

CHEMISTRY

BOOKS - MTG CHEMISTRY (ENGLISH)

REDOX REACTIONS

Mcqs Redox Reactions In Terms Of Electron Transfer Reactions

1. Which of the following statements is not true?

A. In a chemical reaction, oxidation is always accompanied by reduction.

- B. When a negative ion changes to neutral species, the process is oxidation,
- C. Oxidising agent has a tendency to lose electrons.
- D. Conversion of MnO_4^{2-} to MnO_4^{-} is oxidation.

Answer: C

2. Which of the following is not a redox reaction ?

A.
$$CuO+H_2
ightarrow Cu+H_2O$$

B. $Na+H_2O
ightarrow NaOH+rac{1}{2}H_2$
C. $CaCO_3
ightarrow CaO+CO_2$
D. $2K+F_2
ightarrow 2KF$

Answer: C

Watch Video Solution

3. Which substance is serving as a reducing agent in the following reaction?

$$14H^{\,+} + Cr_2O_7^{2\,-} + 3Ni
ightarrow 2Cr^{3\,+} + 7H_2O + 3Ni^{2\,+}$$

A. $Cr_2O_7^{2\,-}$

 $\mathsf{B.}\,Ni$

 $\mathsf{C.}\,H^{\,+}$

 $\mathsf{D}.\,H_2O$

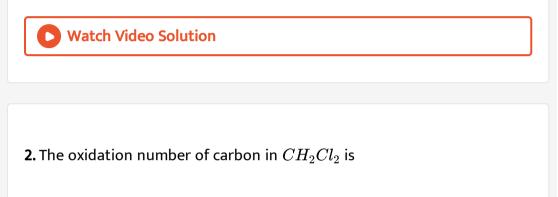
Answer: B

Watch Video Solution

Mcqs Oxidation Number

1. Which of the following is not a rule for calculating oxidation number?

A. For ions, oxidation number is equal to the charge on the ion.


B. The oxidation number of oxygen is -2 in all of its compounds.

C. The oxidation number of fluorine is -1 in all of its compounds.

D. Oxidation number of hydrogen is +1 except in binary hydrides of

alkali metals and alkaline earth metals where it is -1.

Answer: B

A. 0

 $\mathsf{B.}+1$

 $\mathsf{C.}+2$

 $\mathsf{D.}+4$

Answer: A

3. Oxidation state of iron in $Fe(CO)_4$ is

A. +1

 $\mathsf{B.}-1$

 $\mathsf{C.}+2$

D. 0

Answer: D

Watch Video Solution

4. The oxidation states of sulphur in the anions $SO_3^{2-}, S_2O_4^{2-}, SO_4^{2-}$, and $S_2O_6^{2-}$ follow the order

A.
$$S_2 O_4^{2-} > S_2 O_6^{2-} > S O_4^{2-} > S O_3^{2-}$$

- B. $S_2 O_6^{2-} > S O_3^{2-} > S_2 O_4^{2-} > S O_4^{2-}$
- C. $SO_4^{2-} > S_2O_6^{2-} > SO_3^{2-} > S_2O_4^{2-}$

D. $SO_3^{2-} > SO_4^{2-} > S_2O_4^{2-} > S_2O_6^{2-}$

Answer: C

5. Oxidation numbers of Mn in its compounds $MnCl_2, Mn(OH)_3, MnO_2$ and $KMnO_4$ respectively are:-

A. +2, +4, +7, +3B. +2, +3, +4, +7C. +7, +3, +2, +4D. +7, +4, +3, +2

Answer: B

6. Arrange the oxides of nitrogen in increasing order of oxidation state of

N from +1 to +5.

A.
$$N_2 O < N_2 O_3 < N O_2 < N_2 O_5 < N O$$

B.
$$N_2O < NO < N_2O_3 < NO_2 < N_2O_5$$

C.
$$N_2 O_5 < N O_2 < N_2 O_3 < N O < N_2 O_3$$

D. $NO < N_2O < NO_2 < N_2O_3 < N_2O_5$

Answer: B

Watch Video Solution

7. The oxidation state of S in $H_2S_2O_8$ is

 $\mathsf{A.+6}$

B.+7

C.+8

D. 0

Answer: A

8. Match the compounds given in column I with oxidation states of carbon given in column II and mark the appropriate choice.

	Column I		olumn I	[
(A)	$C_{6}H_{12}O_{6}$	(i)	+3	
(B)	$CHCl_3$	(ii)	-3	
(C)	CH_3CH_3	(iii)	+2	
(D)	$(COOH)_2$	(iv)	0	
A.	(A) $ ightarrow$ (iv), (B) $ ightarrow$ (iii), (C) $ ightarrow $	(ii), (D) \rightarrow (i)
Β.	(A) \rightarrow (i), (B)	ightarrow (ii),	(C) \rightarrow (iii), (D) \rightarrow (iv)
C.	(A) \rightarrow (ii), (B)	ightarrow (iii)	, (C) \rightarrow	(iv), (D) \rightarrow (i)
D.	(A) \rightarrow (iii), (B) $ ightarrow$ (ii)	, (C) \rightarrow	(i), (D) \rightarrow (iv)

Answer: A

Watch Video Solution

9. Among the following identify the species with an atom in +6 oxidation

state.

A. MnO_4^-

B. $Cr(CN)_6^{3-}$

C. NiF_6^{2-}

 $\mathsf{D.} \mathit{CrO}_2 \mathit{Cl}_2$

Answer: D

Watch Video Solution

10. The pair of the compounds in which both the metals are in the highest possible oxidation state is,

A. $MnO_2, FeCl_3$

 $\mathsf{B.}\,MnO_4^{\,-}, CrO_2Cl_2$

 $C. MnCl_2, CrCl_3$

 $\mathsf{D}.\left[\mathit{NiCl}_4\right]^{2-},\left[\mathit{CoCl}_4\right]^-$

Answer: B

11. An element that never has a positive oxidation state in any of its compounds is

A. O B. N C. Cl

D. F

Answer: D

Watch Video Solution

12. Oxidation number if iodine in IO_3^- , IO_4^- , KI and I_2 respectively are

A.
$$-2, -5, -1, 0$$

 $\mathsf{B.}+5,\ +7,\ -1,0$

 $\mathsf{C.}+2,\ +5,\ +1,\, 0$

 $\mathsf{D}.-1,\ +1,\,0,\ +1$

Answer: B

Watch Video Solution

13. Various oxidation states of few elements are mentioned. Which of the

options is not correctly matched ?

A. a. Phosphorus: +3 to +5

B. b. Nitrogen : +1 to +5

C. c. lodine : -1 to +7

D. d. Chromium : +3 to +6

Answer: D

View Text Solution

14. Carbon is in the lowest oxidation state in

A. CH_4

B. CCl_4

 $\mathsf{C.}\, CF_4$

D. CO_2

Answer: A

Watch Video Solution

15. Which of the following is a decreasing order of oxidation states of the central atoms?

A. (A)
$$PCl_5$$
, HIO_4 , $Cl_2O_7^{2-}$, Cl_2O
B. (B) $Cr_2O_7^{2-}$, Cl_2O , HIO_4 , PCl_5
C. (C) HIO_4 , $Cr_2O_7^{2-}$, PCl_5 , Cl_2O
D. (D) $Cr_2O_7^{2-}$, HIO_4 , Cl_2O , PCl_5

Answer: C

16. Which compound amongst the following gas the highest oxidation number of Mn?

 $KMnO_4, K_2MnO_2, MnO_2$ and Mn_2O_3

A. (A) $KMnO_4$

B. (B) $K_2 MnO_4$

C. (C) MnO_2

D. (D) Mn_2O_3

Answer: A

Column I (Compound)			Column II (Oxidation state of Fe)		
(A)	$K_3[Fe(OH)_6]$	(i)	+8/3		
(B)	K ₂ [FeO ₄]	(ii)	+2		
(C)	$FeSO_4 \cdot (NH_4)_2 SO_4 \cdot 6H_2O$	(iii)	+3		
(D)	Fe ₃ O ₄	(iv)	+6		

17. Match the column I with column II and mark the appropriate choice.

A. (A)
$$\rightarrow$$
 (iii), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iv)

B. (A)
$$\rightarrow$$
 (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)

C. (A)
$$\rightarrow$$
 (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)

D. (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)

Answer: B

- .

18. In which of the following compounds oxidation state of chlorine has

two different values?

A. $CaCl_2$

 $\mathsf{B.}\, NaCl$

 $C. CaOCl_2$

D. CCl_4

Answer: C

Watch Video Solution

19. The oxidation number of nitrogen in $\left(N_2H_5
ight)^+$ is

 $\mathsf{A}.-2$

 $\mathsf{B.}+2$

 $\mathsf{C.}+3$

 $\mathsf{D.}-3$

Answer: A

20. Fill up the table from the given choice.

Element	Oxidation number		
Oxygen	–2 in most compounds (i) in H_2O_2 and (ii) in OF_2		
Halogen	-1 for (iii) in all its compounds		
Hydrogen	<u>(iv)</u> in most of its compounds <u>(v)</u> in binary metallic hydrides		
Sulphur	<u>(vi)</u> in all sulphides		

A.
$$(i)$$
 (ii) (iii) (iv) (v) (vi)
+1 +1 Cl +1 -1 +2
B. (i) (ii) (iii) (iv) (v) (vi)
-1 +2 F +1 -1 -2
C. (i) (ii) (iii) (iv) (v) (vi)
-1 +1 F +1 +2 +2
D. (i) (ii) (iii) (iv) (v) (vi)
+2 +2 Cl +1 +1 +6

Answer: B

- 21. Mark the correct statement from the following :
 - A. Copper metal can be oxidised by Zn^{2+} ions.
 - B. Oxidation number of phosphorus in P_4 is 4
 - C. An element in the highest oxidation state acts only as a reducing

agent.

D. The element which shows highest oxidation number of +8 is Os in

 OsO_4

Answer: D

22. Which compound among the following has lowest oxidation number

of chlorine ?

A. ClF_3

B. $HClO_3$

C. HCl

D. HOCl

Answer: C

Watch Video Solution

23. Which of the following oxidation numbers is not correctly matched ?

A. Cl in $HClO_4$

- B. Ni in $\left[Ni(CN)_6
 ight]^{4-}=\,+\,2$
- C. P in $Mg_2P_2O_7 = +6$
- D. Cr in $(NH_4)_2 Cr_2 O_7 = +6$

Answer: C

24. Examples of few compounds in a particular oxidation state are given. Mark the example which is not correct.

A. P in $H_2 P O_2 = +1$

B. Chlorine in +7 oxidation state -HClO

C. Chromium in +6 oxidation state $-CrO_2Cl_2$

D. Carbon in O oxidation state $-C_{12}H_{22}O_{11}$

Answer: B

25. The oxidation numbers of the sulphur atoms in pcroxymonosulphuric acid (H_2SO_5) and peroxydisulphuric acid $(H_2S_2O_8)$ are respectively.

A.
$$+8, +7$$

B.+3, +3

C.+6, +6

D. + 4, + 6

Answer: C

Watch Video Solution

26. Which is not true about the oxidation state of the following elements

?

A. Sulphur +6 to -2

B. Carbon +4 to -4

C. Chlorine +7 to -1

D. Nitrogen +3 to -1

Answer: D

27. O.N. (Oxidation Number) of Fe in $K_4ig[Fe(CN)_6ig]$ is

A. + 2

 $\mathsf{B.}+3$

C.+4

D.+6

Answer: A

Watch Video Solution

28. Arrange the following in increasing order of oxidation state of Ni.

 $K_2ig[Ni(CN)_4ig], K_2[NiF_6], Ni(CO)_4ig]$

A.
$$Ni(CO)_4, K_2[Ni(CN)_4], K_2[NiF_6]$$

$$\mathsf{B}.\,K_2\big[Ni(CN)_4\big],\,Ni(CO)_4,\,K_2[NiF_6]$$

 $\mathsf{C}.\,Ni(CO)_4,\,K_2[NiF_6],\,K_2\big[Ni(CN)_4\big]$

D.
$$K_2[NiF_6], K_2ig[Ni(CN)_4ig], Ni(CO)_4$$

Answer: A

Watch Video Solution

29. The correct sequence of the oxidation state of underlined elements is $Na_2[\underline{Fe}(CN)_5NO], K_2\underline{Ta}F_7, Mg_2\underline{P}_2O_7, Na_2\underline{S}_4O_6, \underline{N}_3H$

A. +3, +5, +5, +2.5, $-\frac{1}{3}$ B. +5, +3, +5, +3, $+\frac{1}{3}$ C. +3, +3, +5, +5, $-\frac{1}{3}$ D. +5, +5, +3, +2.5, $+\frac{1}{3}$

Answer: A

30. What are the oxidation states of phosphorus in the following compounds ?

 $H_3PO_2, H_3PO_4, Mg_2P_2O_7, PH_3, HPO_3$

$$\mathsf{A.}+1,\ +3,\ +3,\ +3,\ +5$$

B. +3, +3, +5, +5, +5

- C. +1, +2, +3, +5, +5
- D. +1, +5, +5, -3, +5

Answer: D

Watch Video Solution

31. In which of the following compounds carbon is in highest oxidation state ?

A. CH_3Cl

B. CCl_4

 $C. CHCl_3$

 $\mathsf{D.}\, CH_2 Cl_2$

Answer: B

Watch Video Solution

32. The oxidising state of molybdenum in its oxo complex species

 $\left[Mo_2O_4(C_2H_4)_2(H_2O)
ight]^{2\,-}$ is

 $\mathsf{A.}+2$

 $\mathsf{B.}+3$

C.+4

D.+5

Answer: B

33. Oxidation number of P in $Ba(H_2PO_2)_2$ is

 $\mathsf{A.}+3$

 $\mathsf{B.}+2$

- C. +1
- $\mathsf{D}.-1$

Answer: C

Watch Video Solution

34. Which of the following can act as oxidising as well as reducing agent?

A. H_2O_2

 $\mathsf{B.}\,SO_3$

 $\mathsf{C}.\,H_2SO_4$

 $\mathsf{D}.\,HNO_3$

Answer: A

Watch Video Solution

35. When a piece of sodium metal is dropped in water, hydrogen gas evolved because

A. sodium is reduced and acts as an oxidising agent

B. water is oxidised and act as a reducing agent

C. sodium loses electrons and is oxidised while water is reduced

D. water loses electrons and is oxidised to hydrogen.

Answer: C

36. In the reaction,

 $I_2 + 2S_2O_3^{2-}
ightarrow 2I^- + S_4O_6^{2-}.$

A. I_2 is reducing agent.

B. I_2 is oxidising agent and $S_2 O_3^{2\,-}$ is reducing agent

C. $S_2 O_3^{2-}$ is oxidising agent.

D. I_2 is reducing agent and $S_2 O_3^{2-}$ is oxidising agent.

Answer: B

Watch Video Solution

37. In the reaction $:Cl_2+OH^ightarrow Cl^-+ClO_4^-+H_2O$:-

A. Chlorine is oxidised

B. Chlorine is reduced.

C. Chlorine is oxidised as well as reduced.

D. Chlorine is neither oxidised nor reduced.

Answer: C

38. Consider the following reaction : $HCHO + 2[Ag(NH_3)_2]^+ + 3OH^- \rightarrow 2Ag + HCOO^- + 4NH_3 + 2H_2C$ Which of the following statements regarding oxidation and reduction is correct?

- A. HCHO is oxidised to $HCOO^-$ and $[Ag(NH_3)_2]^+$ is reduced to Ag. B. HCHO is reduced to $ddHCOO^-$ and $[Ag(NH_3)_2]^+$ is oxidised to Ag. Ag.
- C. $\left[Ag(NH_3)_2
 ight]^+$ is reduced to Ag while OH^- is oxidised to $HCOO^-$
- D. $\left[Ag(NH_3)_2
 ight]^+$ is oxidised to NH_3 while HCHO is reduced to H_2O .

Answer: A

39. Identify the compounds which are reduced and oxidised in the following reaction:

 $3N_2H_4 + 2BrO_3^-
ightarrow 3N_2 + 2Br^- + 6H_2O$

A. N_2H_4 is oxidised and BrO_3^- is reduced.

B. BrO_3^- is oxidised and N_2H_3 is reduced.

C. BrO_3^- is both reduced and oxidised.

D. This is not a redox reaction.

Answer: A

Watch Video Solution

40. Identify the oxidant and reductant in the following redox reaction:

 $2K_2MnO_4 + CI_2
ightarrow 2KCI + 2KMnO_4$

A. Oxidation of potassium manganate is taking place.

B. Reduction of potassium manganate is taking place.

C. Oxidation of Cl_2 is taking place.

D. Cl_2 acts as reducing agent in the reaction.

Answer: A

Watch Video Solution

41. Indicate whether the following conversions represent an oxidation, a reduction or none (neither oxidation nor reduction).

(i) $HClO_3$ to $HClO_4$ (ii) NH_4^+ to NH_3 (iii) NO_2 to N_2O_4 (iv) HSO_3^- to SO_4^{2-}

(v) H_2O_2 to H_2O

(i) (ii) (iii) (iv) (v)A. Oxidation Reduction None None Oxidation (i) (ii) (iii) (iv)(v) Β. Oxidation None None Oxidation Reduction (i) (ii) (iii) (iv) (v)C. Reduction Oxidation Reduction None Reduction (i) (ii) (iii) (iv) (\mathbf{v}) D. Oxidation Reduction None Reduction Reduction

Answer: B

42. In which of the following reactions, the underlined substance has been reduced ?

A.
$$\underline{Cu} + CuO \rightarrow CO_2 + Cu$$

B. $\underline{CuO} + 2HCl \rightarrow CuCl_2 + H_2O$
C. $\underline{4H_2O} + 3F \rightarrow 4H_2 + Fe_3O_4$
D. $\underline{C} + 4HNO_3 \rightarrow CO_2 + 2H_2O + 4NO_2$

Answer: C

Watch Video Solution

43. A compound contains atoms X,Y and Z. the oxidation number of X is

+2, of Y is +5 and of Z is -2. The possible formula of the compound is

B. $Y_2(XZ_3)_2$

C. $X_3(YZ_4)_2$

D. $X_3(Y_4Z)_2$

Answer: C

Watch Video Solution

44. Consider the following reactions,

(I) $SnCl_2 + 2FeCl_3 \rightarrow SnCl_4 + 2FeCl_2$

A. $SnCl_2$ is oxidised and $FeCl_3$ acts as oxidising agent.

B. $FeCl_3$ is oxidised and acts as oxidising agent.

C. $SnCl_2$ is reduced and acts as oxidising agent.

D. $FeCl_3$ is oxidised and $SnCl_2$ acts as a oxidising agent.

Answer: A

45. Which of the following statements is correct regarding redox reactions-

A. An increase in oxidation number of an element is called reduction

B. A decrease in oxidation number of an element is called oxidation.

C. A reagent which lowers the oxidation number of an element in a

given substance is reductant.

D. A reagent which increases the oxidation number of an element in a

given substance is reductant .

Answer: C

Watch Video Solution

46. In the reacion,

$$3Br_2 + 6CO_3^{2-} + 3H_2O
ightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

A. Bromine is reduced and carbonate ion is oxidised.

B. Bromine undergoes disproportionation.

C. Bromine is reduced and water is oxidised.

D. Only water is oxidised to carbonic acid.

Answer: B

Watch Video Solution

47. Given below is a redox reaction. Which of the following types the reaction belongs to ?

 $CuSO_{4(aq)} + Zn_{(s)} \rightarrow Cu_{(s)} + ZnSO_{4(aq)}$

A. Combination reaction

B. Decomposition reaction

C. Metal displacement reaction

D. Non-metal displacement reaction

Answer: C

48. Identify the oxidant and the reductant respectively in the following reaction.

$$Cl_2(g)+2Br^{-}(aq)
ightarrow 2Cl^{-}(aq)+Br_2(aq)$$

A. Chlorine and Bromide

B. Bromide and Chlorine

C. Bromide and Bromide

D. Chlorine and Chlorine

Answer: C

49. Which of the following is a disproportionation reaction?

$$\begin{array}{l} \text{A. } Cl_{2\,(g)} + 2OH^{-}_{(aq)} \rightarrow ClO^{-}_{(aq)} + Cl^{-}_{(aq)} + H_2O_{(l)} \\ \\ \text{B. } Cl_{2\,(g)} + 2I^{-}_{(aq)} \rightarrow 2Cl^{-}_{(aq)} + I_{2\,(s)} \\ \\ \text{C. } 2Fe_{\,(s)} + 3H_2O_{\,(l)} \xrightarrow{\Delta} Fe_2O_{3\,(s)} + 3H_{2\,(g)} \\ \\ \text{D. } 2H_2O_{\,(l)} + 2F_{2\,(g)} \rightarrow 4HF_{(aq)} + O_{2\,(g)} \end{array}$$

Answer: A

Watch Video Solution

50. Which of the following is not an example of disproportionation reaction ?

A.
$$4ClO_3^-
ightarrow Cl^- + 3ClO_4^-$$

 $\mathsf{B.}\, 2H_2O_2 \rightarrow 2H_2O+O_2$

C. $2NO_2+2OH^-
ightarrow NO_3^- + H_2O$

D. $TiCl_4 + 2Mg
ightarrow Ti + 2MgCl_2$

Answer: D

51. White phosphorus reacts with caustic soda to form PH_3 and NaH_2PO_2 . This reaction is an example of

A. oxidation

B. reduction

C. disproportionation

D. displacement

Answer: C

Watch Video Solution

52. What is the oxidation number of carbon in C_3O_2 (carbon suboxide) ?

A. +4/3

B. + 10/4

C.+2

D. + 2/3

Answer: A

Watch Video Solution

53. In the conversion of $Br_2
ightarrow BrO_3^{-1}$ the oxidation state of bromine

changes from to +5.

A. +1 to +5

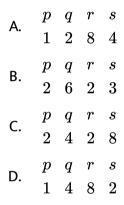
B. O to -3

 $\mathsf{C.}+2 \: \mathsf{to}+5$

D. 0 to +5

Answer: D

54. Permanganate (VII) ion, MnO_4^- oxidises I^- ion to I_2 and gives manganese (IV) oxide MnO_2 in basic medium. The skeletal ionic equation


is

given

as

 $pMnO_{4(aq)}^{-} + qI_{(aq)}^{-} + xH_2O_{(l)}
ightarrow rMnO_{2(s)} + sI_{2(s)} + yOH_{(aq)}^{-}$

The values of p, q, r and s are

Answer: B

View Text Solution

55. Choose correct statements (s) regarding the following reactions.

 $Cr_2O_7^{2\,-}(aq)+3SO_3^{2\,-}(aq)+8H^{\,+}
ightarrow 2Cr^{3\,+}(aq)+3SO_4^{2\,-}(aq)+4H_2O_4^{2\,-}(aq)+$

A.

$$\begin{split} Cr_2 O_{7(aq)}^{2-} &+ 3SO_{2(g)} + 2H_{(aq)}^+ \to 2Cr_{(aq)}^{3+} \to 2Cr_{(aq)}^{3+} + 3SO_{4(aq)}^{2-} \\ \mathsf{B}. \\ &2Cr_2 O_{7(aq)}^{2-} + 3SO_{2(g)} + 4H_{(aq)}^+ \to 4Cr_{(aq)}^{3+} + 3SO_{4(aq)}^{2-} + 2H_2 O_{(l} \\ \mathsf{C}. \\ &Cr_2 O_{7(aq)}^{2-} + 3SO_{2(g)} + 14H_{(aq)}^+ \to 2Cr_{(aq)}^{3+} + 3SO_{4(aq)}^{2-} + 7H_2 O_{(l} \\ \end{split}$$

D.

$$Cr_2O^{2-}_{7(aq)} + 6SO_{2(g)} + 7H^+_{(aq)} \rightarrow 2Cr^{3+}_{(aq)} + 6SO^{2-}_{4(aq)} + 7H_2O_{(l)}$$

Answer: A

View Text Solution

56. The Mn^{3+} ion is unstable in solution and undergoes disproportionation reaction to give Mn^{+2} , MnO_2 , and H^{\oplus} ion. Write a balanced ionic equation for the reaction.

A.
$$3Mn^{3\,+}+4H_2O
ightarrow MnO_2+Mn^{2\,+}+8H^{\,+}$$

B.
$$Mn^{2+} + 4H_2O
ightarrow MnO_2 + 4H^+$$

C.
$$Mn+2H_2O
ightarrow MnO_2+4H^{\,+}$$

D.
$$2Mn^{3+}+2H_2O
ightarrow MnO_2+Mn^{2+}+4H^+$$

Answer: D

Watch Video Solution

57. The number of moles of $KMnO_4$ reduced by $1 \mod of KI$ in alkaline medium is (a)1 / 5 (b)2 (c)3 / 2 (d)4

A. 1/5

B. 2

C. 3/2

D. 4

Answer: B

58. Balance the following equation by oxidation number method: $K_2Cr_2O_7 + FeSO_4 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Fe_2(SO_4) + K_2SO_4 + H_2SO_4$ A. $Cr_2O_7^{2-} + 14H^+ + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O$ B. $2K^+ + Cr_2O_7^{2-} + 7SO_4^{2-} + 6Fe^{2+} \rightarrow 3Fe^{3+} + SO_4^{2-} + Cr^{3+} + H_2SO_4$

C.
$$Cr_2O_7^{2-} + 2K^+ + 7H^+ + 6Fe^{2+}
ightarrow 6Fe^{3+} + 6Cr^{3+} + K^+$$

D. $Cr_2O_7^{2-} + 7H^+ + 6Fe^{2+}
ightarrow 3Fe^{2+} + 2Cr^{3+} + 2K^+ + 7H_2O$

Answer: A

View Text Solution

59. Which will be the value of x, y and z in the following equaton.

 $xI_2+yOH^-
ightarrow IO_3^-+zI+3H_2O$

A. $\frac{x}{6} \frac{y}{3} \frac{z}{5}$

B. $\begin{array}{cccc} x & y & z \\ 3 & 2 & 3 \\ c. & x & y & z \\ 3 & 6 & 5 \\ d. & x & y & z \\ d. & 3 & 3 & 3 \end{array}$

Answer: C

Watch Video Solution

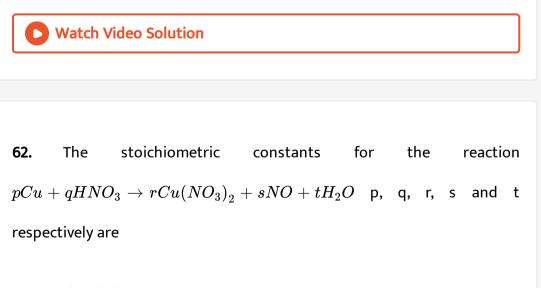
60. The number of electrons involved in the conversion of MnO_4^- to MnO_2 is

A. 3

B. 4

C. 1

D. 2


Answer: A

61. The values of coefficients to balance the following reaction are

 $Cr(OH)_3 + ClO^- + OH^-
ightarrow CrO_4^{2-} + Cl^- + H_2O$

$$\begin{array}{cccccccccccccc} \mathsf{A}. & \frac{Cr(OH)_3}{2} & \frac{ClO^-}{3} & \frac{CrO_4^{2-}}{4} & \frac{Cl^-}{2} \\ & 2 & 3 & 3 & 3 \\ \mathsf{B}. & \frac{Cr(OH)_3}{2} & \frac{ClO^-}{4} & \frac{CrO_4^{2-}}{4} & \frac{Cl^-}{2} \\ \mathsf{C}. & \frac{Cr(OH)_3}{2} & \frac{ClO^-}{4} & \frac{CrO_4^{2-}}{4} & \frac{Cl^-}{2} \\ \mathsf{D}. & \frac{Cr(OH)_3}{2} & \frac{ClO^-}{3} & \frac{CrO_4^{2-}}{2} & \frac{Cl^-}{2} \\ \end{array}$$

Answer: D

A. 3, 3, 3, 2, 3

B. 3, 2, 3, 2, 4

C. 3, 8, 3, 2, 4

D. 2, 3, 3, 3, 2

Answer: C

Watch Video Solution

63. What is the correct representation of reaction occurring when HCl is heated with MnO_2 ?

A.
$$MnO_4^- + 5Cl^- + 8H^+
ightarrow Mn^{2+} + 5Cl^- + 5H_2O$$

B. $MnO_2 + 2Cl^- + 4H^+ → Mn^{2+} + Cl_2 + 2H_2O$

C. $2MnO_2+4Cl^-+8H^+
ightarrow 2Mn^{2+}+2Cl_2+4H_2O$

D. $MnO_2 + 4HCl
ightarrow MnCl_4 + Cl_2 + H_2O$

Answer: B

64. When $KMnO_4$ is reduced with oxalic acid in acidic solution, the oxidation number of Mn changes from

A. +2 to +7B. +4 to +7C. +7 to +2

 $\mathsf{D.}+6 \: \mathsf{to}+2$

Answer: C

Watch Video Solution

65. When a manganous salt is fused with a mixture of KNO_3 and solid NaOH, the oxidation number of Mn change from +2 to:

 $\mathsf{A.}+4$

 $\mathsf{B.}+3$

C.+6

D.+7

Answer: C

66. For decolourisation of $1 \mod of KMnO_4$, the moles of H_2O_2 required

is

- A. 1/2
- B. 3/2

C. 5/2

D. 7/2

Answer: C

67. The number of moles of $K_2Cr_2O_7$ reduced by 1mol of Sn^{2+} ions is

A. 1/3

B.1/6

C. 2/3

D. 3/4

Answer: A

Watch Video Solution

68. Which of the following colour changes shown during redox titrations is not correct ?

A. $Cr_2O_7^{2\,-}$ oxidises the indicator diphenylamine to produce blue

colour showing end point.

B. lodine formed by oxidation of I^- ions gives blue colour with starch

showing end point.

C. $KMnO_4$ in the form of MnO_4^- ions gives pink colour showing end

point.

D. Thiosulphate ions $\left(S_2 O_3^{2\,-}
ight)$ give blue colour showing end point.

Answer: D

Watch Video Solution

69. Which of the following acts as a self-indicator ?

A. $K_2 Cr_2 O_7$

B. $KMnO_4$

C. Oxalicacid

D. lodine

Answer: B

70. Which of the following are the common oxidising agents used in redox titrations ?

A. $K_2Cr_2O_7, KMnO_4$, lodine

B. $FeSO_4, KMnO_4$, Sodium thiosulphate

C. Oxalic acid, $KMnO_4, CuSO_4$

D. Mohr's salt, KI, Sodium sulphate

Answer: A

Watch Video Solution

Higher Order Thinking Skills

1. The oxidation sates of metal in the compounds $Fe_{0.94}O$ and $\left[Cr(PPh_3)_3(CO)_3\right]$ respectively are

A.
$$\frac{200}{94}$$
, 0

B. 0,
$$\frac{94}{200}$$

C. 2, 1
D. 1, $\frac{200}{94}$

Answer: A

Watch Video Solution

2. Consider the following reaction,

 $egin{array}{ccc} CHO & COO^- \ | & +OH^- & + \ CHO & CH_2OH \end{array}$

Select the incorrect statement.

A. It is not a disproportionation reaction.

B. It is intramolecular redox reaction.

C. OH^{-} is a reducing as well as oxidising agent.

CHO

D. is a reducing as well as oxidising agent.

Answer: C

3. Which of the following is a redox reaction ?

A. Reaction of H_2SO_4 with NaOH

B. In atmosphere, formation of O_3 from O_2 by lightening

C. Formation of oxides of nitrogen from nitrogen and oxygen by

lightening

D. Evaporation of H_2O

Answer: C

4. Why following two reaction proceed differently?

 $Pb_3O_4 + 8HCl
ightarrow 3PbCl_2 + Cl_2 + 4H_2O$

$$Pb_3O_4 + 4HNO_3
ightarrow 2Pb(NO_3)_2 + PbO_2 + 2H_2O$$

- A. three numbers of Pb^{2+} ions get oxidised to Pb^{4+} state
- B. one number Pb^{4+} ion gets reduced to Pb^{2+} and two numbers of

 $Pb^{2\,+}$ ions remain unchanged in their oxidation state

C. one number Pb^{2+} ion gets oxidised to Pb^{4+} and two numbers of

 Pb^{4+} ions remain unchanged in their oxidation states

D. three numbers of Pb^{4+} ions get reduced to Pb^{2+} state.

Answer: B

View Text Solution

5. which of the following statements is not correct about the reaction given below? $K_4\big[Fe(CN)_6\big] \xrightarrow{\text{Oxidation}} Fe^{3+} + CO_2 + NO_3^{\Theta}$

A. Fe is oxidised from Fe^{2+} to Fe^{3+} .

B. Carbon is oxidised from C^{2+} to C^{4+} .

C. N is oxidised from N^{3-} to N^{5+} .

D. Carbon is not oxidised.

Answer: D

Watch Video Solution

6. One mole of N_2H_4 loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A? (There is no change in the oxidation state of hydrogen.)

 $\mathsf{A}.-1$

 $\mathsf{B.}-3$

C.+3

D.+5

Answer: C

7. Using the following Latimer diagram for bromine,

 $pH=0, BrO_4^- \xrightarrow{1.82V} BrO_3^- \xrightarrow{1.50V} HBrO \xrightarrow{1.595V} Br_2 \xrightarrow{1.06552V} Br^-$

the species undergoing disproportionation is

- A. BrO_4^-
- B. BrO_3^-
- C. HBrO
- D. Br_2

Answer: C

8. For the reaction : $I^{\,-} + ClO_3^{\,-} + H_2SO_4
ightarrow Cl^- + HSO_4^- + I_2$

The incorrect statement for the balanced equation is:

A. stoichiometric coefficient of HSO_4^- is 6

B. iodide is oxidized

C. sulphur is reduced

D. H_2O is one of the products.

Answer: C

Watch Video Solution

9. MnO_4^- ions are reduced in acidic conditions to Mn^{2+} ions whereas they are reduced in neutral condition to MnO_2 . The oxidation of 25 mL of a solution x containing Fe^{2+} ions required in acidic condition 20 mL of a solution y containing MnO_4 ions. What value of solution y would be required to oxidize 25 mL of solution x containing Fe^{2+} ions in neutral condition ? A. 11.4 mL

B. 12.0 mL

C. 33.3 mL

D. 35.0 mL

Answer: C

Watch Video Solution

Ncert Exemplar Problems

1. Which of the following is not an example of redox reaction?

A. $CuO+H_2
ightarrow Cu+H_2O$

B. $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

 $\mathsf{C.}\, 2K+F_2 \to 2KF$

D. $BaCl_2 + H_2SO_4
ightarrow BaSO_4 + 2HCl$

Answer: D

Watch Video Solution

2. The more positive the value of E^{θ} , the greater is the trendency of the species to get reduced. Using the standard electrode potential of redox coples given below find out which of the following is the strongest oxidising agent.

 $E^{ heta}$ values: Fe^{3+} / Fe^{2+} = + 0.77 $I_2(s)$ / I^- = + 0.54, Cu^{2+} / Cu = + 0.34, Ag^+ / Ag = 0.80VA. Fe^{3+}

B. $I_{2(s)}$

 $\mathsf{C.}\, Cu^{2\,+}$

D. 'Ag^(+)'

Answer: D

3. E^{θ} values of some redox couples are given below. On the basis of these values choose the correct option.

$$E^{ heta}$$
 values: $Brt_2/Br^-=~+~1.90$
 $Ag^+/Ag(s)=~+~0.80$
 $Cu^{2+}/Cu(s)=~+~0.34, I_2(s)/I^-=~+~0.54$

A. Cu will reduce $Br^{\,-}$

B. Cu will reduce Ag

C. Cu will reduce $I^{\,-}$

D. Cu will reduce Br_2

Answer: D

4. Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E° values : $Fe^{3+}/Fe^{2+} = +0.77$, $I_2/I^- = +0.54V$ $Cu^{2+}/Cu = +0.34V$, $Ag^+/Ag = +0.80V$ A. Fe^{3+} and I^- B. Ag^+ and Cu C. Fe^{3+} and Cu D. Ag and Fe^{3+}

Answer: D

Watch Video Solution

5. Thiosulphate reacts differently with iodine and bromine in the reactions given below :

Which of the following statements justifies the above dual behaviour of thiosulphate ?

A. Bromine is a stronger oxidant than iodine.

B. Bromine is a weaker oxidant than iodine.

C. Thiosulphate undergoes oxidation by bromine and reduction by

iodine in these reactions.

D. Bromine undergoes oxidation and iodine undergoes reduction in

these reactions.

Answer: A

Watch Video Solution

6. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect ?

A. The oxidation number of hydrogen is always +1.

B. The algebraic sum of all the oxidation numbers in a compound is

zero.

C. An element in the free or the uncombined state bears oxidation

number zero.

D. In all its compounds, the oxidation number of fluorine is -1.

Answer: A

Watch Video Solution

7. In which of the following compounds, an elements exhibits two different oxidation states?

A. NH_2OH

B. NH_4NO_3

 $\mathsf{C}.\,N_2H_4$

D. N_3H

Answer: B

8. Which of the following arrangements represent increaseing oxidation number of the central atom?

A.
$$CrO_{2}^{-}$$
, ClO_{3}^{-} , CrO_{4}^{2-} , MnO_{4}^{-}
B. ClO_{3}^{-} , CrO_{4}^{2-} , MnO_{4}^{-} , CrO_{2}^{-}
C. CrO_{2}^{-} , ClO_{3}^{-} , MNO_{4}^{-} , CrO_{4}^{2-}
D. CrO_{4}^{2-} , MnO_{4}^{-} , CrO_{2}^{-} , ClO_{3}^{-}

Answer: A

9. The largest oxidation number exhibited by an element depends on its outer eletronic configuration. With which of the following outer

electronic configurations the element will exhibit largest oxidation number ?

A. $3d^{1}4s^{2}$ B. $3d^{3}4s^{2}$ C. $3d^{5}4s^{1}$

D. $3d^54s^2$

Answer: D

Watch Video Solution

10. Identify the disproportionation reaction.

A.
$$CH_4+2O_2
ightarrow CO_2+2H_2O$$

$$\mathsf{B.}\,CH_4 + 4Cl_2 \rightarrow CCl_4 + 4HCl$$

C. $2F_2+2OH^-
ightarrow 2F^-+OF_2+H_2O$

 $\texttt{D.}~2NO_2+2OH^- \rightarrow NO_2^-+NO_3+H_2O$

Answer: D

11. Which of the following elements does not show disproportionation

tendency?

A. Cl

B.Br

C. F

D. I

Answer: C

Watch Video Solution

Assertion Reason

1. Assertion : Conversion of potassium ferrocyanide to potassium ferricyanide is an oxidation process.

Reason : Oxidation is the addition of oxygen/electronegative element to a substance or removal of hydrogen/electropositive element from a substance.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

2. Justify that the reaction

 $2Cu_2O_s + Cu_2S(s) \rightarrow 6Cu(s) + SO_2(g)$ a redox reaction. Identify the species oxidised/reduced. Which acts as an oxidanat and which acts as a reductant?

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

3. Assertion : HNO_2 can act both as a reducing agent and an oxidising agent.

Reason : In HNO_2 , oxidation state of nitrogen is +3 which can change from -3 to +5.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

4. Assertion : Decomposition of potassium chlorate is an example of redox reaction .

Reason : There is no change in the oxidation number of potassium in decomposition of potassium chlorate.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

5. Assertion : Displacement reactions of chlorine, bromine and iodine using fluorine are not generally carried out in aqueous solution.Reason : Fluorine being highly reactive attacks water and displaces the oxygen of water.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

6. Assertion : Decomposition of hydrogen peroxide is an example of disproportionation reaction.

Reason : In a disproportionation reaction, an element in one oxidation state is simultaneously oxidised and reduced .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

7. Assertion : CO_4^- does not show disproportionation reaction.

Reason : In ClO_4^- , chlorine is present in its highest oxidation state .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

8. Assertion : All halogens undergo disproportionation reaction in alkaline medium.

Reason : All halogens exhibit variable oxidation states.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: D

Watch Video Solution

9. Assertion : The only way to get F_2 form F^- is to oxidise electrolytically. Reason : The recovery of halogens from their halides requires an oxidation process.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

10. Assertion: Oxygen atom in both O_2 and O_3 has oxidation number zero.

Reason: In F_2O , oxidation number of O is +2.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

11. Assertion : In the species, $S_4 O_6^{2-}$ each of the two extreme sulphurs exhibits oxidation state of +5 and the two middle sulphurs as zero. Reason : The average of four oxidation numbers of sulphurs of the $S_4 O_6^{2-}$ is 2.5.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

12. Assertion : In titrations involving potassium permanganate no indicator is used.

Reason : MnO_4^- acts as the self-indicator.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

13. Assertion : The transfer of electrons from zinc to copper takes place through metal wire connecting the two rods.

Reason : Electricity from solution in one beaker to other flows by migration of ions through the salt bridge.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

14. Assertion : Insert electrolytes like KCl, KNO_3 are used in salt bridge. Reason : Salt bridge provides an electric contact between the two solutions without allowing them to mix with each other.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

Watch Video Solution

15. Assertion : A metal having negative reduction potential when dipped

in the solution of its own ions has a tendency to pass into solution .

Reason : Metals undergo reduction .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

Redox Reactions In Terms Of Electron Transfer Reactions

1. Which of the following statements is not true?

- A. In a chemical reaction, oxidation is always accompanied by reduction.
- B. When a negative ion changes to neutral species, the process is oxidation,
- C. Oxidising agent has a tendency to lose electrons.
- D. Conversion of MnO_4^{2-} to MnO_4^{-} is oxidation.

Answer: C

Watch Video Solution

2. Which of the following is not a redox reaction ?

A.
$$CuO + H_2
ightarrow Cu + H_2O$$

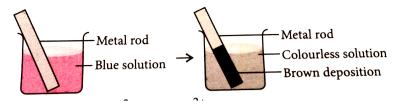
B. $Na + H_2O
ightarrow NaOH + rac{1}{2}H_2$
C. $CaCO_3
ightarrow CaO + CO_2$
D. $2K + F_2
ightarrow 2KF$

Answer: C

3. Which substance is serving as a reducing agent in the following reaction? $14H^+ + Cr_2O_7^{2-} + 3Ni o 2Cr^{3+} + 7H_2O + 3Ni^{2+}$

A. $Cr_2O_7^{2\,-}$

 $\mathsf{B.}\,Ni$


 $\mathsf{C.}\,H^{\,+}$

D. H_2O

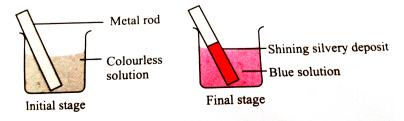
Answer: B

Watch Video Solution

4. A redox reaction is shown in the diagrams. Identify the reaction.

A.
$$Zn_{(s)} + Cu_{(aq)}^{2+} \to Zn_{(aq)}^{2+} + Cu_{(s)}$$

 $\mathsf{B}.\, Cu_{\,(\,s\,)}\,+\,2Ag_{\,(\,aq\,)}\,\rightarrow\,Cu^{2\,+}_{\,(\,aq\,)}\,+\,2Ag_{\,(\,s\,)}$


C.
$$2Ag_{(s)} + Cu^{2+}_{(aq)} o 2Ag^+_{(aq)} + Cu_{(s)}$$

D.
$$2Cu_{(s)} + Zn_{(aq)}^{2+} \to Cu_{(aq)}^{2+} + Zn_{(s)}$$

Answer: A

Watch Video Solution

5. Identify the redox reaction taking palce in a beaker.

$$\begin{array}{l} \mathsf{A.} \ Zn_{(s)} + Cu_{(aq)}^{2+} \to Zn_{(aq)}^{2+} + Cu_{(s)} \\\\ \mathsf{B.} \ Cu_{(s)} + 2Ag_{(aq)} \to Cu_{(aq)}^{2+} + 2Ag_{(s)} \\\\ \mathsf{C.} \ Cu_{(s)} + Zn_{(aq)}^{2+} \to Zn_{(s)} + Cu_{(aq)}^{2+} \\\\ \mathsf{D.} \ 2Ag_{(s)} + Cu_{(aq)}^{2+} \to 2Ag_{(aq)}^{+} + Cu_{(s)} \end{array}$$

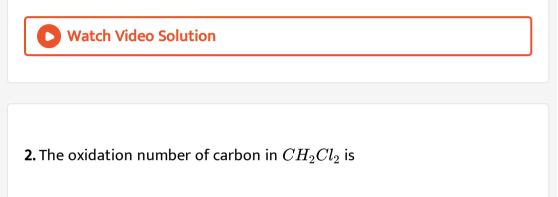
Answer: B

Watch Video Solution

Oxidation Number

1. Which of the following is not a rule for calculating oxidation number?

A. For ions, oxidation number is equal to the charge on the ion.


B. The oxidation number of oxygen is -2 in all of its compounds.

C. The oxidation number of fluorine is -1 in all of its compounds.

D. Oxidation number of hydrogen is +1 except in binary hydrides of

alkali metals and alkaline earth metals where it is -1.

Answer: B

A. 0

B.+1

 $\mathsf{C.}+2$

 $\mathsf{D.}+4$

Answer: A

Watch Video Solution

3. Oxidation state of iron in $Fe(CO)_4$ is

A. +1

 $\mathsf{B.}-1$

 $\mathsf{C.}+2$

D. 0

Answer: D

Watch Video Solution

4. The oxidation states of sulphur in the anions $SO_3^{2-}, S_2O_4^{2-}, SO_4^{2-}$, and $S_2O_6^{2-}$ follow the order

A.
$$S_2 O_4^{2-} > S_2 O_6^{2-} > S O_4^{2-} > S O_3^{2-}$$

 ${\rm B.}\ S_2O_6^{2-}>SO_3^{2-}>S_2O_4^{2-}>SO_4^{2-}$

C.
$$SO_4^{2-} > S_2O_6^{2-} > SO_3^{2-} > S_2O_4^{2-}$$

D. $SO_3^{2-} > SO_4^{2-} > S_2O_4^{2-} > S_2O_6^{2-}$

Answer: C

5. Oxidation numbers of Mn in its compounds $MnCl_2, Mn(OH)_3, MnO_2$ and $KMnO_4$ respectively are:-

A. +2, +4, +7, +3B. +2, +3, +4, +7C. +7, +3, +2, +4D. +7, +4, +3, +2

Answer: B

6. Arrange the oxides of nitrogen in increasing order of oxidation state of

N from +1 to +5.

A.
$$N_2 O < N_2 O_3 < N O_2 < N_2 O_5 < N O$$

B.
$$N_2O < NO < N_2O_3 < NO_2 < N_2O_5$$

C.
$$N_2O_5 < NO_2 < N_2O_3 < NO < N_2O$$

D. $NO < N_2O < NO_2 < N_2O_3 < N_2O_5$

Answer: B

Watch Video Solution

7. The oxidation state of S in $H_2S_2O_8$ is

 $\mathsf{A.+6}$

B.+7

C.+8

D. 0

Answer: A

Watch Video Solution

8. Match the compounds given in column I with oxidation states of carbon given in column II and mark the appropriate choice.

	Column I	C	Column II	
(A)	$C_{6}H_{12}O_{6}$	(i)	+3	
(B)	$CHCl_3$	(ii)	-3	
(C)	CH_3CH_3	(iii)	+2	
(D)	$(COOH)_2$	(iv)	0	
A. (A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)				
В.	(A) \rightarrow (i), (B)	ightarrow (ii),	(C) \rightarrow ((iii), (D) $ ightarrow$ (iv)
C.	(A) \rightarrow (ii), (B)	ightarrow (iii)), (C) \rightarrow	(iv), (D) \rightarrow (i)
D.	(A) $ ightarrow$ (iii), (B) $ ightarrow$ (ii)), (C) \rightarrow	(i), (D) \rightarrow (iv)

Answer: A

Watch Video Solution

9. Among the following identify the species with an atom in +6 oxidation

state.

A. MnO_4^-

B. $Cr(CN)_6^{3-}$

C. NiF_6^{2-}

 $\mathsf{D.} \mathit{CrO}_2 \mathit{Cl}_2$

Answer: D

Watch Video Solution

10. The pair of the compounds in which both the metals are in the highest possible oxidation state is,

A. $MnO_2, FeCl_3$

 $\mathsf{B.}\,MnO_4^{\,-}, CrO_2Cl_2$

 $C. MnCl_2, CrCl_3$

 $\mathsf{D}.\left[\mathit{NiCl}_4\right]^{2-},\left[\mathit{CoCl}_4\right]^-$

Answer: B

11. An element that never has a positive oxidation state in any of its compounds is

A. O B. N C. Cl

D. F

Answer: D

Watch Video Solution

12. Oxidation number if iodine in IO_3^- , IO_4^- , KI and I_2 respectively are

A.
$$-2, -5, -1, 0$$

 $\mathsf{B.}+5,\ +7,\ -1,0$

 $\mathsf{C.}+2,\ +5,\ +1,0$

 $\mathsf{D}.-1,\ +1,\,0,\ +1$

Answer: B

Watch Video Solution

13. Various oxidation states of few elements are mentioned. Which of the

options is not correctly matched ?

A. a. Phosphorus: +3 to +5

B. b. Nitrogen : +1 to +5

C. c. lodine : -1 to +7

D. d. Chromium : +3 to +6

Answer: D

View Text Solution

14. Carbon is in the lowest oxidation state in

A. CH_4

B. CCl_4

 $\mathsf{C.}\, CF_4$

D. CO_2

Answer: A

Watch Video Solution

15. Which of the following is a decreasing order of oxidation states of the central atoms?

A. (A)
$$PCl_5$$
, HIO_4 , $Cl_2O_7^{2-}$, Cl_2O
B. (B) $Cr_2O_7^{2-}$, Cl_2O , HIO_4 , PCl_5
C. (C) HIO_4 , $Cr_2O_7^{2-}$, PCl_5 , Cl_2O
D. (D) $Cr_2O_7^{2-}$, HIO_4 , Cl_2O , PCl_5

Answer: C

16. Which compound amongst the following gas the highest oxidation number of Mn?

 $KMnO_4, K_2MnO_2, MnO_2$ and Mn_2O_3

A. (A) $KMnO_4$

B. (B) $K_2 MnO_4$

C. (C) MnO_2

D. (D) Mn_2O_3

Answer: A

Watch Video Solution

17. In which of the following compounds oxidation state of chlorine has

two different values?

A. $CaCl_2$

 $\mathsf{B.}\, NaCl$

 $C. CaOCl_2$

D. CCl_4

Answer: C

Watch Video Solution

18. The oxidation number of nitrogen in $\left(N_2H_5
ight)^+$ is

 $\mathsf{A}.-2$

 $\mathsf{B.}+2$

C.+3

 $\mathsf{D.}-3$

Answer: A

19. Mark the correct statement from the following :

A. Copper metal can be oxidised by Zn^{2+} ions.

B. Oxidation number of phosphorus in P_4 is 4

C. An element in the highest oxidation state acts only as a reducing agent.

D. The element which shows highest oxidation number of +8 is Os in

 OsO_4

Answer: D

Watch Video Solution

20. Which compound among the following has lowest oxidation number

of chlorine ?

A. ClF_3

B. $HClO_3$

C. HCl

D. HOCl

Answer: C

Watch Video Solution

21. Which of the following oxidation numbers is not correctly matched ?

A. Cl in $HClO_4$

B. Ni in $\left[Ni(CN)_6
ight]^{4-}=\,+\,2$

C. P in $Mg_2P_2O_7 = +6$

D. Cr in $(NH_4)_2 Cr_2 O_7 = +6$

Answer: C

22. Examples of few compounds in a particular oxidation state are given. Mark the example which is not correct.

A. P in $H_2 P O_2 = +1$

B. Chlorine in +7 oxidation state -HClO

C. Chromium in +6 oxidation state $-CrO_2Cl_2$

D. Carbon in O oxidation state $-C_{12}H_{22}O_{11}$

Answer: B

23. The oxidation numbers of the sulphur atoms in pcroxymonosulphuric acid (H_2SO_5) and peroxydisulphuric acid $(H_2S_2O_8)$ are respectively.

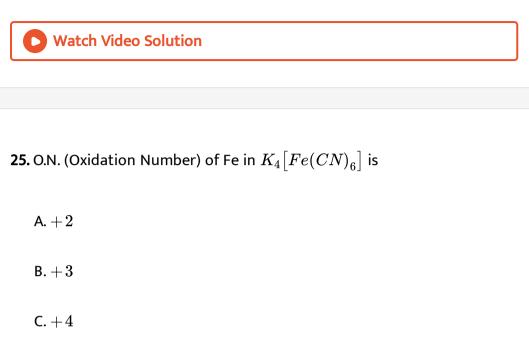
A. +8, +7B. +3, +3C. +6, +6D. +4, +6

Answer: C

Watch Video Solution

24. Which is not true about the oxidation state of the following elements

?


A. Sulphur +6 to -2

B. Carbon +4 to -4

C. Chlorine +7 to -1

D. Nitrogen +3 to -1

Answer: D

 $\mathsf{D.+6}$

Answer: A

Watch Video Solution

26. Arrange the following in increasing order of oxidation state of Ni.

 $K_2ig[Ni(CN)_4ig], K_2[NiF_6], Ni(CO)_4ig]$

A.
$$Ni(CO)_4$$
, $K_2[Ni(CN)_4]$, $K_2[NiF_6]$
B. $K_2[Ni(CN)_4]$, $Ni(CO)_4$, $K_2[NiF_6]$
C. $Ni(CO)_4$, $K_2[NiF_6]$, $K_2[Ni(CN)_4]$
D. $K_2[NiF_6]$, $K_2[Ni(CN)_4]$, $Ni(CO)_4$

Answer: A

Watch Video Solution

27. The correct sequence of the oxidation state of underlined elements is $Na_2[\underline{Fe}(CN)_5NO], K_2\underline{Ta}F_7, Mg_2\underline{P}_2O_7, Na_2\underline{S}_4O_6, \underline{N}_3H$

A.
$$+3$$
, $+5$, $+5$, $+2.5$, $-\frac{1}{3}$
B. $+5$, $+3$, $+5$, $+3$, $+\frac{1}{3}$
C. $+3$, $+3$, $+5$, $+5$, $-\frac{1}{3}$
D. $+5$, $+5$, $+3$, $+2.5$, $+\frac{1}{3}$

Answer: A

28. What are the oxidation states of phosphorus in the following compounds ?

 $H_3PO_2, H_3PO_4, Mg_2P_2O_7, PH_3, HPO_3$

A. +1, +3, +3, +3, +5

B. +3, +3, +5, +5, +5

 $\mathsf{C.}+1,\ +2,\ +3,\ +5,\ +5$

D. +1, +5, +5, -3, +5

Answer: D

Watch Video Solution

29. In which of the following compounds carbon is in highest oxidation

state ?

A. CH_3Cl

 $\mathsf{B.} CCl_4$

 $C. CHCl_3$

D. CH_2Cl_2

Answer: B

Watch Video Solution

30. The oxidising state of molybdenum in its oxo complex species

 $ig[Mo_2O_4(C_2H_4)_2(H_2O)ig]^{2\,-}$ is

 $\mathsf{A.}+2$

B.+3

C.+4

D.+5

Answer: B

31. Oxidation number of P in $Ba(H_2PO_2)_2$ is

- $\mathsf{B.}+2$
- C. +1
- $\mathsf{D.}-1$

Answer: C

Watch Video Solution

32. Which of the following can act as oxidising as well as reducing agent?

- A. H_2O_2
- $\mathsf{B.}\,SO_3$
- $\mathsf{C}.\,H_2SO_4$

D. HNO_3

Answer: A

33. When a piece of sodium metal is dropped in water, hydrogen gas evolved because

A. sodium is reduced and acts as an oxidising agent

B. water is oxidised and act as a reducing agent

C. sodium loses electrons and is oxidised while water is reduced

D. water loses electrons and is oxidised to hydrogen.

Answer: C

Watch Video Solution

34. In the reaction,

$$I_2 + 2S_2O_3^{2-}
ightarrow 2I^- + S_4O_6^{2-}.$$

A. I_2 is reducing agent.

B. I_2 is oxidising agent and $S_2 O_3^{2\,-}$ is reducing agent

C. $S_2 O_3^{2-}$ is oxidising agent.

D. I_2 is reducing agent and $S_2O_3^{2-}$ is oxidising agent.

Answer: B

Watch Video Solution

35. In the reaction $:Cl_2+OH^ightarrow Cl^-+ClO_4^-+H_2O$:-

A. Chlorine is oxidised

B. Chlorine is reduced.

C. Chlorine is oxidised as well as reduced.

D. Chlorine is neither oxidised nor reduced.

Answer: C

36. Consider the following reaction : $HCHO + 2[Ag(NH_3)_2]^+ + 3OH^- \rightarrow 2Ag + HCOO^- + 4NH_3 + 2H_2C$ Which of the following statements regarding oxidation and reduction is correct?

- A. HCHO is oxidised to $HCOO^-$ and $[Ag(NH_3)_2]^+$ is reduced to Ag. B. HCHO is reduced to $ddHCOO^-$ and $[Ag(NH_3)_2]^+$ is oxidised to Ag.
- C. $\left[Ag(NH_3)_2
 ight]^+$ is reduced to Ag while OH^- is oxidised to $HCOO^-$
- D. $\left[Ag(NH_3)_2\right]^+$ is oxidised to NH_3 while HCHO is reduced to H_2O .

Answer: A

Watch Video Solution

37. Identify the compounds which are reduced and oxidised in the following reaction:

 $3N_2H_4 + 2BrO_3^-
ightarrow 3N_2 + 2Br^- + 6H_2O$

A. N_2H_4 is oxidised and BrO_3^- is reduced.

B. BrO_3^- is oxidised and N_2H_3 is reduced.

C. BrO_3^- is both reduced and oxidised.

D. This is not a redox reaction.

Answer: A

Watch Video Solution

38. Identify the oxidant and reductant in the following redox reaction:

 $2K_2MnO_4 + CI_2
ightarrow 2KCI + 2KMnO_4$

A. Oxidation of potassium manganate is taking place.

B. Reduction of potassium manganate is taking place.

C. Oxidation of Cl_2 is taking place.

D. Cl_2 acts as reducing agent in the reaction.

Answer: A

> Watch Video Solution

39. Indicate whether the following conversions represent an oxidation, a reduction or none (neither oxidation nor reduction).

(i) $HClO_3$ to $HClO_4$ (ii) NH_4^+ to NH_3 (iii) NO_2 to N_2O_4 (iv) HSO_3^- to SO_4^{2-}

(v) H_2O_2 to H_2O

 $(ii) \qquad (iii) \qquad (iv) \qquad (v)$ (i) A. Oxidation Reduction None None Oxidation (i) (ii) (iii) (iv) (v)Β. Oxidation None None Oxidation Reduction (i) (ii) (iii) (iv) (\mathbf{v}) C. Reduction Oxidation Reduction None Reduction (iii)(i) (ii)(iv) (\mathbf{v}) D. Oxidation Reduction None Reduction Reduction

Answer: B

40. In which of the following reactions, the underlined substance has been reduced ?

A.
$$\underline{Cu}+CuO
ightarrow CO_2+Cu$$

B.
$$\underline{CuO} + 2HCl
ightarrow CuCl_2 + H_2O$$

C.
$$\underline{4H_2O}+3F
ightarrow 4H_2+Fe_3O_4$$

D.
$$\underline{C} + 4HNO_3
ightarrow CO_2 + 2H_2O + 4NO_2$$

Answer: C

41. A compound contains atoms X,Y and Z. the oxidation number of X is

+2, of Y is +5 and of Z is -2. The possible formula of the compound is

A. XYZ_2

B. $Y_2(XZ_3)_2$

C. $X_3(YZ_4)_2$

 $\mathsf{D}.\, X_3(Y_4Z)_2$

Answer: C

Watch Video Solution

42. Consider the following reactions,

(I) $SnCl_2 + 2FeCl_3
ightarrow SnCl_4 + 2FeCl_2$

A. $SnCl_2$ is oxidised and $FeCl_3$ acts as oxidising agent.

B. $FeCl_3$ is oxidised and acts as oxidising agent.

C. $SnCl_2$ is reduced and acts as oxidising agent.

D. $FeCl_3$ is oxidised and $SnCl_2$ acts as a oxidising agent.

Answer: A

43. Which of the following statements is correct regarding redox reactions-

- A. An increase in oxidation number of an element is called reduction
- B. A decrease in oxidation number of an element is called oxidation.
- C. A reagent which lowers the oxidation number of an element in a

given substance is reductant.

D. A reagent which increases the oxidation number of an element in a

given substance is reductant .

Answer: C

44. In the reacion,

$$3Br_2 + 6CO_3^{2-} + 3H_2O
ightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

A. Bromine is reduced and carbonate ion is oxidised.

B. Bromine undergoes disproportionation.

C. Bromine is reduced and water is oxidised.

D. Only water is oxidised to carbonic acid.

Answer: B

Watch Video Solution

45. Given below is a redox reaction. Which of the following types the reaction belongs to ?

 $CuSO_{4(aq)} + Zn_{(s)} \rightarrow Cu_{(s)} + ZnSO_{4(aq)}$

A. Combination reaction

B. Decomposition reaction

- C. Metal displacement reaction
- D. Non-metal displacement reaction

Answer: C

Watch Video Solution

46. Identify the oxidant and the reductant respectively in the following reaction.

$$Cl_2(g)+2Br^{-}(aq)
ightarrow 2Cl^{-}(aq)+Br_2(aq)$$

- A. Chlorine and Bromide
- B. Bromide and Chlorine
- C. Bromide and Bromide
- D. Chlorine and Chlorine

Answer: C

47. Which of the following is a disproportionation reaction?

$$\begin{array}{l} \text{A. } Cl_{2(g)} + 2OH_{(aq)}^{-} \rightarrow ClO_{(aq)}^{-} + Cl_{(aq)}^{-} + H_2O_{(l)} \\ \\ \text{B. } Cl_{2(g)} + 2I_{(aq)}^{-} \rightarrow 2Cl_{(aq)}^{-} + I_{2(s)} \\ \\ \text{C. } 2Fe_{(s)} + 3H_2O_{(l)} \xrightarrow{\Delta} Fe_2O_{3(s)} + 3H_{2(g)} \\ \\ \text{D. } 2H_2O_{(l)} + 2F_{2(g)} \rightarrow 4HF_{(aq)} + O_{2(g)} \end{array}$$

Answer: A

Watch Video Solution

48. Match the column I with column II with the type of reaction and mark the appropriate choice.

Column I			Column II	
(A)	$3Mg_{(s)} + N_{2(g)} \xrightarrow{\Delta} Mg_{3}N_{2(s)}$	(i)	Displacement	
(B)	$NaH_{(s)} + H_2O_{(l)} \rightarrow NaOH_{(aq)} + H_{2(g)}$		Decomposition	
(C)	$3\text{ClO}_{(aq)}^{-} \rightarrow 2\text{Cl}_{(aq)}^{-} + \\ \text{ClO}_{3(aq)}^{-}$	(iii)	Combination	
(D)	$2\text{KClO}_{3(s)} \rightarrow 2\text{KCl}_{(s)} + 3\text{O}_{2(g)}$	(iv)	Disproportionation	

A. (A)
$$\rightarrow$$
 (i), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (iv)

B. (A)
$$\rightarrow$$
 (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)

C. (A)
$$\rightarrow$$
 (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)

D. (A)
$$\rightarrow$$
 (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii)

Answer: D

Natch Video Solution

49. Which of the following is not an example of disproportionation

reaction ?

A.
$$4ClO_3^-
ightarrow Cl^- + 3ClO_4^-$$

$$\mathsf{B.}\, 2H_2O_2 \rightarrow 2H_2O+O_2$$

C. $2NO_2+2OH^-
ightarrow NO_3^-+H_2O$

D. $TiCl_4 + 2Mg
ightarrow Ti + 2MgCl_2$

Answer: D

Watch Video Solution

50. White phosphorus reacts with caustic soda to form PH_3 and NaH_2PO_2 . This reaction is an example of

A. oxidation

B. reduction

C. disproportionation

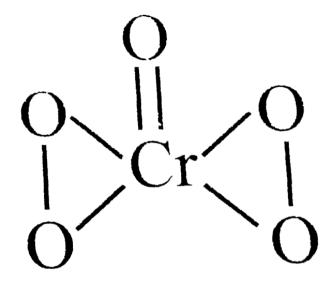
D. displacement

Answer: C

51. What is the oxidation number of carbon in C_3O_2 (carbon suboxide) ?

A. +4/3

B. + 10/4


 $\mathsf{C.}+2$

D. + 2/3

Answer: A

Watch Video Solution

52. The oxidation number of Cr in CrO(5) which has the following structure is

- $\mathsf{A.}+4$
- B.+5
- $\mathsf{C.+6}$
- D. + 10

Answer: C

53. In the conversion of $Br_2
ightarrow BrO_3^{-1}$ the oxidation state of bromine

changes from to +5.

 $\mathsf{A.}+1 \: \mathsf{to}+5$

B. O to -3

 $\mathsf{C.}+2 \ \mathsf{to}+5$

D. 0 to +5

Answer: D

Watch Video Solution

54. Permanganate (VII) ion, MnO_4^- oxidises I^- ion to I_2 and gives manganese (IV) oxide MnO_2 in basic medium. The skeletal ionic equation

given

as

$$pMnO^{-}_{4(|aq|)} + qI^{-}_{(|aq|)} + xH_2O_{(|l|)}
ightarrow rMnO_{2(|s|)} + sI_{2(|s|)} + yOH^{-}_{(|aq|)}$$

The values of p, q, r and s are

A.	$p \\ 1$	${q \over 2}$		$rac{s}{4}$
B.	$p \\ 2$	$q \\ 6$	r 2	$\frac{s}{3}$
C.	$p \\ 2$	$rac{q}{4}$		s 8
D.	$p \\ 1$	$rac{q}{4}$	r 8	s2

Answer: B

View Text Solution

55. Choose correct statements (s) regarding the following reactions.

$$Cr_2O_7^{2\,-}(aq)+3SO_3^{2\,-}(aq)+8H^+
ightarrow 2Cr^{3\,+}(aq)+3SO_4^{2\,-}(aq)+4H_2O_4^{2\,-}(aq)+4H$$

Α.

$$Cr_2O^{2-}_{7(aq)} + 3SO_{2(g)} + 2H^+_{(aq)} o 2Cr^{3+}_{(aq)} o 2Cr^{3+}_{(aq)} + 3SO^{2-}_{4(aq)}$$

Β.

$$2Cr_2O_{7(aq)}^{2-} + 3SO_{2(g)} + 4H_{(aq)}^+ \rightarrow 4Cr_{(aq)}^{3+} + 3SO_{4(aq)}^{2-} + 2H_2O_{(l)}$$

C.

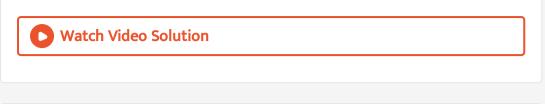
$$Cr_2O^{2-}_{7\,(aq)}+3SO_{2\,(g)}+14H^{\,+}_{(aq)}
ightarrow 2Cr^{3\,+}_{(aq)}+3SO^{2-}_{4\,(aq)}+7H_2O_{(l}$$
D.

$$Cr_2O^{2-}_{7(aq)} + 6SO_{2(g)} + 7H^+_{(aq)} \rightarrow 2Cr^{3+}_{(aq)} + 6SO^{2-}_{4(aq)} + 7H_2O_{(l)}$$

Answer: A

View Text Solution

56. The Mn^{3+} ion is unstable in solution and undergoes disproportionation reaction to give Mn^{+2} , MnO_2 , and H^{\oplus} ion. Write a balanced ionic equation for the reaction.


A.
$$3Mn^{3\,+} + 4H_2O
ightarrow MnO_2 + Mn^{2\,+} + 8H^{\,+}$$

B.
$$Mn^{2\,+} + 4H_2O
ightarrow MnO_2 + 4H^{\,+}$$

C. $Mn+2H_2O
ightarrow MnO_2+4H^{\,+}$

D. $2Mn^{3\,+}+2H_2O
ightarrow MnO_2+Mn^{2\,+}+4H^{\,+}$

Answer: D

57. The number of moles of $KMnO_4$ reduced by $1 \mod of KI$ in alkaline medium is (a)1 / 5 (b)2 (c)3 / 2 (d)4

A. 1/5

B. 2

C.3/2

D. 4

Answer: B

Watch Video Solution

58. Balance the following equation by oxidation number method:

 $K_2 Cr_2 O_7 + FeSO_4 + H_2 SO_4
ightarrow Cr_2 (SO_4)_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + K_2 SO_4 + H_2 V_3 + Fe_2 (SO_4) + Fe$

A.
$$Cr_2O_7^{2\,-} + 14H^+ + 6Fe^{2\,+}
ightarrow 6Fe^{3\,+} + 2Cr^{3\,+} + 7H_2O$$

Β.

$$2K^+ + Cr_2O_7^{2-} + 7SO_4^{2-} + 6Fe^{2+} o 3Fe^{3+} + SO_4^{2-} + Cr^{3+} + Fe^{2+}$$

C. $Cr_2O_7^{2-} + 2K^+ + 7H^+ + 6Fe^{2+} o 6Fe^{3+} + 6Cr^{3+} + K^+$
D. $Cr_2O_7^{2-} + 7H^+ + 6Fe^{2+} o 3Fe^{2+} + 2Cr^{3+} + 2K^+ + 7H_2O$

Answer: A

View Text Solution

59. Which will be the value of x, y and z in the following equaton.

 $xI_2+yOH^ightarrow IO_3^-+zI+3H_2O$

A. $\begin{array}{ccccc} x & y & z \\ 6 & 3 & 5 \\ \end{array}$ B. $\begin{array}{ccccc} x & y & z \\ 3 & 2 & 3 \\ \end{array}$ C. $\begin{array}{ccccc} x & y & z \\ 3 & 6 & 5 \\ \end{array}$ D. $\begin{array}{ccccc} x & y & z \\ 3 & 3 & 3 \end{array}$

Answer: C

60. The number of electrons involved in the conversion of MnO_4^- to MnO_2 is A. 3

- B. 4
- C. 1

D. 2

Answer: A

61. The values of coefficients to balance the following reaction are

 $Cr(OH)_3 + ClO^- + OH^- \rightarrow CrO_4^{2-} + Cl^- + H_2O$

A.
$$\frac{Cr(OH)_3}{2}$$
 $\frac{ClO^-}{3}$ $\frac{CrO_4^{2-}}{3}$ $\frac{Cl^-}{3}$
B. $\frac{Cr(OH)_3}{2}$ $\frac{ClO^-}{4}$ $\frac{CrO_4^{2-}}{3}$ $\frac{Cl^-}{2}$
C. $\frac{Cr(OH)_3}{2}$ $\frac{ClO^-}{4}$ $\frac{CrO_4^{2-}}{4}$ $\frac{Cl^-}{2}$
D. $\frac{Cr(OH)_3}{2}$ $\frac{ClO^-}{3}$ $\frac{CrO_4^{2-}}{2}$ $\frac{Cl^-}{2}$

Answer: D

62. The stoichiometric constants for the reaction $pCu + qHNO_3 \rightarrow rCu(NO_3)_2 + sNO + tH_2O$ p, q, r, s and t respectively are A. 3, 3, 3, 2, 3 B. 3, 2, 3, 2, 4 C. 3, 8, 3, 2, 4

D. 2, 3, 3, 3, 2

Answer: C

63. What is the correct representation of reaction occurring when HCl is heated with MnO_2 ?

A.
$$MnO_4^- + 5Cl^- + 8H^+ \rightarrow Mn^{2+} + 5Cl^- + 5H_2O$$

B. $MnO_2 + 2Cl^- + 4H^+ \rightarrow Mn^{2+} + Cl_2 + 2H_2O$
C. $2MnO_2 + 4Cl^- + 8H^+ \rightarrow 2Mn^{2+} + 2Cl_2 + 4H_2O$
D. $MnO_2 + 4HCl \rightarrow MnCl_4 + Cl_2 + H_2O$

Answer: B

64. When $KMnO_4$ is reduced with oxalic acid in acidic solution, the

oxidation number of Mn changes from

A. +2 to +7B. +4 to +7C. +7 to +2D. +6 to +2

Answer: C

Watch Video Solution

65. When a manganous salt is fused with a mixture of KNO_3 and solid NaOH, the oxidation number of Mn change from +2 to:

 $\mathsf{A.}+4$

 $\mathsf{B.}+3$

C.+6

D.+7

Answer: C

66. For decolourisation of $1 \mod of KMnO_4$, the moles of H_2O_2 required

is

A. 1/2

B. 3/2

C.5/2

D. 7/2

Answer: C

Watch Video Solution

67. The number of moles of $K_2 Cr_2 O_7$ reduced by 1 mol of Sn^{2+} ions is

A. 1/3

B. 1/6

C.2/3

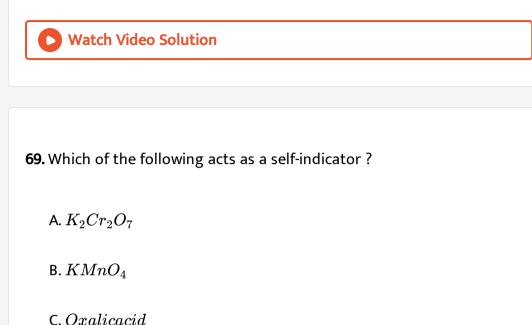
D. 3/4

Answer: A

Watch Video Solution

68. Which of the following colour changes shown during redox titrations is not correct ?

A. $Cr_2O_7^{2-}$ oxidises the indicator diphenylamine to produce blue


colour showing end point.

B. lodine formed by oxidation of I^- ions gives blue colour with starch

showing end point.

- C. $KMnO_4$ in the form of MnO_4^- ions gives pink colour showing end point.
- D. Thiosulphate ions $\left(S_2O_3^{2\,-}
 ight)$ give blue colour showing end point.

Answer: D

D. lodine

Answer: B

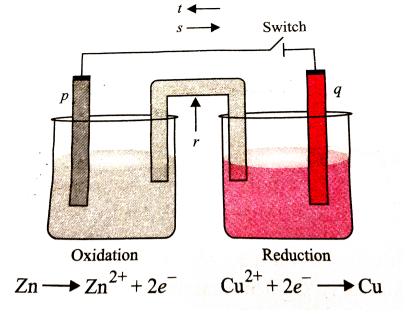
70. Which of the following are the common oxidising agents used in redox titrations ?

A. $K_2Cr_2O_7, KMnO_4$, lodine

B. $FeSO_4, KMnO_4$, Sodium thiosulphate

C. Oxalic acid, $KMnO_4, CuSO_4$

D. Mohr's salt, KI, Sodium sulphate


Answer: A

Watch Video Solution

Mcqs Redox Reactions And Electrode Processes

1. Given below is the set up for Daniell cell. Label p, q, r, s, t in the given

figure.

 \mathbf{t} q \mathbf{r} \mathbf{S} р A. Anode Cathode Salt Electron Current bridge flow flow \mathbf{S} t р q r B. Cathode Anode Salt Current Electron bridge flow flow \mathbf{t} р \mathbf{r} \mathbf{S} q C. Anode Cathode Salt Current Electron bridge flow flow s t q r р D. Cathode Anode Salt Ions Electron bridge flow flow

Answer: A

2. Given below are few statements regarding electrode potentials. Mark

the correct statements.

A. (i) and (ii)

B. (i) and (iii)

C. (ii) and (iii)

D. (i), (ii) and (iii)

Answer: D

View Text Solution

3. What will be the products of electrolysis of an aqueous solution of $AgNO_3$ with silver electrodes ?

A. Ag from Ag anode dissolves while Ag^+ from solution gets

deposited on cathode.

B. Ag is liberated at cathode and O_2 is liberated at anode.

C. Ag at cathode and nitric acid at anode is liberated.

D. No reaction takes place.

Answer: A

Watch Video Solution

4. What will be the products of electrolysis of $AgNO_3$ solution in water with platinum electrodes ?

A. Ag is liberated at cathode and Ag is deposited in anode.

B. Ag is liberated at cathode and O_2 is liberated at anode.

C. Ag is liberated at anode and water is liberated at cathode.

D. Ag is liberated at cathode and silver oxide is liberated at anode.

Answer: B

Watch Video Solution

5. In an oxidation proces for a cell,

 $M_1
ightarrow M_1^{n\,+} + n e^{\,-}$,

the other metal (M_2) being univalent showing reduction takes up Electrons to complete redox reaction.

A. (n-1)

B. 1

C. n

D. 2

Answer: C

Watch Video Solution

6. Which of the following reactions takes place at anode ?

A. Reduction

B. Oxidation

C. Decomposition

D. Dissolution

Answer: B

Watch Video Solution

7. Which of the following will act as cathode when connected to standard hydrogen electrode which has E° value given as zero ? (i) Zn^{2+}/Zn , $E^{\circ} = -0.76V$ (ii) Cu^{2+}/Cu , $E^{\circ} = +0.34V$ (iii) Al^{3+}/Al , $E^{\circ} = -1.66V$ (iv) Hg^{2+}/Hg , $E^{\circ} = +0.885V$ (A)(i) and (ii) (B)(ii) and (iv) (C)(i) and (iii) (D)(i), (ii), (iii) and (iv) A. (i) and (ii)

B. (ii) and (iv)

C. (i) and (iii)

D. (i), (ii), (iii) and (iv)

Answer: B

8. Which of the following reaction does not take place at cathode ?

A.
$$Ag^+
ightarrow Ag - e^-$$

B.
$$Fe^{2+}
ightarrow Fe^{3+} + e^{-}$$

C.
$$Cu^{2\,+} + 2e^-
ightarrow Cu$$

D.
$$Al^{3\,+}
ightarrow Al - 3e^{-}$$

Answer: B

9. Based on the following reactions, arrange the metals in increasing order of their reduction potentials.

 $egin{aligned} Cu+2Ag^+ &
ightarrow Cu^{2+}+2Ah \ Mg+Zn^{2+} &
ightarrow Mg^{2+}+Zn \ Zn+Cu^{2+} &
ightarrow Zn^{2+}+Cu \ egin{aligned} extsf{A}. Mg > Zn > Cu > Ag \ extsf{B}. Mg < Zn < Cu > Ag \ extsf{B}. Mg < Zn < Cu < Ag \ extsf{C}. Zn > Cu > Ag > Mg \ extsf{C}. Zn > Cu > Zn > Mg > Mg \ extsf{D}. Mg > Cu > Zn > Ag \end{aligned}$

Answer: B

10. Which of the following is not a correct statement about electrochemical series of reduction potentials ? (A)The standard electrode potential of hydrogen is 0.00 volts. (B)Active non-metals have

positive reduction potentials. (C)Active metals have negative reduction potentials. (D)Metals which have positive reduction potentials are good reducing agent

A. The standard electrode potential of hydrogen is 0.00 volts.

B. Active non-metals have positive reduction potentials.

C. Active metals have negative reduction potentials.

D. Metals which have positive reduction potentials are good reducing

agent.

Answer: D

Watch Video Solution

11. The solution in a beaker turns blue if

A. Cu electrode is placed in $ZnSO_4$ solution

B. Cu electrode is placed in $AgNO_3$ solution

C. Cu electrode is placed in $Al_2(SO_4)_3$ solution

D. Cu electrode is placed in $FeSO_4$ solution

Answer: B

Watch Video Solution

12. The standard electrode potential a Ag^+/Ag is +0.80 V and of Cu^{2+}/Cu is +0.34 V. These electrodes are connected through a salt bridge and if :

A. copper electrode acts as cathode, then $E^{\,\circ}\,cell$ is +0.46 volt

B. Silver electrode acts as anode, then $E^{\,\circ}\,cell$ is -0.34 volt

- C. Copper electrode acts as anode, then $E^{\,\circ} \, cell$ is +0.46 volt
- D. Silver electrode acts as cathode, then $E^{\,\circ} \, cell$ is -0.34 volt

Answer: C

13. The E° values of redox complex of halogens are given. Based on these values mark the correct statement.

$$E^{\,\circ}_{I_2\,/\,CI^{\,-}}\,=\,+\,0.54V,\,E^{\,\circ}_{Br_2\,/\,Br^{\,-}}\,=\,+\,1.08V$$
 ,

 $E_{Cl_2/Cl^-}^{\circ} = +1.36V$, (A)Chlorine can displace bromine and iodine from their salt solutions. (B)Chlorine can only displace iodine from its salt solution. (C)Bromine can displace chlorine from its salt solution. (D)Iodine can displace chlorine and bromine from their salt solutions

A. Chlorine can displace bromine and iodine from their salt solutions.

B. Chlorine can only displace iodine from its salt solution.

C. Bromine can displace chlorine from its salt solution.

D. lodine can displace chlorine and bromine from their salt solutions.

Answer: A

Watch Video Solution

14. Arrange the following metals in the order in which they displace easy other from the solution of their salts. Al, Cu, Fe, Mg, and Zn.

A. Cu, Fe, Zn, Al, Mg

B. Fe, Zn, Cu, Al, Mg

C. Mg, Cu, Fe, Zn, Al

D. Mg, Al, Zn, Fe, Cu

Answer: D

Watch Video Solution

15. Arrange the following metals in increasing order of their reducing power.

$$E^{\,\circ}_{K^{\,+}\,/\,K}=~-~2.93V, E^{\,\circ}_{Ag^{\,+}\,/\,Ag}=~+~0.80V, E^{\,\circ}_{Al^3\,/\,Al}=~-~1.66VE^{\,\circ}_{Au^{3+}\,/\,Au}$$

A. Li < K < Al < Ag < Au

 $\mathsf{B}.\,Au < Ag < Al < K < Li$

 $\mathsf{C}.\,K < Al < Au < Ag < Li$

D. Al < Ag < Au < Li < K

Answer: B

Watch Video Solution

16. A metal X displaces nickel from nickel sulphate solution but does not displace manganese from manganese sulphate solution. What is the correct order of their reducing powers ?

A.
$$Ni > Mn > X$$

- $\mathsf{B.}\, X > Mn > Ni$
- $\mathsf{C}.\,Mn>X>Ni$

 $\mathsf{D}.\,Mn>Ni>X$

Answer: C

$$E^{\,\circ}_{Ag^{\,+}\,/\,Ag}=\,+\,0.80V, E^{\,\circ}_{Cu^{2+}\,/\,Cu}=\,+\,0.34V, E^{\,\circ}_{Fe^{3+}\,/\,Fe^{2+}}=\,+\,0.76V, E^{\,\circ}_{Ce}$$

Which of the following statements is not correct ?

A. Fe^{3+} does not oxidise Ce^{3+} .

B. Cu reduces Ag^+ to Ag.

C. Ag will reduce Cu^{2+} to Cu.

D. Fe^{3+} oxidises Cu to Cu^{2+}

Answer: C

Watch Video Solution

18. निम्नलिखित आयनो को इलेक्ट्रॉन ग्रहण करने की बढ़ती क्षमता के क्रम में लिखो । $H^+, Mg^{2+}, K^+, Ag^+, Zn^{2+}$ तथा Cu^{2+}

A. $Ag^{\,+} > H^{\,+} > Zn^{2\,+} > Mg^{2\,+} > K^{\,+}$

 ${\sf B}.\,H^{\,+}\,>Zn^{2\,+}\,>Mg^{2\,+}\,>K^{\,+}\,>Ag^{\,+}$

C.
$$K^+ > Mg^{2+} > Zn^{2+} > H^+ > Ag^+$$

D.
$$Mg^{2\,+} > Zn^{2\,+} > K^{+} > H^{\,+}$$

Answer: A

Watch Video Solution

19. What will be the order of decreasing reducing nature for the given metals ?

A.
$$Zn>Na>Fe>Mg>Cu>Ag$$

 $\mathsf{B.}\, Cu > Fe > Mg > Zn > Na > Ag$

 $\mathsf{C.}\, Ag > Cu > Fe > Zn > Mg > Na$

D. Na > Mg > Zn > Fe > Cu > Ag

Answer: D

20. Which of the following is the strongest oxidizing agent ?

A. F_2

 $\mathsf{B.}\,Cl_2$

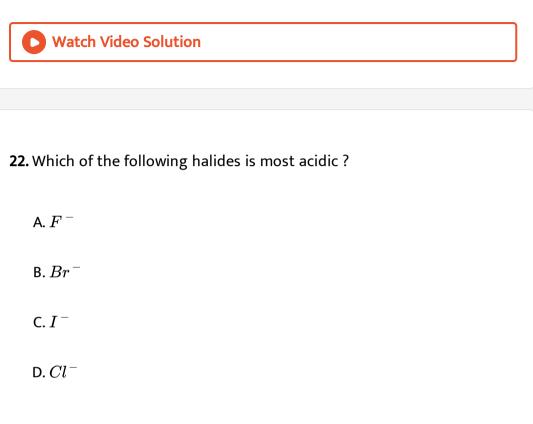
 $\mathsf{C}.\,Br_2$

 $\mathsf{D}.\,I_2$

Answer: A

Watch Video Solution

21. Fluorine is the best oxidising agent because it has


A. it is most electronegative .

B. it has highest reduction potential.

C. it has highest oxidation potential.

D. it has smallest size.

Answer: B

Answer: C

Watch Video Solution

Redox Reactions And Electrode Processes

1. Given below are few statements regarding electrode potentials. Mark the correct statements.

A. (i) and (ii)

B. (i) and (iii)

C. (ii) and (iii)

D. (i), (ii) and (iii)

Answer: D

View Text Solution

2. What will be the products of electrolysis of an aqueous solution of $AgNO_3$ with silver electrodes ?

A. Ag from Ag anode dissolves while Ag^+ from solution gets

deposited on cathode.

B. Ag is liberated at cathode and O_2 is liberated at anode.

C. Ag at cathode and nitric acid at anode is liberated.

D. No reaction takes place.

Answer: A

Watch Video Solution

3. What will be the products of electrolysis of $AgNO_3$ solution in water with platinum electrodes ?

A. Ag is liberated at cathode and Ag is deposited in anode.

B. Ag is liberated at cathode and O_2 is liberated at anode.

C. Ag is liberated at anode and water is liberated at cathode.

D. Ag is liberated at cathode and silver oxide is liberated at anode.

Answer: B

4. In an oxidation proces for a cell,

 $M_1
ightarrow M_1^{n\,+} + n e^{\,-}$,

the other metal (M_2) being univalent showing reduction takes up Electrons to complete redox reaction.

A. (n-1)

B. 1

C. n

D. 2

Answer: C

Watch Video Solution

5. Which of the following reactions takes place at anode ?

A. Reduction

B. Oxidation

C. Decomposition

D. Dissolution

Answer: B

Watch Video Solution

6. Which of the following will act as cathode when connected to standard hydrogen electrode which has E° value given as zero ? (i) Zn^{2+}/Zn , $E^{\circ} = -0.76V$ (ii) Cu^{2+}/Cu , $E^{\circ} = +0.34V$ (iii) Al^{3+}/Al , $E^{\circ} = -1.66V$ (iv) Hg^{2+}/Hg , $E^{\circ} = +0.885V$ (A)(i) and (ii) (B)(ii) and (iv) (C)(i) and (iii) (D)(i), (ii), (iii) and (iv) A. (i) and (ii)

B. (ii) and (iv)

C. (i) and (iii)

D. (i), (ii), (iii) and (iv)

Answer: B

7. Which of the following reaction does not take place at cathode ?

A.
$$Ag^+
ightarrow Ag - e^-$$

B.
$$Fe^{2+}
ightarrow Fe^{3+} + e^{-}$$

C.
$$Cu^{2\,+} + 2e^-
ightarrow Cu$$

D.
$$Al^{3\,+}
ightarrow Al - 3e^{-}$$

Answer: B

8. Based on the following reactions, arrange the metals in increasing order of their reduction potentials.

 $egin{aligned} Cu+2Ag^+ &
ightarrow Cu^{2+}+2Ah \ Mg+Zn^{2+} &
ightarrow Mg^{2+}+Zn \ Zn+Cu^{2+} &
ightarrow Zn^{2+}+Cu \ egin{aligned} extsf{A}. Mg > Zn > Cu > Ag \ extsf{B}. Mg < Zn < Cu > Ag \ extsf{B}. Mg < Zn < Cu < Ag \ extsf{C}. Zn > Cu > Ag > Mg \ extsf{C}. Zn > Cu > Zn > Mg > Mg \ extsf{D}. Mg > Cu > Zn > Ag \end{aligned}$

Answer: B

9. Which of the following is not a correct statement about electrochemical series of reduction potentials ? (A)The standard electrode potential of hydrogen is 0.00 volts. (B)Active non-metals have

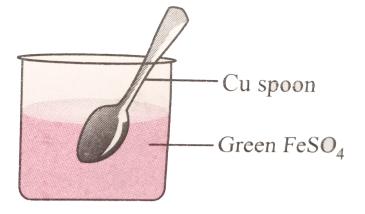
positive reduction potentials. (C)Active metals have negative reduction potentials. (D)Metals which have positive reduction potentials are good reducing agent

A. The standard electrode potential of hydrogen is 0.00 volts.

B. Active non-metals have positive reduction potentials.

C. Active metals have negative reduction potentials.

D. Metals which have positive reduction potentials are good reducing


agent.

Answer: D

Watch Video Solution

10. If a spoon of copper metal is placed in a solution of $FeSO_4$, what will

be the correct observation ?

(A)Copper is

dissolved in F e S O 4 to give brown deposit. (B)No reaction takes place. (C)Iron is deposited on copper spoon. (D)Both copper and iron are precipitated

A. Copper is dissolved in $FeSO_4$ to give brown deposit.

B. No reaction takes place.

C. Iron is deposited on copper spoon.

D. Both copper and iron are precipitated.

Answer: B

11. The solution in a beaker turns blue if

A. Cu electrode is placed in $ZnSO_4$ solution

B. Cu electrode is placed in $AgNO_3$ solution

C. Cu electrode is placed in $Al_2(SO_4)_3$ solution

D. Cu electrode is placed in $FeSO_4$ solution

Answer: B

Watch Video Solution

12. The standard electrode potential a Ag^+/Ag is +0.80 V and of Cu^{2+}/Cu is +0.34 V. These electrodes are connected through a salt bridge and if :

A. copper electrode acts as cathode, then $E^{\,\circ} \, cell$ is +0.46 volt

B. Silver electrode acts as anode, then $E^{\,\circ}\,cell$ is -0.34 volt

C. Copper electrode acts as anode, then $E^{\,\circ} \, cell$ is +0.46 volt

D. Silver electrode acts as cathode, then $E^{\,\circ}\,cell$ is -0.34 volt

Answer: C

Watch Video Solution

13. The E° values of redox complex of halogens are given. Based on these values mark the correct statement.

$$E^{\,\circ}_{I_2\,/\,CI^{\,-}}\,=\,+\,0.54V,\,E^{\,\circ}_{Br_2\,/\,Br^{\,-}}\,=\,+\,1.08V$$
 ,

 $E_{Cl_2/Cl^-}^{\circ} = +1.36V$, (A)Chlorine can displace bromine and iodine from their salt solutions. (B)Chlorine can only displace iodine from its salt solution. (C)Bromine can displace chlorine from its salt solution. (D)Iodine can displace chlorine and bromine from their salt solutions

- A. Chlorine can displace bromine and iodine from their salt solutions.
- B. Chlorine can only displace iodine from its salt solution.
- C. Bromine can displace chlorine from its salt solution.
- D. lodine can displace chlorine and bromine from their salt solutions.

Answer: A

Watch Video Solution

14. Arrange the following metals in the order in which they displace easy other from the solution of their salts. Al, Cu, Fe, Mg, and Zn.

A. Cu, Fe, Zn, Al, Mg

B. Fe, Zn, Cu, Al, Mg

C. Mg, Cu, Fe, Zn, Al

D. Mg, Al, Zn, Fe, Cu

Answer: D

Watch Video Solution

15. Arrange the following metals in increasing order of their reducing

power.

 $E^{\,\circ}_{K^{\,+}\,/\,K}=~-~2.93V, E^{\,\circ}_{Ag^{\,+}\,/\,Ag}=~+~0.80V, E^{\,\circ}_{Al^3\,/\,Al}=~-~1.66VE^{\,\circ}_{Au^{3\,+}\,/\,Au}$ =

A. Li < K < Al < Ag < Au

 $\mathsf{B}.\, Au < Ag < Al < K < Li$

 $\mathsf{C}.\,K < Al < Au < Ag < Li$

D. Al < Ag < Au < Li < K

Answer: B

Watch Video Solution

16. A metal X displaces nickel from nickel sulphate solution but does not displace manganese from manganese sulphate solution. What is the correct order of their reducing powers ?

A. Ni > Mn > X

 $\mathsf{B.}\, X > Mn > Ni$

 $\mathsf{C}.\,Mn>X>Ni$

$\mathsf{D}.\,Mn>Ni>X$

Answer: C

17.

Given

$$E^{\,\circ}_{Ag^{\,+}\,/Ag}=\,+\,0.80V, E^{\,\circ}_{Cu^{2+}\,/Cu}=\,+\,0.34V, E^{\,\circ}_{Fe^{3+}\,/Fe^{2+}}=\,+\,0.76V, E^{\,\circ}_{Ce^{4}}$$

Which of the following statements is not correct ?

A.
$$Fe^{3+}$$
 does not oxidise Ce^{3+}

- B. Cu reduces Ag^+ to Ag.
- C. Ag will reduce Cu^{2+} to Cu.
- D. Fe^{3+} oxidises Cu to Cu^{2+}

Answer: C

18. निम्नलिखित आयनो को इलेक्ट्रॉन ग्रहण करने की बढ़ती क्षमता के क्रम में लिखो । $H^+, Mg^{2+}, K^+, Ag^+, Zn^{2+}$ तथा Cu^{2+}

A.
$$Ag^+ > H^+ > Zn^{2+} > Mg^{2+} > K^+$$

B. $H^+ > Zn^{2+} > Mg^{2+} > K^+ > Ag^+$
C. $K^+ > Mg^{2+} > Zn^{2+} > H^+ > Ag^+$

D. $Mg^{2\,+}\,>Zn^{2\,+}\,>K^{\,+}\,>H^{\,+}$

Answer: A

Watch Video Solution

19. What will be the order of decreasing reducing nature for the given metals ?

A. Zn > Na > Fe > Mg > Cu > Ag

 $\mathsf{B}.\, Cu > Fe > Mg > Zn > Na > Ag$

 $\mathsf{C.}\, Ag > Cu > Fe > Zn > Mg > Na$

D. Na > Mg > Zn > Fe > Cu > Ag

Answer: D

20. Which of the following is the strongest oxidizing agent ?

A. F_2

B. Cl_2

 $\mathsf{C}.\,Br_2$

 $\mathsf{D}.\,I_2$

Answer: A

D Watch Video Solution

21. Fluorine is the best oxidising agent because it has

A. it is most electronegative .

B. it has highest reduction potential.

C. it has highest oxidation potential.

D. it has smallest size.

Answer: B

Watch Video Solution

22. Which of the following halides is most acidic ?

A. $F^{\,-}$

B. Br^{-}

C. I^{-}

D. Cl^{-}

Answer: C

1. Which of the following is not an example of redox reaction?

A. $CuO + H_2
ightarrow Cu + H_2O$

 $\texttt{B.} Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

 $\mathsf{C.}\, 2K+F_2 \to 2KF$

D. $BaCl_2 + H_2SO_4
ightarrow BaSO_4 + 2HCl$

Answer: D

Watch Video Solution

2. The more positive the value of E^{θ} , the greater is the trendency of the species to get reduced. Using the standard electrode potential of redox coples given below find out which of the following is the strongest oxidising agent.

 $E^{ heta}$ values: $Fe^{3+} / Fe^{2+} = +0.77$ $I_2(s) / I^- = +0.54,$ $Cu^{2+} / Cu = +0.34, Ag^+ / Ag = 0.80V$ A. Fe^{3+} B. $I_{2(s)}$ C. Cu^{2+} D. 'Ag^(+)'

Answer: D

Watch Video Solution

3. E^{θ} values of some redox couples are given below. On the basis of these values choose the correct option.

$$E^{ heta}$$
 values: $Brt_2\,/\,Br^-\,=\,+\,1.90$
 $Ag^{\,+}\,/\,Ag(s)\,=\,+\,0.80$
 $Cu^{2\,+}\,/\,Cu(s)\,=\,+\,0.34,\,I_2(s)\,/\,I^{\,-}\,=\,+\,0.54$

A. Cu will reduce $Br^{\,-}$

B. Cu will reduce Ag

C. Cu will reduce I^{-}

D. Cu will reduce Br_2

Answer: D

Watch Video Solution

4. Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E° values : $Fe^{3+}/Fe^{2+} = +0.77, I_2/I^- = +0.54V$ $Cu^{2+}/Cu = +0.34V, Ag^+/Ag = +0.80V$

A. $Fe^{3\,+}$ and $I^{\,-}$

B. Ag^+ and Cu

C. $Fe^{3\,+}$ and Cu

D. Ag and Fe^{3+}

Answer: D

5. Thiosulphate reacts differently with iodine and bromine in the reactions given below :

 $egin{aligned} S_2O_3^{2-} + I_2 &
ightarrow S_4O_6^{2-} + 2I^- \ S_2O_3^{2-} + 2Br_2 + 5H_2O &
ightarrow 2SO_4^{2-} + 2Br^- + 10H^+ \end{aligned}$

Which of the following statements justifies the above dual behaviour of thiosulphate ?

A. Bromine is a stronger oxidant than iodine.

B. Bromine is a weaker oxidant than iodine.

C. Thiosulphate undergoes oxidation by bromine and reduction by

iodine in these reactions.

D. Bromine undergoes oxidation and iodine undergoes reduction in

these reactions.

Answer: A

Watch Video Solution

6. The oxidation number of an element in a compound is evaluated on the basis of certain rules. Which of the following rules is not correct in this respect ?

A. The oxidation number of hydrogen is always +1.

- B. The algebraic sum of all the oxidation numbers in a compound is zero.
- C. An element in the free or the uncombined state bears oxidation number zero.
- D. In all its compounds, the oxidation number of fluorine is -1.

Answer: A

7. In which of the following compounds, an elements exhibits two different oxidation states?

A. NH_2OH

B. NH_4NO_3

 $\mathsf{C}.\,N_2H_4$

D. N_3H

Answer: B

Watch Video Solution

8. Which of the following arrangements represent increaseing oxidation number of the central atom?

A.
$$CrO_{2}^{-}$$
, ClO_{3}^{-} , CrO_{4}^{2-} , MnO_{4}^{-}
B. ClO_{3}^{-} , CrO_{4}^{2-} , MnO_{4}^{-} , CrO_{2}^{-}
C. CrO_{2}^{-} , ClO_{3}^{-} , MNO_{4}^{-} , CrO_{4}^{2-}

D.
$$CrO_4^{2-}, MnO_4^{-}, CrO_2^{-}, ClO_3^{-}$$

Answer: A

9. The largest oxidation number exhibited by an element depends on its outer eletronic configuration. With which of the following outer electronic configurations the element will exhibit largest oxidation number ?

A. $3d^{1}4s^{2}$ B. $3d^{3}4s^{2}$ C. $3d^{5}4s^{1}$

D. $3d^54s^2$

Answer: D

10. Identify the disproportionation reaction.

A.
$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

B. $CH_4 + 4Cl_2 \rightarrow CCl_4 + 4HCl$
C. $2F_2 + 2OH^- \rightarrow 2F^- + OF_2 + H_2O$
D. $2NO_2 + 2OH^- \rightarrow NO_2^- + NO_3 + H_2O$

Answer: D

Watch Video Solution

11. Which of the following elements does not show disproportionation tendency?

A. Cl

B.Br

C. F

D. I

Answer: C

Watch Video Solution

Assertion And Reason

1. Assertion : Conversion of potassium ferrocyanide to potassium ferricyanide is an oxidation process.

Reason : Oxidation is the addition of oxygen/electronegative element to a substance or removal of hydrogen/electropositive element from a substance.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

2. Justify that the reaction

 $2Cu_2O_s + Cu_2S(s) \to 6Cu(s) + SO_2(g)$ a redox reaction. Identify the species oxidised / reduced. Which acts as an oxidanat and which acts as a reductant?

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

3. Assertion : HNO_2 can act both as a reducing agent and an oxidising agent.

Reason : In HNO_2 , oxidation state of nitrogen is +3 which can change from -3 to +5.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

4. Assertion : Decomposition of potassium chlorate is an example of redox reaction .

Reason : There is no change in the oxidation number of potassium in decomposition of potassium chlorate.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: B

5. Assertion : Displacement reactions of chlorine, bromine and iodine using fluorine are not generally carried out in aqueous solution.
Reason : Fluorine being highly reactive attacks water and displaces the oxygen of water.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

6. Assertion : Decomposition of hydrogen peroxide is an example of disproportionation reaction.

Reason : In a disproportionation reaction, an element in one oxidation state is simultaneously oxidised and reduced .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

7. Assertion : CO_4^- does not show disproportionation reaction.

Reason : In ClO_4^- , chlorine is present in its highest oxidation state .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

Watch Video Solution

8. Assertion : All halogens undergo disproportionation reaction in alkaline medium.

Reason : All halogens exhibit variable oxidation states.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: D

Watch Video Solution

9. Assertion : The only way to get F_2 form F^- is to oxidise electrolytically. Reason : The recovery of halogens from their halides requires an oxidation process.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

Watch Video Solution

10. Assertion: Oxygen atom in both O_2 and O_3 has oxidation number zero.

Reason: In F_2O , oxidation number of O is +2.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Watch Video Solution

11. Assertion : In the species, $S_4 O_6^{2-}$ each of the two extreme sulphurs exhibits oxidation state of +5 and the two middle sulphurs as zero. Reason : The average of four oxidation numbers of sulphurs of the $S_4 O_6^{2-}$ is 2.5.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

12. Assertion : In titrations involving potassium permanganate no indicator is used.

Reason : MnO_4^- acts as the self-indicator.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

13. Assertion : The transfer of electrons from zinc to copper takes place through metal wire connecting the two rods.

Reason : Electricity from solution in one beaker to other flows by migration of ions through the salt bridge.

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

14. Assertion : Insert electrolytes like KCl, KNO_3 are used in salt bridge. Reason : Salt bridge provides an electric contact between the two solutions without allowing them to mix with each other.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: A

Watch Video Solution

15. Assertion : A metal having negative reduction potential when dipped

in the solution of its own ions has a tendency to pass into solution .

Reason : Metals undergo reduction .

A. If both assertion and reason are true and reason is the correct

explanation of assertion.

B. If both assertion and reason are true but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C