©゙doubtnut

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

UNIT, DIMENSION AND ERROR ANALYSIS

Basic Concept Of Unit

1. Which of the following following is smallest unit?
A. Millimeter
B. Angstrom
C. Fermi
D. Metre

Answer: C

- Watch Video Solution

2. Which of the following following is not the unit of energy?
A. Calorie
B. Joule
C. Electron volt
D. Watt

Answer: D

- Watch Video Solution

3. A watt is

A. $k g m / s^{2}$
B. $\mathrm{kgm}^{2} / \mathrm{s}^{2}$
C. $\mathrm{kgm} / \mathrm{s}$
D. $\mathrm{kgm}^{2} / \mathrm{s}^{2}$

Answer: b

D Watch Video Solution

4. Which of the following following is not equal to watt?
A. Joule/second
B. Ampere \times volt
C. $(\text { Ampere })^{2} \times$ ohm
D. Ampere/volt

- Watch Video Solution

5. If the acceleration due to gravity is represented by unity in a system of unit and one second is the unit of time, the unit length is
A. $9.8 m$
B. $1 m$
C. $98 m$
D. 0.98 m

Answer: A

6. Newton - second is the unit of
A. Velocity
B. Angular momentum
C. Momentum
D. Energy

Answer: C

- Watch Video Solution

7. Which of the following following is not a unit of energy?
A. $W-s$
B. $k g-m / s e c$
C. $N-m$
D. Joule

Answer: B

- Watch Video Solution

8. A suitable unit for gravitational constant is
A. $k g m \sec ^{-1}$
B. $N m^{-1} \mathrm{sec}$
C. $N m^{2} k g^{-2}$
D. $k g m \mathrm{sec}$

Answer: C

9. The unit of acceleration in the SI system is
A. $N k g^{-1}$
B. $m s^{-2}$
C. $r a d s^{-2}$
D. $m k g^{-1} K$

Answer: B

- Watch Video Solution

10. Temperature can be expressed as a derived quantity in terms of any of the following
A. Length and mass
B. mass and time
C. Length , mass and time
D. None of these

Answer: D

- Watch Video Solution

11. $\operatorname{Erg}-m^{-1}$ can be the unit of measure for
A. Force
B. Momentum
C. Power
D. Acceleration

Answer: A

12. The unit of potential energy is
A. $g\left(c m / \mathrm{sec}^{2}\right)$
B. $g(\mathrm{~cm} / \mathrm{sec})^{2}$
C. $g\left(c m^{2} / \mathrm{sec}\right)$
D. $g(\mathrm{~cm} / \mathrm{sec})$

Answer: b

D Watch Video Solution

13. Which of the following represents a volt?
A. Joule/second
B. watt/ampere
C. watt/columb
D. coulomb/joule

Answer: B

- Watch Video Solution

14. If the unit of length and force each becomes four times, then the unit of energy becomes
A. 4 times
B. 8times
C. 16times
D. $1 / 16$ times

Answer: C
15. Ampere-hour is a unit of
A. Quantity of electricity
B. Strength of electric current
C. Power
D. Energy

Answer: A

- Watch Video Solution

16. If u_{1} and u_{2} are the selected in two system of measurement and n_{1} and n_{2} their nomerical values, then
A. $n_{1} u_{1}=n_{2} u_{2}$
B. $n_{1} u_{1}+n_{2} u_{2}=0$
C. $n_{1} n_{2}=u_{1} u_{2}$
D. $\left(n_{1}+u_{1}\right)=\left(n_{2}+u_{2}\right)$

Answer: a

D Watch Video Solution

17. To determine the young's modulus of a wire, the formula is $Y=\frac{F}{A} \cdot \frac{L}{\Delta l}$, where $L=I$ ength,$A=$ area of cross - section of the wire , $\Delta L=$ change in the length of the wire when streched with a force F. Find the conversion factor to change it from CGS t o MKS system.
A. 1
B. 10
C. 0.1
D. 0.01

Answer: C

- Watch Video Solution

18. Young's modules of a material has the same unit as
A. Pressure
B. Strain
C. Compressibility
D. Force
19. In $C G S$ system the magnitude of the force is 100 dynes. In another system where the fundamental physical quantities are kilogram, meter and minute, Find the magnitude of the force.
A. 0.036
B. 0.36
C. 3.6
D. 36

Answer: C

20. A physical quantity is measured and the result is expressed as $n u$ where u is the unit used and n is the numberical value. If the result is expressed in various units then
A. $n \propto u^{2}$
B. $n \propto u$
C. $n \propto \sqrt{u}$
D. $n \propto \frac{1}{u}$

Answer: D

- Watch Video Solution

21. If $x=a t+b t^{2}$, where x is the distance travelled by the body in kilometer while t is the time in seconds, then find the units of
b.
A. $k m / s$
B. $k m-s$
C. $k m / s^{2}$
D. $k m-s^{2}$

Answer: C

D Watch Video Solution

22. In $S=a+b t+c t^{2}$. S is measured in metres and t in
seconds. The unit of c is
A. $m s^{2}$
B. m
C. $m s^{-1}$
D. $m s^{-2}$

- Watch Video Solution

23. Find out the unit and dimensions of the constants a and b in the van der Waal's equation $\left(P+\frac{a}{V^{2}}\right)(V-b)=R t$, where P is pressure, v is volume, R is gas constant, and T is temperature.
A. dyne $\times \mathrm{cm}^{5}$
B. dyne $\times \mathrm{cm}^{4}$
C. dyne $\times \mathrm{cm}^{3}$
D. dyne $\times \mathrm{cm}^{2}$

Answer: B

24. If in a system the force of attraction between two point masses of 1 kg each situated 1 km apart is taken as a unit force and is called notwen (newton written in reverse order) If $G=6.67 \times 10^{-11} N-m^{2} \mathrm{~kg}^{-2}$ in $S I$ units, the relation of newton and nowton is
A. 1notwen $=6.67 \times 10^{-11}$ newton
B. 1 newton $=6.67 \times 10^{-17}$ notwen
C. 1 notwen $=6.67 \times 10^{-17}$ newton
D. 1newton $=6.67 \times 10^{-12}$ notwen

Answer: c

1. Select the pair whose dimensions are same
A. Pressure and stress
B. Stress and strain
C. Pressure and force
D. Power and force

Answer: A

- Watch Video Solution

2. The dimensional formula for magnetic flux is
A. $M L^{2} T^{-2} A^{-1}$
B. $M L^{2} T^{2} A^{-2}$
C. $M^{0} L^{-2} T^{2} A^{-3}$
D. $M L^{2} T^{2} A^{3}$

Answer: A

- Watch Video Solution

3. Inductance L can be dimensional represented as
A. $M L^{2} T^{2} A^{-2}$
B. $M L^{2} T^{-4} A^{-3}$
C. $M L^{-2} T^{2} A^{-2}$
D. $M L^{2} T^{4} A^{3}$
4. Dimensional formula for latent heat is \qquad
A. $M^{0} L^{2} T^{2}$
B. $M L T^{-2}$
C. $M L^{2} T^{2}$
D. $M L^{2} T^{1}$

Answer: A

- Watch Video Solution

5. the dimensional formula for planck's constant and angular momentum are
A. $M L^{2} T^{2}$
B. $M L^{2} T^{-1}$
C. $M L T^{-1}$
D. $M^{0} L^{2} T^{-2}$

Answer: B

D Watch Video Solution

6. Dimensional formula of capacitance is
A. $M^{-1} L^{-2} T^{4} A^{2}$
B. $M L^{2} T^{2} A^{-2}$
C. $M L T^{-4} A^{2}$
D. $M^{-1} L^{-2} T^{-4} A^{-2}$

- Watch Video Solution

7. Dimensional formula $M L^{-1} T^{2}$ does not represent the physical quantity
A. Young's modus of elasticity
B. Stress
C. Strain
D. Pressure

Answer: C

8. Two quantities A and B have different dimensions. Which mathematical operation given below is physically meaningful?
A. A / B
B. $A+B$
C. $A-B$
D. None

Answer: a

- Watch Video Solution

9. A force F is given by $F=a t+b t^{2}$, where t is time. What are the dimensions of a and b ?
A. $M L T^{-3}$ and $M L^{2} T^{-4}$
B. $M L T^{-3}$ and $M L T^{-4}$
C. $M L T^{-1}$ and $M L T^{0}$
D. $M L T^{-4}$ and $M L T^{4}$

Answer: B

D Watch Video Solution

10. Which pair has the same dimensions?
A. Work and power
B. Density andrelative density
C. Momentum and impulse
D. Stress and strain
11. The dimensional formul for impulse is same as the dimensional formula for
A. Momentum
B. Force
C. Rate of change of momentum
D. Torque

Answer: a

- Watch Video Solution

12. Which of the following is dimensionally correct?
A. Pressure = Energy per unit area
B. Pressure = Energy per unit volume
C. Pressure = Force per unit volume
D. Pressure $=$ Momentum per unit volume per unit time

Answer: B

D Watch Video Solution

13. The equation of state for real gas is given by $P+\frac{a}{V^{2}}(V-b)=R T$. The dimension of the constant a is
A. $M L^{5} T^{-2}$
B. $M L^{-1} T^{-2}$
C. $M^{0} L^{3} T^{0}$
D. $M^{0} L^{6} T^{0}$

Answer: A

- Watch Video Solution

14. The frequency f of vibrations of a mass m suspended from a spring of spring constant k is given by $f=C m^{x} k^{y}$, where C is a dimensionless constant. The values of x and y are, respectively,
A. $x=\frac{1}{2}, y=\frac{1}{2}$
B. $x=-\frac{1}{2}, y=-\frac{1}{2}$
C. $x=\frac{1}{2}, y=-\frac{1}{2}$
D. $x=-\frac{1}{2}, y=\frac{1}{2}$

(D) Watch Video Solution

15. The quantities A and B are related by the relation
$A / B=m$, where m is the linear mass density and A is the force, the dimensions of B will be
A. Pressure
B. Work
C. Latent heat
D. None of these

Answer: C

- Watch Video Solution

16. The velocity of a freely falling body changes as $g^{p} h^{q}$ where g is acceleration due to gravity and h is the height. The values of p and q are
A. $1, \frac{1}{2}$
B. $\frac{1}{2}, \frac{1}{2}$
C. $\frac{1}{2}, 1$
D. 1,1

Answer: b

- Watch Video Solution

17. Which one of the following pairs does have the same dimension?
A. Work and energy
B. Angule and strain
C. Relative density and refractive index
D. Plank constant and energy

Answer: d

D Watch Video Solution

18. An athlletic coach told his team that muscle times speed equals power. What dimesions does he view for muscle?
A. $M L T^{-2}$
B. $M L^{2} T^{-2}$
C. $M L T^{2}$
D. L

- Watch Video Solution

19. If P represents radiation pressure, C represents the speed of light, and Q represents radiation energy striking a unit area per second , then non-zero integers x, y, z such that $P^{x} Q^{y} C^{z}$ is dimensionless, find the values of x, y, and z.
A. $x=1, y=1, z=-1$
B. $x=1, y=-1, z=1$
C. $x=-1, y=1, z=1$
D. $x=1, y=1, z=1$

Answer: b

20. Force F and density d are related as $F=\frac{\alpha}{\beta+\sqrt{d}}$, Then find the dimensions of α and β
A. $\left[M^{3 / 2} L^{-1 / 2} T^{-2}\right],\left[M^{1 / 2} L^{-3 / 2}\right]$ respectively
B. $\left[M^{-3 / 2} L^{1 / 2} T^{-2}\right],\left[M^{-1 / 2} L^{3 / 2}\right]$ respectively
C. $\left[M^{3 / 2} L^{-1 / 2} T^{2}\right],\left[M^{-1 / 2} L^{3 / 2}\right]$ respectively
D. $\left[M^{3 / 2} L^{1 / 2} T^{-2}\right],\left[M^{1 / 2} L^{3 / 2}\right]$ respectively

Answer: A

D Watch Video Solution

21. The frequency (n) of vibration of a string is given as $n=\frac{1}{2 l} \sqrt{\frac{T}{m}}$, where T is tension and l is the length of vibrating string, then the dimensional formula is
A. $\left[M^{0} L T^{-1}\right]$
B. $\left[M L^{\prime}(0) T^{-1}\right]$
C. $\left[M L^{-1} T^{0}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: c

D Watch Video Solution

22. Write the dimensions of a / b in the relation $P=\frac{a-t^{2}}{b x}$, where P is the pressure, x is the distance, and t is the time .
A. $\left[M^{2} L T^{-3}\right]$
B. $\left[M T^{-2}\right]$
C. $\left[L T^{-3}\right]$
D. $\left[M L^{3} T^{-1}\right]$

Answer: B

- Watch Video Solution

23. If the time period (T) of vibration of a liquid drop depends on surface tension (S), radius (r) of the drop, and density (ρ) of the liquid, then find the expression of T.
A. $T=k \sqrt{\rho r^{3} / S}$
B. $T=k \sqrt{\rho^{1 / 2} r^{3} / S}$
C. $T=k \sqrt{\rho r^{3} / S^{1 / 2}}$
D. None of these

Answer: A
24. Position of a body with acceleration a is given by $x=K a^{m} t^{n}$, here t is time Find demension of m and n.
A. $m=1, n=1$
B. $m=1, n=2$
C. $m=2, n=1$
D. $m=2, n=2$

Answer: b

- Watch Video Solution

25. Density of a liquid in CGS system is $0.625(\mathrm{~g}) /\left(\mathrm{cm}^{3}\right)$. What is it's magnitude is SI system?
A. 0.625
B. 0.0625
C. 0.00625
D. 625

Answer: D

D Watch Video Solution

26. The velocity of a body is given by the equation
$v=\frac{b}{t}+c t^{2}+d t^{3}$.
The dimensional formula of b is
A. $\left[M^{0} L T^{0}\right]$
B. $\left[M L^{0} T^{0}\right]$
C. $\left[M^{0} L^{0} T\right]$
D. $\left[M L T^{-1}\right]$

Answer: A

- Watch Video Solution

27. Of the following quantities, which one has the dimensions different from the remaining three?
A. Energy per unit volume
B. Force per unit area
C. Product of volume and change per unit volume
D. Angular momentum per unit mass

Answer: d
28. A sperical body of mass m and radius r is allowed to fall in a medium of viscosity η. The time in which the velocity of the body increases from zero to 0.63 times the terminal velocity (v) is called constant (τ). Dimensionally , τ can be represented by
A. $\frac{m r}{6 \pi \eta}$
B. $\sqrt{\left(\frac{6 \pi m r \eta}{g^{2}}\right)}$
C. $\frac{m}{6 \pi \eta r v}$
D. None of these

Answer: d

D Watch Video Solution

29. Find the dimensional formula of
(a) coefficient of viscosity η (b)charge q
(c) potention V (d) capacitance C and
(e) resistance R

Some of the equations containing these quantities are
$F=-\eta A\left[\frac{\Delta v}{\Delta l}\right], q=I t . U=V I t, q=C V$ and $V=I R$
where A denotes Area, the v the velocity, I is the length ,I the electric current, t the time and U the energy .
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{1}\right]$
C. $\left[M L^{-2} T^{-2}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: b

30. A physical quantity P is given by $P=\frac{A^{3} B^{1 / 2}}{C^{-4} D^{3 / 2}}$. Which quantity among A, B, C, and D brings in the maximum percentage error in P ?
A. A
B. B
C. C
D. D

Answer: c

- Watch Video Solution

31. If the acceleration due to gravity is $10 \mathrm{~ms}^{-2}$ and unit of length and time are changed in kilometer and hour respectively the numerical value of the acceleration is
A. 360000
B. 72000
C. 36000
D. 129600

Answer: D

- Watch Video Solution

32. A gas bubble, from an exlosion under water, oscillates with a period T proportional to $\mathrm{p}^{\wedge}(\mathrm{a}) \mathrm{d}^{\wedge}(\mathrm{b}) \mathrm{E}^{\wedge}\left(\mathrm{c} \quad\right.$). Where P^{\prime} isthestaticpressure, 'd'isthedensityofwater' ${ }^{\prime}$ '
isthe \rightarrow tale \neq rgyofthe \exp losion. $F \in$ dthevaluesofa, b and, c^{\prime}.
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $-\frac{1}{4}$
D. $-\frac{5}{6}$

Answer: d

- Watch Video Solution

33. Let $\left[\varepsilon_{0}\right]$ denote the dimensional formula of the permittivity of the vacuum, and $\left[\mu_{0}\right]$ that of the permeability of the vacuum.

If
$M=$ mass $, L=\leq n>h, T=$ time and $I=e \leq c t r i c c u r r e n t$
A. $\left[\varepsilon_{0}\right]=\left[M^{\wedge}(-1) L^{\wedge}(-3) T^{\wedge}(3) I\right]^{\wedge}$
B. $\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{4} l^{2}\right]$
C. $\left[\mu_{0}\right]=\left[M L T^{-2} l^{-2}\right]$
D. $\left[\varepsilon_{0}\right]=\left[M^{-1} L^{-3} T^{3} l\right]$

Answer: c

D Watch Video Solution

34. If area (A) velocity (v) and density (ρ) are base units, then the dimensional formula of force can be represented
A. $A v \rho$
B. $A v^{2} \rho$
C. $A v \rho^{2}$
D. $A^{2} v \rho$

- Watch Video Solution

35. If velocity, time and force were chosen as basic quantities, find the dimensions of mass and energy.
A. $F V T$
B. $F V T^{2}$
C. $F^{0} V T^{-1}$
D. $F V^{2} T^{-1}$

Answer: a

- Watch Video Solution

36. If pressure P , velocity V and time T are taken as fundamental physical quantities, the dimensional formula of force if
A. $P V^{2} T^{2}$
B. $P^{-1} V^{2} T^{2}$
C. $P V T^{2}$
D. $P^{-1} V T^{2}$

Answer: a

- Watch Video Solution

37. If velocity v acceleration A and force F are chosen as fundamental quantities, then the dimensional formula of angular momentum is terms of v, A and F would be
A. $F A^{-1} v$
B. $F V^{3} A^{-2}$
C. $F V^{2} A^{-1}$
D. $F^{2} V^{2} A^{-1}$

Answer: b

D Watch Video Solution

38. If the speed of light c , acceleration due to gravity (g) and pressure (p) are taken as the fundamental quantities then the dimension of gravitational constant is
A. $c^{2} g^{0} \rho^{-2}$
B. $c^{0} g^{2} \rho^{-1}$
C. $c g^{3} \rho^{-2}$
D. $c^{-1} g^{0} \rho^{-1}$

Answer: b

- Watch Video Solution

39. If energy E, length L, and time T are taken as fundamental quantities .The dimensional formula of gravitational constant is
A. $\left[F L^{6} E^{-2}\right]$
B. $\left[F L^{5} T^{-1}\right]$
C. $\left[E^{2} F L^{6} T^{0}\right]$
D. $\left[E^{2} F^{-1} L^{6} T^{5}\right]$

Answer: a

40. In the formula $X=3 Y Z^{2}, X$ and Z have dimensions of capacitance and magnetic induction respectively. The dimensions of Y in MKSQ system are
A. $\left[M^{2} L^{-2} T^{3} Q^{4}\right]$
B. $\left[M^{-3} L^{-2} T^{4} Q^{4}\right]$
C. $\left[M^{-2} L^{-2} T^{4} Q^{3}\right]$
D. $\left[M^{-3} L^{-1} T^{3} Q^{4}\right]$

Answer: b

- Watch Video Solution

41. If L, R, C denote inductance, resistance and capacitance, respectively .Then dimensions of $\frac{1}{R^{2} C}$ are
A. $\left[M^{0} L^{0} T\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[A^{-1} M^{0} L^{0} T^{-1}\right]$
D. $\left[M^{0} L^{0} T^{0}\right]$

Answer: d

D Watch Video Solution

Significant Figures

1. What is the number of significant figure is 0.310×10^{3} ?
A. 2
B. 3
C. 4
D. 6

Answer: B

- Watch Video Solution

2. The number of significant figures in 0.06900 is
A. 5
B. 4
C. 2
D. 3

Answer: b

3. The sum of the numbers $436.32,227.2$ and 0.301 in appropriate significant figures is
A. 663.821
B. 664
C. 663.8
D. 663.82

Answer: C

- Watch Video Solution

4. The mass and volume of a body are 4.237 g and $2.5 \mathrm{~cm}^{3}$ respectively. The density of the material of the body in correct significant figures is
A. $1.6048 \mathrm{gcm}^{-3}$
B. $1.69 \mathrm{gcm}^{-3}$
C. $1.7 \mathrm{gcm}^{-3}$
D. $1.695 \mathrm{gcm}^{-3}$

Answer: C

D Watch Video Solution

5. The numbers 2.745 and 2.735 on rounding off to 3 significant figures will give
A. 2.75 and 2.74
B. 2.74 and 2.73
C. 2.75 and 2.73
D. 2.74 and 2.74

- Watch Video Solution

6. The decimal equivalent of $\frac{1}{20}$ up to three significant figures is
A. 0.0500
B. 0.05000
C. 0.0050
D. 5.0×10^{-2}

Answer: a

7. In the context of accuracy of measurement and significant figures in expressing result of experiment, which of the following is /are correct
(1) Out of the two measurements 50.14 cm and 0.00025 ampere, the first one has greater accuracy
(2) If one travels 478 km by rail and 397 m by road,, the total distance travelled is 478 km
A. Only (1) is correct
B. Only (2) is correct
C. Both are correct
D. None of these is correct

Answer: c

8. If $L=2.331 \mathrm{~cm}, B=2.1 \mathrm{~cm}$, then ${ }^{`} \mathrm{~L}+\mathrm{B}=$
A. 4.431 cm
B. 4.43 cm
C. 4.4 cm
D. 4 cm

Answer: C

D Watch Video Solution

9. Two numbers $a=0.92$ and $b=0.08$ are given. The number of
significant figure present in the result after the following operation $a+b, a-b, a \times b$ and a / b respectively are
A. $2,2,2,2$
B. $3,3,2,2$
C. $3,2,1,1$
D. $3,2,2,2$

Answer: C

- Watch Video Solution

10. The length, breadth and thickness of a block are given by l=12
$\mathrm{cm}, \mathrm{b}=6 \mathrm{~cm}$ and $\mathrm{t}=2.45 \mathrm{~cm}$. The volume of the block according to the idea of significant figures should be
A. $1 \times 10^{2} \mathrm{~cm}^{3}$
B. $2 \times 10^{2} \mathrm{~cm}^{3}$
C. $1.763 \times 10^{2} \mathrm{~cm}^{3}$
D. None of these

- Watch Video Solution

11. The value of resistance is 10.845Ω and the current is $3.23 A$. On multiplying them, we get the potential difference in terms of significant figures?
A. 35 V
B. 35.0 V
C. 3.0295 V
D. 35.03 V

Answer: b

- Watch Video Solution

12. The radius of a sphere is 1.41 cm . its volume to an appropriate number of significant figure is
A. $11.73 \mathrm{~cm}^{3}$
B. $11.736 \mathrm{~cm}^{3}$
C. $11.7 \mathrm{~cm}^{3}$
D. $117 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

13. The mass of a box measured by a grocer's balance is 2.300 kg . Two gold pieces of masses 20.15 g and 20.17 g are added to the box. What is (a) the total mass of the box, (b) the difference in the masses of the pieces to correct significant figures?
A. 2.3 kg
B. 2.34 kg
C. 2.340 kg
D. 2.3403 kg

Answer: a

D Watch Video Solution

14. A cube has a side of length $1.2 \times 10^{-2} \mathrm{~m}$. Calculate its volume. (upto correct significant figure)
A. $1.7 \times 10^{-6} m^{3}$
B. $1.73 \times 10^{-6} \mathrm{~m}^{3}$
C. $1.70 \times 10^{-6} \mathrm{~m}^{3}$
D. $1.732 \times 10^{-6} \mathrm{~m}^{3}$

- Watch Video Solution

Erros Of Measurement

1. Which of the following measurement is most precise?
A. 5.00 mm
B. 5.00 cm
C. 5.00 m
D. 5.00 km

Answer: a

O
2. The mean length of an object is 5 cm . Which of the following measurements is most accurate?
A. 4.9 cm
B. 4.805 cm
C. 5.25 cm
D. 5.4 cm

Answer: A

- Watch Video Solution

3. The period of oscillation of a simple pendulum in the experiment is recorded as $2.63 s, 2.56 s, 2.42 s, 2.71 s$, and $2.80 s$. Find the average absolute error.
A. $0.1 s$
B. 0.11 s
C. 0.01 s
D. 1.0 s

Answer: b

D Watch Video Solution

4. The mean time period of second's pendulum is 2.00 s and mean absolute error in the time period is 0.05 s . To express maximum estimate of error, the time period should be written as
A. $(2.00 \pm 0.01) s$
B. $(2.00 \pm 0.025) s$
C. $(2.00 \pm 0.05) s$
D. $(2.00 \pm 0.10) s$

Answer: C

- Watch Video Solution

5. If $X=A \times B$ and $\Delta X \Delta A$ and ΔB are maximum absolute error in X, A and B respectively, then the maximum relative in X is given by
A. $\Delta X=\Delta A+\Delta B$
B. $\Delta X=\Delta A-\Delta B$
C. $\frac{\Delta X}{X}=\frac{\Delta A}{A}-\frac{\Delta B}{B}$
D. $\frac{\Delta X}{X}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$

- Watch Video Solution

6. If $X=A \times B$ and $\Delta X, \Delta A$ and ΔB are maximum absolute error in X, A and B respectively, then the maximum relative in X is given by
A. $\Delta X=\Delta A+\Delta B$
B. $\Delta X=\Delta A-\Delta B$
C. $\frac{\Delta X}{X}=\frac{\Delta A}{A}-\frac{\Delta B}{B}$
D. $\frac{\Delta X}{X}=\frac{\Delta A}{A}+\frac{\Delta B}{B}$

Answer: D

7. The internal and external diameters of a hollow cylinder are measured with the help of a Vernier calipers. Their values are $4.23 \pm 0.01 \mathrm{~cm}$ and $3.87 \pm 0.01 \mathrm{~cm}$, respectively. The thickness of the wall of the cylinder is
A. $(0.34 \pm 0.02) \mathrm{cm}$
B. $(0.17 \pm 0.02) \mathrm{cm}$
C. $(0.17 \pm 0.01) \mathrm{cm}$
D. $(0.34 \pm 0.01) \mathrm{cm}$

Answer: C

- Watch Video Solution

8. Two resistor $R_{1}=(24 \pm 0.5) \Omega$ and $R_{2}=(8 \pm 0.3) \Omega$ are joined in series, The equivalent resistance is
A. $32 \pm 0.33 \Omega$
B. $32 \pm 0.8 \Omega$
C. $32 \pm 0.2 \Omega$
D. $32 \pm 0.5 \Omega$

Answer: B

- Watch Video Solution

9. A physical quantity X is represented by $X=\left(M^{x} L^{-y} T^{-z}\right.$. The maximum percantage errors in the measurement of M, L, and T, respectively , are $a \%, b \%$ and $c \%$. The maximum percentage error in the measurement of X will be
A. $(\alpha a+\beta b-\gamma c)$
B. $(\alpha a+\beta b+\gamma c)$
C. $(\alpha a-\beta b+\gamma c)$
D. Zero

Answer: b

- Watch Video Solution

10. The resistance of a metal is given by $R=V / I$, where V is potential difference and I is current. In a circuit, the potential difference across resistance is $V=(8 \pm 0.5) V$ and current in resistance, $I=(4 \pm 0.2) A$. What is the value of resistance with its percentage error?
A. $4 \pm 16.25 \%$
B. $4 \pm 6.25 \%$
C. $4 \pm 10 \%$
D. $4 \pm 8 \%$

Answer: a

- Watch Video Solution

11. Given Resistance $R_{1}=(8 \pm 0.4) \Omega$ and Resistence, $R_{2}=(8 \pm 0.6) \Omega$ What is the net resistence when R_{1} and R_{2} are connected in series?
A. $(16 \pm 0.4 \Omega)$
B. $(3.45 \pm 0.3) \Omega$
C. $(3.45 \pm 0.4) \Omega$
D. $(3.45 \pm 0.5) \Omega$

Answer: C

12. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$. Find the velocity of the body within error limits and the percentage error.
A. $(3.45 \pm 0.2) m s^{-1}$
B. $(3.45 \pm 0.3) m s^{-1}$
C. $(3.45 \pm 0.4) m s^{-1}$
D. $(3.45 \pm 0.5) m s^{-1}$

Answer: b

D Watch Video Solution

13. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3) s$ so The percentage errors in the problem is
A. 7%
B. 5.95%
C. 8.95%
D. 9.85%

Answer: C

- Watch Video Solution

14. The percentage errors in the measurement of mass and speed are 2% and 3%, respectively. How much will be the maximum error in the estimation of $K E$ obtained by measuring mass and speed?
A. 11%
B. 8%
C. 5%
D. 1%

Answer: B

D Watch Video Solution

15. The radius of a sphere is $(5.3 \pm 0.1) \mathrm{cm}$ ' The perecentage error in its volume is
A. $\frac{0.1}{5.3} \times 100$
B. $3 \times \frac{0.1}{5.3} \times 100$
C. $\frac{0.1 \times 100}{3.53}$
D. $3+\frac{0.1}{5.3} \times 100$

- Watch Video Solution

16. Errror in the measurement of radius of a sphere is 1%.The error in the calculated value of its volume is
A. 1%
B. 3%
C. 5%
D. 7%

Answer: B

17. Measure of two quantities along with the precision of respective measuring instrument is $A=2.5 \mathrm{~ms}^{-1} \pm 0.5 \mathrm{~ms}^{-1}$,$B=0.10 s+-0.01 s^{\prime}$. The value of $A B$ will be
A. $(0.25 \pm 0.08) m$
B. $(0.25 \pm 0.5) m$
C. $(0.25 \pm 0.05) m$
D. $(0.25 \pm 0.135) m$

Answer: a

- Watch Video Solution

18. The period of oscillation of a simple pendulum is given by
$T=2 \pi \sqrt{\frac{l}{g}}$ where I is about 100 cm and is known to have 1 mm
accuracy. The period is about 2 s . The time of 100 oscillation is measrued by a stop watch of least count 0.1 s . The percentage error is g is
A. 0.1%
B. 1%
C. 0.2%
D. $0.8 \%^{\prime}$

Answer: C

- Watch Video Solution

19. The relative density of material of a body is found by weighting it first in air and then in water. If the weight in air is
$(5.00 \pm 0.05) N$ and the weight in water is $(4.00 \pm 0.05) N$. Find
the relative density along with the maximum permissible percentage error.
A. $5.0 \pm 11 \%$
B. $5.0 \pm 1 \%$
C. $5.0 \pm 6 \%$
D. $1.25 \pm 5 \%$

Answer: a

- Watch Video Solution

20. The length of a cylinder is measured with a meter rod having least count 0.1 cm . Its diameter is measured with Vernier calipers having least count 0.01 cm . Given that length is 5.0 cm and radius is 2 cm . Find the percentage error in the calculated value of the volume.
A. 1%
B. 2%
C. 3%
D. 4%

Answer: C

D Watch Video Solution

21. In an experiment, the following observations were recorded:
$L=2.820 \mathrm{~m}, M=3.00 \mathrm{~kg}, l=0.087 \mathrm{~cm}$, diameter, $D=0.041 \mathrm{~cm}$
. Taking $g=9.81 m s^{-2}$ and using the formula , $Y=\frac{4 M g L}{\pi D^{2} l}$, find the maximum permissible error in Y.
A. 7.96%
B. 4.56%
C. 6.50%
D. 8.42%

Answer: C

(D) Watch Video Solution

22. If there is a positive error of 50% in the measurement of velocity of a body, find the error in the measurement of kinetic energy.
A. 25%
B. 50%
C. 100%
D. 125%

- Watch Video Solution

23. A physical quantity A is related to four observable a, b, c and d as follows, $A=\frac{a^{2} b^{3}}{c \sqrt{d}}$, the percentage errors of measurement is a,b,c and d,are $1 \%, 3 \%, 2 \%$ and 2% respectively. What is the percentage error in the quantity A ?
A. 12%
B. 7%
C. 5%
D. 14%

Answer: D

24. A wire has a mass $0.3 \pm 0.003 g$, radius $0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The maximum percentage error in the measurement of its density is
A. 1
B. 2
C. 3
D. 4

Answer: d

- Watch Video Solution

25. The length and breadth of a rectangular sheet are 16.2 cm and 10.1 cm , respectively. The area of the sheet in appropriate
significant figures and error is
A. $164 \pm 3 \mathrm{~cm}^{2}$
B. $163.62 \pm 2.6 \mathrm{~cm}^{2}$
C. $163 \pm 2.6 \mathrm{~cm}^{2}$
D. $163.62 \pm 3 \mathrm{~cm}^{2}$

Answer: a

D Watch Video Solution

26. A wire has a mass $0.4 \pm 0.004 g$ and length $8 \pm 0.08(\mathrm{~cm})$ The maximum percentage error in the measurement of it density is 4% The radius of the wire is $r \pm \Delta r$ find Δr
A. $0.02 r$
B. $0.01 r$
C. $0.03 r$
D. $0.1 r$

Answer: B

- Watch Video Solution

27. In a circuit potential difference across resistence $V=(4 \pm 0.25) V$ and curent in resistence,$f=(1 \pm 0.1)$ what is the value of resistence with its percentage error
A. $(4 \pm 0.4) \Omega$
B. $4 \Omega+16.25 \%$
C. $4 \Omega+18.25 \%$
D. $4 \Omega+22.25 \%$

- Watch Video Solution

28. The focal f to a mirror is given by $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$ where u and v represent object and image distance respectively then
A. $\frac{\Delta f}{f}=\frac{\Delta u}{u}+\frac{\Delta v}{v}$
B. $\frac{\Delta f}{f}=\frac{\Delta u}{v}+\frac{\Delta v}{u}$
C. $\frac{\Delta f}{f}=\frac{\Delta u}{u}+\frac{\Delta v}{v}-\frac{\Delta(u+v)}{u+v}$
D. $\frac{\Delta f}{f}=\frac{\Delta u}{u}+\frac{\Delta v}{v}+\frac{\Delta u}{u+v}+\frac{\Delta v}{u+v}$

Answer: D

D Watch Video Solution

29. For a cubical block, error in measurement of sides is $\pm 1 \%$ and error in measurement of mass is $\pm 2 \%$ then maximum possible error in density is
A. 1%
B. 5%
C. 3%
D. 7%

Answer: B

- Watch Video Solution

30. To estimate g (from $g=4 \pi^{2} \frac{L}{T^{2}}$), error in measurement of L is $\pm 2 \%$ and error in measurement of $T i s \pm 3 \%$ The error in
A. $\pm 8 \%$
B. $\pm 6 \%$
C. $\pm 3 \%$
D. $\pm 5 \%$

Answer: a

D Watch Video Solution

31. An experiment measure quantities x, y, z and then t is in calculate from the data as $t=\frac{x y^{2}}{z^{2}}$ if percentage error in x, y, z and are respectively $1 \%, 3 \%, 2 \%$ then percentage error in t is
A. 10%
B. 4%
C. 7%
D. 13%

Answer: D

- Watch Video Solution

Problems Based On Mixed Concepts

1. The equation of stationary wave is $y=A \sin k t \cos \omega$,where y and x in second choose the correct option
A. the dimensions of A and k are same
B. the dimensions of A, k and ware same
C. the dimensions of k and ω are same
D. the dimensions of $(k x)$ and (ω) are same

- Watch Video Solution

2. A physical quantity x depends on quantities y and z as follows : $\quad x=A y+B \tan (C z)$, where A, B and C are constants. Which of the followings do not have the same dimensions?
A. x and B
B. C and z^{-1}
C. y and $B / / A^{\prime}$
D. x and A

Answer: d
3. If the speed v of a particle of mass m as function of time t is given by $v=\omega A \sin \left[\left(\frac{\sqrt{k}}{m}\right) t\right]$, where A has dimension of length.
A. The argement of trigonometric function must be a dimensionless quantity
B. Dimensional formula of ω is $L T^{-1}$
C. Dimensional formula of k is $M L T^{-1}$
D. Dimensional formula of $\frac{\sqrt{k}}{m}$ is T

Answer: a

4. Dimensions of an unknown quantity, $\phi=\frac{m a}{\alpha} \log \left(1+\frac{\alpha l}{m a}\right)$ where $m=$ mass, $a=$ acceleration and $l=$ length are
A. $\left[M L T^{-2}\right]$
B. $\left[M T^{-2}\right]$
C. $\left[M^{0} L T^{0}\right]$
D. $\left[M L^{-3}\right]$

Answer: C

D Watch Video Solution

5. $\int \frac{d t}{\sqrt{2 a t-t^{2}}}=a^{2} \sin ^{-1}\left[\frac{1}{a}-1\right]$ The value of x is
A. 1
B. -1
C. 0
D. 2

Answer: c

(D) Watch Video Solution

6. If $\frac{A}{\mu_{0}}$ has the dimensions $\left[M L T^{-4}\right]$ what is A ?
A. square of electric flux
B. square of magnitic flux
C. square of electric field
D. square of energy

Answer: c
7. In a direct impact loss in kinetic energy is given by
$\Delta K=\frac{M_{1} M_{2}}{2\left(M_{1}+M_{2}\right)}\left(V_{1}-V_{2}\right)^{2}\left(1-k^{2}\right)$
with usual notations (except k) The quantity k will have dimensional formula
A. $\left[M^{0} L^{2} T^{-2}\right]$
B. $\left[M L T^{-1}\right]$
C. $\left[M^{0} L^{0} T^{0}\right]$
D. $\left[M^{0} T^{-1}\right]$

Answer: c

- Watch Video Solution

8. The dimensions of $\frac{C V^{2}}{L I^{2}}$ is
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M^{0} L^{0} T^{0}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L T^{-3}\right]$

Answer: B

D Watch Video Solution

9. A has travels x_{1} when accelerates from rest at constant rate a_{2} for some time and after that travels a distance x_{2} when declelertes at a constant rate a_{2} to come to rest A student established a reletion $x_{1}+x_{2}=\frac{a_{1} a_{2} t^{2}}{2\left(a_{1}+a_{2}\right)}$ choose the correct option (s)
A. The relation is dimensionally correct
B. The relation is dimensionally incorrect
C. The relation may be dimensionally correct
D. None of the above

Answer: a

- Watch Video Solution

10. If $q=q_{0}\left(1-\varepsilon^{\frac{-\square}{R C}}\right]$ here $\mathrm{q}=$ electron change $\mathrm{R}=$ electric resistence , $\mathrm{C}=$ electric capacitance , The dimensional formula for \square are
A. $\left[A^{-1} M L T^{-2}\right]$
B. $\left[A M^{0} L^{0} T^{-1}\right]$
C. $\left[M^{0} L^{0} T\right]$
D. $\left[M^{0} L^{0} T^{-2}\right]$

- Watch Video Solution

11. a quantity X is given by $\varepsilon_{0} L \frac{\Delta V}{\Delta t}$ where ϵ_{0} is the permittivity of the free space, L is a length, ΔV is a potential difference and Δt is a time interval. The dimensinal formula for X is the same as that of
A. resistence
B. charge
C. voltage
D. current

Answer: d

12. v, T, ρ and λ denote ,surface tension, mass density and wavelength, respectively \ln an experiment v depends on T, p and λ respectively . The value of v is proportional to
A. ${ }^{\text {s }} \mathrm{qrt}((\mathrm{T}) /(\operatorname{lambda}))$
B. $\sqrt{\frac{T}{p \lambda}}$
C. $\sqrt{\frac{\lambda}{p T}}$
D. ${ }^{\text {sqrt }}((\mathrm{T}) /(\mathrm{p} \mathrm{lambda}))$

Answer: b

- Watch Video Solution

13. If $F=\frac{v}{C \operatorname{in}(x b)}$ then
A. F and v denote force and velocity ,the dimensions of C are $[M T]$
B. x denote distance, the dimensions of b are $\left[L^{-1}\right]$
C. the dimensions of $\frac{v}{C}$ can never be same as F
D. the demensions of x must be same as $\frac{v}{c b}$

Answer: b

D Watch Video Solution

14. If $m, e, \varepsilon_{0} h$ and c denote mass ,electron, change of electron, plank 's constant and speed of light, respectively, then the dimensions of $\frac{m e^{4}}{\varepsilon_{0}^{2} h^{2} c}$ are
A. $\left[M^{0} L^{0} T^{-1}\right]$
B. $\left[M^{0} L^{-1} T^{-1}\right]$
C. $\left[M^{2} L T^{-3}\right]$
D. $\left[M^{0} L^{-1} T^{0}\right]$

Answer: d

- Watch Video Solution

15. The number of particles is given by $n=-D \frac{n_{2}-n_{1}}{x_{2}-x_{1}}$ crossing a unit area perpendicular to X - axis in unit time, where n_{1} and n_{2} are particles per unit volume for the value of x meant to x_{2} and x_{1}. Find the dimensions of D called diffusion constant.
A. $M^{0} L T^{2}$
B. $M^{0} L^{2} T^{-4}$
C. $M^{0} L T^{-3}$
D. $M^{0} L^{2} T^{-1}$

Answer: d

- Watch Video Solution

16. The relation $\tan \theta=v^{2} / r g$ gives the angle of banking of the cyclist going round the curve. Here v is the speed of the cyclist , r is the radius of the curve, and g is the acceleration due to gravity. Which of the following statements about the relation is true?
A. both dimensionally and numerically correct
B. neithen numerically not dimensionally correct
C. dimensionally correct only
D. numerically correct only

- Watch Video Solution

17. The position of a particle at time t is given by the relation $x(t)=\left(\frac{v_{0}}{\alpha}\right)\left(1-c^{-a t}\right)$, where v_{0} is a constant and $\alpha>0$. Find the dimensions of v_{0} and α.
A. $M^{0} L^{1} T^{-1}$ and T^{-1}
B. $M^{0} L^{1} T^{0}$ and T^{-1}
C. $M^{0} L^{1} T^{-1}$ and $L T^{-2}$
D. $M^{0} L^{1} T^{-1}$ and T

Answer: a

- Watch Video Solution

18. The equation of state of some gases can be expressed as $\left(P+\frac{a}{V^{2}}\right)=\frac{R \theta}{V}$ where P is the pressure V the volume, θ The temperature and a and b are constant .The dimensional formula of a is
A. $\left[M L^{5} T^{-2}\right]$
B. $\left[M^{-1} L^{5} T^{2}\right]$
C. $\left[M L^{-1} T^{2}\right]$
D. $\left[M L^{-5} T^{2}\right]$

Answer: a

D Watch Video Solution

19. A highly rigid cubical block A of small mass M and side L is fixed rigidly on the other cubical block of same dimensions and
of modulus of rigidity η such that the lower face of A completely covers the upper face of B. The lower face of B is rigidly held on a horizontal surface.A small force F is applied perpendicular to one of the side faces of A. After the force is withdrawn, block A executes faces of A. After the force is withdrawn , block A exceutes small oscillations, the time period of which is given by
A. $2 \pi \sqrt{M \eta L}$
B. $2 \pi \sqrt{(M \eta / L)}$
C. $2 \pi \sqrt{(M L / \eta)}$
D. $2 \pi \sqrt{(M / \eta L)}$

Answer: d

20. Experiment shows that two perfectly neutral parallel metal plates separated by a small distance d sttract eachother via a very weak force, known as the Casimir force. The force per unit area of the plates, F , depends only on the Planck constant h , on the speed of light c , and on d . Which of the following has the best chance of being correct for F ?
A. $F=\frac{h c}{d^{2}}$
B. $F=\frac{h c}{d^{4}}$
C. $F=\frac{h d^{2}}{c}$
D. $F=\frac{d^{4}}{h c}$

Answer: b

- Watch Video Solution

21. A person measures two quantities as $A=1.0 m \pm 0.2 m, B=2.0 m \pm 0.2 m \quad$ We should report correct value for $\sqrt{A B}$ as
A. $1.4 m \pm 0.4 m$
B. $1.41 m \pm 0.15 m$
C. $1.4 m+0.3 m$
D. $1.4 m \pm 0.2 m$

Answer: D

- Watch Video Solution

22. A student measures the time period of 100 ocillations of a simple pendulum four times. The data set is $90 \mathrm{~s}, 91 \mathrm{~s}, 95 \mathrm{~s}$, and

92 s. Ifthe $\min i \mu m \div i$ sion \in themeasur \in gclockis $1 \quad$ s', then the reported men time should be:
A. $92 \pm 2 s$
B. $92 \pm 5.0 s$
C. $92 \pm 1.8 s$
D. $92 \pm 3 s$

Answer: a

- Watch Video Solution

23. The period of oscillation of a simple pendulum is $T=2 \pi \sqrt{L / g}$. Measured value of L is 20.0 cm known to 1 mm accuracy and time for 100 oscillations of the pendulum is found to be 90 s using a wrist watch of 1 s resolution. What is the accuracy in the determination of g ?
A. 2%
B. 3%
C. 1%
D. 5%

Answer: b

D Watch Video Solution

24. The currect voltage relation of a diode is given by $1=\left(e^{v a n v / T}-1\right) m A$ where the applied volied V is in volts and the tempetature T is in degree kelvin if a student make an error meassurting $\pm 01 \mathrm{~V}$ while measuring the current of $5 m$ Aat $300 K$ what be the error in the value of current in $m A$
A. $0.5 m A$
B. 0.05 mA
C. $0.2 m A$
D. $0.02 m A$

Answer: c

- Watch Video Solution

Assertion Reasoning

1. Assertion: if two physical quantities have same dimension, then they can be certainly added or subtracted because

Reason: if the dimension of both the quantities are same then both the physical quantities should be similar .
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: a

D Watch Video Solution

2. Assertion: Angle and angular displacement a dimensionless quantities.

Reason: Angle is equal in are length divided by radius.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: a

D Watch Video Solution

3. Assertion: Force can be added to pressure.

Reason: Force and pressure have same dimensions.
A. If both assertion and reason are true and reason is the
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: d

D Watch Video Solution

4. Assertion: Angle and angular displacement a dimensionless quantities.

Reason: Angle is equal in arc length divided by radius.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

5. Assersion : Out of three meansurements $l=0.7 \mathrm{~m}, l=0.70 \mathrm{~m}$ and $l=0.700 \mathrm{~m}$ the last one is most accurate.

Reason: In every meansurements only the last significant digit is not accurately known.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: b

(Watch Video Solution

6. Assertion: The number 1.202 has four significant figure and the number 0.0024 has two significant figure.

Reason: All the non zero digits are significant.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: b

- Watch Video Solution

7. Assertion: $\ln y=A \sin (\omega t-k x),(\omega t-k x)$ is dimensionless.

Reason: Because dimension of $\omega=\left[M^{0} L^{0} T\right]$.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: c

- Watch Video Solution

8. Assertion: When we change the unit of measurerment of a quantity its numerical value changes.

Reason: Smaller the unit of measurement smaller is its numerical value.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: c

- Watch Video Solution

9. Assertion: The given equation $x=x_{0}+u_{0} t+\frac{1}{2} a t^{2}$ is dimensionsally correct, where x is the distance travelled by a particle in time t , initial position x_{0} initial velocity u_{0} and uniform acceleration a is along the direction of motion.

Reason: Dimensional analysis can be used for cheking the dimensional consistency or homogenetly of the equation.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: a

D Watch Video Solution

10. Assertion: The dimensional formula of surface energy is
$\left[M^{0} L^{2} T^{-2}\right]$.
Reason: surface energy has same dimensions as that of potential energy.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: d

D Watch Video Solution

11. Assertion: When percentage error in the meansurement of mass and velocity are 1% and 2% respectively the percentagwe error in K.E. is 5%.

Reason: $\frac{\Delta K}{K}=\frac{\Delta m}{m}=\frac{2 \Delta v}{v}$.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: a

- Watch Video Solution

12. Assertion: A dimensionally wrong or inconsistaent equation must be wrong.

Reason: A dimensionally consistent equation is a exact or a correct equation.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: c

D Watch Video Solution

13. Assertion: Dimensional constant are the quantities whose value are constant.

Reason: Dimensional constant are dimensionless.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

14. Assertion: Pressure can not be subtracted from pressure gradient.

Reason: Pressure and pressure gradient have different dimensions.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: a

D Watch Video Solution

15. Assertion: In the relation $f=\frac{1}{2 l} \sqrt{\frac{T}{m}}$, where symbols have standard meaning , m represent linear mass density.

Reason: The frequency has the dimensions linear of time.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: b

D Watch Video Solution

16. Assertion: the quantity $\left(1 / \sqrt{\mu_{0} \varepsilon_{0}}\right)$ is dimensionally equal to velocity and numerical equal to velocity of light.

Reason : μ_{0} is permeability of free space and ε_{0} is the permitivity of free space.
A. If both assertion and reason are true and reason is the correct explation of assertion.
B. If both assertion but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: b

- Watch Video Solution

Neet Questions

1. Planck's constant has the dimension (unit) of
A. Energy
B. Linear momentum
C. Work
D. Angular momentum

Answer: d

- Watch Video Solution

2. The unit of Stefan's constant σ is
A. $W m^{-2} K^{-1}$
B. $W m^{2} K^{-4}$
C. $W m^{-2} K^{-4}$
D. $W m^{-2} K^{-4}$

Answer: c

3. The dimesions of emf in $M K S$ is
A. $M L^{-1} T^{-2} Q^{-2}$
B. $M L^{2} T^{-1} Q^{-1}$
C. $M L T^{-1} Q^{-1}$
D. $M L^{-2} T^{-2} Q^{-1}$

Answer: d

D Watch Video Solution

4. Candela is the unit of
A. Electric intensity
B. Luminous intensity
C. Sound intensity
D. None of these

Answer: b

- Watch Video Solution

5. The dimensional formula of relative density is
A. $M L^{-3}$
B. $L T^{-1}$
C. $M L T^{-2}$
D. Dimensionaless

Answer: d

6. The dimenational formula for Young's modulus is
A. $M L^{-1} T^{-2}$
B. $M^{0} L T^{-2}$
C. $M L T^{-2}$
D. $M L^{2} T^{-2}$

Answer: a

- Watch Video Solution

7. The unit of permittivity of free space ε_{0} is:
A. coulomb / newton - metre
B. newton - metre $^{2} /$ coulomb 2
C. coulomb ${ }^{2} /$ newton - metre 2
D. coulomb ${ }^{2} /(\text { newton }- \text { metre })^{2}$

Answer: c

- Watch Video Solution

8. The dimension of universal gravitational constant are
A. $\left[M^{-1} L^{3} T^{-2}\right]$
B. $\left[M L^{2} T^{-1}\right]$
C. $\left[M^{-2} L^{3} T^{-2}\right]$
D. $\left[M^{-2} L^{2} T^{-1}\right]$

Answer: A

9. The velocity v of a particle at time A is given by $v=a t+\frac{b}{l+c}$ where a, b and c are constant The dimensions of a, b and c are respectively
A. $\left[L T^{-2}\right],[L]$ and $[T]$
B. $\left[L^{2}\right],[T]$ and $\left[L T^{2}\right]$
C. $\left[L T^{2}\right],[L T]$ and $[L]$
D. $[L],[L T]$ and $\left[T^{2}\right]$

Answer: a

- Watch Video Solution

10. Dimensions of resistence in an electrical circuit, in terms of dinestion of mass M of length I, of time T and of curent L would be
A. $\left[M L^{2} T^{-3} I^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{2} T^{-1} I^{-1}\right]$
D. $\left[M L^{2} T^{-3} I^{-2}\right]$

Answer: d

D Watch Video Solution

11. If the error in the measurement of radius of a sphere in 2% then the error in the determination of volume of the spahere will be
A. 4%
B. 6%
C. 8%
D. 2%

Answer: b

- Watch Video Solution

12. Which two of the following five physical parameters have the same dimension?
(1) Energy density
(2) refractive index
(3) dielectric constant
(4) Young's modulus
(5) magnitic field
A. 2 and 4
B. 3 and 5
C. 21 and 4
D. 1 and 5

Answer: c

- Watch Video Solution

13. In the dimension of a physical quantities are given by $M^{0} L^{1} T^{0}$, then the physical quantity will be
A. pressure if $a=1, b=-1, c=-2$
B. Velocity if $a=1, b=0, c=-1$
C. acceleration if $a=1, b=1, c=-2$
D. force if $a=0, b=-1, c=-2$

Answer: a
14. The dimension of $\left(\frac{1}{2}\right) \varepsilon_{0} E^{2}$ (ε_{0} : permittivity of free space, E electric field
A. $\left[M L^{2} T^{-2}\right]$
B. $\left[M L^{-1} T^{-2}\right]$
C. $\left[M L^{2} T^{-1}\right]$
D. $\left[M L T^{-1}\right]$

Answer: b

D Watch Video Solution

15. The dimesions of $\left(\mu_{0} \varepsilon_{0}\right)^{-1 / 2}$ are
A. $\left[L^{-1} T\right]$
B. $\left[L T^{-1}\right]$
C. $\left[L^{-1 / 2} T^{1 / 2}\right]$
D. $\left[L^{1 / 2} T^{-1 / 2}\right]$

Answer: b

- Watch Video Solution

16. The density of material in CGS system of units is $4 \mathrm{gcm}^{-3}$. In a
system of units in which unit of length is 10 cm and unit of mass is 100 gm , then the value of density of material will be
A. 0.4
B. 40
C. 400
D. 0.04

- Watch Video Solution

17. In an experiment four quantities a, b, c and d are measure with percentage error $1 \%, 2 \%, 3 \%$, and 4% respectively quantity is P is calculate as follow
$P=\frac{a^{3} b^{2}}{c d} \%$ error in P is
A. 14%
B. 10%
C. 7%
D. 4%

Answer: a

18. If force (F) velocity (V) and time (T) are taken as fundamental units, then the dimensions of mass are
A. $\left[F V T^{-1}\right]$
B. $\left[F V T^{-2}\right]$
C. $\left[F V^{-1} T^{-1}\right]$
D. $\left[F V^{-1} T\right]$

Answer: d

- Watch Video Solution

19. If energy (E), velocity (V) and time (T) are chosen as the fundamental quantities, the dimensions formula of surface tension will be
A. $\left[E V^{-2} T^{-1}\right]$
B. $\left[E V^{-1} T^{-2}\right]$
C. $\left[E V^{-2} T^{-2}\right]$
D. $\left[E^{-2} V^{-1} T^{-3}\right]$

Answer: c

- Watch Video Solution

20. In dimension of circal velocity v_{0} liquid following through a take are expressed as $\left(\eta^{x} \rho^{y} r^{z}\right)$ where η, ρ and r are the coefficient of viscosity of liquid density of liquid and radius of the tube respectively then the value of x, y and z are given by
A. $1,1,1$
B. $1,-1,-1$
C. $-1,-1,1$
D. $-1,-1,-1$

Answer: b

- Watch Video Solution

21. Plank 's constant (h) speed of length in vacium (C) and newton 's gravitational constant (G) are three fundamental constant .Which of the following combinations of these has the dimension of length?
A. $\sqrt{\frac{h c}{G}}$
B. $\sqrt{\frac{G c}{h^{3 / 2}}}$
C. $\sqrt{\frac{h G}{c^{3 / 2}}}$
D. $\sqrt{\frac{h G}{c^{5 / 2}}}$

- Watch Video Solution

22. A physical energy of the dimension of length that can be formula cut of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is $[c$ is velocity of light G is universal constant of gravilation e is change
A. $c^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$
B. $\frac{1}{c^{2}}\left[G \frac{e^{2}}{G 4 \pi \varepsilon_{0}}\right]^{1 / 2}$
C. $\frac{1}{c} G \frac{e^{2}}{4 \pi \varepsilon_{0}}$
D. $\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{1 / 2}$

Answer: d

23. A student measured the diameter of a small steel ball using a screw gauge of least count 1.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm , the correct diameter of the ball is
A. 0.529 cm
B. 0.521 cm
C. 0.503 cm
D. 0.525 cm

Answer: A

D Watch Video Solution

1. Which of the following pairs does not have similar dimensions?
A. Stress and pressure
B. Tension and surface tension
C. Plank 's constant and angular momentum
D. Angle and strain

Answer: B

- Watch Video Solution

2. The length and breadth of a metal sheet are
$1.124 m$ and $0.002 m$ respectively. The area of the sheet up in four currect significant figure is
A. $9.3782 m^{3}$
B. $9.37 m^{3}$
C. $9.378248 m^{3}$
D. $9.378 m^{3}$

Answer: d

- Watch Video Solution

3. The dimension of torque is:
A. $\left[M L^{-1} T^{-2}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{-1} T^{-1}\right]$
D. $\left[M T^{-3}\right]$

- Watch Video Solution

4. Velocity of light of equal to
A. $\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}$
B. $\sqrt{\frac{1}{\varepsilon_{0} \mu_{0}}}$
C. $\frac{\varepsilon_{0}}{\mu_{0}}$
D. $\varepsilon_{0} \mu_{0}$

Answer: b

- Watch Video Solution

5. Using mass (M), length $(L), \operatorname{time}(T)$ and $\quad \operatorname{current}(A)$ as fundamental quantites the demension of permeability is
A. $\left[M^{-1} T^{-2} A\right]$
B. $\left[M L^{-2} T^{-2} A^{-2}\right]$
C. $\left[M L T^{-2} A^{-2}\right]$
D. $\left[M L T^{-1} A^{-1}\right]$

Answer: c

D Watch Video Solution

6. Using mass (M), length $(L), \operatorname{time}(T)$ and $\operatorname{current}(A)$ as
fundamental quantites the demension of permeability is
A. $\left[M L T^{-2} A\right]$
B. $\left[M^{-1} L^{-2} T^{4} A^{2}\right]$
C. $\left[M L T^{-1} A\right]$
D. $\left[M L^{2} T^{-1} A^{2}\right]$

Answer: b

D Watch Video Solution

7. ' 'Parses'' is the unit of
A. sdistance
B. time
C. frequency
D. angular acceleration
8. Dimensions of electrical resistence are
A. $\left[M L^{2} T^{-3} A^{-1}\right]$
B. $\left[M^{-1} L^{-3} T^{4} A^{2}\right]$
C. $\left[M L^{3} T^{-3} A^{-3}\right]$
D. $\left[M L^{-1} L^{3} T^{3} A^{2}\right]$

Answer: b

D Watch Video Solution

9. The magnetic moment has dimensions of
A. $[L A]$
B. $\left[L^{2} L A\right]$
C. $\left[L T^{-1} A\right]$
D. $\left[L^{3} T^{-1} A\right]$

Answer: b

D Watch Video Solution

10. The speed (v) of ripples on the surface of waterdepends on surface tension (σ), density (ρ) and wavelength (λ). The square of speed (v) is proportional to
A. $\frac{\rho}{\sigma \lambda}$
B. $\frac{\sigma}{\rho \lambda}$
C. $\frac{\lambda}{\sigma \rho}$
D. $r h \lambda \sigma$

- Watch Video Solution

11. The speed of light (c), gravitational constant (G) and plank's constant (h) are taken as fundamental units in a system. The dimensions of time in this new system should be.
A. $G^{1 / 2} h^{1 / 2} c^{-5 / 2}$
B. $G^{-1 / 2} h^{1 / 2} c^{1 / 2}$
C. $G^{1 / 2} h^{1 / 2} c^{-3 / 2}$
D. $G^{1 / 2} h^{1 / 2} c^{1 / 2}$

Answer: a

- Watch Video Solution

12. Presure gradient has the ssame dimension as that of
A. Velocity gradient
B. Potential gradient
C. Energy gradient
D. None of these

Answer: d

- Watch Video Solution

13. A physical parameter a can be determined by measuring the parameters b, c, d, and e using the relation $a=b^{\alpha} c^{\beta} / d^{\gamma} e^{\delta}$. If the maximum errors in the measurement of b, c, d, and e are $b_{1} \%, c_{1} \%, d_{1} \%$, and $e_{1} \%$, then the maximum error in the value of a determined by the experminent.
A. $\left(b_{1}+c_{1}+d_{1}+e_{1}\right) \%$
B. $\left(b_{1}+c_{1}-d_{1}-e_{1}\right) \%$
C. $\left(\alpha b_{1}+\beta c_{1}-\gamma d_{1}-\delta e_{1}\right) \%$
D. $\left(\alpha b_{1}+\beta c_{1}+\gamma d_{1}+\delta e_{1}\right) \%$

Answer: d

D Watch Video Solution

14. A wire has a mass $0.3 \pm 0.003 g$, radius $0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The maximum percentage error in the measurement of its density is
A. 1
B. 2
C. 3
D. 4

Answer: d

- Watch Video Solution

15. In $C G S$ system the magnitude of the force is 100 dynes. In another system where the fundamental phyical quamtities are kilogram , meter , and minute, find the magnitude of the force.
A. 0.036
B. 0.36
C. 3.6
D. 36

Answer: c

16. A physical quantity X is give by the relation $X=\frac{2 h^{3} I^{2}}{2 \sqrt{n}}$ The percentage error in the meansurement of $\mathrm{k}, \mathrm{l}, \mathrm{m}$ and n are $1 \%, 2 \%, 3 \%$ and 4% respectively The value of X is uncertain by
A. 10%
B. 12%
C. 8%
D. none of these

Answer: b

- Watch Video Solution

17. Assertion : Specific gravity of a fluid is a dimensionless quantity.

Reason : It is the ratio of ratio of fluid to the density of water
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

Answer: a

- Watch Video Solution

18. Assertion: The error in the measurement of radius of sphere is 0.3%. The permissible error in its surface area is 0.6%.

Reason: The permissible error is calculated by the formula $\frac{\Delta A}{A}=\frac{4 \Delta r}{r}$.
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason
is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

Answer: c

- Watch Video Solution

19. Assertion : The period change in time period is 1.5% if the length of simple pendulum increases by 3%.

Reason : Time period is dinesty proportional to length of pendulum.
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

Answer: c

- Watch Video Solution

20. Assertion : The quantities $\left(1 \sqrt{\mu_{0} \varepsilon_{0}}\right)$ is dimensionally equal to velocity and numericallyy equal of light.

Reason : μ_{0} is permeability of free space and ε_{0} is the permittivity of free space.
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

Answer: b

D Watch Video Solution

21. Assertion : When we change the unit of meansurement of a quantities its numerical value change.

Reason : smaller the unit of meansurement smaller is its numerical value.
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

Answer: c

- Watch Video Solution

22. Assertion : The power of an angular depends on mass angular speed torque and angular momentum, then the formula of power is not derived with the help of dimensional method.

Reason: In mechanics if a particular quantity depends on more than three quantities then we cannot dimensions the formula of the quantities by the help of dimensions method.
A. If both the asseration and reason are true and reason is a true explanation of the asseration.
B. If both the asseration and reason are true but the reason is not the correct explanation of asseration.
C. If the asseration is ture but reason is false.
D. If both the asseration and reason are false.

View Text Solution

Chapter Test

1. The dimensions of shear modulus are
A. $M L T^{-1}$
B. $M L^{2} T^{-2}$
C. $M L^{-1} T^{-2}$
D. $M L T^{2}$

Answer: c

2. The dimension of $\left(\frac{1}{2}\right) \varepsilon_{0} E^{2}$ (ε_{0} : permittivity of free space, E electric field
A. $\left[M L T^{-1}\right]$
B. $\left[M L^{2} T^{-2}\right]$
C. $\left[M L^{-1} T^{-2}\right]$
D. $\left[M L^{2} T^{-1}\right]$

Answer: c

- Watch Video Solution

3. In a system of units if force (F), acceleration (A) and time (T) are taken as fundamental units, then the dimensional formula of energy is
A. $F A^{2} T$
B. $F A T^{2}$
C. $F^{2} A T$
D. $F A T$

Answer: B

D Watch Video Solution

4. Unit of $\frac{C V}{\rho \varepsilon_{0}}$ are of
($C=$ capacitance, $V=$ potential, $\rho=$ specfic resistence and
$\varepsilon_{0}=$ permittivity of free space) ${ }^{`}$
A. Charge
B. current
C. time
D. frequency

Answer: b

- Watch Video Solution

5. The wavelength associated with a moving particle depends upon $p^{\text {th }}$ power of its mass $\mathrm{m}, q^{\text {th }}$ power of its velocity v and power of plank's constant h Then the corrent set of valume of p, q and r is
A. $p=1, q=-1, r=1$
B. $p=1, q=1, r=1$
C. $p=-1, q=-1, r=-1$
D. $p=-1, q=-1, r=1$

- Watch Video Solution

6. The pair (s) of physical quantities that do not have the same dimension
A. volumetric strain and coefficient of friction
B. disintegration constant of a radioactive substance and frequency of light wave
C. heat capacity and gravitational potential
D. Plank's constant and torque

Answer: d

- Watch Video Solution

7. L, C and R represent the physical quantities inductance, capacitance and resistance respectively. Which of the following combinations have dimensions of frequency?
A. $\frac{1}{R C}$
B. $\frac{R}{L}$
C. $\frac{1}{\sqrt{L C}}$
D. $\frac{C}{L}$

Answer: d

- Watch Video Solution

8. A wire has a mass $0.3 \pm 0.003 \mathrm{~g}$, radius $0.5 \pm 0.005 \mathrm{~mm}$ and length $6 \pm 0.06 \mathrm{~cm}$. The maximum percentage error in the measurement of its density is
A. 1
B. 2
C. 3
D. 4

Answer: d

D Watch Video Solution

9. A body travels uniformly a distance of $(13.8 \pm 0.2) m$ in a time
$(4.0 \pm 0.3) s$. Find the velocity of the body within error limits and the percentage error.
A. $(3.5 \pm 0.6) m s^{-1}$
B. $(3.5 \pm 0.3) m s^{-1}$
C. $(6.1 \pm 0.6) m s^{-1}$
D. $(6.1 \pm 0.3) m s^{-1}$

Answer: b

- Watch Video Solution

10. The fundamental unit of quantity of metter is
A. $k g$
B. gram
C. $m o l$
D. tonne

Answer: c

11. If equation $\int \frac{d t}{\sqrt{3 a-2 t^{2}}}=a^{x} \sin ^{-1}\left(\frac{r^{2}}{a^{2}}-1\right)$, the value of x is
A. $\frac{3}{2}$
B. 0
C. $\frac{1}{2}$
D. $-\frac{1}{2}$

Answer: b

D Watch Video Solution

12. Drift speed of electron inside the metallic conductor is $v_{A}=e E^{y} m^{z} \tau$ (here, $e=$ electronic charge, $E=$ electric field, $m=$ mass of electron and $\tau=$ time relaxation). Find the value of y.
A. $\frac{3}{2}$
B. 0
C. $\frac{1}{2}$
D. 1

Answer: d

D Watch Video Solution

13. If unit of mass become 2 times the unit of length becomes 4 time and the unit of time in the unit of Plank's Due to the unit of plank's constant because n time The value of n is
A. 3
B. 5
C. 6

Answer: d

- Watch Video Solution

14. A stone lying at rest in a river The minimum mass of stone, $m=k \rho v^{x} g^{-3}$ is needed for remaining at rest here, $h=$ constant having no unit , $g=$ acceleration due to gravity , $v=$ river flor velocity, $\rho=$ density of water. The value of x is
A. 3
B. 5
C. 6
D. 8

(-) Watch Video Solution

15. A student writes four different expression for the displacement y in a period motion
$y=a \sin \frac{2 \pi r}{T}$
$y=a \sin v t$
$y=\frac{a}{t} \sin \frac{t}{a}$
$y=\frac{a}{\sqrt{2}}\left[\sin ^{\prime} \frac{2 \pi r}{T}+\cos , \frac{2 \pi r}{T}\right]$
where a is maximum displacement, x is the speed and T is the time period then dimensionally.
A. 1 and 2 are wrong
B. 2 and 3 are wrong
C. 3 and 4 are wrong
D. 4 and 1 are wrong

- Watch Video Solution

16. If the unit of velocity is run, the unit of time is second and unit of force is strength in a hyperthetical system of unit in this system of unit the unit of mass is (strength) $/(\text { second })^{2}(\text { run })^{2}$

Thus, $x=1, y=1$ and $z=-1$
$\frac{y}{x}=1$
A. 3
B. 5
C. 6
D. 1

Answer: d

17. If force F velocity V and time T are taken as fundamental units, find the power of dimensions of force in the dimensional formula of pressure
A. 3
B. 5
C. 6
D. 1

Answer: d

18. A student determins a dimensionless quantities $B=\frac{E^{n}}{2 \varepsilon_{0} h c}$ Find the value of n (here, $e=$ electric charge ε_{0} electric permittivety of vacume, $b=$ Plank's constant and $c=$ speed of light)’
A. 3
B. 4
C. 2
D. 1

Answer: c

- Watch Video Solution

19. To find the distance d over which a signal can be seen clearly
in foggy conditions, a railways-engineer uses dimensions and
assumes that the distance depends on the mass density ρ of the fog, intensity (power/area) S of the light from the signal and its frequency f. the engineer finds that d is proportional to $S^{1 / n}$. the value of n is
A. 3
B. 5
C. 6
D. 1

Answer: a

- Watch Video Solution

20. Acceleration due to gravity on the surface of the earth is
$g=\frac{G M}{R^{2}}$. The gravitational constant G is exacity known. But
percentage error in measurement of the mass of earth M and radius of the earth R are 1% and 2%, respectively. The maximum percentage error in measurement of acceleration due to gravity on the surface of the earth is
A. 2%
B. 5%
C. 3%
D. 7%

Answer: b

D Watch Video Solution

21. During measurement of kinetic energy T , The percentage error in meansurment of mass of particle and momentum of
particle are 2% and 3% respectively. The percentage error in measurement of kinetic energy is
A. 2%
B. 5%
C. 3%
D. 7%

Answer: d

- Watch Video Solution

22. A physical quantity x depends on quantities y and z as follows : $\quad x=A y+B \tan (C z)$, where $\quad A, B$ and C are constants. Which of the followings do not have the same dimensions?
A. x and y
B. C and z^{-1}
C. y and B / A
D. x and A

Answer: d

D Watch Video Solution

23. Which of the following statement is incorrect regarding significant figure?
A. All the none -zero are significant.
B. All the zero between two none zero digit are significant.
C. The power is the counted while counting the number of significant figure.
D. None of these

Answer: d

- Watch Video Solution

24. If momentum (p), area (A) and time (t) are taken to be fundamental quantities then energy has the dimensional formula
A. $\left[p^{1} A^{-1} t^{-1}\right]$
B. $\left[p^{2} A^{1} t^{1}\right]$
C. $\left[p^{1} A^{1 / 2} t^{1}\right]$
D. $\left[p^{1} A^{1 / 2} t^{-1}\right]$

Answer: D

25. Two resistances $R_{1}=100 \pm 3 \Omega$ and $R_{2}=200 \pm 4 \Omega$ are connected in series. Find the equivalent resistance of the series combination.
A. $(66.7 \pm 1.8) \Omega$
B. $(66.7 \pm 4.0) \Omega$
C. $(66.7 \pm 3.0) \Omega$
D. $(66.7 \pm 7.0) \Omega$

Answer: a

- Watch Video Solution

26. Assertion : Number of significant figure in 0.005 is one and that is 0.500 is three

Reason : This is became zeros are not significant
A. If both assertion and reason are true and reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: c

- Watch Video Solution

27. Assertion : L / R and $C R$ both have same dimensions

Reason L / R and $C R$ both have dimensions of time
A. If both assertion and reason are true and reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: a

- Watch Video Solution

28. Assertion : Velocity, cannot be added to speed

Reason : Both velocity and speed have same dimensions
A. If both assertion and reason are true and reason is the correct explanation of the assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: b

- Watch Video Solution

