# びdoubtnut 

## PHYSICS

## BOOKS - A2Z PHYSICS (HINGLISH)

## GEOMETRICAL OPTICS

## Reflection Through Plain And Spherical Mirror

1. A clock hung on a wall has marks instead of
numerals in its dial. On the adjoining wall,
there is a plane mirror and the image of the
clock in the mirror indicates the time 4.20 .

Then the time on the clock is
A. 7.40
B. 4.20
C. 2.40
D. 4.07

Answer: A
( Watch Video Solution
2. An object is approaching a plane mirror at $10 \mathrm{cms}^{-1}$. A stationary observer sees the image. At what speed will the image approach the stationary observer?
A. $10 \mathrm{cms}^{-1}$
B. $5 \mathrm{cms}^{-1}$
C. $20 \mathrm{cms}^{-1}$
D. $15 \mathrm{cms}^{-1}$

Answer: A
3. What should be the angle between two plane mirrors so that whatever be the angle of incidence, the incident ray and the reflected ray from the two mirrors be parallel to each other
A. $60^{\circ}$
B. $90^{\circ}$
C. $120^{\circ}$
D. $175^{\circ}$

Answer: B

## D Watch Video Solution

4. A plane mirror is approaching you at a speed of $10 \mathrm{~cm} / \mathrm{sec}$. You can see your image in
it. At what speed will your image approach you?
A. $10 \mathrm{~cm} / \mathrm{sec}$
B. $5 \mathrm{~cm} / \mathrm{sec}$
C. $20 \mathrm{~cm} / \mathrm{sec}$

D. $15 \mathrm{~cm} / \mathrm{sec}$

## Answer: C

## D Watch Video Solution

5. A ray of light is incident normally on a plane
mirror. The angle of reflection will be
A. $0^{\circ}$
B. $90^{\circ}$
C. Will not be reflected

## D. None of these

Answer: A

## D Watch Video Solution

6. A plane mirror makes an angle of $30^{\circ}$ with
horizontal. If a vertical ray strikes mirror, find
the angle between mirror and reflected ray
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $90^{\circ}$

## Answer: C

## - Watch Video Solution

7. If an observer is walking away from the plane mirror with $6 \mathrm{~m} / \mathrm{sec}$. Then the velocity of the image with respect to observer will be
A. $6 \mathrm{~m} / \mathrm{sec}$
B. $-6 \mathrm{~m} / \mathrm{sec}$
C. $12 \mathrm{~m} / \mathrm{sec}$
D. $3 \mathrm{~m} / \mathrm{sec}$

## Answer: C

## - Watch Video Solution

8. A small object is placed 10 cm in front of a plane mirror. If you stand behind the object 30 cm from the mirror and look at its image, the distance focused for your eye will be
A. 60 cm
B. 20 cm
C. 40 cm
D. 80 cm

## Answer: C

## D Watch Video Solution

9. An object is at a distance of $0.5 m$ in front of
a plane mirror. Distance between the object and image is
A. $0.5 m$
B. $1 m$
C. $0.25 m$
D. 1.5 m

Answer: B

## D Watch Video Solution

10. A man runs towards a mirror at a speed
$15 \mathrm{~m} / \mathrm{s}$. The speed of the image relative to
the man is
A. $15 m s^{-1}$
B. $30 m s^{-1}$
C. $35 m s^{-1}$
D. $20 m s^{-1}$

Answer: B

D Watch Video Solution
11. The light reflected by a plane mirror may form a real image
A. If the rays incident on the mirror are
diverging
B. If the rays incident on the mirror are
converging
C. If the object is placed very close to the
mirror
D. Under no circumstances

Answer: B
12. A ray of light is incident at $50^{\circ}$ on the middle of one of the two mirrors arranged at an angle of $60^{\circ}$ between them. The ray then
touches the second mirror, get reflected back
to the first mirror, making an angle of incidence of
A. $50^{\circ}$
B. $60^{\circ}$
C. $70^{\circ}$
D. $80^{\circ}$

## Answer: C

## - Watch Video Solution

13. All of the following statements are correct except
A. The magnification produced by a convex mirror is always less than one
B. A virtual, erect, same-sized image can be obtained using a plane mirror
C. A virtual, erect, magnified image can be
formed using a concave mirror

D. A real, inverted, same-sized image can be

formed using a convex mirror

## Answer: D

## D Watch Video Solution

14. A person sees his virtual image by holding a mirror very close to the face. When he moves
the mirror away from his face, the image
becomes inverted. What type of mirror he is using ?
A. Plane mirror
B. Convex mirror
C. Concave mirror
D. None of these

Answer: C
( Watch Video Solution
15. A convex mirror of focal length f produced
an image $(1 / n)^{t h}$ of the size of the object. The distance of the object from the mirror is
A. $(n-1) f$
B. $\left(\frac{n-1}{n}\right) f$
C. $\left(\frac{n+}{n}\right) f$
D. $(n+1) f$

Answer: A

D Watch Video Solution
16. In a concave mirror experiment, an object is
placed at a distance $x_{1}$ from the focus and the image is formed at a distance $x_{2}$ from the focus. The focal length of the mirror would be
A. $x_{1} x_{2}$
B. $\sqrt{x_{1} x_{2}}$
C. $\frac{x_{1}+x_{2}}{2}$
D. $\sqrt{\frac{x_{1}}{x_{2}}}$

Answer: B
17. The relation between the linear magnification $m$, the object distance $u$ and the focal length $f$ is

$$
\begin{aligned}
& \text { A. } m=\frac{f-u}{f} \\
& \text { В. } m=\frac{f}{m-u} \\
& \text { C. } m=\frac{f+u}{f} \\
& \text { D. } m=\frac{f}{f+u}
\end{aligned}
$$

Answer: B
18. Radius of curvature of concave mirror is

40 cm and the size of image is twice as that of object, then the object distance is
A. 60 cm
B. 20 cm
C. 40 cm
D. 30 cm

## - Watch Video Solution

19. A convex mirror has a focal length $f$. A real object is placed at a distance $f$ in front of it
from the pole produces an image at
A. Infinity
B. $f$
C. $f / 2$
D. $2 f$
20. An object 1 cm tall is placed 4 cm in front of a mirror. In order to produce an upright image of 3 cm height one needs a
A. Convex mirror or radius of curvature

12 cm
B. Concave mirror of radius of curvature

12 cm
C. Concave mirror of radius of curvature 4 cm
D. Plane mirror of height 12 cm

Answer: B

## D Watch Video Solution

21. A point object is placed at a distance of 10 cm and its real image is formed at a distance of 20 cm from a concave mirror. If the object is
moved by 0.1 cm towards the mirror. The image will shift by about
A. 0.4 cm away from the mirror
B. 0.4 cm towards the mirror
C. 0.8 cm away from the mirror
D. 0.8 cm towards the mirror

Answer: A

- Watch Video Solution

22. Under which of the following conditions
will a convex mirror of focal length $f$ produce
an image that is erect, diminished and virtual ?
A. Only when $2 f>u>f$
B. Only when $u=f$
C. Only when $u<f$
D. Always

Answer: D

- Watch Video Solution

23. The focal length of a convex mirror is 20 cm
its radius of curvature will be
A. 10 cm
B. 20 cm
C. 30 cm
D. 40 cm

Answer: D
( Watch Video Solution
24. A concave mirror of focal length 15 cm forms an image having twice the linear dimensions of the object. The position of the object when the image is virtual will be
A. 22.5 cm
B. -7.5 cm
C. 30 cm
D. 45 cm

Answer: B
25. A point object is placed at distance of 30 cm from a convex mirror of local length 30 cm .

The image will form at
A. Infinity
B. Focus
C. Pole
D. 15 cm behind the mirror

## Answer: D

26. An object 2.5 cm high is placed at a distance of 10 cm from a concave mirror of radius of curvature 30 cm . The size of the image is
A. 9.2 cm
B. 10.5 cm
C. 5.6 cm
D. 7.5 cm
27. Image formed by a concave mirror of focal
length 6 cm , is 3 times of the object, then the distance of object from mirror is
A. -4 cm
B. 8 cm
C. 6 cm
D. 12 cm
28. A concave mirror has a focal length 20 cm .

The distance between the two positions of the
object for which the image size is double of the object size is
A. 20 cm
B. 40 cm
C. 30 cm
D. 60 cm

Answer: A

## - Watch Video Solution

29. With a concave mirror, an object is placed
at a distance $x_{1}$ from the principal focus, on
the principal axis. The image is formed at a distance $x_{2}$ from the principal focus. The focal
length of the mirror is
A. $x_{1} x_{2}$
B. $\frac{x_{1}+x_{2}}{2}$
C. $\sqrt{\frac{x_{1}}{x_{2}}}$
D. $\sqrt{x_{1} x_{2}}$

## Answer: D

## D Watch Video Solution

30. A convex mirror has a focal length of 20 cm . A real object is placed at a distance of 20 cm in front of the mirror form the pole. The mirror produces the image at
A. infinity
B. 20 cm
C. 40 cm
D. 10 cm

## Answer: D

## D Watch Video Solution

31. An object 3 cm tall is placed on the principal axis of a concave mirrorr of focal
length 9 cm at a distance of 12 cm form is.

What is the nature and size of the image ?
A. real, 9 cm
B. virtual, 9 cm
C. real, 1 cm
D. virtual, 1 cm

Answer: A
( Watch Video Solution
32. An object 5 cm tall is placed 10 cm form a convex mirror of radius of curvature 30 cm .

What is the nature and size of the image ?
A. real, 3 cm
B. virtual, 7.5 cm
C. virtual, 3 cm
D. real, 7.5 cm

Answer: C

- Watch Video Solution

33. A spherical mirror forms an image of magnification 3. The object distance, if focal length of mirror is 24 cm , may be
A. $32 \mathrm{~cm}, 24 \mathrm{~cm}$
B. $32 \mathrm{~cm}, 16 \mathrm{~cm}$
C. 32 cm only
D. 16 cm only

Answer: B

D Watch Video Solution
34. A cube of side $2 m$ is placed in front of a concave mirror of focal length $1 m$ with its face
$A$ at a distance of $3 m$ and face $B$ at a distance of $5 m$ form the mirror, The distance between the images of face $A$ and $B$ and height of images of $A$ and $B$ are respectively.

A. $1 m, 0.5,0.25 m$
B. $0.5 m, 1 m, 0.25 m$
C. $0.5 m, 0.25 m, 1 n$
D. $0.25 m, 1 m, 0.5 m$

## Answer: D

## D Watch Video Solution

35. An object is placed at a distance $2 f$ from a
concave mirror of focal length $f$. Light reflected from the mirror falls on a plane mirror. The distance of the plane mirror from
the concave mirror equals $f$. The distance of
the final image (due to reflection at both concave and plane mirror) from the concave mirror is
A. $f$
B. $f / 2$
C. $2 f$
D. zero

## Answer: D

36. A convergent beam of light converges to a point 20 cm behind the convex mirror on the principal axis. An inverted image of the same size is formed coincident with the virtual object. Then, the focal length of the convex mirror is
A. 20 cm
B. 10 cm
C. 40 cm
D. 30 cm

Answer: B

## - Watch Video Solution

37. For a concave mirror, if real image is formed the graph between $\frac{1}{u}$ and $\frac{1}{v}$ is of the form



Answer: A

## D Watch Video Solution

38. The graph between $u$ and $v$ for a convex mirrorr is
(a)

A.
(b)

(c)
C.
D.
(d)


## Answer: A

## - Watch Video Solution

39. For a concave mirrorr, if virtual image is formed, the graph between $m$ and $u$ is of the form
A.
$\underbrace{\text { (a) }}_{u \rightarrow} \stackrel{\uparrow}{m}$
B.
(b)

C.
(c)

D.


Answer: B

## D Watch Video Solution

40. A mark is made on the bottom of a vessel
and over this mark, a glass slab to thickness
3.5 cm and refractive index $\frac{7}{4}$ is placed. Now water (refractive index, $\frac{4}{3}$ ) is poured into the
vessel so that the surface of water is 8 cm
above the upper surface of the slab. Looking down of normally through the water, the
apparent depth of the mark below the surface of water will be :
A. 6.33 cm
B. 7.5 cm
C. 8 cm
D. 10 cm

Answer: C
( Watch Video Solution
41. How much water should be filled in a container of height 21 cm , so that it appears
half filled to the observer when viewed from
the top of the container $(\mu=4 / 3)$.
A. 8.0 cm
B. 10.5 cm
C. 12.0 cm
D. None of the above

## Answer: C

42. A beam of light is converging towards a point $I$ on a screen. A plane glass plate whose thickness in the direction of the beam $=t$, refractive index $=\mu$, is introduced in the path of the beam. The convergence point is shifted by

$$
\begin{aligned}
& \text { A. } t\left(1-\frac{1}{\mu}\right) \text { away } \\
& \text { B. } t\left(1+\frac{1}{\mu}\right) \text { away } \\
& \text { C. } t\left(1-\frac{1}{\mu}\right) \text { nearer }
\end{aligned}
$$

D. $t\left(1+\frac{1}{\mu}\right)$ nearer

Answer: A

## D Watch Video Solution

43. The image of point $P$ when viewed from top of the slabs will be

A. 2.0 cm above $P$
B. 1.5 cm above $P$
C. 2.0 cm below $P$
D. 1 cm above $P$

## Answer: D

## D Watch Video Solution

44. The length of the optical path of two media in contact of length $d_{1}$ and $d_{2}$ of refreactive indices $\mu_{1}$ and $\mu_{2}$ respectively, is
A. $\mu_{1} d_{1}+\mu_{2} d_{2}$
B. $\mu_{1} d_{2}+\mu_{2} d_{1}$
C. $\frac{d_{1} d_{2}}{\mu_{1} \mu_{2}}$
D. $\frac{d_{1}+d_{2}}{\mu_{1} \mu_{2}}$

## Answer: A

## D Watch Video Solution

45. When light travels from air to water and from water to glass, again from glass to $\mathrm{CO}_{2}$ gas and finally through air. The relation between their refractive indices will be given by

$$
\begin{aligned}
& \text { A. } \cdot{ }_{a} n_{w} \times{ }_{\cdot w} n_{g i} \times{ }_{\cdot g i} n_{g a s} \times{ }_{\cdot g a s} n_{a}=1 \\
& \text { B. } \cdot{ }_{a} n_{w} \times{ }_{\cdot w} n_{g i} \times{ }_{\cdot g a s} n_{g i} \times{ }_{\cdot g i} n_{a}=1
\end{aligned}
$$

C. ${ }_{\cdot a} n_{w} \times{ }_{\cdot w} n_{g i} \times{ }_{\cdot g i} n_{g a s}=1$
D. There is no such relation

## Answer: A

## D Watch Video Solution

46. A mark at the bottom of a liquid appears to rise by 0.1 m . The depth of the liquid is 1 m .

The refractive index of the liquid is
A. 1.33
B. $\frac{9}{10}$
C. $\frac{10}{9}$
D. 1.5

## Answer: C

## - Watch Video Solution

47. If $\hat{i}$ denotes a unit vector along incident
light ray, $\hat{r} a$ unit vector along refracted ray into a medium of refraction index $\mu$ and $\widehat{n}$ unit vector normal to boundary of medium
directed towards incident medium, then law of

## refraction is

A. $\hat{i} \cdot \widehat{n}=\mu(\hat{r} \cdot \widehat{n})$
B. $\hat{i} \times \widehat{n}=\mu(\widehat{n} \times \hat{r})$
C. $\hat{i} \times \widehat{n}=\mu(\hat{r} \times \widehat{n})$
D. $\mu(\hat{r} \times \widehat{n})=\hat{r} \times \widehat{n}$

Answer: C
( Watch Video Solution
48. Each quarter of a vessel of depth $H$ is filled
with liquids of the refractive indices $n_{1}, n_{2}, n_{3}$
and $n_{4}$ from the bottom respectively. The apparent depth of the vessel when looked normally is

$$
\begin{aligned}
& \text { A. } \frac{H\left(n_{1}+n_{2}+n_{3}+n_{4}\right)}{4} \\
& \text { B. } \frac{H\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}+\frac{1}{n_{4}}\right)}{4} \\
& \text { C. } \frac{\left(n_{1}+n_{2}+n_{3}+n_{4}\right)}{4 H} \\
& \text { D. } \frac{h\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}+\frac{1}{n_{4}}\right)}{2}
\end{aligned}
$$

Answer: B

## - Watch Video Solution

49. Refractive index of air is 1.0003 . The correct thickness of air column which will have one more wavelength of yellow light ( $6000 \AA$ ) than in the same thickness in vacuum is
A. $2 m m$
B. 2 cm
C. $2 m$

D. 2 km

## Answer: A

## D Watch Video Solution

50. A glass slab of thickness 3 cm and refractive index $3 / 2$ is placed on ink mark on a piece of paper. For a person looking at the mark at a distance 5.0 cm above it, the distance of the mark will appear to be A. 3.0 cm
B. 4.0 cm
C. 4.5 cm
D. 5.0 cm

Answer: B

D Watch Video Solution
51. A fish at a depth of 12 cm in water is viewed by an observer on the bank of a lake. To what height the images of the fish is raised ?
A. 9 cm
B. 12 cm
C. 3.8 cm
D. 3 cm

Answer: D

- Watch Video Solution


52. 

A ray of light from a denser medium strike a rarer medium at an angle of incidence I (see

Fig). The reflected and refracted rays make as angle of 90degrees with each other. The angles of reflection and refraction are $r$ and $r$ The critical angle is

$$
\text { A. } \sin ^{-1}(\sin r)
$$

B. $\sin ^{-1}\left(\tan r^{\prime}\right)$
C. $\sin ^{-1}(\tan i)$
D. $\tan ^{-1}(\sin i)$

## Answer: C

## D Watch Video Solution

53. A diver in a swimming poole wants to signal his distress to a person lying on the edge of the pool by flashing his water proof flash light
A. He must direct the beam vertically upwards
B. He has to direct the beam horizontally
C. He has to direct the beam at an angle to
the vertical which is slightly less than
the cirtical angle of incidence for total
internal reflection.
D. He has to direct the beam at an angle to
the vertical which is slightly more than
the critical angle of incidence for the total internal reflection.

## Answer: C

## D Watch Video Solution

54. A fish is a little away below the surface of a
lake. If the critical angle is $49^{\circ}$, then the fish could see things above the water surface with
in an angular range of $\theta^{\circ}$ where

A. $\theta=49^{\circ}$
B. $\theta=90^{\circ}$
C. $\theta=90^{\circ}$
D. $\theta=24 \frac{1^{\circ}}{2}$

Answer: C
55. For total internal reflection to take place, the angle of incidence $i$ and the refractive index $\mu$ of the medium must satisfy the inequality

$$
\begin{aligned}
& \text { A. } \frac{1}{\sin i}<\mu \\
& \text { B. } \frac{1}{\sin i}>\mu \\
& \text { C. } \sin i<\mu \\
& \text { D. } \sin i>\mu
\end{aligned}
$$

56. With respect to air critical angle in a medium for light of red colour $\left[\lambda_{1}\right]$ is $\theta$. Other
facts remaining same, critical angle for light of yellow colour [ $\lambda_{2}$ ] will be
A. $\theta$
B. More than $\theta$
C. Less than $\theta$
D. $\frac{\theta \lambda_{1}}{\lambda_{2}}$

## Answer: C

## - Watch Video Solution

57. The velocity of light in a medium is half its
velocity in air. If ray of light emerges from such
a medium into air, the angle of incidence, at which it will be totally internally reflected, is
A. $15^{\circ}$
B. $30^{\circ}$
C. $45^{\circ}$

## D. $60^{\circ}$

## Answer: B

## D Watch Video Solution

58. A light ray from air is incident (as shown in
figure ) at one end of a glass fiber ( refractive index $\mu=1.5$ ) making an incidence angle of $60^{\circ}$ on the lateral surface, so that it undergoes a total internal reflection. How much time would it take to traverse the
straight fiber of length 1 km ?

A. $3.33 m$ sec
B. 6.67 m sec
C. 5.77 m sec
D. $3.85 \mu \mathrm{sec}$

Answer: D
59. Light wave enters from medium 1 to medium 2. Its velocity in $2^{\text {nd }}$ medium is double from $1^{s t}$. For total internal reflection, the angle of incidence must be greater than
A. $30^{\circ}$
B. $60^{\circ}$
C. $45^{\circ}$
D. $90^{\circ}$

## - Watch Video Solution

60. Glass has refractive index $\mu$ with respect to
air and the critical angle for a ray of light going from glass to air is $\theta$. If a ray of light is incident from air on the glass with angle of incidence $\theta$, the corresponding angle of refraction is

$$
\text { A. } \sin ^{-1}\left(\frac{1}{\sqrt{\mu}}\right)
$$

B. $90^{\circ}$
C. $\sin ^{-1}\left(\frac{1}{\mu^{2}}\right)$
D. $\sin ^{-1}\left(\frac{1}{\mu}\right)$

## Answer: C

## D Watch Video Solution

61. Material $A$ has critical angle $i_{A}$, and material $B$ has critical angle $i_{B}\left(i_{B}>i_{A}\right)$.

Then which of the following is true
(i) Light can be totally internally reflected when it passes from $B$ to $A$
(ii) Light can be totally internally relected
when it passes from $A$ to $B$
(iii) Critical angle for total internal reflection is
$i_{B}-i_{A}$
(iv) Critical angle between $A$ and $B$ is $\sin ^{-1}\left(\frac{\sin i_{A}}{\sin i_{B}}\right)$
A. (i) and (iii)
B. (i) and (iv)
C. (ii) and (iii)
D. (ii) and (iv)

Answer: D
62. In the figure shown, for an angle of incidence $45^{\circ}$, at the top surface, what is the minimum refractive index needed for the internal reflection at vertical face ?

A. $\frac{\sqrt{2}+1}{2}$
B. $\sqrt{\frac{3}{2}}$
C. $\sqrt{\frac{1}{2}}$
D. $\sqrt{2}+1$

Answer: B

## D Watch Video Solution

63. If light travels a distance $x$ in $t_{1}$ sec in air and $10 x$ distance in $t_{2}$ sec in a medium, the critical angle of the medium will be
A. $\tan ^{-1}\left(\frac{t_{1}}{t_{2}}\right)$
B. $\sin ^{-1}\left(\frac{t_{1}}{t_{2}}\right)$
C. $\sin ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right)$
D. $\tan ^{-1}\left(\frac{10 t_{1}}{t_{2}}\right)$

Answer: C

## D Watch Video Solution

64. A ray of light passes from glass having a refractive index of 1.6 , to air. The angle of
incidence for which the angle of refraction is
twice the angle of incidence is

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{4}{5}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{3}{5}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{5}{8}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{2}{5}\right)
\end{aligned}
$$

Answer: B

## D Watch Video Solution

65. A ray of light passes through four transparent media with refractive indices $\mu_{1}, \mu_{2}$
, $\mu_{3}$ and $\mu_{4}$ as shown in the figure. The surfaces of all media are parallel. If the emergent ray
$C D$ is parallel to the incident ray $A B$, we must have

A. $\mu_{1}=\mu_{2}$

$$
\begin{aligned}
& \text { B. } \mu_{2}=\mu_{3} \\
& \text { C. } \mu_{3}=\mu_{4} \\
& \text { D. } \mu_{4}=\mu_{1}
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

66. A beam of white light is incident on glass
air interface from glass to air such that green
light just suffers total internal reflection. The
colors of the light which will come out to air are
A. Yellow, orange, red
B. Violet, indigo, blue
C. All colours
D. All colours except green

Answer: A
( Watch Video Solution
67. A ray of light travels from a medium of refractive index $\mu$ to air. Its angle of incidence in the medium is $i$, measured from the normal to the boundary, and its angle of deviation is
$\delta . \delta$ is plotted against $i$. Which of the following best represents the resulting curve ?

(c)
$\delta_{\delta} \delta_{2}$
D.
(d) $\delta \uparrow_{\delta_{2}}$

Answer: A

## D Watch Video Solution

68. The graph between sine of angle of refraction $(\sin r)$ in medium 2 and sine of
angle of incidence $(\sin i)$ in medium indicates
that $\left(\tan 36^{\circ} \approx \frac{3}{4}\right)$
A. Total internal reflection can take place
B. Total internal reflection cannot take place
C. Any of (a) and (b)
D. Data is incomplete

## Answer: B

1. A point object $O$ is placed in front of a glass
rod having spherical end of radius of curvature 30 cm . The image would be formed at

A. 30 cm left
B. Infinity
C. 1 cm to the right

## D. 18 cm to the left

## Answer: A

## D Watch Video Solution

2. Refraction takes place at a concave spherical
boundary separating glass air medium. For the image to be real, the object distance $\left(\mu_{g}=3 / 2\right)$
A. should be greater than three times the radius of curvature of refracting surface B. should be greater than two times the radius of curvature of the refracting surface
C. should be greater than the radius of curvature of refracting surface
D. is independent of the radius of
curvature of the refracting surface

## - Watch Video Solution

3. A plastic hemisphere has a radius of curvature of 8 cm and an index of refraction of
1.6. On the axis halfway between the plane surface and the spherical one ( 4 cm from each)
is a small object $O$.
The distance between the two images when viewed along the axis from the two sides of
the hemisphere is approximately

A. 1.0 cm
B. 1.5 cm
C. 3.75 cm
D. 2.5 cm

## Answer: D

## D Watch Video Solution

4. A point object is placed at the centre of a
glass sphere of radius 6 cm and refractive index 1.5. The distance of virtual image from the surface is
A. 2 cm
B. 4 cm
C. 6 cm

D. 12 cm

## Answer: C

## D Watch Video Solution

5. A spherical surface of radius of curvature $R$ separates air (refractive index 1.0) from glass
(refractive index 1.5). The centre of curvature is in the glass. A point object $P$ placed in air is found to have a real image $Q$ in the glass. The
line $P Q$ cuts the surface at a point $O$, and $P O=O Q$. The distance $P O$
A. $5 R$
B. $3 R$
C. $2 R$
D. $1.5 R$

Answer: A
( Watch Video Solution
6. A ray of light falls on a transparent sphere with center at $C$ as shown in Figure. The ray emerges from the sphere parallel to line $A B$. Find the refractive index of the sphere.

A. $\sqrt{2}$
B. $\sqrt{3}$
C. $3 / 2$
D. $1 / 2$

Answer: B

## - Watch Video Solution

7. A ray of light in incident on a glass sphere of refractive index $3 / 2$. What should be the angle of incidence so that the ray which enters the sphere does not come out of the sphere?
A. $\tan ^{-1}(2 / 3)$
B. $60^{\circ}$
C. $90^{\circ}$
D. $30^{\circ}$

## Answer: C

## D Watch Video Solution

8. A convex lens of focal length $f$ is placed somewhere in between an object and a screen.

The distance between the object and the
screen is $x$. If the numerical value of the magnification produced by the lens is $m$, then the focal Inegth oof the lens is .

$$
\begin{aligned}
& \text { A. } \frac{m x}{(m+1)^{2}} \\
& \text { B. } \frac{m x}{(m-1)^{2}} \\
& \text { C. } \frac{(m+1)^{2}}{m} x \\
& \text { D. } \frac{(m-1)^{2}}{m} x
\end{aligned}
$$

## Answer: A

## D Watch Video Solution

9. A thin lens focal length $f_{1}$ and its aperture
has diameter $d$. It forms an image of intensity
I. Now the central part of the aperture up to diameter $\frac{d}{2}$ is blocked by an opaque paper.

The focal length and image intensity will change to
A. $\frac{f}{2}$ and $\frac{I}{2}$
B. $f$ and $\frac{I}{4}$
C. $\frac{3 f}{4}$ and $\frac{I}{2}$
D. $f$ and $\frac{3 I}{4}$

## Answer: D

## D Watch Video Solution

10. A lens of power +2 dioptres is placed in contact with a lens of power -1 dioptre. The combination will behave like
A. A convergent lens of focal length 50 cm
B. A divergent lens of focal length 100 cm
C. A convergent lens of focal length 100 cm
D. A convergent lens of focal length 200 cm

## D Watch Video Solution

11. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25
cm . The power of the combination is
A. $-1.5 D$
B. $-6.5 D$
C. $+6.5 D$
D. $+6.67 D$

Answer: A

## D Watch Video Solution

12. Two lenses are placed in contact with each
other and the focal length of combination is

80 cm . If the focal length of one is 20 cm , then
the power of the other will be
A. $1.66 D$
B. 4.00 D
C. -1.00 D

## D. -3.75 D

## Answer: D

## D Watch Video Solution

13. Two similar planoconvex lenses are combined together in three different ways as
shown in the adjoining figure. The ratio of the
focal lengths in three cases will be

A. 2:2:1
B. 1:1:1
C. 1:2:2
D. 2:1:1

Answer: B

- Watch Video Solution

14. Two convex lenses of powers $4 D$ and $6 D$ are separated by a distance of $\frac{1}{6} m$. The power of the optical system so formed is

A. $-6 D$
B. $+6 D$
C. 10 D
D. $2 D$

Answer: B

## - Watch Video Solution

15. The slit of a collimator is illuminated by a source as shown in the adjoining figures. The distance between the slit $S$ and the collimating lengs $L$ is equal to the focal length
of the lens. The correct direction of the emergent beam will be as shown in figure.

A. 1
B. 3
C. 2
D. None of the figures.

Answer: C
16. A converging lens is used to form an image on a screen. When the upper half of the lens is covered by an opaque screen
A. Half the image will disappear
B. Complete image will be formed of same intensity
C. Half image will be formed of same intensity
D. Complete image will be formed of decreased intensity.

## Answer: D

## D Watch Video Solution

17. The ray diagram could be correct

A. If $n_{1}=n_{2}=n_{3}$
B. If $n_{1}=n_{2}$ and $n_{1}<n_{g}$
C. If $n_{1}=n_{2}$ and $n_{1}>n_{g}$
D. Under no circumstances

## Answer: C

D Watch Video Solution
18. The relation between $n_{1}$ and $n_{2}$, if behavior of light rays is as shown in figure is

A. $n_{1} \gg n_{2}$
B. $n_{2}>n_{1}$
C. $n_{1}>n_{2}$
D. $n_{1}=n_{2}$

Answer: B
19. The minimum distance between an object and its real image formed by a convex lens is
A. $1.5 f$
B. $2 f$
C. $2.5 f$
D. $4 f$

Answer: D
20. An object is placed at a distance of $f / 2$
from a convex lens. The image will be
A. At one of the foci, virtual and double its
size
B. At $3 f / 2$, real and inverted
C. At $2 f$, virtual and erect
D. None of these

Answer: A
21. A biconvex lens forms a real image of an object placed perpendicular to its principal axis. Suppose the radii of curvature of the lens tend to infinity. Then the image would
A. Disappear
B. Remain as real image still
C. Be virtual and of the same size as the object
D. Suffer from aberrations

## Answer: C

## D Watch Video Solution

22. A lens is placed between a source of light and a wall. It forms images of area $A_{1}$ and $A_{2}$ on the wall for its two different positions. The area of the source of light is
A. $\frac{A_{1}+A_{2}}{2}$
B. $\left[\frac{1}{A_{1}}+\frac{1}{A_{2}}\right]^{-1}$
C. $\sqrt{A_{1} A_{2}}$

$$
\text { D. }\left[\frac{\sqrt{A_{1}}+\sqrt{A_{2}}}{2}\right]^{2}
$$

## Answer: C

## D Watch Video Solution

23. A combination of two thin lenses with focal
lengths $f_{1}$ and $f_{2}$ respectively forms and image of distant object at distance 60 cm when lenses are in contact. The position of
this image shifts by 30 cm towards the combination when two lenses are separated
by 10 cm . The corresponding values of $f_{1}$ and $f_{2}$ are
A. $30 \mathrm{~cm},-60 \mathrm{~cm}$
B. $20 \mathrm{~cm},-30 \mathrm{~cm}$
C. $15 \mathrm{~cm},-20 \mathrm{~cm}$
D. $12 \mathrm{~cm},-15 \mathrm{~cm}$

Answer: B

D Watch Video Solution

# 24. If the central portion of a convex lens is 

wrapped in black paper as shown in figure

A. No image will be formed by the remaining portion of the lens
B. The full image be formed but it will be less bright
C. The central portion of the image will be missing
D. There will be two images each produced
by one of the exposed portions of the
lens.

## - Watch Video Solution

25. A diminished image of an object is to be obtained on a screen 1.0 m from it. This can be achieved by appropriately placing
A. A convex mirrorr of suitable focal length
B.A concave mirrorr of suitable focal
length
C. A concave lens of suitable focal length
D. A convex lens of suitable focal length

less than $0.25 m$

## Answer: D

## D Watch Video Solution

26. In figure, an air lens of radius of curvature of each surface equal to 10 cm is cut into a cylinder of glass of refractive index 1.5. The focal length and the nature of lens are
A. 15 cm , concave
B. 15 cm , convex
C. $\infty$ neither concave nor convex
D. 0 , concave

Answer: A

D Watch Video Solution
27. A lens ( focal length 50 cm ) forms the image of a distant object which subtends an
angle of 2 milliradian at the lens. What is the size of the image ?
A. 5 mm
B. 1 mm
C. 0.5 mm
D. 0.1 mm

Answer: C
( Watch Video Solution
28. A convex lens of focal length 12 cm is made of glass of $\mu=\frac{3}{2}$. What will be its focal length when immersed in liquid of $\mu=\frac{5}{4}$ ?
A. 6 cm
B. 12 cm
C. 24 cm
D. 30 cm

Answer: D

D Watch Video Solution
29. A concave lens of glass, refractive index 1.5
has both surfaces of same radius of curvature
R. On immersion in a medium of refractive index 1.75 , it will behave as a
A. Convergent lens of focal length $3.5 R$
B. Convergent lens of focal length $3.0 R$
C. Divergent lens of focal length $3.5 R$
D. Divergent lens of focal length $3.0 R$

## Answer: A

30. A convex lens if in contact with concave
lens. The magnitude of the ratio of their focal
length is $\frac{2}{3}$. Their equivalent focal length is 30 cm . What are their individual focal lengths?
A. $-75,50$
B. $-10,15$
C. 75,50
D. $-15,10$

## Answer: D

## D Watch Video Solution

31. An equiconvex lens of glass of focal length
0.1 meter is cut along a plane perpendicular to principle axis into two equal parts. The ratio of focal length of new lenses forms is
A. $1: 1$
B. $1: 2$
C. 2:1
D. $2: \frac{1}{2}$

## Answer: A

## D Watch Video Solution

32. A thin lens made of a material of refractive
index $\mu_{0}$ has a focal length $f_{0}$ in air. Find the
focal length of this lens if it is immersed in a liquid of refractive index $\mu$.

$$
\text { A. }-\frac{f n^{\prime}(n-1)}{n^{\prime}-n}
$$

> B. $-\frac{f n^{\prime}(n-1)}{n\left(n^{\prime}-n\right)}$
> C. $-\frac{n^{\prime}(n-1)}{f\left(n^{\prime}-n\right)}$
> D. $\frac{f n^{\prime} n}{n-n^{\prime}}$

## Answer: A

## D Watch Video Solution

33. A thin made of glass of refractive index 1.5
has a front surface $+11 D$ power and back surface $-6 D$. If this lens is submerged in a
liquid of refractive index 1.6 , the resulting power of the lens is

A. $-0.5 D$<br>B. $+0.5 D$<br>C. $-0.625 D$<br>D. $+0.625 D$

Answer: C

## D Watch Video Solution

34. Let $f_{v}$ and $f_{r}$ are the focal lengths of a convex lens for violet and red lights respectively. If $F_{v}$ and $F_{r}$ are the focal lengths of a concave lens for violet and red light respectively, then
A. $f_{v}<f_{r}$ and $F_{v}>F_{r}$
B. $f_{v}<f_{r}$ and $F_{v}<F_{r}$
C. $f_{c}>f_{r}$ and $F_{v}>F_{r}$
D. $f_{v}>f_{r}$ and $F_{v}<F_{r}$

Answer: B

## - Watch Video Solution

35. A convex lens has a focal length $f$. It is cut
into two parts along the dotted line as shown
in figure. The focal length of each part will be
A. $\frac{f}{2}$
B. $f$
C. $\frac{3}{2} f$
D. $2 f$

## Answer: D

## D Watch Video Solution

36. A concave lens forms the image of an object such that the distance between the object and image is 10 cm and the
magnification produced is $1 / 4$. The focal length of the lens will be
A. 8.6 cm
B. 6.2 cm
C. 10 cm
D. 4.4 cm

Answer: D
( Watch Video Solution
37. An object has image thrice of its original size when kept at 8 cm and 16 cm from a convex lens. Focal length of the lens is

A. 8 cm

B. 16 cm
C. Between 8 cm and 16 cm
D. Less than 8 cm

Answer: C

D Watch Video Solution
38. A convex lens produces a real image $m$
times the size of the object. What will be the distance of the object from the lens ?

$$
\begin{aligned}
& \text { A. }\left(\frac{m+1}{m}\right) f \\
& \text { B. }(m-1) f \\
& \text { C. }\left(\frac{m-1}{m}\right) f \\
& \text { D. } \frac{m+1}{f}
\end{aligned}
$$

Answer: A

D Watch Video Solution
39. A convex lens is made up of three different materials as shown in the figure. For a point object placed on its axis, the number of images formed are


A. 1
B. 5
C. 4
D. 3

Answer: D
(D) Watch Video Solution
40. An object is placed 12 cm to the left of a converging lens of focal length 8 cm . Another converging lens of 6 cm focal length is placed at a distance of 30 cm to the right of the first lens. The second lens will produce
A. No image
B. A virtual enlarged image
C. A real enlarged image
D. A real smaller image

## Answer: C

## D Watch Video Solution

41. An equiconvex lens is cut into two halves
along $(i) X O X^{\prime}$ and $(i i) Y O Y^{\prime}$ as shown in
the figure. Let $f, f^{\prime} f^{\prime \prime}$ be the focal lengths of the complete lens, of each half in case $(i)$, and of each half in case (ii), respectively

Choose the correct statement from the
following

A. $f^{\prime}=2 f, f^{\prime \prime}=f$
B. $f^{\prime}=f, f^{\prime \prime}=f$
C. $f^{\prime}=2 f, f^{\prime \prime}=2 f$
D. $f^{\prime}=f, f^{\prime \prime}=2 f$

## Answer: D

## D Watch Video Solution

42. A magnifying glass is to be used at the
fixed object distance of 1 inch. If it is to produce an erect image magnified 5 times its focal length should be
A. 0.2 inch
B. 0.8 inch
C. 1.25 inch

## D. 5 inch

## Answer: C

## D Watch Video Solution

43. An object is kept at a distance of 16 cm
from a thin lens and the image formed is real.
If the object is kept at a distance of 6 cm from
the lens, the image formed is virtual. If the sizes of the images formed are equal, the focal length of the lens will be
A. 15 cm
B. 17 cm
C. 21 cm
D. 11 cm

## Answer: D

## D Watch Video Solution

44. An object placed 10 cm in front of a lens
has an image 20 cm behind the lens. What is
the power of the lens( in diopters )?
A. 1.5
B. 3.0
C. -15.0
D. +15.0

## Answer: D

## D Watch Video Solution

45. Two lenses of power +12 and -2 diopters
are placed in contact. The combined focal
length of the combination will be
A. 8.33 cm
B. 1.66 cm
C. 12.5 cm
D. 10 cm

## Answer: D

## - Watch Video Solution

46. A convex lens of focal length 40 cm is in
contact with a concave lens of focal length 25
cm . The power of the combination is
A. $-1.5 D$
B. $-6.5 D$
C. $+6.5 D$
D. $+6.67 D$

Answer: A

D Watch Video Solution
47. A convex lens of focal length 40 cm is in
contact with a concave lens of focal length 25
cm . The power of the combination is
A. +1.5
B. -1.5
C. +6.67
D. -6.67

## Answer: B

## D Watch Video Solution

48. If the space between the lenses in the lens combination shown were filled with water, what should happen to the focal length and
power of the lens combination?

A. Focal length $=$ Decreased, Power $=$
B. Focal length $=$ Decreased, Power $=$ unchanged
C. Focal length $=$ Increased, Power $=$
unchnaged
D. Focal length $=$ Increased, Power $=$
decreased

## Answer: D

49. A convex lens is placed in contact with a mirror as shown. If he space between them is
filed with water, its power will

A. decreases
B. increases
C. remain unchanged
D. increases or decreases depending of the
focal length

Answer: A

## D Watch Video Solution

50. A convex lens if in contact with concave
lens. The magnitude of the ratio of their focal
length is $\frac{2}{3}$. Their equivalent focal length is 30 cm . What are their individual focal lengths?
A. $-75,50$
B. $-10,15$
C. 75,50

## D. $-15,10$

## Answer: D

## D Watch Video Solution

51. A thin glass (refractive index 1.5) lens has
optical power of $-5 D$ in air. Its optical power
in a liquid medium with refractive index 1.6 will be
A. $25 D$
B. $-25 D$
C. $1 D$
D. None of these

## Answer: D

## D Watch Video Solution

52. The plane faces of two identical planoconvex lenses each having focal length of 40 cm are pressed against each other to
form a usual convex lens. The distance from
this lens, at which an object must be placed to
obtain a real, inverted image with magnification one is
A. 80 cm
B. 40 cm
C. 20 cm
D. 162 cm

Answer: B

- Watch Video Solution

53. If two lenses of +5 dioptres are mounted at some distance apart, the equivalent power will always be negative if the distance is
A. Greater than 40 cm
B. Equal to 40 cm
C. Equal to 10 cm
D. Less than 10 cm

Answer: A

- Watch Video Solution

54. Consider an equiconvex lens of radius of curvature R and focal length f . If $f>R$, the refractive index $\mu$ of the material of the lens
A. is greater than zero but less than 1.5
B. is greater thean 1.5 but less than 2.0
C. is greater than one but less than 1.5
D. none of these

## Answer: C

55. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car
2.8 m behind the first car is overtaking the first
car at a relative speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of
the image of the second car as seen in the mrror of the first one is:
A. 19.35 cm
B. 17.45 cm
C. 21.48 cm
D. 15.49 cm

Answer: A

## - Watch Video Solution

56. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car
2.8 m behind the first car is overtaking the first car at a relative speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of the image of the second car as seen in the mrror of the first one is:
A. $5.79 \mathrm{~cm}, 6.9 \mathrm{~cm}$
B. $6.45 \mathrm{~cm}, 5.16 \mathrm{~cm}$
C. $2.7 \mathrm{~cm}, 4.8 \mathrm{~cm}$
D. $0.1 m, 0.3 m$

## Answer: B

## D Watch Video Solution

57. A car is fitted with a convex side-view mirror of focal length 20 cm . A second car 2.8 m behind the first car is overtaking the first car at a relative speed of $15 \frac{\mathrm{~m}}{\mathrm{~s}}$. The speed of
the image of the second car as seen in the mrror of the first one is:

$$
\begin{aligned}
& \text { A. }-1 m s^{-1} \\
& \text { B. } 0.5 m s^{-1} \\
& \text { C. } 0.3 m s^{-1} \\
& \text { D. }-0.032 m s^{-1}
\end{aligned}
$$

Answer: D
58. A convex lens of focal length $f$ produces a virtual image $n$ times the size of the object.

Then the distance of the object from the lens is
A. $(n-1) f$
B. $(n+1) f$
C. $\left(\frac{n-1}{n}\right) f$
D. $\left(\frac{n+1}{n}\right) f$

## Answer: C

59. An object is placed 30 cm to the left of a diverging lens whose focal length is of magnitude 20 cm . Which one of the following correctly states the nature and position of the virtual image formed ?
A. Nature of image $=$ inverted, enlarged ,
distance form lens $=60 \mathrm{~cm}$ to the right
B. Nature of image $=$ erect, diminished,
distance form lens $=12 \mathrm{~cm}$ to the left
C. Nature of image $=$ inverted, enlarged , distance form lens $=60 \mathrm{~cm}$ to the left D. Nature of image $=$ erect, diminished, distance form lens $=12 \mathrm{~cm}$ to the right

## Answer: B

## D Watch Video Solution

60. A lens forms a real image of an object. The distance from the object to the lens is xcm and that from the lens to the image is y cm .

The graph shows the variation of y with x .

It can be deduced that the lens is

A. converging and of focal length 10 cm .
B. converging and of focal length 20 cm .
C. converging and of focal length 40 cm
D. diverging and of focal length 20 cm

Answer: A

## - Watch Video Solution

61. Two identical glass ( $\mu_{g}=3 / 2$ ) equiconvex lenses of focal length $f$ are kept in contact.

The space between the two lenses is filled with water ( $\mu_{w}=4 / 3$ ). The focal length of the combination is
A. $f$
B. $\frac{f}{2}$
c. $\frac{4 f}{3}$
D. $\frac{3 f}{4}$

## Answer: D

## D Watch Video Solution

62. Which one of the following spherical lenses
does not exhibit dispersion? The radii of
curvature of the surfaces of the lenses are as given in the diagrams.

C.


Answer: C

- Watch Video Solution

63. A student measures the focal length of a convex lens by putting an object pin at a distance $u$ from the lens and measuring the distance $v$ of the image pin. The graph between $u$ and $v$ plotted by the student should look like
A.
$\underbrace{\text { (a) }}_{u \rightarrow}$
(b)
B.


${ }_{v \rightarrow}^{(\mathrm{d})}$

## Answer: D

## D Watch Video Solution

64. For a convex lens, if real image is formed
the graph between $(u+v)$ and $u$ or $v$ is as follows
A.


B.
C.
(c) $u+v \uparrow$ (c)
D.
(d) $u+v \uparrow \underset{2 f}{\text { ( }}$

## Answer: A

## D Watch Video Solution

1. The critical angle between and equilateral prism and air is $45^{\circ}$. If the incident ray is perpendicular to the refracting surface, then
A. After deviation it will emerge from the second refracting surface
B. It is totally reflected on the second
surface and emerges out perpendicularly
from third surface in air
C. It is totally reflected from the second and third refracting surfaces and finally emerges out from the first surface.

D. It is totally reflected from all the three

sides of prism and never emerges out

## Answer: B

## - Watch Video Solution

2. The refracting angle of a glass prism is $30^{\circ}$.

A ray is incident onto one of the faces
perpendicular to it. Find the angle $\delta$ between
the incident ray and the ray that leaves the prism. The refractive index of glass is $\mu=1.5$.
A. $18^{\circ} 36^{\prime}$
B. $20^{\circ} 30^{\circ}$
C. $18^{\circ}$
D. $22^{\circ} 1^{\prime}$
3. When light rays are incident on a prism at an angle of $45^{\circ}$, the minimum deviation is obtained. If refractive index of the material of prism is $\sqrt{2}$, then the angle of prism will be
A. $30^{\circ}$
B. $40^{\circ}$
C. $50^{\circ}$
D. $60^{\circ}$

## Answer: D

## D Watch Video Solution

4. A light ray is incident by grazing one of the
face of a prism and after refraction ray does not emerge out, what should be the angle of prism while critical angle is $C$ ?
A. Equal to $2 C$
B. Less than $2 C$
C. More than $2 C$

## D. None of the above

## Answer: C

## - Watch Video Solution

5. A parallel beam of monochromatic light is incident at one surface of a equilateral prism.

Angle of incidence is $55^{\circ}$ and angle of emergence is $46^{\circ}$. The angle of minimum deviation will be
A. Less than $41^{\circ}$
B. Equal to $41^{\circ}$
C. More than $41^{\circ}$
D. None of the above

## Answer: A

## D Watch Video Solution

6. Three prisms of crown glass, each have angle of prism $9^{\circ}$ and two prisms of flint glass are used to make direct vision spectroscope.

What will be the angle of fint glass prisms if $\mu$ for flint is 1.69 and $\mu$ for crown glass is 1.53 ?
A. $11.9^{\circ}$
B. $16.0^{\circ}$
C. $15.3^{\circ}$
D. $9.11^{\circ}$

Answer: A
( Watch Video Solution
7. If the refractive indices of crown glass for red, yellow and violet colours are $1.5140,1.5170$ and 1.5318 respectively and for flint glass these are $1.6434,1.6499$ and 1.6852 respectively, then the dispersive powers for crown and flint glass are respectively.
A. 0.034 and 0.064
B. 0.064 and 0.034
C. 1.00 and 0.064
D. 0.034 and 1.0

Answer: A

## D Watch Video Solution

8. Flint glass prism is joined by a crown glass
prism to produce dispersion without deviation. The refractive indices of these for mean rays are 1.602 and 1.500 respectively.

Angle of prism of flint prism is $10^{\circ}$, then the angle of prism for crown prism will be

$$
\text { A. } 12^{\circ} 2.4^{\prime}
$$

B. $12^{\circ} 4^{\prime}$
C. $1.24^{\circ}$
D. $12^{\circ}$

Answer: A

## D Watch Video Solution

9. A beam of white light passing through a
hollow prism give no spectrum.
A. There is no dispersion and no deviation
B. Dispersion but no deviation
C. Deviation but no dispersion
D. There is dipsersion and deviation both

## Answer: A

## D Watch Video Solution

10. The light ray is incidence at angle of $60^{\circ}$ on a prism of angle $45^{\circ}$. When the light ray falls on the other surface at $90^{\circ}$, the
refractive index of the material of prism $\mu$ and
the angle of devation $\delta$ are given by

$$
\begin{aligned}
& \text { A. } \mu=\sqrt{2}, \delta=30^{\circ} \\
& \text { B. } \mu=1.5, \delta=15^{\circ} \\
& \text { C. } \mu=\frac{\sqrt{3}}{2}, \delta=30^{\circ} \\
& \text { D. } \mu=\frac{\sqrt{3}}{2}, \delta=15^{\circ}
\end{aligned}
$$

## Answer: D

## D Watch Video Solution

11. The angle of minimum deviation measured
with a prism is $30^{\circ}$ and the angle of prism is $60^{\circ}$. The refractive index of prism material is
A. $\sqrt{2}$
B. 2
C. $3 / 2$
D. $4 / 3$

Answer: A
12. If the refractive indices of a prism for red,
yellow and violet colours be $1.61,1.63$ and 1.65 respectively, then the dispersive power of the prism will be

$$
\begin{aligned}
& \text { A. } \frac{1.65-1.62}{1.61-1} \\
& \text { B. } \frac{1.62-1.61}{1.65-1} \\
& \text { C. } \frac{1.65-1.61}{1.63-1} \\
& \text { D. } \frac{1.65-1.63}{1.61-1}
\end{aligned}
$$

## Answer: C

13. The minimum deviation produced by a
hollow prism filled with a certain liquid is
found to be $30^{\circ}$. The light ray is also found to
be refracted at angle of $30^{\circ}$. The refractive
index of the liquid is
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{3}{2}$

Answer: A

## D Watch Video Solution

14. A thin prism $P_{1}$ with angle 4 degree and made from glass of refractive index 1.54 is combined with another thin prism $P_{2}$ made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism $P_{2}$ is
A. $2.6^{\circ}$
B. $3^{\circ}$
C. $4^{\circ}$
D. $5.33^{\circ}$

Answer: B

## D Watch Video Solution

15. A given ray of light suffers minimum deviation in an equilateral prism P. Additional prism $Q$ and $R$ of identical shape and of the same material as P are now added as shown in
the figure. The ray will now suffer

A. Greater deviation
B. Same deviation
C. No deviation
D. Total internal reflection

Answer: B

## - Watch Video Solution

16. Angle of a prism is $30^{\circ}$ and its refractive index is $\sqrt{2}$ and one of the surface is silvered.

At what angle of incidence, a ray should be incident on one surface so that after reflection
from the silvered surface, it retraces its path ?
A. $30^{\circ}$
B. $60^{\circ}$
C. $45^{\circ}$
D. $\sin ^{-1} \sqrt{1.5}$

## Answer: C

## D Watch Video Solution

17. A ray of light is incident at an angle of $60^{\circ}$
on the face of a prism having refracting angle
$30^{\circ}$. The ray emerging out of the prism makes an angle $30^{\circ}$ with the incident ray.

Show that the emergent ray is perpendicular to the face through which it emerges.
A. Normal to the face through which it emerges

B. Inclined at $30^{\circ}$ to the face through

which it emerges
C. Inclined at $60^{\circ}$ to the face through
which it emerges
D. None of these

Answer: A

- Watch Video Solution

18. A ray of light passes through an equilateral glass prism in such a manner that the angle of incidence is equal to the angle of emergence and each of these angles is equal to $3 / 4$ of the angle of the prism. The angle of deviation is
A. $45^{\circ}$
B. $39^{\circ}$
C. $20^{\circ}$
D. $30^{\circ}$

## Answer: D

## D Watch Video Solution

19. One face of a prism with a refrective angle of $30^{\circ}$ is coated with silver. A ray of light incident on another face at an angle of $45^{\circ}$ is refracted and reflected from the silver coated face and retraces its path. What is the refractive index of the prism?
A. 1.5
B. $\frac{3}{\sqrt{2}}$
C. $\sqrt{2}$
D. $\frac{4}{3}$

## Answer: C

## D Watch Video Solution

20. A light ray is incident upon a prism in minimum deviation position and suffers a deviation of $34^{\circ}$. If the shaded half of the
prism is knowked off, the ray will

A. Suffer a deviation of $34^{\circ}$
B. Suffer a deviation of $68^{\circ}$
C. Suffer a deviation of $17^{\circ}$
D. Not come out of the prism

Answer: C

## - Watch Video Solution

21. A ray of monochromatic light is incident on one refracting face of a prism of angle $75^{\circ}$. It passes through the prism and is incident on the other face at the critical angle. If the refractive index of the material of the prism is
$\sqrt{2}$, the angle of incidence on the first face of the prism is
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. $0^{\circ}$

Answer: B

## D Watch Video Solution

22. Three glass prism $A, B$ and $C$ of same refractive index are placed in contact with each other as shown in figure, with no air gap between the prisms. Monochromatic ray of light $O P$ passes through the prism assembly
and emerges as $Q R$. The conditions of minimum deviation is satisfied in the prisms.

A. $A$ and $C$
B. $B$ and $C$
C. $A$ and $B$
D. In all prisms $A, B$ and $C$

## Answer: C

## D Watch Video Solution

23. The refractive index of a material of a prism
of angles $45^{\circ}-45^{\circ}-90^{\circ}$ is 1.5 . The path of
the ray of light incident normally on the hypotenuse side is shown in

(c)
C.
(d)
D.


## Answer: A

## - Watch Video Solution

24. Angle of prism is $A$ and its one surface is
silvered. Light rays falling at an angle of incidence $2 A$ on first surface return back
through the same path after suffering
reflection at second silvered surface.

Refraction index of the material of prism is
A. $2 \sin A$
B. $2 \cos A$
C. $\frac{1}{2} \cos A$
D. $\tan A$

Answer: B
( Watch Video Solution
25. A ray of light incident normally on an
isosceles right angled prism travels as shown
in the figure. The least value of the refractive index of the prism must be

A. $\sqrt{2}$
B. $\sqrt{3}$

## C. 1.5

D. 2.0

## Answer: A

## - Watch Video Solution

26. When light of wavelength $\lambda$ on an equilateral prism, kept on its minimum deviation position, it is found that the angle of deviation equals the angle the angle of the
prism itself. The refractive index of the material of the prism for the wavelength $\lambda$ is
A. $\sqrt{3}$
B. $\frac{\sqrt{3}}{2}$
C. 2
D. $\sqrt{2}$

Answer: A
( Watch Video Solution
27. Which of the following diagrams shows correctly the dispersion of white light by a prism ?
A.
(a)

B.
(b)

C.
(c)



Answer: B

## - Watch Video Solution

28. A light ray is incident perpendicularly to one face of a $90^{\circ}$ prism and is totally internally reflected at the glass-air interface. If the angle of reflection is $45^{\circ}$, we conclude that the refractive index $n$

A. Less than 1.41
B. Equals to 1.41
C. Greater than 1.41
D. None of the above

## Answer: C

## - Watch Video Solution

29. Two lenses having $f_{1}: f_{2}=2: 3$ has
combination to make no dispersion. Find the
ratio of dispersive power of glasses used
A. $2: 3$
B. 3: 2
C. $4: 9$
D. 9: 4

Answer: A

## D Watch Video Solution

30. If refractive index of red, violet and yellow light are $1.42,1.62$ and 1.50 respectively for a medium. Its dispersive power will be
A. 0.4
B. 0.3
C. 0.2
D. 0.1

Answer: A

## D Watch Video Solution

31. A ray of light is incident at small angle I on
the surface of prism of small angle $A$ and emerges normally from the oppsite surface. If
the refractive index of the material of the
prism is mu, the angle of incidence is nearly equal to
A. $A / \mu$
B. $A / 2 \mu$
C. $\mu A$
D. $\mu A / 2$

Answer: C

D Watch Video Solution
32. The angle of a prism is $60^{\circ}$ and its refractive index is $\sqrt{2}$. The angle of minimum deviation suffered by a ray of light in passing through it is
A. About $20^{\circ}$
B. $30^{\circ}$
C. $60^{\circ}$
D. $45^{\circ}$

Answer: B

- Watch Video Solution

33. The dispersive powers of crown and flint glasses are 0.02 and 0.04 respectively. In an achromatic combination of lenses the focal length of flint glass lens is 40 cm . The focal length of crown glass lens will be
A. -20 cm
B. +20 cm
C. -10 cm
D. +10 cm

## Answer: A

## D Watch Video Solution

34. When a ray of light is incident normally on one refracting surface of an equilateral prism
(Refractive index of the material of the prism
$=1.5$
A. Emerging ray is deviated by 30
B. Emerging ray is deviated by $45^{\circ}$
C. Emerging ray just grazes the second
refracting surface
D. The ray undergoes total internal reflection at the second refracting surface

## Answer: D

## D Watch Video Solution

35. Under minimum deviation condition in a prism, if a ray is incident at an angle $30^{\circ}$, the angle between the emergent ray and the second refracting surface of the prism is
A. $0^{\circ}$
B. $30^{\circ}$
C. $45^{\circ}$
D. $60^{\circ}$

## Answer: D

36. A ray of light is incident normally on one of
the faces of a prism of apex angle 30 degree
and refractive index $\sqrt{2}$. The angle of deviation of the ray is...degrees.
A. $26^{\circ}$
B. $0^{\circ}$
C. $23^{\circ}$
D. $15^{\circ}$

## Answer: D

## D Watch Video Solution

37. For a prism of refractive index 1.732 , the angle of minimum deviation is equal to the angle of the prism. The angle of the prism is
A. $80^{\circ}$
B. $70^{\circ}$
C. $60^{\circ}$
D. $50^{\circ}$

## Answer: C

## - Watch Video Solution

38. When a glass prism of refracting angle $60^{\circ}$
is immersed in a liquid its angle of minimum
deviation is $30^{\circ}$. The critical angle of glass
with respect to the liquid medium is
A. $42^{\circ}$
B. $45^{\circ}$
C. $50^{\circ}$

## D. $52^{\circ}$

## Answer: B

## D Watch Video Solution

39. A prism of refractive index $p$ and angle $A$ is
placed in the minimum deviation position. If
the angffe of minimum deviation is $A$, then the
value of $A$ in terms of $p$ is

$$
\text { A. } \sin ^{-2}\left(\frac{\mu}{2}\right)
$$

B. $\sin ^{-1} \sqrt{\frac{\mu-1}{2}}$
C. $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
D. $\cos ^{-1}\left(\frac{\mu}{2}\right)$

## Answer: C

## D Watch Video Solution

40. A prism of refractive index sqrt2 has refractive angle $60^{\circ}$. In the order that a ray suffers minimum deviation it should be incident at an angle of
A. $45^{\circ}$
B. $60^{\circ}$
C. $90^{\circ}$
D. $180^{\circ}$

Answer: A

D Watch Video Solution
41. A parallel beam of white light falls on a convex lens. Images of blue, yellow and red
light are formed on other side of the lens at a
distance of $0.20 \mathrm{~m}, 0.205 \mathrm{~m}$ and $0.214 m$ respectively. The dispersive power of the material of the lens will be
A. $619 / 1000$
B. $9 / 200$
C. $14 / 205$
D. $5 / 214$

Answer: C

- Watch Video Solution

42. A beam of light composed of red and green ray is incident obliquely at a point on
the face of rectangular glass slab. When coming out on the opposite parallel face, the red and green ray emerge form
A. Two points propagating in two different directions
B. Two points propagating in two parallel
directions
C. One point propagating in two different directions
D. One point propagating in the same directions

Answer: B

## D Watch Video Solution

43. A ray of monochromatic light suffers minimum deviation of $38^{\circ}$ while passing
through a prism of refracting angle $60^{\circ}$.

Refracting index of the prism material is
A. 1.5
B. 1.3
C. 0.8
D. 2.4

Answer: A
( Watch Video Solution
44. For a small angled prism, angle of prism $A$ of minimum deviation $(\delta)$ varies with the refractive index of the prism as shown in the graph

A. Point $P$ corresponds to $m=1$
B. Slope of the line $P Q=A / 2$
C. Slope $=2 A$

## D. None of the above statements is true

## Answer: A

## D Watch Video Solution

45. The graph between angle of deviation $(\delta)$
and angle of incidence (i) for a triangular
prism is represented by

B.
(b)



Answer: A

## - Watch Video Solution

Optical Instruments

1. A person suffering from hypermetropia requires which type of spectacle lenses ?
A. Concave lens
B. Plano-concave lens
C. Convexo - concave lens
D. Convex lens

## Answer: D

2. A man who cannot see clearly beyond $5 m$ wants to see starts clearly. He should use a lens of focal length
A. $-100 m$
B. $+5 m$
C. $-5 m$
D. Very large

Answer: C

- Watch Video Solution

3. A man can see only between 75 cm and 200 cm . The power of lens to correct the near point will be
A. $+8 / 3 D$
B. $+3 D$
C. $-3 D$
D. $-8 / 3 D$

Answer: A

D Watch Video Solution
4. A man can see the objects upto a distance of one metre from his eyes. For correcting his eye sight so that he can see an object at infinity, he requires a lens whose power is
A. $+0.5 D$
B. +1.0 D
C. +2.0 D
D. -1.0 D

## Answer: D

5. A man can see the object between 15 cm and

30 cm . He uses the lens to see the far objects.

Then due to the lens to see the far objects.
Then due to the lens used, the near point will be at
A. $\frac{10}{3} \mathrm{~cm}$
B. 30 cm
C. 15 cm
D. $\frac{100}{3} \mathrm{~cm}$

Answer: B

## - Watch Video Solution

6. The far point of a myopia eye is at 40 cm . For removing this defect, the power of lens required will be
A. 40 D
B. $-4 D$
C. $-2.5 D$
D. 0.25 D

## Answer: C

## - Watch Video Solution

7. A man suffering from myopia can read book
placed at 10 cm distance. For reading the book at a distance of 60 cm with relaxed vision, focal length of the lens required will be
A. 45 cm
B. -20 cm
C. -12 cm
D. 30 cm

## Answer: C

## D Watch Video Solution

8. A person is suffering from myopic defect. He is able to see clear objects placed at 15 cm .

What type and of what focal length of lens he should use to see clearly the object placed 60 cm away?
A. Concave lens of 20 cm focal length

## B. Convex lens of 20 cm focal length

C. Concave lens of 12 cm focal length
D. Convex lens of 12 cm focal length

## Answer: A

## D Watch Video Solution

9. A person can see clearly only upto a distance of 25 cm . He wants to read a book placed at a distance of 50 cm . What kind of
lens does he require for his spectacles and what must be its power?
A. Concave, -1.0 D
B. Convex,$+1.5 D$
C. Concave, $-2.0 D$
D. Convex, +2.0 D

Answer: C

## D Watch Video Solution

10. A person's near point is 50 cm and his far point $3 m$. answer the following question when
(i) Power of the lenses he requires for reading
and
(ii) Power of the lenses he requires for for seeing distant stars are
A. $-2 D$ and $-0.33 D$
B. $2 D$ and $-0.33 D$
C. $-2 D$ and $3 D$
D. $2 D$ and $-3 D$

Answer: B

## D Watch Video Solution

11. A convex lens of focal length 40 cm is in
contact with a concave lens of focal length 25
cm . The power of the combination is
A. +1.5
B. -1.5
C. +6.67
D. -6.67

Answer: B

## D Watch Video Solution

12. Two parallel pillars are 11 km away from an
observer. The minimum distance between the
pillars so that they can be seen separately will be
A. $3.2 m$
B. 20.8 m
C. $91.5 m$

## D. $183 m$

## Answer: A

## D Watch Video Solution

13. A person who can see things most clearly at a distance of 10 cm . Requires spectacles to enable to him to see clearly things at a distance of 30 cm . What should be the focal length of the spectacles?
A. 15 cm (Concave)

## B. 15 cm (Convex )

C. 10 cm
D. 0

## Answer: A

## D Watch Video Solution

14. Far points of myopic eye is 250 cm , then the focal length of the lens to be used will be
A. -250 cm
B. $-250 / 9 \mathrm{~cm}$
C. +250 cm
D. $+250 / 9 \mathrm{~cm}$

Answer: A

## D Watch Video Solution

15. A man can see clearly up to 3 metres.

Prescribes a lens for his spectacles so that he can see clearly up to 12 metres
A. $-3 / 4 D$
B. $3 D$
C. $-1 / 4 D$
D. $-4 D$

## Answer: C

## D Watch Video Solution

16. A satisfactory photographic print is obtained when the exposure time is 10 sec at a distance of $2 m$ from a $60 c d$ lamp. The time of
exposure required for the same quality print at a distance of $4 m$ from a $120 c d$ lamp is
A. 5 sec
B. 10 sec
C. 15 sec
D. 20 sec

Answer: D
( Watch Video Solution
17. A person uses a lens of power $+3 D$ to normalise vision. Near point of hypermetropic eye is
A. $1 m$
B. $1.66 m$
C. $2 m$
D. 0.66 m

Answer: A

D Watch Video Solution

## 18. A student can distinctly see the object upto

a distance 15 cm . He wants to see the black
board at a distance of $3 m$ answer the following questions (a) Focal length of lens (b) power of lens

$$
\begin{aligned}
& \text { A. }-4.8 \mathrm{~cm},-3.3 D \\
& \text { B. }-5.8 \mathrm{~cm},-4.3 D \\
& \text { C. }-7.5 \mathrm{~cm},-6.3 D \\
& \text { D. }-15.8 \mathrm{~cm},-6.3 D
\end{aligned}
$$

19. The exposure time of a camera lens at the
$\frac{f}{2.8}$ setting is $\frac{1}{200}$ second. The correct time of exposure at $\frac{f}{5.6}$ is
A. 0.4 sec
B. 0.02 sec
C. 0.002 sec
D. 0.04 sec

Answer: B

## D Watch Video Solution

20. The focal lengths of the objective and eye

- lens of a microscope are 1 cm and 5 cm
respectively. If the magnifying power for the relaxed eye is 45 , then the length of the tube is
A. 30 cm
B. 25 cm
C. 15 cm
D. 12 cm


## Answer: C

## D Watch Video Solution

21. The length of the compound microscope is

14 cm . The magnifying power for relaxed eye is 25 . If the focal length of eye lens is 5 cm , then the object distance for objective lens will be
A. 1.8 cm
B. 1.5 cm
C. 2.1 cm
D. 2.4 cm

Answer: A

## D Watch Video Solution

22. If the focal length of objective and eye lens
are 1.2 cm and 3 cm respectively and the object
is put 1.25 cm away from the objective lens
and the final image is formed at infinity. The magnifying power of the microscope is
A. 150
B. 200
C. 250
D. 400

Answer: B
( Watch Video Solution
23. The focal length of objective and eye lens of a microscope are 4 cm and 8 cm respectively.

If the least distance of distinct vision is 24 cm and object distance is 4.5 cm from the objective lens, then the magnifying power of the microscope will be
A. 18
B. 32
C. 64
D. 20

Answer: B

## D Watch Video Solution

24. The magnifying power of a microscope with an objective of 5 mm focal length is 400 .

The length of its tube is 20 cm . Then the focal length of the eye - piece is
A. 200 cm
B. 160 cm
C. 2.5 cm
D. 0.1 cm

## Answer: C

## D Watch Video Solution

25. If the focal length of the objective lens is
increased then
A. Magnifying power of the microscope will increase but that of telescope will
decrease
B. Magnifying power of microscope and telescope both will increase
C. Magnifying power of microscope and
telescope both will decrease
D. Magnifying power of microscope will
decrease but that of telescope will increase

## Answer: D

## D Watch Video Solution

26. The focal length of the objective and the eye piece of a compound microscope are 2.0
cm and 3.0 cm , respectively. The distance between the objective and the eye piece is 15.0 cm . The final image formed by the eye piece is at infinity. The two lenses are thin. The distance in cm of the object and the image produced by the objective, measured from the objective lens, are respectively
A. 2.4 and 12.0
B. 2.4 and 15.0
C. 2.3and 12.0

## D. 2.3 and 3.0

## Answer: A

## D Watch Video Solution

27. The objective lens of a compound microscope produces magnification of 10 . In order to get an overall magnification of 100 when image is formed at 25 cm from the eye,
the focal length of the eye lens should be
A. 4 cm
B. 10 cm
C. $\frac{25}{9} \mathrm{~cm}$
D. 9 cm

Answer: C

## D Watch Video Solution

28. In a compound microscope, the focal lengths of two lenses are 1.5 cm and 6.25 cm an object is placed at 2 cm form objective and
the final image is formed at 25 cm from eye lens. The distance between the two lenses is

A. 6.00 cm

B. 7.75 cm
C. 9.25 cm
D. 11.00 cm

Answer: D

## D Watch Video Solution

29. A simple telescope, consisting of an objective of focal length 60 cm and a single eye
lens of focal length 5 cm is focused on a distant object is such a way that parallel rays
comes out from the eye lens. If the object subtends an angle $2^{\circ}$ at the objective, the angular width of the image.
A. $10^{\circ}$
B. $24^{\circ}$
C. $50^{\circ}$

## D. $1 / 6^{\circ}$

## Answer: B

## D Watch Video Solution

30. The diameter of the objective of the telescope is 0.1 metre and wavelength of light is $6000 \AA$. Its resolving power would be approximately

$$
\text { A. } 7.32 \times 10^{-6} \mathrm{rad}
$$

B. $1.36 \times 10^{6} \mathrm{rad}$
C. $7.32 \times 10^{-5} \mathrm{rad}$
D. $1.36 \times 10^{5} \mathrm{rad}$

## Answer: D

## - Watch Video Solution

31. The focal length of objective and eye lens of a astronomical telescope are respectively
$2 m$ and 5 cm . Final image is formed at (i)
least distance of distinct vision (ii) infinity.

The magnifying power in both cases will be

$$
\begin{aligned}
& \text { A. }-48,-40 \\
& \text { B. }-40,-48 \\
& \text { C. }-40,48 \\
& \text { D. }-48,40
\end{aligned}
$$

Answer: A

## D Watch Video Solution

32. An astronomical telescope has an angular magnification of magnitude 5 for distant object. The separation between the objective and the eyepiece is 36 cm and the final image is formed at infinity. The focal length $f_{0}$ of the objective and the focal length $f_{0}$ of the eyepiece are
A. $f_{o}=45 \mathrm{~cm}$ and $f_{e}=-9 \mathrm{~cm}$
B. $f_{o}=7.2 \mathrm{~cm}$ and $f_{e}=5 \mathrm{~cm}$
C. $f_{o}=50 \mathrm{~cm}$ and $f_{e}=10 \mathrm{~cm}$

## D. $f_{o}=30 \mathrm{~cm}$ and $f_{e}=6 \mathrm{~cm}$

## Answer: D

## D Watch Video Solution

33. In Galilean telescope, if the powers of an objective and eye lens are respectively
$+1.25 D$ and $-20 D$, then for relaxed vision, the length and magnification will be
A. 21.25 cm and 16
B. 75 cm and 20
C. 75 cm and 16
D. 8.5 cm and 21.25

## Answer: C

## D Watch Video Solution

34. The magnifying power of an astronomical telescope is 8 and the distance between the two lenses is 54 cm . The focal length of eye lens and objective lens will be respectively
A. 6 cm and 48 cm
B. 48 cm and 6 cm
C. 8 cm and 64 cm
D. 64 cm and 8 cm

Answer: A

## D Watch Video Solution

35. An opera glass (Galilean telescope ) measures 9 cm from the objective to the
eyepiece. The focal length of the objective is

## 15 cm . Its magnifying power is

A. 2.5
B. $2 / 5$
C. $5 / 3$
D. 0.4

Answer: A
( Watch Video Solution
36. When a telescope is adjusted for parallel light, the distance of the objective from the eye piece is found to be 80 cm . The magnifying power of the telescope is 19 . The focal length of the lenses are
A. $61 \mathrm{~cm}, 19 \mathrm{~cm}$
B. $40 \mathrm{~cm}, 40 \mathrm{~cm}$
C. $76 \mathrm{~cm}, 4 \mathrm{~cm}$
D. $50 \mathrm{~cm}, 30 \mathrm{~cm}$

Answer: C
37. Two convex lenses of focal lengths $0.3 m$ and 0.05 m are used to make a telescope. The distance kept between the two is
A. 0.35 m
B. $0.25 m$
C. $0.175 m$
D. 0.15 m
38. The diameter of the objective lens of a telescope is 5.0 m and wavelength of light is $6000 \AA$. The limit of resolution of this telescope will be
A. 0.03 sec
B. 3.03 sec
C. 0.06 sec
D. 0.15 sec

## D Watch Video Solution

39. A Galilean telescope has objective and eye

- piece of focal lengths 200 cm and 2 cm respectively. The magnifying power of the telescope for normal vision is
A. 90
B. 100
C. 108


## D. 198

## Answer: B

## D Watch Video Solution

40. An astronomical telescope of ten-fold angular magnification has a length of 44 cm .

The focal length of the objective is
A. 4 cm
B. 40 cm
C. 44 cm
D. 440 cm

Answer: B

## D Watch Video Solution

41. The focal lengths of the lenses of an astronomical telescope are 50 cm and 5 cm .

The length of the telescope when the image is
formed at the least distance of distinct vision is
A. 45 cm
B. 55 cm
C. $\frac{275}{6} \mathrm{~cm}$
D. $\frac{325}{6} \mathrm{~cm}$

## Answer: D

## D Watch Video Solution

42. Sun's diameter is $1.4 \times 10^{9} \mathrm{~m}$ and its distance from the earth is $10^{11} \mathrm{~m}$. The
diameter of its image, formed by a convex lens of focal length $2 m$ will be
A. 0.7 cm
B. 1.4 cm
C. 2.8 cm
D. Zero(i.e., point image )

Answer: C

- Watch Video Solution

43. In a terrestrial telescope, the focal length
of objective is 90 cm , of inverting lens is 5 cm
and of eye lens is 6 cm . If the final image is at
30 cm , then the magnification will be the final
image is at 30 cm , then the magnification will be
A. 21
B. 12
C. 18
D. 15

## Answer: C

## D Watch Video Solution

44. A telescope has an objective of focal
length 50 cm and an eyepiece of focal length

5 cm . The least distance of distinct vision is

25 cm . The telescope is focused for distinct vision on a scale $2 m$ away from the objective.

Calculate (a) magnification produced and
separation between objective and eyepiece.
A. 75 cm
B. 60 cm
C. 71 cm
D. 74 cm

## Answer: C

## D Watch Video Solution

45. A telescope of diameter $2 m$ uses light of wavelength $5000 \AA$ for viewing stars.The minimum angular separation between two
stars whose is image just resolved by this

## telescope is

A. $4 \times 10^{-4} \mathrm{rad}$<br>B. $0.25 \times 10^{-6} \mathrm{rad}$<br>C. $0.31 \times 10^{-6} \mathrm{rad}$<br>D. $5.0 \times 10^{-3} \mathrm{rad}$

Answer: C
( Watch Video Solution
46. A simple magnifying lens is used in such a
way that an image is formed at 25 cm away
from the eye. In order to have 10 times magnification, the focal length of the lens should be
A. 5 cm
B. 2 cm
C. 25 mm
D. 0.1 mm

Answer: C
47. In a simple microscope, if the final image is
located at infinity then its magnifying power is
A. $\frac{25}{f}$
B. $\frac{D}{26}$
C. $\frac{f}{25}$
D. $\frac{f}{D+1}$

Answer: A
48. In a compound microscope the objective of
$f_{o}$ and eyepiece of $f_{e}$ are placed at distance $L$
such that $L$ equals
A. $f_{o}+f_{e}$
B. $f_{o}-f_{e}$
C. Much greater than $f_{o}$ or $f_{e}$
D. Need not depend either value of focal
lengths

## Answer: C

## - Watch Video Solution

49. For a compound microscope, the focal
length of object lens and eye lens are $f_{o}$ and
$f_{e}$ respectively, then magnification will be done by microscope when
A. $f_{o}=f_{e}$
B. $f_{o}>f_{e}$
C. $f_{o}<f_{e}$

## D. None of these

## Answer: C

## D Watch Video Solution

50. The angular resolution of a 10 cm diameter telescope at a wavelength $5000 \AA$ is of the order
A. $10^{6} \mathrm{rad}$
B. $10^{-2} \mathrm{rad}$
C. $10^{-4} \mathrm{rad}$
D. $10^{-6} \mathrm{rad}$

## Answer: D

## - Watch Video Solution

51. The diameter of objective of a telescope is
$1 m$. Its resolving limit for the light of wave length $4538 \AA$, will be
A. $5.54 \times 10^{-7} \mathrm{rad}$
B. $2.54 \times 10^{-4} \mathrm{rad}$
C. $6.54 \times 10^{-7} \mathrm{rad}$
D. None of these

## Answer: A

## D Watch Video Solution

52. A telescope has an objective lens of focal length 200 cm and an eye piece with focal
length 2 cm . If this telescope is used to see a 50 meter tall building at a distance of 2 km ,
what is the height of the image of the building

## formed by the objective lens?

A. 5 cm
B. 10 cm
C. 1 cm
D. 2 cm

Answer: A
( Watch Video Solution
53. Magnification of a compound microscope is 30 . Focal length of eye - piece is 5 cm and the image is formed at a distance of distinct vision of 25 cm . The magnification of the objective lens is
A. 6
B. 5
C. 7.5
D. 10
54. A Galileo telescope has an objective of focal length 100 cm and magnifying power 50.

The distance between the two lenses in normal adjustment will be
A. 98 cm
B. 100 cm
C. 150 cm
D. 200 cm

Answer: A

## D Watch Video Solution

55. A compound microscope has an eye piece of focal length 10 cm and an objective of focal
length 4 cm . Calculate the magnifcation, if an object is kept at a distance of 5 cm from the objective so that final image is formed at the least distance vision (20cm)
A. 12
B. 11
C. 10
D. 13

## Answer: A

D Watch Video Solution

## Problems Based On Mixed Concepts

1. A fish is vertically below a flying bird moving
vertically down toward water surface. The bird
will appear to the fish to be

A. moving faster than its speed and also
away from the real distance
B. moving faster than its real speed and
never than its real distance.
C. moving slower than its real speed and also nearer than its real distance
D. moving slower than its real speed and away from the real distance

## Answer: A

## D Watch Video Solution

2. A fish rising up vertically toward the surface of water with speed $3 m s^{-1}$ observes a bird diving down vertically towards it with speed
$9 m s^{-1}$. The actual velocity of bird is

A. $4.5 m s^{-1}$
B. $5.4 m s^{-1}$
C. $3.0 m s^{-1}$
D. $3.4 m s^{-1}$
3. What is the angle of incidence for an equilateral prism of refractive index $\sqrt{3}$ so that the ray si parallel to the base inside the prism?
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$
D. either $30^{\circ}$ or $60^{\circ}$

## Answer: C

## D Watch Video Solution

4. A plano-convex lens when silvered on the
plane side behaves like a concave mirror of
focal length 60 cm . However when silvered on
the convex side it behaves like a concave mirror of focal length 20 cm . Then the refractive index of the lens
A. 3.0
B. 1.5
C. 1.0
D. 2.0

Answer: B

## D Watch Video Solution

5. A ray of light passes from vacuum into a medium of refractive index $\mu$. If the angle of incidence is twice the angle of refraction, then the angle of incidence is
A. $\cos ^{-1}\left(\frac{\mu}{2}\right)$
B. $2 \cos ^{-1}\left(\frac{\mu}{2}\right)$
C. $2 \sin ^{-1}\left(\frac{\mu}{2}\right)$
D. $2 \sin ^{-1}(\mu)$

Answer: B

## D Watch Video Solution

6. A combination of two thin lenses with focal
lengths $f_{1}$ and $f_{2}$ respectively forms and image of distant object at distance 60 cm
when lenses are in contact. The position of this image shifts by 30 cm towards the combination when two lenses are separated by 10 cm . The corresponding values of $f_{1}$ and $f_{2}$ are
A. $30 \mathrm{~cm},-60 \mathrm{~cm}$
B. $20 \mathrm{~cm},-30 \mathrm{~cm}$
C. $15 \mathrm{~cm},-20 \mathrm{~cm}$
D. $12 \mathrm{~cm},-15 \mathrm{~cm}$

Answer: B
7. A point source $S$ is placed at the bottom of different layers as shown in figure. The refractive index of bottom-most layer is $\mu_{0}$. The refractive index of any other upper layer is $\mu(n)=\mu_{0}-\frac{\mu_{0}}{4 \pi-18}$ where $n=1,2, \ldots$.

A ray of light starts from the source $S$ as shown. Total internal reflection takes place at
the upper surface of the layer having $n$ equal

A. 3
B. 5
C. 4
D. 6

Answer: C
8. A plane mirrorr is placed at origin parallel of $y$-axis, facing the positive $x$-axis. An object starts from $(2 m, 0,0)$ with a velocity of $(2 \hat{i}+2 \hat{j}) m / s$. The relative velocity of image with respect to object is along
A. positive $x$ - axis
B. negative $x$ - axis
C. positive $y$-axis
D. negative $y$-axis

Answer: B

## D Watch Video Solution

9. Light is incident normally on face $A B$ of $a$
prism as shown in Figure. A liquid of refractive index $\mu$ is placed on face AC of the prism. The prism is made of glass of refractive indices
$3 / 2$. Find the limits of $\mu$ for which total
internal reflection takes place on the face AC.

## Liquid



$$
\begin{aligned}
& \text { A. } \mu>\frac{3}{4} \\
& \text { B. } \mu<\frac{3 \sqrt{3}}{4} \\
& \text { C. } \mu>\sqrt{3} \\
& \text { D. } \mu<\frac{\sqrt{3}}{2}
\end{aligned}
$$

## - Watch Video Solution

10. A point source of light $B$ is placed at a distance $L$ in front of the centre of a mirror of width $d$ hung vertically on a wall. A man walks
in front of the mirror along a line parallel to
the mirror at a distance 2 L from it as shown in
fig. The greatest distance over which he can
see the image of the light source in the mirror

A. $d / 2$
B. $d$
C. $2 d$
D. $3 d$

Answer: D

## - Watch Video Solution

11. Two plane mirrors $A$ and $B$ are aligned parallel to each other, as shown in the figure. A light ray is incident at an angle 30degree at a point just inside one end of $A$. The plane of incidence coincides with the plane of the figure. The maximum number of times the ray undergoes reflections (including the first one)
before it emerges out is

A. 28
B. 30
C. 32
D. 34

Answer: B

## - Watch Video Solution

12. A rectangular slab $A B C D$, of refractive index $n_{1}$, is immersed in water of refractive index $n_{2}\left(n_{1}<n_{2}\right)$. A ray of light is incident at the surface $A B$ of the slab as shown in Fig. Find the maximum value of angle of incidence $\alpha_{\text {max }}$, such that the ray comes out only from the other surface CD.

A. $\sin ^{-1}\left[\frac{n_{1}}{n_{2}} \cos \left(\sin ^{-1} \cdot \frac{n_{2}}{n_{1}}\right)\right]$
B. $\sin ^{-1}\left[n_{1} \cos \left(\sin ^{-1} \cdot \frac{1}{n_{2}}\right)\right]$
C. $\sin ^{-1}\left(\frac{n_{1}}{n_{2}}\right)$
D. $\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right)$

Answer: A

D Watch Video Solution
13.


A diverging beam of light from a point source
S having divergence angle $\alpha$, falls
symmetrically on a glass slab as shown. The angles of incidence of the two extreme rays are equal. If the thickness of the glass slab is $t$ and the refractive index $n$, then the divergence angle of the emergent beam is
A. Zero
B. $\alpha$
C. $\sin ^{-1}(1 / n)$
D. $2 \sin ^{-1}(1 / n)$

Answer: B

## D Watch Video Solution

14. An observer can see through a pin-hole the top end of a thin rod of height $h$, placed as
shown in the figure. The beaker height is 3 h
and its radius $h$. When the beaker is filled with
a liquid up to a height 2 h , he can see the lower end of the rod. Then the refractive index of the liquid is

A. $5 / 2$
B. $\sqrt{(5 / 2)}$
C. $\sqrt{(3 / 2)}$

## D. $3 / 2$

## Answer: B

## D Watch Video Solution

15. A ray of light is incident at the glass-water
interface at an angle I, it emerges fimally parallel to the surface of water, the the value
of $\mu_{g}$ would be

A. $(4 / 3) \sin i$
B. $1 / \sin i$
C. $4 / 3$
D. 1

Answer: B

## - Watch Video Solution

16. A glass prism of refractive index 1.5 is immersed in water (refractive index 4/3). A light beam incident normally on the face $A B$ is totally reflected to reach on the face BC if.

A. $\sin \theta \geq 8 / 9$
B. $2 / 3<\sin \theta<8 / 9$
C. $\sin \theta \leq 2 / 3$
D. It is not possible

## Answer: A

## D Watch Video Solution

17. A convex lens A of focal length 20 cm and a concave lens $G$ of focal length 5 cm are kept along the same axis with the distance $d$ between them. If a parallel beam of light
falling on A leaves B as a parallel beam, then

## distance d in cm will be

A. 25
B. 15
C. 30
D. 50

Answer: B
( Watch Video Solution
18. A hollow double concave lens is made of
very thin transparent material. It can be filled
with air or either of two liquids $L_{1}$ or $L_{2}$
having refractive indices $n_{1}$ and $n_{2}$,
respectively $\left(n_{2}>n_{1}>1\right)$. The lens will diverge parallel beam of light if it is fills with
A. Air and placed in air
B. Air and immersed in $L_{1}$
C. $L_{1}$ and immersed in $L_{2}$
D. $L_{2}$ and immersed in $L_{1}$

## Answer: D

## - Watch Video Solution

19. The size of the image of an object, which is
at infinity, as formed by a convex lens of focal
length 30 cm is 2 cm . If a concave lens of focal length 20 cm is placed between the convex lens and the image at a distance of 26 cm from the convex lens, calculate the new size of the image
A. 1.25 cm
B. 2.5 cm
C. 1.05 cm
D. 2 cm

Answer: B

## - Watch Video Solution

20. 



An isosceles prism of angle 120degree has a refractive index 1.44. Two parallel monochromatic rays enter the prism parallel to each other in air as shown. The rays emerge
from the opposite faces
A. Are parallel to each other
B. Air diverging
C. Make an angle $2 \sin ^{-1}(0.72)$ with each other
D. Make an angle $2\left\{\sin ^{-1}(0.72)-30^{\circ}\right\}$
with each other

## Answer: D

## D Watch Video Solution

21. A container is filled with water $(\mu=1.33)$
up to a height of 33.25 cm . A concave mirror is
placed 15 cm above the water level and the
image of an object placed at the bottom is
formed 25 cm below the water level. Focal
length of the mirror is

A. 10 cm
B. 15 cm
C. -18.31 cm
D. 20 cm

Answer: C

## D Watch Video Solution

22. A concave mirror is placed on a horizontal table, with its axis directed vertically upwards.

Let $O$ be the pole of the mirror and $C$ its centre of curvature. A point object is placed at
C. It has a real image, also located at C . If the mirror is now filled with water, the image will be.
A. Real, and will remain at $C$
B. Real, and located at a point between $C$
and $\infty$
C. Virtual and located at a point between $C$
and $O$
D. Real, and located at a point between $C$
and $O$

## Answer: D

23. A plane mirror is placed 22.5 cm in front of a concave mirror of focal length 10 cm . Find where an object can be placed between the two mirrors, so that the first image in both the mirrors coincides.
A. 20 cm from concave mirrorr
B. 15 cm from the concave mirrorr
C. 5 cm from plane mirrorr
D. 7.5 cm from plane mirrorr

## - Watch Video Solution

24. An object is placed in front of a convex mirror at a distance of 50 cm . A plane mirror is introduced covering the lower half of the convex mirror. If the distance between the object and the plane mirror is 30 cm , it is found that there is no parallax between the images formed by the two mirrors. What is the radius of curvature of the convex mirror?
A. 25 cm
B. 7 cm
C. 18 cm
D. 27 cm

## Answer: A

## D Watch Video Solution

25. A concave mirror of focal length 10 cm and
a convex mirror of focal length 15 cm are
placed facing each other 40 cm apart. A point object is placed between the mirrors, on their
common axis and 15 cm from the concave mirror. Find the position and nature of the image produced by successive reflections, first at the concave mirror and then at the convex mirror.
A. 12 cm behind convex mirrorr, real
B. 9 cm behind convex mirrorr, real
C. 6 cm behind convex mirrorr, virtual
D. 3 cm behind convex mirrorr, virtual

Answer: C
26. An object $A B E D$ is placed in front of a concave mirror beyond the center of curvature
$C$ as shown in figure., State the shape of the image.

A. $\left|m_{A B}\right|<1$ and $\left|m_{E D}\right|<1$
B. $\left|m_{A B}\right|>1$ and $\left|m_{E D}\right|<1$
C. $\left|m_{A B}\right|<1$ and $\left|m_{E D}\right|>1$
D. $\left|m_{A B}\right|>1$ and $\left|m_{E D}\right|>1$

Answer: A

## - Watch Video Solution

27. Optic axis of a thin equi-convex lens is the $x$-axis. The co-ordinates of a point object and
its image
$(-40 \mathrm{~cm}, 1 \mathrm{~cm})$ and $(50 \mathrm{~cm},-2 \mathrm{~cm})$,
respectively. Lens is located at
A. $x=+20 \mathrm{~cm}$
B. $x=-30 \mathrm{~cm}$
C. $x=-10 \mathrm{~cm}$
D. origin

Answer: C

D Watch Video Solution
28. An equiconvec lens of glass $\left(\mu_{g}-1.5\right)$ of
focal length 10 cm is silvered on one side. It will behave like a
A. concave mirrorr of focal length 10 cm
B. convex mirrorr of focal length 5.0 cm
C. concave mirrorr of focal length 2.5 cm
D. convex mirrorr of focal length 20 cm

Answer: C

D Watch Video Solution
29. The magnification of an object placed it front of a convex lens of focal length 20 cm is
+2 . To obtain a magnification of -2 , the object will has to be moved a distance equal to
A. 10 cm
B. 20 cm
C. 30 cm
D. 40 cm

## - Watch Video Solution

30. The focal length of a thin convex-lens is 30 cm . At a distance of 10 cm from the lens there is a plane refracting surface of refractive index $3 / 2$ Where will parallel rays incident on lens converge?

A. At a distance of 27.5 cm from the lens
B. At a distance of 25 cm from the lens
C. At a distance of 45 cm from the lens
D. At a distance of 40 cm from the lens

## Answer: D

## D Watch Video Solution

31. Distance of an object from the first focus of an equi-convex lens is 10 cm and the distance
of its real image from second focus is 40 cm .

The focal length of the lens is
A. 25 cm
B. 10 cm
C. 20 cm
D. 40 cm

Answer: C
( Watch Video Solution
32. A point object is placed on the optic axis of a convex lens of focal length $f$ at a distance of $2 f$ to the left of it. the diameter of the lens is ' $d$ '. An eye is placed at a distance of $3 f$ to the right of the lens and a distance $h$ below the optic axis. The maximum value of $h$ to see the image is
A. $d$
B. $d / 2$
C. $d / 3$

## D. $d / 4$

## Answer: D

## D Watch Video Solution

33. A point object $O$ is placed at a distance of 20 cm from a convex lens of focal length 10 cm as shown in the figure. At what distance x from the lens should a convex mirror of focal length 60 cm , be placed so that final image coincide
with the object?

A. 10 cm
B. 40 cm
C. 20 cm
D. final image can never coincide with the
object in the given conditions.

## - Watch Video Solution

34. The distance between two point sources of
light is 24 cm . Find out where would you place a converging lens of focal length 9 cm , so that the images of both the sources are formed at the same point.
A. 6 cm from $S_{1}$
B. 15 cm from $S_{1}$
C. 10 cm from $S_{1}$

## D. 12 cm from $S_{1}$

## Answer: A

## D Watch Video Solution

35. Two thin symmetrical lenses of different nature and of different material have equal radii of curvature $R=15 \mathrm{~cm}$. The lenses are put close together and immersed in water $\left(\mu_{w}=4 / 3\right)$. The focal length of the system in
water is 30 cm . The difference between refractive indices of the two lenses is
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{3}{4}$

Answer: C

- Watch Video Solution

36. As the position of an object ( $u$ ) reflected
from a concave mirrorr is varies, the position of the image $(v)$ also varies. By letting the $u$ changes from 0 to $+\infty$ the graph between $v$ versus $u$ will be
A.


(c)


## Answer: A

## D Watch Video Solution

37. The graph between the lateral magnification $(m)$ produced by a lens and the distance of the image $(v)$ is given by

B.
b) $\uparrow \uparrow \underset{v}{\text { b }}$
C.
(c) ${ }_{0}^{\uparrow}$
D.
(d) $\uparrow \uparrow \underbrace{}_{v \longrightarrow}$

## Answer: C

## D Watch Video Solution

## Section B - Assertion Reasoning

1. Assertion: When an object is placed between two plane parallel mirrors, then all
the images found are of equal intensity.

Reason: In case of plane parallel mirrors, only two images are possible.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

## B. If both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

2. Assertion : The size of the mirror affect the nature of the image.

Reason : Small mirrors always forms a virtual image.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

3. Assertion : Just before setting, the sun may appear to be elliptical. This happens due to refraction.

Reason : Refraction of light ray through the atmosphere may cause different magnification in mutually perpendicular directions.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

## assertion.

C. If assertion is true but reason is false.
D. If assertion and reason both are false.

Answer: A

## D Watch Video Solution

4. Assertion : Critical angle of light passing from glass to air is minimum for violet colour. Reason : The wavelength of blue light is greater than the light of other colour.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: C

## D Watch Video Solution

5. Assertion : A piece of red glass is heated till
it glows in dark. The colour of glowing glass
would be orange.
Reason: Red and orange is complementary colours.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

6. Assertion : Within a glass slab, a double convex air bubble is formed. This air bubble behaves like a converging lens.

Reason: Refractive index of air is more than the refractive index of glass.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

## assertion.

C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

7. Assertion : The images formed by total internal reflections are much brighter than those formed by mirrors or lenses.

Reason : There is no loss of intensity in total internal reflection.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: A

## D Watch Video Solution

8. Assertion : The focal length of the lens does not change when red light is replaced by blue light.

Reason: The focal length of lens does not depends on colour of light used.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

9. Assertion : There is no dispersion of light refracted through a rectangular glass slab.

Reason : Dispersion of light is the phenomenon of splitting of a beam of white light into its constituent colours.
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

Answer: B
( Watch Video Solution
10. Assertion : All the materials always have
the same colour, whether viewed by reflected
light or through transmitted light.

Reason : The colour of material does not depend on nature of light.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

11. Assertions : A beam of white light give a spectrum on passing through a hollow prism.

Reason: Speed of light outside the prism is
different from the speed of light inside the prism.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

12. Assertion : By increasing the diameter of
the objective of telescope, we can increase its
range.

Reason : The range of a telescope tells us
how far away a star of some standard brightness can be spotted by telescope.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: B

# 13. Assertion : If objective and eye lenses of a 

 microscope are interchanged then it can work as telescope.Reason : The objective of telescope has small
focal length.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

## assertion.

C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: D

## D Watch Video Solution

14. Assertion : The illuminance of an image produced by a convex lens is greater is the middle and less towards the edges.

Reason : The middle part of image is formed by undeflected rays while out part by inclined rays.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

## assertion.

C. If assertion is true but reason is false.
D. If assertion and reason both are false.

Answer: A

## - Watch Video Solution

15. Assertion : Although the surfaces of a goggle lens are curved, it does not have any
power.
Reason: In case of goggles, both the curved surfaces have equal radii of curvature.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: A

## D Watch Video Solution

16. Assertion: If the angles of the base of the prism are equal, then in the position of minimum deviation, the refracted ray will pass parallel to the base of prism.

Reason : In the case of minimum deviation, the angle of incidence is equal to the angle of emergence.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.

## D. If assertion and reason both are false.

## Answer: A

## D Watch Video Solution

17. Assertion : Dispersion of light occurs because velocity of light in a material depends upon its colour.

Reason : The dispersive power depends only
upon the material of the prism, not upon the
refracting angle of the prism
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If assertion and reason both are false.

## Answer: B

18. Assertion : An empty test tube dipped into
water in a beaker appears silver, when viewed
from a suitable direction.

Reason : Due to refraction of light, the substance in water appears silvery.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

## assertion.

C. If assertion is true but reason is false.
D. If assertion and reason both are false.

Answer: C

## D Watch Video Solution

19. Assertion : Spherical aberration occur in
lenses of larger aperture.

Reason : The two rays, paraxial and marginal rays focus at different points.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.

## C. If assertion is true but reason is false.

## D. If assertion and reason both are false.

## Answer: A

D Watch Video Solution

## AIPMT/NEET Questions

1. Ray optics is valid when characteristic dimensions are
A. Of the same order as the wavelength of
light
B. Much smaller than the wavelength of
light
C. Of the order of one millimetre
D. Much larger then the wavelength of
light

## Answer: D

2. For a prism of refractive index 1.732 , the angle of minimum deviation is equal to the angle of the prism. The angle of the prism is
A. $80^{\circ}$
B. $70^{\circ}$
C. $60^{\circ}$
D. $50^{\circ}$

## Answer: C

3. Four lenses of focal length
$+15 \mathrm{~cm},+20 \mathrm{~cm},+150 \mathrm{~cm}$ and +250 cm are available for making an astronomical telescope. To produce the largest
magnification, the focal length of the eye-piece
should be
A. +15 cm
B. +20 cm
C. +150 cm
D. +250 cm

Answer: A

## D Watch Video Solution

4. Total flux produced by a source of $1 c d$ is
A. $\frac{1}{4 \pi}$
B. $8 \pi$
C. $4 \pi$
D. $\frac{1}{8 \pi}$
5. Light wave enters from medium 1 to medium
6. Its velocity in $2^{\text {nd }}$ medium is double from $1^{\text {st }}$.

For total internal reflection the angle of incidence must be greater than
A. $30^{\circ}$
B. $60^{\circ}$
C. $45^{\circ}$
D. $90^{\circ}$

Answer: A

## D Watch Video Solution

6. An object is at a distance of 0.5 m in front of
a plane mirrorr. Distance between the object
and image is
A. $0.5 m$
B. $1 m$
C. 0.25 m
D. $1.5 m$

Answer: B

## D Watch Video Solution

7. If the speed of light in vacuum is $C m / \mathrm{sec}$,
then the velocity of light in a medium of refractive index 1.5 is.
A. $1.5 \times C$
B. $C$
c. $\frac{C}{15}$
D. Can have any velocity

## Answer: C

## - Watch Video Solution

8. A person uses a lens of power $+3 D$ to
normalise vision. Near point of hypermetropic eye is
A. $1 m$
B. $1.66 m$
C. $2 m$
D. 0.66 m

Answer: A

## D Watch Video Solution

9. A small air bubble in a sphere of glass with
radius 4 cm appears to be 1 cm from the
surface when observed along a diameter. Find the true position of the air bubble.
A. 1.2 cm
B. 3.2 cm
C. 2.8 cm

D. 1.6 cm

## Answer: A

## D Watch Video Solution

10. A convex lens is dipped in a liquid whose refractive index is equal to the refractive of
the lens. Then its focal length will
A. Become infinite
B. Become small, but non-zero

## C. Remain unchanged

D. Become zero

## Answer: A

## - Watch Video Solution

11. An equiconvex lens is cut into two halves along $(i) X O X^{\prime}$ and $(i i) Y O Y^{\prime}$ as shown in the figure. Let $f, f^{\prime} f^{\prime \prime}$ be the focal lengths of the complete lens, of each half in case $(i)$, and of each half in case (ii), respectively

Choose the correct statement from the

## following


A. $f^{\prime}=2 f, f^{\prime \prime}=f$
B. $f^{\prime}=f, f^{\prime \prime}=f$
C. $f^{\prime}=2 f, f^{\prime \prime}=2 f$
D. $f^{\prime}=f, f^{\prime \prime}=2 f$

## Answer: D

## D Watch Video Solution

12. The sun makes $0.5^{\circ}$ angle on earth surface.

Its image is made by convex lens of 50 cm focal
length. The diameter of the image will be
A. 5 mm
B. 4.36 mm
C. 7 mm
D. None of these

Answer: B

## D Watch Video Solution

13. The chromatic aberration in lenses is due to
A. Dissimilarity of main axis of rays
B. Dissimilarity of radii of curvature
C. Variation of focal length of lenses with
wavelength

## D. None of these

## Answer: C

## D Watch Video Solution

14. A glass prism has refractive index $\sqrt{2}$ and refracting angle $30^{\circ}$. One of the refracting
surface of the prism is silvered. A beam of monchromatic light will retrace it path it its angle of incidence on the unsilvered refracting
surface of the prism is
A. $45^{\circ}$
B. $60^{\circ}$
C. $0^{\circ}$
D. $30^{\circ}$

Answer: A

- Watch Video Solution

15. A beam of light composed of red and green
ray is incident obliquely at a point on the face
of rectangular glass slab. When coming out on
the opposite parallel face, the red and green
ray emerge form
A. two points propagating in two different non- parallel directions
B. two points propagating in two different parallel directions
C. one point propagating in two different
directions
D. one point propagating in the same directions

Answer: B

## D Watch Video Solution

16. A telescope has an objective lens of 10 cm
diameter and is situated at a distance of one
kilometre from two objects. The minimum distance between these two objects, which can
be resolved by the telescope, when the mean
wavelength of light is $5000 \AA$, of the order of
A. $0.5 m$
B. $5 m$
C. 5 mm
D. 5 cm

## Answer: C

## - Watch Video Solution

17. A short linear object of length $b$ lies along
the axis of a concave mirror of focal length $f$ at
a distanee $u$ from the pole of the mirror. The
size of the image is approximately equal to
A. $b\left(\frac{u-f}{f}\right)^{1 / 2}$
B. $b\left(\frac{u-f}{f}\right)^{2}$
C. $b\left(\frac{f}{u-f}\right)^{1 / 2}$
D. $b\left(\frac{f}{u-f}\right)^{2}$

## Answer: D

## D Watch Video Solution

18. A person who can see things most clearly at a distance of 10 cm . Requires spectacles to
enable to him to see clearly things at a distance of 30 cm . What should be the focal length of the spectacles?
A. 15 cm (Concave)
B. 15 cm (Concave)
C. 10 cm
D. 0

Answer: A

D Watch Video Solution
19. A transparent cube of 15 cm edge contains
a small air bubble. Its apparent depth when
viewed through one face is 6 cm and when
viewed through the opposite face is 4 cm . Then
the refractive index of the material of the cube
is
A. 2.0
B. 2.5
C. 1.6
D. 1.5

## Answer: D

## - Watch Video Solution

20. The refractive indices of the material of the
prism and liquid are 1.56 and 1.32 respectively.

What will be the value of $\theta$ for the following
refraction?


$$
\begin{aligned}
& \text { A. } \sin \theta \leq \frac{13}{11} \\
& \text { B. } \sin \theta \geq \frac{11}{13} \\
& \text { C. } \sin \theta \geq \frac{\sqrt{3}}{2} \\
& \text { D. } \sin \theta \geq \frac{1}{\sqrt{2}}
\end{aligned}
$$

21. The angular resolution of a 10 cm diameter telescope at a wavelength $5000 \AA$ is of the order
A. $10^{6} \mathrm{rad}$
B. $10^{-2} \mathrm{rad}$
C. $10^{-4} \mathrm{rad}$
D. $10^{-6} \mathrm{rad}$

## - Watch Video Solution

22. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is
A. $36 \sqrt{5}$
B. $4 \sqrt{5}$
C. $36 \sqrt{7}$

D. $26 / \sqrt{7}$

## Answer: D

## D Watch Video Solution

23. A concave lens and a convex lens have same focal length of 20 cm and both put in contact this combination is used to view an object 5 cm long kept at 20 cm from the lens combination. As compared to object the image will be
A. Magnified and inverted
B. Reduced and erect
C. Of the same size and erect
D. Of the same size and inverted

## Answer: C

D Watch Video Solution
24. The focal length of field achromatic combination of a telescope is 90 cm .The
dispersive powers of lenses are 0.024 and 0.036 respectively .Their focal lengths will be-
A. 30 cm and 60 cm
B. 30 cm and -45 cm
C. 45 cm and 90 cm
D. 15 cm and 45 cm

## Answer: B

## D Watch Video Solution

25. A convex lens and a concave lens, each
having same focal length of 25 cm , are put in contact to form a combination of lenses. The power in diopters of the combination is
A. 25
B. 50
C. infinite
D. zero

## Answer: D

26. A microscope is focused on a mark on a piece of paper and then a slab of glass of thickness 3 cm and refractive index 1.5 is placed over the mark. How should the microscope be moved to get the mark in focus again?
A. 1 cm upward
B. 4.5 cm downward
C. 1 cm downward

## D. 2 cm upward

## Answer: A

## D Watch Video Solution

27. The frequency of a light wave in a material
is $2 \times 10^{14} \mathrm{~Hz}$ and wavelength is $5000 \AA$. The refractive index of material will be

A. 1.40

B. 1.50
C. 3.00

$$
\text { D. } 1.33 S
$$

## Answer: C

## D Watch Video Solution

28. A small coin is resting on the bottom of a
beaker filled with a liquid. A ray of light from
the coin travels up to the surface of the liquid and moves along its surface (see figure).

How fast is the light travelling in the liquid ?

A. $1.8 \times 10^{8} \mathrm{~m} / \mathrm{s}$
B. $2.4 \times 10^{8} \mathrm{~m} / \mathrm{s}$
C. $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$
D. $1.2 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer: A
29. Two thin lenses of focal length $f_{1}$ and $f_{2}$ are in contact and coaxial. The power of the combination is
A. $\sqrt{\frac{f_{1}}{f_{2}}}$
B. $\sqrt{\frac{f_{2}}{f_{1}}}$
C. $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$
D. $\frac{f_{1}+f_{2}}{f_{1} f_{2}}$

Answer: D
30. A boy is trying to start a fire by focusing sunlight on a piece of paper using an equiconvex lens of focal length 10 cm . The diameter of the sun is $1.39 \times 10^{9} \mathrm{~m}$ and its mean distance from the earth is $1.5 \times 10^{11} \mathrm{~m}$.

What is the diameter of the sun's image on the paper?

$$
\text { A. } 9.2 \times 10^{-4} m
$$

$$
\text { B. } 6.5 \times 10^{-4} m
$$

C. $6.5 \times 10^{-5} \mathrm{~m}$

$$
\text { D. } 12.4 \times 10^{-4} m
$$

## Answer: A

## D Watch Video Solution

31. A ray of light travelling in a transparant medium falls on a surface separating the medium from air at an angle of incidence of

45 degree. The ray undergoes total internal reflection. If n is the refractive in index of the
medium with respect to air, select the possible value (s) of n from the following:

$$
\text { A. } \mu=1.33
$$

B. $\mu=1.40$
C. $\mu=1.50$
D. $\mu=1.25$

Answer: C
( Watch Video Solution
32. Which of the following is not due to total internal reflection?
A. Differece between apparent and real depth of a pond
B. Mirage on hot summer days
C. Brilliance of diamond
D. Working of optical fibre

Answer: A

- Watch Video Solution

33. A biconvex lens has a radius of curvature of magnitude 20 cm . Which one of the following options describes best the image formed of an object of height 2 cm place 30 cm from the lens ?
A. Virtual , upright, height $=0.5 \mathrm{~cm}$
B. Real, inverted, height $=4 \mathrm{~cm}$
C. Real, inverted, height $=1 \mathrm{~cm}$
D. Virtual, upright, height $=1 \mathrm{~cm}$

Answer: B

## - Watch Video Solution

34. A thin prism of angle $15^{\circ}$ made of glass of refractive index $\mu_{1}=1.5$ is combined with another prism of glass of refractive index $\mu_{2}=1.75$. The combination of the prism produces dispersion without deviation. The angle of the second prism should be A. $7^{\circ}$
B. $10^{\circ}$
C. $12^{\circ}$
D. $5^{\circ}$

## Answer: B

## D Watch Video Solution

35. A converging beam of rays in incident on a diverging lens. Having passed through the
lens the rays intersect at a point 15 cm from
the lens. If the lens is removed, the point
where the rays meet, move 5 cm closer to the
mounting that holds the lens. Find the focal
length of the lens.
A. -10 cm
B. 20 cm
C. -30 cm
D. 5 cm

Answer: C

D Watch Video Solution
36. When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts as a plane sheet of glass. This implies that the liquid must have refractive index.
A. less than that of glass
B. equal to that of glass
C. less than one
D. greater than that of glass

Answer: B

## D Watch Video Solution

37. A ray of light is incident at small angle I on
the surface of prism of small angle A and emerges normally from the oppsite surface. If the refractive index of the material of the prism is mu, the angle of incidence is nearly equal to
A. $\frac{A}{2 \mu}$
B. $\mu A$
C. $\frac{\mu A}{2}$
D. $\frac{A}{\mu}$

Answer: B

## - Watch Video Solution

38. A concave mirrorr of focal length $f_{1}$ is
placed at a distance of $d$ from a convex lens of
focal length $f_{2}$. A beam of light coming from infinity and falling on this convex lens-concave mirrorr combination returns to infinity. The distance $d$ must equal.

$$
\text { A. }-2 f_{1}+f_{2}
$$

B. $f_{1}+f_{2}$
C. $-f_{1}+f_{2}$
D. $2 f_{1}+f_{2}$

## Answer: D

## D Watch Video Solution

39. The magnifying power of a telescope is 9 .

When it is adjusted for parallel rays the distance between the objective and eyepiece is 20 cm . The focal lengths of lenses are
A. $11 \mathrm{~cm}, 9 \mathrm{~cm}$
B. $10 \mathrm{~cm}, 10 \mathrm{~cm}$
C. $15 \mathrm{~cm}, 5 \mathrm{~cm}$
D. $18 \mathrm{~cm}, 2 \mathrm{~cm}$

## Answer: D

## D Watch Video Solution

40. For the angle of minimum deviation of a prism to be equal to its refracting angle, the
prism must be made of a material whose refractive index
A. lies between $\sqrt{2}$ and 1
B. lies between 2 and $\sqrt{2}$
C. is less than 1
D. is greater than 2

Answer: B
( Watch Video Solution
41. A rod of length 10 cm lies along the principal axis of a concave mirror of focal length 10 cm in such a way that the end closer to the pole is 20 cm away from it. Find the length of the image.
A. 10 cm
B. 15 cm
C. 2.5 cm
D. 5 cm

## - Watch Video Solution

42. A plano-convex lens fits exactly into a plano-concave lens. Their plane surfaces are parallel to each other. If the lenses are made of different material of refractive indices $\mu_{1}$ and $\mu_{2}$ and R is the radius of curvature of the curved surface of the lenses, then focal length of the combination is

$$
\begin{aligned}
& \text { A. } \frac{R}{2\left(\mu_{1}+\mu_{2}\right)} \\
& \text { B. } \frac{R}{2\left(\mu_{1}-\mu_{2}\right)}
\end{aligned}
$$

> C. $\frac{R}{\left(\mu_{1}-\mu_{2}\right)}$
> D. $\frac{R}{\left(\mu_{1}+\mu_{2}\right)}$

## Answer: C

## - Watch Video Solution

43. For a normal eye, the cornea of eye provides a converging power of $40 D$ and the
least converging power of the eye lens behind the cornea is $20 D$. Using this information, the
A. 5 cm
B. 2.5 cm
C. 1.67 cm
D. 1.5 cm

Answer: C

D Watch Video Solution
44. If the focal length of the objective lens is increased then
A. Microscope will telescope both will
decrease
B. Microscope and telescope both will
increase
C. Microscope and telscope both will
decrease

# D. Microscope will decrease but that of 

 telescope will increase.
## Answer: D

## D Watch Video Solution

45. Angle of prism is $A$ and its one surface is
silvered. Light rays falling at an angle of incidence $2 A$ on first surface return back through the same path after suffering
reflection at second silvered surface.

Refraction index of the material of prism is
A. $2 \sin A$
B. $2 \cos A$
C. $\frac{1}{2} \cos A$
D. $\tan A$

Answer: B
( Watch Video Solution
46. The refracting angle of a prism is $A$ and refractive index of the material of the prism is $\cos (A / 2)$. The angle of minimum deviation is
A. $180^{\circ}-3 A$
B. $180^{\circ}-2 A$
C. $90^{\circ}-A$
D. $180^{\circ}+2 A$

Answer: B

D Watch Video Solution
47. Two identical thin planoconvex glass lenses
(refractive index 1.5) each having radius of
curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7. The focal length of the combination is
A. -20 cm
B. -25 cm
C. -50 cm
D. 50 cm

## Answer: C

## D Watch Video Solution

48. In an astronomical telescope in normal adjustment a straight black line of length $L$ is drawn on inside part of objective lens. The eye piece forms a real image of this line. The length of this image is $I$. The magnification of the telescope is
A. $\frac{L}{I}$
B. $\frac{L}{I}+1$
C. $\frac{L}{I}-1$
D. $\frac{L+I}{L-I}$

Answer: A

D Watch Video Solution
49. A beam of light consisting of red, green and blue colours is incident on a right angled prism, fig. The refractive indices of the material
of the prism for the above red, green and blue wavelengths are 1.39, 1.44 and 1.47 respectively.

The prism will`

A. separate the red colour apart from the green and blue colours
B. separate the blue colour apart from the

# C. separate all the three colours from one 

## another

## D. not separate the three colours at all

## Answer: A

## D Watch Video Solution

50. The angle of incidence for a ray of light at a refracting surface of a prism is $45^{\circ}$. The angle of prism is $60^{\circ}$. If the ray suffers minimum deviation through the prism, the
angle of minimum deviation and refractive index of the material of the prism respectively, are :
A. $45^{\circ}, \frac{1}{\sqrt{2}}$
B. $30^{\circ}, \sqrt{2}$
C. $45^{\circ}, \sqrt{2}$
D. $30^{\circ}, \frac{1}{\sqrt{2}}$

Answer: B

D Watch Video Solution
51. An astronomical telesope has objective and eyepiece of focal lengths 40 cm and 4 cm respectively. To view an object 200 cm away from the objective, the lenses must be separated by a distance :
A. 37.3 cm
B. 46.0 cm
C. 50.0 cm
D. 54.0 cm
52. Two identical glass ( $\mu_{g}=3 / 2$ ) equiconvex lenses of focal length $f$ are kept in contact. The space between the two lenses is filled with water ( $\mu_{w}=4 / 3$ ). The focal length of the combination is
A. $4 f / 3$
B. $3 f / 4$
C. $f / 3$
D. $f$

Answer: B

## D Watch Video Solution

53. An air bubble in a glass slab with refractive index 1.5 (near normal incidence) is 5 cm deep when viewed from one surface and 3 cm deep when viewed from the opposite face. The thickness (in cm ) of the slab is
A. 12
B. 16

## C. 8

## D. 10

## Answer: A

## D Watch Video Solution

54. A person can see objects clearly only when
they lie between 50 cm and 400 cm from his
eyes. In order to increase the maximum distance of distinct vision to infinity, the type
and power of the correcting lens, the person has to use, will be
A. concave, -0.2 diopter
B. convex, +0.15 diopter
C. convex, +2.25 diopter

D. concave, -0.25 diopter

## Answer: D

## D Watch Video Solution

55. A beam of light from a source $L$ is incident normally on a plane mirror fixed at a certain distance $x$ from the source. The beam is reflected back as a spot on a scale placed just above the source $L$. When the mirror is rotated through a small angle $\theta$, the spot of the light is found to move through a distance $y$ on the scale. The angle $\theta$ is given by :
A. $\frac{y}{x}$
B. $\frac{x}{2 y}$
c. $\frac{x}{y}$

## D. $\frac{y}{2 x}$

## Answer: D

## - Watch Video Solution

56. A thin prism having refracting angle $10^{\circ}$ is made of glass of refracting index 1.42. This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be :
A. $6^{\circ}$
B. $8^{\circ}$
C. $10^{\circ}$
D. $4^{\circ}$

Answer: A

D Watch Video Solution
57. An object is placed at a distance of 40 cm
from a concave mirror of focal length 15 cm . If
the object is displaced through a distance of

20 cm towards the mirror, the displacement of the image will be
A. 36 cm towards the mirrorr
B. 30 cm away from the mirrorr
C. 30 cm towards the mirrorr
D. 36 cm away from the mirrorr

Answer: D

## D Watch Video Solution

58. A glass prism has refractive index $\sqrt{2}$ and refracting angle $30^{\circ}$. One of the refracting
surface of the prism is silvered. A beam of monchromatic light will retrace it path it its angle of incidence on the unsilvered refracting
surface of the prism is
A. zero
B. $60^{\circ}$
C. $30^{\circ}$
D. $45^{\circ}$

## Answer: D

## - Watch Video Solution

59. An astronomical refracting telescope will
have large angular magnification and high
angular resolution, when it has an objective lens of
A. Small focal length and small diameter
B. Small focal length and large diameter
C. Large focal length and large diameter

## D. Large focal length and small diameter

## Answer: C

## D Watch Video Solution

60. The resolving lime of healthy eye is about
A. $1^{\prime}$ or $\left(\frac{1}{60}\right)^{\circ}$
B. $1^{\prime \prime}$
C. $1^{\circ}$
D. $\frac{1^{\prime \prime}}{60}$

Answer: A

## D Watch Video Solution

61. A concave mirror of focal length 15 cm
forms an image having twice the linear dimensions of the object. The position of the object when the image is virtual will be
A. 22.5 cm
B. 7.5 cm
C. 40 cm
D. 30 cm

## Answer: B

## D Watch Video Solution

62. Four lenses of focal length
$+15 \mathrm{~cm},+20 \mathrm{~cm},+150 \mathrm{~cm}$ and +250 cm are available for making an astronomical telescope. To produce the largest magnification, the focal length of the eye-piece should be
A. +250 cm
B. +155 cm
C. +15 cm
D. 25 cm

## Answer: C

## D Watch Video Solution

63. A ray of light is incident on the surface of plate of glass of refractive index 1.5 at the
polarising angle. The angle of refraction of the ray will be
A. $33.7^{\circ}$
B. $23.7^{\circ}$
C. $43.7^{\circ}$
D. $53.7^{\circ}$

Answer: B
( Watch Video Solution
64. An astronaut is looking down on earth's
surface from a space shuttle at an altitude of
400 km . Assuming that the astronaut's pupil
diameter is 5 mm and the wavelength of
visible light is 500 nm . The astronaut will be able to resolve linear object of the size of about.
A. $0.5 m$
B. $5 m$
C. 50 m
D. 500 m

## Answer: C

## D Watch Video Solution

65. In an experiment to find focal length of a
concave mirror, a graph is drawn between the magnitudes of (u) and (v). The graph looks like.



## Answer: C

## - Watch Video Solution

66. An object is immersed in a fluid. In order
that the object becomes invisible, it should
A. behave as a perfect reflector
B. have refractive index exactly matching
with that of the surrounding fluid
C. absorb all light falling on it
D. have refractive index one

## Answer: B

## D Watch Video Solution

67. An endoscope is employed by a physician
to view the internal parts of body organ. It is
based on the principle of
A. total internal reflection
B. refraction
C. reflection
D. dispersion

Answer: A

D Watch Video Solution
68. A telescope has an objective lens of focal length 200 cm and an eye piece with focal length 2 cm . If this telescope is used to see a 50 meter tall building at a distance of 2 km , what is the height of the image of the building formed by the objective lens?
A. 5 cm
B. 10 cm
C. 1 cm
D. 2 cm

Answer: A

## - Watch Video Solution

69. The apparent depth of water in cylindrical water tank of diameter $2 R \mathrm{~cm}$ is reducing at
the rate of $x \mathrm{~cm} / \mathrm{min}$ when water is being drained out at a constant rate. The amount of water drained in c.c. per minute is $\left(n_{1}=\right.$ refractive index of air, $n_{2}=$ refractive index of water)
A. $x \pi R^{2} n_{1} / n_{2}$
B. $x \pi R^{2} n_{2} / n_{1}$
C. $2 \pi R n_{1} / n_{2}$
D. $\pi R^{2} x$

## Answer: B

## D Watch Video Solution

70. An optical fiber consists of core of $\mu_{1}$ surrounded by a cladding of $\mu_{2}<\mu_{1}$. A beam of light enters from air at an angle $\alpha$ with axis
of fiber. The highest $\alpha$ for which ray can be travelled through fiber is

A. $\cos ^{-1} \sqrt{\mu_{2}^{2}-\mu_{1}^{2}}$
B. $\sin ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$
C. $\tan ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$
D. $\sec ^{-1} \sqrt{\mu_{1}^{2}-\mu_{2}^{2}}$

Answer: B
71. In refraction, light waves are bent on passing from one medium to the second medium, because, in the second medium
A. the speed is different
B. the frequency is different
C. the coefficient of elasticity is different
D. the amplitude is smaller

## Answer: A

72. A wire mesh consisting of very small squares is viewed at a distance of 8 cm through a magnifying converging lens of focal length 10 cm , kept close to the eye. The magnification produced by the lens is:
A. 8
B. 20
C. 10
D. 5

## Answer: D

## D Watch Video Solution

73. A lens is made of flint glass (refractive index $=1.5$ ). When the lens is immersed in a
liquid of refractive index 1.25 , the focal length:
A. increases by a factor of 1.25
B. increases by a factor of 1.2
C. decreases by a factor of 1.2

## D. increases by a factor of 2.5

## Answer: D

## D Watch Video Solution

74. In a compound microscope, the focal
length of the objective and the eye lens are
2.5 cm and 5 cm respectively. An object is
placed at 3.75 cm before the objective and image is formed at the least distance of distinct vision, then the distance between two
lenses will be (i.e. length of the microscope tube )
A. 11.67 cm
B. 12.67 cm
C. 13.00 cm
D. 12.00 cm

Answer: A
( Watch Video Solution

## 75. A thin glass (refractive index 1.5) lens has

optical power of $-5 D$ in air. Its optical power
in a liquid medium with refractive index 1.6 will be
A. $25 D$
B. $-1 D$
C. $1 D$

$$
\text { D. }-25 D
$$

## Answer: C

76. A fish looking up through the water sees
the outside world contained in a circular horizon. If the refractive index of water is $\frac{4}{3}$ and the fish is 12 cm below the surface, the radius of this circle is cm is
A. $36 \sqrt{7}$
B. $36 \sqrt{5}$
C. $\frac{36}{\sqrt{7}}$
D. $4 \sqrt{5}$

## Answer: C

## D Watch Video Solution

77. A beam of light propagating in medium A with index of refraction $n(A)$ passes across an interface into medium $B$ with index of refraction $n(B)$. If $v(A)$ and $v(B)$ are the speeds of light in $A$ and $B$ respectively. Then which of the following is true?

$$
\text { A. } v(A)>v(B) \text { and } n(A)>n(B)
$$

# B. $v(A)>v(B)$ and $n(A)<n(B)$ <br> C. $v(A)<v(B)$ and $n(A)>n(B)$ <br> D. $v(A)<v(B)$ and $n(A)<n(B)$ 

Answer: B

## D Watch Video Solution

78. A microscope is focused on a coin lying at the bottom of a beaker. The microscope is now raised up by 1 cm . To what depth should the water be poured into the beaker so that coin
is again in focus ? (Refractive index of water is

4/3)
A. 1 cm
B. $4 / 3 \mathrm{~cm}$
C. 3 cm
D. 4 cm

Answer: D
( Watch Video Solution
79. A diver in a swimming poole wants to signal his distress to a person lying on the edge of the pool by flashing his water proof flash light
A. He must direct the beam vertically
upwards
B. He has to direct the beam horizontally
C. He has to direct the beam at an angle to
the vertical which is slightly less than
the cirtical angle of incidence for total
internal reflection.
D. He has to direct the beam at an angle to
the vertical which is slightly more than
the critical angle of incidence for the total internal reflection.

Answer: C

## - Watch Video Solution

80. A ray of monochromatic light is incident on one refracting face of a prism of angle $75^{\circ}$. It passes through the prism and is incident on the other face at the critical angle. If the refractive index of the material of the prism is
$\sqrt{2}$, the angle of incidence on the first face of the prism is
A. $30^{\circ}$
B. $45^{\circ}$
C. $60^{\circ}$

## D. $0^{\circ}$

## Answer: B

## D Watch Video Solution

81. A combination of two thin lenses with focal
lengths $f_{1}$ and $f_{2}$ respectively forms and image of distant object at distance 60 cm when lenses are in contact. The position of
this image shifts by 30 cm towards the combination when two lenses are separated
by 10 cm . The corresponding values of $f_{1}$ and $f_{2}$ are
A. $30 \mathrm{~cm},-60 \mathrm{~cm}$
B. $20 \mathrm{~cm},-30 \mathrm{~cm}$
C. $15 \mathrm{~cm},-20 \mathrm{~cm}$
D. $20 \mathrm{~cm},-15 \mathrm{~cm}$

Answer: B

D Watch Video Solution
82. A thin made of glass of refractive index 1.5
has a front surface $+11 D$ power and back
surface $-6 D$. If this lens is submerged in a
liquid of refractive index 1.6 , the resulting power of the lens is
A. $-0.5 D$
B. $+0.5 D$
C. $-0.625 D$
D. $+0.625 D$

## - Watch Video Solution

83. A thin prism $P_{1}$ with angle 4 degree and made from glass of refractive index 1.54 is combined with another thin prism $P_{2}$ made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism $P_{2}$ is
A. $3^{\circ}$
B. $5.33^{\circ}$
C. $2.6^{\circ}$

## D. $4^{\circ}$

## Answer: A

## - Watch Video Solution

84. Figure given below shows a beam of light converging at point $P$. When a convex lens of
focal length 16 cm is introduced in the path of
the beam at a place $O$ shown by dotted line
such that $O P$ becomes the axis of the lens,
the beam converges at a distance $x$ from the
lens. The value $x$ will be equal to

A. 12 cm
B. 24 cm
C. 36 cm
D. 48 cm

Answer: D
85. An equilateral prism is placed on a horizontal surface. A ray PQ is incident onto it.

For minimum deviation `

A. $P Q$ is horizontal
B. $Q R$ is horizontal
C. $R S$ is horizontal
D. Either $P Q$ or $R S$ is horizontal

Answer: B

## D Watch Video Solution

86. In a laboratory four convex lenses
$L_{1}, L_{2}, L_{3}$ and $L_{4}$ of focal lengths $2,4,6$ and

8 cm respectively are available. Two of these lenses form a telescope of length 10 cm and
magnifying power 4 . The objective and eye
lenses are
A. $L_{2}, L_{3}$
B. $L_{1}, L_{4}$
C. $L_{3}, L_{2}$
D. $L_{4}, L_{1}$

Answer: D
( Watch Video Solution
87. The average distance between the earth
and moon is $3.86 \times 10^{4} \mathrm{~km}$. The minimum
separation between the two points on the surface of the moon that can be resolved by a telescope whose objective lens has a diameter os $5 m$ with $\lambda=6000 \AA$ is
A. 5.65 m
B. $28.25 m$
C. 11.30 m
D. 56.51 m

## Answer: D

## D Watch Video Solution

88. One side of a glass slab is silvered as
shown. A ray of light is incident on the other
side at angle of incidence $i=45^{\circ}$. Refractive index of glass is given as 1.5 . The deviation of
the ray of light from its initial path when it
comes out of the slab is

A. $90^{\circ}$
B. $180^{\circ}$
C. $120^{\circ}$
D. $45^{\circ}$

Answer: A
89. A double convex lens, lens made of a material of refractive index $\mu_{1}$, is placed inside two liquids or refractive indices $\mu_{2}$ and $\mu_{3}$, as
shown. $\mu_{2}>\mu_{1}>\mu_{3}$. A wide, parallel beam of light is incident on the lens from the left. The lens will give rise to

A. a single convergent beam
B. two different convergent beams
C. two different divergent beams
D. a convergent and a divergent beam

## Answer: D

D Watch Video Solution
90. The graph shows variation of $v$ with change in $u$ for a mirrorr. Points plotted above
the point $P$ on the curve are for values of $v$

A. smaller than $f$
B. smaller than $2 f$
C. larger than $2 f$
D. larger than $f$
91. Two similar planoconvex lenses are combined together in three different ways as shown in the adjoining figure. The ratio of the
focal lengths in three cases will be

A. $2: 2: 1$
B. 1:1:1

## C. $1: 2: 2$

D. 2:1:1

Answer: B

## - Watch Video Solution

92. A point object $O$ is placed in front of a glass rod having spherical end of radius of curvature 30 cm . The image would be formed
at

A. 30 cm left
B. Infinity
C. 1 cm to the right
D. 18 cm to the left

Answer: A
93. A 2.0 cm tall object is placed 15 cm in front of concave mirrorr of focal length 10 cm . The size and nature of the image will be
A. 1.0 cm , real
B. $4 c m$, virtual
C. $4 c m$, real
D. none of these

## Answer: C

94. A person can see clearly only up to a
distance of 25 cm . He wants to read a book placed at a distance of 50 cm . What kind of lens does he require for his spectacles and what must be its power?
A. Concave, $-1.0 D$
B. Convex,$+1.5 D$
C. Concave, -2.0 D
D. Convex, $+2.0 D$

Answer: C

# 95. In a simple microscope of focal length 5 cm 

final image is formed at $D$, then its magnification will be
A. 6
B. 5
C. 2
D. 1

## Assertion Reason

1. Assertion: In a movie, ordinarily 24 frames are projected per second from one end to the other of the complete film.

Reason : The image formed on retina of eye is
sustained up to $1 / 10 s$ after the removal of
stimulus.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: C

2. Assertion : Blue colour of sky appears due to scattering of blue colour.

Reason : Blue colour has shortest wave length in visible spectrum.
A. If both the assertion and reason are true and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.

## D. If assertion is false but reason is true.

## Answer: A

## D Watch Video Solution

3. Assertion : The air bubble shines in water.

Reason : Air bubble in water shines due to refraction of light.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

4. Assertion : The stars twinkle while the planets do not.

Reason : The stars are much bigger in size than the planets.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.

## D. If assertion is false but reason is true.

## Answer: B

## D Watch Video Solution

5. Assertion : Owls can move freely during
night.

Reason : They have large number of rods on their retina.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: C

6. Assertion : In optical fiber, the diameter of the core is kept small.

Reason : This smaller diameter of the core ensures that the fiber should have incident angle more than the critical angle required for total internal reflection.
A. If both the assertion and reason are true and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: A

## D Watch Video Solution

7. Assertion : A concave mirror and convex lens
both have the same focal length in air. When
they are submerged in water, they will have same focal length.

Reason refractive index of water is smaller than be refractive index of air.
A. If both the assertion and reason are true and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## - Watch Video Solution

8. In each of the questions, assertion(A) is given by corresponding statement of reason (R) of the statemens. Mark the correct answer.
Q. Statement I: The formula connecting u,v and $f$ for a spherical mirror is valid only for mirrors whose sizes are very small compared to their radii of curvature.

Statement II: Laws of reflection are strictly valid for plane surfaces, but not for large spherical surfaces.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: C

9. Assertion : The setting sun apears to be red.

Reason : Scattering of light is directly proportional to the wavelength .
A. If both the assertion and reason are true and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.

## D. If assertion is false but reason is true.

## Answer: C

## D Watch Video Solution

10. Assertion : A double convex lens $(\mu=1.5)$
has focal length 10 cm . When the lens is immersed in water $(\mu=4 / 3)$ its focal length becomes 40 cm .

Reason : $\frac{1}{f}=\frac{\mu_{1}-\mu_{m}}{\mu_{m}}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A
11. Assertion : The colour of the green flower
seen through red glass appears to be dark.
Reason : Red glass transmits only red light.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: A

## - Watch Video Solution

12. Assertion : The focal length of the mirror
is $f$ and distance of the object from the focus
is $u$, the magnification of the mirror is $f / u$.
Reason : Magnification $=\frac{\text { Size of the image }}{\text { Size of object }}$
A. If both the assertion and reason are true and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

Answer: A

D Watch Video Solution
13. Assertion : Dispersion of light occurs because velocity of light in a material depends upon its colour.

Reason : The dispersive power depends only
upon the material of the prism, not upon the refracting angle of the prism
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: B

## D Watch Video Solution

14. Statement I: A ray is incident from outside on a glass sphere surrounded by air as shown in Figure. This ray may suffer total internal reflection at the second interface.

## Second <br> interface



Statement II: For a ray going from a denser to rarer medium, the ray may suffer total internal reflection.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.
D. If assertion is false but reason is true.

## Answer: B

## - Watch Video Solution

15. Assertion : Rainy clouds appear dark from
below.

Reason : There is not sufficient light which can be scattered by these clouds.
A. If both the assertion and reason are true
and reason explains the assertion.
B. If both the assertion and reason are true
but reason does not explain the
assertion.
C. If assertion is true but reason is false.

## D. If assertion is false but reason is true.

## Answer: A

## - Watch Video Solution

Section D - Chapter End Test

1. Wavelength of light used in an optical
instrument are $\lambda_{1}=400 \AA$ and $\lambda_{2}=5000 \AA$,
then ratio of their respective resolving power
(corresponding to $\lambda_{1}$ and $\lambda_{2}$ ) is
A. $16: 25$
B. $9: 1$
C. $4: 5$
D. 5: 4

## Answer: D

## D Watch Video Solution

2. A plano convex lens of refractive index 1.5 and radius of curvature 30 cm . Is silvered at the
form the image of an object. At what distance
from this lens an object be placed in order to
have a real image of size of the object.
A. 20 cm
B. 30 cm
C. 60 cm
D. 80 cm

Answer: A

D Watch Video Solution
3. A light ray is incident perpendicularly to one face of a $90^{\circ}$ prism and is totally internally reflected at the glass-air interface. If the angle of reflection is $45^{\circ}$, we conclude that the refractive index $n$

A. Less than 1.41
B. Equal to 1.41

## C. Greater than 1.41

D. None of these

## Answer: C

## - Watch Video Solution

4. A thin glass (refractive index 1.5) lens has
optical power of $-5 D$ in air. Its optical power
in a liquid medium with refractive index 1.6 will be
A. $25 D$
B. $-25 D$
C. $1 D$
D. None of these

## Answer: D

## D Watch Video Solution

5. Which of the following graphs is the magnification of a real image against the distance from the focus of a concave mirrorr?


## Answer: D

6. A thin prism $P_{1}$ with angle 4 degree and made from glass of refractive index 1.54 is combined with another thin prism $P_{2}$ made from glass of refractive index 1.72 to produce dispersion without deviation. The angle of the prism $P_{2}$ is
A. $2.6^{\circ}$
B. $3^{\circ}$
C. $4^{\circ}$
D. $5.33^{\circ}$

Answer: B

## D Watch Video Solution

7. A converging lens is used to form an image on a screen. When the upper half of the lens is
covered by an opaque screen
A. Half the image will disappear
B. Complete image will be formed of same intensity
C. Half image will be formed of same intensity
D. Complete image will be formed of decreased intensity.

## Answer: D

## D Watch Video Solution

8. A diminished image of an object is to be obtained on a screen 1.0 m from it. This can be achieved by appropriately placing
A. A convex mirror of suitable focal length
B. A concave mirrorr of suitable focal
length
C. A concave lengs of suitable focal length
D. A convex lens of suitable focal length
less than $0.25 m$

Answer: D
( Watch Video Solution
9. An object 15 cm high is placed 10 cm from the
optical center of a thin lens. Its image is
formed 25 cm from the optical center on the same side of the lens as the object. find the height of image
A. 2.5 cm
B. 0.2 cm
C. 16.7 cm
D. 37.5 cm

Answer: D

## - Watch Video Solution

10. A lens forms a virtual, diminished image of an object placed at $2 m$ from it. The size of image is half of the object. Which one of the following statements is correct regarding the nature and focal length of the lens ?
A. Concave $|f|=1 m$
B. Convex, $|f|=1$
C. Concave, $|f|=2 m$

## D. Convex, $|f|=2 m$

## Answer: C

## - Watch Video Solution

11. When the distance between the object and
the screen is more than $4 f$. We can obtain image of the object on the screen for the two positions of the lens. If is called displacement method. In one case, the image is magnified and in the other case, it is diminished. If $I_{1}$ and
$I_{2}$ be the sized of the two images, then the size of the object is
A. $\sqrt{I_{1} I_{2}}$
B. $\sqrt{\frac{I_{1}}{I_{2}}}$
C. $I_{1}-I_{2}$
D. $\frac{I_{1}+I_{2}}{2}$

Answer: A
( Watch Video Solution
12. a convex lens of power +6 diopter is
placed in contact with a concave lens of power
-4 diopter. What will be the nature and focal length of this combination?
A. Concave, 25 cm
B. Convex, 50 cm
C. Concave, 20 cm
D. Convex, 100 cm

Answer: B
13. A concave lens of focal length 20 cm product an image half in size of the real object. The distance of the real object is
A. 20 cm
B. 30 cm
C. 10 cm
D. 60 cm

Answer: A
14. A convex lens of focal length 1.0 m and a concave lens of focal length 0.25 m are 0.75 m apart. A parallel beam of light is incident on the convex lens. The beam emerging after refraction from both lenses is
A. Parallel to principle axis
B. Convergent
C. Divergent
D. None of the above

Answer: A

## D Watch Video Solution

15. If in a planoconvex lens, the radius of
curvature of the convex surface is 10 cm and
the focal length is 30 cm , the refractive index of the material of the lens will be
A. 1.5
B. 1.66
C. 1.33
D. 3

## Answer: C

## D Watch Video Solution

16. A convex lens A of focal length 20 cm and a
concave lens $G$ of focal length 5 cm are kept along the same axis with the distance $d$ between them. If a parallel beam of light falling on $A$ leaves $B$ as a parallel beam, then distance d in cm will be
A. 25
B. 15
C. 30
D. 50

## Answer: B

## D Watch Video Solution

17. The radii of curvature of the two surfaces of
a lens are 20 cm and 30 cm and the refractive
index of the material of the lens is 1.5 . If the
lens is concave - convex, then the focal length of lens is
A. 24 cm
B. 10 cm
C. 15 cm
D. 120 cm

Answer: D
( Watch Video Solution
18. A lens forms a virtual image 4 cm away from
it when an object is placed 10 cm away from it.
The lens is a ..... Lens of focal length
A. concave, 6.67 cm
B. concave, 2.86 cm
C. convex, 2.86 cm
D. may be concave or convex, 6.67 cm .

Answer: A

D Watch Video Solution
19. A concave lens of focal length $\frac{1}{3} m$ forms a real, inverted image twice in size of the object.

The distance of the object from the lens is
A. $0.5 m$
B. $0.166 m$
C. $0.33 m$
D. $1 m$

Answer: A

D Watch Video Solution
20. An object is placed at a distance of $f / 2$
from a convex lens. The image will be
A. at one of the foci, virtual and double its
size
B. at $\frac{3 f}{2}$, real and inverted
C. at $2 f, m$ virtual and erect
D. none of these

Answer: A

- Watch Video Solution

21. The graph shows how the magnification $m$ produced by a convex thin lens varies with image distance $v$. What was the focal length of the used ?


$$
\text { A. } \frac{b}{c}
$$

B. $\frac{b}{c a}$
C. $\frac{b c}{a}$
D. $\frac{c}{b}$

## Answer: D

## D Watch Video Solution

22. A convex lens forms an image of an object
placed 20 cm away from it at a distance of

20 cm on the other side of the lens. If the
object is moves 5 cm toward the lens, the image will be
A. 5 cm towards the lens
B. 5 cm away from the lens
C. 10 cm towards the lens
D. 10 cm away from the lens

Answer: D
( Watch Video Solution
23. A converging lens is to projected image of
a lamp 4 times the size of the lamp on a wall at a distance of 10 m from the lamp. The focal length of the lens is
A. $1.6 m$
B. $2.67 m$
C. $4.4 m$
D. $-1.6 m$

Answer: A
24. A thin lens produces an upright image of
the same size as the object. Then from the optical centre of the lens, the distance of the object is .
A. Zero
B. $4 f$
C. $2 f$
D. $\frac{f}{2}$

Answer: A

## - Watch Video Solution

25. A convex lens of focal length 10 cm and
concave lens of focal length 20 cm are kept

5 cm apart. The focal length of the equivalent lens is
A. $\frac{120}{3} \mathrm{~cm}$
B. 18 cm
C. 30 cm
D. $\frac{40}{3}$

## Answer: D

## D Watch Video Solution

26. The focal lengths of the objective and eye

- lens of a microscope are 1 cm and 5 cm
respectively. If the magnifying power for the relaxed eye is 45 , then the length of the tube is
A. 6 cm
B. 9 cm
C. 12 cm
D. 15 cm


## Answer: D

## D Watch Video Solution

27. A microscope has an objective of focal
length 1.5 cm and eye piece of focal length
2.5 cm . If the distance between objective and eyepiece is 25 cm . What is the approximate
value of magnification produced for relaxed eye ?
A. 75
B. 110
C. 140
D. 25

Answer: C
( Watch Video Solution
28. An equiconvex lens is cut into two halves along (i)XOX' and (ii)YOY' as shown in the figure. Let $f, f^{\prime} f^{\prime \prime}$ be the focal lengths of the complete lens, of each half in case $(i)$, and of each half in case ( $i i$ ), respectively

Choose the correct statement from the following

A. $f^{\prime}=f, f^{\prime \prime}=2 f$

$$
\text { B. } f^{\prime}=2 f, f^{\prime \prime}=f
$$

C. $f^{\prime}=f, f^{\prime \prime}=f$
D. $f^{\prime}=2 f, f^{\prime \prime}=2 f$

Answer: A

D Watch Video Solution
29. Assertion : For the sensitivity of a camera,
its aperture should be reduced

Reason : Smaller the aperture, image focussing is also sharp.
A. If both the assertion and reason are true
and the reason is the correct
explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are

false.

## Answer: C

## D Watch Video Solution

30. Assertion : The mirrors used in search
lights are parabolic and not concave spherical.

Reason : In a concave spherical mirror the image formed is always virtual.
A. If both the assertion and reason are true
and the reason is the correct explanation of the assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
the assertion.
C. If assertion is true but reason is false.
D. If the assertion and reason both are
false.

Watch Video Solution

