2}\right)$

A. $150 N$
B. 75 N
C. 200 N
D. 250 N

Answer: A

D Watch Video Solution

44. A 40kg slab rests on a frictionless floor as
shown in the figure. A 10kg block rests on the top of the slab. The static coefficient of friction
between the block and slab is 0.60 while the
kinetic friction is 0.04 . The 10 kg block is acted upon by a horizontal force 100 N . if $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the resulting acceleration of the slab will be.

A. $1 m / s^{2}$
B. $1.5 \mathrm{~m} / \mathrm{s}^{2}$
C. $2 m / s^{2}$
D. $6 m / s^{2}$

Answer: A

D Watch Video Solution

45. A block A with mass 100 kg is resting on another block B of mass 200kg. As shown in
figure a horizontal rope tied to a wall hold it.

The coefficient of friction between A and B is
0.2 while coefficient of friction between B and
the ground is 0.3 . the minimum required
force F to start moving B will be.

A. 900 N

B. 100 N

C. $1100 N$
D. 1200 N

Answer: C

Watch Video Solution

Dynamics Of Circular Motion

1. An unbanked curve has a radius of 60 m . The
maximum speed at which a car can make a
turn if the coefficient of static friction is 0.75 ,
is
A. $2.1 m / s$
B. $14 m / s$
C. $21 m / s$

D. $7 m / s$

Answer: C

D Watch Video Solution

2. A person wants to drive on the vertical suirface of a large cylindrical wooden well commonly known as deathwell in a circus. The radius of the well 2 meter, and the coefficient of friction between the tyers of the motorcycle and the wall of the well is 0.2 the minimum
speed the motorcyclist must have in order to prevent slipping should be
A. $10 m / s$
B. $15 m / s$
C. $20 m / s$
D. $25 m / s$

Answer: A
(Watch Video Solution
3. Water in a bucket is whirled in a vertical circle with a string attached to it. The water does not fill down even when the bucket is inverted at the top of its path. We conclude that in this position
A. $m g=\frac{m v^{2}}{r}$
B. mg is greater than $=\frac{m v^{2}}{r}$
C. mg is not greater than $=\frac{m v^{2}}{r}$
D. none of these

Answer: C

- Watch Video Solution

4. A stone of mass m tied to a string of length

I is rotated in a circle with the other end of the string as the centre. The speed of the stone is v. If the string breaks, the stone will move
A. towards the centre
B. away from the centre
C. along a tangent
D. will stop

Answer: C

D Watch Video Solution

5. A motorcycle is going on an overbridge of radius R. The driver maintains a constant speed. As the motorcycle is ascending on the overbridge, the normal force on it
A. Increases
B. Decreases
C. Remains the same

D. fluctuates

Answer: A

- Watch Video Solution

6. Three identical cars A, B and C are moving at
the same speed on three bridges. The car A
goes on a plane bridge, B on a bridge convex upward and C goes on a bridge concave upward. Let F_{A}, F_{B} and F_{C} be the normal
forces exerted by the cars on the bridges when they are at the middle of bridges
A. F_{A} is maximum of the three force.
B. F_{B} is maximum of the three force.
C. F_{C} is maximum of the three force.
D. $F_{A}=F_{B}=F_{C}$

Answer: C

D Watch Video Solution

7. A train A runs from east to west and another train B of the same maas runs from west to east at the same speed along the equator. A presses the track with a force F_{1} and B presses the track with a force F.
A. $F_{1}>F_{2}$
B. $F_{1}<F_{2}$
C. $F_{1}=F_{2}$
D. The information is insufficient to find the relation between F_{1} and F_{2}

D Watch Video Solution

8. A car turns a corner on a slippery road at a
canstant speed of $12 m / s$. If the coOefficient
is 0.4 , the minimum radius of the arc in metres in which the car truns is.
A. 72
B. 36
C. 18

D. 9

Answer: B

D Watch Video Solution

9. A small objective placed on a rotating horizontal trun table just slip when it is placed at a distance 4 cm from the axis of rotation. If the angular velocity of the trun-table doubled, the objective slip when its distance from the axis of ratation is.
A. 1 cm
B. 2 cm
C. 4 cm
D. 8 cm

Answer: A

D Watch Video Solution
10. An automobile of mass m is crossing over a convex upward over bridge with a speed v. If
the radius of the bridge is r the thrusrt on the bridge at the highest point will be.
A. $m g+\frac{m v^{2}}{r}$
B. $m g-\frac{m v^{2}}{r}$
C. $m g$
D. $\frac{m v^{2}}{r}$

Answer: B

- Watch Video Solution

11. A curved road of 50 m in radius is banked to
correct angle for a given speed. If the speed is
to be double keeping the same banking angle,
the radius of curvature of the road should be
changed to.
A. $200 m$
B. 100 m
C. 50 m
D. none of these

Answer: A
12. A stone of mass m is tied to a strin and is
moved in a vertical circle of radius r making n
revolution per minute. The total tension in the string when the stone is its lowest point is.
A. $m g$
B. $m\left(g+\pi n r^{2}\right.$
C. $m(g+n r)$
D. $m\left(g+\frac{\pi^{2} n^{2} r}{900}\right)$

Answer: D

D Watch Video Solution

13. A stone tied to a string is rotated with a
uniform speed in a vertical plane. If mass of
the stone is m, the length of the string is r and linear speed of the stone is v when the stone is at its lowest point, then the tension in
the string will be
($\mathrm{g}=$ acceleration due to gravity)
A. $m g$
B. $m v^{2} / r$
C. $\left(m v^{2} / r\right)-m g$
D. $\left(m v^{2} / r\right)+m g$

Answer: D

- Watch Video Solution

14. Three identical particles are joined together by a thread as shown in figure All the partical are moving in a horizontal plane If the
vertical of the outermost particle is v_{0} then
the ratio of tension in the three sections of the string $\left(T_{1}: T_{2}: T_{3}=?\right)$ is

A. $3: 5: 7$
B. $3: 4: 5$
C. $7: 11: 6$
D. 3:5:6

Answer: D

- Watch Video Solution

15. A block of mass M is situation on a smooth
horizontal frictionless table. A thread tied to
the block passes through a hole in the table and carries a mass m at its other end if the
length of the thread above the table is I, what should be the value of m so that it may remain suspended at a constant height and
the block M moves in a circular p -ath with an
angular velocity ω on the table?

A. $\frac{M l \omega^{2}}{g}$
B. $\frac{M l \omega^{2}}{3 g}$
C. $\frac{M l \omega^{2}}{5 g}$
D. $\frac{2 M l \omega^{2}}{g}$

Answer: A

Watch Video Solution

16. A string of length $l=1 m$ is fixed at one end carries a mass of 100 gm at other end. The string makes $\sqrt{5} /(\pi)$ revolutions per second about a verticle axis passing through its second end. What is the angle of inclination of the string with the vertical?
A. 30°
B. 45°
C. 60°

Answer: C

D Watch Video Solution

17. A stone of mass 1 kg tied to a light inextensible sstring of length $L=10 \mathrm{~m}$ is whirling in a circular path of radius L in vertical plane. If the ratio of the maximum tension in the string to the minimmum tension in the string is 4 and if g is taken to be
$10 \mathrm{~ms}^{-2}$, the speed of the stone at the highest point of the circle is.
A. $10 m s^{-1}$
B. $5 \sqrt{2} m s^{-1}$
C. $10 \sqrt{3}$
D. None of these

Answer: C

- Watch Video Solution

18. A 8 kg stone tied at the end of a string 1 metre long is whirled in a vertical circle. At the instant when the string makes an angle theta with the vertical, the speed of the stone is
$4 m s^{-1}$ and the tension in the thread is 104 N .

Then theta is.
A. 0°
B. 30°
C. 60°
D. None of these

Answer: C

D Watch Video Solution

19. a truck is carry a box of mass $m=50 \mathrm{~kg}$ on
its flat horizontal rough surface with
coefficient of friction $\mu=0.3$. It is crossing a circular track of radius 27 m . What is the maximum speed of the truck so thet the box does not slide from the truck while moving on
the circular path?

A. $18 k m / h r$
B. $36 \mathrm{~km} / \mathrm{hr}$
C. $32.4 k m / h r$
D. None of these

20. Indicate the direction of frictional force on

a car which is moving along the curved path
with non zero tangential acceleration, in anticlock direction:

D. (d)

Answer: C

- Watch Video Solution

21. A partical of mass m is attached to a massless string of length l and is oscillating in
a vrtical plane with the other end of the string
fixed to a rigid support. The tension in the string at a certain instant is $T=k m g$.
A. k can never be geaater than 1
B. k can never be less than 1
C. k can never be equal than 1
D. k can never be geaater than 3

Answer: D

D Watch Video Solution
22. A pendulum of length $l=1 m$ is released
from $\theta_{0}=60^{\circ}$. The rate of change of speed of the bob at $\theta=30^{\circ}$ is.

A. $5 \sqrt{3} m / s^{2}$
B. $5 m / s^{2}$
C. $10 m / s^{2}$
D. $2.5 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

- Watch Video Solution

23. Two partical tied to different strings are whirled in a horizontal circle as shown in
figure. The ratio of lengths of the string so
that they complete their circular path with equal time priod is:

D. None of these

Answer: B
24. A smooth wire is bent into a vertical circle of radius a. A bead P can slide smoothly on the wire. The circle is rotated about vertical diameter $A B$ as axis with a speed omega as shown in figure. The bead P is at rest w.r.t. the circular ring in the position shown. then ω^{2} is
equal to:

A. $\frac{2 g}{a}$
B. $\frac{2 g}{a \sqrt{3}}$
C. $\frac{g \sqrt{3}}{a}$
D. $\frac{2 a}{g \sqrt{3}}$

Answer: B

- Watch Video Solution

25. A particle is attached to an end of a rigid
rod. The other end of the rod is hunged and
the rod rotates always remaining horizontal.

Its angular speed is increasing at contant rate.

The mass of the particle is m. The force exerted by the rod on the particle is \vec{F}, then:
A. $F \geq m g$
B. F is constant
C. The angle between \vec{F} and horizontal
plane decreases.
D. The angle between \vec{F} and the rod decreases.

Answer: C

26. Three masses of small size are attached by
light inextensible strings of various lengths to
a point O on the ceiling. All of the masses
swing round in horizontal circles of various
radii with the same angular frequency ω (one
such circle is drawn in the shown figure.) Then
pick up the correct statement.

A. The vertical depth of each mass below
point of suspension from ceilling is
different.
B. The radius of horizontal circular path of each mass is same.
C. All masses revolve in the same horizontal plane.
D. All the particales must have same mass.

Answer: C

D Watch Video Solution

27. A bus is moving with a constant acceleration $a=3 g / 4$ towards right. In the bus, a ball is tied with a rope and is rotated in vertical circle as shown. The tension in the rope will be minimum, when the rope makes
an angle $\theta=_{\text {_ }}$ __ __

A. 53°
B. 37°
C. $180-53^{\circ}$
D. $180+37^{\circ}$

Answer: A

D Watch Video Solution

28. A small sized mass m is attached by a massless string (of length L) to the top of
fixed frictionless solid cone whose axis is
vertical. The half angle at the vertex of cone is
theta. If the mass m moves around in a horizontal circle at speed v, what is the maximum value of v for which mass stay in contact with the comes? (g is acceleration due to gravity.)

A. $\sqrt{g L \cos \theta}$
B. $\sqrt{g L \sin \theta}$
C. $\sqrt{g L \sin \theta \tan \theta}$
D. $\sqrt{g l \tan \theta}$

Answer: C

D Watch Video Solution

29. A small sized mass m is attached by a massless string (of length L) to the top of
fixed frictionless solid cone whose axis is
vertical. The half angle at the vertex of cone is
theta. If the mass m moves around in a horizontal circle at speed v, what is the maximum value of v for which mass stay in contact with the comes? (g is acceleration due to gravity.)
A. the car cannot make a turn without skidding
B. if the car runs at a speed less than
$40 k m / h r$, it will slip up the slope
C. If the car runs at the correct speed of
$40 \mathrm{~km} / \mathrm{hr}$, the force by the road on car is equal to $m v^{2} / r$
D. if the car runs at the correct speed of
$40 \mathrm{~km} / \mathrm{hr}$, the force by the road on the
car is greater than mg as well as greater
than $m v^{2} / r$

Answer: D

D Watch Video Solution

30. A particle describes a horizontal circle in a
conical funnel whose inner surface is smooth
with speed of $0.5 \mathrm{~m} / \mathrm{s}$. What is the height of
the plane of circle from vertex the funnel?
A. 0.25 cm
B. 2 cm
C. 4 cm
D. 2.5 cm

Answer: D
31. A main revolves a stone of mass m tied to the end of a string in a circle of radius R The net force at the lowest and beight point of the circle directed vertical downward are

Here T_{1}, T_{2} and $\left(v_{1}, v_{2}\right)$ denote the tension in the string (and the speed of the stone) at the lowest and highest points, respectively.

$$
\text { A. } m g-T_{1} \text { and } m g+T_{2}
$$

$$
\text { B. } m g+T_{1} \text { and } m g-T_{2}
$$

$$
\begin{aligned}
& \text { C. } m g+T_{1}-\left(\frac{m v_{1}^{2}}{R}\right) \\
& m g-T_{2}+\left(\frac{m v_{2}^{2}}{R}\right) \\
& \text { D. } m g-T_{1}-\left(\frac{m v_{1}^{2}}{R}\right) \\
& m g+T_{2}+\left(\frac{m v_{2}^{2}}{R}\right)
\end{aligned}
$$

Answer: A

- Watch Video Solution

Problems Based On Mixed Concepts

1. In the arrangement shown in figure the ends
P and Q of an inextensible string move downwards with uniform speed u. Pulleys A and B are fixed. The mass M moves upwards
with a speed

A. $2 U \cos \theta$
B. $U \cos \theta$
C. $\frac{2 U}{\cos \theta}$
D. $\frac{U}{\cos \theta}$

Answer: D

D Watch Video Solution

2. Three block 1, 2 and 3 are arranged as shown

in the figure. The velocities of the blockes v_{1}, v_{2} and v_{3} are shown in the figure. What is the
relationship between v_{1}, v_{2} and v_{3} ?

A. $2 v_{1}+v_{2}=v_{3}$
B. $v_{1}+v_{2}=v_{3}$
C. $2 v_{1}+2 v_{2}=v_{3}$
D. None of these

- Watch Video Solution

3. Find velocity of ring $B\left(V_{B}\right)$ at the instant

 shown. The string is taut and inextensible:
C. $\frac{\sqrt{1}}{4} m / s$
D. $1 m / s$

Answer: D

- Watch Video Solution

4. The ratio of acceleration of pulley to the acceleration of the block is (string is

A. 0.5
B. 2
C. 1
D. None of these

Answer: A
5. In the arrangement shown, the pulleys and the string are ideal. The acceleration of block
B is.

A. $g / 5$
B. $g / 2$
C. $2 g / 5$
D. $2 g / 3$

Answer: C

D Watch Video Solution

6. In each of the three arrangements, the block of mass m_{1} is being pulled left with constant
velocity. There is no friction anywhere. The
string are light and anextensible and pulleys are massless. The ratio of the speed of the block of mass m_{2} in the three cases respectively is:

A. 2:1:4
B. 2:4:1
C. $4: 2: 1$
D. Connot be calculated

Answer: A

D Watch Video Solution

7. If the blocks are moving as shown in the
figure the relation between a_{1}, a_{2} and a_{3} will
be.

A. $2 a_{1}+2 a_{2}+a_{3}=0$
B. $2 a_{1}-2 a_{2}+a_{3}=0$
C. $2 a_{1}-2 a_{2}+2 a_{3}=0$

$$
\text { D. } 2 a_{2}-2 a_{1}+a_{3}=0
$$

Answer: D

D Watch Video Solution

8. In the figure acceleration of A is $1 m / s^{2}$
upward, acceleration of B is $7 \mathrm{~m} / \mathrm{s}^{2}$ upward acceleration of C is $2 m / s^{2}$ upward. The acceleration of D will be.

A. $7 m / s^{2}$ downwards
B. $2 m / s^{2}$ downwards
C. $10 \mathrm{~m} / \mathrm{s}^{2}$ downwards
D. $8 m / s^{2}$ downwards

Answer: C
9. For the pulley system shown in fig. each of
the cables at A and B is given a velocity of $2 m s^{-1}$ in the direction of the arrow. Determine the upward velocity v of the load m .

A. $1.5 m / s$
B. $3 m / s$
C. $6 m / s$
D. None of these

Answer: A

- Watch Video Solution

10. Consider the situation shown in figure. All
the surface are smooth. The tension in the
string connected to $2 m$ is.

A. $\frac{m g}{3}$
B. $\frac{4 m g}{3}$
C. $\frac{2 m g}{3}$
D. $m g$
11. In the figure shown neglecting friction and mass of pulley, what is the acceleration of mass B ?

A. $\frac{g}{3}$
B. $\frac{5 g}{2}$
C. $\frac{2 g}{2}$
D. $\frac{2 g}{5}$

Answer: D

Watch Video Solution

12. Two block of masses m_{1} and m_{2} are connected as shown in the figure. The acceleration of the block m_{2} is:

$$
\begin{aligned}
& \text { A. } \frac{m_{2} g}{m_{1}+m_{2}} \\
& \text { B. } \frac{m_{1} g}{m_{1}+m_{2}} \\
& \text { C. } \frac{4 m_{2} g-m_{1} g}{m_{1}+m_{2}} \\
& \text { D. } \frac{m_{2} g}{m_{1}+4 m_{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

13. The acceleration of the block (A) and (B) respectively in situation shown in the figure is:
(pulleys and string are massless).

A. $\frac{2 g}{7}$ downward, $\frac{g}{7}$ upward
B. $\frac{2 g}{3}$ downward, $\frac{g}{3}$ upward
C. $\frac{10}{13} g$ downward, $\frac{5 g}{13}$ upward
D. none of these

Answer: A

D Watch Video Solution

14. In the system shown in figure $m_{B}=4 k g$, and $m_{A}=2 k g$. The pulleys are massless and friction is absent everywhere. The acceleration
of block A is.

A. $10 / 3 m / s^{2}$
B. $20 / 3 m / s^{2}$
C. $2 m / s^{2}$
D. $4 m / s^{2}$

Answer: A

- Watch Video Solution

15. The system starts from rest and A attains a velocity of $5 m / s$ after it has moved $5 m$ toward right. Assuming the arrangement to be frictionless everywhere and pulley and string to be light, the value of the constant force F applied on A is:

A. 50 N
B. 75 N
C. 100 N
D. $96 N$

Answer: B

D Watch Video Solution

16. In the following arrangement, the system is initially at rest. The 5 - kg block is now released.

Assuming the pulley and string to be massless
and smooth, the acceleration of block C will be

A. zero
B. $2.5 m / s^{2}$
C. $\frac{10}{7} m / s^{2}$
D. $\frac{5}{7} m / s^{2}$

Answer: D

D Watch Video Solution

17. The tension in the spring is.

A. Zero
B. 2.5 N
C. 5 N
D. 10 N

Answer: C

D Watch Video Solution

18. A spring balance and a physical balance are
kept in a lift. In these balance equal masses
are placed. If now the lift starts moving upward with constant acceleration, then.
A. The reading of spring balance will increases increses and the equilibrium position of the physical balance will disturb
B. The reading of spring balance will
remain in unchanged and physical balance will remain in equilibrium
C. The reading of spring balance will
decrease and physical balance will
D. The reading of spring balance will increases and the physical balance will ramain in equilibrium

Answer: D

D Watch Video Solution

19. As shown in the figure, two equal masses each of $2 k g$ are suspended from a spring balance. The reading of the spring balance will
be.

A. Zero
B. 2 kg
C. 4 kg
D. Between zero and $2 k g$

Answer: B
20. A block of mass 10 kg is suspended
through two light spring balances as shown in
figure

A. Both the scales will read 10 kg
B. Both the scales will read 5 kg
C. The upper scale will read 10 kg and the
lower zero
D. The reading may be anything but their
sum will be 10 kg

Answer: A
(D) Watch Video Solution
21. Mass m shown in the figure is in equilibrium. If it is displaced further by x and released find its accleleration just after it is released. Take pulleys to be light and smooth
and string light.

A. $\frac{4 k x}{5 m}$
B. $\frac{2 k x}{5 m}$
C. $\frac{4 k x}{m}$
D. none of these

Answer: C

D Watch Video Solution

22. The masses of 10 kig and 20 kg respectively are connected by a massless spring as shown
in figure. A force of 200 N acts on the 20 kg
mass. At the instant shown, the 10 kg mass has
acceleration $12 \mathrm{~m} / \mathrm{sec}^{2}$. What is the acceleration of 20 kg mass?

A. $12 m / \sec ^{2}$
B. $4 m / \mathrm{sec}^{2}$
C. $10 \mathrm{~m} / \mathrm{sec}^{2}$
D. Zero

- Watch Video Solution

23. Initially the spring is un deformed. Now the force F is applied to B as shown in the figure.

When the displacement of B w.r.t. A is x towards right in some time then relative acceleration of B w.r.t. A at that moment is:

A. $\frac{F}{2 m}$
B. $\frac{F-k x}{m}$
C. $\frac{F-2 k x}{m}$
D. none of these

Answer: C

- Watch Video Solution

24. The string between blocks of mass m and
$2 m$ is massless and inextensible. The system is
suspended by a massless spring as shown. If
the string is cut find the magnitudes of
accelerations of mass 2 m and m (immediately after cutting)

A. $g, \frac{g}{2}$
B. $\frac{g}{2}, g$
C. g, g
D. $\frac{g}{2}, \frac{g}{2}$

Answer: B

D Watch Video Solution

25. Two block of mass $2 k g$ are connected by a massless ideal spring of spring constant
$K=10 \mathrm{~N} / \mathrm{m}$. The upper block is suspended
from roof by a light string A. The system
shown is in equilibrium. The string A is now
cut, the acceleration of upper block just after
the string A is cut will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right.$.

2 kg

A. $0 m / s^{2}$
B. $10 m / s^{2}$
C. $15 m / s^{2}$
D. $20 \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

- Watch Video Solution

26. A block A of mass m is attached at one end of a light spring and the other end of the spring is connected to another block B of mass $2 m$ through a light string as shown in the figure. A is held and B is in static equilibrium. Now A is released. The acceleration of A just after that instant is a. In the next case, B is held and A is in static equilibrium. Now when B is released, its acceleration immediately after the release is b.

The value of a / b is (pulley, string and the
spring are massless).

D
A. 0
B. undefined
C. 2
D. $\frac{1}{2}$

Answer: C

- Watch Video Solution

27. Mass m shown in the figure is in equilibrium. If it is displaced further by x and released find its accleleration just after it is released. Take pulleys to be light and smooth
and string light.

A. $\frac{4 k x}{5 m}$
B. $\frac{2 k x}{5 m}$
C. $\frac{4 k x}{m}$
D. none of these

Answer: C

D Watch Video Solution

28. Same spring is attached with $2 k g, 3 k g$ and

1 kg blocks in three different cases as shown in
figure. If x_{1}, x_{2} and x_{3} be the extensions in
the spring in these cases then (Assume all the block s to move with uniform acceleration).

A. $x_{1}=0, x_{3}>x_{2}$
B. $x_{2}>x_{1}>x_{3}$
C. $x_{3}>x_{1}>x_{2}$
D. $x_{1}>x_{2}>x_{3}$

Answer: B

- Watch Video Solution

29. A bead of mass m is attached to one end of
a spring of natural length R and spring
constant $K=\frac{(\sqrt{3}+1) m g}{R}$. The other end of the spring is fixed at a point A on a smooth
vertical ring of radius R as shown in fig. The normal reaction at B just after it is released to
move is

A. $m g / 2$
B. $\sqrt{3} \mathrm{mg}$
C. $3 \sqrt{3} m g$
D. $\frac{3 \sqrt{3} m g}{2}$

Answer: D

D Watch Video Solution

30. The masses of 10 kig and 20 kg respectively are connected by a massless spring as shown in figure. A force of 200 N acts on the 20 kg mass. At the instant shown, the 10 kg mass has acceleration $12 m / \sec ^{2}$. What is the
acceleration of 20 kg mass?

A. 0
B. $10 m / s^{2}$
C. $4 m / s^{2}$
D. $12 m / s^{2}$

Answer: C

31. A horizontal force F of variable magnitude and constant direction acts on a body of mass m which is initially at rest at a point O on a smooth horizontal surface. The magnitude of
F is given by $F=\beta+\alpha t$ where t is the time for which the force has been acting on the distance of the body from O at time t, then s is equal to.
A. $\frac{1}{2 m}\left(\beta t+\alpha t^{2}\right) t$
B. $\frac{1}{2 m}\left(\beta+\alpha t^{2}\right)$
C. $\frac{(\beta+\alpha t) t^{2}}{2 m}$
D. $\frac{t^{2}}{6 m}(3 \beta+\alpha t)$

Answer: D

D Watch Video Solution

32. In the figure if block A and wedge b will move with same acceleration, then the magnitude of normal reaction between the block and the wedge will be (There is no friction between block and the wedge and the
wedge moves on horizontal surface as shown.)
VII

A. $2 m g / \cosh t \eta$
B. $2 m g \cosh t \eta$
C. $m g \cosh t \eta$
D. none of these

Answer: A

- Watch Video Solution

33. A car is moving on a plane inclined at 30°
to the horizontal with an acceleration of
$10 \mathrm{~m} / \mathrm{s}^{2}$ parallel to the plane upward. A bob is suspended by a string from the roof. The angle in degrees which the string makes with the vertical is: (Assume that the bob does not move relative to car) $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$
A. 20°
B. 30°
C. 45°
D. 60°

Answer: B

D Watch Video Solution

34. A solid sphere of mass 2 kg is resting inside a cube as shown in fig. The cube is
$\vec{v}=(5 t \hat{i}+2 t \hat{j}) m s^{-1}$. Here t is time in
seconds. All surface are smooth. The sphere is
at rest with respect to the cube. What is the
total force exerted by the sphere on the cube?

A. $\sqrt{29} N$
B. 29 N
C. 26 N
D. $\sqrt{89} N$

Answer: C

D Watch Video Solution

35. A lift of total mass M is raised by cable from rest through a height h. The greatest tension which the cables car safely bear is n

Mg. The maximum sped of lift during its
journey if the ascent is to made in shortest

time is

A. $\sqrt{2 g h\left(\frac{n+1}{n}\right)}$
B. $\sqrt{2 g h}$
C. $\sqrt{2 g h\left(\frac{n}{n+1}\right)}$
D. $\sqrt{2 g h\left(\frac{n-1}{n}\right)}$

Answer: D

36. A block of mass m lies on wedge of mass
M, which lies on fixed horizontal surface. The wedge is free to move on the horizontal surface. A horizontal force of magnitude F is applied on block as shown neglecting friction at all surface, the value of force F such that block has no relative motion w.r.t wedge will
be: (Where g is acceleration due to gravity)

A. $(M+m) g \tan \theta$
B. $(M+m) g \cot \theta$
C. $\frac{m}{M}(M+m) g \tan \theta$
D. $\frac{m}{M}(M+m) g \cos \theta$

- Watch Video Solution

37. The ratio of tensions in the string connected to the block of mass m_{2} in figure, respectively, is (friction is absent everywhere): $\left[m_{1}=50 \mathrm{~kg}, m_{2}=80 \mathrm{~kg} \quad\right.$ and $\left.\quad F=1000 \mathrm{~N}\right]$

(a)

(b)
A. $7: 2$
B. 2:7
C. $3: 4$
D. $4: 3$

Answer: C

- Watch Video Solution

38. Two unequal masses are connected on two
sides of a light and smooth pulley as shown in
figure. The system is released from rest. The
larger mass is stopped 1.0 second after the
system is set into motion and then released
immediately. The time elapsed before the
string is tight again is: Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$

A. $1 / 4 s$
B. $1 / 2 s$
C. $2 / 3 s$
D. $1 / 3 s$

Answer: D

D Watch Video Solution

39. A hockey player is moving northward and suddenly turns westward with the same speed
to avoid an opponet. The force that acts on the player is.
A. Frictional force along westward.
B. muscle force along southward.
C. frictional force along south-west.
D. muscle force along souoth-west.

Answer: C

D Watch Video Solution

40. Block A of mass $2 k g$ is placed over a block
B of mass 8 kg . The combination is placed on a rough horizontal surface. If $g=10 \mathrm{~ms}^{-2}$, coefficient of friction between B and floor $=0.5$, coefficient of friction between A and $B=0.4$ and a horizontal force of $10 N$ is applied on 8 kg block, then the force of friction between A and B is.

A. $100 N$
B. 50 N
C. 40 N
D. None of these

Answer: D

D Watch Video Solution

41. In the masses of A and B are 10 kg and 5 kg
. Calculate the minimum mass of C which may
stop A from slipping Coefficient of static
friction between block A and table is 0.2

A. 15 kg
B. 5 kg
C. 10 kg
D. 0 kg

Answer: A

- Watch Video Solution

42. A 40kg slab rests on a frictionless floor as
shown in the figure. A 10kg block rests on the top of the slab. The static coefficient of friction between the block and slab is 0.60 while the kinetic friction is 0.40 . The 10 kg block is acted upon by a horizontal force 100 N . if $g=9.8 m / s^{2}$, the resulting acceleration of
the slab will be.

A. $1.5 m / s^{-2}$
B. $2.0 \mathrm{~m} / \mathrm{s}^{-2}$
C. $10 \mathrm{~m} / \mathrm{s}^{-2}$
D. $1.0 \mathrm{~m} / \mathrm{s}^{-2}$

Answer: D

43. In the arrangement shown in the figure mass of the block B and A are $2 m, 8 m$ respectively. Surface between B floor is smooth. The block B is connected to block C by means of a pulley. If the whole system is released then the minimum value of mass of the block C so that the block A remains stationary with respect to B is: (Coefficient of friction between A and B is μ and pulley is
ideal).

A. $\frac{m}{\mu}$
B. $\frac{2 m}{\mu+1}$
C. $\frac{10 m}{1-\mu}$
D. $\frac{10 m}{\mu-1}$

Answer: D

D Watch Video Solution

44. A flat car is given an acceleration
$a_{0}=2 m / s^{2}$ starting from rest. A cable is
connected to a crate of weight 50 kg as shown
whose other end is attached to a fixed support
on ground. Neglect friction between the floor
and the car wheels and also the mass of the
pulley. Calcuollate corresponding tension in th
cable if $\mu=0.30$ between the crate and the
floor or the car.

A. 350 N
B. 250 N
C. $300 N$
D. none of these

Answer: A
45. In the arrangement shown in figure, $m_{-} A=$ $m_{-} B=2 \mathrm{~kg}$. String is massless and pulley is
frictionless. Block B is resting on a smooth horizontal surface, while friction coefficient beteen block A and B is $\mu=0.5$. the

Maximum horizontal force F that can be applied so that block A does not slip over
block B is.

A. $25 N$
B. 40 N
C. $30 N$
D. 20 N

Answer: D

- Watch Video Solution

46. The coefficient of friction between the block and the horizontal surface is mu. The block moves toward right under action of horizontal force F (figure-a). Sometime later another force P is applied to the block making an angle theta $(\operatorname{sucht} \widehat{\tan \theta}=\mu)$ with vertical as shown in (figure-b). After application of
force P, the acceleration of block shall.

Figure-a

Figure-b
A. Increases
B. Decrease
C. remains same
D. information insufficient for drawing
inference.
47. Two blocks A and B of masses $m=10 \mathrm{~kg}$ and $M=20 \mathrm{~kg}$ respectively are planed on each other and their combination rests on a fixed horizontal surface C. A light string passing over the smooth light pulley is used to contact A and B as shown. The coefficient of sliding friction between all surface in contact is $\mu=\frac{1}{4}$. if A is dragged with a force
F then for both A and B to move with a
uniform speed we have.

A. $175 N$
B. 100 N
C. $125 N$

D. None of these

Answer: A
48. In the pulley arrangement shown in Fig the pulley p_{2} is movable .Assuming the coefficient of friction between m and surface to be μu
the minimum value of M for which m is at rest is

A. $M=\frac{\mu m}{2}$
B. $m=\frac{\mu M}{2}$
C. $M=\frac{m}{2 \mu}$
D. $m=\frac{M}{2 \mu}$

Answer: A

D Watch Video Solution

49. A block placed on a horizontal surface is being pushed by a force F making an angle θ with the vertical. If the friction coefficient is μ.

How much force is needed to get the block just started.
A. $\frac{\mu m g}{(\sin \theta-\mu \cos \theta)}$
B. $\frac{(\sin \theta-\mu \cos \theta)}{\mu m g}$
C. $\mu m g$
D. none of these

Answer: A
(Watch Video Solution
50. A system is pushed by a force F as shown
in figure All surfaces are smooth except between B and C is μ. Minimum value fo F to prevent block B from down ward slipping is

A. $\left(\frac{3}{2 \mu}\right) m g$
B. $\left(\frac{5}{2 \mu}\right) m g$
C. $\left(\frac{5}{2}\right) \mu m g$
D. $\left(\frac{3}{2}\right) \mu m g$

Answer: B

- Watch Video Solution

51. Assertion: A rocket works on the principle of conservation of linear momentum.

Reason: Wheneven there is a change in momentum of one body, the same change occurs in the momentum of the second body of the same system but in the opposite directio.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

Assertion Reasoning

1. Assertion: Pulling a lawn roller is easier than
pushing it.
reason: Pulling increases the apparent weight and hence the force of friction.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of

assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

2. Assertion: The familiar equation $m g=R$ for a body on a table is true only if the body is in equilibrium.
reason: The equality of mg and R has no connection with the third law.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of
assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

3. Assertion:Mass is a measure of inertia of the body in linear motion.

Reason: Greater the mass, greater is the force
required to change its state of rest or of uniform motion.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of
assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

4. Assertion:On a merry-go-around, all parts of our body are subjected to an inward force.

Reason: We have a feeling of being pushed outward the direction of impending motion.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of

assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

5. Assertion:A table cloth can be pulled from a table without dislodging the dishes.

Reason: To every action there is an equal and opposite reaction.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.

C. If assertion is ture but reason is false.

D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

6. Assertion: If external force on a body is zero,
its acceleration is zero.

Reason: This is the simple from of Newton's second law of motion.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: C

7. Assertion: Newton's second law of motion given the measurement of force.

Reason: According to Newton's second law of motion, force is directly proportional to the rate of change of momentum.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of

assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

8. Assertion: There is no cause-effect relation between action and raction.

Reason: Action and reaction are not simultaneous force.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.

C. If assertion is ture but reason is false.

D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

9. Assertion: The terms action and reaction in
the third law of motion stand for simultaneous mutual force between a pair of bodies.

Reason: In this conext action always precede or cause reaction.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of
assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

10. Assertion: A player lowers his hands while
catching a cricket ball and suffers less reaction
force.

Reason: The time of catch increases when
cricketer lowers hand while catching a ball.
A. If both assertion and reason are ture and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

11. Assertion: If a body is momentarily at rest,
it means that force or acceleration are necessarily zero at that instant.

Reason: Force on a body at a given time is determined by the direction of motin only.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of
assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

12. Assertion: For applying the second law of motion, there is no conceptual distinction between inanimate and animate objects.

Reason: An animate object requires an external force to acceleration.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of
assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

13. STATEMENT-1: A cloth covers a table. Some
dishes are kept on it. The cloth can be pulled
out without dislodging the dishes from the table.

STATEMENT-2: For every action there is an
equal and opposite reaction.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
14. Assertion: There is no apprecible change in
the position of the body during the action of the impulsive force.

Reason: In case of impulsive force the time of action of the force is very short.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of

assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

(D) Watch Video Solution

1. A 30 gm bullet initially at $120 \mathrm{~m} / \mathrm{s}$ penetrates 12 cm into a wooden block. The average block. The average resistance exerted by the wooden block is.
A. $2850 N$
B. 2200 N
C. $2000 N$
D. 1800 N

Answer: D
2. A player caught a cricket ball of mass 150 gm moving at a rate of $20 \mathrm{~m} / \mathrm{s}$. If the catching process be comleted in 0.1 s , then the force of the blow exerted by the ball on the hands of the player is.
A. 0.3 N
B. 30 N
C. 3000 N
D. 3000 N

Answer: B

D Watch Video Solution

3. Two bodies of massless string passing over a frictionless pulley. The acceleration of the system is $\left(g=9.8 m / s^{2}\right)$
A. $4.9 m / s^{2}$
B. $2.45 \mathrm{~m} / \mathrm{s}^{2}$
C. $1.4 m / s^{2}$
D. $9.5 m / s^{2}$

Answer: C

D Watch Video Solution

4. A vehicle of mass m is moving on a rough
horizontal road with momentum P. If the coefficient of friction between the tyres and the road br mu , then the stopping distance is:

$$
\begin{aligned}
& \text { A. } \frac{P}{2 \mu m g} \\
& \text { B. } \frac{P^{2}}{2 \mu m g} \\
& \text { C. } \frac{P}{2 \mu m^{2} g}
\end{aligned}
$$

$$
\text { D. } \frac{P^{2}}{2 \mu m^{2} g}
$$

Answer: D

D Watch Video Solution

5. A man weighing 80 kg is standing on a trolley weighting 320 kg . The trolley is resting on frictionless horizontal rails. If the man starts walking on the trolley along the rails at speed $1 \mathrm{~m} / \mathrm{s}$ (w.r.t. to trolley) then after $4 s$ his displacement relative to the ground will be :
A. $5 m$
B. $4.8 m$
C. $3.2 m$
D. 3.0 m

Answer: C

D Watch Video Solution

6. A lift of mass 1000 kg is moving with an acceleration of $1 m / s^{2}$ in upward direction.

Tension developed in the string, which is connected to the lift, is.
A. $9,800 N$
B. $10,000 N$
C. $10,800 N$
D. $11,000 N$

Answer: C
(Watch Video Solution
7. A man weighs 80 kg . He stands on a weighing scale in a lift which is moving upwords with a uniform acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. What would be the reading on the scale?
A. 400 N
B. 800 N
C. 1200 N
D. Zero

Answer: C

- Watch Video Solution

8. A monkey of mass 20 kg is holding a vertical
rope. The rope will not break when a mass of
25 kg is suspended from it but will break it the mass exeeds 25 kg . What is the maximum acceleration with which the monkey can climb up along the rope? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. $10 m / s^{2}$
B. $25 m / s^{2}$
C. $2.5 m / s^{2}$
D. $5 m / s^{2}$

Answer: C

D Watch Video Solution

9. The coefficient of static friction between the
block of 2 kg and the table shown in figure is
$\mu_{s}=0.2$. What should be the maximum value of m so that the blocks do not move? Take $g=10 \frac{m}{s^{2}}$. The string and the pulley are light
and smooth.

Figure 6-W3
A. 2.0 kg
B. 4.0 kg
C. 0.2 kg
D. 0.4 kg

Answer: D

D Watch Video Solution

10. A tube of length L is filled completely with
an incomeressible liquid of mass M and closed
at both the ends. The tube is then rotated in a
horizontal plane about one of its ends with a
uniform angular velocity ω. The force exerted
by the liquid at the other end is

$$
\text { A. } \frac{M L \omega^{2}}{2}
$$

B. $\frac{M L^{2} \omega}{2}$
C. $\left(M L \omega^{2}\right)$
D. $\frac{\left(M L^{2} \omega\right)^{2}}{2}$

Answer: A

D Watch Video Solution

11. A block B is pushed momentarily along a horizontal surface with an initial velocity v. If mu is the coefficient of sliding friction between B and the surface, block B will come
to rest after a time:

A. $\frac{v}{g \mu}$
B. $\frac{g \mu}{v}$
C. $\frac{g}{v}$
D. $\frac{v}{g}$

Answer: A
(Watch Video Solution
12. Sand is being dropped on a conveyor belt at the rate of $\mathrm{Mkg} / \mathrm{s}$. The force necessary to
kept the belt moving with a constant with a constant velocity of $v m / s$ will be.
A. Mv newton
B. 2 Mv newton
C. $\frac{M v}{2}$ newton
D. zero

- Watch Video Solution

13. A body, under the action of a force
$\vec{F}=6 \hat{i}-8 \hat{j}+10 \hat{k}$, acquires an acceleration
of $1 \mathrm{~ms}^{-2}$. The mass of this body must be.
A. $2 \sqrt{10} \mathrm{~kg}$
B. 10 kg
C. 20 kg
D. $10 \sqrt{2} \mathrm{~kg}$
14. The mass of a lift is 2000 kg . When the tension in the supporting cable is 28000 N , then its acceleration is.
A. $30 m s^{-2}$ downwards
B. $4 m s^{-2}$ upwards
C. $4 m s^{-2}$ downwards
D. $14 m s^{-2}$ upwards
15. The minimum acceleration that must be
impprted to the cart in the figure so that the block A will not fall (given μ is the coefficient if friction between the surface of block and cart) is given by:

A. $a>\frac{m g}{\mu}$

> B. $a>\frac{g}{\mu}$
> C. $a \geq \frac{g}{\mu}$
> D. $a<\frac{g}{\mu}$

Answer: C

D Watch Video Solution

16. A gramphone record is revolving with an angular velocity omega. A coin is placed at a distance r from the centre of the record. The
static coefficient of friction is mu. The coin will

revolve with the record if.

A. $r=\mu g \omega^{2}$
B. $r<\frac{\omega^{2}}{\mu g}$
C. $r \leq \frac{\mu g}{\omega^{2}}$
D. $r \geq \frac{\mu g}{\omega^{2}}$

Answer: C
(Watch Video Solution
17. A person of mass 60 kg is inside a lift of mass 940 kg and presses the button on control panel. The lift starts moving upword with an acceleration $1.0 \mathrm{~m} / \mathrm{s}^{2}$. If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the tension in the supporting cable is.
A. $9680 N$
B. 11000 N
C. 1200 N
D. 8600 N

Answer: C
18. A body mass M hits normally a rigid wall
with velocity v and bounces back with the
same velocity. The impulse experienced by the body is:
A. 1.5 Mv
B. $2 M v$
C. zero
D. Mv

Answer: B

D Watch Video Solution

19. A conveyor belt is moving at a constant speed of $2 m / s$. A box is grenty dropped on it.

Th ecoefficient of friction between them is $\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it taking $g=10 m s^{-2}$ is:
A. $1.2 m$
B. $0.6 m$
C. zero
D. $0.4 m$

Answer: D

- Watch Video Solution

20. A car of mass 1000 kg negotiates a banked curve of radius $90 m$ on a fictionless road. If
the banking angle is 45° the speed of the car is:
A. $10 m s^{-1}$
B. $20 m s^{-1}$
C. $30 m s^{-1}$
D. $5 m s^{-1}$

Answer: C

D Watch Video Solution

21. A stone is dropped from a height h. It hits
the ground with a certain momentum P. If
the same stone is dropped from a height
100% more thanthe preyiious height, the momentum when it hits the ground will change by
A. 68%
B. 41%
C. 200%
D. 100%

Answer: B

D Watch Video Solution
22. A car of mass m is moving on a level circular track of radius R, if μ_{s} represents the static friction between the road and tyres of the car, the maximum speed of the car in circular motion is given by.
A. $\sqrt{\mu_{s} m R g}$
B. $\sqrt{R g / \mu_{s}}$
C. $\sqrt{m R g / \mu_{s}}$
D. $\sqrt{\mu_{s} R g}$

Watch Video Solution

23. Three blocks with masses $m, 2 m$ and $3 m$ are connected by strings, as shown in the figure. After an upward force F is applied on block m, the masses move upward at costant speed v. What is the net force on the block of mass $2 m$? (g is the acceleration due to gravity). ItBrgt

A. Zero
B. $2 m g$
C. $3 m g$

D. $6 m g$

Answer: A

- Watch Video Solution

24. A system consists of three masses m_{1}, m_{1}
, m_{1}, m_{2} and m_{3} connected by a string
passing over a pulley P. The mass m_{1} hangs
freely and m_{2} and m_{3} are on a rough
horizontal table (the coefficient of friction $=\mu$)

The pulley is frictionless and of negligible mass. The (Assume $m_{1}=m_{2}=m_{3}=m$).

A. $\frac{g(1-2 \mu)}{9}$
B. $\frac{2 g \mu}{3}$
C. $\frac{g(1-2 \mu)}{3}$
D. $\frac{g(1-2 \mu)}{2}$

Answer: C

- Watch Video Solution

25. The force F acting on a particle of mass m
is indicated by the force-time graph shown below. The change in momentum of the particle over time interval from zero to $8 s$ is.

A. $24 N s$
B. 20 Ns
C. 12 Ns
D. 6 Ns

Answer: C

D Watch Video Solution

26. A balloon with mass m is descending down

with an acceleration a (wherea $<g$). How
much mass should be removed from it so that
it starts moving up with an acceleration a?
A. $\frac{2 m a}{g+a}$
B. $\frac{2 m a}{g-a}$
C. $\frac{m a}{g+a}$
D. $\frac{m a}{g-a}$

Answer: A

D Watch Video Solution

27. A block A of mass m_{1} rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass m_{2} is suspended. The coefficient of knetic friction between the block and table is μ_{k}. When the block A is sliding on the table, the tension in the string is.

$$
\begin{aligned}
& \text { A. } \frac{\left(m_{2}+\mu_{k} m_{1}\right) g}{m_{1}+m_{2}} \\
& \text { B. } \frac{\left(m_{2}-\mu_{k} m_{1}\right) g}{m_{1}+m_{2}} \\
& \text { C. } m_{1} m_{2} \frac{\left(1+\mu_{k}\right) g}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

$$
\text { D. } m_{1} m_{2} \frac{\left(1-\mu_{k}\right) g}{\left(m_{1}+m_{2}\right)}
$$

Answer: C

D Watch Video Solution

28. Three blocks A, B and C of masses $4 k g$,
$2 k g$ and $1 k g$ respectively are in contact on a
frictionless surface, as shown. If a force of

14Nisappliedonthe4kg
block, thenthecontactf or cebetweenA and
B^{\prime} is.

A. $2 N$
B. $6 N$
C. $8 N$
D. $18 N$

Answer: B
29. A plank with a box on it at one end is gradually raised about the other end. As the angle of inclination with the horizontal reaches 30°, the box starts to slip and slide
4.0 m down the plank in 4.0 s . The coefficients
of static and kinetic friction between the box
and the plank will be, respectively.

A. 0.4 and 0.3
B. 0.6 and 0.6
C. 0.6 and 0.5
D. 0.5 and 0.6

Answer: C

- Watch Video Solution

30. Two stones of masses m and $2 m$ are whirled in horizontal circles, the heavier one in
a radius $\frac{r}{2}$ and the lighter one in radius r.
The tangential speed of light stone is n times
that of the value heavier stone when they experience same centripetal forces. The value of n is:
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

31. A car is negotisting a curved road of radius
R. The road is banked at an angle theta. The coefficient of friction between the tyres of the car and the road is μ_{s}. The maximum safe velocity on this road is:
A. $\sqrt{g R^{2} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
B. $\sqrt{g R \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
C. $\sqrt{\frac{g}{R} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$
D. $\sqrt{\frac{g}{R^{2}} \frac{\mu_{s}+\tan \theta}{1-\mu_{s} \tan \theta}}$

Answer: B

D Watch Video Solution

32. In the given figure, $a=15 \mathrm{~m} / \mathrm{s}^{2}$ represents the total acceleration of a particle
moving in the clockwise direction in a circle of radius $R=2.5 m$ at a given instant of time.

The speed of the particle is.

A. $5.7 m / s$
B. $6.2 m / s$
C. $4.5 \mathrm{~m} / \mathrm{s}$
D. $5.0 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

33. A riding ball of mass m strikes a rigid wall
at 60° and gets reflected without loss of
speed as shown in the figure below. The value of impulse imparted by the wall on the ball will
be.

A. $\frac{m V}{2}$
B. $\frac{m V}{3}$
C. $m V$
D. $2 m V$

Answer: C

D Watch Video Solution

34. A spring of force constant k is cut into
lengths of ratio $1: 2: 3$. They are connected in
series and the new force constant is k^{\prime}. Then
they are connected in parallel and force constant is $\mathrm{k}^{\prime \prime}$. Then $\mathrm{k}^{\prime}: \mathrm{k}^{\prime \prime}$ is :
A. $1: 9$
B. 1: 11
C. 1: 14
D. $1: 16$

Answer: B
(Watch Video Solution
35. Two block A and B of masses $3 m$ and m respectively are connected by a massless and nextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are resectively

A. $\frac{g}{3}, g$
B. g, g
C. $\frac{g}{3}, \frac{g}{3}$
D. $g, \frac{g}{3}$

Answer: A

D Watch Video Solution

36. One end of string of length l is connected to a particle on mass m and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed v the net force on the particle
(directed toward centre) will be (T reprents
the tension in the string):

> А. $T+\frac{m v^{2}}{1}$
> В. $T-\frac{m v^{2}}{1}$
C. zero
D. T

Answer: D

D Watch Video Solution

37. A block of mass m is placed on a smooth inclined wedge $A B C$ of inclination theta as shown in the figure. The wedge is given an acceleration a towards the right. The relation between a and theta for the block to remain stationary on the wedge is.

A. $a=g \tan \theta$

$$
\begin{aligned}
& \text { B. } a=\frac{g}{\cos e c \theta} \\
& \text { C. } a=\cos \theta \\
& \text { D. } a=\frac{g}{\sin \theta}
\end{aligned}
$$

Answer: A

D Watch Video Solution
38. Which one of the following statements is
A. Coefficient of sliding friction has
dimension of length.
B. Rolling friction is smaller than the sliding friction.
C. Friction force opposes the relative motion.

D. Limiting value of static friction is directly proportional to normal reaction.

Answer: A

AlIMS Questions

1. When the two surface are coated with the
lubricant, the they will
A. roll upon each other
B. stick to each other
C. slide upon each other
D. none of the above

Answer: C

- Watch Video Solution

2. A stone tied to a string is rotated with a uniform speed in a vertical plane. If mass of the stone is m, the length of the string is r and linear speed of the stone is v when the stone is at its lowest point, then the tension in the string will be
($\mathrm{g}=$ acceleration due to gravity)
A. $m g$
B. $\frac{m v^{2}}{r}-m g$
C. $\frac{m v}{r}$
D. $\frac{m v^{2}}{r}+m g$

Answer: D

D Watch Video Solution

3. If a ladder weighting 250 N is placed against a smooth vertical wall having coefficient of friction between it and floor 0.3, then what is
the maximum force of friction available at the
point of contact between the ladder and the floor?
A. $75 N$
B. 50 N
C. 35 N
D. 25 N

Answer: A

D Watch Video Solution
4. A block of mass 10 kg is placed on a rough horizontal surface having coefficient of friction
$\mu=0.5$. If a horizontal force of $100 N$ is
acting on it, then acceleration of the will be.
A. $0.5 m / s^{2}$
B. $5 m / s^{2}$
C. $10 m / s^{2}$
D. $15 \mathrm{~m} / \mathrm{s}^{2}$

Answer: B

D Watch Video Solution
5. A person is standing in an elevator. In which situation he finds his weight less?
A. When the elevator moves upward with
constant acceleration
B. When the elevator moves upward with
uniform velocity
C. When the elevator moves downward
with constant acceleration
D. When the elevator moves downward

with uniform velocity

Answer: C

- Watch Video Solution

6. A person used force (F), shown in figure to move a load with constant velocity on given
surface. Identify the correct surface profile:

- Watch Video Solution

7. A smooth block is released at rest on a 45°
incline and then slides a distance d. The time taken to slide is n times as much to slide on rough incline than on a smooth incline. The coefficient of friction is

$$
\begin{aligned}
& \text { A. } \mu_{s}=1-\frac{1}{n^{2}} \\
& \text { B. } \mu_{k}=\sqrt{1-\frac{1}{n^{2}}} \\
& \text { C. } \mu_{k}=1-\frac{1}{n^{2}}
\end{aligned}
$$

$$
\text { D. } \mu_{s}=\sqrt{1-\frac{1}{n^{2}}}
$$

Answer: C

D Watch Video Solution

8. Figures I, II, III, and IV depict variation of force with time. The impulse is highest in the case of situations depicted. Figure(s).

(II)

(IV) $\quad F(N)$

A. I and II
B. III and I
C. III and IV
D. IV only

Answer: C

- Watch Video Solution

9. A body mass $2 k g$ has an initial velocity of 3
metre//sec along $O E$ and it is subject to a
force of $4 N$ in a direction perpendicular to OE.
The distance of body from O after 4 sec will
be:

A. $12 m$
B. 20 m
C. $8 m$
D. 48 m

Watch Video Solution

10. A block of mass 2 kg is kept on the floor.

The coefficient of static friction is 0.4 . If a force F of $2.5 N$ is applied on the block as shown in the figure, the frictional force between the block and the floor will be.

A. 2.5 N
B. $5 N$

C. $7.84 N$

D. 10 N

Answer: A

D Watch Video Solution

11. A car is moving along a straight horizontal
road with a speed v_{0}. If the coefficient of
friction between the tyre and the road is μ,
the shortest distance in which the car can be stopped is.
A. $\frac{v_{0}^{2}}{2 \mu g}$
B. $\frac{v_{0}}{}$
μg
C. $\left(\frac{v_{0}}{\mu g}\right)^{2}$
D. $\frac{v_{0}}{\mu}$

Answer: A

- Watch Video Solution

12. A motorcycle is going on an overbridge of radius R. The driver maintains a constant
speed. As the motorcycle is ascending on the overbridge, the normal force on it
A. Increases
B. Decreases
C. remain the same
D. fluctuates

Answer: A
(Watch Video Solution
13. A block of mass $m=5 \mathrm{~kg}$ is resting on a rough horizontal surface for which the coefficient of friction is 0.2 . When a force $F=40 \mathrm{~N}$ is applied, the acceleration of the block will be $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.

A. $5.73 \mathrm{~m} / \mathrm{sec}^{2}$
B. $8.0 \mathrm{~m} / \mathrm{sec}^{2}$
C. $3.17 \mathrm{~m} / \mathrm{sec}^{2}$

D. $10.0 \mathrm{~m} / \mathrm{sec}^{2}$

Answer: A

D Watch Video Solution

14. The bob of a simple pendulum it displaced position O to a equilibrium position Q which is at height h above O and the bob to then mass released Assuming the mass of the bob
is m and time period 2.0 sec of oscillation to
be string when the bob passes through O is

A. $m(g+\pi \sqrt{2 g h})$
B. $m\left(g+\sqrt{\pi^{2} g h}\right)$
C. $m\left(g+\sqrt{\frac{\pi^{2}}{2} g h}\right)$
D. $m\left(g+\sqrt{\frac{\pi^{2}}{3} g h}\right)$

Answer: A

- Watch Video Solution

15. Consider three cases, same spring is attached with $2 k g, 3 k g$ and $1 k g$ blocks as shown in figure. If x_{1}, x_{2}, x_{3} be the extensions in the spring in the three cases, then.

A. $x_{2}>x_{1}>x_{3}$
B. $x_{1}>x_{2}>x_{3}$
C. $x_{1}=0, x_{3}>x_{2}$
D. $x_{3}>x_{2}>x_{1}$

Answer: A

D Watch Video Solution
16. A horizontal force acting on a block of mass
m which is placed on an inclined plane (as
shown in the figure). What is the normal
reaction N on the block?

A. $m g \sin \theta+F \cos \theta$
B. $m g \cos \theta-F \sin \theta$
C. $m g \cos \theta+F \sin \theta$
D. $m g \sin \theta-F \cos \theta$

Answer: C
17. In the diagram 100 kg block is moving up with constant velocity, then find out the tension at point P :

A. $1330 N$
B. 490 N
C. $1470 N$
D. 980 N

Answer: C

D Watch Video Solution

18. A Rocket having initial mass $5 \times 10^{6} \mathrm{~kg}$, which include mass of fuel of mass $4 \times 10^{6} \mathrm{~kg}$
is ejecting gas with velocity $4000 \mathrm{~m} / \mathrm{s}$ relative to Rocket when entire fuel finishes?
A. $6438 m / s$
B. $4500 \mathrm{~m} / \mathrm{s}$
C. $3785 m / s$

D. $4000 \mathrm{~m} / \mathrm{s}$

Answer: A

D Watch Video Solution

19. Assertion: A rocket moves forward by
pushing the surrounding air backwards.

Reason: It derives the necessary thrust to move forward according to Newton's third law of motion.
A. If both assertion and reason are ture
and reason is a true explanation of
assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of assertion.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

20. Assertion: The driver in a vechile moving with a constant speed on a straight road is in a non-inertial fram of reference.

Reason: A reference frame in which Newton's
law of motion are applicable is non-inertial.
A. If both assertion and reason are ture
and reason is a true explanation of
assertion.
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

21. Assertion: The driver in a vechile moving with a constant speed on a straight road is in a non-inertial frame of reference.

Reason: A reference frame in which Newton's law of motion are applicable is non-inertial.
A. If both assertion and reason are ture and reason is a true explanation of assertion.
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: C
(Watch Video Solution
22. Assertion: A man in a dosed cabin falling
freely does not experience gravity.

Reason: Inertial and gravitational mass have equivalence.
A. If both assertion and reason are ture
and reason is a true explanation of assertion.
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

23. Assertion: Two bodies of masses M and $m(M>m)$ are allowed to fall from the same
height if the air resistance for each be the same then both the bodies will reach the earth simultaneously.

Reason: For same air resistance, acceleration of both the bodies will be same.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. if reason is true but assertion is false
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

24. Assertion: Friction is a self-adjusting force.

Reason: Friction does not depend upon mass of the body
A. If both assertion and reason are ture
and reason is a true explanation of assertion.
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

25. Assertion: There is no apprecible change in
the position of the body during the action of
the impulsive force.
Reason: In case of impulsive force the time of action of the force is very short.
A. If both assertion and reason are ture and reason is a true explanation of
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution
26. Assertion: On a rainy day, it is difficult to
drive a car or bus at high speed.

Reason: The value of coefficient of friction is lowered due to wetting of the surface.
A. If both assertion and reason are ture and reason is a true explanation of assertion.
B.
C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

Chapter Test

1. A body of mass $2 k g$ is moving towards east
with a uniform speed of $2 \mathrm{~ms}^{-1}$. A force of 3 N
is applied to it towards north. The magnitude of the displacement of the body $2 s$ after the application of force is.
A. $4 m$
B. $5 m$
C. $6 m$
D. $7 m$

Answer: B

D Watch Video Solution

2. Beads A and B each of mass m, are connected by a light inextensible cord. They are constrained (restricted) to move on a frictionless ring in a vertical plane as shown.

The beads are released from rest at the position shown. The tension in the cord just
after the release is.

A. $\sqrt{2} m g$
B. $m g$
C. $\frac{m g}{\sqrt{2}}$

D. $2 m g$

Answer: C

D Watch Video Solution

3. Two masses are connected by a string which passes over a pulley acceleration upward at a rate A shown. If a_{1} and a_{2} be the accelerations of bodies 1 and 2 respectively
then,

A. $A=\left(a_{1}+a_{2}\right)$

$$
\begin{aligned}
& \text { B. } A=\left(a_{1}-a_{2}\right) \\
& \text { C. } A=\frac{a_{1}+a_{2}}{2} \\
& \text { D. } A=\frac{a_{1}-a_{2}}{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

4. In the figure shown the force with which the man should pull the rope to hold the plank in position is F. If weight of the man is 60 kgf , the plank and pulleys have negligible masses,
then.

A. $F=150 N$
B. $F=300 N$
C. $F=600 N$
D. $F=1200 N$

Answer: A

D Watch Video Solution
5. A mass M is hung with a light inextensible string. Tension in horizontal part of string is.

A. $\sqrt{3} M g$
B. $\sqrt{2} M g$
C. $\frac{m g}{\sqrt{3}}$
D. $\frac{m g}{2}$

Answer: A

- Watch Video Solution

6. Two masses rest on smooth surface as
shown in the figure. Force exerted by P on Q
is.

A. 1.5 N
B. $1 N$
C. $2 N$
D. $3 N$
7. There blocks of masses m_{1}, m_{2} and m_{3} are connected by may less unstretchable strings on a smooth surface. Tension T_{2} is.

A. 2.3 N
B. $32 N$
C. $23 N$
D. 3.2 N

Answer: B

D Watch Video Solution

8. A body, under the action of a force
$\vec{F}=6 \hat{i}-8 \hat{j}+10 \hat{k}$, acquires an acceleration
of $1 \mathrm{~ms}^{-2}$. The mass of this body must be.
A. $10 \sqrt{2} k g$
B. $2 \sqrt{10} \mathrm{~kg}$
C. 10 kg
D. 30 kg

Answer: A

D Watch Video Solution

9. Three light rods from a right angled triangle. The tension in the rod $P R$, if a force of
$300 N$ is applied vertically downward at R is.

A. 400 N
B. 200 N
C. $300 N$

D. 500 N

Answer: D

D Watch Video Solution

10. A light string of 70 cm has its two ends tied
at the same level 50 cm apart. A force of 100 N
is applied at a distance of 30 cm from P. The
tension in part PR is.

A. $18 N$
B. $8 N$
C. 0 N
D. 80 N

Answer: D
11. A person holds a spring balance with a mass m hanging from it goes up and up in a helicopter, then reading of weight of body as indicated by spring balance will.
A. be increasing
B. be decreasing
C. first increase and then decrease
D. remain the same.

Answer: D

D Watch Video Solution

12. Two equal masses are kept on the pans of a simple balance in a lift acceleration upward.

Then.
A. Pans will remain at the same level
B. Nothing can be said as data is
incomplete
C. left side pan will lower down.

D. Right side pan will lower down.

Answer: A

- Watch Video Solution

13. The force required to just move a body up
an inclined plane is double the force the required prevent it from sliding down. If phi is angle of friction and theta is the angle which incline makes with the horizontal then,
A. $\tan \theta=\tan \phi$
B. $\tan \theta=2 \tan \phi$
C. $\tan \theta=3 \tan \phi$
D. $\tan \phi=2 \tan \theta$

Answer: C

D Watch Video Solution

14. A mass of $4 k g$ is suspended by a rope of length $4 m$ from a ceiling. A force of $20 N$ in the horizontal direction is applied at the midpoint of the rope as shown in figure. What is
the angle which the rope makes with the vertical in equilibrium? Neglect the mass of the rope. Take $g=10 \mathrm{~ms}^{-2}$.

A. $\tan ^{-1} 2$
B. $\tan ^{-1}\left(\frac{1}{2}\right)$
C. $\tan ^{-1} \sqrt{2}$
D. $\tan ^{-1}(1)(\sqrt{2})$

Answer: B

D Watch Video Solution

15. In the figure, a block of weight $60 N$ is
placed on a rough surface. The coefficient of
friction between the block and the surface is
0.5 . What should be the weight W such that
the block does not slip on the surface?

A. $60 N$

60
B. $\frac{}{\sqrt{2} N}$
C. $30 N$
D. $\frac{30}{\sqrt{2} N}$

Answer: C
16. A rocket is going upward with acceleration motion. A man sitting in it feels his weight increased 5 times his own weight. If the mass of the rocket including that of the man is $1.0 \times 10^{4} \mathrm{~kg}$, how much force is being applied by rocket engine? (Take $g=10 m s^{-2}$).
A. $5 \times 10^{4} N$
B. $5 \times 10^{5} N$
C. $5 \times 10^{8} N$

D. $2 \times 10^{4} N$

Answer: B

D Watch Video Solution

17. A body is moving under the action of two force $\overrightarrow{F_{1}}=2 \hat{i}-5 \hat{j} \quad, \overrightarrow{F_{2}}=3 \hat{i}-4 \hat{j}$. It's
velocity will become uniform under a third force $\overrightarrow{F_{3}}$ given by.

$$
\text { A. } 5 \hat{i}-\hat{j}
$$

B. $-5 \hat{i}-\hat{j}$
C. $5 \hat{i}+\hat{j}$
D. $-5 \hat{i}+9 \hat{j}$

Answer: D

D Watch Video Solution

18. A body of mass 10 kg is acted upon by two perpendicular force, $6 N$. The resultant acceleration of the body is.
A. $1 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$ w.r.t.
$8 N$ force
B. $0.2 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{3}{4}\right)$
w.r.t. $8 N$ force
C. $1 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$ w.r.t.
$8 N$ force
D. $0.2 m s^{-2}$ at an angle of $\tan ^{-1}\left(\frac{4}{3}\right)$
w.r.t. $8 N$ force

Answer: A

19. A monkey of mass 20 kg is holding a vertical rope. The rope will not break when a mass of 25 kg is suspended from it but will break if the mass exceeds 25 kg . What is the maximum acceleration with which the monkey can climb up along the rope? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$.
A. $2.5 m / s^{2}$
B. $5 m / s^{2}$
C. $7 m / s^{2}$

D. $10 \mathrm{~m} / \mathrm{s}^{2}$

Answer: A

D Watch Video Solution

20. A body mass 2 kg has an initial velocity of 3
metre//sec along OE and it is subject to a
force of $4 N$ in a direction perpendicular to OE.
The distance of body from O after 4 sec will
be:

A. 12 metres
B. 20 metres
C. 8 metres
D. 48 metres

Answer: B

- Watch Video Solution

21. A force of $100 N$ need to be applied parallel to a smooth inclined plane just to hold a body on it. The angle of inclination of the inclined
plane is plane is 30°. How much horizontal force need to be applied to do the same?
A. 50 N
B. $87 N$
C. 100 N
D. 115 N

Answer: D

- Watch Video Solution

22. A plumb bob is hung from the ceiling of a train compartment. The train moves on an inclined track of inclination 30° with horizontal. Acceleration of train up the plane
is $a=g / 2$. The angle which the string supporting the bob makes with normal to the ceiling in equilibrium is.
A. 30°
B. $\tan ^{-1}(2 /(\sqrt{3})$
C. $\tan ^{-1}(\sqrt{3} / 2)$
D. $\tan ^{-1}(2)$

Answer: B

D Watch Video Solution

23. A man is raising himself and the crate on which he stands with an acceleration of
$5 m s^{-2}$ by a massless rope-and-pulley
arrangement. Mass of the man is 100 kg and
that of the crate is 50 kg . If $g=10 \mathrm{~ms}^{-2}$, then the tension in the rope is

A. $2250 N$
B. $1125 N$
C. 750 N
D. $375 N$

Answer: B

D Watch Video Solution

24. A balloon of mass M is descending at a constant acceleration α. When a mass m is released from the balloon, it starts rising with
the same acceleration α. Assuming that its
volume does not change, what is the value of m ?

$$
\begin{aligned}
& \text { A. } \frac{\alpha}{\alpha+g} M \\
& \text { B. } \frac{2 \alpha}{\alpha+g} M \\
& \text { C. } \frac{\alpha+g}{\alpha} M \\
& \text { D. } \frac{\alpha+g}{2 \alpha} M
\end{aligned}
$$

Answer: B
(Watch Video Solution
25. A string of length L is fixed at one end and
carries a mass M at the other end. The string makes $2 / \pi$ revolution per second around the vertical axis through the fixed end as shown in
the figure, then tension in the string is.

A. ML
B. 2 ML

C. 4 ML

D. 16 ML

Answer: D

- Watch Video Solution

26. Two block of masses M_{1} and M_{2} are connected with a string passing over a pulley as shown in figure The block M_{1} lies on a horizontal surface friction between the block
M_{1} and the horizontal surface is μ The system
accelerates. What additional mass m should be placed on the block M_{1} so that the system does not accelerate?

$$
\text { A. } \frac{M_{2}-M_{1}}{\mu}
$$

$$
\text { B. } \frac{M_{2}}{\mu}-M_{1}
$$

C. $M_{2}-\frac{M_{1}}{\mu}$
 D. $\left(M_{2}-M_{1}\right) \mu$

Answer: B

- Watch Video Solution

27. An inclined plane makes an angle 30° with
the horizontal. A groove (OA) of length 5m cut in the plane makes an angle 30° with OX. A short smooth cylinder is free to slide down under the influence of gravity. The time taken
by the cylinder to reach from A to O is

$$
\left(g=10 m s^{-2}\right)
$$

A. $4 s$
B. $2 s$
C. $3 s$
D. $1 s$
28. Assertion: Force is always in the direction of motion.

Reason: In every case force is not parallel to acceleration.
A. If both assertion and reason are true
and reason is not the correct
explaination of assertion.
B. If both assertion and reason are ture but
reason is not the correct explanation of

assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

29. Assertion: Force on a body A by body B is
equal and opposite to the force on the body B
by A.

Reason: Force in nature always occur between pairs of bodies.
A. If both assertion and reason are true and reason is the correct explaination of assertion.
B. If both assertion and reason are true and reason is not the correct

explaination of assertion.

C. If assertion is ture but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

30. Assertion: Friction opposes relative motion and thereby dissipates power in the form of heat.

Reason: Friction is always an undesirable force.
A. If both assertion and reason are true
and reason is not the correct
explaination of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C
(D) Watch Video Solution

