đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS

(HINGLISH)

REFLECTION AND REFRACTION

Problem

1. Find the focal length of a convex mirror of
radius of curvature 1 m .
2. An object 4 cm in size is placed at a distance
of 25.0 cm from a concave mirror of focal
length 15.0 cm . Find the position, nature and height of the image.

- Watch Video Solution

3. (a) To construct a ray diagram, we use two
rays which are so chosen that it is easy to
know their directions after reflection from the mirror. List two such rays and state the path of these rays after reflection in case of concave mirrors. Use these two rays and draw ray diagram to locate the image of an object placed between pole and focus of a concave mirror.
(b) A concave mirror produces three times magnified image on a screen. If the object is placed 20 cm in front of the mirror, how far is the screen from the object?
4. A converging mirror forms a real image of height 4 cm , of an object of height 1 cm placed 20 cm away from the mirror. Calculate the image distance. What is the focal length of the mirror ?
A. $-80 \mathrm{~cm},-16 \mathrm{~cm}$
B. $80 \mathrm{~cm}, 16 \mathrm{~cm}$
C. $-60 \mathrm{~cm},-12 \mathrm{~cm}$
D. NONE

Answer: A
5. An object of height 1.2 m is placed before a concave mirror of focal length 20 cm so that a real image is formed at a distance of 60 cm from it. Find the position of the object ? What will be the height of image formed ?

- Watch Video Solution

6. A 4.5 cm needle is placed 12 cm away from a convex mirror of focal length 15 cm . Give the location of the image and the magnification. Describe what happens as the needle is moved farther from the mirror.
A. $6 \mathrm{~cm}, 0.718$
B. $6.7 \mathrm{~cm}, 0.558$
C. Cannot be determined
D. NONE OF THESE

Answer: B
7. An arrow 2.5 cm high is placed at a distance of 25 cm from a diverging mirror of focal length 20 cm . Find the nature, position and size of the image formed.

- Watch Video Solution

8. The image formed by a convex mirror of focal length 20 cm is a quarter of the object.

What is the distance of the object from the mirror?
A. 50 cm
B. 45 cm
C. 90 cm
D. 60 cm

Answer: D

D Watch Video Solution
9. (a) If the image formed by a mirror for all positions of the object placed in front of it is always diminished, erect and virtural, state the type of the mirror and also draw a ray diagram to justify your answer. Write one use such mirrors are put to and why?
(b) Define the radius of curvature of spherical mirrors. Find the nature and focal length of a spherical mirror, whose radius of curvature is +24 cm .
10. The image of a candle flame placed at a
distance of 30 cm from a mirror is formed on a
screen placed in front of the mirror at a distance of 60 cm from its pole. What is the nature of the mirror ? Find its focal length. If
the height of the flame is 2.4 cm , find the height of its image. State whether the image formed is erect or inverted.

D Watch Video Solution

11. When a concave mirror is placed facing the sun, the sun's rays converge to a point 10 cm
from the mirror. Now if you place a 2 cm long candle flame 20 cm away on the principal axis of the mirror, where would you place a screen to obtain the image of the candle? What would be the size of the image? Draw a ray diagram to justify your answer.

D Watch Video Solution

12. Light travels through water with a speed of
$2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is the refractive index of water ? Given speed of light in vacuum $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
A. 1.41
B. 1.47
C. 1.33
D. 1.5

Answer: C
13. Light travels from a rarer medium 1 to a denser medium 2. The angle of incidence and refraction are respectively 45° and 30°. Calculate the refractive index of second medium with respect to the first medium.

D Watch Video Solution

14. In problem 2 , what is the refractive index of medium 1 w.r.t. medium 2 ?

- Watch Video Solution

15. A pond of depth 20 cm is filled with water of refractive index $4 / 3$. Calculate apparent depth of the tank when viewed normally.

- Watch Video Solution

16. How much time will light take to cross 2 mm thick glass pane if refractive index of glassis $3 / 2$?
17. A student very cautiously traces the path of a ray through a glass slab for different values of the angle of incidence $(\angle i)$. He then measures the corresponding values of the angle of refraction $(\angle r)$ and the angle of emergence $(\angle e)$ for every value of the angle of incidence. On analysing these measurements of angles, his conclusion would be
A. $\angle i>\angle r>\angle e$
B. $\angle i=\angle e>\angle r$
C. $\angle i<\angle r<\angle e$
D. $\angle i=\angle e<\angle r$

Answer: B

- Watch Video Solution

18. A student has to project a three times magnified image of a candle flame on a wall.

Name
the
type
of
the
lens
(converging/diverging) required for the
purpose. If the candle flame is at a distance of

6 m from the wall, find the focal length of the lens.
A. converging , $f=1.125 m$
B. converging , $f=1.125 \mathrm{~cm}$
C. diverging, $f=1.125 m$
D. diverging, $f=1.125 \mathrm{~cm}$

Answer: A

D Watch Video Solution
19. A 2.0 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 10 cm . The distance of the object from the lens is 15 cm . Find the nature, position and size of the image. Also, find its magnification.

D Watch Video Solution

20. A concave lens has focal length of 15 cm . At what distance should an object from the lens be placed so that it forms an image at 10 cm
from the lens ? Also, find the magnification of the lens.

D Watch Video Solution

21. A concave lens of focal length 25 cm and a convex lens of focal length 20 cm are placed in contact with each other. What is the power of this combination ? Also, calculate focal length of the combination.
A. $0.5 \mathrm{D}, 10 \mathrm{~cm}$
B. $1 D, 100 \mathrm{~cm}$
C. $-1 D, 100 \mathrm{~cm}$
D. $1.5 \mathrm{D}, 50 \mathrm{~cm}$

Answer: B

D Watch Video Solution

22. Rohit focussed the image of a candle flame

on a white screen using a convex lens. He noted position of candle $=26.0 \mathrm{~cm}$, position of convex lens $=50.0 \mathrm{~cm}$ and position of
screen $=74.0 \mathrm{~cm}$.
(i) What is focal length of convex lens?
(ii) Where will the image be formed if he shifts the candle towards the lens at a position of 38 cm ?
(iii) Draw a ray diagram to show the formation of image in (ii) above.

- Watch Video Solution

23. A convex lens of focal length 20 cm is placed in contact with a concave lens of focal
length 10 cm . What is the focal length and power of the combination?

D Watch Video Solution

24. If the image formed by a lens for all positions of an object placed in front of it is always erect and diminished, what is the nature of this lens ? Draw a ray diagram to justify your answer. If the numerical value of power of this lens is 10 D , what is its focal length in cartesian system?

Watch Video Solution

Ncert Question

1. Define the principal focus of a concave mirror.

D Watch Video Solution

2. The radius of curvature of a spherical mirror is 20 cm . What is its focal length?
3. Name a mirror that can give an erect and enlarged image of an object.

- Watch Video Solution

4. In motor vehicles, a convex mirror is attached near the driver's seat to give him the view of the traffic behind. What is the special
function of this convex mirror which a plane mirror can not do ?
5. Find the focal length of a convex mirror of radius of curvature 1 m .

- Watch Video Solution

6. A concave mirror produces three times
magnified real image of an object placed at 10 cm in front of it. Where is the image located ?
7. A ray of light travelling in air enters obliquely into water. Does the light ray bend towards the normal or away from the normal ? Why?

D Watch Video Solution

8. The refraction index of glass is 1.5 . Find the speed of light in glass.

- Watch Video Solution

9. Find out, from Table 10.3 , the medium
having highest optical density. Also find the medium with lowest optical density.

- Watch Video Solution

10. You are given kerosene, turpentine and water. In which of these does the light travel fastest?
11. The refractive index of diamond is 2.42 .

What is the meaning of this statement ?

- Watch Video Solution

12. Define one dioptre of power of a lens.
(Watch Video Solution
13. A convex lens forms a real and inverted image of a needle at a distance of 50 cm from
it. Where is the needle placed in front of the convex lens if the image is equal to size of the object ? Also, find the power of the lens.

D Watch Video Solution

14. Find the power of a concave lens of focal length $2 m$.

Ncert Exercise

1. Which one of the following materials cannot be used to make a lens?
A. Water
B. Glass
C. Plastic
D. Clay
2. The image formed by a concave mirror is observed to be virtual, erect and larger than the object. Where should be the position of the object?
A. between the focus and centre of curvature,
B. at the centre of curvature,
C. beyond the centre of curvature,

D. between the pole of the mirror and

 focus.
Answer: D

D Watch Video Solution

3. Where should an object be placed in front of a convex lens to get a real to get real image of the size of the object?
A. At the principal focus of the lens,
B. At twice the focal length,
C. At infinity,
D. Between the optical centre of the lens
and its principal focus.

Answer:

D Watch Video Solution

4. A spherical mirror and a thin spherical lens have each a focal length of -15 cm . The mirror and lens are likely to be
A. Both concave.
B. Both convex
C. The mirror concave, but the lens convex.
D. The mirror is convex, but the lens is
concave.

Answer: A

- Watch Video Solution

5. No matter how far you stand from a spherical mirror, your image appears erect.

The mirror is likely to be

A. Plane

B. concave
C. convex
D. either plane or convex.

Answer: D

D Watch Video Solution
6. Which of the following lenses would you prefer to use while reading small letters found in a dictionary ?
A. Convex lens of focal length 50 cm
B. A concave lens of focal length 50 cm
C. A convex lens of focal length 5 cm
D. A concave lens of focal length 5 cm .

Answer:

D Watch Video Solution
7. We wish to obtain an erect image of an object, using a concave mirror of focal length

15 cm . What should be the range of distance of the object from the mirror? What is the nature of the image? Is the image larger or smaller than the object? Draw a ray diagram to show the image formation in this case.
8. Name the type of mirror used in the following situations :
(a) Head lights of a car.
(b) Side rear view mirror of a vehicle.
(c) Solar furnace.

Support your answer with reason.

D Watch Video Solution

9. One half of a convex lens is covered with a
black paper. Will this lens produce a complete
image of the object? Verify your answer experimentally. Explain your observations.

D Watch Video Solution

10. An object 5 cm in length is held 25 cm away
from a converging lens of focal length 10 cm .

Then the position and height of the image is
A. $50 / 3 \mathrm{~cm}, 3.33 \mathrm{~cm}$
B. $-50 / 3 \mathrm{~cm},-3.33 \mathrm{~cm}$
C. $50 / 3 \mathrm{~cm},-3.33 \mathrm{~cm}$

D. $-50 / 3 \mathrm{~cm}, 3.33 \mathrm{~cm}$

Answer: C

D Watch Video Solution

11. A concave lens has focal length of 15 cm . At
what distance should an object from the lens
be placed so that it forms an image at 10 cm
from the lens ? Also, find the magnification of
the lens.

$$
\text { A. }-30 \mathrm{~cm}
$$

B. +30 cm
C. -60 cm

$$
\text { D. }-45 \mathrm{~cm}
$$

Answer: A

D Watch Video Solution

12. An object is placed at a distance of 10 cm
from a convex mirror of focal length 15 cm .

Find the position and nature of the image ?
13. The magnification produced by a plane mirror is $m=+1$. What does this mean?

- Watch Video Solution

14. An object 5.0 cm in length is placed at a distance of 20 cm in front of a convex mirror of radius of curvature 30 cm . Find the position of image, its nature and size.
15. An object of size 7.0 cm is placed at 27 cm in front of a concave mirror of focal length 18 cm .

At what distance from the mirror, should a screen be placed, so that a sharp focussed image can be obtained ? Find the size and nature of the image?

- Watch Video Solution

16. Find the focal length of a lens of power $-2.0 D$. What type of lens is this ?

- Watch Video Solution

17. A doctor has prescribed lens of power $+1.5 D$. Find the focal length of the lens. Is the prescribed lens diverging or converging ?

D Watch Video Solution

Short Answer Question

1. Identify the device used as spherical mirror or lens in following cases, when the image
formed is virtual and erect in each case.
(a) Object is placed between device and its
focus, image formed is enlarged and behind it.
(b) Object is placed between the focus and device, image formed is enlarged and on the same side as that of the object.
(c) Object is placed between infinity and device, image formed is diminished and between focus and optical centre on the same side as that of the object.
(d) Object is placed between infinity and device, image formed is diminished and between pole and focus, behind it.

- Watch Video Solution

2. Why does a light ray incident on a rectangular glass slab immersed in any medium emerges parallel to itself ? Explain using a diagram.
3. A pencil when dipped in water in a glass
tumbler appears to be bent at the interface of air and water. Will the pencil appear to be bent to the same extent, if instead of water we use liquids like, kerosene or turpentine. Support your answer with reason.

- Watch Video Solution

4. How is the refractive index of a medium related to the speed of light ? Obtain an expression for refractive index of a medium
with respect to another in terms of speed of
light in these two media?

D Watch Video Solution

5. Refractive index of diamond with respect to
glass is 1.6 and absolute refractive index of
glass is 1.5 . Find out the absolute refractive index of diamond.
A. 1.5
B. 1.33
C. 1.45

$$
\text { D. } 2.40
$$

Answer: D

D Watch Video Solution

6. A convex lens of focal length 20 cm can produce a magnified virtual as well as real image. Is this a correct statement ? If yes, where shall the object be placed in each case for obtaining these images ?

D Watch Video Solution

7. Sudha finds out that the sharp image of the window pane of her science laboratory is formed at a distance of 15 cm from the lens.

She now tries to focus the building visible to her outside the window instead of the window pane without disturbing the lens. In which direction will she move the screen to obtain a
sharp image of the building ? What is the approximate focal length of this lens?
8. How are power and focal length of a lens related ? You are provided with two lenses of focal length 20 cm and 40 cm respectively. Which lens will you use to obtain more convergent light ?

- Watch Video Solution

9. What should be the angle between two plane mirrorrs so that whatever be the angle
of incidence, the incident ray and the reflected
ray from the two mirrorrs be parallel to each other

- Watch Video Solution

10. Draw a ray diagram showing the path of
rays of light when it enters with oblique incidence (i) from air into water, (ii) from water into air.
11. Draw ray diagrams showing the image
formation by a concave mirror when an object is placed
(a) between pole and focus of the mirror , (b)
between focus and centre of curvature of the mirror
(c) at centre of curvature of the mirror, (d) a
little beyond centre of curvature of the mirror (e) at infinity
12. Draw ray diagrams showing the image formation by a convex lens when an object is placed
(a) between optical centre and focus of the lens
(b) between focus and twice the focal length of the lens
(c) at twice the focal length of the lens
(d) at infinity, (e) at the focus of the lens
13. Write laws of refraction. Explain the same with the help of ray diagram, when a ray of light passes through a rectangular glass slab.

- Watch Video Solution

4. Draw ray diagrams showing the image formation by a concave lens when an object is placed
(a) between focus and twice the focal length
of the lens
(b) beyond twice the focal length of the lens

D Watch Video Solution

5. Draw ray diagrams showing the image formation by a convex mirror when an object is placed
(a) at infinity (b) at finite distance from the mirror

- Watch Video Solution

6. The image of a candle flame formed by a
lens is obtained on a screen placed on the other side of the lens. If the image is three times the size of the flame and the distance between lens and image is 80 cm , at what distance should the candle be placed from the lens ? What is the nature of the image at a distance of 80 cm from the lens?

- Watch Video Solution

7. Size of image of an object by a mirror having
a focal length of 20 cm is observed to be reduced to $\frac{1}{3} r d$ of the size ? At what distance the object has been placed from the mirror ? What is the nature of the image and the mirror?

- Watch Video Solution

8. Define power of a lens. What is its unit ? One student uses a lens of focal length 50 cm and
another of -50 cm . What is the nature of the lens and its and power used by each of the them ?

D Watch Video Solution

9. A student focussed the image of a candle
flame on a white screen using a convex lens.

He noted down the position of the candle, screen and the lens as under

Position of candle $=12.0 \mathrm{~cm}$

Position of convex lens $=50.0 \mathrm{~cm}$

Position of the screen $=88.0 \mathrm{~cm}$
(i) What is the focal length of the convex lens ?
(ii) Where will the image be formed if he shifts
the candle towards the lens at a position of 31.0 cm .
(iii) What will be the nature of the image formed if he further shifts the candle towards the lens ?
(iv) Draw a ray diagram to show the formation of the image in case (iii) as said above.

1. If the magnification of a body of size 1 m is 2 , what is the size of the image ?
A. 1.5 m
B. 2.5 m
C. 2 m
D. 4 m

Answer: C

- Watch Video Solution

2. What is the power of a concave lens of focal length 25 cm ?
A. 4 dioptre
B. 3 dioptre
C. - 4 dioptre
D. None of these

Answer:

3. What will be the focal length of a lens whose power is given as $+2.0 D$?

- Watch Video Solution

4. Draw ray diagrams showing the image formation by a concave mirror when an object is placed
(a) between pole and focus of the mirror , (b) between focus and centre of curvature of the mirror
(c) at centre of curvature of the mirror, (d) a
little beyond centre of curvature of the mirror (e) at infinity

D Watch Video Solution

5. What is the value of focal length of a plane mirror ?

D Watch Video Solution
6. A ray of light is incident on a convex mirror as shown in Fig.

Redraw the above diagram after completing
the path of the light ray after reflection from
the mirror.

- Watch Video Solution

7. Copy Fig. in your answer book and show the direction of the light ray after reflection.

D Watch Video Solution

8. The refractive index of diamond is 2.42 .

What is the meaning of this statement?
9. Three students A, B and C focussed a distant building on a screen with help of a concave mirror. To determine focal length of the concave mirror they measured the distances as given below:

Student A : From mirror to the screen ,

Student B : From building to the screen

Student C : From building to the mirror
Who measured the focal length correctly :
A. Only A

B. Only B

C. A and B
D. B and C

Answer: A

D Watch Video Solution
10. Draw Fig (a) in your answer book and show
the formation of image of the object $A B$ with
the help of suitable rays.

D Watch Video Solution

11. Draw Fig. in your answer book and show the formation of image of the object $A B$ with the
help of suitable rays.

- Watch Video Solution

12. Draw Fig. in your answer book and show
the formation of image with the help of
suitable rays.

D Watch Video Solution

13. Which property of concave mirror is utilized for using them as shaving mirrors ?
14. Why does a ray of light bend when it travels from one medium to another.

- Watch Video Solution

15. Draw the given diagram, Fig. in your answer book and complete it for the path of ray of
light beyond the lens.

D Watch Video Solution

16. if you focus the image of a distant object, whose shape is given below, on a screen using a convex lens, the shape of the image of this
object on the screen would be

A.

(b)

B.
C.

Answer: B

- Watch Video Solution

17. Take down this diagrams, Fig. on to your answer book and complete the path of the

rays.
18. Take down Fig. on to your answer book and complete the path of the ray.

D View Text Solution
19. The range of wavelength of the visible light is

- Watch Video Solution

20. Which colour of the light has the longest wavelength?

- Watch Video Solution

21. Can light travel in vacuum ? If yes, with what speed?

- Watch Video Solution

22. What is the speed of light in air?
23. What is a ray light ?

- Watch Video Solution

24. Name the best reflector of light.

- Watch Video Solution

25. On what factors does the focal length of a spherical mirror depend ?

D Watch Video Solution

26. Do the laws of reflection change, when we use a spherical mirror instead of a plane mirror ?

D Watch Video Solution

27. Complete the following ray diagrams. State

the size and nature of image formed in each
case.

- Watch Video Solution

28. Can an object be virtual ?
29. Can a real image be taken on a screen ?

D Watch Video Solution
30. Do lights rays actually pass through a real image ?
(D) Watch Video Solution
31. Do lights rays actually pass through a virtual image?

D Watch Video Solution
32. How do you draw normal to a spherical mirror at a particular point?

- Watch Video Solution

33. Which of the mirrors is diverging: concave or convex?

D Watch Video Solution
34. Which of the mirrors is converging:
concave or convex?

D Watch Video Solution
35. What is the relation between focal length
and radius of curvature of a concave mirror?

Does the same relation hold for a covcave mirror?

- Watch Video Solution

36. (a) The magnification of a concave mirror is
-1. What is the position of the object? (b) The magnification of a spherical mirror is ± 2. What kind of mirror can it be?
37. What is the ratio of object distance to
image distance in case of a concave mirror when its magnification is 0.5 ?

D Watch Video Solution

38. The focal length of a convex mirror is 12.5
cm . How far is it centre of curvature (i) from
the pole (ii)from the focus?
39. A ray of light passing through centre of curvature of a concave mirror retraces its path on reflection. Why?

D Watch Video Solution

40. A ray of light passing through focus of a concave mirror becomes parallel to the principal axis of the mirror on reflection.

Comment. Is the reverse true ?

Watch Video Solution

41. Does the position, size and the nature of the image formed by a concave mirror depend on the position of the object?

- Watch Video Solution

42. Where is the image formed when an object is at large distance from a concave mirror?
43. Where should an object be placed in front of a concave mirror to obtain an image, which is real, inverted and reduced in size?

- Watch Video Solution

44. For what position of an object, a concave mirror forms a real image equal in size to the object?
45. Is the position of image same as the position of object when object and image sizes are equal in a mirror?

D Watch Video Solution

46. Can a concave mirror form a virtual image of same size as the object?

D Watch Video Solution

47. Which mirror has a wider field of view?

D Watch Video Solution

48. A ray of light falling normally on a plane mirror retraces its path on reflection.

- Watch Video Solution

49. A ray of light passing through centre of
curvature of a spherical mirror retraces its
path on reflection from the mirror.

D Watch Video Solution

50. A concave mirror is used as doctor's head mirror.

D Watch Video Solution

51. In the mirror formula, $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}, f$ does not change when u is changed.
52. Where should an object be placed so that a real and inverted image of the same size is obtained by a convex lens?

D Watch Video Solution

53. An object 2 cm high is placed at a distance

2 f from a convex lens. What is the height of the image formed ?
54. What is the largest value of refractive index? Name the medium.

- Watch Video Solution

55. (a) A ray of light in air enters glass. Does it bend towards normal ?
(b) If the same ray enters water, which way will it bend?
56. (a) A water tank appears 1.5 m deep. What is it actual depth ? Given refractive index of water w.r.t. air is $4 / 3$.
(b) If 1.5 m were actual depth of water tank, what would be its apparent depth?

- Watch Video Solution

57. (a) What is the speed of light in water of refractive index $4 / 3$?
(b) Light travels in a medium with a velocity of
$2 \times 10^{8} \mathrm{~m} / \mathrm{s}$. What is refractive index of the medium?

- Watch Video Solution

58. (a) Can you measure rough focal length of a convex lens? If yes, why?
(b) Can you measure rough focal length of a concave lens ? If not, why not?
59. (a) The linear magnification of a concave
lens is always positive. Why?
(b) The linear magnification of a convex lens may be positive or negative. Why?

- Watch Video Solution

60. What is the unit of refractive index?

- Watch Video Solution

61. (i) Rohit claims to have obtained an image twice the size of the object with a concave lens. Is he correct? Give reason for your answer.
(ii) Where should an object be placed in case of a convex lens to form an image of same size as of the object? Show with the help of ray diagram, the position and nature of image formed?
(iii) With the help of ray diagram, illustrate the change in position, size and nature of image
formed if convex lens in case of (ii) is replaced by a concave lens of same focal length.

D Watch Video Solution

62. Arrange air, glass and water in terms of decreasing refractive index.

- Watch Video Solution

63. Which is denser optically out of alcohol
with $n=1 \cdot 36$ and carbon disulphide with
$n=1 \cdot 63 ?$

D Watch Video Solution

64. The image formed by a convex lens is always real. Is it true?

D Watch Video Solution

65. a convex lens forms a virtual image of an
object. What is the position of the object?

D Watch Video Solution
66. For what position of an object a real, diminshed image is formed by a convex lens?

D Watch Video Solution

67. Where should an object be placed in order of to use a convex lens as a magnifying glass?
68. What is the difference between lens
formula and mirror formula?

D Watch Video Solution
69. Define one dioptre of power of a lens.

- Watch Video Solution

70. How is the power of a lens related to its
focal length?

- Watch Video Solution

71. What is meant by number of lens?

- Watch Video Solution

72. Look at. What is the radius of curvature of
the spherical mirror? Given $\mathrm{PA}=10 \mathrm{~cm}$.

- Watch Video Solution

73. Draw the reflected ray when ray the incident ray were to pass through focus of the
mirror.

- Watch Video Solution

74. What is the cause of refraction of light ?

- Watch Video Solution

75. A ray of light is refracted. Which medium a

 or b is optically denser than the other?

- Watch Video Solution

76. A parallel beam of light passes through a
lens held at O as shown in Fig. What is the

nature of the lens?

- Watch Video Solution

77. Explain why, a ray of light passing through
the centre of curvature of a convace mirror gets reflected back along the same path.

Watch Video Solution

78. What is the nature of the image formed by
a concave mirror if the magnification
produced by the mirror is +3 ?

- Watch Video Solution

79. The refractive index of carbon disulphide is
$1 \cdot 63$. What is the meaning of this statemnet in relation to speed of light?
80. The outer surface of a hollow sphere of aluminium of radius 50 cm is to be used as a mirror. What will be the focal length of this mirror? Which type of spherical mirror will it provide?

D Watch Video Solution

81. Between which two points of a concave mirror should an object be placed to obtain a
magnification of -3 ?

D Watch Video Solution

Short Q A

1. Give the characteristics of image formed by
a plane mirror.
2. An object is placed at 0.06 m from a convex
lens of focal length 0.1 m . Calculate the position of the image?

- Watch Video Solution

3. An object is placed at a distance of 20 cm in
front of a convex mirror of radius of curvature
30 cm . Find the position and nature of the image.
4. A 3 cm tall object is placed 18 cm in front of
a concave mirror of focal length 12 cm . At what distance from the mirror should a screen be placed to see a sharp image of the object on the screen. Also calculate the height of the image formed.

- Watch Video Solution

5. Light enters from air into diamond, which
has a refractive index of 2.42. Calculate the
speed of light in diamond. The speed of light in air is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

6. With respect to air, the refractive index of ice is $1 \cdot 31$ and that of rock salt is $1 \cdot 54$.

Calcualte the refractive index of rock salt w.r.t ice.

- Watch Video Solution

7. Draw a labelled ray diagram to locate the image of an object fromed by a convex lens of focal length 20 cm when the object is placed 30 cm away from the lens.

- Watch Video Solution

8. Explain with the help of a diagram, why a pencil partly immersed in water appears to be bent at the water surface.
9. Explain briefly the following day to day events:
(a) A swimming pool appears shallower than what it actually is.
(b) A convex lens can be used as a magnifier, but a concave lens cannot be.
(c) A convex mirror is used as a rear view mirror by the drivers of motor vehicles.
(d) A concave mirror is used by ENT specialists.
(e) A convex mirror is used as a refleactor in street lamps.

Watch Video Solution

10. How will you distinguish between a plane mirror, a convex mirror and a concave mirror without touching them?

D Watch Video Solution

11. Is optical density of a medium same as its mass density ? Name a transparent medium which has smaller mass density, but is optically denser.

- Watch Video Solution

12. An object is held at a distance of 20 cm from a concave lens of focal length 80 cm . What is the position and size of the image if the object is 2 cm high ?

- Watch Video Solution

13. Draw ray diagrams to represent the nature, position and relative size of the lens for the
object placed:
a) at $2 F_{1}$,
b) between F_{1} and the optical center O of the lens.

Which of the above two cases shows the use of convex lens as a magnifying glass? Give reasons for your choice.

D Watch Video Solution

14. What is the minimum number of rays
required for locating the image formed by a
concave mirror for an object ? Draw a ray
diagram to show the formation of a virtual image by a concave mirror.

D Watch Video Solution

15. A ray of light falling normally on a plane mirror retraces its path on reflection.

D Watch Video Solution
16. What is the basic difference between a concave mirror and a convex mirror?

- Watch Video Solution

17. The principal focus of a convex mirror lies at the back of the mirror. Comment .
18. How do you measure quickly the approximately focal length of a concave mirror?

D Watch Video Solution

19. What is meant by linear magnification of a concave mirror?

D Watch Video Solution
20. State the expression for linear magnification of a concave mirror in terms of object distance and image distance.

D Watch Video Solution

21. What is the nature of image formed when
an object is held at a distance of 10 cm from
the pole of a concave mirror of focal length 15 cm ?
22. A concave mirror of focal length 20 cm is to be used as a shaving mirror. Which of the following is the suitable object distance from the mirror ?
(i) 10 cm (ii) 20 cm (iii) 30 cm .

D Watch Video Solution

23. The image of a distant object is formed at

30 cm from a concave mirror. What is the focal
length of the mirror?
24. The radius of curvature of a concave mirror is 50 cm . Where should an object be held from the mirror so as to form its image at infinity?

- Watch Video Solution

25. A man standing in front of a special mirror
finds his image having a small face, big tummy
and legs of normal size. What are the shapes of three parts of the mirror?

D Watch Video Solution

26. An object is placed at a distance of 12 cm in
front of a concave mirror of radius of
curvature 30 cm . List our characterisitic of the image formed by the mirror
27. Can you change focal length of a given spherical mirror by changing the object distance from the mirror?

D Watch Video Solution

28. Can you change linear magnification of a spherical mirror by changing the object distance from the mirror?

D Watch Video Solution
29. How is the refractive index of a medium related to the speed of light ? Obtain an expression for refractive index of a medium with respect to another in terms of speed of light in these two media ?

D Watch Video Solution

30. For the same angle of incidence in media
P, Q and R, the angles of refraction are $35^{\circ}, 25^{\circ}, 15^{\circ}$ respectively. In which medium will the velocity of light be minimum?
31. An object is placed at a distance of 40 cm
in front of a convex mirror of radius of curvature 40 cm . List four characteristic of the image formed by the mirror.

- Watch Video Solution

32. A ray of light travelling in air is incident on
a rectangular glass slab. What will happen?

Watch Video Solution

33. If rafractive index of glass w.r.t. air is $3 / 2$, what is the refractive index of air w.r.t. glass?

- Watch Video Solution

34. The correct sequencing of angle of
incidence, angle of emergence, angle of refraction and lateral displacement shown in
the following diagram by digits $1,2,3$ and 4 is :

A. $2,4,1,3$
B. 2,1,4,3
C. 1,2,4,3
D. $2,1,3,4$

Answer: B

D Watch Video Solution

35. The refractive index of glass is $3 / 2$ and refractive index of water is $4 / 3$. What would be the refractive index of water with respect to glass ? Does light travel faster in glass than in water?
36. A coin in a glass beaker appears to rise as
the beaker is slowly filled with water. Why?

D Watch Video Solution

37. A tank of water is 4 m deep. How deep does
it appear when seen normally?
38. What is meant by optical centre of a lens?

D Watch Video Solution

39. Define first principal focal length of a convex lens.

D Watch Video Solution

40. Give three basic differences between real
image and virtual image.

D Watch Video Solution

41. What is linear magnification produced by a lens? How is it related to object distance and image distance?

- Watch Video Solution

42. When is magnification positive or negative ?
43. In which of the following cases, linear magnification is positive?

(a)

(b)

- Watch Video Solution

44. A student focuses the image of a candle
flame, placed at about 2 m from a convex lens of focal length 10 cm , on a screen. After that, he moves gradually the flame towards the lens
and each time its image on the screen.
(a) In which direction does he move the lens to
focus the flame on the screen?
(b) What happens to the size of the image of the flame formed on the screen ?
(c) What difference is seen in the intensity
(brightnees) of the image of the flame on the screen?
(d) What is seen on the when the flame is very close (at about 5 cm) to the lens ?
45. Draw the refracted rays corresponding to
incident ray 1 and 2

- Watch Video Solution

46. A ray of light passing through A retraces
its path on reflection from a concave mirror. If
$P A=30 \mathrm{~cm}$, what is the focal length of the mirror ?
A. 60 cm
B. 20 cm
C. 30 cm
D. 15 cm

Answer: D
(Watch Video Solution
47. You are given a concave mirror of focal
length 20 cm and a candle. Where will you hold the candle to form a virtual, erect and magnified image of the candle flame ? Draw the necessary ray diagram.

D Watch Video Solution

48. Can you change focal length of a given spherical mirror by changing the object distance from the mirror?
49. The linear magnification of a concave mirror can be positive or negative. Why?

D Watch Video Solution

50. You are given a convex lens of focal length

30 cm . At what distance from the lens should you hold a candle flame to observe.
(a) a real and magnified image of the flame ?
(b) a virtual and magnified image of the flame?
(c) a real, inverted and smaller image of the flame?

- Watch Video Solution

51. When is linear magnification of a convex lens positive and when is it negative? What should be the corresponding distance of the object from convex lens of focal length 50 cm ?
52. A real, inverted image of the size of object
is to be formed by holding the object at 1 meter from a convex lens, What should be the focal length of the lens? Draw the course of rays.

D Watch Video Solution

53. A convex lens is used to focus the rays
from the far off light bulb at a distance of one meter from the lens. What should be the focal
length of the lens ? Draw a ray diagram to show the formation of image.

D Watch Video Solution

54. Trace the course of a ray of ligth through a rectangular glass slab. From the plot discuss what happens when
(i) ray goes from a rarer to a denser medium ?
(ii) ray goes from a denser to a rarer medium?

D Watch Video Solution

55. What is Snell's law of refraction? What does it imply?

D Watch Video Solution

56. From the course of a ray of light through a rectangular glass slab, explain what is lateral displacement and net deviation?
57. In an experiment with a rectangular glass
slab, for an angle of incidence of 60° in air,
angle of refraction is measured to be r_{1}. When
the glass slab is replaced by a hollow slab
filled with water, angle of refraction is
measured to be r_{2}. Show that $r_{2}>r_{1}$. Justify your answer.

- Watch Video Solution

Short Q A 3 Marks

1. Calculate the distance at which an object should be placed in front of a convex lens of focal length 10 cm to obtain a virtual image of double its size.

- Watch Video Solution

2. A convex lens of focal length 40 cm is in contact with a concave lens of focal length 25 cm . The power of the combination is
3. An object 4 cm in height, is placed at 15 cm in front of a concave mirror of focal length 10 cm . At what distance from the mirror should a screen be placed to obtain a sharp image of the object? Calculate the height of the image?

D Watch Video Solution

4. An object is placed at a distance of 30 cm in front of a convex mirror of focal length 15 cm .

Write four characteristics of the image formed by the mirror.
5. A concave mirror has a focal length of 20 cm . Find the position or positions of an object for which the image-size is double of the object-size.

- Watch Video Solution

6. An object 3 cm high is held at a distance of 50 cm from a diverging mirror of focal length

25 cm . Find the nature, position and size of the image formed.

D Watch Video Solution

7. A concave mirror has a focal length of 20 cm .

Find the position or positions of an object for which the image-size is double of the objectsize.
8. The linear magnification of a convex mirror of focal length 15 cm is $\frac{1}{3}$. What is the distance of the object from the focus of the mirror ?

D Watch Video Solution

9. An object is held at 30 cm in front of a convex mirror of focal length 15 cm . At what distance from the convex mirror should a
plane mirror be held so that images in the two

mirrors coincide with each other?

D Watch Video Solution

10. A concave lens made of a material of refractive index n_{1} is kept in a medium of refractive index n_{2}. A parallel beam of light is incident on the lens. Complete the path of rays of light emerging from the concave lens
(i) $n_{1}>n_{2}$ (ii) $n_{1}=n_{2}$ (iii) $n_{1}<n_{2}$.

D Watch Video Solution

11. Find the position, nature and size of the image formed by a convex lens of focal length

20 cm of an object 4 cm high placed at a distance of 30 cm from it.

D Watch Video Solution

12. A student focuses the image of a candle flame, placed at about 2 m from a convex lens of focal length 10 cm , on a screen. After that, he moves gradually the flame towards the lens
and each time its image on the screen.
(a) In which direction does he move the lens to
focus the flame on the screen?
(b) What happens to the size of the image of the flame formed on the screen ?
(c) What difference is seen in the intensity
(brightnees) of the image of the flame on the screen?
(d) What is seen on the when the flame is very close (at about 5 cm) to the lens ?
13. A convex lens has focal length of 30 cm .

Calculate at what distance should the object be placed from the lens so that it forms at 60 cm on the other side of the lens ? Find the magnification produced by the lens in this case.

D Watch Video Solution

14. Find the position, nature and size of the image of an object 3 cm high placed at a
distance of 9 cm from a concave mirror of focal length 18 cm .

D Watch Video Solution
15. A ray of light passes from glass to air at an angle of 19.5°. Calculate the angle of refraction, given refractive index of glass w.r.t. air is $3 / 2$.
16. A convex lens of power 3 D is held in contact with a concave lens of power -1D.A parallel beam of light is made to fall on the combination. At what distance from the combination will the beam get focussed?
A. 20 cm
B. 60 cm
C. 50 cm
D. 90 cm

Answer: C

- Watch Video Solution

17. Calculate two possible distances of an object from a convex lens of focal length 20 cm so as to obtain an image of double the size of the object.

- Watch Video Solution

18. An object 4 cm high is placed $40 \cdot 0 \mathrm{~cm}$ in
front of a concave mirror of focal length 20
cm . Find the distance from the mirror, at which
a screen be placed in order to obtain a sharp
image. Also, find the size and nature of the image formed.

- Watch Video Solution

19. An object is placed at a distance of 12 cm in
front of a concave mirror. It forms a real image
four times larger than the object. Calculate
the distance of the image from the mirror.

D Watch Video Solution
20. A 5.0 cm tall object is placed perpendicular to the principal axis of a convex lens of focal length 20 cm . The distance of the object from the lens is 30 cm . By calculation, determine (i) the position (ii) the size of the image formed.

D View Text Solution

21. An object is placed at a distance of 15 cm
from a convex lens of focal length 20 cm . List
four characteristics (nature,position,etc.) of the image formed by the lens.

D Watch Video Solution

22. Draw ray diagrams to show the formation
of three times magnified (a) real, and
virtual image of an object by a converging
lens. Mark the positions of O, F and 2 F in each diagram.
23. An object 3.0 cm high is placed perpendicular to the principal axis of a concave lens of focal length $7 \cdot 5 \mathrm{~cm}$. The image is formed at a distance of 5.0 cm from the lens. Calculate (i) distance at which object is placed, and (ii) size and nature of image formed.

D Watch Video Solution

24. A concave lens has focal length of 20 cm . At what distance from the lens a 5 cm tall object
be placed so that it forms an image at 15 cm
from the lens? Also, calculate the size of the image formed.

D Watch Video Solution

25. An object 50 cm tall is placed on the principal axis of a convex lens. Its 20 cm tall image is formed on the screen placed at a distance of 10 cm from the lens. Calculate the focal length of the lens.
26. A concave mirror is used as a head mirror by ENT specialists. The same mirror can also be used as a shaving mirror. Why?

D Watch Video Solution

27. Name the type of mirror used in the following situations:
(a) Head lights of a car.
(b) Side rear view mirror of a vehicle.
(c) Solar furnace.

Support your answer with reason.

D Watch Video Solution
28. How will you distinguish between a plane mirror, a convex mirror and a concave mirror without touching them?

D Watch Video Solution
29. Explain the concept of absolute refractive index and relative refractive index of optical media.

- Watch Video Solution

30. What is meant by the 'angle of incidence' and the 'angle of refraction' for a ray of light?

Draw a labelled ray diagram to show the angle of incidence and the angle of refraction for a refracted ray of light.
31. What is meant by aperture, optical centre and principal axis of a spherical lens?

- Watch Video Solution

32. What is power of a combination of lenses in contact ?
33. At what distance should an object be placed from a convex lens of focal length 18 cm to obain an image at 24 cm from it one the other side? What will be the magnification produced in this case?

D Watch Video Solution

34. At what distance should an object be placed from a convex lens of focal length 18 cm to obtain an image at 36 cm from it ? What
will be the magnification produced in this

case?

D Watch Video Solution

35. At what distance should an object be placed from a lens of focal length 25 cm to obtain an image on a screen placed at a distance of 50 cm from the lens ? What will be the magnification produced in this case?
36. (a) State the relation between object distance, image distance and focal length of a spherical mirror.
(b) Draw a ray diagram to show the image
formed by a concave mirror when an object is
placed between pole and focus of the mirror.
(c) A concave mirror of focal length 15 cm
forms an image of an object kept at a distance
of 10 cm from the mirror. Find the position, nature and size of the image formed by it.

- Watch Video Solution

2. Draw ray diagrams to show the formation of images when an object is brought closer to concave mirror, from infinity.

D Watch Video Solution

3. What are the uses of concave and convex

 mirrors ?4. Write laws of refraction. Explain the same with the help of ray diagram, when a ray of light passes through a rectangular glass slab.

- Watch Video Solution

5. In going from a rarer to a denser medium, a ray of light bends towards normal. And in going from a denser to a rarer medium, a ray of light bends away from normal. Explain why.
6. Explain the two situations under which no refraction would occur.

- Watch Video Solution

7. From the course of a ray of light through a rectangular glass slab, explain what is lateral displacement and net deviation?

Higher Order Thinking Skills Q A

1. In the mirror formula, $\frac{1}{f}=\frac{1}{v}+\frac{1}{u}, f$ does not change when u is changed.

- Watch Video Solution

2. The formula for linear magnification of a spherical mirror is $m=\frac{h_{2}}{h_{1}}=\frac{-v}{u}$. What determines the sign of m ? What is the signification of the sign?
3. Rahul find the rough focal length of a convex lens. He is trying same method to find the focal length of concave lens, will he be successful. Justify your answer with help of ray diagram.

D Watch Video Solution

4. On what factors does the focal length of a spherical mirror depend ?

- Watch Video Solution

5. An object is held at a distance of 60 cm from
a convex mirror of focal length 20 cm . At what distance from the convex mirror, should a plane mirror be held so that images in the two mirrors coincide?

- Watch Video Solution

6. A convex lens made of a material of refractive index n_{2} is kept in a medium of
refractive index n_{1}. A parallel beam of light is
incident on the lens. Complete the path of rays of light emerging from the convex lens if
(i) $n_{1}<n_{2}$ (ii) $n_{1}=n_{2}$ (iii) $n_{1}>n_{2}$.

D Watch Video Solution

Value Based Q A

1. A spherical mirror in which reflecting surface
is towards the centre of the sphere of which
the mirror is a part, is called concave mirror,
i.e., reflection of light for this mirror occurs at concave surface or bent-in surface.

The rays of light incident on concave mirror in
a direction parallel to the principal axis, actually meet at a single point F on the principal axis of the mirror. This point is called principal focus of the mirror.

Read the above passage and answer the following questions:
(i) Is principal focus of a concave mirror, a real point or a virtual point?
(ii) What happens in case of a convex mirror?
(iii) Our teachers and parents advise us to stay focussed. What does it imply?

D Watch Video Solution

2. In case of both, convex mirror and concave mirror, any line passing through centre of curvature of the mirror is normal to the mirror. A ray of light falling normally on the mirror, retraces its path on reflection. This is because for a normaly ray, angle of incidence,
$\angle i=0^{\circ}$. As angle of reflection is equal to
angle of incidence, i.e., $\angle r=\angle i$, therefore,
$\angle r=0^{\circ}$. That is why the path of the ray normally on the mirror is retraced.

Read the above passage and answer the following questions :
(i) Do the rays passing through principal focus of mirror fall normally on the mirror. (ii) Which
is closer to the mirror, principal focus or centre of curvature of the mirror ? (iii) What values of life do you learn from this concept?

- Watch Video Solution

3. Power of a lens is a measure of the ability of
the lens to converge the rays of light falling
on it. Quantitatively, power of a lens = reciprocal of focal length of lens, i.e., $P=\frac{1}{f}$. If a lens happens to diverge the ray of light
falling on it, its power is said to be negative.
Thus, power of a convex lens is positive and power of a concave lens is negative.

If P_{1}, P_{2} are powers of two lenses held in contact with each other, the power of the combination is $P=P_{1}+P_{2}$. Note that
P_{1}, P_{2} are to be added with proper sign.

Read the above passage and answer the following question:
(i) What is the SI unit of power?
(ii) Focal length of a concave lens is 20 cm . What is its power ?
(iii) What lessons of life do you learn from the relation $P=P_{1}+P_{2}$?

D Watch Video Solution

4. The formula governing reflection of light
from a spherical mirror is
$\frac{1}{v}+\frac{1}{u}=\frac{2}{R}$, where
$u=$ distance of object from pole of mirror,
$v=$ distance of image from pole of mirror
$f=$ focal length of mirror,
$R=$ radius of curvature of mirror.

This is known as mirror formula and is applicable equally to concave mirror and convex mirror.
$m=\frac{I}{O}=\frac{v}{u}$
Read the above passage and answer the following questions :
(i) An object is held at a distance of 30 cm in
front of a concave mirror of radius of
curvature 40 cm . Calculate distance of the image from the object ? What is linear magnification of the mirror?
(ii) The object is moved to a distance of 40 cm
in front of the mirror. How is focal length of mirror affected ?
(iii) What values of life do you learn from the mirror formula ?

- Watch Video Solution

1. Draw on your answer book and show the path of reflected ray.

D Watch Video Solution

2. According to the "New Cartesian Sign

Convention" for mirros, when sigh has been
given to the focal length of :
(i) a concave mirror ?
(ii) a convex mirror ?
(Watch Video Solution
3. What is the basic difference between reflection and refraction of light?

D Watch Video Solution
4. Define absolute refractive index of a medium. Find its value for glass in which speed of light is $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

5. The focal length of a convex mirror is 30 cm .

What is the distance of its centre of curvature
from its focus?

D Watch Video Solution
6. How will you distinguish between a plane mirror, a convex mirror and a concave mirror without touching them?

D Watch Video Solution

7. Draw the course of a rays for tracing image of an object held between pole and principal
focus of a concave mirror. State the position and nature of image formed.
or

Draw the course of rays for tracing image of
an object held between optical centre and principal focus of a convex lens. State the nature of image formed.

D Watch Video Solution

8. What is meant by linear magnification produced by a spherical mirror ? Obtain the formula in terms of object distance and image distnace.
9. An object is placed at a distance of 20 cm in
front of a convex mirror of radius of curvature
30 cm . Find the position and nature of the image.

- Watch Video Solution

10.

Draw the figure on your answer book and complete the path of the rays, What is the nature of the image?

- Watch Video Solution

11. Find the position of an object, which when
placed in front of a concave mirror of radius of curvature 40 cm produces a virtual image, which is twice the size of the object.

D Watch Video Solution

12. Explain with the help of a diagram, why a rod immersed partially in a transparent liquid appears to be bent at the surface of the liquid.
13. What is meant by power of a lens? When is
it positive or negative? Define one dioptre.

D Watch Video Solution

14. An object of height 2 cm is held at a distance of 40 cm in front of a concave lens of power $-5 D$. Find the size of the image?
A. $2 / 3 \mathrm{~cm}$
B. $4 / 3 \mathrm{~cm}$
C. $7 / 8 \mathrm{~cm}$
D. $2 / 5 \mathrm{~cm}$

Answer: A

D Watch Video Solution

15. State the three laws of refraction of light.
or

A convergent lens of power $5 D$ is combined with a divergent lens of power $-3 D$. What is
the focal length of the combination?

- Watch Video Solution

16. (a) Discuss briefly the conditions for no refraction
(b) What is the difference between mirror formula and lens formula?

- Watch Video Solution

17. (a) State the relation between object distance, image distance and focal length of
the mirror. Give the New Cartesian Sign

Conventions used.
(b) A concave mirror forms a virtual and erect image at a distance of 30 cm from the mirror when the object is held at 10 cm in front of the mirror. Calculate focal length of the mirror.

D Watch Video Solution

18. Prove that a ray of light emerges from a rectangular glass slab in a direction parallel to
that in which it entered the glass slab. What is

lateral displacement?

D Watch Video Solution

19. (a) How will you distinguish between convex lens and concave lense without touching them?
(b) Linear magnification of a concave lens is always positive, whereas that of a convex lens can be both, positive or negative . Why?
20. In going from a rarer to a denser medium, a ray of light bends towards normal. And in going from a denser to a rarer medium, a ray of light bends away from normal. Explain why.

D Watch Video Solution

21. How many refractions does a ray of light undergo on passing through a glass slab? What is the net deviation of the ray ?
22. If glass slab is replaced by a hollow slab
filled with water, will the net deviation change?
For given angle of incidence, will the deviation of the ray in first refraction increase $3 s$ or decreases compared to the one in glass slab?

- Watch Video Solution

23. Focal length of a convex lens in air is 25 cm .

It is cut into two equal halves along its
principal axis. What will be the focal length of each half ?

D Watch Video Solution

24. Two concave spherical mirrors are parts of two spheres of diameters 1:3. What is the ratio of their focal lengths?

D Watch Video Solution
25. Can we find rough focal length of a convex mirror ? If yes, how? If no, why not?

D Watch Video Solution

26. You are given a concave mirror of focal length 30 cm . How can you form a real image of the size of the object using this mirror?

- Watch Video Solution

1. Focal length of a convex mirror is 50 cm . What is its radius of curvature?

D Watch Video Solution

2. Radius of curvature of a concave mirror is 25
cm . What is its focal length?
(Watch Video Solution
3. A concave mirror produces 10 cm long image of an object of height 2 cm . What is the magnification produced?

D Watch Video Solution

4. An object 1 cm high is held near a concave mirror of magnification 10. How tall will be the image?
5. Find the size, nature and position of image
formed by a concave mirror, when an object of
size 1 cm is placed at a distance of 15 cm . Given
focal length of mirror is 10 cm .

D Watch Video Solution

6. An object 2 cm high is placed at a distance of 16 cm from a concave mirror, which produces 3 cm high inverted image. What is
the focal length of the mirror? Also, find the position of the image.
7. An erect image $3 \times$ the size of the object is obtained with a concave mirror of radius of curvature 36 cm . What is the position of the object?

- Watch Video Solution

8. A 2.5 cm candle is placed 12 cm away from a convex mirror of focal length 30 cm . Give the
location of the image and the magnification.

- Watch Video Solution

9. An object is placed in front of a concave mirror of focal length 20 cm . The image formed is three times the size of the object.

Calculate two possible distances of the object
from the mirror?

$$
\begin{aligned}
& \text { A. }+40 / 5 \mathrm{~cm},-80 / 3 \mathrm{~cm} \\
& \text { B. }-40 / 3 \mathrm{~cm},-80 / 3 \mathrm{~cm}
\end{aligned}
$$

$$
\text { C. }-20 / 3 \mathrm{~cm},-50 / 3 \mathrm{~cm}
$$

$$
\text { D. }-40 / 3 \mathrm{~cm},+70 / 3 \mathrm{~cm}
$$

Answer: B

D Watch Video Solution

10. A concave mirror produces a real image 10 mm tall, of an object 2.5 mm tall placed at 5 cm from the mirror. Calculate focal length of the mirror and the position of the image?
A. $-4 \mathrm{~cm} ;-20 \mathrm{~cm}$
B. $-40 \mathrm{~cm} ;-20 \mathrm{~cm}$
C. $-2 \mathrm{~cm} ;-10 \mathrm{~cm}$
D. $-5 \mathrm{~cm} ;-15 \mathrm{~cm}$

Answer: A

D Watch Video Solution
11. An object is placed at a large distance in front of a convex mirror of radius of curvature

40 cm . How far is the image behind the mirror?

D Watch Video Solution
12. An object is placed 15 cm from a convex mirror of radius of curvature 90 cm . Calculate position of the image and its magnification.

D Watch Video Solution

13. The image formed by a convex mirror of focal length 30 cm is a quarter of the object. What is the distance of the object from the mirror?

D Watch Video Solution

14. When an object is placed at a distance 60
cm from a convex spherical mirror, the magnification produced is $1 / 2$. Where should
the object be placed to get a magnification of $1 / 3$?
A. -200 cm
B. +150 cm
C. -120 cm

D. None

Answer: C
(Watch Video Solution
15. An object is placed 18 cm in front of a mirror. If the image is formed at 4 cm to the right of the mirror, calculate its focal length. Is the mirror convex or concave ? What is the nature of the image ? What is the radius of curvature of the mirror ?
A. 5.14 cm ; convex, erect and real ; 10.28 cm B. 5.14 cm ; convex, diminished and virtual ; 10.28 cm
C. 5.14 cm ; concave, erect and real ; 10.28

Cm
D. Edit 5.14 cm ; convex, erect and virtual ;
10.28 cm

Answer: D

D Watch Video Solution

16. A convex mirror used for rear view on an automobile has a radius of curvature of 3.00 m . If a bus is located at 5.00 m from this
mirror, find the position, nature and magnification of the image.

D Watch Video Solution

17. Calculate speed of light in water of refractive index $4 / 3$. Given speed of light in air

$$
=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

D Watch Video Solution
18. A ray of light passes from air to glass
($n=1.5$) at an angle of 30°. Calculate the angle of refraction.

D Watch Video Solution

19. A ray of light is incident on a glass slab at
an angle of 45°. If refractive index of glass be
1.6 , what is the angle of refraction ?
A. 45.2°
B. 30°
C. 26.2°
D. 15.2°

Answer: C

- Watch Video Solution

20. The refractive index of diamond is 2.47 and
that of glass is 1.51 . How much faster does
light travel in glass than in diamond ?
21. The refractive index of glycerine is 1.46 .

What is the speed of light in air if its speed in glycerine is $2.05 x 10^{8} \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

22. The refractive index of glass is 1.6 and that
of diamond is 2.4. Calculate refractive index of
diamond with respect to glass.
A. 1.5
B. 2.5
C. 2.0
D. 0.5

Answer: A

D Watch Video Solution
23. In the above problem, what is the refractive index of glass w.r.t diamond?

- Watch Video Solution

24. A ray of light is travelling from glass to air.

The angle of incidence in glass is 35°, and angle of refraction in air 60°. What is the refractive index of glass w.r.t. air ? $\left[\sin 35^{\circ}=(0.5736)\right]$
A. 1.9
B. 0.5
C. 1.51
D. 2.0
25. A ray of light is travelling is travelling from
air to water. What is the angle of incidence in
air, if angle of refraction in water is 41° ? Take refractive index of water $=1.32$.
A. 60°
B. 45°
C. 30°
D. 90°

Answer: A

- Watch Video Solution

26. A tank of water is 4 m deep. How deep does
it appear when seen normally?

D Watch Video Solution

27. What is the real depth of a swimming pool
when its bottom appears to be raised by 1 m ?

Given refractive index of water is $4 / 3$.
A. $2 m$
B. $16 m$
C. $4 m$
D. 8 m

Answer: C

D Watch Video Solution
28. A jar 15 cm long is filled with a transparent
liquid. When viewed from the top, its bottom
appears to be 12 cm below. What is the refractive index of the liquid?

D Watch Video Solution

29. The image obtained with a convex lens is erect and its length is 4 times the length of
the object. If the focal length of lens is 20 cm , calculate the object and image distances.

$$
\text { A. }-15 \mathrm{~cm},-60 \mathrm{~cm}
$$

$$
\text { B. } 45 \mathrm{~cm} .-60 \mathrm{~cm}
$$

C. $12 \mathrm{~cm}, 20 \mathrm{~cm}$

D. None

Answer: A

D Watch Video Solution

30. A needle placed 45 cm from a lens forms an image on the screen placed 90 cm on the other side of the lens. Identify the type of the lens and determine its focal length. What is
the size of the image if the size of needle is
5.0 cm ?

D Watch Video Solution
31. A concave lens has a focal length of 50 cm .

Calculate its power.

D Watch Video Solution

32. The image of a small electric bulb fixed on
the wall of a room is to be obtained on the
opposite wall $3 m$ away by means of a large convex lens. What is the maximum possible focal length of the lens required for the purpose?

- Watch Video Solution

33. Calculate the distance at which an object
should be placed in front of a convex lens of
focal length 10 cm to obtain a virtual image of double its size.
34. The image of the needle placed 10 cm from
a lens is formed on a wall 20 cm on the other side of the lens. Find focal length of the lens and size of image formed, if the size of object needle is 2.5 cm .

- Watch Video Solution

35. An object is placed at a distance of 30 cm
from a concave lens of focal length 15 cm . Find
the nature and position of the image.
36. An object of height 2 cm is placed at a distance of 15 cm in front of a concave lens of power - 10 dioptre. Find the size of the image.

- Watch Video Solution

37. A thin lens has a focal length of -25 cm .

What is the power of the lens? It is convex or concave?

Watch Video Solution

38. The power of lens is $2.5 D$. What is its focal length ?

- Watch Video Solution

39. A convergent lens of power 8 D is combined with a divergent lens of power $-10 D$. Calculate focal length of the combination.
40. A concave lens is kept in contact with a convex lens of focal length 20 cm . The combination works as a converging lens of focal length 100 cm . Calculate power of concave lens.
A. $+2 D$
B. $-2 D$
C. $+5 D$
D. $-4 D$

Answer: D

- Watch Video Solution

41. Find the focal length and nature of lens
which should be placed in contact with a lens
of focal length 10 cm so that the power of the combination becomes 5 dioptre.

- Watch Video Solution

42. Study the given ray diagrams and select the correct statement from the following :

A. Device X is a concave mirror and device Y is a convex lens, whose focal lengths are

20 cm and 25 cm respectively.

B. Device X is a convex lens and device Y is

a concave mirror, whose focal lengths
are 10 cm and 25 cm respectively.
C. Device X is a concave lens and device Y is
a convex mirror, whose focal lengths are

20 cm and 25 cm respectively.
D. Device X is a convex lens and device Y is
a concave mirror, whose focal lengths
are 20 cm and 25 cm respectively.
43. A student obtains a blurred image of a distant object on a screen using a convex lens.

To obtain a distinct image on the screen he should move the lens
A. away from the screen
B. towards the screen
C.to a position very far away from the

D. either towards or away from the screen

 depending upon the position of the object.
Answer: D

D Watch Video Solution

Ncert Exemplar Problems

1. Which of the following can make a parallel beam of light from a point source is incident
A. Concave mirror as well as convex lens
B. Convex mirror as well as concave lens
C. Two plane mirrors placed at 90° to each other
D. Concave mirror as well as concave lens

Answer: A

D Watch Video Solution
2. A 10 mm long awl pin is placed vertically in
front of a concave mirror. A 5 mm long image of the awl pin is formed at 30 cm in front of
the mirror. The focal length of this mirror is
A. -30 cm
B. -20 cm
C. -40 cm
D. -60 cm

Answer: B
3. Under which of the following conditions a concave mirror can form a real image larger than the actual object ?
A. When the object is kept at a distance
equal to its radius of curvature
B. When object is kept at a distance less
than its focal length
C. When object is placed between the focus
D. When object is kept at a distance greater than its radius of curvature.

Answer: C

D Watch Video Solution

4. Figure shows a ray of light as it travels from medium A to medium B. Refractive index of the
medium B relative to medium A is

A. $\sqrt{3} / \sqrt{2}$
B. $\sqrt{2} / \sqrt{3}$
C. $1 / \sqrt{2}$
D. $\sqrt{2}$

Answer: A

D Watch Video Solution
5. A light ray enters from medium A to medium B as shown in Figure. The refractive index of medium A relative to B will be

A. greater than unity
B. less than unity

C. equal to unity

D. zero

Answer: B

D Watch Video Solution

6. Beams of light are incident through the
holes A and B and emerge out of box through
the holes C and D respectively as shown in

Figure. Which of the following could be inside
the box?

A. A rectangular glass slab
B. A convex lens
C. A concave lens
D. A prism

Answer: A
7. A beam of light is incident through the holes on side A and emerges out of the holes on the other face of the box as shown in

Figure. Which of the following could be inside the box?

A. concave lens
B. Rectangular glass slab
C. Prism
D. Convex lens

Answer: D

D Watch Video Solution

8. Which of the following statements is true?

A. A convex lens has 4 dioptre power having a focal length 0.25 m
B. A convex lens has -4 dioptre power having a focal length 0.25 m
C. A concave lens has 4 dioptre power having a focal length $0.25 m$
D. A concave lens has -4 dioptre power
having a focal length of 0.25 m

Answer: A

D Watch Video Solution

9. Magnification produced by a rear view mirror fitted in vehicles
A. is less than one
B. is more than one
C. is equal to one
D. can be more than one depending upon
the position of the object in front of it.

Answer: A

- Watch Video Solution

10. Rays from Sun converge at a point 15 cm in
front of a concave mirror. Where should an
object be placed so that size of its image is equal to the size of the object ?
A. 15 cm in front of the mirror
B. 30 cm in front of the mirror
C. between 15 cm and 30 cm in front of the

mirror

D. more than 30 cm in front of the mirror

D Watch Video Solution

11. A full length image of a distant tall building
can definitely be seen by using
A. a concave mirror
B. a convex mirror
C. a plane mirror
D. both concave as well as plane mirror

Answer: B

- Watch Video Solution

12. In torches, search lights and headlights of vehicles the bulb is placed
A. between the pole and the focus of the reflector
B. very near to the focus of the reflector
C. between the focus and centre of curvature of the reflector D. at the centre of curvature of the reflector

Answer: B

D Watch Video Solution
13. The laws of reflection hold good for
A. plane mirror only

B. concave mirror only

C. convex mirror only
D. all mirrors irrespective of their shape

Answer: D

D Watch Video Solution

14. The path of a ray light coming from air passing through a rectangular glass slab traced by four students are shown as A, B, C
and D in Figure. Which one of them is correct ?

A. A
B. B
C. C
D. D

Answer: B

D Watch Video Solution

15. You are given water, mustard oil, glycerine and kerosene. In which of these media a ray of
light incident obliquely at same angle would bend the most ?
A. Kerosene

B. Water

C. Mustard oil
D. Glycerine

Answer: D

D Watch Video Solution

16. Which of the following ray diagrams is correct for the ray of light incident on a
concave mirror as shown in figure.

Answer: D

- Watch Video Solution

17. Which of the following ray diagrams is correct for the ray of light incident on a lens
shown in Fig. ? Choices are given in Fig.

A.

B.

C.

D.

Answer: A

D Watch Video Solution

18. A child is standing in front of a magic of a mirror, She finds the image of her head bigger,
the middle portion of her body of the same size and that of the legs smaller. The following
is the order of combinations for the magic mirror from the top.
A. Plane, convex and concave

B. Convex, concave and plane

C. Concave, plane and convex
D. Convex, plane and concave

Answer: C

D Watch Video Solution

19. In which of the following, the image of an object placed at infinity will be highly diminished and point sized?
A. Concave mirror only
B. Convex mirror only
C. Convex lens only
D. Concave mirror, convex mirror, concave lens and convex lens

Answer: D
(Watch Video Solution

