びdoubtnut

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

WORK, ENERGY, POWER AND

COLLISION

Concept Of Work Done

1. if a number of force act on a body and the body is in state or dynamic force equalibrium,
then .
A. work done by any individual force mucst be zero
B. Net work done by all the force is $+v e$
C. Net work done by all the force is $-v e$
D. Net work done by all the force is zero

Answer: D

D Watch Video Solution
2. A man pushes a wall and falls to displace it He does
A. negative work
B. positive work
C. no work at all
D. can not any

Answer: C
(Watch Video Solution
3. A weightlifter lift a weight off the ground and holds it up, then
A. work is done in lifting as well as holding the weight
B. No work is done in both lifting and
holding the weight
C. work is done in lifting the weight but no
work is required by done in holding it up
D. no work is done in lifting the weight but
work is required to be done in holding it

up

Answer: C

D Watch Video Solution

4. when the bob of a simple pendulum swings,
the work done by bob in the string is :
A. >0
B. <0
C. zero

D. maximum

Answer: C

D Watch Video Solution

5. In case of circular motion a body, if tangential force also acts on the body in addition to centripetal force, then work done
A. by both the force is zero
B. by both the force is positive
C. by centripetal force is zero but work done by the tangential force is not zero
D. by centripetal force is zero by work done by tangential force is not zero

Answer: C

D Watch Video Solution

6. Given that a force F acts on a body for time t_{1} and displaces the body by \vec{d}. In which of
the following cases the velocity of the body must increases ?
A. $F>d$
B. $F<d$
C. F\|d`D. hatF _l_ hatd`

Answer: C
(Watch Video Solution
7. In a tug of war, both the terms A and B remain in equilibrium, then
A. work done by term A is positive
B. work done by term B is positive
C. work done by both the terms is negative

D. work done by both the terms is zero

Answer: D

8. In a certain situation, \vec{F} and \vec{S} are not equal to zero but the work done is zero from
this, we conclude that
A. \vec{F} and \vec{S} are at right angles
B. $\vec{F}>\bar{S}$
C. \vec{F} and \vec{S} are in the same direction
D. \vec{F} and \vec{S} are in the opposite direction

Answer: A

- Watch Video Solution

9. A body of mass m is moving in a circle of
radius r with a constant speed v, The force on
the body is $\frac{m v^{2}}{r}$ and is directed towards the centre. What is the work done by the force in moving the body over half the circumference of the circle?

$$
\begin{aligned}
& \text { A. } \frac{m v^{2}}{\pi r^{2}} \\
& \text { B. zero } \\
& \text { C. } \frac{m v^{2}}{r^{2}} \\
& \text { D. } \frac{\pi r^{2}}{m v^{2}}
\end{aligned}
$$

Answer: B

- Watch Video Solution

10. You lift a heavy book from the floor of the
room and keep it in the book shelf having a
height $2 m$ in this process you take 5 seconds.

The work done by you will depend upon
A. Mass of the book and time taken
B. Weight of the book and height of the
C. Height of the book shelf and time taken
D. Mass of the book,height ofbody - shelf

and time taken

Answer: B

D Watch Video Solution

11. A body of mass $m k g$ lifted by a man to a height of one metre in 30 sec . Another man lifted the same mass to the same height in 60 sec . The work done by them are in the ratio.
A. $1: 2$
B. 1:1
C. 2:1
D. $4: 1$

Answer: B

D Watch Video Solution

12. A force $F=(5 \hat{i}+3 \hat{j})$ newtons is applied over a particle which displaces it from its
origin to the point $r=(2 \hat{i}-\hat{j})$ metres. The work done on the particle is.
A. -7 joules
B. +13 joules
C. +7 joules

D. +11 joules

Answer: C
(Watch Video Solution
13. A worker pushes a wheelbarrow with a horizontal force of 50 N on level ground over a distance of 5.0 m . If a friction force on the 43 N acts on the wheelbarrow in a direction opposite that to of worker, what work is done on the wheelbarrow by the worker?
A. 250 J
B. 215 J
C. 35 J
D. 10 J

Answer: A

- Watch Video Solution

14. A cart is set rolling across a level table, at
the same speed on every trial. If it runs into a patch of sand, the cart exerts on the sand an average horizontal force of 6 N and travels a distance of 6 cm through the sand as it comes to a stop. If instead the cart runs into on a path of gravel on which the cart exerts an
average horizontal force of 9 N how far into
the gravel will the cart roll before stopping?
A. 9 cm
B. 6 cm
C. 4 cm
D. 3 cm

Answer: C
(Watch Video Solution
15. If a person is pushing a box inside a moving train , the work in the frame of earth will be:
$\vec{s}_{0}=$ displacement of the train relative to
ground.
$\vec{s}=$ displacement of the box w.r.t. train.
A. zero
B. $\vec{F} \cdot\left(\bar{x}+\bar{s}_{0}\right)$
C. $\vec{F} \cdot \vec{S}$
D. $\vec{F} \cdot \vec{S}_{0}$

Answer: B
16. A body is a acted upon a force which is proportional to the distance covered .If distance covered be decound by s, then work done by the force will be prepotion to
A. x
B. x^{2}
C. $x^{3 / 2}$
D. none of these

Answer: B

- Watch Video Solution

17. A body is acted upon by a which is invensely propertional to the distance x.The wolt done will be preportional to
A. x
B. x^{2}
C. $x^{3 / 2}$
D. none of these

Answer: D

D Watch Video Solution

18. A particle moved from position
$\vec{r}_{1}=3 \hat{i}+2 \hat{j}-6 \hat{k}$ to position
$\vec{r}_{2}=14 \hat{i}+13 \hat{j}+9 \hat{k}$ undre the action of a
force $(4 \hat{i}+\hat{j}+3 \hat{k})$ newtons. Find the work done.
A. 10 J
B. 100 J

C. 0.01 J

D. 1 J

Answer: B

D Watch Video Solution

19. A force $\vec{F}=2 x \hat{i}+2 \hat{j}+3 z^{2} \hat{k} N$ is acting on a particle .Find the work done by this force in displacing the body from $(1,2,3) m$ to
$(3,6,1) m$
A. $-10 J$
B. 100 J
C. 10 J
D. 1 J

Answer: A

D Watch Video Solution

20. Th work done in moving a body of mass

4 kg with uniform velocity of $5 m s^{-1}$ for 10

$$
\mu=0.4 i s\left(\text { take } g=9.8 m / s^{2}\right)
$$

A. 584 J
B. 784 J
C. $684 J$
D. 484 J

Answer: B
(Watch Video Solution
21. The work done in dragging a stone of mass

100 kg up an inclined plane 1 in 100 through a
distance of 10 m is $\left(\right.$ takeg $\left.=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. zero
B. 980 J
C. $9800 J$
D. 98 J

Answer: D

D Watch Video Solution
22. A lawn roller is displaced through 1 km
using a force of 200 N in a direction making an
angle of 60° with the lawn. The work down is:
A. $10^{5} \mathrm{~J}$
B. $10^{4} \mathrm{~J}$
C. $10^{6} \mathrm{~J}$
D. $10^{3} \mathrm{~J}$

Answer: A

D Watch Video Solution
23. A mass M is lowered with the help of a string by a distance h at a distance acceleration $g / 2$. The work done by the string will be

$$
\begin{aligned}
& \text { A. } \frac{M g h}{2} \\
& \text { B. }-\frac{M g h}{2} \\
& \text { C. } \frac{3 M g h}{2} \\
& \text { D. }-\frac{M g h}{2}
\end{aligned}
$$

Answer: B
24. A body of mass 6 kg is under a force which causes displacement in it given by $S=\frac{t^{2}}{4}$ maters where t is time. The work done by the force in 2 sec is
A. 12 J
B. 9 J
C. 6 J
D. $3 J$

Answer: D

- Watch Video Solution

25. A particale moves under the effect of a force $F=C s$ from $s=0$ to $s=s_{1}$. The work down in the process is
A. $C x_{1}^{2}$
B. $\frac{1}{2} C x_{1}^{2}$
C. $C x_{1}$
D. Zero

Answer: B

- Watch Video Solution

26. Two springs have their force constant as k_{1}
and $k_{2}\left(k_{1}>k_{2}\right)$. When they are stretched by
the same force.
A. net work is done in case of both the same springs
B. Equal work is done in case of both the springs
C. More work is done in case of both the second springs
D. More work is done in case of both the
first springs

Answer: C

D Watch Video Solution

27. A body of mass $3 k g$ is under a force, which
causes a displacement in it is given by $S=\frac{t^{3}}{3}$
(in metres). Find the work done by the force in
first 2 seconds.
A. $2 J$
B. 3.8 J
C. 5.2 J
D. 24 J

Answer: D
(Watch Video Solution
28. The adojoining diagram showns the velocity versus time plot for a partical. The work done by the force on the partical is positive from

A. A to B
B. B to C

C. C to D

D. D to E

Answer: A

D Watch Video Solution

29. The relationship between the force F and position x of body is as shown in figure. The work done in displacing the body from (
$x=1 m$ to $x=5 m$) will be

A. 30 J
B. 15 J
C. 25 J
D. 20 J

- Watch Video Solution

30. A Force F acting on an object varies with distance x as shown in the figure.

The work done by the force in moving the object from $x=0$ to $x=8 m$ is
A. zero J
B. 80 J
C. $-40 J$
D. 40 J

Answer: A

D Watch Video Solution

31. The work done by the force
$\vec{F}=A\left(y^{2} \hat{i}+2 x^{2} \hat{j}\right)$, where A is a constant
and $x \& y$ are in meters around the path
shown is:

A. zero
B. Ad
C. $A d^{2}$
D. $A d^{3}$

Answer: D

D Watch Video Solution

32. A force $F=-K(y \hat{I}+x \hat{j})$ (where K is
a posive constant) acts on a particle moving
in the $x y$ plane. Starting form the original,
the partical is taken along in the positive x
axis to the point $(a, 0)$ and then partical to
they axis the point (a, a). The total work done by the force F on the particls is
A. $-2 K a^{2}$
B. $2 K a^{2}$
C. $-K a^{2}$
D. $K a^{2}$

Answer: C

- Watch Video Solution

33. A uniform chain of length $2 m$ is kept on a table such that a length of 60 cm hangas freely from the adge of the table . The table . The total mass of the chain ia $4 k g$ What is the
work done in pulling the entire the chain the

on the table ?

A. 12.9 J
B. 6.3 J
C. 3.6J
D. 2.0 J

Answer: C

D Watch Video Solution

34. A uniform chain of length L and mass M is
tying on a smooth table and one third of its
length is hanging vertically down over the edge of the table. If g is acceleration the to gravity, the work required to pull the hanging part on the table is
A. $M g L$
B. $\frac{M g L}{3}$
c. $\frac{M g L}{9}$
D. $\frac{M g L}{18}$

Answer: D

D Watch Video Solution

35. A body of mass m is acceleratad uniformaly
from rest to a speed v in a time T. The instanseous power delivered to the body as a function of time is given by

$$
\begin{aligned}
& \text { A. } \frac{1}{2} m \frac{v}{t_{1}} t^{2} \\
& \text { B. } m \frac{v}{t_{1}} t^{2} \\
& \text { C. } \frac{1}{2}\left(\frac{m v}{t_{1}}\right)^{2} t^{2}
\end{aligned}
$$

$$
\text { D. } \frac{1}{2} m v^{2}\left(\frac{t}{t_{1}}\right)^{2}
$$

Answer: D

D Watch Video Solution

Work-Energy Theorem

1. A particle is acted upon by a force of constant magnitude which is always perpendicular to the velocity of the particle,
the motion of the particle takes place in a plane. It follows that
A. It's velocity is constant
B. It's acceleration is constant
C. It's kinetic energy is constant
D. It moves in a straight line

Answer: C

- Watch Video Solution

2. Identify the correct statement about work

 energy theorem.A. external force only
B. internal forces only
C. conservative forces only
D. all type of forces

Answer: D

- Watch Video Solution

3. If the net work done by external force on a partical is zero which is the following statement about the partical must be true?
A. Its velocity is constant
B. Its velocity is decreased
C. Its velocity is unchanged
D. Its speed is unchanged

Answer: D

4. A ball of mass m moves with speed v and stricks a wall having infinite mass and it returns with same speed then the work done by the ball on the wall is
A. Zero
B. mvjoes
C. $m / v j o \underline{ } s$
D. $v / m j o \underline{e} s$

Answer: A
5. Is the work required to be done by an external force on an object on a frictionless, horizontal surface to accelerate it from a speed v to a speed $2 v$
A. equal to the work required to accelerate the object from $t=0$ to v.
B. twice the work required to accelerate the object from $v=0$ to v.
C. three time the work required to accelerate the object from $v=0$ to v.
D. four time the work required to accelerate the object from 0 to v. Or

Answer: C

D Watch Video Solution

6. A force act on a 30 gm particle in such a way that the position of the particle as a function of time is given by $x=3 t-4 t^{2}+t^{3}$, where x
is in metros and t is in seconds. The work done during the first 4 second is
A. 5.28 J
B. 450 mJ
C. 490 mJ
D. 530 mJ

Answer: A
(Watch Video Solution
7. A certain spring that obeys Hook's law is stretched by an external agents. The work done in stretching the spring by 10 cm is 4 J . How much additional work is required to stretch the spring an additional 10 cm ?
A. $2 J$
B. 4 J
C. 8 J
D. 12 J
8. A 3.00 kg object has a velocity
$(6.00 \hat{i}-2.00 \hat{j}) m / s$. What is the net work done on the object if its velocity changes to
$(8.00 \hat{i}-4.00 \hat{j}) \mathrm{m} / \mathrm{s}$?
A. 64.5 J
B. 64.5 J
C. 64.5 J
D. 64.5 J

Answer: D

D Watch Video Solution

9. Two identical 5 kg blocks are moving with same speed of $2 m / s$ towards each other along a frictionless horizontal surface . The two blocks collide, stick together and come to rest. Consider the two blocks as a system. The work done by the external and ijnternal force are respectively:
A. 0,0
B. $0,20 \mathrm{~J}$
C. $0,-20 J$
D. $21 J,-20 J$

Answer: C

D Watch Video Solution

10. A body of mass m was slowly hauled up the hill as shown in the fig. by a force F which at each point was directed along a tangent to
the trajectory. Find the work performed by this
force, if the height of the hill is h, the length of
its base is I and the coefficient ot friction is μ.

A. $m g l$
B. $-m g l$
C. $m g h$

D. zero

Answer: C

D Watch Video Solution

11. A block is released from rest from a height
$h=5 m$. After travelling through the smooth
curved surface it moves on the rough horizontal surface through a length $l=8 m$ and climbs on to the other smooth curve surface through a height h^{\prime}. If $\mu=0.5$ find h^{\prime}

A. $2 m$
B. $3 m$
C. $1 m$
D. zero

Answer: C

D Watch Video Solution
12. A bullet when fixed at a target with a velocity of $100 \mathrm{~ms}^{-1}$, penetrates one metre into it. If the bullet is fired with the same velocity as a similar target with a thickness 0.5 metre, then it will emerge from it with a velocity of
A. $50 \sqrt{2} m s^{-1}$
B. $\frac{50}{\sqrt{2}} m s^{-1}$
C. $50 \mathrm{~ms}^{-1}$

D. $10 m s^{-1}$

Answer: A

D Watch Video Solution

13. The displacement of a body of mass 2 kg
varies with time t as $S=t^{2}+2 t$, where S is in
seconds. The work done by all the forces
acting on the body during the time interval
$t=2 s$ to $t=4 s$ is
A. 36 J
B. 64 J
C. 100 J
D. 120 J

Answer: B

D Watch Video Solution

14. A block with mass 0.50 kg is forced against a horizontal spring of negligible mass , compressing the spring a distance of 0.20 m
(figure). When released, the block moves on a
horizontal table top for $1.00 \mathrm{~N} / \mathrm{m}$. What is
the coefficient of kinetic friction μ_{k}, between
the block and the block and the table?

A. 0.40
B. 0.50
C. 0.25
D. none of these

Answer: A

- Watch Video Solution

15. A particle is projected from a point P with a
velocity v at an angle θ with horizontal. At a certain point Q it moves at right angles to its initial direction. Then
A. $m v^{2} \sin \theta$
B. zero
C. $-m v^{2} \sin \theta$
D. $-\frac{m v^{2} \sin \theta}{2}$

Answer: D

D Watch Video Solution

16. Under the action of a force, a $2 k g$ body moves such that its position x as a function of
time is given by $x=\frac{t^{3}}{3}$ where x is in metre and t in second. The work done by the force in the first two seconds is .
A. $1.6 J$
B. 16 J
C. 160 J

D. 1600 J

Answer: B

D Watch Video Solution

17. The displacement x of particle moving in one dimension, under the action of a constant
force is related to the time t by the equation
$t=\sqrt{x}+3$
where xis \in meters and $t \in \sec$ onds. Find
(i) The displacement of the particle when its
velocity is zero, and
(ii) The work done by the force in the first 6 sec onds.
A. $18 m$
B. zero
C. $9 m / 2$
D. $36 m$

Answer: B
18. A body of mass m is accelerated uniformly
from rest to a speed v in a time T. The instantaneous power delivered to the body as
a function of time is given by

$$
\begin{aligned}
& \text { A. } m \frac{v^{2}}{T^{2}} t \\
& \text { B. } m \frac{v^{2}}{T^{2}} t^{2} \\
& \text { C. } m \frac{v^{2}}{2 T^{2}} t \\
& \text { D. } m \frac{v^{2}}{2 T^{2}} t^{2}
\end{aligned}
$$

Watch Video Solution

19. An open knife of mass m is dropped from a height h on a wooden floor. If the blade penetrates up to the depth d into the wood.

The average resistance offered by the wood to the knife edge is .

$$
\begin{aligned}
& \text { A. } M g\left(\frac{h}{d}\right) \\
& \text { B. } M g\left(1+\frac{h}{d}\right) \\
& \text { C. } M g h+M g d \\
& \text { D. } M g\left(1-\frac{h}{d}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

20. A small head of m is pleced in the bottom
of which glass of value radius R It is displaced
by ($h \ll R$) along the glass surface and released calculate the total distance described
by it before it comes to rst of the botom μ is
the coefficient of friction between bead and
the watch glass
A. h / μ
B. $h / 2 \mu$
C. $h \sqrt{\mu}$
D. $\frac{h}{\mu R}$

Answer: A

D Watch Video Solution

21. A raindrop of mass $1 g$ falling from a height
of 1 km hits is the ground with a speed of
$50 \mathrm{~ms}^{-1}$ If the resistence force is properition
to the speed of the drop then the work done by the resistence force is (Taking $g: 10 m s^{-2}$).
A. 10 J
B. $-10 J$
C. 8.75 J
D. $-8.75 J$

Answer: D
(Watch Video Solution
22. A block of mass m is released from the top
of a mooth inclined plane of height h its
speed at the bottom of the plane is
proportion to
A. m^{0}
B. m
C. m^{2}
D. m^{-1}

Answer: A
23. A block of mass m is moving with a speed v on a horizontal rough surface and collides with a horizontal mounted spring of spring constant k as shown in the figure .The coefficient of friction between the block and the floor is μ The maximum compression of the spring is

$$
\begin{aligned}
& \text { A. }-\frac{\mu m g}{k}+\frac{1}{k} \sqrt{(\mu m g)^{2}+m k v^{2}} \\
& \text { B. } \frac{\mu m g}{k}+\frac{1}{k} \sqrt{(\mu m g)^{2}+m k v^{2}} \\
& \text { C. }-\frac{\mu m g}{k}+\frac{1}{k} \sqrt{(\mu m g)^{2}-m k v^{2}} \\
& \text { D. } \frac{\mu m g}{k}+\frac{1}{k} \sqrt{(\mu m g)^{2}+m k v^{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

24. A bodu of mass $4 k g$ is moving with momentant of $8 \mathrm{kgms}^{-1} \mathrm{~A}$ force of 0.2 N acts
on it in the direction of motion of the body for $10 s$ The increases in kinetic energy is
A. 10 J
B. 0.5 J
C. 4.5 J
D. 4 J

Answer: C
(Watch Video Solution
25. A particle is acted upon by a force F which
varies with position x is shown in figure .If the
particle at $x=0$ kinetic energy of $25 J$ then
the kinetic energy of the particle at $x=16 \mathrm{~m}$
is

A. 45 J
B. 30 J
C. 70 J
D. 20 J

Answer: A

- Watch Video Solution

26. Acceleration time graph of a particle is
shown work done by all the force acting on
the particle of mass m in line internal t_{1} and t_{2}
while a_{1} is the acceleration at time t_{1} given by
$t=0$ particle was at rest

A. $\frac{m a_{1}^{2}}{4 t_{1}}\left(t_{2}^{3}-t_{1}^{2}\right)$
B. $\frac{m a_{1}^{2}}{8 t_{1}^{2}}\left(t_{2}^{4}-t_{1}^{4}\right)$
C. $\frac{m a_{1}^{2}}{4 t_{1}^{2}}\left(t_{2}^{4}-t_{1}^{4}\right)$
D. $\frac{m a_{1}}{4 t_{1}}\left(t_{2}^{2}-t_{1}^{2}\right)$

Answer: B

- Watch Video Solution

27. A force $\vec{F}=(3 x N) \hat{i}+(4 N) \hat{j}$, with x in meter, acts on a particle, changing only the kinetic energy of the particle. How mcuh work is done on the particle as it moves from coordinates $(2 m, 3 m, 5 m)$ to $(3 m, 0 m, 6 m)$?

Does the speed of the particle increase, decrease, or remain the same?
A. $-7 J$
B. zero
C. $+7 J$
D. $+19 J$

Answer: C

D Watch Video Solution

Potential Energy, Conservative And Non-
Conservative Forces

1. Which are the following is not a conservative force?
A. Force of friction
B. Magnetic force
C. Gravitational force
D. Electrostatic force

Answer: A

D Watch Video Solution
2. Asseration : If work by done conservative
forces is positive, kinetic energy will increase.
Reason : Because potential energy will decrease.
A. both conservative and none conservative
force
B. conservative forces only
C. Non-conservative forces only
D. nether
conservative
nor
none
conservative force

Answer: B

D Watch Video Solution

3. Work done by the conservative force on a system is equal to :
A. the change in kinetic energy of system
B. the change in potential energy of system
C. the change in total machanical energy of
system

D. None of the above

Answer: B

D Watch Video Solution

4. Which of the following statement is correct ?
A. kinetic energy of the system can be changed without chainging its
B. kinetic energy of the system can not be changed
momentum
C. Momentum of a the system can not be changed without chainging its kinetic energy

D. A system connot have energy without

having momentum

Answer: A

5. A shell explodes and many pieces fly off in different directions. Which of the following is conserved?
A. kinetic energy
B. Momentum
C. Neither momentum nor $K E$
D. Momentum and $K E$

Answer: B

D Watch Video Solution
6. A bead x resting on a smooth horizontal surface is connected to two adentiacal spring and is made to oscillate to and fro along the
line of the springs.which stetament is correct about the work done on the cabinet - earth system?

A. mostly potential energy
B. all potential energy
C. half potential energy and half kinetic energy
D. all kinetic energy

Answer: D

D Watch Video Solution

7. Alex and john are loding adentical cabinates
onto a truck.Alex lifts his cabinet strainght up
from the ground to the bed of the truck,
whereas john slides his cabinet up a rough
ramp to the truck .which statement correct about the work on the cabinet- Earth system ?
A. Alex and john do the same amount of
work
B. Alex does more work then john
C. john does more work then alex
D. None of those statement is necessarily
true because the force the friction is

Answer: C

D Watch Video Solution

8. Mark and David are loading adentaical cement blocks on to David's pickup truck.Mark
lifts his block straight up from the ground to
the truck, whereas David slides his block up a
ramp contining frictionless roles .Which
statement is true about the work done on the block - Earth system?
A. Mark does more work then David
B. Mark and David do the same amount of
work
C. David does more work then mark
D. None of those statement is necessarily
true because the angle of the inclined is incline is unknown

Answer: B

D Watch Video Solution

9. A pile driver drivers posts into the groubd the by repeatedly dropping a heavy object on then .Assume the object is dropped from the same height each time .By what factor does
the energy of th pile driver - Earth systen change when the mass of the object being droped is bouled ?
A. $\frac{1}{2}$
B. 1: The energy of the same
C. 2
D. 4

Answer: C

- Watch Video Solution

10. A Weight W suspeded from a spring is
raised through a height h so that the spring
becomes just slack .If E was the energy of the
stretched spring , then the gain in
gravitational potential energy is
A. $W h$
B. $W h+E$
C. $W h-E$
D. E

Answer: B
(D) Watch Video Solution
11. If a compressed spring is dissolved in acid,
what happens to the elastic potential energy of the spring ?
A. is completely lost
B. appearas in the form of electromagnetic

waves

C. appearas in the form head raising the tempetature of acid
D. appearas in the form of $K E$ by splashing acid drops

Answer: C
(Watch Video Solution
12. If W_{1}, W_{2} and W_{3} represent the work done in moving a particle from A to B along three different paths 1.2 and 3 respectively (as hown) in the gravitational field of a point mass m, find the co
W_{1}, W_{2} and W_{3}

A. $W_{1}>W_{2}>W_{3}$
B. $W_{1}=W_{2}=W_{3}$
C. $W_{1}<W_{2}<W_{3}$
D. $W_{1}>W_{2}>W_{3}$

Answer: B

D Watch Video Solution

13. An ice cube has been given a push and
slides without friction on a level table. Which
is correct?
A. It is stable equilibrium.
B. It is unstable equilibrium.
C. It is neutral equilibrium.
D. It is not in equilibrium.

Answer: C

D Watch Video Solution

14. A long elastic spring is stretched by 2 cm and its potential energy is U. If the spring is stretched by 10 cm , the $P E$ will be
A. $\frac{U}{25}$
B. $\frac{U}{2}$
C. $5 U$
D. 25 U

Answer: D

D Watch Video Solution

15. A certain spring that obeys Hook's law is stretched by an external agent. The work done in stretching the spring by 10 cmis 4 J . How
much additional work is required to stretch
the spring an additional 10 cm ?

A. $10{ }^{\prime}$
B. $20{ }^{\text {J }}$
C. 30 J
D. 40 J

Answer: C
(Watch Video Solution
16. The work done by the external agent in stretching a spring of force constant k from length l_{1} to l_{2} is
A. $k\left(l_{2}^{2}-l_{1}^{2}\right)$
B. $\frac{1}{2} k\left(l_{2}^{2}-l_{1}^{2}\right)$
C. $k\left(l_{2}-l_{1}\right)$
D. $k / 2\left(l_{2}-l_{1}\right)$

Answer: B

D Watch Video Solution
17. A body of mass m is suspended from a massless spring of natural length l. It stretches the spring through a vertical distance y. The potential energy of the stretched spring is
A. $m g(l+y)$
B. $\frac{1}{2} m g(l+y)$
C. $\frac{1}{2} m g y$
D. $M g y$
18. K is the force constant of a spring. The
work done in increasing its extension from l_{1}
to l_{2} will be
A. $-150 J$
B. 50 J
C. 150 J
D. None of these

- Watch Video Solution

19. An elastic spring of unstretched length L
and force constant K is stretched by amoun t
x.lt is further stretched by another length y
The work done in the second streaching is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} K y^{2} \\
& \text { B. } \frac{1}{2} K\left(x^{2}+y^{2}\right) \\
& \text { C. } \left.\frac{1}{2} K(x+y)^{2}\right) \\
& \text { D. } \frac{1}{2} K y(2 x+y)
\end{aligned}
$$

Answer: D

D Watch Video Solution

20. A system comprises of two small spheres
with the same masses m. Initially, the spring is
non deformed. The spheres set in motion in a gravity space at the velocities as shown in the diagram.

The maximum elastic potential energy stored in the system is

$$
\begin{aligned}
& \text { A. } \frac{m v_{0}^{2}}{2 \sqrt{2}} \\
& \text { B. } m v_{0}^{2} \\
& \text { C. } \frac{1}{2} m v_{0}^{2} \\
& \text { D. } 2 m v_{0}^{2}
\end{aligned}
$$

Answer: B
21. A particle of mass m is moving is a horizontal circle of radius x under a centripetal force equal to $-\left(k v^{2}\right)$ where it is constant The total energy of the particle is

$$
\begin{aligned}
& \text { A. }-\frac{k}{r} \\
& \text { B. }-\frac{k}{2 r} \\
& \text { C. } \frac{k}{2 r} \\
& \text { D. } \frac{2 k}{r}
\end{aligned}
$$

Answer: B
22. A block of mass 2 kg is propped from a height of 40 cm on a spring where force constant is $1960 \mathrm{Nm}^{-1}$ The maximum distance thought which the spring compressed by
A. 5 cm
B. 15 cm
C. 26 cm
D. 10 cm

Answer: D

- Watch Video Solution

23. Two spring constant $1000 \mathrm{Nm}^{-1}$ and $2000 \mathrm{Nm}^{-1}$ are ateched with same time .They
will have potential energy is the value is
A. 2:1
B. $2^{2}: 1^{2}$
C. 1:2
D. $1^{2}: 2^{2}$

Answer: A

- Watch Video Solution

24. A particle is moved from $(0,0)$ to (a, a)
under a force $\bar{F}=(3 \hat{i}+4 \hat{j})$ and path
$2 i s O Q P$.Let W_{1} and W_{2} be the work by done
this force in these to paths .Then .

A. $W_{1}=W_{2}$
B. $W_{1}=2 W_{2}$
C. $W_{2}=2 W_{1}$
D. $W_{2}=4 W_{1}$

Answer: A

D Watch Video Solution

25. The diagram respresent the potential energy U of a function of the inter atomic distance r. Which diagram corresponding to slabe molecules found in nature?

c)
C.
$\xrightarrow{{ }^{U \uparrow}} r$
D.
(d)

Answer: A

D View Text Solution
26. The potential energy of the system is
represented in the first figure. The force acting
on the system will be represented by:
$P E(x) \uparrow$
(a)

(b)

(c)

(d)

D.

Answer: C

- Watch Video Solution

27. A particle which is constant to move along the x-axis, is subjected to a force in the same direction which varies with the distance x of the particle from the origin as
$F(x)=-K x+a x^{3}$. Hero K and a are positive constant . For $x \geq 0$, the functional from of the potential every $U(x)$ of the particle is

Answer: D

D Watch Video Solution

28. The force acting on a body moving along x axis varitian of the particle particle shown in
the figure. The body is in stable equlilbrium at

A. $x=x_{1}$
B. $x=x_{2}$
C. both x_{1} and x_{2}
D. neither x_{1} nor x_{2}

Answer: B

D Watch Video Solution

Conservation Of Mechanical Energy And Linear Momentum

1. A heavy weight is suspended from a spring .

A person raises the weight till the spring
becomes slack. The done by him is W. The energy storeed in the stretched spring was E.

What will be the gain in gravitational potential energy?
A. W
B. E
C. $W+E$
D. $W-E$

Answer: C

2. A body is falling under gravity. When it loses a gravitational potential energy U, its speed is v. The mass of the body shell be
A. $\frac{2 U}{v}$
B. $\frac{U}{2 v}$
C. $\frac{2 U}{v^{2}}$
D. $\frac{U}{2 v^{2}}$

Answer: C

- Watch Video Solution

3. A block is mass m is dropped from the fourth of an office building and hits the sidewalk below at speed v. From what floor should the block the dropped to double that impact speed?
A. the either floor
B. the thenth floor
C. the twelfth floor
D. the sixteenth floor

Answer: D

D Watch Video Solution

4. A cart is set rolling across a level table, at the same speed on every trial. If it runs into a patch of sand, the cart exerts on the sand an average horizontal force of $6 N$ and travels a distance of 6 cm through the sand as it comes to a stop. If instead the cart runs into a patch of gravel on which the cart exerts an average
horizontal force of $9 N$ how far into the gravel
will the cart roll before stopping?
A. $2 N$
B. $3 N$
C. $6 N$
D. $18 N$

Answer: A
(Watch Video Solution
5. An athlete jumping vertically on a trampoline leaveles the surface with a velocity of $8.5 \mathrm{~m} / \mathrm{s}$ upwards. What maximum height does the reach?
A. 10 m
B. $2.5 m$
C. $5.0 m$
D. 0.50 m

Answer: C

6. A ball of clay falls to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then has happened to the energy the ball had while it was falling?
A. It has been used up in producing the downward motion.
B. It has been transformed back into
potential energy
C. It has been transformed into the ball by
heat.
D. it is in the ball and floor (and wall) as
energy of invisible molecular motion.

Answer: D

D Watch Video Solution

7. The force constant of a weightless spring is $16 \mathrm{Nm}^{-1}$. A body of mass 1.0 kg suspended from it is pulled down through 5 cm and then
released. The maximum energy of the sysytem
(spring + body) will be
A. $2 \times 10^{2} J$
B. $4 \times 10^{2} J$
C. $8 \times 10^{2} J$
D. $16 \times 10^{2} J$

Answer: A
(Watch Video Solution
8. A slab S of mass m released from a height
h_{0}, from the top of a spring of force constant
k. The maximum compression x of the spring
is given by the equation.

$$
\begin{aligned}
& \text { A. } m g h_{0}=\frac{1}{2} k x^{2} \\
& \text { B. } m g\left(h_{0}-x\right)=\frac{1}{2} k x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } m g h_{0}=\frac{1}{2} k\left(h_{0}+x\right)^{2} \\
& \text { D. } m g\left(h_{0}+x\right)=\frac{1}{2} k x^{2}
\end{aligned}
$$

Answer: D

D Watch Video Solution

9. A block of mass m sliding down an inclined
at constant speed is initial at a height h shown the ground as shown in the figure above . The coefficient of kinetic friction between the mass and the inclined is μ. If the
mass constinues to slide down the inclined at
a constant speed how much energy is displaced by friction by the time the mass reaches the bottom of the incline?

A. $m g h / \theta$
B. $m g h$
C. $\mu m g h / \sin \theta$
D. $m g h \sin \theta$

Answer: B

- Watch Video Solution

10. A spring is held compressed so that its stored energy is 2.4 J . Its ends are in contact with masses $1 g$ and $48 g$ placed on a
frictionless table. When the spring in released,
the heavier mass will acquire a speed of:

$$
\begin{aligned}
& \text { A. } \frac{2.4}{49} m s^{-1} \\
& \text { B. } \frac{2.4 \times 48}{49} m s^{-1} \\
& \text { C. } \frac{10^{3}}{7} c m s^{-1} \\
& \text { D. } \frac{10^{6}}{7} c m s^{-1}
\end{aligned}
$$

Answer: C

D Watch Video Solution

11. A truck with mass m has a brake failure
while going down an icy mountain road of constant downwards slope angle α (see
figure). Initial , the truck is moving downhill at speed v_{0}. After carrying downhill a distance L
with negligible friction for the truck driver
steers the runaway vehicle onto a runway
truck rump of constant upward slope angle
$B \eta$. The truck rump has to soft sand surface for which the coefficient of rolling friction is μ_{r}
. What is the distance that the truck moves up
the rump before coming to a halt?

Truck ramp
A. $\frac{\left(v_{0}^{2} / 2 g\right)+L \sin \alpha}{\sin \beta+\mu_{r}, \cos \beta}$
B. $\frac{\left(v_{0}^{2} g\right)-L \sin \alpha}{\left(\sin \beta+\mu_{r}, \cos \beta\right)}$
C. $\frac{\left(v_{0}^{2} / 2 g\right)+L \sin \alpha}{\sin \beta-\mu_{r}, \cos \beta}$
D. None of these

Answer: A

12. A ring of mass m can slide over a smooth
vertical rod as shown in figure. The ring is
connected to a spring of force constant
$k=4 m g / R$, where $2 R$ is the natural length
of the spring . The other end of spring is fixed
to the ground at a horizontal distance $2 R$
from base of the rod. If the mass is released
at a height 1.5 J then the velocity of the ring
as it reaches the ground is

A. $\sqrt{g R}$
B. $2 \sqrt{g R}$
C. $\sqrt{2 g R}$
D. $\sqrt{3 g R}$

Answer: B

D Watch Video Solution

13. A 1 kg mass is projected down a rough
circule track (redius $=2.0 m$) placed in
vertical plane as shown. The speed of the mass
at point A is $3 m / s$ and at point B, it is
$6.0 \mathrm{~m} / \mathrm{s}$. How much is work is done on the mass between A and B by the force of
friction?

A. -7.5 J
B. -8.5 J
C. -6.5 J
D. -24 J

Answer: C

D Watch Video Solution

14. Concerete block of mass m_{A} and m_{B}. The gravitutional potential energy of each system
is zero at the equilibrium position of the springs. Which ststement is true for the total machanical energy of the springs. Which system when the block, are balanced on the springs?
A. $E_{A}=E_{B}$
B. $E_{A}=2 E_{B}$
C. $E_{A}=4 E_{B}$
D. $E_{A}=-2 E_{B}$

Answer: C

D Watch Video Solution

15. Block A of the mass M in the figure is released from rest when the extension in the spring is x_{0}. The maximum downwards

$$
\left.x_{0}<M g / k\right)
$$

A. $2\left(\frac{M g}{k}-x_{0}\right)$
B. $\frac{M g}{2 k}+x_{0}$
C. $\frac{2 M g}{k}-x_{0}$
D. $\frac{2 M g}{k}+x_{0}$

Answer: A

D Watch Video Solution
16. A raindrop of mass $1 g$ falling from a height of 1 km hits is the ground with a speed of
$50 \mathrm{~ms}^{-1}$. Which of the following statements is
correct? (Taking $\left.g=10 \mathrm{~ms}^{-2}\right)$.
A. The loss of potential energy of the drop
is 10 J
B. The gain in kinetic energy of the drop is
$1.25 J$
C. The gain in kinetic energy of the drop is
not equal to the loss of potential energy
of the drop.
D. All of these

Answer: D

D Watch Video Solution

17. A body with mass $1 k g$ moves in one direction in the presence of a force which is described by the potential energy graph. If the body is releasd from rest at $x=2 m$, than its speed when it crosses $x=5 m$, is (Neglect
dissipative forces).

A. zero
B. $1 m s^{-1}$
C. $2 \sqrt{2} m s^{-1}$
D. $3 m s^{-1}$

Answer: C

- Watch Video Solution

18. A toy gun a spring of force constant k.

When changed before being triggered in the upward direction, the spring is compressed by
a distance x. If the mass of the shot is m, on the being triggered it will go up to a height of
A. $\frac{K x^{2}}{8 g}$
B. $\frac{x^{2}}{8 g}$
C. $\frac{K x^{2}}{2 m g}$
D. $\frac{K^{2} x^{2}}{m g}$

Answer: C

- Watch Video Solution

19. A particle of mass m moving with velocity
V_{0} strikes a simple pendulum of mass m and
sticks to it. The maximum height attained by
the pendulum will be
A. $\frac{V_{0}^{2}}{8 g}$
B. $\sqrt{V_{0} g}$
C. $2 \sqrt{\frac{V_{0}}{g}}$
D. $\frac{V_{0}^{2}}{4 g}$

Answer: A

D Watch Video Solution

20. Two blocks A and B, each of mass m, are connected by a masslesss spring of natural
length L and spring constant K. The blocks are initially resting on a smooth horizontal floor with the spring at its natural length, as shown in fig. A third identical block C, also of mass m,
moves on the floor with a speed v along the
line joining A and B, and collides elastically with A. Then, maximum compression of the spring is

A. $v \sqrt{\frac{m}{2 k}}$
B. $m \sqrt{\frac{v}{2 k}}$
C. $\sqrt{\frac{m v}{k}}$
D. $\frac{m v}{2 k}$

Answer: A

D Watch Video Solution

21. A bomb of mass 9 kg explodes into 2 pieces
of mass 3 kg and 6 kg . The velocity of mass
$3 \mathrm{kgis} 1.6 \mathrm{~m} / \mathrm{s}$. The K. E. ofmass 6 kg is
A. $3.84 J$
B. $9.6 J$

C. 1.92J

D. 2.92 J

Answer: C

D Watch Video Solution

22. A sphere of mass m, moving with velocity
V, enters a hanging bag of sand and stop. If
the mass of the bag is M and it is raised by height h, then the velocity of the sphere will be

> A. $\frac{M+m}{m} \sqrt{2 g h}$
> B. $\frac{M}{m} \sqrt{2 g h}$
> C. $\frac{m}{M+m} \sqrt{2 g h}$
> D. $\frac{m}{M} \sqrt{2 g h}$

Answer: A

- Watch Video Solution

23. A free body of mass 8 kg is travelling at 2 mater per second in a straight line. At a certain instant, the body splits into two equal
parts due to internal wxplosion which releases
`16 joules of energy. Neither part leves the original line of motion. Finally
A. Both parts continous to move in the
same in the same direction as that of
the original boidy
B. One part comes to rest and the other
moves in the same direction as that of
the original body
C. One part comes to rest and the other moves in the direction opposite to that of the original body

D. One part moves in the same direction

and the other in the dirrection opposite
to that of the original body

Answer: B

D Watch Video Solution

24. A body of mass $4 k g$ is moving with momentum of $8 \mathrm{kgms}^{-1} \mathrm{~A}$ force of 0.2 N acts on it in the direction of motion of the body for $10 s$ The increases in kinetic energy is
A. 2.8 joules
B. 3.2 joules
C. 3.8 joules
D. 4.4 joules

Answer: D

Mechanical Power

1. Water is falling on the blades of a turbine from a height of $25 \mathrm{~m} .3 \times 10^{3} \mathrm{~kg}$ of water pours on the blade per minute. If the whole of energy is transferred to the turbine, power delivered is $g=9.8 m / s^{2}$
A. $12250 W$
B. 16250 W
C. 8250 W

D. 20250 W

Answer: A

D Watch Video Solution

2. What average power is genereted by a 90.0 kg mountain climbs who climbs a summit of height 600 m in 90.0 min ?
3. A constant power P is applied to a partical of mass m. The distance travelled by the partical when its velocity increases from v_{1} to v_{2} is (neglect friction):

$$
\begin{aligned}
& \text { A. } \frac{m}{3 P}\left(v_{2}^{3}-v_{1}^{3}\right) \\
& \text { B. } \frac{m}{3 P}\left(v_{2}-v_{1}\right) \\
& \text { C. } \frac{3 p}{m}\left(v_{2}^{2}-v_{1}^{2}\right) \\
& \text { D. } \frac{m}{3 P}\left(v_{2}^{2}-v_{1}^{2}\right)
\end{aligned}
$$

Answer: A

4. An $800 N$ marine in basic training climbs a $12.0 m$ vertical rope at a constant speed in $8.00 s$. What is his power output?
A. $1.8 k W$
B. $1.2 k W$
C. $2.2 k W$
D. 2.8 kW

Answer: B

Watch Video Solution

5. When an automobile moves with constant speed down a highway, most of the power developed by the engain is used to compensate on the car by the air and the road, friction forces exerted on the car by the air and the road. If the power developed by an engine is $175 h p$, estimate the total friction force (apporox) acting on the car when it is moving at a speed of $25 \mathrm{~m} / \mathrm{s}$. One horsepower equals 746 W .
A. $360 k N$
B. $373 k N$
C. $250 k N$
D. 500 kN

Answer: D

D Watch Video Solution

6. A certain rain cloud at an altitude of 2.0 km
contains $3.6 \times 10^{7} \mathrm{~kg}$ of water vapour. How
long would it take a $2.0 k W$ pump to raise the
surface to the cloud's position?

A. $2 \times 10^{5} h$
B. $5 \times 10^{5} h$
C. $5 \times 10^{3} h$
D. $2 \times 10^{3} h$

Answer: B
(Watch Video Solution
7. An elastic scooter has a bettery capable of supplying 120 Wh of energy. If friction force and other losses account for 60.0% of the energy usage, what altitude change can a rider achieve when driving in hilly terrain if the rider and sector have a combined weight of $900 N$?
8. An older-model car accelerates from 0 to speed v in a time interval of Δt. A newer, more powerful sports car accelerates from $0 \rightarrow 2 v$ in the same time period. Assuming the energy
coming from the engine appears only as kinetic energy of the cars. Choose correct statement.
A. The power of the sports car is four times
that of the older-model car.
B. The power of the sports car is two times
that of the older-model car.
C. The power of the sports car is equal to
that of the older-model car.
D. The power of the sports car cannot be
compared from given data.

Answer: A

D Watch Video Solution

9. An engine accelerate a car of mass 800 kg to
a speod of $72 k m / h$. If the frictional force is
$10 N$ per tonne, the power developed by the engine is:
A. $10 k W$
B. $15 k W$
C. $20 k W$
D. $5 k W$

Answer: D

10. A train having 60 wagons each weighing 25 tonnes moving with a speed of $72 \mathrm{~km} / \mathrm{h}$. If the
force $10 N$ per tonne, the power development is:
A. $3 \times 10^{5} W$
B. $3 \times 10^{6} W$
C. $3 \times 10^{7} W$
D. $3 \times 10^{4} W$

D Watch Video Solution

11. An athlete mass 60 kg skips at the rete of 20
steps per minute through an aberage height of 25 cm . The power devolepment is:
A. $98 W$
B. 49 W
C. $14 W$
D. 21 W

Answer: B

- Watch Video Solution

12. The power of a heart which pumps 5×10^{3}
cc of blood per minute at a pressure of 120 mm of mercury $\left(g=10 \mathrm{~ms}^{-2}\right.$ and density of $\left.\mathrm{Hg}=13.6 \times 10^{3} \mathrm{~km}^{3}\right)$ is
A. $1.36 W$
B. 13.6 W
C. 0.136 W

D. 136 W

Answer: A

D Watch Video Solution

13. The human heart discharges $75 \mathrm{~cm}^{3}$ of
blood per beat against an average pressure of
10 cm of $H g$. Assuming that the pulse frequency is 75 per minute, the power of the heart is (density of $H g=13.6 \mathrm{gmcm}^{-3}$)

$$
\text { A. } 11.9 \mathrm{~W}
$$

B. 1.19 W

C. $0.119 W$

D. $119 W$

Answer: B

D Watch Video Solution

14. A body of mass m is acceleratad uniformaly from rest to a speed v in a time T. The instanseous power delivered to the body as a function of time is given by
A. $\frac{V}{T} t$
B. $\frac{V^{2}}{T} t^{2}$
C. $\frac{V^{2}}{T^{2}} t$
D. $\frac{V^{2}}{T^{2}} t^{2}$

Answer: C

D Watch Video Solution
15. A man M_{1} of mass 80 kg runs up a staircase in 15 s . Another man M_{2} also of mass 80 kg
runs up the same staircase in $20 s$. The ratio of
the power development by then will be:
A. 1
B. $\frac{4}{3}$
C. $\frac{16}{9}$
D. none of these

Answer: B
(Watch Video Solution
16. An engine pumps up 100 kg water through
a height of 10 m in 5 s . If effcienecy of the engine is 60%. What is the power of the engine? Takeg $=10 \mathrm{~ms}^{2}$.
A. $33 k W$
B. 3.3 kW
C. $0.33 k W$
D. $0.033 k W$

Answer: B
17. A pump motor is used to deliver water at a certain rate from a given pipe. To obtain ' n ' times water from the same pipe in the same
time by what amount (a) the force and (b) power of the motor should be increased ?
A. n^{2} times
B. n^{3} times
C. n times
D. $n^{3 / 2}$ times

Answer: B

D Watch Video Solution

18. A pump motor is used to deliver water at a
certain rate from a given pipe. To obtain ' n '
times water from the same pipe in the same
time, by what amount the power of the motor should be increased?
A. n^{2} times
B. n^{3} times

C. n times

D. $n^{3 / 2}$ times

Answer: B

D Watch Video Solution

19. For power to constant, the force has to
very with speed as:
A. $F \propto \frac{1}{v}$
B. $F \propto \frac{1}{\sqrt{v}}$
C. $F \propto v$
D. $F \propto v^{2}$

Answer: A

D Watch Video Solution

20. Power supplied to a mass 2 kg varies with time as $P=\frac{3 t^{2}}{2}$ watt. Here t is in second. If velocity of particle at $t=0$ is $v=0$, the velocity of particle at time $t=2 s$ will be:
A. $1 m / s$
B. $4 m / s$
C. $2 m / s$
D. $2 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

21. A constant power P is applied to a particle of mass m. The distance traveled by the
particle when its velocity increases from v_{1} to v_{2} is (neglect friction):

$$
\begin{aligned}
& \text { A. } \frac{m}{3 P}\left(v_{2}^{3}-v_{1}^{3}\right) \\
& \text { B. } \frac{m}{3 P}\left(v_{2}-v_{1}\right) \\
& \text { C. } \frac{3 P}{m}\left(v_{2}^{2}-v_{1}^{2}\right) \\
& \text { D. } \frac{m}{3 P}\left(v_{2}^{2}-v_{1}^{2}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

22. An elevator can carry a maximum load of

1800 kg (elevator + passengers) is moving up
with a constant speed of $2 m s^{-1}$. The frictional force opposing the motion is $4000 N$.

What is minimum power delivered by the motor to the elevator?
A. $22 k W$
B. $44 k W$
C. $66 k W$
D. 88 kW

Answer: B

- Watch Video Solution

23. A crane lifts a mass of 100 kg to a height of
$10 m$ in $20 s$. The power of the crane is
$\left(\right.$ Takeg $\left.=10 m s^{-2}\right)$
A. $100 W$
B. 200 W
C. 250 W
D. 500 W

Answer: D

D Watch Video Solution

24. A $30 m$ deep well is having water upto $15 m$.

An engine evacutes it in one hour. The power of the engine. If the diameter of the well is $4 m$ is
A. 11.55 kW
B. 1155 kW
C. 25.10 kW

D. 2310 kW

Answer: A

D Watch Video Solution

25. A pump on the ground floor of a building
can pump of water to fill a tank of voilume $30 m^{3}$ in 15 min . If the tank is 40 m above the ground and the efficiency of the pump is 30% , how much elertric power is consumed by the pump? $\left(\right.$ Take $\left.g=10 m s^{2}\right)$
A. $36.5 k W$
B. $44.4 k W$
C. 52.5 kW
D. $60.5 k W$

Answer: B

- Watch Video Solution

Circular Motion In Vertical Plane

1. In case of circular motion a body, if tangential force also acts on the body in addition to centripetal force, then work done:
A. by tangenitial force is zero by work done
by centripetal force is not zero.
B. by tangenitial force is zero but work
done by tangential force is not zero.
C. by both the forces is positive
D. by both the forces is zero

Answer: B

D Watch Video Solution

2. A stone is fastened to one end of a string and is whirled in a vertical circle of radius R.

Find the minimum speed the stone can have at the highest point of the circle.
A. $R g$
B. $(R g)^{2}$
C. R / g

Answer: D

D Watch Video Solution

3. What minimum horizontal speed should be
given to the bob of a simple pendulum of
length I so tht it describes a complete circle?
A. $g l$
B. $2 g l$
C. $\sqrt{2} g l$
D. $\sqrt{5} g l$

Answer: D

- Watch Video Solution

4. A stone of mass 1 kg tied to a light inextensible string of lenth $L=\frac{10}{3} m$, whirling in a circular path in a vertical plane.

The ratio of maximum tension to the minimum tension in the string is 4 . If g is taken to be
$10 \mathrm{~ms}^{-2}$, the speed of the stone at the highest point of the circle is
A. $20 \mathrm{~m} / \mathrm{sec}$
B. $10 \sqrt{3} \mathrm{~m} / \mathrm{sec}$
C. $5 \sqrt{2} m / s e c$
D. $10 \mathrm{~m} / \mathrm{sec}$

Answer: D

5. A weightless rod of length $2 l$ carries two equal masses ' m ', one tied at lower end A and the other at the middle of the rod at B. The rod can rotate in vertical plane about a fixed horizontal axis passing thriugh C. The rod of is released from rest in horizontal possion. The speed of the mass B at the instant rod
become vertical is:

||||||||

A. $\sqrt{\frac{3 g l}{5}}$
B. $\sqrt{\frac{4 g l}{5}}$
C. $\sqrt{\frac{6 g l}{5}}$
D. $\sqrt{\frac{7 g l}{5}}$

Answer: C

- Watch Video Solution

6. A particle is rotated in a vertical circle by
connecting it to a string of length l and keeping the other end of the string fixed. The minimum speed of the particle when the string is horizontal for which the particle will complete the circle is
A. $\sqrt{g} l$
B. $\sqrt{2} g l$
C. $\sqrt{3} g l$
D. none

Answer: B

D Watch Video Solution
7. A partical originally at rest at the highest point of a smooth vertical circle is slightly displaced. It will leave the circle at a vertical
distance h below the highest points, such that h is equal to
A. R
B. $R / 4$
C. $R / 2$
D. $R / 3$

Answer: D
(Watch Video Solution
8. A small block slides with velocity $0.5 \sqrt{g r}$ on
the horizontal frictionless surface as shown in
the figure. The block leaves the surface at point C. Calculate angle θ in the figure.

A. $\cos ^{-1} \cdot \frac{4}{9}$
B. $\cos ^{-1} \cdot \frac{3}{4}$
C. $\cos ^{-1} \cdot \frac{1}{4}$
D. $\cos ^{-1} \cdot \frac{4}{5}$

Answer: B

- Watch Video Solution

9. A practical moves from rest at A on the surface of a smooth circular cylinder of radius
r as shown. At B it leaves the cylinder. The
equation relating α and β is

A. $3 \sin \alpha=2 \sin \beta$
B. $2 \sin \alpha=3 \cos \beta$
C. $3 \sin \beta=2 \cos \alpha$
D. $2 \sin \beta=3 \cos \alpha$

Answer: C

Watch Video Solution

10. In the given system, when the ball of mass
m is released, it will swing down the dotted arc.
a. How fast will it reach the lowest point in its
swing? A nail is located at a distance d below the point of suspension.

b. Show that d must at $0.6 l$, if the ball is to
swing completely around a circle centered along the nail.
c. If $d=0.6 l$, find the change in tension in the string just after it touches the nail.
A. 15 cm
B. 4 cm
C. 9 cm
D. None of threr

Answer: C

D Watch Video Solution
11. A pendulum bob has a speed $3 \mathrm{~m} / \mathrm{s}$ while passing through its lowest position. What is its speed (in m / s) when it makes an angle of
60° with the vertical? The length of the pendulum is 0.5 m Take $g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

D Watch Video Solution

12. A heavy particle hanging from a fixed point by a light inextensible string of length l is projected horizonally with speed $\sqrt{g l}$. Find the speed of the particle and the inclination of the string to the vertical at the instant of the motion when the tension in the string is equal to the weight of the particle.
A. $\sqrt{2 g l}$
B. $\sqrt{3 g l}$
C. $\sqrt{g l / 2}$
D. $\sqrt{g l / 3}$

Answer: D

D Watch Video Solution

13. The kinetic energy of partical moving along
a circule of radius R depends upon the distance covered S and given by $K=a S$
where a is a constant. The the force acting on
the partical is

> A. $\frac{a S}{R}$
> B. $\frac{2 a S^{2}}{R}$
> C. $\frac{a S^{2}}{R^{2}}$
> D. $\frac{2 a S}{R}$

Answer: D
(Watch Video Solution
14. With what minimum speed v must a small ball should be pushed inside a smooth vertical tube from a height h so that it may reach the top of the tube? Radius of the tube is R.

A. $\sqrt{2 g(h+2 R)}$
B. $\frac{5}{2} R$

> C. $\sqrt{g(5 R-2 h)}$
> D. $\sqrt{2 g(2 R-h)}$

Answer: D

- Watch Video Solution

15. A particle of mass m is released from a
height H on a smooth curved surface which
ends into a vertical loop of radius R, as shown.

Choose the correct alernative(s) if $H=2 R$.

A. $H=\frac{3 R}{2}$
B. $H=5 R$
C. $H=\frac{5 R}{2}$
D. None of these

Answer: A
16. A particle of mass m oscillates along the
horizontal diameter $A B$ inside a smooth spherical shell of radius R. At any instant
K. E. of the partical is K. Then force applied
by particle on the shell at this instant is:

$$
\begin{aligned}
& \text { A. } \frac{K}{R} \\
& \text { B. } \frac{2 K}{R} \\
& \text { с. } \frac{3 K}{R} \\
& \text { D. } \frac{K}{2 R}
\end{aligned}
$$

Answer: C

D Watch Video Solution

17. A head slide without friction around a loop
the (figure). The bead slide is released is from rest at a height $h=3.50 R$. How large is the normal force on the bead at point (A) if its
mass is $50 g$?

A. 0.10 N downward

B. 0.10 N upward

C. 1.0 N downward

D. 1.0 N upward

Answer: C

- Watch Video Solution

18. A light, right rod is 40.0 cm long.lts top end is pivoted on a frictionless, horizontal axle. The rod hangs straight down at rest with a small , massive ball attached to its bottom end. You strike the ball, suddenly giving it a horizontal
velocity so that it swings around in a full cirle.
What minimum speed at the bottom is required to make the ball go over the top of
the circle?

A. $2.5 m / s$
B. $4.0 \mathrm{~m} / \mathrm{s}$
C. $3.0 \mathrm{~m} / \mathrm{s}$

D. $5.0 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

19. A pendulum comprising a light string of
length L and small sphere, swings in the vertical plane. The string hits a peg located a distance of bellow the point of suspension
(figure). If the pendulum is released from rest at the horizontal possition $\left(\theta=90^{\circ}\right)$ and is
to swing in a complete circule centered on the peg, the minimum value of d is

A. $\frac{L}{4}$
B. $\frac{2 L}{4}$
C. $\frac{3 L}{4}$
D. $\frac{3 L}{5}$

Answer: D

D Watch Video Solution

20. A ball whirls around in a vertical circle at
the end of a string . The other end of the string is fixed at the centre of the circle.

Assuming the total energy of the ball-Earth system remains constant. What is the
difference of tension in string at bottom and top during circular motion $\left(T_{b}-T_{t}=\right.$? $)$
A. $5 m g$
B. $3 m g$
C. $6 m g$
D. $3.5 m g$

Answer: C
(Watch Video Solution
21. A partical is moving in the vertical plane . It is attached at one end of a string of length l whose other end is fixed. The velocity at the lower point is u. The tension in the string is \vec{T} and velocity of the partical is \vec{v} at any position. Then, which of the following quantity will remain constant.
A. $\vec{T} \cdot \vec{v}$
B. kinetic energy
C. Gravitational potential energy
D. $\vec{T} \times \vec{v}$

Answer: A

D Watch Video Solution

Collision

1. When two bodies collide elastic, then:
A. $K E$ of the system along is conserved
B. only momentum is conserved
C. both $K E$ and momentum are conserved

D. neither $K E$ nor momentum is

conserved

Answer: C

D Watch Video Solution

2. During inclined collision of two particle

A. $K E_{f \in a l}-K E_{\in \text { itial }}$
B. $K E_{f \in a l}$ must be greater than $K E_{\in \text { itial }}$
C. $K E_{f \in a l}$ must be less than $K E_{\in i t i a l}$
D. $K E_{f \in a l}$ may be greater or less than
$K E_{\in i t i a l}$

Answer: C

D Watch Video Solution

3. Two ball at the same temperature collide which is consved?
A. Temperature
B. velocity
C. kinetic energy
D. Momentum

Answer: D

- Watch Video Solution

4. In perfectily inelastaic collition the relative
velocity of the bodies
A. before impect it zero

B. before impect is equal the after impact

C. before impect is zero
D. is characterized by none of the above

Answer: C

D Watch Video Solution

5. A body just droppeed from a tower explodes
into two placed of equal mass in mid -air which of the following is not posible?
A. Each part will follow parabolic path
B. Only one part will follow parabolic path
C. Both part move along a verticle line
D. One part reaches the ground earlier than the other

Answer: B

- Watch Video Solution

6. An inelestc ball of mass m moves at speed a toward mother ineclasits ball of mass m at rest They collide and stick togather both moving at speed is nothing else is known about the condition under which the collision take plane which of the fpllowing statement is the most correct?
A. Nether total kinetic energy not total
linear momenr=tum can be conserved
B. This is at clastic collision in which both total kinetic energy and total linear momentum are conserved the fixed speed is $v=u / 2$
C. This is an inelistic collision and in such
collision , total linear momentum is
always conserved the final speed is
$v=u / 4$
D. This is an inelistic collision and in which
total linear momentum is conserved

provided no external force can deliver to

the system (of two ball) di=uring the collision

Answer: D

D Watch Video Solution

7. Which of the following statement is true concening the elastic collision of two object (It is given that no net external force acts on the
system of two object and the do not exen force on each other exept during collision)
A. No net work on any of the two objects
since there is no external on the system
of given two object
B. The net work done by the first object on
the second is equal in the net work done
by the second on the first
C. The net work done by the first object on
the second is execity the opposite of the
net work done by the second on the fist
D. No net work done on the system
depends on the angle of colision

Answer: C

D Watch Video Solution

8. During a collision between a closed system of particle in the absence of exerted force
A. The total kinetic energy of the system
remain constant
B. The momentum of each particle remains
constant
C. Momentum is exchanged between
different particles
D. Momentum and kinetic energy both are

exchanged between different particles

Answer: A

9. If u_{1} and u_{2} be the initial velocity and v_{1} and
v_{2} be the final velocities of the colliding partical then we define coefficient of restitution e as:
$e=\frac{v_{1}-v_{2}}{u_{1}-u_{2}}$
For perfectly inelastic collision ' e ' is
A. zero
B. 1
C. <1

D. >1

Answer: A

D Watch Video Solution

10. A ball of mass M_{1} collides elastically and
head on with another ball of mass M_{2} initially
at rest . In which the following cases the
transfer of momentum will be maximum?

$$
\text { A. } M_{1}=M_{2}
$$

B. $M_{1}>M_{2}$
C. $M_{1}<M_{2}$
D. Data is not sufficient to predict it

Answer: B

D Watch Video Solution

11. A billiard ball moving with a speed of $5 \mathrm{~m} / \mathrm{s}$ collides with an identical ball, originally at rest.

If the first ball stop dead after collision, then
the second ball will move forward with a speed of:
A. $10 m / s$
B. $5 m / s$
C. $2.5 m / s$
D. $1 \mathrm{~m} / \mathrm{s}$

Answer: B
(Watch Video Solution
12. A body is allowed to fall on the ground
from a height h_{1}. If it is rebound to a height
h_{2} then the coefficient of restitution is:
A. $\frac{h_{2}}{h_{1}}$
B. $\sqrt{\frac{h_{2}}{h_{1}}}$
C. $\frac{h_{1}}{h_{2}}$
D. $\sqrt{\frac{h_{1}}{h_{2}}}$

Answer: A
13. A ball is let fall from a height h_{0}. There are n collisions with the earth. If the velocity of rebound after n collision is v_{n} and the ball rises to a height h_{n} then coefficient of restitution e is given by

$$
\begin{aligned}
& \text { A. } e^{n}=\sqrt{\frac{h_{n}}{h_{0}}} \\
& \text { B. } e^{n}=\sqrt{\frac{h_{0}}{h_{n}}} \\
& \text { C. } n e=\sqrt{\frac{h_{n}}{h_{0}}} \\
& \text { D. } \sqrt{n e}=\sqrt{\frac{h_{n}}{h_{0}}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

14. A body X with a momentum p collides with another identical stationary body Y one dimensionally. During the collision, Y gives an impulse J to body X. Then coefficient of restitution is
A. $\frac{2 J}{P}-1$
B. $\frac{J}{P}+1$

$$
\begin{aligned}
& \text { C. } \frac{J}{P}-1 \\
& \text { D. } \frac{J}{2 P}-1
\end{aligned}
$$

Answer: B

- Watch Video Solution

15. A pendulum consists of a wooden bob of mass m and of length L. A bullet of mass m_{1}
is fired towards the pendulum with a speed v_{1}.
The bullet emerges out of the bob with a
speed $v_{1} / 3$ and the just completes motion along a vertical circle. Then v_{1} is:

$$
\begin{aligned}
& \text { A. }\left(\frac{m}{m_{1}}\right) \sqrt{5 g l} \\
& \text { B. } \frac{3}{2}\left(\frac{m}{m_{1}}\right) \sqrt{5 g l} \\
& \text { C. } \frac{2}{3}\left(\frac{m}{m_{1}}\right) \sqrt{5 g l} \\
& \text { D. }\left(\frac{m_{1}}{m}\right) \sqrt{g l}
\end{aligned}
$$

Answer: B

D Watch Video Solution

16. Two pendulum each of length l are initial situated as shown in figure. The first pendulum is released and strikes the second. Assume that the collision is completely inelastic and neglect the mass of the string and any frictional effects. How high does the
center of mass rise after the collision?

$$
\begin{aligned}
& \text { A. } d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]^{2} \\
& \text { B. } d\left[\frac{m_{1}}{\left(m_{1}+m_{2}\right)}\right]
\end{aligned}
$$

C. $\frac{d\left(m_{1}+m_{2}\right)^{2}}{m_{2}}$
D. $d\left[\frac{m_{2}}{\left(m_{1}+m_{2}\right)}\right]^{2}$

Answer: A

D Watch Video Solution

17. A mass ' m ' moves with a velocity ' v ' and collides inelastieally with another identical mass. After collision the $1^{\text {st }}$ mass moves with velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed

of the $2^{n d}$ mass after collision.

$\underset{\substack{\text { bef ore } \\ \text { collision }}}{\rightarrow} \cdot \underset{m}{\rightarrow} \uparrow v / \sqrt{3} \underset{\text { after }}{\text { collision }}\rangle\rangle$
A. $\frac{2}{\sqrt{3}} v$
B. $\frac{v}{\sqrt{3}}$
C. v
D. $\sqrt{3} v$

Answer: A

- Watch Video Solution

18. A ball is projected vertically down with an
initial velocity from a height of 20 m onto a horizontal floor. During the impact it loses
50% of its energy and rebounds to the same height. The initial velocity of its projection is
A. $20 m s^{-1}$
B. $15 m s^{-1}$
C. $10 m s^{-1}$
D. $5 m s^{-1}$
19. A partical falls from a height h upon a fixed horizontal plane and rebounds. If e is the coefficient of restitution, the total distance travelled before rebounding has stopped is

$$
\begin{aligned}
& \text { A. } h\left(\frac{1+e^{2}}{1-e^{2}}\right) \\
& \text { B. } h\left(\frac{1-e^{2}}{1+e^{2}}\right) \\
& \text { C. } \frac{h}{2}\left(\frac{1-e^{2}}{1+e^{2}}\right) \\
& \text { D. } \frac{h}{2}\left(\frac{1+e^{2}}{1-e^{2}}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

20. The bob A of a simple pendulum is released when the string makes an angle of
45° with the vertical. It hits another bob B of the same meterial and same mass kept at rest
on the table. If the collision is elastic, then

A. Both A and B rise to the same height
B. Both A and B comes to rest at B
C. Both A and B move with the same velocity of A
D. A comes to rest and B move with the same velocity of A

Answer: D

D Watch Video Solution

21. Two particle moving in the same direction with speeds $4 m / s$ and $2 m / s$ collide elastically (the collision being head on). After
collision, the velocity of first particle becomes
$3 m / s$ in the same direction. The velocity of
the second should be
A. $2 m / s$ in same direction
B. $4 m / s$ in same direction
C. $4 m / s$ in opposite direction
D. $5 m / s$ in same direction

Answer: D

D Watch Video Solution
22. Body A of mass m and B of mass $3 m$ move towards each other with velocities V and $2 V$ respectivally from the positions as shown, along a smooth horizontal circule track of redius r. After the first elastic collision, they
will collide again after the time:

A. $\frac{2 \pi r}{V}$
B. $\frac{\pi r}{2 V}$
C. $\frac{\pi r}{V}$

D. $\frac{2 \pi r}{3 V}$

Answer: B

D Watch Video Solution

23. A ball of mass m is moving normally towards a walll of mass $M(\gg m)$ with the velocity $4 m / s$. The wall is also moving. After striking elastically with the wall, velocity of ball becomes $8 \mathrm{~m} / \mathrm{s}$. Find the speed of the wall:
A. $4 m / s$
B. $2 m / s$
C. $2 \sqrt{2} m / s$
D. $4 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

24. The velocity vector of a sphere after it hits
a vertical wall which is pallel to \hat{j} is
$(-\hat{i}+3 \hat{j})$ on a smooth horizontal surface.

The coefficient of restitution between ball and
wall is $(1 / 2)$. Final the velocity vector of sphere immediately before collision.
A. $\hat{i}+3 \hat{j}$
B. $-2 \hat{i}+3 \hat{j}$
C. $-\hat{i}+3 \hat{j}$
D. $2 \hat{i}+3 \hat{j}$

Answer: B

D Watch Video Solution
25. A partical of mass m_{1} collides head on with
a stationary partical of mass m_{2}. If $\frac{m_{1}}{m_{2}}>e$ where e is the coefficient of restitution, then :
A. m_{1} will return back
B. m_{1} will move in same direction
C. m_{1} will stop
D. unpredicatable

Answer: D

D Watch Video Solution

26. A ball of mass 1 kg strikes a heavy platform, elastically, moving upwards with a velocity of $5 m / s$. The speed of the ball just before the collision is $10 \mathrm{~m} / \mathrm{s}$ downwards. Then the impulse imparted by the platform on the ball is :-

$$
(1 \mathrm{~kg})_{15 \mathrm{~m} / \mathrm{s}}^{10 \mathrm{~m} / \mathrm{s}}
$$

A. $15 N-s$
B. $10 N-s$
C. $20 N-s$
D. $30 N-s$

Answer: C

D Watch Video Solution

27. The sphere A of mass m_{1} moves with velocity V on a frictionless horizontal surface and strikes with sphere B of mass m_{2} at rest.

The sphere A comes back with speed $V / 10$.

Choose the correct option.

A. $m_{1}>m_{2}$
B. $m_{1}=m_{2}$
C. $m_{1}<m_{2}$
D. none of these

Answer: A

28. A sphere A of mass moving with a
velocity hits another stationary sphere B of
same mass. If the ratio of the velocity of the
sphere after collision is $\frac{v_{A}}{v_{B}}=\frac{1-e}{1+e}$ where e is the cofficient of restitution, what is the initial
velocity of sphere A with which it strikes?
A. $v_{A}+v_{B}$
B. $v_{A}-v_{B}$
C. $v_{B}-v_{A}$
D. $\frac{\left(v_{A}+v_{B}\right)}{2}$

Answer: B

D Watch Video Solution

29. A ball strickes a horizontal floor at
$45^{\circ} .25 \%$ of its kinetic energy is lost in collision. Find the coefficient of restitution.
A. $\frac{1}{2}$
B. $\frac{1}{\sqrt{2}}$

C. $\frac{1}{2 \sqrt{2}}$
 D. $\frac{1}{4}$

Answer: C

- Watch Video Solution

30. N identical balls are placed on a smooth horizontal surface. An another ball of same mass collides elastically with velocity u with
first ball of N balls. A process of collision is
thus started in which first ball collides with
on. The coefficient of restitution for each collision is e. Find the speed of $N t h$ ball.

$$
\begin{aligned}
& \text { A. }(1+e)^{N} u \\
& \text { B. } u(1+e)^{N-1} \\
& \text { C. } \frac{u(1+e)^{N-1}}{2^{N-1}} \\
& \text { D. } u^{N}(1+e)^{N}
\end{aligned}
$$

Answer: C

- Watch Video Solution

31. A plank of mass m moving with a velocity v along a frictionless horizontal track and a body of mass $m / 2$ moving with $2 v$ collides with plank elastically. Final speed of the plank is:

A. $\frac{5 v}{3}$
B. $\frac{3 v}{3}$
C. $\frac{2 v}{3}$
D. none of these

Answer: D

D Watch Video Solution

Problems Based On Mixed Concepts

1. A boy weighing 50 kg finished long jump at a distance of 8 m . Considering that he moved along a parabolic path and his angle of jumps was 45°, his initial $K E$ will be $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
A. $960 J$

B. 1560 J

C. 2460 J
D. 1960 J

Answer: B

- Watch Video Solution

2. If KE of a body increases by 300%, by what
\% will the linear momentum of the body increase?
A. 50%
B. 100%
C. 150%
D. 300%

Answer: D

D Watch Video Solution

3. Momentum of a particle is increased by
50%. By how much percentage kinetic energy
A. 25%
B. 50%
C. 100%
D. 125%

Answer: D

D Watch Video Solution

4. Two bodies of mass $1 k g$ and $2 k g$ have equal momentum. The ratio of their kinetic energies is:
A. $1: 1$
B. 2:1
C. $1: 3$
D. 3:1

Answer: D

D Watch Video Solution

5. Two bodies with masses $1 k g$ and $2 k g$ have equal kinetic energies. If p_{1} and P_{2} are their repective momenta, then p_{1} / P_{2} is equal to :
A. $M_{1}: M_{2}$
B. $M_{2}: M_{1}$
C. $M_{1}^{2}: M_{2}^{2}$
D. $\sqrt{M_{1}}: \sqrt{M_{2}}$

Answer: A

D Watch Video Solution

6. A particle moves in the $x-y$ plane under the action of a force \vec{F} such that the value of its linear momentum \vec{P} at any time t is
$P_{x}=2 \cos t$ and $P_{y}=2 \sin t$. What is the angle θ between \vec{F} and P at a given time t ?
A. 90°
B. 0°
C. 180°
D. 30°

Answer: A
(Watch Video Solution
7. A body moving with velocity v has momentum and kinetic energy mumerically equal. What is the value of v ?
A. $2 m / s$
B. $\sqrt{2} m / s$
C. $1 m / s$
D. $0.2 \mathrm{~m} / \mathrm{s}$

Answer: B

- Watch Video Solution

8. A light body A and a heavy B have equal
linear momentum. Then the $K E$ of the body
A is
A. equal to that of B
B. greater then that of B
C. smaller then that of B
D. zero

Answer: B

D Watch Video Solution
9. A block of mass m is pulled slowly by a minimum constant force (F) on a horizontal
surface thorugh a distance x. The coefficient of
kinetic friciton is μ. Find the work done by the force (F).

Fig. 8.46
A. $\frac{\mu m g x}{1+\mu^{2}}$
B. $\frac{\mu m g x}{1-\mu^{2}}$
C. $\frac{\mu m g x}{\sqrt{1+\mu^{2}}}$
D. None of these

Answer: A

D Watch Video Solution

10. A body of mass $6 k g$ is under a force which causes displacement in it given by $S=\frac{t^{2}}{4}$ metres where t is time. The work done by the force in 2 sec is
A. $12 J$
B. 9 J
C. $6 J$
D. 3 J

Answer: D

D Watch Video Solution

11. The displacement x of particle moving in one dimension, under the action of a constant force is related to the time t by the equation
$t=\sqrt{x}+3$
where xis \in meters and $t \in \sec$ onds. Find
(i) The displacement of the particle when its
velocity is zero, and
(ii) The work done by the force in the first 6 sec onds.
A. 9 J
B. $6 J$
C. 0 J
D. 3 J

- Watch Video Solution

12. A partical is realeased from the top of two inclined rought surface of height h each. The angle of inclination of the two planes are 30° and 60° respectively. All other factors (e.g. coefficient of friction , mass of the block etc) are same in both the cases. Let K_{1} and K_{2} be the kinetic energy of the partical at the bottom of the plane in two cases. Then

$$
\text { A. } K_{1}=K_{2}
$$

B. $K_{1}>K_{2}$
C. $K_{1}<K_{2}$
D. data insufficient

Answer: B

- Watch Video Solution

13. Velocity-time graph of a particle of mass (2 kg) moving in a straight line is as shown in Fig.

Find the work done by all the forces acting on
the

A. 400 J
B. -400 J
C. $-200 J$
D. 200 J

- Watch Video Solution

14. A 15 gm ball is shot from a spring whose spring has a force constant of $600 \mathrm{~N} / \mathrm{m}$. The spring is compressed by 5 cm . The greater possible horizontal range of the ball for this compression is
A. 6.0 m
B. $12.0 m$
C. $10.0 m$
D. 8.0 m

Answer: B

D Watch Video Solution

15. System shown in figure is released from
rest. Pulley and spring is massless and friction
is absent everywhere. The speed of 5 kg block
when $2 k g$ block leaves the contact with ground is (force constant of spring
$k=40 \mathrm{~N} / \mathrm{m}$ and $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

5 kg

 2 kg

A. $\sqrt{2} m / s$
B. $2 \sqrt{2} m / s$
C. $2 m / s$

$$
\text { D. } 4 \sqrt{2} \mathrm{~m} / \mathrm{s}
$$

Answer: B

D Watch Video Solution

16. A partical of mass m is projected with velocity u at an angle α with horizontal.

During the period when the partical desconds from highest point to the position where
its velocity vector makes an angle $\frac{\alpha}{2}$ with horizontal. Wiork done by gravity force is
A. $\frac{1}{2} \mu^{2} \tan ^{2} \alpha$
B. $\frac{1}{2} \mu^{2} \frac{\cos ^{2}(\alpha)}{2}$
C. $\frac{1}{2} \mu^{2} \cos ^{2} \alpha \frac{\tan ^{2}(\alpha)}{2}$
D. $\frac{1}{2} \mu^{2} \frac{\cos ^{2}(\alpha)}{2} \sin ^{2} \alpha$

Answer: D

D Watch Video Solution

17. A varible force P is amintained targent to a frictionless cylinder surface of radius a as
shown in the figure. By slowly varying this force, a block of weight W is moved and the spring to which it is streched from position 1 to position 2 . The work done by the force P is:

A. $W a \sin \theta$
B. $\frac{1}{2} k a^{2} \theta^{2}$
C. $W a \sin \theta+k a^{2} \theta^{2}$
D. $W a \sin \theta+\frac{1}{2} k a^{2} \theta^{2}$

Answer: B

- Watch Video Solution

18. In the figure shown, the system is released
from rest. Find the velocity of block A when
block B has fallen a distance l. Assume all
pulleys to be massless and frictionless.

$$
\begin{aligned}
& \text { A. } v=\sqrt{\frac{2 g l}{5}} \\
& \text { B. } v=\sqrt{\frac{g l}{5}}
\end{aligned}
$$

C. $v=\sqrt{\frac{g l}{2}}$
D.

Answer: A

D Watch Video Solution

19. A ball falls undal gravity from a height of
$10 m$ with an initial downward velocity u. It collides with ground, loses halft its energy and then rises back to the same height. Find the initial velocity u.
A. $\sqrt{2 g h}$
B. $\sqrt{g h}$
C. $\sqrt{3 g h}$
D. $\sqrt{2.5 g h}$

Answer: A

D Watch Video Solution

20. The kinetic energy of partical moving along
a circule of radius R depends upon the distance covered S and given by $K=a S$
where a is a constant. The the force acting on
the partical is
A. constant
B. proportional to v
C. proportional to v^{2}
D. inversely proportional to v

Answer: D

- Watch Video Solution

21. The kinetic energy of a body moving along a straight line varies with time as shown in figure. The force acting on the body:

A. zero
B. constant

C. directly proportional to velocity

D. inversely proportional to velocity

Answer: B

- Watch Video Solution

22. In the figure shown, there is a smooth tube
of radius R, fixed in the vertical plane. A ball B
of mass m is released from the top of the
tube. B slides down due to gravity and compresses the spring is fixed and end A is
free., Initially, line $O A$ makes an angle 60°
with $O C$ and finally it makes an angle of 30°
after compression. Find the spring constant of
the spring.

$\frac{12 m g(2+\sqrt{3})}{\pi^{2} R}$
B. $\frac{36 m g(2+\sqrt{3})}{\pi^{2} R}$
C. $\frac{18 m g}{\pi^{2} R}$
D. None of these

Answer: D

(Watch Video Solution

23. A block mass $m=2 k g$ is moving with
velocity v_{0} towards a massless unstretched
spring of the force constant $k=10 N / m$.

Coefficient of friction between the block and
the ground is $\mu=0.2$. Find the maximum
value of v_{0} so that after pressing the spring
the block does not return back but stops there
permanently.

A. $2 \sqrt{\frac{2}{5}} m / s$
B. $\sqrt{\frac{1}{5}} m / s$
C. $4 \sqrt{\frac{1}{5}} m / s$
D. $4 \sqrt{\frac{2}{5}} \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

24. In figure a force of magnitude F acts on
the free end of the card. If the weight is move up alowly by a distance b. How much work is done on the weight by the rope connecting
pulley and weight?

A. $F h$
B. $2 F h$
C. $F h / 2$
D. None of these

Answer: C

D Watch Video Solution

25. The system shown in the figure consider of
a light, inextenslible cord, light, frictionless
pulley, and blocks of equal mass. Notice that block B is attached to one of the pulleys. The system is initial held at rest so that the
ground. The blocks are then released. Find the
speed of block A at the moment the vertical

separation of the blocks is h.

A. $\sqrt{\frac{6 g h}{15}}$
B. $\sqrt{\frac{8 g h}{13}}$
C. $\sqrt{\frac{8 g h}{15}}$
D. $\sqrt{\frac{6 g h}{13}}$

Answer: B

D Watch Video Solution

26. While running a person transforms about
$0.60 J$ chemical energy to mechanical energy
per stop per kilogram of body mass. If a 60 kg
runner transform energy at a rate of 72 W during a race, how fast is the person running?

Assume that a running step is 1.5 m long
A. $2.0 \mathrm{~m} / \mathrm{s}$
B. $3.0 \mathrm{~m} / \mathrm{s}$
C. $2.5 \mathrm{~m} / \mathrm{s}$
D. $\sqrt{\frac{6 g h}{13}}$

Answer: D

D Watch Video Solution
27. A simple pendulum of length hangs from a horizontal roof as shown in figure. The bob of mass m is given an initial horizontal velocity of magnitude $\sqrt{5 g l}$ as shown in figure. The coefficient of restitution $e=\frac{1}{2}$. After how many collisions the bob shall no long come into constant with the horizonrtal roof?

A. 1
B. 2
C. 4
D. none of these

Answer: A

D Watch Video Solution

28. A mass of 2.9 kg is suspended from a string
of length 50 cm and is at rest. Another body of mass 100 gm which is moving horizontal with a velocity of $150 \mathrm{~m} / \mathrm{s}$ strikes it.After striking
the two bodies combine together. Tension in
the string, when it is at an angle of 60° with the velocity is: $g=10 \mathrm{~m} / \mathrm{s}^{2}$
A. $135 N$
B. 125 N
C. $140 N$
D. 90 N

Answer: D

D Watch Video Solution
29. The given figure shows a small mass connected to a string which is atteched to a string, which is attached to a vertical post. If the mass is released from rest when the string is horizontal as shown the magnitude of the total acceleration of the mass as friction of the angle θ is

A. $2 g \sin \theta$
B. $2 g \cos \theta$
C. $g \sqrt{3 \cos ^{2} \theta+1}$
D. $g \sqrt{3 \sin ^{2} \theta+1}$

Answer: C

D Watch Video Solution

30. A pendulum comprising a light string of length L and small sphere, swings in the vertical plane. The string hits a peg located a
distance of bellow the point of suspension
(figure). If the pendulum is released from rest at the horizontal possition $\left(\theta=90^{\circ}\right)$ and is to swing in a complete circle centered on the peg, the minimum value of d is

A. 0.75 m
B. $0.5 m$
C. $0.25 m$
D. $0.2 m$

Answer: A

D Watch Video Solution

31. In the track shown in figure section $A B$ is a quandrant of a circle of 1 metre redius. A block
is released at A and slides without friction
until it reaches B. After B it moves on a rought
horizontal floor and comes to rest at distance

3 meters from B. What is the coefficient of friction between floor and body?

A. $1 / 3$
B. $2 / 3$
C. $1 / 4$

D. $3 / 8$

Answer: B

D Watch Video Solution

32. In the figure shown initial spring is in unstretched state and blocks are at rest. Now $100 N$ force is applied on block A and B as shown in figure. After same time velocity of 'a' becomes $2 m / s$ and that of 'B' $4 m / s$ and block A displaced by amount 10 cm and spring
is spring is streched by amount 30 cm . Then
work done by spring force on A will be:

Smooth surface
A. $9 / 3 J$
B. $-6 J$
C. $6 J$
D. None of these

Answer: B

Assertion Reasoning

1. Assertion , No work is done if the displacement is zero

Reason: Work done by the force is defined to
be the product of component of the force in
the the direction of the displacement and the magnitude of displacement.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
2. Assertion: The change in kinetic energy of a partical is equal to the work done on it by the net force.

Reason: Change in kinetic energy of partical is
equal to the work done in case of a system of one partical.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

D Watch Video Solution

3. Assertion: A spring has potential energy, both when it is compresed or stretched.

Reason: In compressing or stretching, work is done on the spring against the resotoring force.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If assertion and reason are false.

- Watch Video Solution

4. Assertion:The work done by a conservative
force such as gravity depends on the initial and final positions only

Reason: The work done by a force can not be calculated if the exact nature of the force is not known.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
5. Assertion: The conservation of kinetic
energy in elastic collision applies after the collision is over and does not hold at very instant of the collision.

Reason: During a collision the total linear momentum is conserved at each instant of the collision.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

D Watch Video Solution

6. Assertion: In a perfectly inelastic collision in
the absence of external forces, the kinetic
energy is never conserved.

Reason: The objects deformed and stick together in this type of collision.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If assertion and reason are false.

- Watch Video Solution

7. Assertion: Work done by the friction or viscous force on a moving body in negative.

Reason: Work done is a scalar quantity which cannot be negative like mass.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
8. Assertion: Work done by the force of friction
in moving a body around a closed loop is zero.
Reason: Work done does not depend upon the nature of force.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

- Watch Video Solution

9. Assertion: A light body and a heavy body have same momentum. Then they also have same kinetic energy.

Reason: Kinetic energy does not depand on mass of the body.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
10. Assertion: Universe as a whole may be viewed an isolted system.

Reason: Total energy of an isolated system remain constant or stretched.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

- Watch Video Solution

11. Assertion: A spring has potential energy, both when it is compressed or stretched.

Reason: In compressing or stretching, work is
done on the spring against the restoring force.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
12. Assertion: In an elastic collision of two bodies, the momentum and energy of each body is conserved.

Reason: If two bodies stick to each other, after colliding, the collision is said to be perfectly elastic.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

D Watch Video Solution

13. Assertion: A quick collision between two bodies is more violent that show collision ,
even when initial and final velocity are identical.

Reason: The rate of change of momentum determine that force is small or large.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If assertion and reason are false.

- Watch Video Solution

14. Assertion: In an elastic collision of two bodies, the momentum and energy of each body is conserved.

Reason: If two bodies stick to each other, after colliding, the collision is said to be perfectly elastic.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.
15. Assertion: A quick collision between two
bodies is more violent that show collision , even when initial and final velocity are identical.

Reason: The rate of change of momentum determine that force is small or large.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

D Watch Video Solution

16. Assertion: In a elastic collision $(e=1)$
between two bodies, conservation of kinetic
$\left(K_{1}+K_{2}\right)_{i}=\left(K_{1}+K_{2}\right)_{f}$.
Reason: Conservation of momentum holds
true i.e., $\left(P_{1}+P_{2}\right)_{i}=\left(P_{1}+P_{2}\right)_{f}$.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If assertion and reason are false.

- Watch Video Solution

17. Assertion:The principal of conservation of energy is valid for inelastic collision.

Reason: The principal of conservation of energy holds good in both elastic and inelastic collision. In case of inelastic collision kinetic energy before and after collision is not same.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason are false.

NEET Questions

1. A force of $2 \hat{i}+3 \hat{j}+4 \hat{k} N$ acts on a body for

4 second and produces a displacement of
$(3 \hat{i}+4 \hat{j}+5 \hat{k}) m$. The power used is
A. $9.5 W$
B. 7.5 W
C. 6.5 W
D. 4.5 W

- Watch Video Solution

2. The mass of two substance are
$4 g m$ and $9 g m$ respectively. If their kinetic energy are the same, then the ratio of their momrntum will be
A. $4: 9$
B. 9: 4
C. $3: 2$
D. $2: 3$

- Watch Video Solution

3. A force $(\vec{F})=3 \hat{i}+c \hat{j}+2 \hat{k}$ acting on a partical causes a displacement:
$(\vec{s})=-4 \hat{i}+2 \hat{j}+3 \hat{k}$ in its own direction.
If the work done is $6 j$, then the value of c is
A. 0
B. 1
C. 6

- Watch Video Solution

4. The potential energy of a certain spring when streched through a distance ' S ' is 10
joule. The amount of work (in jule) that must be done on this spring to stretch it through an additional distance 'S' will be
A. 30
B. 40
C. 10
D. 20

- Watch Video Solution

5. A force $\vec{F}=(5 \hat{i}+4 \hat{j}) N$ acts on a body

$$
\vec{s}=(6 \hat{i}-5 \hat{j}+3 \hat{k}) m . \text { The work done will }
$$

be
A. 10 J
B. 20 J
C. 30 J
D. 40 J

- Watch Video Solution

6. A long elastic spring is stretched by 2 cm and its potential energy is U. If the spring is stretched by 10 cm , the $P E$ will be
A. $\frac{U}{5}$
B. U
C. $5 U$
D. $25 U$

Answer: D

D Watch Video Solution

7. A stationary partical explodes into two partical of a masses m_{1} and m_{2} which move
in opposite direction with velocities v_{1} and v_{2}
. The ratio of their kinetic energies E_{1} / E_{2} is
A. m_{1} / m_{2}
B. 1
C. $m_{1} v_{2} / m_{2} v_{1}$
D. m_{2} / m_{1}
8. A mass of 0.5 kg moving with a speed of $1.5 m / s$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $k=50 \mathrm{~N} / m$ The maximum compression of the spring would be.
A. $0.15 m$
B. $0.12 m$
C. $1.5 m$
D. 0.5 m

- Watch Video Solution

9. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time the stone is at lowest position and has a speed u. Find the magnitude of the change in its velocity as it reaches a position, where the string is horizontal.

$$
\begin{aligned}
& \text { A. } \sqrt{2\left(u^{2}-g l\right)} \\
& \text { B. } \sqrt{u^{2}-g l}
\end{aligned}
$$

C. $u-\sqrt{u^{2}-2 g l}$
D. $\sqrt{2 g l}$

Answer: A

D Watch Video Solution

10. A ball of mass 2 kg and another of mass 4 kg
are dropped together from a 60 feet tall building. After a fall of 30 feet each towards earth , their respective kinetic energies will be in the ratio of
A. $\sqrt{2}: 1$
B. 2:1
C. 1:2
D. $1: \sqrt{2}$

Answer: C

D Watch Video Solution

11. A bomb of mass 30 kg at rest explodes into two pieces of mass 18 kg and 12 kg . The
velocity of mass 18 kg is $6 \mathrm{~m} / / \mathrm{s}^{\prime}$. The kinetic energy of the other mass is
A. 256 J
B. 486 J
C. 524 J
D. 324 J
12. A Force F acting on an object varies with
distance x as shown in the here. The force is
in newton and x in metre. The work done by
the force in moving the object from $x=0$ to
$x=6 m$ is

A. 4.5 J
B. 13.5 J
C. 9.0 J

D. 18.0 J

- Watch Video Solution

13. A body of mass 3 kg is under a force, which
causes a displacement in it is given by $S=\frac{t^{3}}{3}$
(in metres). Find the work done by the force in
first 2 seconds.
A. $\frac{5}{19} J$
B. $\frac{3}{8} \mathrm{~J}$
C. $\frac{8}{3} J$
D. $\frac{19}{5} J$

- Watch Video Solution

14. A 0.5 kg ball moving with a speed of $12 \mathrm{~m} / \mathrm{s}$
strikes a hard wall at an angle of 30° with the
wall. It is reflected with the same speed and at
the same angle. If the ball is in contact with
the wall for 0.25 s , the average force acting on

the wall is

A. $48 N$
B. $24 N$

C. $12 N$

D. $96 N$

(Watch Video Solution

15. 300 Jof work is done in slide a $2 k g$ block up an inclined plane of height 10 m . Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$, work done against friction is
A. 200 J
B. 100 J

C. zero

D. 1000 J

Answer: B

D Watch Video Solution

16. A vertical spring with force constant k is
fixed on a table. A ball of mass m at a height h
above the free upper end of the spring falls
vertically on the spring, so that the spring is
compressed by a distance d. The net work done in the process is

$$
\begin{aligned}
& \text { A. } m g(h+d)+\frac{1}{2} k d^{2} \\
& \text { B. } m g(h+d)-\frac{1}{2} k d^{2} \\
& \text { C. } m g(h-d)-\frac{1}{2} k d^{2} \\
& \text { D. } m g(h-d)+\frac{1}{2} k d^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

17. Water falls from a height of 60 m at the rate
$15 \mathrm{~kg} / \mathrm{s}$ to operate a turbine. The losses due to frictional forces are 10% of energy. How much power is generated to by the turbine? $\left(g=10 \mathrm{~m} / / \mathrm{s}^{\wedge}(2)\right)^{\prime}$.
A. $8.1 k W$
B. 10.2 kW
C. $12.3 k W$
D. 7.0 kW
18. A shell of mass $200 g$ is ejected from a gun of mass $4 k g$ by an explosion that generate
1.05 kJ of energy. The initial velocity of the shell is
A. $100 \mathrm{~ms}^{-1}$
B. $80 \mathrm{~ms}^{-1}$
C. $40 \mathrm{~ms}^{-1}$
D. $120 \mathrm{~ms}^{-1}$

D Watch Video Solution

19. An engine pumps water continously through a hose. Water leave the hose with a velocity v and m is the mass per unit length of the Water jet. What is the rate at Which kinetic energy is imparted to water?

$$
\text { A. } \frac{1}{2} m v^{3}
$$

B. $m v^{3}$
C. $\frac{1}{2} m v^{2}$
D. $\frac{1}{2} m^{2} v^{2}$

- Watch Video Solution

20. An explosion blows a rock into three parts.

Two parts go off at right angles to each other .

These two are 1 kg first part moving with a velocity of $12 m s^{-1}$ and $2 k g$ second part moving with a velocity of $8 m s^{-1}$. If the third
part flies off with a velocity of $4 m s^{-1}$. Its mass
would be
A. 5 kg
B. 7 kg
C. 17 kg
D. 3 kg
21. A body of mass 1 kg is thrown upwards with
a velocity $20 \mathrm{~ms}^{-1}$. It momentarily comes to
rest after attaining a height of 18 m . How much energy is lost due to air friction?
$\left(g=10 m s^{-2}\right)$
A. 20 J
B. 30 J
C. 40 J
D. 10 J
22. A ball moving with velocity $2 m s^{-1}$ collides head on with another stationary ball of double
the mass. If the coefficient of restitution is 0.5 , then their velocities (in $m s^{-1}$) after colllision will be
A. 0.1
B. 1.1
C. 1.05
D. 0.2

- Watch Video Solution

23. An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $2 m s^{1}$. The mass per unit length of water in the pipe is $100 \mathrm{kgm}^{-1}$. What is the power of the engine?

A. 400 W

B. 200 W

C. 100 W

D. 800 W

D Watch Video Solution

24. The potential energy of a system increased
if work is done
A. by the system against a conservative
force
B. by the system against a nonconservative

force

C. upon the system by a conservative force
D. upon the system by a nonconservative
force

Answer: A

- Watch Video Solution

25. A body projected vertically from the earth
reaches a height equal to earth's radius before
returning to the earth. The power exerted by the gravitational force is greatest.
A. at the instant just before the body hits
the earth
B. it remains constant all through
C. at the instant just after the body is
projected
D. at the highest position of the body

Answer: A

D Watch Video Solution

26. force F on a partical moving in a straight
line veries with distance d as shown in the
figure. The work done on the partical during
its displacement of $12 m$ is

A. 21 J
B. 26 J
C. 13 J
D. 18 J

Answer: C

- Watch Video Solution

27. A mass m moving horizontal (along the x axis) with velocity v collides and stricks to mass of $3 m$ moving vertically upward (along the y-axis) with velocity $2 v$. The final velocity of the combination is

$$
\begin{aligned}
& \text { А. } \frac{1}{4} v \hat{i}+\frac{3}{2} v \hat{j} \\
& \text { B. } \frac{1}{3} v \hat{i}+\frac{2}{3} v \hat{j} \\
& \text { с. } \frac{2}{3} v \hat{i}+\frac{1}{3} v \hat{j}
\end{aligned}
$$

$$
\text { D. } \frac{3}{2} v \hat{i}+\frac{1}{4} v \hat{j}
$$

D Watch Video Solution

28. Two sphere A and B of masses m_{1} and m_{2} respectivelly colides. A is at rest initally and B is moving with velocity v along x-axis. After collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction.
A. $\theta=\tan ^{-1}(-1 / 2)$ to the x axis
B. same as that of B
C. opposite to that of B
D. $\theta=\tan ^{-1}(1 / 2)$ to the x axis

D Watch Video Solution

29. A car of mass m starts from rest and accelerates so that the instantaneous power delivered to the car has a constant magnitude
P_{0}. The instantaneous velocity of this car is proportional to
A. $t^{2} P_{0}$
B. $t^{1 / 2}$
C. $t^{-1 / 2}$
D. t / \sqrt{m}

Answer: B
(Watch Video Solution
30. A uniform force of $(3 \hat{i}+\hat{j})$ newton acts on a partical of mass 2 kg . Hence the partical is displaced from position $(2 \hat{i}+\hat{k})$ metre to possion $(4 \hat{i}+3 \hat{j}-\hat{k})$ meters. The work done by the force on the partical is
A. 9 J
B. 6 J
C. 13 J
D. 15 J
31. The upper half of an inclined plane with inclination ϕ is perfectly smooth while the lower half is rough. A body starting from rest at the top will again come to rest at the bottom if the coefficient of friction for the lower half is given by

$$
\begin{aligned}
& \text { A. } \mu=\frac{1}{\tan \theta} \\
& \text { B. } \mu=\frac{2}{\tan \theta} \\
& \text { C. } \mu=2 \tan \theta
\end{aligned}
$$

D. $\mu=\tan \theta$

Answer: C

- Watch Video Solution

32. An explosion blows a rock into three parts.

Two parts go off at right angles to each other .

These two are 1 kg first part moving with a velocity of $12 m s^{-1}$ and $2 k g$ second part moving with a velocity of $8 m s^{-1}$. If the third
part flies off with a velocity of $4 m s^{-1}$. Its mass
would be
A. $3 k g$
B. 5 kg
C. 7 kg
D. 17 kg

D Watch Video Solution

33. A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. The total energy released in the process of explosion is
A. $m v^{2}$
B. $\frac{3}{2} m v^{2}$
C. $2 m v^{2}$
D. $4 m v^{2}$

- Watch Video Solution

34. A bolck of mass 10 kg is moving in x direction with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. it is subjected to a retardeng force
$F=-0.1 x J / m$. During its travel from
$x=20 m$ to $x=30 m$. Its final kinetic energy
will be .
A. 475 J
B. 450 J
C. 275 J

D. 250 J

Answer: A

D Watch Video Solution

35. Two springs have force constants K_{1} and
K_{2}, where $K_{1}>K_{2}$. On which spring, more work is downe if
(i) they are stretched by the same force?
(ii) they are stretched by the same amount?
A. $W_{P}=W_{Q}, W_{P}>W_{Q}$
B. $W_{P}=W_{Q}, W_{P}=W_{Q}$
C. $W_{P}=W_{Q}, W_{Q}>W_{P}$
D. $W_{P}<W_{Q}, W_{Q}<W_{P}$

D Watch Video Solution

36. A particle of mass m is driven by a machine that delivers a constant power k watts. If the
particle starts from rest the force on the particle at time t is
A. $\left(\sqrt{\frac{m k}{2}}\right) t^{-\frac{1}{2}}$
B. $(\sqrt{m k}) t^{-\frac{1}{2}}$
C. $(\sqrt{2 m k}) t^{-\frac{1}{2}}$
D. $\left(\frac{1}{2} \sqrt{m k}\right) t^{-\frac{1}{2}}$
37. Two point masses 1 and 2 move with uniform velocities \vec{v}_{1} and \vec{v}_{2}, respectively. Their initial position vectors are \vec{r}_{1} and \vec{r}_{2}, respectively. Which of the following should be satisfied for the collision of the point masses?

$$
\begin{aligned}
& \text { A. } \vec{r}_{1}-\vec{r}_{2}=\vec{v}_{1}-\vec{v}_{2} \\
& \text { B. } \frac{\vec{r}_{1}-\vec{r}_{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\left|\vec{v}_{2}-\vec{v}_{1}\right|} \\
& \text { C. } \vec{r}_{1} \cdot \vec{v}_{2}=\vec{r}_{2} \cdot \vec{v}_{2} \\
& \text { D. } \vec{r}_{1} \times \vec{v}_{1}=\vec{r}_{2} \times \vec{v}_{2}
\end{aligned}
$$

- Watch Video Solution

38. A ball is projected vertically down with an initial velocity from a height of 20 m onto a horizontal floor. During the impact it loses
50% of its energy and rebounds to the same height. The initial velocity of its projection is
A. $10 m s^{-1}$
B. $14 m s^{-1}$
C. $20 m s^{-1}$
D. $28 m s^{-1}$

- Watch Video Solution

39. On a friction surface a block a mass M moving at speed v collides elastic with another block of same mass M which is initially at rest. After collision the first block moves at an angle θ to its initial direction and has a speed $\frac{v}{3}$. The second block's speed after the collision is

$$
\text { A. } \frac{\sqrt{3}}{2} v
$$

B. $\frac{2 \sqrt{2}}{3} v$
C. $\frac{3}{4} v$
D. $\frac{3}{\sqrt{2}} v$

D Watch Video Solution

40. The power of a heart which pumps 5×10^{3}
of blood per minute at a pressure of 120 mm
of meteury $\left(g=10 m s^{-2}\right.$ and density of
$\left.H g=13.6 \times 10^{3} \mathrm{~km}^{3}\right)$ is
A. 1.50
B. 1.70
C. 2.35
D. 3.0

- Watch Video Solution

41. A paritcal of mass $10 g$ moves along a circle of radius 6.4 cm with a constant tangennitial acceleration. What is the magnitude of this
acceleration. What is the magnitude of this
acceleration if the kinetic energy of the partical becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion?
A. $0.2 m / s^{2}$
B. $0.1 m / s^{2}$
C. $0.15 \mathrm{~m} / \mathrm{s}^{2}$
D. $0.18 \mathrm{~m} / \mathrm{s}^{2}$
42. What is the minimum velocity with which a body of mass m must enter a vertical loop of radius R so that it can complete the loop?
A. $\sqrt{5 g R}$
B. $\sqrt{g R}$
C. $\sqrt{2 g R}$
D. $\sqrt{3 g R}$

Answer: A
43. Acceleration of a particle in $x-y$ plane varies
with time as $a=\left(2 t \hat{i}+3 t^{2} \hat{j}\right) m / s^{2}$ At time $t=0$, velocity of particle is $2 \mathrm{~m} / \mathrm{s}$ along positive x direction and particle starts from origin. Find velocity and coordinates of particle at $t=1 \mathrm{~s}$.
A. $\left(2 t^{2}+3 t^{3}\right) W$
B. $\left(2 t^{2}+4 t^{4}\right) W$
C. $\left(2 t^{3}+3 t^{4}\right) W$

D. $\left(2 t^{3}+3 t^{5}\right) W$

D Watch Video Solution

44. A bullet of mass $10 g$ moving horizontally
with a velocity of $400 \mathrm{~ms}^{-1}$ strikes a wooden block of mass $2 k g$ which is suspended by a light in-extensible string of length $5 m$. As a result, the center of gravity of the block is found to rise a vertical distance of 10 cm . The
speed of the bullet after it emerges out horizontally from the block will be

A. $120 m s^{-1}$
B. $160 \mathrm{~ms}^{-1}$
C. $100 \mathrm{~ms}^{-1}$
D. $80 \mathrm{~ms}^{-1}$

Answer: A
(Watch Video Solution
45. Two identical balls A and B having velocity of $\quad 0.5 m / s$ and $-0.3 m / s$ respectively collide elastically in one dimension. The velocities of B and A after the collision respectively will be
A. $-0.3 m / s$ and $0.5 m / s$
B. $0.3 \mathrm{~m} / \mathrm{s}$ and $0.5 \mathrm{~m} / \mathrm{s}$
C. $-0.5 m / s$ and $0.3 m / s$
D. $0.5 m / s$ and $-0.3 m / s$

Answer: D
46. A partical moves from a point $(-2 \hat{i}+5 \hat{j})$ to $(4 \hat{i}+3 \hat{j})$ when a force of
(4hati + 3hatj) N^{\prime} is applied. How much work has been done by the force?
A. $5 J$
B. $2 J$
C. 18 J
D. 11 J

Answer: C

D Watch Video Solution

47. A raindrop of mass $1 g$ falling from a height of 1 km hits is the ground with a speed of $50 m s^{-1}$ If the resistance force is proportion to the speed of the drop, then the work done by the resistance force is
(Taking $g: 10 m s^{-2}$).

$$
\text { A. }-8.25 J
$$

B. 8.75 J
C. $-8.75 J$
D. 8.25 J

- Watch Video Solution

48. A moving block having mass m, collides
with another stationary block having mass $4 m$.

The lighter block comes to rest after collision.

When the initial velocity of the block is v, then
the value of coefficient of restitution (e) will be
A. 0.4
B. 0.5
C. 0.8
D. 0.25

Answer: D
(Watch Video Solution
49. A body initially rest and sliding along a frictionless trick from a height h (as shown in the figure) just completes a vertical circle of diameter $A B=D$. The height h is equal to

A. $\frac{5}{4} D$
B. $\frac{3}{2} D$
C. $\frac{7}{5} D$
D. D

- Watch Video Solution

AlIMS Questions

1. A force of $(3 \hat{i}+4 \hat{j})$ Newton acts on a body and it by $(3 \hat{i}+4 \hat{j}) m$. The work done by the force is
A. 10 J
B. $12 J$
C. $16 J$
D. 25 J

D Watch Video Solution

2. The kinetic energy of a body becomes four times its initial value.The new linear momentum will be:
B. four times that of initial value
C. twice of the initial value
D. eight times that of initial value

D Watch Video Solution

3. A bomb of mass 3.0 kg explodes in air into
two pieces of masses 2.0 kg and 1.0 kg . The smaller mass goes at a speed of $80 \mathrm{~m} / \mathrm{s}$. The
total energy imparted to the two fragments is
A. $1.07 k J$
B. $2.14 k J$
C. $2.4 k J$
D. 4.8 kJ
4. A bolck of mass 10 kg is moving in x direction with a constant speed of $10 \mathrm{~m} / \mathrm{s}$. it is subjected to a retardeng force
$F=-0.1 x J / m$. During its travel from
$x=20 m$ to $x=30 m$. Its final kinetic energy
will be .
A. 250 J
B. 450 J
C. 275 J
D. 475 J

- Watch Video Solution

5. A vertical spring with force constant k is fixed on a table. A ball of mass m at a height h above the free upper end of the spring falls vertically on the spring, so that the spring is compressed by a distance d. The net work done in the process is

$$
\begin{aligned}
& \text { A. } m g(h+d)+\frac{1}{2} k d^{2} \\
& \text { B. } m g(h+d)-\frac{1}{2} k d^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } m g(h-d)-\frac{1}{2} k d^{2} \\
& \text { D. } m g(h-d)+\frac{1}{2} k d^{2}
\end{aligned}
$$

D Watch Video Solution

6. The potential energy of a body is given by $U=A-B x^{2}$ (where x is the displacement).

The magnitude of force acting on the partical is
A. constant

B. Proportional to x

C. Proportional to x^{2}
D. Inversely proportional to x

Answer: B

D Watch Video Solution

7. A body of mass m is acceleratad uniformaly from rest to a speed v in a time T. The instanseous power delivered to the body as a function of time is given by
A. $\frac{1}{2} m \frac{v}{t_{1}} t^{2}$
B. $m \frac{v}{t_{1}} t^{2}$
C. $\frac{1}{2}\left(\frac{m v}{t_{1}}\right)^{2} t^{2}$
D. $\frac{1}{2} m \frac{v^{2}}{t_{1}^{2}} t^{2}$

D Watch Video Solution

8. A ball is projected with an velocity V_{0} at an angle of elevation 30°. Mark of the correct statement.
A. Kinetic energy will be zero at highest
point of the trajectory.
B. Vertical component of momentum will
be conserved
C. Horizontal component of momentum
will be conserved
D. Gravitational potential energy will be minimum at the highest pointof the trajectory
9. A steel ball of radius 2 cm is at rest on a frictionless surface. Another ball of radius 4 cm moving at a velocity of $81 \mathrm{~cm} / \mathrm{sec}$ collides elastically with first ball. After collision the smaller ball moves with speed of
A. $81 \mathrm{~cm} / \mathrm{sec}$
B. $63 \mathrm{~cm} / \mathrm{sec}$
C. $144 \mathrm{~cm} / \mathrm{sec}$
D. None of these

Answer: C

D Watch Video Solution

10. A ball collides impinges directly on a similar
ball at rest. The first ball is brought to rest
after the impact. If half of the kinetic energy is
lost by impact, the value of coefficient of restitution (e) is
A. $\frac{1}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{2}$
C. $\frac{1}{2 \sqrt{3}}$
D. $\frac{1}{\sqrt{2}}$

Answer: D

- Watch Video Solution

11. A neutron with velocity V strikes a stationary deuterium atom, its kinetic energy changes by a factor of
A. $\frac{15}{16}$
B. $\frac{1}{2}$
C. $\frac{2}{1}$
D. None of these

Answer: D

D Watch Video Solution

12. Assertion: In an elasticcollision of two billard balls, the total $K E$ is conservation during the short times of collision of the balls`(i.e., when they are in constant).

Reason: Energy spend against friction does not follow the law of conservation of energy.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.

- Watch Video Solution

13. Assertion: Frictional force are conservative
forces.
Reason: Potential energy change can be assorciated with frictional forces.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion is and reason are false.

Answer: d

D Watch Video Solution

14. Assertion: According to law of conservation of machainical energy change in potential energy is equal and opposite to the change in kinetic energy

Reason: Mechanical energy is not a conserved quantity.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.

D Watch Video Solution

15. Assertion: The instantcous power of an agent is measured as the dot product of
instaneous velocity and the force acting on it at that instant.

Reason: The unit of instaneous power is watt.
A. If both assertion and reason are true
and reason is a true explanation of
assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If both assertion is and reason are false.

- Watch Video Solution

16. Assertion: Work done by the force of
friction in moving a body around a closed loop
is zero.

Reason: Work done does not depend upon the nature of force.
A. If both assertion and reason are true
and reason is a true explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.
17. Assertion: In an elastic collision of two bodies, the momentum and energy of each body is conserved.

Reason: If two bodies stick to each other, after colliding, the collision is said to be perfectly elastic.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.

D Watch Video Solution

18. Assertion: Work done by the force of friction in moving a body around a closed loop
is zero.

Reason: Work done does not depend upon the nature of force.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.

D. If both assertion is and reason are false.

D Watch Video Solution

19. Assertion: Power of machine gun is determined by body both the number of bullet fired per secondand kinetic energy of bullets.

Reason: Power of any machine is defined as work done(by it) per unit time.
A. If both assertion and reason are true
and reason is a true explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.
20. Assertion: Mass and energy are not conserved separately, but are conserved as a single entity called mass-energy.

Reason: Mass and energy conservation can be obtained by Einstein equation for energy.
A. If both assertion and reason are true and reason is a true explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion is and reason are false.

D Watch Video Solution

Chapter Test

1. A car of mass 1000 kg accelerates uniformly
from rest to a velocity of $54 \mathrm{~km} / \mathrm{h}$ in 5
seconds. Calculate (i) its acceleration (ii) its
gain in KE (iii) average power of the engine during this period.
A. 2000 W
B. 45000 W
C. 2250 W
D. 22500 W
2. A stone of mass $1 k g$ tied to a light inextensible string of length $L=\frac{10}{3} m$ is whirling in a circular path of radius L is a vertical plane. If the ratio in the string is 4 and if g is taken to be $10 \mathrm{~m} / \mathrm{sec}^{2}$, the speed of the stone at the highest point of the circle is
A. $5 \sqrt{2} m / s$
B. $20 \mathrm{~m} / \mathrm{s}$
C. $5 \sqrt{3} \mathrm{~m} / \mathrm{s}$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

3. A running man has half the KE that a body of half his mass has. The man speeds up by $1.0 \mathrm{~ms}^{-1}$ and then has the same energy as the boy. What were the original speeds of the man and the boy?
A. $2.4,4.8 m s^{-1}$
B. $2.4,3.4 m s^{-1}$

C. $3.4,4.8 m s^{-1}$

$$
\text { D. } 3.4,6.8 m s^{-1}
$$

- Watch Video Solution

4. A box of mass 25 kg starts from rest and
slide down as inclined plane 8 metre long and
5 meter length. It is found to move at the bottom at $7 m / s$. What is the force of friction?
A. $79.6 N$
B. 96.6 N
C. 76.6 N
D. 116.6 N

- Watch Video Solution

5. A aprtical moves on a rough horizontal
ground with same initial velocity say v_{0}. If
$(3 / 4)$ th of its kinetic energy is lost in friction
in time t_{0}, then coefficient of friction between
the partical and the ground is:

> A. $\frac{v_{0}}{2 g l_{0}}$
> B. $\frac{v_{0}}{4 g l_{0}}$
> C. $\frac{3 v_{0}}{4 g l_{0}}$
> D. $\frac{v_{0}}{g l_{0}}$

D Watch Video Solution

6. The potential energy of a certain spring when stretched through a distance ' S ' is 10 joule. The amount of work (in joule) that must be done on this spring to stretch it through an additional distance 'S' will be
A. 30
B. 40
C. 10
D. 20
7. A bullet when fixed at a target with a velocity of $100 \mathrm{~ms}^{-1}$, penetrates one metre into it. If the bullet is fired with the same velocity as a similar target with a thickness 0.5 metre, then it will emerge from it with a velocity of
A. $50 \sqrt{2} m / s$
B. $\frac{50}{\sqrt{2}} m / s$
C. $50 \mathrm{~m} / \mathrm{s}$

D. $10 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

8. A bullet having a speed of $100 \mathrm{~m} /$ see crashes through a plank of wood. After passing through a plank, its speed is $80 \mathrm{~m} / \mathrm{s}$.

Another bullet of the same mass and size, but traveling at $80 \mathrm{~m} / \mathrm{s}$ is fired at the plank. The speed of the second bullet after traveling through the plank is (Assume that resistance
of the plank is independent of the speed of the bullet) :

> A. $10 \sqrt{7} m s^{-1}$
> B. $20 \sqrt{7} m s^{-1}$
> C. $30 \sqrt{7} m s^{-1}$
> D. $20 \sqrt{7} m s^{-1}$
9. A mass of 50 kg is raised through a certain height by a machine whose efficiency is 90%, the energy spend is 5000 J . If the mass is now released, its $K E$ on hitting the ground shall be:
A. 5000 J
B. 4500 J
C. 4000 J
D. 5500 J
10. A block is moved from rest through a distance at $4 m$ along a string line path. The mass of the block is 5 kg and the force acting on it is $20 N$. If the kinetic energy acquired by the block be 40 J , at what angle to the path is the force acting?
A. 30°
B. 45°
C. 60°

D. None of these

- Watch Video Solution

11. An object of mass m is allowed to fall from rest along a rough inclined plane. The speed of the object on reaching the bottom of the plane is proportional to:
A. m^{0}
B. m
C. m^{2}

$$
\text { D. } m^{-1}
$$

- Watch Video Solution

12. Given that the position of the body in m is
a function of time as follows
$x=2 t^{4}+5 t+4$

The mass of the body is $2 k g$. What is the
increase in its kinetic energy onesecond after
the stert of motion?
A. 168 J
B. 169 J
C. $32 J$
D. 144 J

D Watch Video Solution

13. If v be the instantaneous velocity of the body dropped from the top of a power, when
it is located at height h, then which of the
following remains constant?
A. $g h+v^{2}$
B. $g h+\frac{v^{2}}{2}$
C. $g h-\frac{v^{2}}{2}$
D. $g h-v^{2}$
14. Two springs have their force constant as k_{1} and $k_{2}\left(k_{1}>k_{2}\right)$. When they are streched by the same force.
A. more work is done on B i.e., $W_{B}>W_{A}$
B. more work is done on B i.e., $W_{A}>W_{B}$
C. work done on A and B are equal
D. work done dependsupon the way in which they are streched.
15. The power of a water pump is 2 kW . If
$g=10 \mathrm{~m} / \mathrm{s}^{2}$, the amount of water it can raise in 1 min to a height of 10 m is :
A. 2000litres
B. 1000litres
C. 100litres
D. 1200litres

Answer: D

D Watch Video Solution
16. Water is flowing in a river at $2 m s^{-1}$. The river is 50 m wide and has an average depth of

5 m . The power available from the current in the river is (Density of water $=1000 \mathrm{kgm}^{3}$

A. $0.5 M W$

B. $1 M W$
C. 1.5 MW
D. $2 M W$

- Watch Video Solution

17. The potential energy of a partical veries with distance x as shown in the graph.

The force acting on the partical is zero at
A. C
B. B
C. B and C
D. A and D

- Watch Video Solution

18. Which of the following graph is correct between kinetic energy E, potential energy
(U) and height (h) from the ground of the partical
(a)

A.

Height
(b)

B.

Height
(c)

C.
D.
(d)

19. A ball hits a floor and rebounds after an inelastic collision. In this case
A. The momentum of the ball just after the
collision is the same as that justbefore
the collision
B. The mechanical energy of the ball
remain the same collision
C. The total momentum of the ball and the
earth is conserved
D. The total energy of the ball and the earth is conserved

D Watch Video Solution

20. The graph between the resistive force F acting on a body and the distance covered by
the body is shown in the figure. The mass of the body is 25 kg and initial velocity is $2 \mathrm{~m} / \mathrm{s}$.

When the distance covered by the body is $4 m$,
its kinetic energy would be

A. 50 J
B. 40 J
C. 20 J
D. 10 J
21. In the figure shown, a spring of spring constant K is fixed at on end and the other end is attached to the mass ' m ' . The coefficient of friction between block and the inclined plane is μ. The block is released when
the spring is in tis natural length. Assuming
that the $\theta>\mu$, the maximum speed of the
block during the motion is.

A. $(\cos \theta+\mu \sin \theta) g \sqrt{\frac{m}{k}}$
B. $(\cos \theta-\mu \sin \theta) g \sqrt{\frac{m}{k}}$
C. $(\sin \theta+\mu \cos \theta) g \sqrt{\frac{m}{k}}$
D. $(\sin \theta-\mu \cos \theta) g \sqrt{\frac{m}{k}}$

- Watch Video Solution

22. Two identical balls A and B are released
from the position shown in Fig. They collide elastically with each other on the horizontal portion. The ratio of heights attained by A
and B after collision is (neglect friction)

A. 1:4
B. 2:1
C. $4: 13$
D. 2: 5
23. Two equal sphere A and b lie on a smooth horizontal circle groove at opposite ends of a
diameter. At time $t=0, A$ is projected along
the groove and tis first implings on B at time
$t=T_{1}$ and $a g a \in$ attimet $=T_{-}$(2). If e is the
coefficient of restitution, the ratio T_{2} / T_{1} is

A. $\frac{2}{e}$
B. $\frac{(2+e)}{2}$
C. $\frac{2(e+1)}{e}$
D. $\frac{2+e}{e}$

- Watch Video Solution

24. Two bodies of mass m and $4 m$ are attached with string of length l is excurting oscillations of angular amplitude θ_{0} while the other body is at rest . The minimum coefficient of friction between the mass $4 m$ and the
horizontal surface should be:

A. $\left(\frac{2-\cos \theta_{0}}{3}\right)$
B. $2 \cos ^{2}\left(\frac{\theta_{0}}{2}\right)$
c. $\left(\frac{1-\cos \theta_{0}}{2}\right)$
D. $\left(\frac{3-\cos \theta_{0}}{4}\right)$
25. A ball of mass m moving with velocity
$\vec{u}=u_{x} \hat{i}+u_{y} \hat{j}$ hits a vertical wall of infinite mass as shown in the figure. The ball slips up
along the wall for the duration of collision and
there is friction between the ball and the wall.
Neglect the effect of gravity. Pick up the

correct alternative.

A. The wall provides the ball with net impulse along the negative x-axis for the
duration of collision.
B. The collision change only the x -
C. The collision change only the y -
component of velocity of thr ball
D. The impulse provides by friction force to
the ball for the duration of collision
cannot be neglected in comparison to
impulse provided by normal reaction

D Watch Video Solution

26. A set of a identical cubical blocks lies at rest parallel to each other along a line on a smooth horizontal surface. The separation between the near surface of any two adjacent blocks is L. The block at one and is given a speed v towards the next one at time $t=0$.

All collisiona are completely inelastic , then the last block starts moving at
A. $\frac{(n-1) L}{v}$
B. $\frac{n(n-1) L}{2 v}$
C. $\frac{(n+1) L}{v}$

D. $\frac{n(n+1) L}{2 v}$

Answer: B

D Watch Video Solution

27. Assertion : For two bodies, the sum of the
mutual forces exerted between them is zero
from Newton's third law.

Reason : The sum of work done by the two
forces must always cancel.
A. If both assertion and reason are true
and reason is a the correct explanation
of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is true and reason are false.

Answer: C

28. Assertion: According to law of conservation
of machainical energy change in potential
energy is equal and opposite to the change in
kinetic energy
Reason: Mechanical energy is not a conserved quantity.
A. If both assertion and reason are true
and reason is a the correct explanation
of assertion.
B. If both assertion and reason are true but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion is true and reason are false.

D Watch Video Solution

29. Assertion : The work done by the spring
force in a cyclic process is zero.

Reason : Spring force is a conservative force.
A. If both assertion and reason are true and reason is a the correct explanation
of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion is true and reason are false.

Watch Video Solution

