© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - A2Z PHYSICS (HINGLISH)

NUCLEAR PHYSICS

Nucleus And Nuclear Reactions

1. The mass number of a nucleus is.
A. Always less then its atomic number
B. Always more than its atomic number
C. Always equal to its atomic number
D. Sometimes more than and sometimes
equal to its atomic number

Answer: D

D Watch Video Solution

2. In . $88 R a^{226}$ nucleus, there are.
A. 138 protons and 88 neutrons

B. 138 neutrons and 88 protons

C. 226 protons and 88 electrons

D. 226 neutrons and 138 electrons

Answer: B

D Watch Video Solution

3. Outside a nucleus.
A. Neutron is stable
B. Protons and neutron both are stable

C. Neutron is unstable

D. Neither neutron nor proton is stable

Answer: C

D Watch Video Solution

4. The binding energy per nucleon of nucleus is a measure of its.
A. Charge
B. Mass

C. Momentum

D. Stability

Answer: D

D Watch Video Solution

5. Mark the correct statement

A. Nuclei of different elements can have the
same number of neutrons
B. Every element has only two stable isotopes
C. Only one isotope of each element is stable
D. All isotopes of every element are
radioactive

Answer: A

- Watch Video Solution

6. The curve of blinding energy per nucleon as
a function of atomic mass number has a sharp
peak for helium nucleus. This implies that helium.
A. Can easily be broken up
B. Is very stable
C. Can be used as fissionable material
D. Is radioactive

Answer: B

7. Which of the following is most unstable?

A. Electrons

B. Protons
C. Neutrons
D. \propto - particle

Answer: C

8. Thermal neutrons are those which.
A. Are at very high temperature
B. Move with high velocities
C. Have kinetic energies similar to those of surrounding molecules

D. Are at rest

Answer: C

- Watch Video Solution

9. Nuclear forces are.
A. Short ranged attractive and charge independent
B. Short ranged attractive and charge dependent
C. Long ranged repulsive and charge independent
D. Long ranged repulsive and charge
dependent

D Watch Video Solution

10. π mesons can be
A. π^{+}or π^{-}
B. π^{+}or π^{0}
C. π^{-}or π^{0}
D. π^{+}, π^{-}or π^{0}.

Answer: D

- Watch Video Solution

11. In helium nucleus, there are.
A. 2 protons and 2 electrons
B. 2 nuetrons, 2 protons and 2 electrons
C. 2 protons and 2 neutrons
D. 2 positions and 2 protons

Answer: C

12. Isotopes are atoms having.
A. Same number of protons but different number of neutrons
B. Same number of neutrons but different number of protons.
C. Same number of protons and neutrons
D. None of the above

Answer: A

13. The mass of an α - particle is.
A. Less than the sum of masses of two protons and two neutrons
B. Equal to mass of four protons
C. Equal to mass of four neutrons.
D. Equal to sum of masses of two protons
and two neutrons

Answer: A
14. Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is.
A. $M-Z$
B. M
C. Z
D. $M+Z$

Answer: A
15. The force acting between proton and proton inside the nucleus is.
A. Coulombic
B. Nuclear
C. Both

D. None of these

Answer: C

- Watch Video Solution

16. For a nucleus to be stable, the correct relation between neutron number N and proton number Z is.
A. $N>Z$
B. $N=Z$
C. $N<Z$
D. $N \geq Z$

Answer: D

17. Two nucleons are at a separation of $1 \times 10^{-15} \mathrm{~m}$. The net force between them is F_{1}
, if both are neutrons, F_{2} if both are protons and F_{3} if one is a proton and other is a neutron. In such a case.
A. $F_{2}>F_{1}>F_{3}$
B. $F_{1}=F_{2}=F_{1}$
C. $F_{1}=F_{2}>F_{3}$
D. $F_{1}=F_{3}>F_{2}$
18. The radius of a nucleus of a mass number A is directly proportional to.
A. A^{3}
B. A
C. $A^{2 / 3}$
D. $A^{1 / 3}$

Answer: D
19. The sodium nucleus ${ }_{11}^{23} N a$ contains.
A. 11 electrons
B. 12 protons
C. 23 protons
D. 12 neutrons

Answer: D
(Watch Video Solution
20. As compared to ${ }^{\wedge} 12 C$ atom, ${ }^{\wedge} 14 C$ atoms has
A. Two extra protons and two extra
electrons
B. Two extra protons but no extra electrons
C. Two extra neutrons and no extra neutrons and no extra electrons and two extra electrons
D. Two extra neutrons and no extra
electrons

Answer: C

D Watch Video Solution

21. One requires energy E_{n} to remove a nucleon from a nucleus and an energy E_{e} to remove an electrons from the orbit of an atom.

Then
A. $E_{n}=E_{0}$
B. $E_{n}<E_{0}$
C. $E_{n}>E_{0}$

D. $E_{n} \geq E_{e}$

Answer: C

D Watch Video Solution

22. The charge density in a nucleus varies with
distance from the centre of the nucleus according to the curve in Fig.

B.

C.

D.

Answer: C
(Watch Video Solution
23. The graph between $\log R$ and $\log A$ wher R
is the nuclear radius and A is the mass of is.
A.
(a)
$\underbrace{\frac{\alpha}{8}}_{\log A}$
B.

C.

D.

Answer: A

- Watch Video Solution

24. Order of magnitude of density of uranium

 nucleus isA. $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
B. $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
C. $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
D. $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$

Answer: B
(Watch Video Solution
25. Radius of $\cdot{ }_{2}^{4} \mathrm{He}$ nucleus is 3 Fermi. The radius of.${ }_{82}^{206} \mathrm{~Pb}$ nucleus will be.

A. 5 Fermi

B. 6 Fermi

C. 11.16 Fermi

D. 8 Fermi

Answer: C

D Watch Video Solution
26. How many electron potons and mass number in a nucleus of atomic number 11 and mass 24 ?
(i) number of electron $=$ (ii)number of proton $=$
(iii)number of neutrons =
A. 11 electrons, 11 protons and 13 neutrons
B. 11 electrons, 13 protons and 11 neutrons
C. 11 protons and 14 neutrons
D. 11 protons and 13 electrons

- Watch Video Solution

27. When a boron nucleus $\left(-5^{10} B\right)$ is bombarded by a neutron, an α-particle is emitted. Which nucleus will be formed as a result?
A. ${ }_{6} C^{12}$
B. ${ }_{3} L i^{6}$
C. . ${ }_{3} L i^{7}$
D. ${ }_{4} B e^{9}$

Answer: C

D Watch Video Solution

28. In
nuclear reaction${ }_{.2} H e^{4} \cdot{ }_{z} X^{A} \rightarrow{ }_{. z+2} Y^{A+3}+A$, denotes.
A. Electron
B. Positron
C. Proton
D. Neutron

- Watch Video Solution

29. If the speed of light were $2 / 3$ of its present
value, the energy released in a given atomic explosion will be decreased by a fraction.
A. $2 / 3$
B. $4 / 9$
C. $3 / 4$
D. $5 / 9$

Answer: B

D Watch Video Solution

30. When a $.4 B e^{9}$ atom is bombarded with
\propto - particle, one of the product of nuclear transmutation is ${ }_{6} C^{12}$. The other is.
A. $\cdot 1 e^{0}$
B. ${ }_{1} H^{1}$
C. ${ }_{1} D^{2}$
D. ${ }_{0} n^{1}$

- Watch Video Solution

31. A reaction between a proton and ${ }_{8} O^{18}$ that produces .9 f^{18} must also liberate
A. $\cdot 0 n^{1}$
B. $\cdot 1 e^{0}$
C. $\cdot 1 n^{0}$
D. $\cdot 0 e^{1}$

D Watch Video Solution

32. In the nuclear reaction
${ }_{.92} U^{238} \rightarrow{ }_{.} T h^{A}+{ }_{2} H e^{4}$, the values of A
and Z are.
A. $A=234, Z=94$
B. $A=234, Z=90$
C. $A=238, Z=94$
D. $A=238, Z=90$

Answer: B

- Watch Video Solution

33. If m, m_{n} and m_{p} are masses of ${ }_{Z} X^{A}$ nucleus, neutron and proton respectively.
A. $m=(A-Z) m_{n}+Z m_{p}$
B. $m<(A-Z) m_{n}+Z m_{p}$
C. $m>(A-Z) m_{n}+Z m_{p}$
D. $m=(A-Z) m_{p}+Z m_{p}$

Answer: B

- Watch Video Solution

34. $1 g$ of hydrogen is converted into $0.993 g$ of
helium in a thermonuclear reaction. The energy released is.
A. $63 \times 10^{7} J$
B. $63 \times 10^{10} \mathrm{~J}$
C. $63 \times 10^{14} \mathrm{~J}$
D. $63 \times 10^{20} J$

D Watch Video Solution

> 35. In the nuclear reaction
> $.85 X^{297} \rightarrow Y+4 \alpha, Y$ is.
A. ${ }_{76} Y^{287}$
B. ${ }_{77} Y^{285}$
C. ${ }_{77} Y^{281}$
D. ${ }_{77} Y^{289}$

Answer: C

D Watch Video Solution

36. In the following reaction.
${ }_{\cdot 12} M g^{24}+{ }_{.2} H e^{4} \rightarrow \cdot{ }_{14} S i^{X}+{ }_{.0} n^{1}, X$ is.
A. 28
B. 27
C. 26
D. 22

Answer: B

- Watch Video Solution

37. In the nuclear process
$C_{6}^{11} \rightarrow_{2} B^{11}+\beta^{+}+X, X$ stands for
A. An elecron
B. A proton
C. A neutron
D. A neutrino

Answer: D

D Watch Video Solution

38. ${ }_{\cdot 1} H^{1}+{ }_{\cdot 1} H^{1}+{ }_{.1} H^{2} \rightarrow X+\cdot{ }_{1} e^{0}+$
energy. The emitted particle is.
A. Neutron
B. Proton
C. $\alpha-$ particle
D. Neutrino

Answer: C

- Watch Video Solution

39. A free neutron decays into a proton, an
electron and
A. A neutrino
B. An antineutrino
C. An alpha particle
D. A beta particle

- Watch Video Solution

40. In the following reaction the value of ' X ' is.
${ }_{.7} N^{14}+{ }_{.2} H e^{4} \rightarrow X+{ }_{.1} H^{1}$.
A. $.8 N^{17}$
B. $.8 O^{17}$
C. ${ }_{7} O^{16}$
D. ${ }_{7} N^{16}$

Answer: B

- Watch Video Solution

41. A deutron is bombarded on ${ }_{8} O^{16}$ nucleus
and α-particle is emitted. The product nucleus is.
A. ${ }_{7} N^{13}$
B..${ }_{5} B^{10}$
C. ${ }_{4} B c^{9}$
D. ${ }_{7} N^{14}$

Answer: D

- Watch Video Solution

42. Atomic weight of boron is 10.81 and it has
two isotopes ${ }_{5} B^{10}$ and ${ }_{5} B^{11}$. Then ratio of ${ }_{5} B^{10}$ in nature would be.
A. 19:81
B. $10: 11$
C. $15: 16$
D. $81: 19$

- Watch Video Solution

43. If a proton and anti-proton come close to each other and annihilate, how much energy will be released?
A. $1.5 \times 10^{10} J$
B. $3 \times 10^{-10} J$
C. $4.5 \times 10^{-10} J$
D. None of these

Answer: B

- Watch Video Solution

44. An antomic Power station has a generating capacity of $200 M W$. The energy generated in a day by this station is.
A. 200 M J
B. 200 J
C. $4800 \times 10^{6} J$
D. $1728 \times 10^{10} \mathrm{~J}$

(Watch Video Solution

45. One microgram of matter converted into energy will give.
A. 90 J
B. $9 \times 10^{3} J$
C. $9 \times 10^{10} J$
D. $9 \times 10^{5} \mathrm{~J}$

D Watch Video Solution

46. The rest energy of an electron is.
A. 510 KeV
B. 931 KeV
C. 510 MeV
D. 931 MeV

Answer: A
47. If a H_{2} nucleus is completely converted into energy, the energy produced will be around.
A. 1 MeV
B. 938 MeV
C. 9.38 MeV

D. 238 MeV

Answer: B
48. The mass defect in a particular nuclear reaction is 0.3 grams. The amont of energy liberated in kilowatt hours is.
(Velocity of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$).
A. 1.5×10^{6}
B. 2.5×10^{6}
C. 3×10^{6}
D. 7.5×10^{6}

- Watch Video Solution

49. A gamma ray photon creates an electronpositron pair. If the rest mass energy of an electron is 0.5 MeV and the total K. E. of the electron-position pair is 0.78 MeV , then the energy of the gamma ray photon must be.
A. 0.78 MeV
B. 1.78 MeV
C. 1.28 MeV

D. 0.28 MeV

Answer: B

- Watch Video Solution

50. The mass equivalent of 931 MeV energy is.

$$
\text { A. } 1.66 \times 10^{-27} \mathrm{~kg}
$$

$$
\text { B. } 6.02 \times 10^{-24} \mathrm{~kg}
$$

C. $1.66 \times 10^{-20} \mathrm{~kg}$
D. $6.02 \times 10^{-27} \mathrm{~kg}$

- Watch Video Solution

51. γ - rays radiation can be used to create electron-positron pair. In this process of pair production. γ-rays energy cannot be less than.

A. 5.0 MeV

B. 4.02 MeV
C. 15.0 MeV

D. 1.02 MeV

Answer: D

D Watch Video Solution

52. If M is the atomic mass and A is the mass
number, packing fraction is given by.

$$
\begin{aligned}
& \text { A. } \frac{A}{M-A} \\
& \text { B. } \frac{A-M}{A} \\
& \text { C. } \frac{M}{M-A}
\end{aligned}
$$

D. $\frac{M-A}{A}$

Answer: D

- View Text Solution

53. The mass defect for the nucleus of helium is
0.0303 a.m.u. What is the binding energy per nucleon for helium in MeV ?
A. 28
B. 7
C. 4

D. 1

Answer: B

- Watch Video Solution

54. Binding energy of a nucleus is.
A. Energy given to its nucleus during its
formation.
B. Total mass of nucleus converted to energy units
C. Loss of energy from the the nucleus
during its formation
D. Total $K . E$ and $P . E$ of the nucleous in the nucleus.

Answer: C

- Watch Video Solution

55. If the binding energy of the deuterium is
2.23 MeV . The mass defect given in a.m.u. is.

A. -0.0024

B. -0.0012
C. 0.0012
D. 0.0024

Answer: D

- Watch Video Solution

56. The binding energies per nucleon for a deuteron and an α-particle are x_{1} and x_{2} respectively. What will be the energy Q released in the following reaction?
${ }_{\cdot 1} H^{2}+{ }_{\cdot 1} H^{2} \rightarrow{ }_{.2} H e^{4}+Q$.
A. $4\left(x_{1}+x_{2}\right)$
B. $4\left(x_{2}-x_{1}\right)$
C. $2\left(x_{1}+x_{2}\right)$
D. $2\left(x_{2}-x_{1}\right)$

Answer: B

57. The binding energy per nucleon is maximum

 in the case of.A. ${ }_{2}^{4} \mathrm{He}$
B. ${ }_{26}^{56} \mathrm{Fe}$
C. ${ }_{56}^{141} B a$
D. ${ }_{92}^{235} U$

Answer: B
58. If the binding energy per nucleon in $L i^{7}$ and He^{4} nuclei are respectively 5.60 MeV and 7.06 MeV . Then energy of reaction $L i^{7}+p \rightarrow 2_{2} H e^{4}$ is.
A. 19.6 MeV
B. 2.4 MeV
C. 8.4 MeV
D. 17.3 MeV

Answer: D
59. The dependence of binding energy per nucleon, B_{N} on the mass number, A is represented by.

(a)

,

(c)
, (d)

A. $Y \rightarrow 2 Z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$

$$
\text { D. } X \rightarrow Y+Z
$$

Answer: A

- Watch Video Solution

60. The masses of neutron and proton are 1.0087 a.m.u. and 1.0073 a.m.u. respectively. If the neutrons and protons combine to form a
helium nucleus (alpha particle) of mass 4.0015 a.m.u. The binding energy of the helium nucleus will be $(1 a . m . u .=931 M e V)$.
A. 28.4 MeV
B. 20.8 MeV
C. 27.3 MeV
D. 14.2 MeV

Answer: A
61. The binding energy of deuteron $\cdot{ }_{1}^{2} H$ is
1.112MeV per nucleon and an α-particle
.${ }_{2}^{4} \mathrm{He}$ has a binding energy of 7.047 MeV per nucleon. Then in the fusion reaction
${ }_{\cdot 1}^{2} H+.{ }_{1}^{2} h \rightarrow{ }_{2}^{4} H e+Q, \quad$ the energy $\quad Q$ released is.
A. 1 MeV
B. 11.9 MeV
C. 23.8 MeV
D. 931 MeV

- Watch Video Solution

62. ${ }_{6}^{12} C$ absorbs an energenic neutron and emits beta particles. The resulting nucleus is.
A. ${ }_{7}^{14} N$
B..$_{7}^{13} \mathrm{~N}$
C. . ${ }_{5}^{13} B$
D. ${ }_{6}^{13} C$

Answer: B
63. Complete the reaction
$n+{ }_{92}^{235} U \rightarrow{ }_{.56}^{144}+\ldots . .+3 n$.
A. ${ }_{36}^{89} \mathrm{Kr}$
B. ${ }_{36}^{90} K r$
C. ${ }_{36}^{91} K r$
D. ${ }_{36}^{92} K r$

Answer: A
64. A nucleus of ${ }_{84}^{210} P o$ originally at rest emits
α particle with speed v. What will be the recoil speed of the daughter nucleus?
A. $4 v / 206$
B. $4 v / 214$
C. $v / 206$
D. $v / 214$

Answer: A
65. The energy in $M e V$ is released due to transformation of 1 kg mass completely into energy $\left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
A. $7.625 \times 10 \mathrm{Mev}$
B. $10.5 \times 10^{29} \mathrm{MeV}$
C. $2.8 \times 10^{-28} \mathrm{MeV}$
D. $5.625 \times 10^{29} \mathrm{MeV}$

Answer: D
66. When U^{235} is bombarded with one neutron,
the fission occurs and the products are three neutrons, ${ }_{36} K r^{94}$ and.
A. ${ }_{52} I^{142}$
B. ${ }_{56} B a^{139}$
C. ${ }_{58} C e^{139}$
D. ${ }_{54} X e^{139}$

Answer: B
67. If the mass number of an atom is $A=40$
and its electron configuration is
$1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}$, the number of neutrons
and protons in its nucleus will be.
A. 22,18
B. 18,22
C. 20,20
D. 18,18

Answer: A

(D) Watch Video Solution

Fission And Fusion

1. The fission of a heavy nucleus gives, in general, two smaller nuclei, two or three neutrons, some β - particles and some $\gamma-$ radiation. It is always true that the nuclei produced.
A. have a total rest-mass that is greater than that of the original nucleus.
B. have large kinetic energies that carry off the greater part of the energy released.
C. travel in exactly opposite directions.
D. have neutron-to-proton ratios that are too law for stability.

Answer: B

- Watch Video Solution

2. The fission of ${ }^{235} U$ can be triggered by the absorption of a slow neutrons by a nucleus.

Similarly a slow protons can also be used. This statement is.

A. Correct

B. Wrong
C. Information is insufficient

D. None of these

Answer: B

3. Which of the following isotopes is normally

 fissionable ?A. ${ }_{92}^{238} U$
B. ${ }_{93} N p^{239}$
C. ${ }_{92} U^{235}$
D. ${ }_{2} H e^{4}$

Answer: C
4. The explosion of the atomic bomb takes place due to
A. Nuclear fission

B. Nuclear fusion

C. Scattering
D. Thermionic emission

Answer: A
5. Energy generation in starts is mainly due to
A. Chemical reactions
B. Fission of heavy nuclei
C. Fusion of light nuclei
D. Fusion of heavy nuclei

Answer: C

6. Which of the following is the fusion reaction
?
A. ${ }_{1} H^{2}+{ }_{.1} H^{2} \rightarrow{ }_{.2} H e^{4}$
B. ${ }_{0} n^{1}+{ }_{.7} H^{14} \rightarrow{ }_{.6} C^{14}+{ }_{.1} H^{1}$
C. ${ }_{0} n^{1}+{ }_{.92} U^{238} \rightarrow{ }_{.93} N p^{239}+\beta^{-1}+\gamma$
D. ${ }_{1} H^{3} \rightarrow{ }_{.2} H e^{3}+\beta^{-1}+\gamma$

Answer: A
(Watch Video Solution
7. Fusion reaction is initiated with the help of
A. Low temperature
B. High temperature
C. Neutrons
D. Any particle

Answer: B
8. In nuclear reactions, we have the conservation of
A. Mass only
B. Energy only
C. Momentum only
D. Mass, energy and momentum

Answer: D

- Watch Video Solution

9. A chain reaction is continuous due to

A. Large mass defect
B. Large energy
C. Production of more neutrons in fission
D. None of these

Answer: C

- Watch Video Solution

10. In a fission process, nucleus A divides into
two nuclei B and C, their binding energies being E_{a}, E_{b} and E_{c} respectively. Then.
A. $E_{b}+E_{c}=E_{a}$
B. $E_{b}+E_{c}>E_{a}$
C. $E_{b}+E_{c}<E_{a}$
D. $E_{b} \cdot E_{c}=E_{a}$

Answer: B
11. A nuclear bomb exploded 200 km above the
surface of moon. The sound of explosion on
the moon.
A. Will heard before the axplosion on the
moon
B. Will be heard at the same time
C. Will be heard after explosion
D. Will not heard at all

Answer: D
12. Fast neutrons can easily be slowed down by
A. The use of lead shielding
B. Passing them through water
C. Elastic collisions with heavy nuclei
D. Applying a strong electric field.

Answer: B
13. When ${ }^{92} U^{235}$ undergoes fission, 0.1% of its original mass is changed into energy. How much energy is released if 1 kg of ${ }_{.92} U^{235}$ undergoes fission?
A. $9 \times 10^{10} J$
B. 9×10^{11}
C. $9 \times 10^{12} J$
D. $9 \times 10^{13} J$

Answer: D

14. In a fission reaction
 ${ }_{.92}^{236} U \rightarrow{ }^{117} X+{ }^{117} Y+n+n$, the binding

 energy per nucleon of X and Y is 8.5 MeVwhereas of . ${ }^{236} \mathrm{U}$ is 7.6 MeV . The total energy
liberated will be about.
A. 200 KeV
B. 2 MeV
C. 200 MeV
D. 2000 MeV

Answer: C

- Watch Video Solution

15. 200 MeV of energy may be obtained per
fission of U^{235}. A reactor is generating $1000 k W$
of power. The rate of nuclear fission in the reactor is.

A. 1000

B. 2 MeV
C. 3.125×10^{16}

D. 931

Answer: C

- Watch Video Solution

16. If 200 MeV energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$).
A. 3.125×10^{13}
B. 3.125×10^{14}

C. 3.125×10^{15}

$$
\text { D. } 3.125 \times 10^{16}
$$

Answer: A

- Watch Video Solution

17. Complete the equation for the following fission process ${ }_{.92} U^{235}{ }_{\cdot 0} n^{1} \rightarrow .{ }_{38}{S r^{90}+\ldots . .}$

$$
\text { A. } \cdot_{54} X e^{143}+3 \cdot{ }_{0} n^{1}
$$

B. ${ }_{54} X e^{145}$

C. ${ }_{57} X e^{142}$

$$
\text { D. }{ }_{54} X e^{142} \cdot{ }_{0} n^{1}
$$

Answer: A

- Watch Video Solution

18. The example of nuclear fusion is.
A. For of barium and krypton from
unranium
B. Formation of helium from hydrogen
C. Formation of plutonium 235 from

uranium 235

D. Formation of water from hydrogen and oxygen.

Answer: B

D Watch Video Solution

19. In nuclear fission, the fission reactions proceeds with a projectile. Which of the following suits it the best ?
A. Slow proton

B. Fast neutron

C. Slow neutron

D. None of these

Answer: C

(Watch Video Solution

20. When two deuterium nuclei fuse together
to form a tritium nuclei, we get a
A. Neutron

B. Deuteron

C. α - particle

D. Proton

Answer: D

D Watch Video Solution

21. Energy released in the fission of a single .92 U^{235} nucleus is 200 MeV . The fission rate of
a $\cdot 92 U^{235}$ fuelled reactor operating at a power level of $5 W$ is.

A. $1.56 \times 10^{+10} s^{-1}$
B. $1.56 \times 10^{+11} s^{-1}$
C. $1.56 \times 10^{+16} s^{-1}$
D. $1.56 \times 10^{+17} s^{-1}$

Answer: B

- Watch Video Solution

22. Which one of the following unclear reactions is a source of energy in the sun ?

$$
\begin{aligned}
& \text { A. }{ }_{4}^{9} \mathrm{Be}+{ }_{\cdot 2}^{4} \mathrm{He} \rightarrow{ }_{\cdot 6}^{12} \mathrm{C}+{ }_{\cdot 0}^{-1} n \\
& \text { B. }{ }_{2}^{3} \mathrm{He}+{ }_{\cdot 2}^{3} \mathrm{He} \rightarrow{ }_{\cdot 2}^{4} \mathrm{He} \cdot+1^{1} \mathrm{H}+\cdot{ }_{1}^{1} \mathrm{H} \\
& \text { C. }{ }_{56}^{144} \mathrm{Ba}+{ }_{\cdot{ }_{56} 92} \mathrm{Kr} \rightarrow{ }_{\cdot 92}^{235} \mathrm{U}+{ }_{\cdot 0}^{-1} n \\
& \text { D. }{ }_{26}^{56} \mathrm{Fe}+{ }_{\cdot 48}^{112} \mathrm{Ca} \rightarrow{ }_{\cdot 74}^{167} W+{ }_{0}^{-1} n
\end{aligned}
$$

Answer: B
23. Nuclear fission experiments show that the neutrons split the uranium nuclei into two fragments of about same size. This process is accompanied by the emission of serveral.
A. Protons and positrons
B. α - particle
C. Neutrons
D. Protons and α - particles

Answer: C

Watch Video Solution

24. Energy is the sun is generated mainly by
A. Fusion of radioactive material
B. Fission of helium atoms
C. Chemical reaction
D. Fustion of hydrogen atoms

Answer: D

- Watch Video Solution

25. Which of these is a fusion reaction?

A. $\cdot{ }_{3}^{1} H+\cdot{ }_{2}^{1} H={ }_{4}^{2} H e+\cdot{ }_{1}^{0} n$
 B. ${ }_{92}^{238} U \rightarrow{ }_{82}^{206} \mathrm{~Pb}+8\left(\cdot{ }_{2}^{4} \mathrm{He}\right)+6\left(.{ }_{-1}^{0} \beta\right)$
 C. ${ }_{7}^{12} C \rightarrow{ }_{6}^{12} C+\beta^{+}+\gamma$

D. None of these

Answer: A

D Watch Video Solution

26. Hydrogen bomb is based on which of the
following phenomena?
A. Nuclear fission

B. Nuclear fusion

C. Radioactive decay

D. None of these

Answer: B

(Watch Video Solution

27. The principle of controlled chain reaction is
used in.
A. Atomic energy reactor

B. Atom bomb

C. The core of sun

D. Artifical radioactivity

Answer: A
(Watch Video Solution
28. Nuclear fusion is common to the pair
A. Thermonuclear reactor, uranium based

nuclear reactor

B. Energy production in sun, uranium based
nuclear reactor
C. Energy productor in sun, hydrogen bomb

D. Disintegration of heavy nuclei, hydrogen bomb.

Answer: C
29. The number of neutrons released when
${ }_{\cdot 92} U^{235}$ undergoes fission by absorbing ${ }_{0} n^{1}$
and $\left({ }_{56} B a^{144}+{ }_{.36} K r^{89}\right)$ are formed, is.
A. 0
B. 1
C. 2
D. 3

Answer: D

30. Energy released in fusion of 1 kg of deuterium nuclei.
A. $8 \times 10^{13} J$
B. $6 \times 10^{27} J$
C. $2 \times 10^{7} K w H$
D. $8 \times 10^{23} \mathrm{MeV}$

Answer: D
31. If the energy released in the fission of the nucleus is 200 MeV . Then the number of nuclei required per second in a power plant of 6 kW will be.
A. 0.5×10^{14}
B. 0.5×10^{12}
C. 5×10^{12}
D. 5×10^{14}

Answer: D
32. To generate a power of 3.2 mega watt, the number of fissions of U^{235} per minute is.
(Energy released per
$\left.=200 \mathrm{MeV}, 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$.
A. 6×10^{18}
B. 6×10^{17}
C. 10^{17}
D. 6×10^{16}

- Watch Video Solution

33. The energy liberated on complete fission of

1 kg of ${ }_{.92} U^{235}$ is (Assume 200 MeV energy is
liberated on fission of 1 nucleus).
A. $8.2 \times 10^{10} J$
B. $8.2 \times 10^{9} \mathrm{~J}$
C. $8.2 \times 10^{13} J$
D. $8.2 \times 10^{16} J$

- Watch Video Solution

34. The nuclear reaction . ${ }^{2} H+.{ }^{2} H \rightarrow .{ }^{4} \mathrm{He}$ (mass of deuteron $=2.0141 a . m$. u and mass of $H e=4.0024 a . m . u)$ is
A. Fusion reaction releasing 24 MeV energy
B. Fusion reaction absorbing 24 MeV

energy

C. Fission reaction releasing 0.0258 MeV

D. Fission reaction absoring 0.0258 MeV

energy

Answer: A

- Watch Video Solution

35. In a nuclear reactor, the fuel is consumed at
the rate of $1 \mathrm{mg} / \mathrm{s}$. The power generated in
kilowatt is
A. 9×10^{4}

$$
\begin{aligned}
& \text { B. } 9 \times 10^{7} \\
& \text { C. } 9 \times 10^{8} \\
& \text { D. } 9 \times 10^{12}
\end{aligned}
$$

Answer: B

(Watch Video Solution

36. If in a nuclear fission, piece of uranium of mass $0.5 g$ is lost, the energy obtained in $k W h$ is.
A. 1.25×10^{7}
B. 2.25×10^{7}
C. 3.25×10^{7}

$$
\text { D. } 0.25 \times 10^{7}
$$

Answer: A

- Watch Video Solution

37. The sun radiates energy in all directions.

The average radiations received on the earth surface from the sun is $1.4 \mathrm{kilowatt} / \mathrm{m}^{2}$. The
average earth-sun distance is 1.5×10^{11} meters. The mass lost by the sun per day is.
A. $4.4 \times 10^{9} \mathrm{~kg}$
B. $7.6 \times 10^{14} \mathrm{~kg}$
C. $3.8 \times 10^{12} \mathrm{~kg}$
D. $3.8 \times 10^{14} \mathrm{~kg}$

Answer: D

D Watch Video Solution
38. An atomic power nuclear reactor can deliver $300 M W$. The energy released due to fission of each nucleus of uranium atom U^{238} is 170 MeV
. The number of uranium atoms fissioned per hour will be.

> A. 30×10^{25}
> B. 4×10^{22}
> C. 10×10^{20}
> D. 5×10^{15}

- Watch Video Solution

39. Assuming that about 20 MeV of energy is released per fusion reaction
${ }_{.1} H^{2}+{ }_{.1} H^{2} \rightarrow{ }_{.2} H e^{3}+E+$
particles then the mass of ${ }_{1} H^{2}$ consumed per day in a fusion reactor of power 1 megawatt wil approximately be.
A. $0.001 g$
B. $0.1 g$
C. 10.0 g

D. $1000 g$

Answer: B

- Watch Video Solution

40. Assuming that about 200 MeV of energy is released per fission of ${ }_{92} U^{235}$ nuceli, the mass
of U^{235} consumed per day in a fission ractor of power 1 megawatt will be approximately .
A. $10^{-2} g$
B. 1 g

C. 100 g

D. 10,000 g

Answer: B

D Watch Video Solution

Radioactivity

1. In the case of thorium
($A=232$ and $Z=90$), we obtain an isotope of lead $(A=208$ and $Z=82)$ after some
radiactive disintegrations. The number of α and β particle emitted are respectively.
A. 6,3
B. 6, 4
C. 5, 5
D. 4,6

Answer: B
(Watch Video Solution
2. Atomic mass number of an element is 232 and its atomic number is 90 . The end product of this radiaoctive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.

$$
\begin{aligned}
& \text { A. } \alpha=3, \beta=3 \\
& \text { B. } \alpha=3, \beta=4 \\
& \text { C. } \alpha=6, \beta=0 \\
& \text { D. } \alpha=4, \beta=6 .
\end{aligned}
$$

- Watch Video Solution

3. A radioactive atom X emits a β - particle to produce an atom Y which then emits an Particle to give an atom Z
(1) the atomic number of X is less than that of
Z.
(2) the atomic number of Y is less than that of
Z.
(3) the mass number of X is the same as that of Y.
A. $1,2,3$ correct
B. 1.2 correct
C. 2,3 correct
D. 3 correct

Answer: D
(Watch Video Solution
4. Which of the following is in the increasing order for penetrating power ?
A. α, β, γ
B. β, α, γ
C. γ, α, β
D. γ, β, α

Answer: A
(Watch Video Solution
5. During a beta decay
A. An atomic electron is ejected
B. An electron which is already present within the nucleus is ejected.
C. A neutron in the nucleus decays emitting
an electron
D. A part of the binding energy is converted into electron.

Answer: C

- Watch Video Solution

6. A radioactive nucleus undergoes a series of decay according to the scheme
$A \xrightarrow{\alpha} A_{1} \xrightarrow{\beta^{-}} A_{2} \xrightarrow{\alpha} A_{3}^{172} \xrightarrow{\gamma} A_{4}$.
A. 172 and 60
B. 174 and 70
C. 172 and 69
D. 176 and 70

Answer: C

7. In the given reaction

${ }_{\cdot z} X^{A} \rightarrow{ }_{\cdot z+1} Y^{A} \rightarrow{ }_{\cdot z-1} K^{A-4} \rightarrow{ }_{\cdot z-1} K^{A-4}$
Radioactive radiations are emitted in the sequence.
A. α, β, γ
B. β, α, γ
C. γ, α, β
D. β, γ, α

Answer: B
8. A nucleus of atomic mass A and atomic number Z emits β - particle. The atomic mass and atomic number of the resulting nucleus are
A. A, Z
B. $A+1, Z$
C. $A, Z+1$

$$
\text { D. } A-4, Z-2
$$

- Watch Video Solution

9. If . ${ }_{92} U^{238}$ undergoes successively $8 \alpha-$ decays and 6β-decays, then resulting nucleus is.
A. $.82 U^{206}$
B. $.82 P b^{206}$
C. ${ }_{82} U^{210}$
D. ${ }_{82} U^{214}$

- Watch Video Solution

10. The activity of a sample of radioactive material is A_{1} at time t_{1} and A_{2} at time $t_{2}\left(t_{2} \leq t_{1}\right)$. Obtain an expression for its mean life.
A. $A_{1} t_{1}=A_{2} t_{2}$
B. $A_{1}-A_{2}=t_{2}-t_{1}$
C. $A_{2}=A_{1} e^{\left(t_{1}-t_{2}\right) / T}$
D. $A_{2}-A_{1} e^{\left(t_{1} / t_{2}\right) T}$

Answer: C

- Watch Video Solution

11. When ${ }_{90} T h^{228}$ transforms to ${ }_{83} B i^{212}$, then
the number of the emitted α - and $\beta-$ particle is, respectively.
A. $8 \alpha, 7 \beta$
B. $4 \alpha, 7 \beta$
C. $4 \alpha, 4 \beta$
D. $4 \alpha, 1 \beta$

D Watch Video Solution

12. Which of the following process represents a
$\gamma-$ decay?
A. . ${ }^{A} X_{Z}+\gamma \rightarrow .{ }^{A} X_{Z-1}+a+b$
B. . ${ }^{A} X_{Z}+.{ }^{1} n_{0} \rightarrow .{ }^{A-3} X_{Z-2}+c$
C. . ${ }^{A} X_{Z} \rightarrow .{ }^{A} X_{Z}+f$
D. . ${ }^{A} X_{Z}+e .{ }_{-1} \rightarrow .^{A} X_{Z-1}+g$

Answer: C

- Watch Video Solution

13. A nucleus decays by β^{+}emission followed
by a gamma emission. If the atomic and mass numbers of the parent nucleus are Z and A respectively, the corresponding numbers for the daughter nucleus are respectively.
A. $Z-1$ and $A-1$
B. $Z+1$ and A

C. $Z-1$ and A

D. $Z+1$ and $A-1$

Answer: C

D Watch Video Solution

14. $-86 A^{222} \rightarrow_{84} B^{210}$. In this reaction, how many α and β particles are emitted?
A. $6 \alpha, 3 \beta$
B. $3 \alpha, 4 \beta$

C. $\alpha, 3 \beta$

D. $3 \alpha, 6 \beta$

Answer: B

- Watch Video Solution

15. In a radioactive reaction
$.92 X^{232} \rightarrow .82 Y^{204}$, the number of $\alpha-$ particle emitted is.
A. 7
B. 6
C. 5

D. 4

Answer: A

(Watch Video Solution

16. ${ }_{90}^{232} T h$ an isotope of thorium decays in ten
stages emitting six $\alpha-$ particle and four $\beta-$ particle in all. The end product of the decay is.
A..${ }_{90}^{232} T h$
B. ${ }_{82}^{206} \mathrm{~Pb}$
C..${ }_{82}^{209} \mathrm{~Pb}$
D. ${ }_{82}^{208} \mathrm{~Pb}$

Answer: C

D Watch Video Solution
17. A nucleus with $Z=92$ emits the following
in a sequence
$a, \beta^{-}, \beta^{-} a, a, a, a, a, \beta^{-}, \beta^{-}, a, \beta^{+}, \beta^{+}, a$

Then Z of the resulting nucleus is
A. 74
B. 76
C. 78
D. 82

Answer: C

D Watch Video Solution
18. A radioactive decay chain starts from .93 $N p^{237}$ and produces ${ }^{90} T h^{229}$ by successive emissions. The emitted particles can be
A. Two α - particle and one β - particle
B. Three β^{+}particle
C. One α particle and two β^{+}particles
D. One α particle and two β^{-}particles

Answer: A
19. Three α-particle and one β-particle decaying takes place in series from an isotope $.88 R a^{238}$. Finally the isotope obtained will be.
A. $.84 X^{220}$
B. ${ }_{86} X^{222}$
C. . $83 X^{224}$
D. $.83 X^{215}$

Answer: C
20. Atomic mass number of an element is 232
and its atomic number is 90 . The end product of this radiaoctive element is an isotope of lead (atomic mass 208 and atomic number 82.) The number of α-and β-particles emitted are.

$$
\begin{aligned}
& \text { A. } \alpha=3, \beta=3 \\
& \text { B. } \alpha=6, \beta=4 \\
& \text { C. } \alpha=6, \beta=0 \\
& \text { D. } \alpha=4, \beta=6 \text {. }
\end{aligned}
$$

- Watch Video Solution

21. What is the respective number of α and β particles emitted in the following radioactive decay
${ }_{.90} X^{200} \rightarrow{ }_{.80} Y^{168}$.
A. 6 and 8
B. 8 and 8
C. 6 and 6
D. 8 and 6

Answer: D

- Watch Video Solution

22. A radioactive nucleus $.92 X^{235}$ decays to
${ }^{.91} Y^{231}$. Which of following particles are emitted?
A. One alpha and one electron
B. Two deutrons and one position
C. One alpha and one proton
D. One proton and four neutrons

D Watch Video Solution

23. In the final Uranium radioactive series the initial nucleus is U_{92}^{238} and the final nucleus is
$P b_{82}^{206}$. When Uranium neucleus decays to lead,
the number of a - particle is And the number of β - particles emited is
A. 1
B. 2
C. 4

D. 8

Answer: D

- Watch Video Solution

24. After 1α and 2β emissions.
A. Mass number reduces by 3
B. Mass number reduces by 4
C. Mass number reduces by 6

D. Atomic number remains unchanged.

Answer: B

- Watch Video Solution

25. Which of the following is a correct statement?
A. Beta rays are same as cathode rays
B. Gamma rays are high energy neutrons
C. Alpha particle are singly ionized helium atoms
D. Protons and neutrons have exactly the
same mass.

Answer: A

D Watch Video Solution

26. . ${ }^{22} \mathrm{Ne}$ nucleus after absorbing energy decays into two α - particles and an unknown nucleus. The unknown nucleus is.
A. Nitrogen

B. Carbon

C. Boron

D. Oxygen

Answer: B

- Watch Video Solution

27. A nucleus ${ }_{. n} X^{m}$ emits one α and one β particles. The resulting nucleus is.
A. ${ }_{n} X^{m-4}$
B. ${ }_{n-2} Y^{m-4}$
C. ${ }_{n-4} Z^{m-4}$
D. ${ }_{n-1} Z^{m-4}$

Answer: D

- Watch Video Solution

28. The nucleus ${ }_{\cdot 48}^{115} C d$ after two successive
β^{-}decays will give.
A. ${ }_{46}^{115} \mathrm{~Pa}$
B. ${ }_{49}^{114} \mathrm{In}$
C. ${ }_{50}^{113} S n$
D. ${ }_{50}^{115} S n$

Answer: D

D Watch Video Solution

29. An atom of mass number 15 and atomic number 7 captures an α - particle and then emits a proton. The mass number and atomic
number of the resulting product will respectively be.
A. 14 and 2
B. 15 and 3
C. 16 and 4
D. 18 and 8

Answer: D

- Watch Video Solution

30. In the disintegration series
${ }_{\cdot 92}^{238} U \vec{\alpha} X \overrightarrow{\beta^{-}} \cdot{ }_{Z}^{A} Y$ the values of Z and A, respectively, will be
A. 92236
B. 88230
C. 90234
D. 91234

Answer: D
31. In the given nuclear reaction A, B, C, D, E

represents

${ }_{.92} U^{238} \rightarrow^{\alpha}{ }_{\cdot B} T h^{A} \rightarrow^{\beta}{ }_{\cdot D} P a^{C} \rightarrow^{E}{ }_{.92} U^{234}$.
A.

$$
A=234, B=90, C=234, D=91, E=\beta
$$

B.

$$
A=234, B=90, C=238, D=94, E=\alpha
$$

C.

$$
A=238, B=93, C=234, D=91, E=\beta
$$

D.

$$
A=234, B=90, C=234, D=93, E=\alpha
$$

Answer: A

D Watch Video Solution

32. A radioactive element $\cdot 90 X^{238}$ decay into
${ }^{.} 83 Y^{222}$. The number of β - particles emitted are.
A. 4
B. 6
C. 2

D. 1

Answer: D

(Watch Video Solution

33. An element A decays into element C by a two-step process :
$A \rightarrow B+{ }_{.2} H e^{4}$
$B \rightarrow C+2 e^{-}$

Then.
A. A and C are isotopes

B. A and C are isobars

C. A and B isotopes
D. A and B are isobars

Answer: A

- Watch Video Solution

34. An artifical radioactive decay series begins
with unstable ${ }_{\cdot 94}^{241} \mathrm{Pu}$. The stable nuclide obtained after eight α - decays and five $\beta^{+}-$decays is.
A. ${ }_{83}^{209} \mathrm{Bi}$
B. ${ }_{82}^{209} \mathrm{~Pb}$
C. ${ }_{82}^{205} T i$
D..${ }_{82}^{201} \mathrm{Hg}$

Answer: A
35. A nucleus of an element ${ }^{84} X^{202}$ emits an α - particle first a β - particle next and then
a gamma photon. The final nucleus formed has

an atomic number

A. 200
B. 199
C. 83
D. 198

Answer: C

- Watch Video Solution

36. An atomic nucleus .90 $T h^{232}$ emits several α and β radiations and finally reduces to ${ }_{.82} P b^{208}$. It must have emitted.
A. 4α and 2β
B. 6α and 4β
C. 8α and 24β
D. 4α and 16β

- Watch Video Solution

37. 1 Curie is equal to.
A. 3×10^{10} disintegrations $/ \mathrm{sec}$
B. 3.7×10^{7} disintegrations $/ \mathrm{sec}$
C. 5×10^{7} disintegrations/sec
D. 3.7×10^{10} disintegrations $/ \mathrm{sec}$

Answer: D

- Watch Video Solution

38. In the given nuclear reaction, how many α and β particle are emitted ${ }_{92} X^{235} \cdot{ }^{2}{ }^{2} Y^{207}$?
A. 3α particles and 3β particle
B. 4α particle and 3β particle
C. 6α particle and 4β particle
D. 7α particle and 4β particle

Answer: D
(Watch Video Solution
39. A nucleus $\cdot{ }_{Z}^{A} X$ emits an α-particel. The resultant nucleus emits a β^{+}particle. The respective atomic and mass numbers of the final nucleus will be

$$
\text { A. } Z-3, A-4
$$

B. $Z-1, A-4$
C. $Z-2, A-4$
D. $Z, A-2$

Answer: A
40. The electron emitted in beta radiation originates from
A. Inner orbits of atoms
B. Free electrons existing in nuclei
C. Decay of a neutron in a nucleus
D. Photon escaping from the nucleus

Answer: C

- Watch Video Solution

41. A radioactive nucleus with Z protons and N neutrons emits an α - particle, 2β - particle and 2γ rays. The number of protons and neutrons in the nucleus left after the decay respectively, are

$$
\begin{aligned}
& \text { A. } Z-3, N-1 \\
& \text { B. } Z-2, N-2 \\
& \text { C. } Z-1, N-3 \\
& \text { D. } Z, N-4
\end{aligned}
$$

42. In the disintegration series
${ }_{\cdot 92}^{238} U \vec{\alpha} X \overrightarrow{\beta^{-}} \cdot{ }_{Z}^{A} Y$ the values of Z and A, respectively, will be
A. 92236
B. 88230
C. 90234
D. 91234

Answer: D

Radioactive Disintegration

1. The graph between the instantaneous
concentration (N) of a radioactive element and
time (t) is.

Answer: D

D Watch Video Solution

2. The curve between the activity A of a radioactive sample and the number of active atoms N is.

Answer: B

D Watch Video Solution

3. In a radioactive substance at $t=0$, the number of atoms is 8×10^{4}. Its half-life period is 3 years. The number of atoms 1×10^{4} will remain after interval.
A. 9 years
B. 8 years
C. 6 years
D. 24 years

Answer: A
4. The half-life period of radium is 1600 years.

The fraction of a sample of radium that would remain after 6400 years is.

> A. $\frac{1}{4}$
> B. $\frac{1}{2}$
> C. $\frac{1}{8}$
> D. $\frac{1}{16}$

Answer: D
5. The percentage of quantity of a radioactive material that remains after 5 half-lives will be .
A. 0.3%
B. 0.01
C. 0.31
D. 3.125%

Answer: D
6. The radioactivity of a certain radioactive element drops to $1 / 64$ of its initial value in 30 seconds. Its half-life is.
A. 2 seconds
B. 4 seconds
C. 5 seconds
D. 6 seconds

Answer: C
7. The average life T and the decay constant λ of a radioactive nucleus are related as
A. $T \lambda=1$
B. $T=\frac{0.693}{\lambda}$
c. $\frac{T}{\lambda}=1$
D. $T=\frac{c}{\lambda}$

Answer: A
8. If T is the half-life of a radioactive material,
then the fraction that would remain after a
time $\frac{T}{2}$ is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{3}{4} \\
& \text { C. } \frac{1}{\sqrt{2}} \\
& \text { D. } \frac{\sqrt{2}-1}{\sqrt{2}}
\end{aligned}
$$

Answer: C

9. The half-life of a radioactive element which
has only $\frac{1}{32}$ of its original mass left after a lapse of 60 days is
A. 12 days
B. 32 days
C. 60 days
D. 64 days

Answer: A
10. The life-life of $B i^{210}$ is 5 days. What time is taken by $(7 / 8)^{t} h$ part of the sample of decay?
A. ${ }^{`} 3.4$ days
B. 10 days
C. 15 days
D. 20 days

Answer: C
(Watch Video Solution
11. A sample contains 16 gm of radioactive material, the half-life of which is two days. After 32 days, the amount of radioactive material left in the sample is
A. Less than $1 m g$
B. $\frac{1}{4} g m$
C. $\frac{1}{2} g m$
D. 1 gm

Answer: A
12. A radio-isotope has a half-life of 5 year. The
fraction of the atoms of this material that would decay in 15 years will be
A. $1 / 8$
B. $2 / 3$
C. $7 / 8$
D. $5 / 8$

Answer: C
13. The half-life of pononium is 140 days. After
how many days. 16 gm polonium will be reduced to 1 gm (or 15 gm will decay) ?
A. 700 days
B. 280 days
C. 560 days

D. 420 days

Answer: C
14. An archaeologist analyses the wood in a phehistoric structure and finds that C^{14} (Half-
life $=5700$ years) to C^{12} only one-fourth of
that found in the cells buried plants. The age of the wood is about
A. 5700 years
B. 2850 years
C. 11,400 years
D. 22,800 years

- Watch Video Solution

15. A radioactive element emits 200 particle per second. After three hours 25 particle per second are emitted. The half-life period of element will be
A. 50 minutes
B. 60 minutes
C. 70 minutes
D. 80 minutes

Answer: B

D Watch Video Solution

16. The half-life of the isotope $\cdot 11 N a^{24}$ is 15
hrs. How much time does it take for $\frac{7}{8} t h$ of a sample of this isotope to decay?
A. 75 hrs
B. 65 hrs
C. 55 hrs
D. 45 hrs

Answer: D

- Watch Video Solution

17. If 20 gm of a radioactive substance due to radioactive decay reduces to 10 gm in 4 minutes, then in what time 80 gm of the same substance will reduce to 10 gm ?
A. 8 minutes
B. 12 minutes
C. 16 minutes

D. 20 minutes

Answer: B

- Watch Video Solution

18. A radioactive substance has a half life of 60
minutes. After 3 hours, the fraction of atom that have decayed would be.
A. 12.5%
B. 87.5%

C. 8.5%
D. 25.1%

Answer: B

D Watch Video Solution

19. After two hours, one-sixteenth of the
starting amount if a certain radioactive isotope
remained undecayed. The half-life of the
isotope is
A. 15 minutes

B. 30 minutes

C. 45 minutes

D. 1 hour

Answer: B

D Watch Video Solution

20. N atoms of a radioactive element emit n
alpha particles per second. The half-life of tge element is.

> A. $\frac{n}{N} \mathrm{sec}$
> B. $\frac{N}{n} \mathrm{sec}$
> C. $\frac{0.693 N}{n} \mathrm{sec}$
> D. $\frac{0.693 n}{N} \mathrm{sec}$

Answer: C

- Watch Video Solution

21. The half-life (T) and the disintegration constant (λ) of a radioactive substance are related as

А. $\lambda T=1$

B. $\lambda T=0.693$
C. $\frac{T}{\lambda}=0.693$
D. $\frac{\lambda}{T}=0.693$

Answer: B

D Watch Video Solution

22. The half-life period of a radioactive substance is 5 min . The amount of substance decayed in 20 min will be
A. 93.75%
B. 0.75
C. 0.25
D. 6.25%

Answer: A

- Watch Video Solution

23. Radon $(R a)$ decays into Polonium $\left(P_{0}\right)$ by emitting an α - particle with half-life of 4 days.

A sample contains 6.4×10^{10} atoms of R_{n}.

After 12 days, the number of atoms of R_{n} left in the sample will be
A. 3.2×10^{10}
B. 0.53×10^{10}
C. 2.1×10^{10}
D. 0.8×10^{10}

Answer: D

- Watch Video Solution

24. Decay constant of radiun is λ. By a suitable process its compound radium bromide is obtained. The decay constant of radium bromide will be
A. λ
B. More than λ
C. Less than λ
D. Zero

Answer: A
25. Half-life of a radioactive substance A and B are, respectively, 20 min and 40 min . Initially, the samples of A and B have equal number of nuclei. After 80 min , the ratio of the remaining number of A and B nuclei is
A. $1: 16$
B. $4: 1$
C. 1: 4
D. 1:1

Answer: C

D Watch Video Solution

26. The half - life ofl ^ (131)
is8days. Givenasamp $\leq o f 1^{\wedge}(131)$ attimet $=0 `$
, we can assert that
A. No nucleus will decay before $t=4$ days
B. No nucleus will decay before $t=8$ days
C. All nuclei will decay before $t=16$ days
D. A given nucleus may decay at any time

after $t=0$

Answer: D

D Watch Video Solution

27. Carbon -14 decays with half-life of about

5,800 years. In a sample of bone, the ratio of
carbon -14 to carbon -12 is found to be $\frac{1}{4}$ of what it is in free air. This bone may belong to a
period about x centuries ago. Where x nearest to
A. 2×58
B. 58
C. $58 / 2$
D. 3×58

Answer: A

D Watch Video Solution
28. Half-life of a radioacitve element is 10 days.

The time during which quantity remains $1 / 10$ of initial mass will be
A. 100 days
B. 50 days
C. 33 days
D. 16 days

Answer: C
29. If half-life of a radioactive element is 3
hours. After 9 hours its activity becomes
A. $1 / 9$
B. $1 / 27$
C. $1 / 6$
D. $1 / 8$

Answer: D

D Watch Video Solution
30. At any instant, the ratio of the amounts of two radioactive substance is $2: 1$. If their halflives be, respectively, $12 h$ and $16 h$, then after two days, what will be the ratio of the substances?
A. $1: 1$
B. 2:1
C. 1:2
D. 1: 4

Answer: A
31. A ratio isotope has a half-life of 75 years.

The fraction the atoms of this material that would decay in 150 years. Will be.
A. 66.6%
B. 85.5%
C. 62.5%
D. 75%
32. The activity of a radioactive sample is measured as 9750 counts per minute at $t=0$ and as 975 counts per minute at $t=5$ minutes. The decay constant is approximately
A. 0.230 per minute
B. 0.461 per minute
C. 0.691 per minute
D. 0.922 per minute

Answer: B

- Watch Video Solution

33. The acticity of a sample is $64 \times 10^{-5} \mathrm{Ci}$. Its
half-life is 3 days. The activity will become
$5 \times 10^{-6} C i$ after.
A. 12 days
B. 7 days
C. 18 days
D. 21 days

- Watch Video Solution

34. The half-life of radon is 3.8 days. Three forth of a radon sample decay in.
A. 5.02 days
B. 15.2 days
C. 7.6 days
D. 11.4 days

Answer: C

- Watch Video Solution

35. 3.8 days is the half-life period of a sample.

After how many days. The sample will become
$1 / 8 t h$ of the original substance?
A. 11.4
B. 3.8
C. 3
D. None of these

- Watch Video Solution

36. Plutonium decays with a half-life of 24000
years. If the plutonium is stored for 72000
years, then the fraction of plutonium that remains is.

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \\
& \text { B. } \frac{1}{3} \\
& \text { C. } \frac{1}{4}
\end{aligned}
$$

D. $\frac{1}{8}$

Answer: D

- Watch Video Solution

37. A radioactive substance has a half-life of 1
year. The fraction of this material, that would remain after 5 years will be.
A. $\frac{1}{32}$
B. $\frac{1}{5}$

> C. $\frac{1}{2}$
> D. $\frac{4}{5}$

Answer: A

D Watch Video Solution

38. A radioactive sample has half-life of 5 years.

Probability of decay in 10 years will be.
A. 1
B. 0.75

C. 0.5

D. 0.25

Answer: B

- Watch Video Solution

39. If half-life of a substance is 3.8 days and its quantity is 10.38 gm . Then substance quantity remaining left after 19 days will be
A. 0.151 gm

$$
\text { B. } 0.32 \mathrm{gm}
$$

C. 1.51 gm
D. 0.16 gm

Answer: B

(Watch Video Solution

40. In a mean life of a radioactive sample
A. About $1 / 3$ of substance disintegrates
B. About $2 / 3$ of the substance

disintegrates

C. About 90% of the substance
disintegrates
D. Almost all the substance disintegrates

Answer: B

- Watch Video Solution

41. Three fourth of the active decays in a radioactive sample in $3 / 4 \mathrm{sec}$. The half-life of the sample is
A. $\frac{1}{2} \mathrm{sec}$
B. 1 sec
C. $\frac{3}{8} \mathrm{sec}$
D. $\frac{3}{4} \mathrm{sec}$

Answer: C
42. During mean life of a radioactive element, the fraction that disintegrates is
A. e
B. $\frac{1}{e}$
C. $\frac{e-1}{e}$
D. $\frac{e}{e-1}$

Answer: C

- Watch Video Solution

43. If a radioactive substance reduces to $\frac{1}{16}$ of its original mass in 40 days, what is its half-life ?
A. 10 days
B. 20 days
C. 40 days
D. None of these

Answer: A
44. 99% of a radioactive element will decay between
A. 6 and 7 half-lives
B. 7 and 8 half-lives
C. 8 and 9 half-lives
D. 9 half-lives

Answer: A

D Watch Video Solution
45. 1 mg gold undergoes decay with 2.7 days
half-life period, amount left after 8.1 days is
A. $0.91 m g$
B. 0.25 mg
C. 0.5 mg
D. 0.125 mg

Answer: D

- Watch Video Solution

46. Ceratain radioactive substance reduces to 25% of its value is 16 days. Its half-life is
A. 32 days
B. 8 days
C. 64 days
D. 28 days

Answer: D

- Watch Video Solution

47. The half-life of a radioactive substance against α - decay is $1.2 \times 10^{7} s$. What is the decay rate for 4×10^{15} atoms of the substance ?
A. 4.6×10^{12} atoms $/ \mathrm{s}$
B. 2.3×10^{11} atoms $/ \mathrm{s}$
C. 4.6×10^{10} atoms $/ \mathrm{s}$
D. 2.3×10^{8} atoms $/ \mathrm{s}$

Answer: D
48. 10 gm of radioactive material of half-life 15
year is kept in store for 20 years, The disintegrated material is.
A. $12.5 g$
B. $10.5 g$
C. $6.03 g$
D. $4.03 g$

Answer: C
49. In a sample of radioactive material, what percentage of the initial number of active nuclei will decay during one mean life ?
A. 69.3%
B. 0.63
C. 0.5
D. 0.37

Answer: B
50. A radioactive material has an initial amount

16 gm After 120 days it reduces to 1 gm . Then the half-life of radioactive material is
A. 60 days
B. 30 days
C. 40 days
D. 240 days

Answer: B
51. Half-life of a substance is 10 years. In what time, it becomes $\frac{1}{4} t h$ part of the initial amount ?
A. 5 years
B. 10 years
C. 20 years
D. None of these

Watch Video Solution

52. If N_{0} is the original mass of the substance of half - life period $t_{1 / 2}=5 y$ ear then the amount of substance left after 15 year is
A. $N_{0} / 8$
B. $N_{0} / 16$
C. $N_{0} / 2$
D. $N_{0} / 4$

- Watch Video Solution

53. The ratio activity of an element becomes
$1 / 64 t h$ of its original value in 60 sec . Then the half-life period is
A. 5 sec
B. 10 sec
C. 20 sec
D. 30 sec

- Watch Video Solution

54. The half-life of a radioactive substance is 48
hours. How much time will it take to disintegrate to its $\frac{1}{16} t h$ parts ?
A. 12 th
B. 16 h
C. 48 h
D. 192 h

- Watch Video Solution

55. A radioactive substance has an average life of 5 hours. In a time of 5 hours
A. Half of the active nuclei decay
B. Less than half of the active nuclei decay
C. More than half of the active nuclei decay
D. All active nuclie decay

Answer: C
56. A sample of a radioactive element has a mass of $10 g$ at an instant $t=0$. The approxiamte mass of this element in the sample after two mean lives is .
A. 2.50 gm
B. 3.70 gm
C. 6.30 gm
D. 1.35 gm

- Watch Video Solution

57. The half-life of a sample of a radioactive substance is 1 hour. If 8×10^{10} atoms are present at $t=0$, then the number of atoms decayed in the duration $t=2$ hour to $t=4$ hour will be
A. 2×10^{10}
B. 1.5×10^{10}
C. Zero

D. Infinity

Answer: B

- Watch Video Solution

58. A count rate meter shows a count of 240 per minute from a given radioactive source.

One hour later the meter shows a count rate of 30 per minute. The half-life of the source is.
A. 120 min
B. 80 min

C. 30 min

D. 20 min

Answer: D

- Watch Video Solution

59. Activity of radioactive element decreased to
one third of original activity R_{0} in 9 years. After
further 9 years, its activity will be
A. R_{0}
B. $\frac{2}{3} R_{0}$
C. $R_{0} / 9$
D. $R_{0} / 6$

Answer: C

D Watch Video Solution

60. The half-life a radioacitve substance is 40
yeard. How long will it take to reduce to one
fourth of its original amount and what is the value of decay constant?
A. $40 y e a r s, 0.9173 /$ year
B. $90 y e a r, 9.017 /$ year
C. 80year, 0.0173 year

D. None of these

Answer: C

D Watch Video Solution

61. A nucleus of mass 218 amu in Free State decays to emit an α-particle. Kinetic energy of
the β - particle emitted is 6.7 MeV . The recoil energy (in MeV) of the daughter nucleus is
A. 1.0
B. 0.5
C. 0.25
D. 0.125

Answer: D

- Watch Video Solution

62. Radioactive element decays to form a stable

nuclide, then the rate of decay of reactant $\left(\frac{d N}{d t}\right)$ will vary with time (t) as shown in figure.

Answer: C

- Watch Video Solution

63. A radioactive sample has N_{0} active at $t=0$
. If the rate of disintegration at any time is R
and the number of atoms is N, them the ratio
R / N varies with time as.
(a)
A.

(b)

Answer: D

D Watch Video Solution

64. The count rate of $10 g$ of radioactive material was measured at different times and
times has been shown in the figure. The half-
life of material and the total counts
(approximately) in the first half life period, respectively are.

A. $4 h, 9000$
B. $3 h, 14000$
C. $3 h, 235$
D. $3 h, 50$

Answer: B

- Watch Video Solution

65. The fraction f of radioactive material that has decayed in time t, varies with time t. The correct variation id given by the curve.

A. A
B. B
C. C
D. D

Answer: B

- Watch Video Solution

Problems Based On Mixed Concepts

1. The binding energy per nucleon of O^{16} is 7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is.
A. 3.52
B. 3.64
C. 4.23
D. 7.86

Answer: C
2. A heavy nucleus at rest breaks into two fragments which fly off with velocities in the ratio $8: 1$. The ratio of radii of the fragments is.
A. $1: 2$
B. 1: 4
C. $4: 1$
D. 2:1

Answer: A
3. A star initially has 10^{40} deuterons. It produces energy via the processes
${ }_{\cdot 1} H^{2}+{ }_{1} H^{2} \rightarrow_{1} H^{3}+p$
and
${ }_{\cdot 1} H^{2}+{ }_{1} H^{3} \rightarrow_{2} H e^{4}+n$. If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of
(a) $10^{6} s$ (b) $10^{8} s$ (c) $10^{12} s$

The masses of the nuclei are as follows
$M\left(H^{2}\right)=2.014 \mathrm{amu}, M(n)=1.008 \mathrm{amu}$,
$M(p)=1.007 \mathrm{amu}, M\left(H e^{4}\right)=4.001 \mathrm{amu}$
A. $10^{6} \mathrm{sec}$
B. $10^{8} \mathrm{sec}$
C. $10^{12} \mathrm{sec}$
D. $10^{16} \mathrm{sec}$

Answer: C

D Watch Video Solution

4. If 10% of a radioactive material decays in 5
days, then the amount of original material left after 20 days is approximately.
A. 60%
B. 65%
C. 70%
D. 75%

Answer: B

D Watch Video Solution

5. A radioactive isotope X with a half-life of
1.37×109 years decays to Y which is stable. A
sample of rock from the moon was found to
contain both the elements X and Y which
were in the ratio of $1: 7$. The age of the rock is.
A. 1.96×10^{8} years
B. 3.85×10^{9} years
C. 4.11×10^{9} years
D. 9.59×10^{9} years

Answer: C

- Watch Video Solution

6. The half-life of radium is 1620 years and its
atomic weight is 226 . The number of atoms
that will decay from its $1 g$ sample per second will be .
A. 3.61×10^{10}
B. 3.6×10^{12}
C. 3.11×10^{15}
D. 31.1×10^{15}

Answer: A
7. The half-life period of a radioactive element x
is same as the mean life time of another radioactive element y. Initially, both of them have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. X and Y have the same decay rate initially
B. X and Y decay at the same rate always
C. Y will decay at a faster rate than X
D. X will decay at a faster rate then Y.

Answer: C

D Watch Video Solution

8. For a substance the average life for $\alpha-$ emission is 1620 years and for β - emission is

405 years. After how much time the $1 / 4$ of the material remains after α and β emission ?
A. 1500 years
B. 300 years
C. 449 years
D. 810 years

Answer: C

D Watch Video Solution

9. The half-life of radioactive Polonium (Po) is
138.6 days. For ten lakh Polonium atoms, the number of disintegrations in 24 hours is
A. 2000
B. 3000
C. 4000
D. 5000

Answer: D

D Watch Video Solution

10. A radioactive nucleus undergoes $\alpha-$ emission to form a stable element. What will be the recoil velocity of the daughter nucleus is V
is the velocity of α-emission and A is the atomic mass of radioactive nucleus?

$$
\begin{aligned}
& \text { A. } \frac{4 V}{A-4} \\
& \text { B. } \frac{2 V}{A-4} \\
& \text { C. } \frac{4 V}{A+4} \\
& \text { D. } \frac{2 V}{A+4}
\end{aligned}
$$

Answer: A

- Watch Video Solution

11. Half-life of a radioactive substance is 20 minutes. Difference between points of time when it is 33% disintegrated and 67% disintegrated is approximate.
A. 10 min
B. 20 min
C. 30 min
D. 40 min

Answer: B
12. Two radioactive X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. $1 /(10 \lambda)$
B. $1 /(11 \lambda)$
C. $11 /(10 \lambda)$
D. $1 /(9 \lambda)$

Answer: D

D Watch Video Solution

13. A and B are two radioactive substances
whose half lives are 1 and 2 years respectively.

Initially 10 gm of A and 1 gm of B is taken. The
time (approximate) after which they will have
same quantity remaining is.
A. 6.62years
B. 5 years

C. $3.2 y$ years

D. 7 years

Answer: A

- Watch Video Solution

14. Half life of a radio-active substance is 20 minutes. The time between 20% and 80% decay will be
A. 20 minutes

B. 40 minutes

C. 30 minutes
D. 25 minutes

Answer: B

D Watch Video Solution

15. After 280 days, the activity of a radioactive sample is 6000 dps . The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is

A. 6000

B. 9000
C. 3000

D. 24000

Answer: D

D Watch Video Solution

16. The rate of disintegration was observed to
be 1017 disintegrations per sec when its half
life period is 1445 years. The original number of particles are.
A. 8.9×10^{27}
B. 6.6×10^{27}
C. 1.4×10^{16}
D. 1.2×10^{17}

Answer: B

D Watch Video Solution
17. A small quantity of solution containing
$N a^{24}$ radio nuclide (half $-l$ if $e=15 h$) of activity 1.0 microcurie is injected into the blood of a person. A sample of the blood of volume $1 \mathrm{~cm}^{3}$ taken after $5 h$ shows an activity of 296 disintegrations per minute. Determine the total volume of the blood in the body of the person. Assume that the radioactive solution mixes uniformly in the blood of person.
(1 curie $=3.7 \times 10^{10}$ disintegrations per second)
A. 5.94 litres
B. 2 litres
C. 317 litres
D. 1 litres

Answer: A

D Watch Video Solution

18. A radioactive sample of ^ $(238) U$ decay to

Pb through a process for which the half is
4.5×10^{9} year. Find the ratio of number of
nuclei of Pb to ${ }^{\wedge}(238)$ Uafter a time of 1.5×10^{9} year Given $(2)^{1 / 3}=1.26$
A. 0.12
B. 0.26
C. 1.2
D. 0.37

Answer: B

- Watch Video Solution

19. A radioactive sample is α-emitter with
half life 138.6 days is observed by a student to
have 2000 disintegration/sec. The number of radioactive nuclei for given activity are.
A. 3.45×10^{10}
B. 1×10^{10}
C. 3.45×10^{15}
D. 2.75×10^{11}

Answer: A
20. A radioactive nucleus is being produced at
a constant rate α per second. Its decay constant is λ. If N_{0} are the number of nuclei at
time $t=0$, then maximum number of nuclei possible are.

> A. $\frac{\alpha}{\lambda}$
> B. $N_{0}+\frac{\alpha}{\lambda}$
> C. N_{0}
> D. $\frac{\lambda}{\alpha}+N_{0}$

- Watch Video Solution

21. The ratio of radii of nuclei $\cdot 13 A 1^{27}$ and
${ }_{.52} X^{A}$ is $3: 5$. The number of neutrons in the nuclei of X will be
A. 52
B. 73
C. 125
D. 13

Answer: B

D Watch Video Solution

22. If one starts with one curie of radioactive
substance $\left(T_{1 / 2}=12 h r s\right)$ the activity left
after a period of 1 week will be about

A. 1 curie

B. 120 micro curie
C. 60 micro curie
D. 8 mili curie

Answer: C

- Watch Video Solution

23. A nucleus $\cdot Z X^{A}$ emits 9α - particles and
$5 p$ particle. The ratio of total protons and neutrons in the final nucleus is.

$$
\begin{aligned}
& \text { A. } \frac{(Z-13)}{(A-Z-23)} \\
& \text { B. } \frac{(Z-18)}{(A-36)} \\
& \text { C. } \frac{(Z-13)}{(A-36)} \\
& \text { D. } \frac{(Z-13)}{(A-Z-13)}
\end{aligned}
$$

- Watch Video Solution

24. The nuclide . ${ }^{131} I$ is radioactive, with a half-
life of 8.04 days. At noon on January 1 , the activity of a certain sample is 60089 . The activity at noon on January 24 will be
A. 75 Bq
B. Less than $75 B q$
C. More than $75 B q$

D. $150 B q$

Answer: C

D Watch Video Solution

25. U^{238} decays into $T h^{234}$ by the emission of an a-particle. There follows a chain of further radioactive decays, either by α-decay or by
β - decay. Eventually a stable nuclide is reached and after that, no further radioactive decay is possible. which of the following stable
nuclides is the end product of the U^{238} radioactive decay chain ?
A. $P b^{206}$
B. $P b^{207}$
C. $P b^{208}$
D. $P b^{209}$

Answer: A
(Watch Video Solution
26. When a sample of solid lithium is placed in
a flask of hydrogen gas then following reaction
happened

$$
\cdot{ }_{1}^{1} H+{ }_{\cdot 3} L i^{7} \rightarrow{ }_{\cdot 2} H e^{4}+{ }_{\cdot 2} H e^{4} .
$$

This statement is.
A. True
B. False
C. May be true at a particular pressure
D. None of these

Answer: B

(Watch Video Solution

27. Consider an initially pure $M g m$ sample of
X, an isotope that has a half-life of T hour, what is its initial decay rate ($N_{A}=$ Avogadro No, atomic weight of X is A)

> A. $\frac{M N_{A}}{T}$
> B. $\frac{0.693 M N_{A}}{T}$
> C. $\frac{0.693 M N_{A}}{A T}$
> D. $\frac{2.303 M N_{A}}{A T}$

Answer: C

- Watch Video Solution

28. At a given instant there are 25% undecayed radioactive nuclei in a same. After

10 sec the number of undecayed nuclei reduces
to 6.25%, the mean life of the nuclei is.
A. 14.43 sec
B. 7.21 sec
C. 5 sec
D. 10 sec

Answer: B
(Watch Video Solution
29. Highly energetic electrons are bombarded
on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $141 / 3$. The atomic number of nucleus will be.
A. 25
B. 26
C. 56
D. 30

- Watch Video Solution

30. Number of nuclei of a radioactive substance are 1000 and 900 at times $t=0$ and time $t=2 s$. Then, number of nuclei at time $t=4 s$ will be
A. 800
B. 810
C. 790
D. 700

Answer: B

- Watch Video Solution

31. Which sample contains greater number of nuclei ?
a $5.00-\mu C i$ sample of.${ }^{240} \mathrm{Pu}$ (half-life $6560 y$) or $a 4.45-\mu C i$ sample of.${ }^{243} A m$ (half-life $7370 y$).
A. . ${ }^{240} \mathrm{Pu}$
B. . ${ }^{243} \mathrm{Am}$

C. Equal in both

D. None of these

Answer: C

- Watch Video Solution

32. The radioactivity of a given sample of whisky due to tritium (half life 12.3 years) was
found to be only 3% of that measured in a recently purchased bottle marked ''7 years
old". The sample must have been prepared about.
A. 220 years back
B. 300 years back
C. 400 years back
D. 70 years back

Answer: D

D Watch Video Solution
33. Transition between three energy energy
levels in a particular atom give rise to three
Spectral line of wevelength , in increasing magnitudes. λ_{1}, λ_{2} and λ_{3}. Which one of the following equations correctly ralates λ_{1}, λ_{2} and λ_{3} ?

$$
\text { A. } \lambda_{1}=\lambda_{2}-\lambda_{3}
$$

$$
\text { B. } \lambda_{1}=\lambda_{3}-\lambda_{2}
$$

$$
\text { C. } \frac{1}{\lambda_{1}}=\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{3}}
$$

$$
\text { D. } \frac{1}{\lambda_{1}}=\frac{1}{\lambda_{3}}-\frac{1}{\lambda_{2}}
$$

D Watch Video Solution

34. Samples of two radioactive nuclides, X and
Y, each have equal activity A at time $t=0$. X
has a half-life of $24 y e a r s$ and Y a half-life of
$16 y e a r s$. The samples are mixed together.

What will be the total activity of the mixture at
$t=48$ years?

$$
\text { A. } \frac{1}{2} A_{0}
$$

B. $\frac{1}{4} A_{0}$
C. $\frac{3}{16} A_{0}$
D. $\frac{3}{8} A_{0}$

Answer: D

D Watch Video Solution

35. A stationery thorium nucleus
($A=200, Z=90$) emits an alpha particle
with kinetic energy E_{α}. What is the kinetic energy of the recoilling nucleus
A. $\frac{E_{a}}{108}$
B. $\frac{E_{a}}{110}$
C. $\frac{E_{a}}{55}$
D. $\frac{E_{a}}{54}$

Answer: D

- Watch Video Solution

36. A hydrogen-like atom emits rediationof frequency 2.7×10^{15} Hz
when if makesatransitionom $\mathrm{n}=2$ to $\mathrm{n}=1$
.Therquencyemied \in atransitionomn $=3$ to
$\mathrm{n}=1{ }^{\text { }}$ will be
A. $1.8 \times 10^{15} \mathrm{~Hz}$
B. $3.2 \times 10^{15} \mathrm{~Hz}$
C. $4.7 \times 10^{5} \mathrm{~Hz}$
D. $6.9 \times 10^{15} \mathrm{~Hz}$.

Answer: D

- Watch Video Solution

37. Stationery nucleus.${ }^{238} U$ decays by a emission generaring a total kinetic energy T :
${ }_{\cdot 92}^{238} \rightarrow{ }_{.90}^{234} T h+{ }_{.}^{4} \alpha$
What is the kinetic energy of the α-particle?
A. slightly less than T
B. $T / 2$
C. slightly less than T
D. slightly greater than T

Answer: C
38. The ground (Fig.) shows the number of particles $N t$ emitted per second by a radioactive source as a function of time t

The relationship between N_{t} and t is.

A. $N_{t}=1000 e^{-(20 t / s)}$
B. $N_{t}=20 e^{-(20 t / s)}$

$$
\text { C. } N_{t}=3 e^{-(0.05 t / s)}
$$

$$
\text { D. } N_{t}=20 e^{-(0.05 t / s)}
$$

Answer: D

- View Text Solution

39. The activity of a radioative element decreases to one third of the original activity
I_{0} in a period of nine years. After a further

1apse of nine years, its activity will be
A. t_{0}

$$
\text { B. }(2 / 3) t_{0}
$$

C. $\left(t_{0} / 9\right)$
D. $\left(t_{0} / 6\right)$

Answer: C

D Watch Video Solution

40. A radioactive element A with a half-value period of 2 hours decays giving a stable element Y. After a time t the ratio of X and Y atoms is $1: 7$ then t is :
A. 6 hours

B. 4 hours

C. between 4 and 5 hours

D. 14 hours

Answer: A

(Watch Video Solution

41. The half-life period of $\operatorname{RaB}\left(.82 P b^{214}\right)$ is
26.8 min . The mass of one curie of RaB is

A. $3.71 \times 10^{10} g$

$$
\text { B. } 3.71 \times 10^{-10} g
$$

C. $8.61 \times 10^{10} g$

$$
\text { D. } 3.064 \times 10^{-8} g
$$

Answer: D

- Watch Video Solution

42. The count rate for $10 g$ of radioactive material was measured at different times and this has been shown in the above graph with
scale given. The half-life of the material and the total count in the first half-value period, respectively are.
A. 4 hours and 9000 (approximately)
B. 3 hours and 14100 (approximately)
C. 3 hours and 235 (approximately)
D. 10 hours and 150 (approximately)

Answer: B
43. If 10% of a radioactive material decays in 5 days, then the amount of original material left after 20 days is approximately.
A. 0.6
B. 0.65
C. 0.7
D. 0.75

Answer: B

D Watch Video Solution
44. A freshly prepared radioactive source of half life 2 hr emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. 6 hours
B. 12 hours
C. 24 hours
D. 128 hours

Answer: B
45. Uranium ores contain one radium -226 atom for every 2.8×106 uranium -238 atoms.

Calculate the half-life of $.92 U 6238$ given that the half-life of $.88 R a^{226}$ is 1600 years $\left(.{ }_{88} R a^{226}\right.$ is a decay product of $\left.{ }_{.92} U^{238}\right)$:
A. 1.75×10^{3} years
B. $1600 \times \frac{238}{92}$ years
C. 4.5×10^{9} years
D. 1600years

Answer: C

D Watch Video Solution

46. The radioactivity of a sample is A_{1} at time
t_{1} and A_{2} at time t_{2} If the mean life of the specimen is T, the number of atoms that have disintegrated in the time interval of $\left(t_{2}-t_{1}\right)$ is
A. $\left(A_{1}-A_{2}\right)$
B. $\frac{\left(A_{1}-A_{2}\right)}{T}$

$$
\begin{aligned}
& \text { C. }\left(A_{1}-A_{2}\right) T \\
& \text { D. } A_{1} t_{1}-A_{2} t_{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

47. Plutinium has atomic mass 210 and a decay
constant equal to $5.8 \times 10^{-8} s^{-1}$. The number of α-particles emitted per second by $1 m g$ plutonium is
(Avagadro's constant $=6.0 \times 10^{23}$).
A. 1.7×10^{9}
B. 1.7×10^{11}
C. 2.9×10^{11}
D. 3.4×10^{9}

Answer: B

- Watch Video Solution

48. At any instant, the ratio of the amounts of two radioactive substance is $2: 1$. If their halflives be, respectively, $12 h$ and $16 h$, then after
two days, what will be the ratio of the substances?
A. $1: 1$
B. 2:1
C. $1: 2$
D. 1:4

Answer: A
(Watch Video Solution
49. The radioactivity of a sample is R_{1} at a time T_{1} and R_{2} at time T_{2}. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time $\left(T_{2}-T_{1}\right)$ is proporational to

$$
\text { A. } R_{1} T_{1}=R_{2} T_{2}
$$

$$
\text { B. } R_{1}-R_{2}
$$

$$
\text { c. } \frac{\left(R_{1}-R_{2}\right)}{T}
$$

$$
\text { D. }\left(R_{1}-R_{2}\right)
$$

- Watch Video Solution

50. Half-lives of two radioactive substances A and B are respectively 20 minutes and 40 minutes. Initially, he sample of A and B have equal number of nuclei. After 80 minutes the ratio of the remaining number of A and B nuclei is :
A. $1: 16$
B. $4: 1$
C. 1:4

D. $1: 1$

Answer: C

- Watch Video Solution

51. A radioactive nucleus can decay by two
differnet processess. The mean value period for
the first process is t_{1} and that the second process is t_{2}.The effective mean value period for the two processes is .
A. $\frac{t_{1}+t_{2}}{2}$

$$
\text { B. } t_{1}+t_{2}
$$

C. $\sqrt{t_{1} t_{2}}$
D. $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$

Answer: D

(Watch Video Solution

52. The half-life of radium is 1620 years and its
atomic weight is 226 . The number of atoms
that will decay from its $1 g$ sample per second will be .
A. 3.6×10^{10}
B. 3.6×10^{12}
C. 3.1×10^{15}
D. 31.1×10^{15}

Answer: A

- Watch Video Solution

53. What would be the energy required to dissociate completely $1 g$ of $C a-40$ into its constituent, particles? Given: Mass of proton
$=1.00866 a m u$,

Mass of neutron $=1.00866 \mathrm{amu}$,

Mass of $\quad C a-40=39.97454 a m u, \quad$ (Take $1 a m u=931 M e V)$.
A. $4.831 \times 10^{24} \mathrm{MeV}$
B. $4.813 \times 10^{24} \mathrm{eV}$
C. $4.813 \times 10^{23} \mathrm{MeV}$
D. None of these

Answer: A
54. A star initially has 10^{40} deuterons. It produces energy via the processes
${ }_{.}{ }_{1}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{1}^{3} H+p$
$.{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+n$, where the masses of
the nuclei are
$m\left({ }^{2} H\right)=2.014 \mathrm{amu}, m(p)=1.007 \mathrm{amu}$,
$m(n)=1.008 \mathrm{amu}$ and $m\left(.{ }^{4} \mathrm{He}\right)=4.001$
amu. If the average power radiated by the star
is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of
A. 10^{6} second

B. 10^{8} second

C. 10^{12} second
D. 10^{16} second

Answer: C

D Watch Video Solution

55. In the nuclear reaction
${ }_{\cdot 1} H^{2}+{ }_{\cdot 1} H^{2} \rightarrow{ }_{\cdot 2} H e^{3}+{ }_{.0} n^{1}$ if the mass of
the deuterium atom $=2.014741 a \mathrm{mu}$, mass of
${ }_{\cdot 2} \mathrm{He}^{3}$ atom $=3.016977 \mathrm{amu}$, and mass of
neutron $=1.008987 a m u$, then the Q value of
the reaction is nearly.
A. 0.00352 MeV
B. 3.27 MeV
C. 0.82 MeV

D. 2.45 MeV

Answer: B

- Watch Video Solution

56. If mass of $U^{235}=235.12142 a . m$. u., mass
of $U^{236}=236.1205 a \mu$, and mass of neutron
$=1.008665 a m u$, then the energy required to
remove one neutron from the nucleus of U^{236} is nearly about.

A. 75 MeV
B. 6.5 MeV
C. 1 eV
D. zero

- Watch Video Solution

57. The binding energies per nucleon for deuteron (. ${ }^{1} H^{2}$) and helium (.2 $H e^{4}$) are 1.1 MeV and 7.0 MeV respectively. The energy released when two deutrons fuse to form a helium nucleus (.2 He^{4}) is
A. 13.9 MeV
B. 26.9 MeV
C. 23.9 MeV

D. 19.2 MeV

Answer: C

- Watch Video Solution

58. In radioactive decay of a radioactive atom,
its stability increases.

It is a spontaneous process.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.

C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: A

D
 Watch Video Solution

Section B - Assertion Reasoning

1. Assertion: For the scattering of α-particles at a large angles, only the nucleus of the atom is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

2. Assertion : Though light of a single frequency (monochromatic) is incident on a metal , the energies of emitted photoelectrons are different.

Reason : The energy of electrons emitted from inside the metal surface is lost in collision with the other atoms in the metal.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

3. Amongst α, β and γ - particles, $\alpha-$ particle has maximum penetrating power.

The α - particle is heavier than β and $\gamma-$ particle.
A. If both assertion and reason are true and
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

4. The ionising power of α-particle is less
compared to α-particles but their penetrating power is more.

The mass of β - particle is less than the mass of α-particle.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: B

D Watch Video Solution

5. The mass of β - particles when they are emitted is higher than the mass of electrons obtained by other means
β - particle and electron, both are similar particles.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

6. Radioactivity of 108 undecayed radioactive nuclei of half life of 50 days is equal to that of
1.2×108 number of undecayed nuclei of some material with half life of 60 days Radioactivity is proportional to half-life.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

7. Fragments produced on the fission of U^{235} are radioactive.

The fragments have abnormally high proton to neuton ratio.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.

B. If both assertion and reason are true but

reason is not the correct explanation of assertion.

C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

8. Electron capture occurs more often than positron emission in heavy elements. Heavy elements exhibit radioactivity.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: B
9. The mass of a nucleus can be either less than or more than the sum of the masses of nucleons present in it.

The whole mass of the atom is considered in the nucleus.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: D

- Watch Video Solution

10. Assertion: For the scattering of α-particles
at a large angles, only the nucleus of the atom is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

11. All the radioactive elements are ultimately converted in lead.

All the elements above lead are unstable.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: C
12. Staements I: $\cdot z X^{4}$ undergoes 2α-decays, 2β
-decays (negative β) and 2γ-decays. As a result,
the daughter product is $\cdot z \cdot{ }_{-2} X^{A-B}$.

Staements II: In α-decay, the mass number decreases by 4 unit and atomic number decreases by 2 unit. In β-decay (negative β), the mass number remains unchanged and atomic number increases by 1 unit. In γ-decay, mass number and atomic number remain unchanged.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A
13. Statement I:Heavy nuclides tend to have more number of neutrons than protons.

Staements II: In hevay nuclei, as there is coloumbic repulsion between protons, so excess of neutrons are preferable:
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A

D Watch Video Solution

AIPMT/NEET Questions

1. During mean life of a radioactive element, the fraction that disintegrates is
A. e
B. $\frac{1}{e}$
C. $\frac{e-1}{e}$
D. $\frac{e}{e-1}$

Answer: C

- Watch Video Solution

2. M_{n} and M_{p} represent mass of neutron and proton respectively. If an element having atomic mass M has N - neutron and Z proton, then the correct relation will be :

$$
\begin{aligned}
& \text { A. } M<\left[N M_{n}+Z M_{p}\right] \\
& \text { B. } M>\left[N M_{n}+Z M_{p}\right] \\
& \text { C. } M=\left[N M_{n}+Z M_{p}\right] \\
& \text { D. } M=N\left[M_{n}+M_{p}\right]
\end{aligned}
$$

Answer: A
3. If the energy released in the fission of the nucleus is 200 MeV . Then the number of nuclei
required per second in a power plant of $6 k W$ will be.

A. 0.5×10^{14}
B. 0.5×10^{12}
C. 5×10^{12}
D. 5×10^{14}

(.) Watch Video Solution

4. In the nuclear reaction: $X(n, \alpha){ }_{3} L i^{7}$ the term X will be 3
A. ${ }_{5} B^{10}$
B. ${ }_{5} B^{9}$
C. ${ }_{5} B^{11}$
D. $\cdot 2 H e^{4}$

Answer: A
5. The binding energy per nucleon of deuterium and helium atom is 1.1 MeV and
7.0 MeV . If two deuterium nuclei fuse to form helium atom, the energy released is.
A. 19.2 MeV
B. 23.6 MeV
C. 26.9 MeV
D. 13.9 MeV

- Watch Video Solution

6. Which of the following are suitable for the fusion process ?
A. Heavy nuclei

B. Light nuclei

C. Atom bomb
D. Radioactive decay

Answer: B
7. A sample has 4×10^{16} radioactive nuclei of half-life 10 days. The number of atoms decaying in 30 days is.
A. $3.9 x 10^{16}$
B. 5×10^{15}
C. 10^{16}
D. 3.5×10^{16}

Answer: D
8. A deutron strikes.${ }_{8} O^{16}$ nucleus with subsequent emission of an alpha particle. Idenify the nucleus so produced.

> A. ${ }_{3} L i^{7}$
> B. ${ }_{5} B^{10}$
> C. ${ }_{7} n^{13}$
> D. ${ }_{7} N^{14}$

Answer: D

9. A nuclear reaction given by

$$
1_{Z} X^{A} \rightarrow .(Z+1) Y^{A}+{ }_{-1} e^{0}+\vec{p}
$$

represents.
A. gamma-decay

B. Fusion

C. Fission
D. beta-decay
10. Solar energy is mainly caused due to
A. Fission of uranium present in the sun
B. Fusion of protons during synthesis of
heavier elements
C. Gravitational contraction
D. Burning of hydrogen in the oxygen

Answer: B
11. If m, m_{n} and m_{p} are masses of ${ }_{Z} X^{A}$ nucleus, neutron and proton respectively.
A. $m<(A-Z) m_{n}+Z m_{p}$
B. $m=(A-Z) m_{n}+Z m_{p}$
C. $m=(A-Z) m_{p}+Z m_{n}$
D. $m>(A-Z) m_{n}+Z m_{p}$

Answer: A
12. If . 92 U^{238} undergoes successively $8 \alpha-$ decays and 6β - decays, then resulting nucleus is.
A. ${ }_{82} U^{206}$
B. $\cdot 86 P b^{206}$
C. ${ }_{82} U^{210}$
D. $.82 U^{214}$

Answer: B
13. A sample of a radioactive element has a mass of $10 g$ at an instant $t=0$. The approxiamte mass of this element in the sample after two mean lives is .
A. 2.50 gm
B. 3.70 gm
C. 6.30 gm
D. 1.35 gm

Answer: D
14. The mass number of a nucleus is.
A. Always less then its atomic number
B. Always more than its atomic number
C. Always equal to its atomic number
D. Sometimes more than and sometimes
equal to its atomic number

Answer: D

15. The masses of neutron and proton are
1.0087 a.m.u. and 1.0073 a.m.u. respectively. If the neutrons and protons combine to form a helium nucleus (alpha particle) of mass 4.0015 a.m.u. The binding energy of the helium nucleus will be $(1 a . m . u .=931 M e V)$.
A. 28.4 MeV
B. 20.8 MeV
C. 27.3 MeV
D. 14.2 MeV

D Watch Video Solution

16. In the following reaction the value of ' X ' is.
${ }_{.7} N^{14}+{ }_{.2} H e^{4} \rightarrow X+{ }_{.1} H^{1}$.
A. $.8 N^{17}$
B. $.8 O^{17}$
C. ${ }_{7} O^{16}$
D. ${ }_{7} N^{16}$

Answer: B

D Watch Video Solution

17. A radioactive material has an initial amount

16 gm After 120 days it reduces to 1 gm . Then the half-life of radioactive material is
A. 60 days
B. 30 days
C. 40 days
D. 240 days

Answer: B

- Watch Video Solution

18. A nucleus represented by the symbol ${ }_{Z}^{A} X$ has.
A. Z neutrons and $A-Z$ protons
B. Z protons and $A-Z$ neutrons
C. Z protons and A neutrons
D. A protons and $Z-A$ neutrons

Answer: B

- Watch Video Solution

19. M_{p} denotes the mass of a proton and M_{n} that of a neutron. A given nucleus, of binding energy B, contains Z protons and N neutrons.

The mass $M(N, Z)$ of the nucleus is given by.

$$
\begin{aligned}
& \text { A. } M(N, Z)=N M_{n}+Z M_{p}-B c^{2} \\
& \text { В. } M(N, Z)=N M_{n}+Z M_{p}+B c^{2} \\
& \text { С. } M(N, Z)=N M_{n}+Z M_{p}-B / c^{2}
\end{aligned}
$$

$$
\text { D. } M(N, Z)=N M,,+Z M_{p}+B / c^{2}
$$

Answer: C

D Watch Video Solution

20. The nuclei of which one of the following pairs of nuclei are isotons?

$$
\begin{aligned}
& \text { A. } \cdot{ }_{34} S e^{74},{ }_{31} G a^{71} \\
& \text { B. }{ }_{42} M o^{92},{ }_{40} Z r^{92} \\
& \text { C. }{ }_{38} S r^{84}, \cdot{ }_{38} S r^{86}
\end{aligned}
$$

$$
\text { D. }{ }_{20} C a^{40},{ }_{16} S^{32}
$$

Answer: A

- Watch Video Solution

21. In the reaction $\cdot{ }_{1}^{2} H+\cdot{ }_{1}^{3} H \rightarrow{ }_{2}^{4} H e+\cdot{ }_{0}^{1} n$,
if the binding energies of $\cdot{ }_{1}^{2} \mathrm{H}, \cdot{ }_{1}^{3} \mathrm{H}$ and $\cdot{ }_{2}^{4} \mathrm{He}$ are respectively a, b and c (in MeV), then the energy (in MeV) released in this reaction is.

$$
\text { A. } c+a-b
$$

$$
\text { B. } c-a-b
$$

$$
\text { C. } a+b+c
$$

$$
\text { D. } a+b-c
$$

Answer: B

(Watch Video Solution

22. In any fission the ratio
mass of fission produts
is
mass of parent nucleus
A. Less than 1
B. greater than 1

C. equal to 1

D. depends on the mass of parent nucleus

Answer: A

- Watch Video Solution

23. Fission of nuclei is possible because the binding energy per nuclei in them
A. increases with mass number at high mass
B. decreases with mass number at high mass numbers
C. increases with mass number at low mass
numbers
D. decreases with mass number at low mass
numbers

Answer: D

- Watch Video Solution

24. The binding energy of deuteron is 2.2 MeV and that of ${ }_{2}^{4} \mathrm{He}$ is 28 MeV . If two deutrons are fused to form one ${ }_{2}^{4} \mathrm{He}$, then the energy released is
A. 25.8 MeV
B. 23.6 MeV
C. 19.2 MeV
D. 30.2 MeV

Answer: B
25. In a radioactive material the activity at time
t_{1} is R_{1} and at a later time t_{2}, it is R_{1}. If the decay constant of the material is λ, then

$$
\begin{aligned}
& \text { A. } R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)} \\
& \text { B. } R_{1}=R_{2} e^{\lambda\left(t_{1}-t_{2}\right)} \\
& \text { C. } R_{1}=R_{2}\left(t_{2} / t_{1}\right) \\
& \text { D. } R_{1}=R_{2}
\end{aligned}
$$

26. Two radioactive materials have decay constant $5 \lambda \& \lambda$. If initially they have same no. of nuclei. Find time when ratio of nuclei become $\left(\frac{1}{e}\right)^{2}$:
A. $\frac{1}{\lambda}$
B. 4λ
C. 2λ
D. $\frac{1}{2 \lambda}$

Answer: D

- Watch Video Solution

27. In radioactive decay process, the negatively
changed emitted β - particle are
A. the electrons present inside the nucleus
B. the electrons produces as a result of the decay of neutrons inside the nucleus
C. the electrons produces as a result of collisions between atoms
D. the electrons orbiting around the nucleus

Answer: B

D Watch Video Solution

28. A nucleus $\cdot{ }_{Z}^{A} X$ has mass represented by
$M(A, Z)$. If M_{p} and M_{p} denote the mass of
proton and neutron respectively and $B E$ the binding energy (in MeV), then :
A.

$$
B E=\left[M(A, Z)-Z M_{p}-(A-Z) M_{n}\right] c^{2}
$$

B.

$$
B E=\left[Z M_{p}+(A-Z) M_{n}-M(A, Z)\right] c^{2}
$$

C. $B E=\left[Z M_{p}+A M_{n}-M(A, Z)\right] c^{2}$
D. $B E=M(A, Z)-Z M_{p}-(A-Z) M_{n}$

Answer: B
29. If radius of the $-(13)^{27} \mathrm{Al}$ necleus is estimated to be 3.6 fermi then the radius of _ $(52)^{125}$ Te nucleus be nearly

A. 6.0 fm

B. 9.6 fm
C. 12.0 fm
D. 4.8 fm

Answer: A
30. Two radioactive materials X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. λ
B. $\frac{1}{2} \lambda$
C. $\frac{1}{4 \lambda}$
D. $\frac{e}{\lambda}$

Answer: C

D Watch Video Solution

31. M_{p} denotes the mass of a proton and M_{n} that of a neutron. A given nucleus, of binding energy B, contains Z protons and N neutrons.

The mass $M(N, Z)$ of the nucleus is given by.
A.

$$
M(A, Z)=Z M_{p}+(A-Z) M_{n}-B E / C^{2}
$$

B. $M(A, Z)=Z M_{p}+(A-Z) M_{n}+B E$
C. $M(A, Z)=Z M_{p}+(A-Z) M_{n}-B E$
D.

$$
M(A, Z)=Z M_{p}+(A-Z) M_{n}+B E / C^{2}
$$

Answer: A

(Watch Video Solution

32. In the nuclear decay given below
${ }_{\cdot}^{A} X \rightarrow{ }_{Z}{ }_{Z-1} \cdot{ }^{A} Y \rightarrow{ }_{\cdot}^{A-4} B_{-1}^{*} \rightarrow{ }_{Z_{-1}}^{A-1} B$,
the particle emitted in the sequence are
A. β, α, γ
B. γ, β, α
C. β, γ, α
D. α, β, γ

Answer: A

D Watch Video Solution

33. The mass of a $a_{3}^{7} L i$ nucleus is $0.042 u$ less
than the sum of the masses of all its nucleons.

The binding energy per nucleon of ${ }_{3}^{7} \mathrm{Li}$ nucleus is nearly.

A. 46 MeV

B. 5.6 MeV
C. 3.9 MeV
D. 23 MeV

Answer: B
(Watch Video Solution
34. The activity of a radioactive sample is measures as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5 \mathrm{~min}$.

The time (in minute) at which the activity reduces to half its value is.
A. $\log _{e} 2 / 5$
B. $\frac{5}{\log _{e} 2}$
C. $5 \log _{10} 2$
D. $5 \log _{e} 2$

- Watch Video Solution

35. The half-life of a radioactive isotope X is 50
years. It decays to another element Y which is
stable. The two elements X and Y were found
to be in the ratio of $1: 15$ in a sample of a given
rock. The age of the rock was estimated to be
A. 200 yr
B. 250 yr
C. 100 yr

D. 150 yr

Answer: A

D Watch Video Solution

36. The power obtained in a reactor using U^{235}
disintegration is 100 kW . The mas decay of
U^{235} per hour is
A. $20 \mu g$
B. $40 \mu g$

C. $1 \mu g$

D. $10 \mu g$

Answer: B

- Watch Video Solution

37. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils.

The recoil energy will be
A. $h^{2} V^{2} / 2 M c^{2}$
B. zero
C. hv

$$
\text { D. } M c^{2}-h v
$$

Answer: A

D Watch Video Solution

38. A nucleus ${ }_{\cdot}^{m} X$ emits one α - particle and
two β - particles. The resulting nucleus is
A. . ${ }^{m-6}{ }_{\cdot n} Z$

$$
\begin{aligned}
& \text { B. }{ }^{m-4} \cdot{ }_{n} Z \\
& \text { C. . } l_{n-2}^{m-4} Y \\
& \text { D. }{ }_{n-4}^{m-6} Z
\end{aligned}
$$

Answer: B

(Watch Video Solution

39. Fusion reaction takes place at high
temperature because
A. atoms get ionised at high temperature
B. kinetic energy is high enough to overcome the coulomb repulsion between nuclei
C. molecules break up at high temperature
D. nuclei break up at high temperature

Answer: B
(Watch Video Solution
40. Two radioactive nuclei P and Q, in a given
sample decay into a stable nucleus R. At time
$t=0$, number of P species are $4 N_{0}$ and that of
Q are N_{0}. Half-life of P (for conversation to R)
is 1 mm whereas that of Q is 2 min . Initially
there are no nuclei of R present in the sample.

When number of nuclei of P and Q are equal,
the number of nuclei of R present in the sample would be :
A. $3 N_{0}$
B. $\frac{9 N_{0}}{2}$

C. $\frac{5 N_{0}}{2}$ D. $2 N_{0}$

Answer: B

- Watch Video Solution

41. If the nuclear radius of.$^{27} A 1$ is 3.6 Fermi,
the approximate nuclear radius of $64 C u$ in

Fermi is :
A. 3.6
B. 2.4
C. 1.2
D. 4.8

Answer: D

(Watch Video Solution

42. A mixture consists of two radioactive materials A_{1} and A_{2} with half-lives of $20 s$ and $10 s$ respectively. Initially the mixture has $40 g$ of
A_{1} and $160 g$ of a_{2}. The amount the two in the mixture will become equal after
A. 40 s
B. 60s
C. 80 s
D. 20 s

Answer: A
(Watch Video Solution
43. The half-life of a radioactive nucleus is 50 days. The time interval $\left(t_{2}-t_{1}\right)$ between the time t_{2} when $\frac{2}{3}$ of it has decayed and the time t_{1} when $\frac{1}{3}$ of it had decayed is
A. 30 days
B. 50 days
C. 60 days
D. 15 days

Answer: B
44. A certain mass of hydrogen is changes to helium by the process of fusion. The mass defect in fusion reaction is $0.02866 u$. The energy liberated per u is (given $1 u=931 M e V)$
A. 2.67 Mev
B. 26.7 MeV
C. 6.675 MeV
D. 13.35 MeV

Answer: C

- Watch Video Solution

45. The half-life of a radioactive isotope X is 20
years. It decays to another element Y which is
stable. The two elements X and Y were found
to be in the ratio of $1: 7$ in a sample of a given
rock. The age of the rock was estimated to be.
A. 40 years
B. 60 years

C. 80 years

D. 100 years

Answer: B

- Watch Video Solution

46. If the binding energy per nucleon in $L i^{7}$ and $H e^{4}$ nuclei are respectively 5.60 MeV and
7.06MeV. Then energy of reaction
$L i^{7}+p \rightarrow 2_{2} H e^{4}$ is.
A. 19.6 MeV

$$
\text { B. }-2.4 M e V
$$

C. 8.4 MeV

D. 17.3 MeV

Answer: D

- Watch Video Solution

47. A radio isotope X with a half-life 1.4×10^{9}
years decays of Y which is stable. A sample of
the rock from a cave was found to contain X
and Y in the ratio $1: 7$. The age of the rock is.
A. 1.96×10^{9} years
B. 3.92×10^{9} years
C. 4.20×10^{9} years
D. 8.40×10^{9} years

Answer: C

- Watch Video Solution

48. If radius of the ${ }_{13}^{27} A 1$ nucleus is taken to be $R_{A 1}$ then the radius of ${ }_{\cdot 53}^{125} T e$ nucleus is nearly.
A. $\left(\frac{53}{13}\right)^{1 / 3} R_{A 1}$
B. $\frac{5}{3} R_{A 1}$
C. $\frac{3}{5} R_{A 1}$
D. $\left(\frac{13}{53}\right)^{1 / 3} R_{A 1}$

Answer: B

D Watch Video Solution

49. When an α - particle of mass ' m ' moving with velocity 'v' bombards on a heavy nucleus
of charge 'Ze' its distance of closest approach
from the nucleus depends on m as :
A. m
B. $\frac{1}{m}$
C. $\frac{1}{\sqrt{m}}$
D. $\frac{1}{m^{2}}$

Answer: B

- Watch Video Solution

50. The half-life of a radioactive substance is 30
minutes, The time (in minutes) taken between
40% decay and 85% decay of the same radioactive substance is.
A. 45
B. 60
C. 15
D. 30

Answer: B
51. Radioactive material ' A ' has decay constant
' 8λ ' and material ' B ' has decay constant 'lamda'. Initial they have same number of nuclei.

After what time, the ratio of number of nuclei
of material 'B' to that 'A' will be $\frac{1}{e}$?
A. $\frac{1}{7 \lambda}$
B. $\frac{1}{8 \lambda}$
C. $\frac{1}{9 \lambda}$
D. $\frac{1}{\lambda}$

D Watch Video Solution

52. For a radioactive material, half-life is 10
minutes. If initially there are 600 number of
nuclei, the time taken (in minutes) for the disintegration of 450 nuclei is.
A. 15
B. 20
C. 30

D. 10

Answer: B

(Watch Video Solution

AllMS Questions

1. The fraction of heavy water in a nuclear reactor is to.
A. increase the neutrons

B. slow down the neutrons

C. stop the electrons

D. None of the above

Answer: B

(Watch Video Solution

2. Which one of the following has the highest neutrons ratio?
A..${ }_{8} O^{16}$

$$
\begin{aligned}
& \text { B. } ._{2} H e^{4} \\
& \text { C. }{ }_{22} U^{235} \\
& \text { D. } \cdot 26 F e^{56}
\end{aligned}
$$

Answer: C

(Watch Video Solution

3. When radioactive substance emits an $\alpha-$ particle, then its position in the periodic table is lowered by.
A. three places

B. one place

C. five places

D. two places

Answer: D

D Watch Video Solution

4. In an atom bomb, the energy is released because of the.
A. chain reaction of neutrons and ${ }_{92} U^{238}$
B. chain reaction of neutrons and ${ }_{92} U^{236}$
C. chain reaction of neutrons and ${ }_{92} U^{235}$
D. chain reaction of neutrons and ${ }_{92} U^{240}$

Answer: C

D Watch Video Solution

5. The flux of α - particle at 2° is 1×10^{6}. The flux of α - particle at angle 60° is
A. 5.5
B. 2.5
C. 0.5
D. 1.5

Answer: D

D Watch Video Solution

6. A laser beam is used for carrying our surgery
because it
A. is highly monochromatic
B. is highly coherent
C. can be sharply focussed

D. is highly directional

Answer: C

D Watch Video Solution

7. If a radioactive substance reduces to $\frac{1}{16}$ of its original mass in 40 days, what is its half-life
A. 10
B. 5
C. 2.5
D. 20

Answer: A

D Watch Video Solution

8. The dependence of binding energy per nucleon, B_{N} on the mass number, A is represented by.

(c)
, (d)
(d) $B_{A=96 \xrightarrow[A]{\uparrow}}$

Answer: B

D Watch Video Solution

9. A radioactive nucleus undergoes $\alpha-$ emission to form a stable element. What will be the recoil velocity of the daughter nucleus is V
is the velocity of α-emission and A is the atomic mass of radioactive nucleus?

$$
\begin{aligned}
& \text { A. } \frac{4 v}{A-4} \\
& \text { B. } \frac{4 v}{A+4} \\
& \text { C. } \frac{2 v}{A+4} \\
& \text { D. } \frac{2 v}{A-4}
\end{aligned}
$$

Answer: A

- Watch Video Solution

10. When and electron-positron pair annihilates, the energy released is about.

$$
\text { A. } 0.8 \times 10^{-13} J
$$

B. $3.2 \times 10^{-13} J$
C. $1.6 \times 10^{-13} J$
D. $4.8 \times 10^{-13} J$

Answer: C

- Watch Video Solution

11. A radioactive material has half-life of 10 days. What fraction of the material would remain after 30 days ?
A. 0.125
B. 0.25
C. 0.5
D. 0.33

Answer: A
12. The operation of a nuclear reactor is said to be critical, if the multiplication factor (k) has a value
A. 1
B. 1.5
C. 2.1
D. 2.5

Answer: A

D Watch Video Solution
13. . ${ }_{92}^{238} U$ has 92 protons and 238 nucleons. It decays by emitting an alpha particle and becomes:
A. ${ }_{92}^{234} U$
B. ${ }_{92}^{235} U$
C..${ }_{90}^{234} T h$
D. ${ }_{93}^{237} N p$

Answer: C

- Watch Video Solution

14. The fossil bone has a $\cdot{ }^{14} C: .{ }^{12} C$ ratio, which is $\left[\frac{1}{16}\right]$ of that in a living animal bone. If the half -life of.$^{14} C$ is 5730 years, then the age of the fossil bone is :
A. 11460 years
B. 17190 years
C. 45840 years
D. 22921 years

Answer: D
15. Which one of the following is a possible nuclear reaction?
A. $.{ }_{5}^{10} \mathrm{~B}+.{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{7}^{13} \mathrm{~N}+\cdot{ }_{1}^{1} \mathrm{H}$
B. . ${ }_{93}^{239} \mathrm{~Np} \rightarrow{ }_{94}^{239} \mathrm{Pu}+\beta^{-+} \bar{v}$
C. $.{ }_{11}^{23} \mathrm{Na}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow \cdot{ }_{10}^{20} \mathrm{Ne}+\cdot{ }_{2}^{4} \mathrm{He}$
D. ${ }_{7}^{11} N+\cdot{ }_{1}^{1} H \rightarrow{ }_{6}^{12} C+\beta^{-+} v$

Answer: B
16. Starting with a sample of pure ${ }^{66} C u, 7 / 8$ of it decays into $Z n$ in 15 min . The corresponding half-life is.
A. 10 min
B. 5 min
C. 15 min
D. $7 \frac{1}{2} \mathrm{~min}$

Answer: B
17. A radioactive material decays by
simulataneous emission of two particle from
the with respective half - lives 1620 and 810
year. The time, in year, after which one fourth of the material remains is
A. 4860
B. 2430
C. 3240
D. 1080

- Watch Video Solution

18. 200 MeV of energy may be obtained per fission of U^{235}. A reactor is generating 1000 kW of power. The rate of nuclear fission in the reactor is.
A. 1000
B. 2×10^{8}
C. 3.125×10^{16}
D. 931

Answer: C

D Watch Video Solution

19. In the reaction $\cdot{ }_{1}^{2} H+\cdot{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+\cdot{ }_{0}^{1} n$, if the binding energies of $\cdot{ }_{1}^{2} \mathrm{H},{ }_{1}^{3} \mathrm{H}$ and $\cdot{ }_{2}^{4} \mathrm{He}$ are respectively a, b and c (in MeV), then the energy (in MeV) released in this reaction is.
A. $c+a-b$
B. $c-a-b$
C. $a+b+c$

$$
\text { D. } a+b-c
$$

Answer: B

- Watch Video Solution

20. In a radioactive substance at $t=0$, the number of atoms is 8×10^{4}. Its half-life period
is 3 years. The number of atoms 1×10^{4} will remain after interval.
A. 9 years
B. 8 years

C. 6 years

D. 24 years

Answer: A

- Watch Video Solution

21. Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $141 / 3$. The atomic number of nucleus will be.
A. 25
B. 26
C. 56
D. 30

Answer: B

D Watch Video Solution

22. Two radioactive X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the
ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. $1 /(10 \lambda)$
B. $1 /(11 \lambda)$
C. $11 /(10 \lambda)$
D. $1 /(9 \lambda)$

Answer: D

- Watch Video Solution

1. Staements I: ${ }_{z} X^{4}$ undergoes 2α-decays, 2β decays (negative β) and 2γ-decays. As a result, the daughter product is $\cdot z \cdot{ }_{-2} X^{A-B}$.

Staements II: In α-decay, the mass number decreases by 4 unit and atomic number decreases by 2 unit. In β-decay (negative β), the mass number remains unchanged and atomic number increases by 1 unit. In γ-decay, mass number and atomic number remain unchanged.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A

2. Radioactive nuclei emit β^{-1} particles.

Electrons exist inside the nucleus.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

3. ${ }^{90} S r$ from the radioactive fall out from nuclear bomb ends up in the bones of human being through the milk consumed by them. It causes impairment of the production of res blood cells.

The energetics β-particles emitted in the decay of ${ }^{90} S r$ damage the bone marrow.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

4. Energy is released in nuclear fission.

Total binding energy of the fission fragments is
large than the total binding energy of the parent nucleus.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

5. It is not possible to use ${ }^{35} \mathrm{C} 1$ as the fuel for
fusion energy.
The binding energy of ${ }^{35} C 1$ is too small.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

6. The binding energy per nucleon, for nuclei with atomic mass number $A>100$, decreases
with A.

The nuclear forces are weak for heavier nuclei.
A. If both assertion and reason are true and
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: C

- Watch Video Solution

7. Cabalt-60 is useful in cancer therapy.

Cabalt-60 is source of Y - radiations capable of killing cancerous cell/
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false

D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

8. Density of all the nuclei is same.

Radius of nucleus is directly proportional to the cube root of mass number.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

9. The ionising power of α-particle is less
compared to α-particles but their penetrating power is more.

The mass of β - particle is less than the mass of α-particle.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

Answer: B

- Watch Video Solution

10. Thermonuclear fusion reactions may becomes the source of untimited power for the mankind.

A single fusion event involving isotopes f
hydrogen produces more energy then energy from nuclear fission of ${ }_{93}^{235} U$.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. decreases with mass number at high
mass numbers
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

- Watch Video Solution

Section D - Chapter End Test

1. If N_{0} is the original mass of the substance of
half-life period $t_{1 / 2}=5 y e a r$ then the amount of substance left after 15 year is
A. $N_{0} / 8$
B. $N_{0} / 16$
C. $N_{0} / 2$

D. $N_{0} / 4$

Answer: A

- Watch Video Solution

2. A radioactive sample at any instant has its
disintegration rate 5000 disintegrations per minute After 5 minutes, the rate is 1250 disintegration per minute. Then , the decay constant (per minute)
A. 0.8 1n 2
B. 0.4 nn 2
C. 0.2 1n 2
D. 0.1 ln 2

Answer: B

(Watch Video Solution

3. Which of the following atoms has the lowest
ionization potential ?
A..${ }_{8}^{16} O$
B. ${ }_{7}^{14} N$
C. ${ }_{55}^{133} C s$
D. ${ }_{18}^{40} \mathrm{Ar}$

Answer: C

- Watch Video Solution

4. In the nuclear fusion reaction

- $(1)^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} H e+n$
given that the repulsive potential energy
between the two nuclei is $-7.7 \times 10^{-14} \mathrm{~J}$, the
temperature at which the gases must be heated the reaction is nearly
[Boltzmann's constant $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$]
A. $10^{9} K$
B. $10^{7} K$
C. $10^{5} \mathrm{~K}$
D. $10^{3} \mathrm{~K}$

Answer: A
5. The binding energy per nucleon of deuterium and helium atom is 1.1 MeV and
7.0MeV. If two deuterium nuclei fuse to form helium atom, the energy released is.
A. 19.2 MeV
B. 23.6 MeV
C. 26.9 MeV
D. 13.9 MeV

Answer: B
6. If radius of the $-(13)^{27} \mathrm{Al}$ necleus is estimated to be 3.6 fermi then the radius of _ (52) ${ }^{125}$ Te nucleus be nearly

A. 4 Fermi

B. 5 Fermi
C. 6 Fermi
D. 8 Fermi

Answer: C
7. Starting with a sample of pure ${ }^{66} \mathrm{Cu}, 7 / 8$ of it decays into $Z n$ in 15 min . The corresponding half-life is.
A. 5 min
B. $7 \frac{1}{2} \mathrm{~min}$
C. 10 min
D. 15 min

Answer: A
8. Some radioactive nucleus may emit.
A. Only one α, β or γ at a time.
B. All the three α, β and γ one after another.
C. All the three α, β and γ simultaneously
D. Only α and β simultaneously

Answer: A

9. Which of the following is a correct statement?
A. Beta rays are same as cathode rays
B. Gamma rays are high energy neutrons
C. Alpha particle are singly ionized helium
atoms
D. Protons and neutrons have exactly the
same mass.
10. . ${ }^{22} \mathrm{Ne}$ nucleus after absorbing energy decays into two α - particles and an unkown nucleus. The unknown nucleus is.
A. Nitrogen
B. Carbon
C. Boron
D. Oxygen
11. The half - life ofl ^ (131)
is8days. Givenasamp $\leq\left. o f\right|^{\wedge(131) a t t i m e t ~}=0 `$
, we can assert that
A. No nucleus will decay before $t=4$ days
B. No nucleus will decay before $t=8$ days
C. All nuclei will decay before $t=16$ days
D. A given nucleus may decay at any time after $t=0$

D Watch Video Solution

12. The binding energy per nucleon of O^{16} is
7.97 MeV and that of O^{17} is 7.75 MeV . The energy (in MeV) required to remove a neutron from O^{17} is.
A. 3.52
B. 3.64
C. 4.23

D. 7.86

Answer: C

- Watch Video Solution

13. A star initially has 10^{40} deuterons. It produces energy via the processes
${ }_{\cdot}^{2} H+{ }_{1}^{2} H \rightarrow{ }_{1}^{3} H+p \quad$ and
$\cdot{ }_{1}^{2} H+{ }_{1}^{3} H \rightarrow{ }_{2}^{4} \mathrm{He}+n$, where the masses of
the nuclei are
$m\left(.^{2} H\right)=2.014 \mathrm{amu}, \quad m(p)=1.007 \mathrm{amu}$,
$m(n)=1.008 \mathrm{amu}$ and $m\left(.{ }^{4} \mathrm{He}\right)=4.001$ amu. If the average power radiated by the star is $10^{16} \mathrm{~W}$, the deuteron supply of the star is exhausted in a time of the order of
A. $10^{6} \mathrm{sec}$
B. $10^{8} \mathrm{sec}$
C. $10^{12} \mathrm{sec}$
D. $10^{16} \mathrm{sec}$

Answer: C
14. A nucleus with mass number 220 initially at rest emits an α-particle. If the Q-value of the reaction is 5.5 MeV , calculate the kinetic energy of the α-particle.
(a) 4.4 MeV (b) 5.4 MeV (c) 5.6 MeV (d) 6.5 MeV
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV
D. 6.5 MeV

- Watch Video Solution

15. The half life of radioactive Radon is 3.8 days
. The time at the end of which $\frac{1}{20}$ th of the radon sample will remain undecayed is
(given $\log e=0.4343)$
A. 3.8 days
B. 16.5 days
C. 33 days
D. 76 days

Answer: B

D Watch Video Solution

16. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is

A. 6 hours

B. 12 hours

C. 24 hours

D. 128 hours

Answer: B

D Watch Video Solution

17. A radioactive material decays by
simulataneous emission of two particle from
the with respective half - lives 1620 and 810
year. The time, in year, after which one fourth of the material remains is
A. 1080
B. 2430
C. 3240

D. 4860

Answer: A

D Watch Video Solution

18. The half-life period of a radioactive element
x is same as the mean life time of another
radioactive element y. Initially, both of them
have the same number of atoms. Then,
(a) x and y have the same decay rate initially
(b) x and y decay at the same rate always
(c) y will decay at a faster rate than x
(d) x will decay at a faster rate than y
A. X and Y have the same decay rate initially
B. X and Y decay at the same rate always
C. Y will decay at a faster rate than X
D. X will decay at a faster rate then Y.

Answer: C

D Watch Video Solution

19. Two radioactive X_{1} and X_{2} have decay constants 10λ and λ respectively. If initially they have the same number of nuclei, then the ratio of the number of nuclei of X_{1} to that of X_{2} will be $1 / e$ after a time.
A. $1 /(10 \lambda)$
B. $1 /(11 \lambda)$

C. $11 /(10 \lambda)$

D. $1 /(9 \lambda)$

Answer: D

- Watch Video Solution

20. After 280 days, the activity of a radioactive sample is 6000 dps . The activity reduces to 3000 dps after another 140 days. The initial activity of the sample in dps is

B. 9000

C. 3000

D. 24000

Answer: D

D Watch Video Solution

21. A radioactive sample of ${ }^{\wedge}(238) U$ decay to

Pb through a process for which the half is
4.5×10^{9} year. Find the ratio of number of
nuclei of Pb to ${ }^{\wedge}(238)$ Uafter a time of 1.5×10^{9} year Given $(2)^{1 / 3}=1.26$
A. 0.12
B. 0.26
C. 1.2
D. 0.37

Answer: B

- Watch Video Solution

22. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life of one species is τ and that of the other is 5τ. The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figure best represents the form of this plot?
(a), (b), (c), (d)
(a)
A.

Answer: D

D Watch Video Solution

23. Binding energy per nucleons vs mass curve
for nucleus is shown in the figure W, X, Y and
Z are four nuclei indicated on the curve. The process that would release energy is

A. $Y \rightarrow 2 Z$
B. $W \rightarrow X+Z$
C. $W \rightarrow 2 Y$
D. $X \rightarrow Y+Z$

Answer: C

D Watch Video Solution

24. The nuclear radius of a nucelus with nucleon number 16 is $3 \times 10^{-15} \mathrm{~m}$. Then, the nuclear radius of a nucleus with nucleon number 128 is .

$$
\begin{aligned}
& \text { A. } 3 \times 10^{-15} m \\
& \text { B. } 1.5 \times 10^{-15} m \\
& \text { C. } 6 \times 10^{-15} m
\end{aligned}
$$

$$
\text { D. } 4.5 \times 10^{-15} m
$$

Answer: C

- Watch Video Solution

25. The nuclear radius of ${ }_{8} O^{16}$ is $3 \times 10^{-15} \mathrm{~m}$.

If an atomic mass unit is $1.67 \times 10^{-27} \mathrm{~kg}$, then
the nuclear density is approximately.
A. 2.35×10^{17} gmpercm 3
B. 2.35×10^{17} kgpercm 3
C. 2.35×10^{17} gmpermetre ${ }^{3}$

D. 2.35×10^{17} kgpercm 3

Answer: B

D Watch Video Solution

26. The graph which represents the correct variation of logarithm of activity $(\log A)$ versus
time, in figure is.

A. A
B. B
C. C
D. D

D Watch Video Solution

27. The graph between number of decayed atoms N^{\prime} of a radioactive element and time t is.

Answer: C

- Watch Video Solution

28. Assertion: For the scattering of α-particles
at a large angles, only the nucleus of the atom
is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. If both assertion and reason are true and
reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If assertion is false but reason is true.

D Watch Video Solution

29. In β - decay, all the emitted electron do not have the same energy the same energy.
β - decay is not a two body decay process.
A. If both assertion and reason are true and
reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false D. If assertion is false but reason is true.

Answer: A

- Watch Video Solution

