©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

SAMPLE PROBLEM

1. Write the Lewis dot structure of $C O$ molecule .

- Watch Video Solution

2. Write the Lewis dot structure of the nitrite ion $\left(\mathrm{NO}_{2}^{\Theta}\right)$.

- Watch Video Solution

3. Draw the Lewis structure of HCN .

Watch Video Solution

4. Write the Lewis dot structure of CO_{3}^{2-} ion.

Watch Video Solution
5. Calculate formal charge on each O -atom of O_{3} molecule.

- Watch Video Solution

6. Calculate the formal charge on
(i) Cl in HClO_{4}
(ii) S in HSO_{4}^{-}
7. Write the formal charges on atoms in (i) and carbonate ion (ii) nitrite ion.

- Watch Video Solution

8. In a moleculte A - B, electronegativities of atom A and B are 2.0 and 4.0 respectively. Calculate the percent ionic character of $\mathrm{A}-\mathrm{B}$ bond using (i) Pauling equation (ii) Hannay and Smith equation.

- Watch Video Solution

9. Calculate the percent ionic character of HCl . Given that the observed dipole moment is 1.03 D and bond length of HCl is 1.275 .
10. The dipole moment of LiH is $1.964 \times 10^{-29} \mathrm{Cm}$ and the interatomic distance between Li and H in the molecule is $1.596 \AA$. Calualate the persent ionic character of the molecule .

- Watch Video Solution

11. Calculate the fractional charge on each atom in HBr molecule. Given that

Dipole moment of $\mathrm{BHr}=0.78 \mathrm{D}$, Bond distance of $\mathrm{HBr}=1.41 \AA$. Electronic charge, $\mathrm{e}=4.8 \times 10^{-10}$ esu

(D) Watch Video Solution

PROBLEM

1. Explain the sturcture of CO_{2} molecule in terms of reasonance,
2. Explain the structure of CO_{3}^{2-} ion in terms of resonance

- Watch Video Solution

3. Draw the most common five resonating structures of benzene. What are their names ?

- Watch Video Solution

EXAMPLE

1. Cyanogen $(C N)_{2}$, is called pseudohalogen because if has some properties similer to halogens

Its structures consisits of two CN groups linked toghether. These two CN group linked together. These two CN groups may be linked either through
carbon or through nitrogen,i.e., we may have
$\mathrm{c}-\mathrm{N}-\mathrm{N}-\mathrm{C}$ or $\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ `
which of these is correct and why ?

- Watch Video Solution

2. On the basis of VSEPR theory, predict the shapes of the following :
${ }^{(i) C I F} F_{3}(i i) \mathrm{Br}_{5}(i i i) \mathrm{NH}_{2}^{-}(i v) \mathrm{H}_{3} \mathrm{O}^{+}$

- Watch Video Solution

TEST YOUR GRIP (MULTIPLE CHOICE QUESTIONS I)

1. The electronic configuration of two elements X and Y are given below:
$X=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$ and $Y=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$ The formula of the ionic compound can be formed between these elements is

A. $X Y$

B. $X Y_{2}$
C. $X_{2} Y$
D. $X Y_{3}$

Answer: B

- Watch Video Solution

2. Which of the following contains both covalent and ionic bond?
A. $\mathbb{C l} l_{4}$
B. CaCl_{2}
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

3. Soperoctet molecule is
A. CiF_{3}
B. NH_{3}
C. PCl_{3}
D. CO_{2}

Answer: C

- Watch Video Solution

4. In $O F_{2}$, the number of bond pairs and lone pairs of electrons are respectively,
A. 2,0
B. 2,8
C. 2,10
D. 2,9

D Watch Video Solution

5. When two hydrogen atoms approach each other to form H_{2} molecule, the potential energy
diagram obtained is: ($\mathrm{d}=$ interatomic distance)

B.
(b)
C.

D.
(d)

Answer: C

- Watch Video Solution

6. The number of σ and π-bonds in allyl isocyanide are
A. $9 \sigma, 3 \pi$
B. $9 \sigma, 9 \pi$
C. $3 \sigma, 4 \pi$
D. $5 \sigma, 7 \pi$

Answer: A

7. Which contains both polar and non-polar bonds ? .
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. HCN
C. $\mathrm{H}_{2} \mathrm{O}_{2}$
D. CH_{4}

Answer: C

- Watch Video Solution

8. Which one of the following has the highest dipole moment ?
A. NH_{3}
B. PH_{3}
C. SbH_{3}
D. AsH_{3}

- Watch Video Solution

9. Which of the following hydrocarbons has the lowest dipole moment ?

B. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CCH}_{3}$
C. $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
D. $\mathrm{CH}_{2} \equiv \mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$

Answer: B

D Watch Video Solution

10. A neutral molecule $X F_{3}$ has a zero diple moment. The element X is most likely :
A. chlorine
B. boron
C. nitrogen
D. bromine

Answer: B

- Watch Video Solution

11. Polarizing power $C d^{2+}$ on the anions is stronger then that of Ca^{2+} ion. This is because
A. atomic number of Cd is greater than that of Ca
B. atomic mass of Cd is greater than that Ca
C. size of $C d^{2+}$ ion is larger than that of $C a^{2+}$ ions
D. $C a^{2+}$ ions has noble gas configuration white $C d^{2+}$ ion has pseudo noble gas configuration with

18 electrons in its outer shell

Answer: D

- Watch Video Solution

12. In which of the following the central atoms does not use $s p^{3}$ hybrid orbitals in its bonding
A. $B e F_{3}^{-}$
B. OH_{3}^{-}
C. NH_{2}^{-}
D. NH_{3}

Answer: A

- Watch Video Solution

13. In an octahedral structure, the pair of d orbitals involved in $d^{2} s p^{2}$ hybridization is
A. $d_{x^{2}-y^{2}}, d_{z^{2}}$
B. $d_{x z}, d_{x^{2}-y^{2}}$
C. $d_{z^{2}}, d_{x z}$
D. $d_{x y}, d_{y z}$

Answer: A

- Watch Video Solution

14. The correct order regarding the electronegativity of hybrid orbitals of carbon is ?
A. $s p<s p^{2}>s p^{3}$
B. $s p<s p^{2}<s p^{3}$
C. $s p>s p^{2}>s p^{2}$
D. $s p>s p^{2}>s p^{3}$

Answer: D

- Watch Video Solution

15. The bond angle formed by different hybrid orbitals are in the order
A. $s p^{2}>s p^{3}>s p^{3}$
B. $s p^{3}>s p^{2}>s p$
C. $s p>g p^{3}>s p^{2}$
D. $s p>s p^{2}>s p^{3}$

Answer: D

- Watch Video Solution

16. The structure of $I F_{7}$ is
A. Trigonal bipyramid
B. Octahedral
C. Pentagonal bipyramid
D. Square pyramid

Answer: C

- Watch Video Solution

17. Which one of the following molecules has the smallest bond angle ?
A. NH_{3}
B. PH_{3}
C. $H_{2} S$
D. $\mathrm{H}_{2} \mathrm{Se}$

Answer: D

18. Molecular shape of $S F_{4}, C F_{4}$ and $X e F_{4}$ are
A. the same with 2,0 and 1 lone pairs of electrons respectively
B. the same with 1,1 and 1 lone pairs of electrons respectively
C. the same with 0,1 and 2 lone pairs of electrons respectively
D. the same with 1,0 and 2 lone pairs of electrons respectively

Answer: D

- Watch Video Solution

19. In BrF_{3} molecule, the lone pairs occupy requatorial position to minize
A. Ione pair - bond pair repulsion only
B. bond pari - bond pair repulsion only
C. Ione pair - lone pair repulsion and lone pair-bond pair repulsion
D. lone pair - lone pair repulsion only

Answer: D

- Watch Video Solution

20. Which of the following molecular orbitals has two nodal planes ?
A. $\sigma_{2 s}$
B. $\pi 2_{p_{y}}$
C. $\pi^{*} 2 p_{y}$
D. $\sigma^{*} 2 p_{x}$

Answer: C

- Watch Video Solution

21. Which of the following species does not exist under normal condition ?
A. $L i_{2}$
B. $B e_{2}^{+}$
C. $B e_{2}$
D. B_{2}

Answer: C

- Watch Video Solution

22. Choose the paramagnetic oxide in the following
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $M g O$
C. BeO
D. KO_{2}

Answer: D

- Watch Video Solution

23. Which of the following has the minimum bond length ?
A. O_{2}
B. O_{2}^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: B

24. In which of the following, the double bond consists of both pi bonds
A. O_{2}
B. C_{2}
C. $B e_{2}$
D. S_{2}.

Answer: B

- Watch Video Solution

25. The correct statement with regard to H_{2}^{+}and H_{2}^{-}is
A. both H_{2}^{+}and H_{2}^{-}do not exist
B. H_{2}^{-}is more stable than H_{2}^{+}
C. H_{2}^{+}is more stable than H_{2}^{-}
D. both H_{2}^{+}and H_{2}^{-}are equally stable

Answer: C

26. The bond order of the $\mathrm{N}-\mathrm{O}$ bonds in NO_{3}^{-}ion is
A. 0.33
B. 1.00
C. 1.33
D. 1.50

Answer: C

- Watch Video Solution

27. Which of the following molecule forms linear polymeric structure due to H -bonding ?
A. HCl
B. HF
C. $\mathrm{H}_{2} \mathrm{O}$
D. NH_{3}

Answer: D

D Watch Video Solution

28. Which of the following is arranged in the increasing order of enthalpy of vaporization?
A. $\mathrm{NH}_{3} \cdot \mathrm{PH}_{3} . \mathrm{AsH}_{3}$
B. $\mathrm{AsH}_{3}, \mathrm{PH}_{3}, \mathrm{NH}_{3}$
C. $\mathrm{NH}_{3} . \mathrm{AsH}_{3}, \mathrm{Ph}_{3}$
D. $\mathrm{PH}_{3}, \mathrm{AsH}_{3}, \mathrm{NH}_{3}$

Answer: D

D Watch Video Solution

29. $K F$ combination with $H F$ to form $K H F_{2}$. The compound contains the species
A. $K_{+} . F^{-}$and H^{+}
B. K^{+}, F^{-}and $H F$
c. K^{+}and $\left[H F_{2}\right]^{-}$
D. $[K H F]^{+}$and F_{2}.

Answer: C

- Watch Video Solution

30. Intramolecular hydrogen bonding is present in
A. water
B. o-nitrophenol
C. p-nitrophenol
D. methyl amine

Answer: B

31. Which of the following hydrogen halide is liquid at room temperature ?
A. HF
B. HCl
C. HBr
D. HI

Answer: A

Watch Video Solution

TEST YOUR GRIP (FILL IN THE BLANKS II)

1. When electrons are contributed by one atom but shared by both the atoms so as to complete their octets, the bond formed is called
2. For the formation of an ionic bond between two atoms, one atom should have And the other atom should have

Watch Video Solution

3. The energy released when gaseous positive and negtive ions combine together to form an ionic bond is called \qquad

- Watch Video Solution

4. Write the Lewis dot structure of CO_{3}^{2-} ion.

- Watch Video Solution

5. AlCl_{3} is Compound whereas $P \mathrm{Pl}_{5}$ is \qquad compound in terms of otter rule.
6. The shape of the molecule containing 3 bond pairs and one lone pair around the central atom is \qquad

- Watch Video Solution

7. The energy released when gaseous hydrogen atoms combine together to form one of hydrogen molecules is $K \mathrm{Jmol}^{-1}$.

- Watch Video Solution

8. When atomic orbitals overlap head-on, the bond formed is Whereas when they overlap laterally, the bond formed is \qquad
9. For the formation of ionic bond between two atoms, the electronegativity difference between them should be greater than or equal to

- Watch Video Solution

10. The CGS unit of dipole moment is \qquad Whereas its SI unit is \qquad

- Watch Video Solution

11. The dipole moment of LiH is $1.964 \times 10^{-29} \mathrm{Cm}$ and the interatomic distance
between Li and H in the molecule is $1.596 \AA$. Calualate the persent ionic character of the molecule.

- Watch Video Solution

12. The shape of acetylene molecule is
13. The dipole moment of $\mathrm{H}_{2} \mathrm{O}$ molecule is \qquad Whereas that of $S F_{4}$ is

- Watch Video Solution

14. The difference of energy between the actual structure of molecule and that of the most stable contributing structure is called \qquad

- Watch Video Solution

15. Taking Z-axis as the intermolecular axis, when two $2 p_{x}$ orbitals of two atoms/ions overlap, the molecular orbitals formed are and \qquad
16. The bond order of $N_{2}, N_{2}^{+}, N_{2}^{-}$and N_{2}^{2-} respectively are and

- Watch Video Solution

17. The bond order of NO_{3}^{-}ion is \qquad and its shape is

- Watch Video Solution

18. Out of $H F, H C l, H B r$ and $H I$, the lowest boiling point is of and highest boiling point is of \qquad

- Watch Video Solution

19. The bond order of CO molecule is whereas that of CO^{+}ion is
20. Out of $\sigma_{2 s}, \pi_{2_{p_{x}}}, \pi_{2_{p_{z}}}^{*}$
the gerde molecular orbital (s) is (are) \qquad Whereas ungerde molecular orbital (s) is (are) \qquad

- Watch Video Solution

CONCEPTUAL QUESTIONS

1. Write the Lewis dot symbols and predict the valencies you expect for the following elements :

Nitrogen, Fluorine and Neon

- Watch Video Solution

2. Why an ionic bond is formed between two elements having large difference in their electrongativity ?
3. Is $C a F_{2}$ linear or bent or neither of the two ? Justify .

- Watch Video Solution

4. Define lattice enthalpy. How is it related to the stability of an ionic compound?

- Watch Video Solution

5. Draw the Lewis structures of the following molecules and ions and ions and tell in which case/cases the octet rule is violated $\mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{BeCl}_{2}, \mathrm{NH}_{3}, \mathrm{AlCl}_{3}, \mathrm{PCl}_{5}, \mathrm{CO}_{3}^{2-}$

- Watch Video Solution

6. On the basis of VSEPR theory, predict the shapes of the following molecules molecules/ions ?
(i) $\mathrm{SiF}_{4}(\mathrm{ii}) \mathrm{NH}_{2}^{-}(\mathrm{iii}) \mathrm{NH}_{4}^{+}(i v) \mathrm{C}_{2} \mathrm{H}_{2}(v) \mathrm{H}_{3} \mathrm{O}^{+}(v i) \mathrm{F}_{2} \mathrm{O}(v i i) \mathrm{PCl}_{3}(v i i i) P F_{\mathrm{F}}$

- Watch Video Solution

7. Arrange the following in the order of property indicated for each set:
$\mathrm{NO}_{2}, \mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}^{-}$(decreasing bond angle)

- Watch Video Solution

8. Explain how valence bond theory accounts for
(i) a carbon-carbn double bond ($\mathrm{C}=\mathrm{C}$)
(ii) a carbon -carbon triple bond ($\mathrm{C}=\mathrm{C}$)

- Watch Video Solution

9. Explain how VB theory differs from Lewis concept.

- Watch Video Solution

10. Why two hydrogen atoms combine to form H_{2} but two helium atoms do not combine to form He_{2} ?

- Watch Video Solution

11. What is the total number of sigma and pi bonds in the following molecules ? (a) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}(\mathrm{b}) \mathrm{CH}_{2} \mathrm{Cl}_{2}$
(c) $\mathrm{H}_{3} \mathrm{C}-\stackrel{\stackrel{H}{\mathrm{C}}}{\mathrm{C}} \stackrel{\stackrel{H}{\mathrm{C}} \mathrm{C}-\mathrm{C}-\mathrm{H}}{ }$

- Watch Video Solution

12. What order or C-H bond lengths do you expect in $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ and why ?
13. Which bond do you expect to be stronger in each of the following cases and why ?
(i) $\mathrm{H}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}(i i) \mathrm{O}_{2}, \mathrm{~N}_{2}(i i i) \mathrm{F}-\mathrm{F}, \mathrm{Cl}-\mathrm{Cl}$

- Watch Video Solution

14. Arrange the following single bonds in order of bond energy giving reasons:
$C-C, N-N, O-O, F-F$

- Watch Video Solution

15. Explain why dipole moment of hydrogen halides decreases from HF to HI
16. Respresent diagrammatically the bond moments and the resultant dipole moment in
(i) SO_{2} (ii) cis trans forms of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$

- Watch Video Solution

17. Why does NaCl give a white precipitate with AgNO_{3} solution but $C C l_{4}$ does not?

- Watch Video Solution

18. Why reaction between NaCl and AgNO_{3} is very fast but reaction between H_{2} and Cl_{2} is slow?

- Watch Video Solution

19. Draw the shapes of the following hybrid orbitals :
$s p, s p^{2}, s p^{3}$

Watch Video Solution

20. Name the type of hybridisation of each C-atom in a molecule of (i) propylene (propene) (ii) propyne.

How many σ and π-bonds are present in each case?

- Watch Video Solution

21. Out of p - orbital and sp-hybrid orbital which has greater directions character and why ?

- View Text Solution

22. What angles are associated with the following orbitals ? $s p, s p^{2}$ and $s p^{3}$

- Watch Video Solution

23. Which d-orbital is involved in $s p^{3} d$ hydridisation and why ?

- Watch Video Solution

24. Which d-orbital is involved in $d s p^{2}$ hybridisation why ?

- Watch Video Solution

25. What is the hybrid state of BeCl_{2} ? What will be the change in the hybrid state of BeCl_{2} in the solid state ?

- Watch Video Solution

26. Arrange the following in order of decreasing bond angles
(i) $\mathrm{CH}_{4}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{C}_{2} \mathrm{H}_{2}$
(ii) $\mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}, \mathrm{NH}_{4}^{+}$

- Watch Video Solution

27. Write the structure of an anion which is isostructural with $B F_{3}$ and the structure of a cation which
is Isostural with CH_{4}

- Watch Video Solution

28. Why axis bonds of PCl_{5} are longer than equatorial bonds ?

- Watch Video Solution

29. Name the different type of bonds present in $\mathrm{NH}_{4} \mathrm{Cl}$ after drawing its structure.
30. Write two resonance structure of $\mathrm{N}_{2} \mathrm{O}$ that satisfy the octet rule.

- Watch Video Solution

31. Which of the following species have same shape/same bond order ?
$\mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{CO}_{2}, \mathrm{O}_{3}$

- Watch Video Solution

32. Taking Z-axis as the internuclear axis, explain why $2 p_{x}$ or $2 p_{y}$ orbital does not combine with 2 s
obtial to form molecular orbtals ?

- Watch Video Solution

33. Compara the relative stablilties of O_{2}^{-}and N_{2}^{-}and comment on their magnetic (paramagetic or diamagnetic) behaviour.

- Watch Video Solution

34. (a) How bond energy veries from N_{2}^{-}to N_{2}^{+}and why?
(b) On the basis of molecular orbital theory what is similartiy between
(i) $\mathrm{F}_{2}, \mathrm{O}_{2}^{-}$(ii) $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{NO}^{+}$?

- Watch Video Solution

35. N_{2} has higher order than NO. Explain .

- Watch Video Solution

36. Ethanol has higher boiling point diethyl ether or ethyl amine. Why ?
37. Why water has maximum density at 277 K ?

- Watch Video Solution

38. How many H -bonds are formed by each $\mathrm{H}_{2} \mathrm{O}$ molecule and how many water moleculas are attached
to each water molecule and in what diraction ?

- Watch Video Solution

39. Though Cl has nearly same electronegativeity as N , yet there is no H bonding is HCl . Why ?

- Watch Video Solution

40. Explain why HF is less viscous than $\mathrm{H}_{2} \mathrm{O}$.
41. From each of the following pairs, select the molecule with higher value of the property mentioned against each pair :
$\mathrm{NH}_{3}, \mathrm{PH}_{3}$: bond angle
(ii) $N F_{3}, N H_{3}$: dipole moment
(iii) $\mathrm{MgO}, \mathrm{CaO}$: hardness
(iv) $\mathrm{HCl}, \mathrm{HBr}$: ionic character

- Watch Video Solution

42. Account for the following :

The experimentally determined $\mathrm{N}_{\mathrm{I}} \mathrm{F}$ bond length in $N F_{3}$ is greater than the sum of the sigle covalent radii of N and F .

1. Explain the formation of a chemical bond.

- Watch Video Solution

2. Write Lewis dot symbols for atoms of the following elements:
$M g, N a, B, O, N, B r$.

- Watch Video Solution

3. Write Lewis symbols for the following atoms and ions:
S and $S^{2-}, A l$ and $A l^{3+}, H$ and H^{-}

- Watch Video Solution

4. Draw the Lewis structures for the following molecules and ions:
$\mathrm{H}_{2} \mathrm{~S}_{3} \mathrm{SiCl}_{4}, \mathrm{BeF}_{2}, \mathrm{CO}_{3}^{2-}$, HCOOH
5. Define octet rule. Write its significance and limitations.

- Watch Video Solution

6. Write the favourable factors for the formation of ionic bond.

- Watch Video Solution

7. Discuss the shape of the following molecules using the $V S E P R$ model:
$B e C l_{2}, B C l_{3}, S i C l_{4}, A s F_{5}, H_{2} S, P H_{3}$

- Watch Video Solution

8. Although geometries of NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ molecules are distorted tetrahedral, bond angle in water is less than that of ammonia. Discuss.

- Watch Video Solution

9. How do you express the bond strength in terms of bond order?

- Watch Video Solution

10. Define the bond length.

- Watch Video Solution

11. Explain the important aspects of resonance with reference to the CO_{3}^{2-} ion.
12. $\mathrm{H}_{3} \mathrm{PO}_{3}$ can be represented by the structures 1 and 2 shown below.

Can these two structrue be
taken as the canonical forms of the resonance hybrid of $\mathrm{H}_{3} \mathrm{PO}_{3}$? If not ,given reason for the same

(1)

$\mathrm{H}: \ddot{\mathrm{O}}: \ddot{\mathrm{P}}: \stackrel{\ddot{\mathrm{O}}}{\square}: \mathrm{H}$ $: \ddot{\mathrm{O}}:$ $\ddot{\mathrm{H}}$

(2)

- Watch Video Solution

13. Write the resonance structures for $\mathrm{SO}_{3}, \mathrm{NO}_{2}$, and $\mathrm{NO}_{3}{ }^{\ominus}$.

- Watch Video Solution

14. Use Lewis symbols to show electron transfer between the following atoms to form cations and anions : (a) K and S (b) Ca and O (c) Al and N .
15. Although both CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are triatomic molecules, the shape of $\mathrm{H}_{2} \mathrm{O}$ molecules in bent while that of CO_{2} is linear. Explain this on the basis of dipole moment.

- Watch Video Solution

16. Write the significance/applications of dipole moment.

- Watch Video Solution

17. Define electronegativity. How does it differ from electron gain enthalpy
18. Explain with the help of suitable example polar covalent bond.

- Watch Video Solution

19. Arrange the following molecules in order ionic character of their bonds
$\mathrm{LiF}, \mathrm{K}_{2} \mathrm{O}, \mathrm{N}_{2}, \mathrm{SO}_{2}, \mathrm{ClF}_{3}$

- Watch Video Solution

20. The skeletal structure of $\mathrm{CH}_{3} \mathrm{COOH}$ as shown below is correct, but some of the bonds are shown
incorrectly. Write the correct Lewis structure for a acetic acid.

- Watch Video Solution

21. Apart from tetrahedral geometry, another possible geometry for CH_{4} is square planar with four

H atoms at the corners of the square and the C atom as its centre. Explain why CH_{4} is not square planar .

- Watch Video Solution

22. Explain why BeH_{2} molecule has a zero dipole moment although the $B e-H$ bonds are polar?

- Watch Video Solution

23. Which out of NH_{3} and NF_{3} has higher dipole ment and why ?

- Watch Video Solution

24. What is meant by hybridisation of atomic orbitals? Describe the shape of $s p, s p^{2}, s p^{3}$ hybrid orbitals.
25. What is the change in hybridization (if any) of the Al atom in the following reaction.
$\mathrm{AlCl}_{3}+\mathrm{Cl}^{-} \rightarrow \mathrm{AlCl}_{4}^{-}$

- Watch Video Solution

26. Is there any change in hybridisation of the B and N atom as a result of the following reaction?
$\mathrm{BF}_{3}+\mathrm{NH}_{3} \rightarrow \mathrm{~F}_{3} \mathrm{~B} . \mathrm{NH}_{3}$

- Watch Video Solution

27. Draw diagrams showing the formation of a double bond and a triple bond between carbon atoms in $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$ molecules.
28. what is the total number of sigma and pi bonds in the following molecules?
a. $\mathrm{C}_{2} \mathrm{H}_{2}$, b. $\mathrm{C}_{2} \mathrm{H}_{4}$

- Watch Video Solution

29. Considering x-axis as the internuclear axis, which out of the following will not form a sigma bond
and why ? $(a) s$ and $1 s(b) 1 s$ and $2 p_{x}(c) 2 p_{y}$ and $2 p_{y}(\mathrm{~d}) 1 s$ and $2 s^{\prime}$.

- Watch Video Solution

30. Which hybrid orbitals are usel by carbon atoms in the following molecules ?
(a) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(d) $\mathrm{CH}_{3}-\mathrm{CHO}$
(e) $\mathrm{CH}_{3} \mathrm{COOH}$

- Watch Video Solution

31. What do you understand by bond pairs and lone pairs of electrons? Illustrate by giving one example of each type.

- Watch Video Solution

32. Distinguish between a sigma and a pi bond.

- Watch Video Solution

33. Explain the formation of H_{2} molecule on the basis of valance bond theory.
34. Write the important conditions required for the linear combination of atomic orbitals to form molecular orbitals.

- Watch Video Solution

35. Use molecular orbital theory to explain why the $B e_{2}$ molecules do not exist?

- Watch Video Solution

36. Write the significance of a plus ans a minus sign shown in representing the orbitals.

- Watch Video Solution

37. Describe the hybridisation in case of PCl_{2}. Why are the axial bonds longer as compared to equatorial bonds ?
38. Define hydrogen bond. Is it weaker or stronger than the van der Waals forces?

- Watch Video Solution

39. What is meant by the term bond order? Calculate the bond order of $N_{2}, O_{2}, O_{2}^{\oplus}$ and O_{2}^{\ominus}.

- Watch Video Solution

NCERT EXAMPLAR PROBLEMS (MULTIPLE CHOICE QUESTIONS -1)

1. Isostructrual species are those which have the same shape and hybridisation. Among the given identify the isostructural pairs.
A. $\left[N F_{3}\right.$ and $\left.B F_{3}\right]$
B. $\left[B F_{4}^{-}\right.$and $\left.\mathrm{NH}_{4}^{+}\right]$
C. $\left[\mathrm{BCl}_{3}\right.$ and $\left.\mathrm{BrCl}_{3}\right]$
D. $\left[\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NO}_{3}^{-}\right]$

Answer: B

- Watch Video Solution

2. Polarity in a molecule and hence the dipole moment depends primarily on electronegativity of the constituent atoms and shape of a molecule.

Which of the following has the highest dipole moment?
A. CO_{2}
B. $H I$
C. $\mathrm{H}_{2} \mathrm{O}$
D. SO_{2}

Answer: C

3. The types of hybrid orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+} respectively are expected to be :
A. $s p, s p^{3}$ and $s p^{2}$
B. $s p, s p^{2}$ and $s p^{3}$
C. $s p^{2}, s p$ and $s p^{3}$
D. $s p^{2}, s p^{3}$ and $s p$

Answer: B

- Watch Video Solution

4. Hydrogen bonds are formed in many compounds e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}$. The boiling point of such compounds depends to a extent on the strength of hydrogen bond and the number of hydrogen bonds. The correct decreasing order of the boiling points above compounds is
A. $\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{HF}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{HF}$

Answer: B

- Watch Video Solution

5. In $P O_{4}^{3-}$ ion, the formal charge on the oxygen atom of $\mathrm{P}-\mathrm{O}$ bond is
A. +1
B. -1
C. -0.75
D. +0.75

Answer: C

6. In NO_{3}^{-}ion, the number of bond pairs and lone pairs of electrons on nitrogen atom are :
A. 2,2
B. 3,1
C. 1, 3
D. 4,0

Answer: D

- Watch Video Solution

7. Which of the following species has tetrahedral geometry?
A. BH_{4}^{-}
B. NH_{2}^{-}
C. CO_{3}^{2-}
D. $\mathrm{H}_{3} \mathrm{O}^{+}$

Answer: A

- Watch Video Solution

8. Number of π bonds and σ bonds in the following
structer is

A. 6,19
B. 4,20
C. 5,19
D. 5,20

Answer: C

- Watch Video Solution

9. Which molecule/ion out of the following does not contain unpaired electrons?
A. N_{2}^{+}
B. O_{2}
C. O_{2}^{2-}
D. B_{2}

Answer: C

10. In which of the following molecule/ion all the bonds are not equal?
A. XeF_{4}
B. $B F_{4}^{-}$
C. $C_{2} H_{4}$
D. SiF_{4}

Answer: C

Watch Video Solution

11. In which of the following substance will hydrogen bond be strongest ?
A. HCl
B. $\mathrm{H}_{2} \mathrm{O}$
C. HI
D. $H_{2} S$

Answer: B

- Watch Video Solution

12. If the electron configuration of an element is $1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{2}, 3 d^{2}, 4 s^{2}$, the four electrons involved in chemical bond formation will be
A. $3 p^{6}$
B. $3 p^{6}, 4 s^{2}$
C. $3 p^{6}, 3 d^{2}$
D. $3 d^{2}, 4 s^{2}$

Answer: D

- Watch Video Solution

13. Which of the following angle corresponds to sp hydridisation ?
A. 90°
B. 120°
C. 180°
D. 109°

Answer: B

- Watch Video Solution

14. The electronic configurations of three elements,
A, B are C are given below. Answer the
questions 14 to 17 on the basis of these
configurations.

A	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$		
B	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{3}$
C	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{5}$

Stable form of a may be represented by the formula :
A. A
B. A_{2}
C. A_{3}
D. A_{4}

Answer: A

- Watch Video Solution

15. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
$\begin{array}{llllll}B & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
$\begin{array}{llllll}C & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
Stable form of C may be represented by the formula
A. C
B. C_{2}
C. C_{3}
D. C_{4}

Answer: B

- Watch Video Solution

16. The electronic configuration ofhte elements. A, B and C are given below. Answer the question from 14 to 17 on the basis of these configuration.
$\begin{array}{llll}A & 1 s^{2} & 2 s^{2} & 2 p^{6}\end{array}$
$\begin{array}{llllll}B & 1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{3}\end{array}$
C $\begin{array}{llllll}1 s^{2} & 2 s^{2} & 2 p^{6} & 3 s^{2} & 3 p^{5}\end{array}$
The molecular formula of the compound formed from B and C will be
A. $B C$
B. $B_{2} C$
C. $B C_{2}$
D. $B C_{3}$
17. The electronic configurations of three elements,
A, B are C are given below. Answer the
questions 14 to 17 on the basis of these configurations.

A	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$		
B	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{3}$
C	$1 s^{2}$	$2 s^{2}$	$2 p^{6}$	$3 s^{2}$	$3 p^{5}$

The bond between B and C will be
A. Ionic
B. Covalent
C. Hydrogen
D. Coordinate

Answer: B

18. Which of the following order of energies of molecular orbitals of N_{2} is correct ?
A. $\left(\pi 2 p_{y}\right)<\left(\sigma 2 p_{z}\right)<\left(\pi^{*} 2 p_{x}\right)=\left(\pi^{*} 2 p_{y}\right)$
B. $\left(\pi 2 p_{y}\right)>\left(\sigma 2 p_{z}\right)>\left(\pi^{*} 2 p_{x}\right)=\left(\pi^{*} 2 p_{y}\right)$
C. $\left(\pi 2 p_{y}\right)<\left(\sigma 2 p_{z}\right)>\left(\pi^{*} 2 p_{x}\right)=\left(\pi^{*} 2 p_{y}\right)$
D. $\left(\pi 2 p_{y}\right)>\left(\sigma 2 p_{z}\right)<\left(\pi^{*} 2 p_{x}\right)=\left(\pi^{*} 2 p_{y}\right)$

Answer: A

- Watch Video Solution

19. Which of the following statement is not correct from the view point of molecular orbital theory?
A. $B e_{2}$ is not a stable molecule
B. $\mathrm{He} e_{2}$ is not stable but He_{2}^{+}is expected to exist
C. Bond strength of N_{2} is maximum amongst to homonuclear diatomic molecular belonging to the second period
D. The order of energies of molecular orbitals in N_{2} molecule is

$$
\begin{aligned}
& \sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\left(\pi 2 p_{x}=\pi 2 p_{y}\right) \\
& \quad<\left(\pi^{*} 2 p_{x}=\pi^{*} 2 p_{y}\right)<\sigma^{*} 2 p_{z}
\end{aligned}
$$

Answer: D

- Watch Video Solution

20. Which of the following options represents the correct bond order ?
A. $O_{2}^{-}>O_{2}>O_{2}^{+}$
B. $O_{2}^{-}<O_{2}<O_{2}^{+}$
C. $O_{2}^{-}>O_{2}<O_{2}^{+}$
D. $O_{2}^{-}<O_{2}>O_{2}^{+}$
21. The electronic configuration of the outer most shell of the most electronegative element is :
A. $2 s^{2} 2 p^{5}$
B. $3 s^{2} 3 p^{5}$
C. $4 s^{2} 4 p^{5}$
D. $5 s^{2} 5 p^{5}$

Answer: A: B

- Watch Video Solution

22. Amongst the following elements whose
electronic configuration are given below, the one having the highest ionisation enthalpy is
A. $[N e] 3 s^{2} 3 p^{1}$
B. $[N e] 3 s^{2} 3 p^{3}$
C. $[N e] 3 s^{2} 3 p^{2}$
D. $[A r] 3 d^{10} 4 s^{2} 4 p^{3}$

Answer: A::D

- Watch Video Solution

NCERT EXAMPLAR PROBLEMS (MULTIPLE CHOICE QUESTIONS -II)

1. Which of the following have identical bond order?
A. $C N^{-}$
B. NO^{+}
C. O_{2}^{-}
D. O_{2}^{2-}

D Watch Video Solution

NCERT EXAMPLAR PROBLEMS (MULTIPLE CHOICE QUESTIONS -1)

1. Which of the following attain the linear structure ?
A. BeCl_{2}
B. NCO^{+}
C. NO_{2}
D. $C S_{2}$

Answer: C::D

-
 Watch Video Solution

2. CO is isoelectronic with
A. NO^{+}
B. N_{2}
C. SnCl_{2}
D. NO_{2}^{-}

Answer: C::D

- Watch Video Solution

3. Which of the following species have the same shape?
A. CO_{2}
B. CCl_{4}
C. O_{3}
D. NO_{2}^{-}

Answer: A:D

4. Which of the following statements are correct about CO_{3}^{2-} ?
A. The hybridisation of central atom is $s p^{3}$
B. Its resonance structrue has cone C-O single
bond and two $\mathrm{C}=\mathrm{O}$ double bonds
C. The average formal charge on each oxygen atom in 0.67 units
D. All C-O bond length are equal .

Answer: C::D

- Watch Video Solution

5. Dimagnetic species are those which contain no unpaired electrons.

Which among the followig are diamagnetic ?
A. N_{2}
B. N_{2}^{2-}
C. O_{2}
D. O_{2}^{2-}

Answer: A::D

- Watch Video Solution

6. Species having same bond order are

A. N_{2}
B. N_{2}^{-}
C. F_{2}^{+}
D. O_{2}^{-}

Answer: C::D

- Watch Video Solution

7. Which of the following statements are not correct ?
A. NaCl being an ionic compound is a good
conductor of elecricity in the solid state
B. In canonical structures , there is a difference in
the arrangement of atoms
C. Hybrid orbitals form stronger bonds than pure orbitals
D. VSEPR Theory can explain the square planar geometry o $f \mathrm{XeF}_{4}$.

Answer: A: B

- Watch Video Solution

1. Interpret the non-linear shape of $\mathrm{H}_{2} \mathrm{~S}$ molecule and non-planar shape of PCl_{3} using valence shell electron pair repulsion (VSEPR) theory. (Atomic number : $H=1, P=15, S=16, C l=17$)

- Watch Video Solution

2. Using molecular orbital theory, compare the bond energy and magnetic character of O_{2}^{+}and O_{2}^{-}species.

- Watch Video Solution

3. Explain the shape of $\mathrm{Br} F_{5}$

- Watch Video Solution

4. Structrues of moleculars of two compounds are shown on the side .
(a) Which of the two compounds will have intermolecular
hydrogen bonding and which compounds is expected to show intermolecular hydrogen bonding ?
(b) The melting point of a compound depends on , among other things, the extent of hydrogen bonding . On this basis explain Which one of the two compounds will show higher melting point.
(c) Solubility of compounds in water depedns on power to form hydrogen bonds with water. Which one of the two compounds will form hydrogen bond with water easily and be more soluble in it .

(I)
(II)
5. Why does type of overlap given in the following figure not result in bond formation ?

- Watch Video Solution

6. Explain why $P C l_{5}$ is trigonal bipyramidal whereas $I F_{5}$ is square pyramidal ?

- Watch Video Solution

7. In both water and dimethyl ether $\left(\mathrm{CH}_{3}-\ddot{O}-\mathrm{CH}_{3}\right)$, oxygen atoms is central atom, and has the same hybridisation, yet they have different bond angles. Which one has greater bond angle? Give reason.
8. Write Lewis structure of the following compounds and show format charge on each atom.
$\mathrm{HNO}_{3}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$

- Watch Video Solution

9. The energy of $\sigma 2 p_{z}$, molecular orbital is greater than $\pi 2 p_{x}$ and $\pi 2 p_{y}$ molecular orbitals in nitrogen molecule. Write the complete sequence of energy levels in the increasing order of energy in the molecule. Compare the relative stability and the magnetic behaviour of the following species. $N_{2}, N_{2}^{+}, N_{2}^{-}, N_{2}^{2+}$

- Watch Video Solution

10. What is the effect of the following processes on the bond order of N_{2} and O_{2} ?
(a) $N_{2} \rightarrow N_{2}^{+}+e^{-}$
(b) $O_{2} \rightarrow O_{2}^{+}+e^{-}$

- Watch Video Solution

11. Give reasons for the following :
(i) Covalent bonds are directional while ionic bonds are non-directional.
(ii) Water molecule has bent structure whereas carbon dioxide molecule is linear.
(iii) Etyne molecule is linear.

- Watch Video Solution

12. What is an ionic bond ? With two suitable examples, explain the diference between an ionic and a covalent bond ?

- Watch Video Solution

13. Arrange the following bonds in order of increasing ionic character giving reason.

Watch Video Solution

14. Explain why CO_{3}^{2-} ion cannot be represented by a single Lewis structure. How can it be best represented ?

- Watch Video Solution

15. Predict the hybridisation of each carbon in the molecule of organic compound given below. Also indicate the total number of sigma and pi bonds in this molecule.

$\mathrm{HC} \equiv \mathrm{C}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}_{\mathrm{OH}}$

- Watch Video Solution

16. Group the following as linear and non-linear molecules :

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{HOCl}, \mathrm{BeCl}_{2}, \mathrm{Cl}_{2} \mathrm{O}
$$

Watch Video Solution

17. Elements X, Y and Z have 4,5 and 7 valence electrons respectively, (i)

Write the molecular formula of the compounds formed by these elements individually with hydrogen (ii) which of these compounds will have the highest dipolw moment ?

- Watch Video Solution

18. Draw the resonating structure of
(i) Ozone molecule
(ii) Nitrate ion.

- Watch Video Solution

19. Presict the shapes of the following molecules on the basis of hybridisation.
$\mathrm{BCl}_{3}, \mathrm{CH}_{4}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$

- Watch Video Solution

20. All the $\mathrm{C}-\mathrm{O}$ bonds in carbonate in $\left(\mathrm{CO}_{3}^{2-}\right)$ are equal in length. Explain.

- Watch Video Solution

21. what is meant by the term average bond enthalpy? Why is there difference in bond enthalpy of O-H bond in ethanol ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$) and water?

- Watch Video Solution

1. Match the species in Column I with the type of hybrid orbitals in Column II.

- Watch Video Solution

2. Match the species in Column I with the geometry/shape in Column II.

	Column I	Column II	
A.	$\mathrm{H}_{3} \mathrm{O}^{+}$	1.	Linear
B.	$\mathrm{HC} \equiv \mathrm{CH}$	2.	Angular
C.	ClO_{2}^{-}	3.	Tetrahedral
D.	NH_{4}^{+}	4.	Trigonal bipyramidal
		5.	Pyramidal

Watch Video Solution

3. Match the species in Column I with the bond order in Column II Column I

Column II
(i) NO
(a) 1.5
(ii) $C O$
(b) 2.0
(iii) O_{2}^{-}
(c) 2.5
$(i v) O_{2}$
(d) 3.0

Watch Video Solution
4. Match the items given in Column I with examples given in Column II.

Column I	Column II
(A) Hydrogen bond	$(p) \mathrm{C}$
(B) Resonance	$(q) \mathrm{LiF}$
(C) Ionic solid	$(r) \mathrm{HF}$
(D) Covalent solid	$(s) \mathrm{O}_{3}$

- Watch Video Solution

5. Match the shape of molecules in Column I with the type of hybridisation in Column II.

- Watch Video Solution

NCERT EXAMPLAR PROBLEMS (ASSERTION AND REASON TYPE QUESTIONS)

1. Assertion (A): Sodium chloride formed by the action of chlorine gas on sodium metal is a stable compound.

Reason: (R) This is because sodium and chloride ions acquire octet in sodium chloride formation.
A. A and R both are correct, and R is the correct ecplanation of A.
B. A and R both are correct, But R is not the correct ecplanation of A .
C. A is true but R is false .
D. A and R both are false.

Answer: A

- Watch Video Solution

2. Assertion (A): Though the central atom of both NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ molecules are $s p^{3}$ hybridised, yet $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle is greater thant that of $\mathrm{H}-\mathrm{O}-\mathrm{H}$.

Reason (R) : This is because nitrogen atom has one lone pair and oxygen atom has two lone pairs.
A. A and R both are correct, and R is the correct ecplanation of A .
B. A and R both are correct, But R is not the correct ecplanation of A .
C. A is true but R is false .
D. A and R both are false.

Answer: A

- Watch Video Solution

3. Assertion (A): Among the two O-H bonds in $\mathrm{H}_{2} \mathrm{O}$ molecule, the energy required to break the first $\mathrm{O}-\mathrm{H}$ bond and the other $\mathrm{O}-\mathrm{H}$ bond is the same. Reason (R) This is because the electronic environment around oxygen is the same even after brekage of one O-H bond.
A. A and R both are correct, and R is the correct ecplanation of A.
B. A and R both are correct, But R is not the correct ecplanation of A .
C. A is true but R is false .
D. A and R both are false.

Answer: D

- Watch Video Solution

1. a) Discuss the significance/applications of dipole moment.
b) Represent diagrammatically the bond moments and the resultant dipole moment in $\mathrm{CO}_{2}, \mathrm{NF}_{3}$ and CHCl_{3}

- Watch Video Solution

2. Use the molecular orbital energy level diagram to show that N_{2} would be expected to have a triple bond. F_{2}, a single bond and $N e_{2}$, no bond.

- Watch Video Solution

3. Briefly describe the valence bond theory of covalent bond formation by taking an example of hydrogen. How can you interpret energy changes taking place in the formation of dihydrogen?
4. Describe hybridisation in the case of $P C l_{5}$ and $S F_{6}$ The axial bonds are longer as compared to equatorial bonds in $P C l_{5}$ whereas in $S F_{6}$ both axial bonds and equatorial bonds and have the same bond length. Explain.

- Watch Video Solution

5. (i) Discuss the concept of hybridisation. What are its different types in a carbon atom.
(ii) What is the type of hybridisation of carbon atoms marked with star.
(a) $\stackrel{*}{\mathrm{C}} \mathrm{H}_{2}=\mathrm{CH}-\stackrel{\stackrel{O}{C}}{\mathrm{C}}-\mathrm{O}-\mathrm{H}$
(b) $\mathrm{CH}_{3}-\stackrel{*}{\mathrm{C}} \mathrm{H}_{2}-\mathrm{OH}$
(c) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{O}{* \|}}{\mathrm{C}}-\mathrm{H}$
(d) $\stackrel{*}{\mathrm{C}} \mathrm{H}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(e) $\mathrm{CH}_{3}-\stackrel{*}{\mathrm{C}} \equiv \mathrm{CH}$ GIVEN COMPREHENSION)
6. Which of the following statements is correct ?
A. In the formation of dioxygen form oxygen atoms, 10 molecular orbitals will be formed.
B. All the molecular orbitals in the dioxygen will be completely filled
C. Total number of bonding molecular orbitals will not be same as
total number of antibonding orbitals in dioxygen.
D. Number of filled bonding orbitals will be same as number of filled antibonding orbitals

Answer: a

- Watch Video Solution

2. Which of the following molecular orbitals has maximum number of nodal planes ?
A. $\sigma^{*} 1 s$
B. $\sigma^{*} 2 p_{z}$
C. $\pi 2 p_{x}$
D. $\pi^{*} 2 p_{y}$

Answer: D

- Watch Video Solution

3. Which of the following pair is expected to have the same bond order ?
A. O_{2}, N_{2}
B. O_{2}^{+}, N_{2}^{-}
C. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{+}$
D. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{-}$

Answer: B

D Watch Video Solution

4. In which of the following molecules, $\sigma 2 p_{z}$ molecular orbital is filled after $\pi 2 p_{x}$ and $\pi 2 p_{y}$ molecular orbitals ?
A. O_{2}
B. $N e_{2}$
C. N_{2}
D. F_{2}

Answer: C

- Watch Video Solution

1. Define octet rule.

- Watch Video Solution

2. In terms of ionization enthalpy and electron gain enthaply, what type of atoms combine to form an ionic compound?

- Watch Video Solution

3. What is coordination number of Na^{+}and Cl^{-}ion in Nacl ?

- Watch Video Solution

4. Write down the Lewis structures of : (i) $\mathrm{CO}_{2}(i i) \mathrm{CN}^{-}$

- Watch Video Solution

5. Identify the compound/comounds in the following in which S does not obey the octet rule.
$S O_{2}, S F_{2}, S F_{4}, S F_{6}$

- Watch Video Solution

6. On the basis of VESPR theory predict the shape of $\mathrm{H}_{3} \mathrm{O}^{+}$ion.

- Watch Video Solution

7. On the basis of VSEPR theory, explain why ozone is a bent molecule and not a linear mulecular?

- Watch Video Solution

8. How does velence bond theory, explain the existence of H_{2} but nonexistence of $H e_{2}$?
9. What orbitals can overlap to form a σ-bond and which orbitals can overlap to form a π-bond?

- Watch Video Solution

10. Why free rotation about a π-bond is not possible?

- Watch Video Solution

11. Arrange in order of increasing bond strengths : $F_{2}, N_{2}, O_{2}, C l_{2}$

- Watch Video Solution

12. Arrange the molecules H_{2}, O_{2}, F_{2} and N_{2} in order of increasing bond lengths.
13. Which of the following has maximum bond angle ? $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$.

- Watch Video Solution

14. Arrange the following in order of increasing ionic character :

$$
\mathrm{C}-\mathrm{H}, \mathrm{~F}-\mathrm{H}, \mathrm{Br}-\mathrm{H}, \mathrm{Na}-\mathrm{I}, \mathrm{~K}-\mathrm{F} \text { and } \mathrm{Li}-\mathrm{Cl}
$$

- Watch Video Solution

15. Predict the dipole moment of a molecule of the type $A X_{4}$ with square planar arrangement of X atoms

- Watch Video Solution

16. What are $S I$ units of dipole moment?

(D) Watch Video Solution

17. Which of the following molecule/moleculas will have zero dipole moment ?
$\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{OCCl}_{4}, \mathrm{CHCl}_{3}, \mathrm{BF}_{3}, \mathrm{BeF}_{2}, \mathrm{NH}_{3}$.

- Watch Video Solution

18. Why covalent molecules show isomerism but ionic compound do not ?

- Watch Video Solution

19. What is the hybridisation of the central atom in (i) $\mathrm{H}_{3} \mathrm{O}^{+}(i i) \mathrm{XeF}_{2}(i i i) \mathrm{XeF}_{4}$? What are their shapes ?

- Watch Video Solution

20. Name one compound each involving $s p^{3}, s p^{2}$ and $s p$ hybridisation.

- Watch Video Solution

21. Name the shapes of the following molecules : $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{mCO}_{2}$

- Watch Video Solution

22. What type of hybridisation is involved in $S F_{6}$?

- Watch Video Solution

23. Write the state of hybridisation of boron in $B F_{3}$

- Watch Video Solution

24. Give the structure of sulphur tetrafluoride .
25. BH_{4}^{-}and NH_{4}^{+}are isolobal. Explain.

- Watch Video Solution

26. State the type of hybrid orbitals associated with (i) P in PCl_{5} and (ii) S in $S F_{6}$.

- Watch Video Solution

27. Give the hybridisation and shape of (i) $\mathrm{NO}_{3}^{-} \operatorname{ion}(i i) \mathrm{CO}_{3}^{2-}$ ion.

- Watch Video Solution

28. Draw the structure of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is hybridisation of S -atom in it ?
29. Out of the following, select the compounds containing ionic, covalent and coordinate bonds.
$\mathrm{CaCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{MgO}, \mathrm{HCI}, \stackrel{\oplus}{\mathrm{H}_{4}}, \mathrm{O}_{3}$

- Watch Video Solution

30. What is valence boned approach for the formation of covalent bond and a coordinate bond?

- Watch Video Solution

31. Benzene ring has alternate single and double bonds, yet all the $C-C$ bonds are of equal lengths. Why?

- Watch Video Solution

32. Out of bonding and antibonding m.o.'s, which one has lower energy and which one has higher stablility ?

- Watch Video Solution

33. What happens to the probability of finding the electron in the m.o.'s
after the combination of two
atomic orbitals ?

- Watch Video Solution

34. How is bond order related to the stability of a molecule ?

- Watch Video Solution

35. How is bond order related to bond length of a molecular ?
36. Which type of atomic orbitals can overlap to from molecular orbitals ?

- Watch Video Solution

37. Define the term 'bond order' and find bond order of O_{2}.

- Watch Video Solution

38. Use molecular orbital theory to explain why the $B e_{2}$ molecules do not exist?

- Watch Video Solution

39. Why N_{2} is more stable than O_{2} ? Explain on the basis of molecular orbital theory.
40. The bond order in He_{2}^{+}ions is :

(Watch Video Solution

41. Write which one out of O_{2}^{+}and O_{2}^{2-} is more stable on the basis of bond order calculations .

- Watch Video Solution

42. Indicate which one from O_{2}^{+}and O_{2}^{2-} may exhibit paramagnetism ?

- Watch Video Solution

43. Write the molecular orbital configuration of a molecule having bond order of three.
44. Arrange the following molecular species in increasing order of stability. $N_{2}, N_{2}^{+}, N_{2}^{-}, N_{2}^{2-}$

- Watch Video Solution

45. How is bonding molecular orbital of hydrogen different from the antibonding molecular orbital ?

- Watch Video Solution

46. Define bonding molecular orbital.

- Watch Video Solution

47. Define antibonding molecular orbitals .

- Watch Video Solution

48. How will bond order in N_{2} and O_{2} be influenced in the following ionization process?
(a) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}+e^{-}(b) O_{2} \rightarrow \mathrm{O}_{2}^{+}+e^{-}$

- Watch Video Solution

49. What is magnetic character of anion of KO_{2} ?

- Watch Video Solution

50. How many nodal planes are present in $\pi\left(2 p_{x}\right)$ and $\pi^{*}\left(2 p_{x}\right)$ molecular orbitals ?

- Watch Video Solution

51. What are the conditions which must be satisfied for H-bonding to take place in a molecule.
52. Arrange the following as stated.
"Increasing strength of hydrogen bonding $(X-H-X)$
$O, S, F, C l, N$

- Watch Video Solution

53. Represent hydrogen bonding between two molecular of (i) acetic acid ($\mathrm{CH}_{3} \mathrm{COOH}$) (ii) acetamide $\left(\mathrm{CH}_{3} \mathrm{CONH}_{2}\right)$.

- Watch Video Solution

54. Why is $\mathrm{H}_{2} \mathrm{O}$ a liquid and $\mathrm{H}_{2} \mathrm{~S}$ a gas ?

- Watch Video Solution

55. Why HF has higher boiling point than HCl ?

- Watch Video Solution

56. Why ethyl alcohol is competely miscible with water?

- Watch Video Solution

57. You are given the electronic configuration of five neutral atoms - AB, B, C, D and E
$A-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}, B-1 s^{2}, 2 s^{2} 2 p^{6} 3 s^{1}, C-1 s^{2} 2 s^{2} 2 p^{1}, D-1 s^{2} 2 s^{2} 2 p^{5}, E-$
Write the empirical formula for the substance containing (i) A and D (ii) B and D (iii) only D
(iv) only E ?

- Watch Video Solution

1. What do you understand by a chemical bond ?

- Watch Video Solution

2. Briefly explain Kossel-Lewis approach of chemical bonding

- Watch Video Solution

3. Why are the noble chemical reactants ?

- Watch Video Solution

4. Explain the term electrovalency.

- Watch Video Solution

5. What is an electrovalent bond (or ionic bond) ? Explain its formation witht two suitable example

- Watch Video Solution

6. An element A conbines with element B. An atom of A contains two electrons in its outermost shell
whereas that of B has six electrons iin its outermost shell. Tow electrons are transferred from the atom A to
the atom B
(a) What is the nature of bond between A and B ? (b) What is the electronic structure of $A B$?
(c) What is the electrovalency of a and that of B ?

- Watch Video Solution

7. Briefly explain the factors which influence the formation of ionic compounds .
8. Define Lattice energy. On what factors does it depend ? How does it help to predict the stability of the ionic compound formed ?

- Watch Video Solution

9. What are the important characteristice of ionic compounds ?

- Watch Video Solution

10. NaCl is a better conductorof elelctricity in a molten condition than in the solid state. Explain
11. Given reason for the following :
(i) Ionic compounds are soluble in water whereas covalent compounds are mostly insoluble in water
(ii) Ionic compounds have higher melting points than the covalent compounds .
(iii) NaCl solution gives a white ppt with AgNO_{3} solution but $C C l_{4}$ or choroform does not.

D Watch Video Solution

12. What is meant by a covalent bond ? Explain with three suitable examples. What are the conditions for the formation of this type of bond

- Watch Video Solution

13. Explain the term covalency .
14. What are Lewis structures ? Wrtie the Lewis structures of $\mathrm{H}_{2}, \mathrm{~F}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$

- Watch Video Solution

15. How is the formal charge on an atom in molecule/ion calculated ? Explain taking the example of ozone molecule.

- Watch Video Solution

16. Illustrate the indadequacy of octet rule with two suitable examples.

Give the Lewis structure of these molecules.

- Watch Video Solution

17. predict the shapes of the following molecules using the valence shell electron pair repulsion modal.
(i) $\mathrm{BeCl}_{2}(i i)\left(\mathrm{SiF}_{4}(i i i) \mathrm{BF}_{3}(i v) \mathrm{NH}_{3}(v) \mathrm{H}_{2} \mathrm{O}\right.$.

- Watch Video Solution

18. What happens when two hydrogen atoms approach each other?

- Watch Video Solution

19. Briefly discuss the orbital concept of covalent bond formation taking suitable examples.

- Watch Video Solution

20. What is valence bond approach of covalent bond ? Given two examples to illustrate it .
21. Differentiate between σ and π bond.

- Watch Video Solution

22. Explain how the strength of a bond is related to (i) extent of overlapping (ii) shape of the orbital.

- Watch Video Solution

23. What are sigma and pi bonds ? Explain the different ways of their formation diagrammatically. Which one of them is stronger and why?

- Watch Video Solution

24. Arrange the following according to bond length giving reasons:
(i) $H-F, H-C l, H-B r, H-I($ ii) $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{C}$ (iii) $\mathrm{C}-\mathrm{H}$ bond length in $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$

- Watch Video Solution

25. Define the term Electronegativily. Explain it with one suitalbe example .

How does it help in predicting
whether a covalent bond is polar or non-polar ? Explain each case with one example.

- Watch Video Solution

26. what do you understand by partial ionic character of covalent bonds ?

- Watch Video Solution

27. Define Dipole moment . Draw dipole diagrams of $\mathrm{H}_{2} \mathrm{O}$ and BF_{3}.

- Watch Video Solution

28. Each carbon - oxygen bond in carbon dioxide molecule is polar but the molecule itself is non - polar. Explain.

- Watch Video Solution

29. Explain the term dipole moment. Name two molecules which have dipole moment and two molecules which do not have dipole moment. What is the significance of dipole moment?

- Watch Video Solution

30. Give reason for the following : (i) In solution, reactions of covalent compounds are show but those of ionic
compounds are fast (ii) Covalent compounds show isomerism but ionic compound do not.

- Watch Video Solution

31. What type of hybridisation is associated with the central when the atoms attached to it form
(a) an equilateral triangle (b) a regular tetrahedron ?

- Watch Video Solution

32. Explain why carbon has a valency of four and not two and why are the four C-H bonds in methane identical .

- Watch Video Solution

33. Making use of the concept of hybridisation, predict the shape of $\mathrm{C}_{2} \mathrm{H}_{2}$ molecule.
34. Draw shapes of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$.

- Watch Video Solution

35. Draw well labelled orbital diagrams for the following molecules :
(i) $\mathrm{BeF}_{2}(i i) B F_{3}(i i i) N H_{3}(v) C_{2} H_{6}$.

- Watch Video Solution

36. Explain the shapes of SF_{4} and CIF_{3}

- Watch Video Solution

37. Why PCl_{5} dissociates to give PCl_{3} and $C l_{2}$?
38. Why the equatiorial and axial bond lengths of PCl_{5} are not equl ?

- Watch Video Solution

39. Which hybridization is presumed for P in $P F_{3}$ and S in $S F_{6}$? Give reasons for your answer .

- Watch Video Solution

40. What is a coordinate bond ? Explain with two suitable example . How is it different from a covalent bond?

- Watch Video Solution

41. What is resonance ? Define Resonance energy .
42. Draw the resonating structures of CO_{2} ?

- Watch Video Solution

43. Sketch the shapes of molecular orbitals formed by the overlap of
(i) two s-orbitals, (ii) End on overlap of two p-orbitals . (iii) Side on overlap of two p -orbitals .

Name the orbitals formed in each case .

- Watch Video Solution

44. What do you understand by a molecular orbitals (m.o.) ? What is the maximum number of electrons that can occupy a molecular orbitals ? How many m.o.'s of $\mathrm{H}_{2} \mathrm{O}$ originate from the hydrogen 1 s atomic orbitals ?
45. What is meant by bonding and antibonding molecular orbitals? Give the number of electrons which occupy the bonding orbitals in H_{2}^{+}, H_{2} and $H e_{2}$.

- Watch Video Solution

46. What are the condition for combination of atomic orbitals ? Which species out of $\mathrm{H}_{2}, \mathrm{H}_{2}^{+}$and H_{2}^{-}are paramagnetic and why ?

- Watch Video Solution

47. Use the molecular orbital energy level diagram to show that N_{2} would be expected to have a triple bond. F_{2}, a single bond and $N e_{2}$, no bond.

- Watch Video Solution

48. What is meant by bond order ? Calculate the bond order of $\mathrm{He}_{2}^{+}, \mathrm{O}_{2}$ and N_{2} molecules.

Watch Video Solution

49. Calculate the bond order for H_{2}^{+}ion. Is this ion expected to be paramagnetic of diamagnetic and why ?

- Watch Video Solution

50. Arrange the following molecular species in increasing order of satbility (giving bond orders) :-
$O_{2}, O_{2}^{+}, O_{2}^{-}, O_{2}^{2-}$

- Watch Video Solution

51. Explain why the bond in H_{2}^{+}is longer than that in H_{2}.
52. Give the molecular orbitals energy diagram for oxygen molecule and account for its paramagnetic property.

- Watch Video Solution

53. Distinguish two aspects of bonding and antibonding orbitals .

- Watch Video Solution

54. Using MO diagram and occupancy of electrons in orbitals, arrange the following molecular species in increasing order of their stabilities :
(i) H_{2}
(ii) H_{2}^{-}
(iii) H_{2}^{+}
55. What information does M.O. theory provide for $O_{2}, O_{2}^{+}, O_{2}^{-}$and O_{2}^{2-} molecular species with regard to
(i) Dissociation energy (ii) Bond length ?

- Watch Video Solution

56. What is bond order? Discuss its significance.

- Watch Video Solution

57. On the basis of M.O. theory , show that $N e_{2}$ does not exist .

- Watch Video Solution

58. Draw MO Energy leval diagram for nitrogen molecule and find its bond order and magnetic behaviour.
59. Account for the following : (i) Water is a liquid while $H_{2} S$ is a gas .
(ii) NH_{3} has higher boiling point than PH_{3}
(iii) Boiling point of HF is lower than that of water .

- Watch Video Solution

60. Explain why ordinarily $\mathrm{H}_{2} \mathrm{~S}$ is a gas while $\mathrm{H}_{2} \mathrm{O}$ a liquid even through both S and O are elements of the
same group in the periodic table and S has a higher atomic mass.

- Watch Video Solution

61. What requirement should a molecule fulfil for the formation of a hydrogen bond ?

- Watch Video Solution

62. Explain the following observations :
(i) CO_{2} and SO_{2} are not isostructural. (ii) O_{2}^{-}is paramagnetic but O_{2}^{2-} is not.

- Watch Video Solution

ADDITIONAL QUESTIONS (LONG ANSWER QUESTIONS)

1. What do you mean by a chemical bond ? How do atoms combine? How many types of bonds are there?

- Watch Video Solution

2. What are essential conditions for the formation of an ionic bond ?

Explaiin the formation of an ionic bond between an atom of Na and Cl .
3. Describe various characteristics of electrovalent compounds.

(Watch Video Solution

4. What are sigma and pi bond ? Explain the different ways of their formation diagrammatically. Which one of term is stronger and why?

- Watch Video Solution

5. Explain the term bond length, bond energy and bond angle .

- Watch Video Solution

6. Define dipole moment. Discuss its important applications .

- Watch Video Solution

7. List various characteristics of covalent compounds . Differentiate between electrovalent and covalent compounds.

- Watch Video Solution

8. Define the term 'hybridisation'. Using the concept of hybridisation , explain the shapes of $P C l_{5}$ and $S F_{6}$ molecules .

- Watch Video Solution

9. On the basis of hybridization, explain the shape of iodine deptafluoride and sulphur tetrafluoride .

- Watch Video Solution

10. What is Resonance ? Explain with a suitable example . Difine Resonance energy.

- Watch Video Solution

11. How is the moleculer orbital different from an atomic orbital ? Given the number of electrons which occupy the bonding molecular orbitals in H_{2}^{+}and H_{2}.

- Watch Video Solution

12. write the molecular orbital configurations of the species : (a) $N_{2}(b) N_{2}^{+}(c) N_{2}^{-}(d) N_{2}^{2-}$
(ii) Calculate their bond orders (ii) Predict their paramagnetic behaviour
(iii) Which of these shows highest paramagnetism ?

- Watch Video Solution

13. what are the main points of similarity and difference between valence bond theory and molecular orbital theory .

Watch Video Solution

ANALYTICAL QUESTIONS AND PROBLEMS WITH ANSWERS/SOLUTIONS (Questions)

1. Out of NaCl and MgO , which has higher lattice energy and why?

- Watch Video Solution

ANALYTICAL QUESTIONS AND PROBLEMS WITH ANSWERS/SOLUTIONS

1. Out of MgO and CaO , which one is more hard and why ?

- Watch Video Solution

2. Why is solubility of MgCl_{2} much greater than that of MgF_{2} ?

- Watch Video Solution

3. Why is NaCl a bad conductor of electricity in the solid state?

- Watch Video Solution

4. Out of σ and π - bonds, which one is stronger and why?

- Watch Video Solution

5. Out of $C S_{2}$ and $O C S$ which have higher dipole moment and why?

- Watch Video Solution

6. Indicate4 whether the following statement is TRUE or FALSE. Justify your answer in not more than three lines.

The dipole moment of $\mathrm{CH}_{3} \mathrm{~F}$ is greater than that of $\mathrm{CH}_{3} \mathrm{Cl}$.

- Watch Video Solution

7. Which is more polar and why, CO_{2} or $\mathrm{N}_{2} \mathrm{O}$?

- Watch Video Solution

8. Why AlF_{3} is a high melting solid wheareas SiF_{4} is a gas ?

- Watch Video Solution

9. Why $N F_{3}$ pyramidal but $B F_{3}$ is triangular planar ?

- Watch Video Solution

10. Why is that in the $S F_{4}$ molecule, the lone pair of electrons occupies an equatorial position in the overall trigonal pyramidal arrangement in preferencr to an axial position ?

- Watch Video Solution

11. Why bond angle in $\mathrm{H}_{2} \mathrm{O}$ is nearly 104.5° but that in $\mathrm{H}_{2} \mathrm{~S}$, it is nearly 90° ?

- Watch Video Solution

12. Explain why N_{2} has a greater bond dissociation energy than N_{2}^{+}while O_{2} has lesser bond dissociation energy than O_{2}^{+}.

- Watch Video Solution

13. Can we have a diatomic molecule with its ground state moleculer orbitals full with electrons? Give a reason for your answer .

- View Text Solution

14. Out of H and H_{2}, the latter has higher first ionization energy while out of O and O_{2}, the former has higher first ionization energy. Explain why.

- Watch Video Solution

15. Given reason for the following :
H_{2}^{+}and H_{2}^{-}ions have the same bond order but H_{2}^{+}ions are more stable than H_{2}^{-}.

- Watch Video Solution

16. $K H F_{2}$ exists while $K H C l_{2}$ does not. Explain.

- Watch Video Solution

17. When we move from HF to HCl , the boiling point sharply but on moving further to HBr and HI the boiling point increases. Why ? Or Out of $\mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}$ and HI which has boiling point and why?

- Watch Video Solution

18. Out of o-nitrophenod and p -nitrophenol, which has higher boiling point and why?

- Watch Video Solution

19. Why glucose, fructose, sucrose etc. are soluble in water through they are covalent compounds ?
20. Using the VSEPR theory, identify the type of hybridisation and draw the structure of $O F_{2}$. What are the oxidation states of O and F ?

- Watch Video Solution

21. Which of the following has higher dipole moment and why? But -1- ene or But -1- yne

- Watch Video Solution

22. Explain, why o-hydroxybenzaldehyde is a liquid at room temperature while p-hydroxybenzaldehyde is a high melting solid?

- Watch Video Solution

23. Using VSEPR thory, draw the molecular structures of OSF_{4} and XeF_{4} indicating the lacation of lone pair(s) of electrons and hybridisation of central atoms.

- Watch Video Solution

24. Which of the following species has the shortest bond length ?
$\mathrm{NO}, \mathrm{NO}^{+}, \mathrm{NO}^{2+}, \mathrm{NO}^{-}$

- Watch Video Solution

25. Sodium metal vaporises on heating and the vapour will have diatomic molecular of sodium $\left(N a_{2}\right)$. What type of bonding is presetn in these moleculas ? Justify your answer .

- Watch Video Solution

26. Arrange the following in order of (i) increasing N-O bond length (ii) increasing bond angles
$\mathrm{NO}_{2}^{+}, \mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}$Give reasons.

- Watch Video Solution

27. Explain the shape of I_{3}^{-}ion.

- Watch Video Solution

28. Which of the following have identical bond order?
(I) $C N^{-}$
(II) O_{2}^{-}
(III) NO^{+}
(IV) $C N^{+}$
29. Arrange the following compounds in the icreasing order of bond length of O-O bond $O_{2}, O_{2}\left[A s F_{6}\right], K O_{2}$ and peroxide ion. Explain on the basis of ground state electronic configuration of dioxygen in these molecules.

Watch Video Solution

30. Indicate the type of bonds present in $\mathrm{NH}_{4} \mathrm{NO}_{5}$ and state the mode of hybridisation of two N atom in it .

- Watch Video Solution

31. Draw the Lewis structures of the species: $\mathrm{CN}^{-}, I_{3}^{-}, \mathrm{C}_{3} \mathrm{O}_{2}$ (carbon suboxide), $H N_{3}$ (hydrazonic acid).

- Watch Video Solution

32. Why PCl_{5} exists but $N C l_{5}$ does not ?

- Watch Video Solution

33. Name and represent the type of bonds present in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

34. In each of the following pairs of compounds, which one is more covalent and why ?
(i) $\mathrm{AgCl}, \mathrm{AgI}$
(ii) $\mathrm{BeCl}_{2}, \mathrm{MgCl}_{2}$
(iii) $\mathrm{SnCl}_{2}, \mathrm{SnCl}_{4}$
(iv) $\mathrm{CuO}, \mathrm{CuS}$

- View Text Solution

35. Give reason for the following :

The molecule of MgCl_{2} is linear while that of stannous chloride is angular.
36. Explain why bond angle of NH_{3} is greater than NF_{3} while bond angle of $P H_{3}$ is less than that of $P F_{3}$,

- Watch Video Solution

37. When 2 s orbital overlaps with $2 p_{x}$ or $2 p_{y}$ orbital (assuming Z -axis as the internuclear axis) threr is a partical overlap and they do not form any MO Explain why? .

- Watch Video Solution

38. What would be the electronic configuration of HeH^{-}molecular ion ?

Calculate its bond order and comment on its stability .

- Watch Video Solution

39. $H_{2}, L i_{2}$ and B_{2} all have the same bond order , viz, 1. Thun why they have different stabilities ? Arrange them in order of stability.

- Watch Video Solution

40. Arrange the given dicarbon species in order of their bond lengths giving reasons $\mathrm{L} C_{2}, C_{2}^{-}, C_{2}^{2-}$.

- Watch Video Solution

41. Explain giving reasons whether BH_{4}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$will have same or different geometry .

- Watch Video Solution

42. In both water and diethyl ether, the central atom viz. O -atoms has same hybridisation. Then why have they different bond angles? Which one has greater bond angle ?

Watch Video Solution

43. $B C l_{3}$ is planar but anhydrous AlCl_{3} is tetrahedral . Explain .

- Watch Video Solution

44. Calculate the percentage of p -character in the orbitals forming $\mathrm{P}-\mathrm{P}$ bonds in P_{4} molecule.

- Watch Video Solution

45. Explain whether H^{+}ions will have greater mobility in ice or liquid water.
46. The dipole momnet of $K C I$ is $3.336 \times 10^{-29} \mathrm{Cm}$ which indicates that it is a highly polar molecules. The inter atomic distance between K^{\oplus} and $C I^{\Theta}$ in this molecules is $2.6 \times 10^{-10} \mathrm{~m}$ Calculate the dipole moment of KCI molecule if there were opposite charges of one fundamental unit located at each nucleus Calculate the ionic character percentage of $K C I$

- Watch Video Solution

2. Anhydrous AlCl_{3} is covalent. From the date given below, predict whether it would remain covalent or become ionic in aqueous solution. (Ionisation energy for Al is $1537 \mathrm{kJmol}^{-1}$)
$\Delta_{\text {hydration }} f$ or $\mathrm{Al}^{3+}=-4665 \mathrm{kJmol}^{-1}$
$\Delta_{\text {hydration }} f$ or $C l^{\ominus}=-381 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

3. The observed value of dipole moment of $\mathrm{H}_{2} \mathrm{O}$
molecule is found to be 1.84 D . Calculate the
$\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ molecule, given that the bond moment of $\mathrm{O}-\mathrm{H}$ bond is 1.5 D .

- Watch Video Solution

COMPEIITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (I. MULTIPLE CHOICE QUESTIONS WITH ONE CORRECT ANSWER))

1. It is believed that atoms combine with each other such that the outermost shell acquires a stable configuration of 8 electrons. If stability were attained with 6 electrons rather than 8 . What would be the formula of the stable fluoride ion.
A. F^{-}
B. F^{+}
C. F^{2+}
D. F^{3+}

Answer: B

- Watch Video Solution

2. In which of the following compounds does not central atom obey the octet rule?
A. XeF_{4}
B. XeOF_{2}
C. $S C l l_{2}$
D. AlCl_{3}

Answer: C

3. Based on lattice energy and other considerations which one of the following alkali metal chlorides is expected to have the highest melting point
A. LiCl
B. NaCl
C. KCl
D. RbCl

Answer: B

- Watch Video Solution

4. Which of the following species contains three bond pairs and one lone pair around the central atom?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $B F_{3}$
C. NH_{2}^{-}
D. PCl_{3}

Answer: D

- Watch Video Solution

5. In which of the following the central atom has two lone pairs of electrons ?
A. $S F_{4}$
B. $B r F_{5}$
C. SO_{2}
D. XeF_{4}

Answer: D

6. The number of lone pairs of electrons on central atom of $\mathrm{H}_{2} \mathrm{O}, \mathrm{SnCl}_{2}, \mathrm{PCl}_{3}$ and XeF_{2} respectively are:
A. 2,1,1,3
B. 2,2,1,3
C. 3,1,1,2
D. 2,1,2,3

Answer: A

- Watch Video Solution

7. Which of the following compounds contain(s) no covalent bond(s)?
$\mathrm{KCl}, \mathrm{PH}_{3}, \mathrm{O}_{2}, \mathrm{~B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{SO}_{4}$
A. $\mathrm{KCl}, B_{2} H_{6}, \mathrm{PH}_{3}$
B. $\mathrm{KCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$
C. KCl
D. $\mathrm{KCl}, \mathrm{B}_{2}, \mathrm{H}_{2}$

Answer: C

- Watch Video Solution

8. Which of the following has a regular geometry
A. CHCl_{3}
B. PCl_{3}
C. $X e F_{6}$
D. $S F_{4}$

Answer: A

- Watch Video Solution

9. Predict the correct order of repulsions among the following :
A. bond pair-bond pair $>$ lone pair-bond pair $>$
lone pair -lone pair
B. lone pair-bond pari > bond pair-bond pair $>$
lone pair-lone pair
C. lone pair -lone pair $>$ lone pair-bond pair $>$
bond pair-bond pair
D. lone pair-lone pair $>$ bond pair-bond pair $>$
lone pair-bond pair

Answer: C

- Watch Video Solution

10. Total number of lone pair of electrons in $3 I_{3}^{-}$ion is
A. 3
B. 6
C. 9
D. 12

Answer: D

- Watch Video Solution

11. The strength of the covalent bond in H_{2}, F_{2} and HF is in the order
A. $H-H>F-F>H-F$
B. $H-F>F-F>H-H$
C. $H-F>H-H>F-F$
D. $F-F>H-F>F-F$

Answer: C

12. The number and type of bonds between two carbon atoms in calcium carbide are
A. one sigma , one pi
B. one sigma , two pi
C. two sigma, one pi
D.

Answer: B

- Watch Video Solution

13. How
many
bonds
are
there
in
A. $14 \sigma, 8 \pi$
B. $18 \sigma, 8 \pi$
C. $19 \sigma, 4 \pi$
D. $14 \sigma, 2 \pi$

Answer: C

- Watch Video Solution

14. In $\left[A g(C N)_{2}\right]^{-}$, the number of π bonds is
A. 2
B. 3
C. 4
D. 6

Answer: C

15. Which of the following species contains equal number of pi and pi bonds?
A. $(C N)_{2}$
B. $\mathrm{CH}_{2}(\mathrm{CN})_{2}$
c. HCO_{3}^{-}
D. XeO_{4}

Answer: D

- Watch Video Solution

16. The covalent bond length is the shortest in which of the following bonds
A. C-O
B. C-C
C. $C \equiv N$
D. $O-H$

Answer: D

- Watch Video Solution

17. v_100_subject_string_diff_newFlow
A. 50%
B. 72.24%
C. 55.3%
D. 43%

Answer: B

18. For $A B$ bond if percent ionic character is plotted against electronegativity difference $\left(X_{A}-X_{B}\right)$, the shape of the curve would look like

A. A
B. B
C. C
D. D

Answer: C
19. Arrange the following compounds in order of increasing dipole moment, Ethylbenzene (I), m-dichlorobenzene (II), o-dichlorobenzene (III), p-dichlorobenzene (IV)
A. $I<I V<I I<I I I$
B. $I V<I<I I<I I I$
C. $I V<I I I I<I I$
D. $I V<I I<I<I I I$

Answer: B

- Watch Video Solution

20. Among the following, the molecule with the highest dipole moment is
A. $\mathbb{C l}_{4}$
B. NH_{3}
C. $\mathrm{H}_{2} \mathrm{O}$
D. CHCl_{3}

Answer: C

- Watch Video Solution

21. Which one of the following arrangements of molecules is correct on the basic of their dipole moments?
A. $\mathrm{BF}_{3}>\mathrm{NF}_{3} \mathrm{NH}_{3}$
B. $\mathrm{NF}_{3}>\mathrm{BF}_{3}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}=N F_{3}>B F_{3}$
D. $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}$

Answer: D

22. Among the following, the molecule with the highest dipole moment is
A. $\mathrm{CH}_{3} \mathrm{Cl}$
B. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C. CHCl_{2}
D. $\mathbb{C l} l_{4}$

Answer: A

- Watch Video Solution

23. Which of the following has maximum dipole moment?
(a)

(b)
B.

C.
(c)

(d)

D.

Answer: A

Watch Video Solution

24. Which are non-polar molecules?
I. NCl_{3}
II. SO_{3}
III. PCl_{5}

The correct option is :

A. I only

B. II only
C. I and II only
D. II and III only

Answer: C

- Watch Video Solution

25. Which bond angle θ would result in the maximum dipole moment for the triatomic molecule, $X Y_{2}$ shown below?

A. 90°
B. 120°
C. 150°
D. 180°

Answer: A

View Text Solution
26. The
dipole

The

A. $1.5 D$
B. $2.25 D$
C. 1 D
D. 3 D

- View Text Solution

27. The correct order of increasing polarising power of the cations in the following $\mathrm{AlCl}_{3}, \mathrm{MgCl}_{3}, \mathrm{NaCl}$ is
A. $\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}<\mathrm{NaCl}$
B. $\mathrm{MgCl}_{2}<\mathrm{NaCl}<\mathrm{AlCl}_{3}$
C. $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}$
D. $\mathrm{NaCl}<\mathrm{AlCl}_{3}<\mathrm{MgCl}_{2}$

Answer: C

- Watch Video Solution

28. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, $\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ba}^{2+}$?
A. $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}$
B. $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
C. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
D. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$

Answer: D

- Watch Video Solution

29. Which of the following is a polar molecule ?
A. $B f F_{3}$
B. $S F_{4}$
C. SiF_{4}
D. XeF_{4}

Answer: B

30. For which of the following molecules, significant
$\mu \neq o ?$
(1)

(2)

(3)

(4)

A. 3 and 4
B. Only 1
C. 1 and 2
D. 4 only

Answer: A

31. Some ether is added to anb aqueous soluetion of a mixtrue of $\mathrm{LiCl}, \mathrm{NaCl}$ and AlCl_{3}. Which will be extracted into ether ?
A. $\mathrm{LiCl}, \mathrm{NaCl}$
B. $\mathrm{LiCl}, \mathrm{AlCl}_{3}$
C. $\mathrm{NaCl}, \mathrm{AlCl}_{3}$
D. $\mathrm{LiCl}, \mathrm{NaCl}, \mathrm{AlCl}_{3}$

Answer: B

- View Text Solution

32. Among the following species, identify the isostuctural pairs
$\mathrm{NF}_{3} . \mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}, \mathrm{H}_{3} \mathrm{O}, \mathrm{HN}_{3}$
A. $\left[\mathrm{NF}_{3}, N \mathrm{NO}_{3}^{-}\right]$and $\left[B F_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$
B. $\left[\mathrm{NF}_{3}, \mathrm{NH}_{3}\right]$ and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
C. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3}^{+} \mathrm{o}\right]$ and $\left[\mathrm{NO}_{3}^{-}, \mathrm{BF}_{3}\right]$
D. $\left[\mathrm{NF}_{3}, \mathrm{H}_{3}^{+} \mathrm{O}\right]$ and $\left[H N_{3}, B F_{3}\right]$

Answer: C

- Watch Video Solution

33. Which of the following pairs of ions are isoelectronic and isostructural?
A. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{9-}$
B. $\mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. $\mathrm{ClO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$

Answer: B

- Watch Video Solution

34. The type of hybrid orbitals used by chlorine atom $\mathrm{inClO} \mathrm{O}_{3}^{-}$is
A. $s p^{3}$
B. $s p^{2}$
C. sp
D. none of these .

Answer: A

- Watch Video Solution

35. Which one of the following compounds has $s p^{2}$ hybridisation?.
A. CO_{2}
B. SO_{2}
C. $\mathrm{N}_{2} \mathrm{O}$
D. $C O$.

Answer: B

D Watch Video Solution

36. The hybridization of atomic orbitals of nitrogen is $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$, and
NH_{4}^{+}respectively are
A. $s p, s p^{3}$ and $s p^{2}$ respectively
B. $s p, s p^{2}$ and $s p^{3}$ respectivly
C. $s p^{2}, s p$ and $s p^{3}$ respectively
D. $s p^{2}, s p^{3}$ and $s p^{3}$ respectively.

Answer: B

- Watch Video Solution

37. The correct order of hybridisation of the central atom in the following species $N H_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, P C l_{5}$ and $B C l_{3}$ is
(At. No. Pt = 78)
A. $d s p^{2}, d s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{2}, d s p^{3}, s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3}, d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}, d s p^{3}$

Answer: B

- Watch Video Solution

38. The shapes of $S F_{4}$ and $X e F_{2}$ respectively are
A. trigonal bipyramidal and trigonal bipyramidal
B. see-saw and linear
C. T-shape and linear
D. squrae planar and trigonal bipyramidal

Answer: B

39. The pair having similar geometry is
A. $\mathrm{PCl}_{3}, \mathrm{NH}_{4}^{+}$
B. $\mathrm{BeCl}_{2}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CH}_{4}, \mathbb{C l}_{4}$
D. $I F_{5}, P F_{5}$

Answer: C

- Watch Video Solution

40. The maximum number of 90° angles between bond pair-bond pair of electrons is observed in
A. $d s p^{3}$ hybridisation
B. $s p^{3} d$ hybridisation
C. $d s p^{2}$ hybridisation
D. $s p^{3} d^{2}$ hybridisation

Answer: D

D Watch Video Solution

41. The ion with maximum number of lone pairs on the central atom is-
A. ClO_{3}^{-}
B. $X e F_{4}$
C. $S F_{4}$
D. I_{3}^{-}

Answer: D

42. Consider the following molecules or ions :
(i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}(i i) \mathrm{NH}_{4}^{+}(\mathrm{iii}) \mathrm{SO}_{4}^{2-}(i v) \mathrm{ClO}_{4}^{-}(v) \mathrm{NH}_{3}$ $s p^{3}$ hybridisation is involved in the formation of
A. (i), (ii), (v) only
B. (i) , (ii) only s
C. (ii) only
D. (i), (ii), (iii), (iv) and (v)'

- Watch Video Solution

43. The hybridization of oxygen atom in $\mathrm{H}_{2} \mathrm{O}_{2}$ is
A. $s p^{3} d$
B. $s p$
C. $s p^{2}$
D. $s p^{3}$

Answer: D

- Watch Video Solution

44. $S F_{2}, S F_{4}$ and $S F_{6}$ have the hybridisation at sulphur atom respectively as .
A. $s p^{2}, s p^{3}, s p^{3}, d^{2}$
B. $s p^{3}, s p^{3}, s p^{3} d^{2}$
C. $s p^{3}, s p^{3}, d, s p^{3} d^{2}$
D. $s p^{3}, s p d^{2}, d^{2} s p^{3}$

Answer: C

- Watch Video Solution

45. The percentage of p-character in $S F_{6}$ are
A. $120^{\circ}, 20 \%$
B. $90^{\circ}, 33 \%$
C. $109^{\circ}, 25 \%$
D. $90^{\circ}, 25 \%$

Answer: B

- Watch Video Solution

46. The percentage of p character of hybrid orbitals in graphite and diamond are respectively
A. 33 and 25
B. 50 and 75
C. 67 and 75
D. 33 and 75

Answer: C

D Watch Video Solution

47. The d-orbital involved in the hybridization in $P C l_{3}$ molecule is
A. $3 d_{x^{2}-y^{2}}$
B. $3 d_{z^{2}}$
C. $3 d x y$
D. $4 d_{x^{2}-y^{2}}$

Answer: B

- Watch Video Solution

48. In which one of the following species the central atom has the type of hybridization which is not the same as that present in the other three?
A. $P C l_{5}$
B. $S F_{4}$
C. I_{3}^{-}
D. $S b C l_{5}^{2-}$

Answer: D

- Watch Video Solution

49. Some of the properties of the two species, NO_{3}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$are described below.Which one of them is correct?
A. Dissimilar in hybridization for the central atom with different strcutures
B. Isostructural with same hybridization for the
C. Isostructural with different hybridization for the central atom
D. Similar in hybridization for the central atom
with different structures

Answer: A

- Watch Video Solution

50. Which one of the following conversions involve change in both hybridisation and shape?
A. $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
B. $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$
C. $B F_{3} \rightarrow B F_{4}^{-}$
D. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}$

Answer: C

51. Which of the two lons from the list given have the geometry that is explained by the same hybridization of orbitals $\mathrm{NO}_{2}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{NH}_{2}^{-} \mathrm{NH}_{4}^{+} \mathrm{SCN}^{-} ?$
A. NO_{4}^{+}and NH_{2}^{-}
B. NO_{2}^{-}and NO_{3}^{-}
C. NH_{4}^{+}and NO_{3}^{-}
D. SCN^{-}and NH_{2}^{-}

Answer: B

- Watch Video Solution

52. The correct sequence of decrease in the bond angles of the following hydrides is
A. $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
B. $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}$
C. $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
D. $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$

Answer: A

- Watch Video Solution

53. The nodal plane in the π-bond of ethene is located in:
A. the molecular plane
B. a plane parallel to the molecular plane
C. a plane perpendicular to the molecular plane
which bisects the carbon-carbon σ-bond at right angle.
D. a plane perpendicular to the molecular plane
which contains the carbon-carbon σ-bond

Answer: A

- Watch Video Solution

54. Shape of $\mathrm{O}_{2} F_{2}$ is similar to that of
A. $C_{2} F_{2}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}$
C. $H_{2 \square} F_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: B

- Watch Video Solution

55. The $O N O$ bond angle is maximum in
A. NO_{3}^{-}
B. NO_{2}^{-}
C. NO_{2}
D. NO_{2}^{+}

Answer: D

- Watch Video Solution

56. In I_{3}^{-}, Lewis base is
A. I_{2}
B. I_{2}^{-}
C. I_{2}^{+}
D. I^{-}

Answer: D

- Watch Video Solution

57. In which of the following molecules are all the bonds not equal ?
A. $A I F_{3}$
B. $N F_{3}$
C. CIF_{3}
D. $B F_{3}$

Answer: C

Watch Video Solution
58. Which of the following species has a linear shape ?
A. NO_{2}^{+}
B. O_{3}
C. NO_{2}^{-}
D. SO_{2}

Answer: A

- Watch Video Solution

59. If I_{2} is dissolved in aqueous KI , the intense yellow species I_{3} is formed.

The structure of I_{3}^{-}ion is
A. Square pyramidal
B. Trigonal bipyramidal
C. Octahedral
D. Pentagonal biypramid

Answer: B

60. In which pair of species, both species do have similar geometry
A. $\mathrm{CO}_{2}, \mathrm{SO}_{2}$
B. $\mathrm{NH}_{3}, \mathrm{BH}_{3}$
C. $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$
D. SO_{4}^{2-} and CIO_{4}^{-}

Answer: D

- Watch Video Solution

61. The incorrectly matched pair, among the following is

	Molecule
A.	Shape
$\mathrm{Br} F_{5}$	Trigonal bipyramidal
Molecule	Shape
B.	SF
SF_{4}	See saw
Molecule	Shape
C.	CIF
D.	T-shape
Molecule	Shape
NH_{4}^{+}	Tetrahedral

D Watch Video Solution

62. Two types of FXF angles are present in which of the following molecule ($\mathrm{X}=\mathrm{S}, \mathrm{Xe}, \mathrm{C}$)
A. $S F_{4}$
B. $X e F_{4}$
C. $S F_{6}$
D. $C F_{4}$

Answer: A

- Watch Video Solution

63. Out of $\mathrm{N}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{I}_{3}^{+}, \mathrm{I}_{3}^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NO}_{2}^{-}$and N_{3}^{-}
the linear species are
A. $\mathrm{NO}_{2}^{-}, \mathrm{I}_{3}^{+}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{N}_{2} \mathrm{O}, \mathrm{I}_{3}^{-}, \mathrm{N}_{3}^{-}$
C. $\mathrm{N}_{2} \mathrm{O}, \mathrm{I}_{3}^{-}, \mathrm{N}_{3}^{-}$
D. $\mathrm{N}^{3-}, I_{3}^{+}, \mathrm{SO}_{2}$

Answer: C

- Watch Video Solution

64. Which of the following species is non-linear?
A. ICI_{2}^{-}
B. I_{3}^{-}
C. N_{3}^{-}
D. CIO_{2}^{-}

Answer: D

65. The species having pyramidal shape is
A. SO_{3}
B. BrF_{3}
C. SiO_{3}^{2-}
D. $O S F_{2}$

Answer: D

- Watch Video Solution

66. The correct order of increasing bond angles in the following species is
A. $\mathrm{CIO}_{2}^{-}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}$
B. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}<\mathrm{ClO}_{2}^{-}$
C. $\mathrm{ClO}_{2}<\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}$
D. $\mathrm{Cl}_{2} \mathrm{O}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{2}$

Answer: A

- Watch Video Solution

67. Among the following molecules : $\mathrm{SO}_{2}, \mathrm{SF}_{4}, \mathrm{CIF}_{3}, \mathrm{BrF}_{5}$, and XeF_{4}, which of the following shapes does not describe any of the molecules mentioned ?
A. Bent
B. Trigonal bipyramidal
C. See -saw
D. T-shape

Answer: B

- Watch Video Solution

68. $X e F_{2}$ is isostructural with
A. $T e F_{2}$
B. $I C I_{2}^{-}$
C. $S b C l_{3}$
D. $B a C l_{2}$

Answer: B

- Watch Video Solution

69. The species in which the N -atom is in a state of sp hybridisation is
A. NO_{2}^{+}
B. NO_{2}^{-}
C. NO_{3}^{-}
D. NO_{2}

- Watch Video Solution

70. Consider the molecules $\mathrm{CH}_{4}, \mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ which of the given statement is false ?
A. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is smallar than H-N-H bond anlge in NH_{3}
B. The $\mathrm{H}-\mathrm{C}-\mathrm{H}$ bond angle in CH_{4} is larger than
the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3}
C. The H-C-H bond angle in CH_{4}, the $\mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle in NH_{3} and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ are all greater than 90°
D. The $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bond angle in $\mathrm{H}_{2} \mathrm{O}$ is larger than

D Watch Video Solution

71. The species having bond angle of 120° is
A. PH_{3}
B. $C l F_{3}$
C. NCl_{3}
D. $B C l_{3}$

Answer: D

Watch Video Solution
72. Which of the following pairs of compound is isoelectronic and isostructure?
A. $\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
B. $T e l_{2}, X e F_{2}$
C. $\mathrm{Ibr}_{2}^{-}, \mathrm{XeF} \mathrm{F}_{2}$
D. $I F_{3}, X e F_{2}$

Answer: C

- Watch Video Solution

73. Which one of the following contains ionic, covalent and coordinate bonds?
A. NaOH
B. NaCl
C. NaCN
D. NaNC

Answer: D

74. Which of the following has $p \pi-d \pi$ bonding ?
A. NO_{3}^{-}
B. SO_{3}^{2-}
c. BO_{3}^{3-}
D. CO_{3}^{2-}

Answer: B

- Watch Video Solution

75. The correct stability order of the following resonance structures is
(I) $\mathrm{H}_{2} \mathrm{C}=\stackrel{+}{N}=\overline{N_{N}} \quad(\mathrm{II}) \mathrm{H}_{2} \stackrel{+}{\mathrm{C}}-\mathrm{N}=\overline{\mathrm{N}}$
$(I I I) H_{2} \bar{C}-\stackrel{+}{N}=N \quad(I V) H_{2} \bar{C}-N=\stackrel{+}{N}$
A. $(I)>(I I)>(I V)>(I I I)$
B. $(I)>(I I I)>(I I)>(I V)$
C. $(I I)>(I)>(I I I)>(I V)$
D. $(I I I)>(I)>(I V)>(I I)$

Answer: B

- Watch Video Solution

76. Which of the following is a the most preferred and hence of the lower energy for SO_{3} ?
A.
B.
C.

D.
(d)

Answer: D

D Watch Video Solution

77. Consider the statements :
I. Bond length in $N_{2}^{+} i s 0.002 \AA$ greater than in N_{2}
II. Bond length in $N O^{+} i s 0.09 \AA$ less than in NO
III. O_{2}^{2-} has shorter bond length than O_{2}
which of the following statements are ture?
A. I and II
B. II and III
C. I, II and III
D. I and III

Answer: A

78. The correct order of increasig $C-O$ bond length of $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}<\mathrm{CO}$
B. $\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}$
c. $\mathrm{CO}<\mathrm{CO}_{3}^{2-}<\mathrm{CO}_{2}$
D. $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}^{2-}$

Answer: D

- Watch Video Solution

79. In which of the following ionixation processes, the bond order has increased and the magnetic behaviour has changed ?
A. $N_{2} \rightarrow N_{2}^{+}$
B. $C_{2} \rightarrow C_{2}^{+}$
C. $\mathrm{NO} \rightarrow \mathrm{NO}^{+}$
D. $O_{2} \rightarrow O_{2}^{+}$

Answer: C

- Watch Video Solution

80. The species having bond order different from that in $C O$ is
A. NO^{-}
B. NO^{+}
C. $C N^{-}$
D. N_{2}

Answer: A

- Watch Video Solution

81. The correct order of bond order values among the following
(i) NO^{-}
(ii) NO^{+}
(iii) NO (iv) NO^{2+}
(v) NO^{2-}
A. $A<D<C<B<E$
B. $D=B<A<E \leq C$
C. $E<A<D=C<B$
D. $B<C<D<A<E$

Answer: C

Watch Video Solution

82. Which one of the following pairs consists of only paramagnetic species
A. $\left.[O)_{2}, N O\right]$
B. $\left[O_{2}^{+}, O_{2}^{2-}\right]$
c. $[C O, N O]$
D. $\left[\mathrm{NO}, \mathrm{No}^{+}\right]$

Answer: A

- Watch Video Solution

83. The magnetic moment of KO_{2} at room temperature is ------- BM .
A. 1.41
B. 1.73
C. 2.23
D. 2.64

Answer: B

84. Which of the following options represents the correct bond order ?
A. $O_{2}^{-}>O_{2}<O_{2}^{+}$
B. $O_{2}^{-}<O_{2}>O_{2}^{+}$
C. $O_{2}^{-}>O_{2}>O_{2}^{+}$
D. $O_{2}^{-}<O_{2}<O_{2}^{+}$

Answer: D

- Watch Video Solution

85. Decreasing order of stability of $O_{2}, O_{2}^{-}, O_{2}^{+}$and O_{2}^{2-} is
A. $O_{2}^{2-}>O_{2}^{-}>O_{2}>O_{2}^{+}$
B. $O_{2}>O_{2}^{+}>O_{2}^{2-}>O_{2}^{-}$
C. $O_{2}^{-}>O_{2}^{2-}>O_{2}^{+}>O_{2}$
D. $O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-}$

Answer: D

- Watch Video Solution

86. Four diatomic species are listed below in different sequences. Which of these represents the correct order of their increasing bond order?
A. $\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}$
B. $\mathrm{No}<\mathrm{C}_{2}^{2-}<\mathrm{O}_{2}^{-}<\mathrm{He}_{2}^{+}$
C. $\mathrm{C}_{2}^{2-}<\mathrm{He}_{2}^{+}<\mathrm{NO}<\mathrm{O}_{2}^{-}$
D. $\mathrm{He}_{2}^{+}<\mathrm{O}_{2}^{-}<\mathrm{NO}<\mathrm{C}_{2}^{2-}$

Answer: D

- Watch Video Solution

87. Which one of the following pairs of species have the same bond order
A. O_{2}^{-}and CN^{-}
B. $\mathrm{NO}^{+}, \mathrm{CN}^{+}$
C. $C N^{-}$and NO^{+}
D. $C N^{-}$and $C N^{+}$

Answer: C

- Watch Video Solution

88. The pair of species with the same bond order is:
A. O_{2}^{2-}, B_{2}
B. $\mathrm{O}_{2}^{+}, \mathrm{NO}^{+}$
C. NO, CO
D. N_{2}, O_{2}

Answer: A

89. Consider the following species
$C N^{-}, C N^{-}, N O$ and CN .
Which one of these will hqave the highest bond order ?
A. $C N^{+}$
B. $C N^{-}$
C. NO
D. CN

Answer: B

- Watch Video Solution

90. During change of $\mathrm{NO}^{+} \rightarrow \mathrm{NO}$, the electron is added to
A. σ orbital
B. π orbital
C. σ^{*} orbital
D. π^{*} orbital

Answer: D

- Watch Video Solution

91. The common featrues among the species $C N^{-}, C O$ and $C O^{+}$are
A. Bond order three and isoelectronic
B. Bond order three and weak-field ligands
C. Bond order two and π - acceptor
D. Isoelectronic and weak-field ligands

Answer: A

92. Which is the correct statement about σ and π molecular orbitals?

Statements are
(i) π bonding orbitals are ungerade π antibonding orbitals are ungerade
(iii) σ antibonding orbitals are gerade
A. 1 only
B. 2 and 3 only
C. 3 only
D. 2 only

Answer: A

- Watch Video Solution

93. Assuming that Hund's rule is violated the bond order and magnetic nature of the diatomic molecle B_{2} is
A. 1 and diagagnetic
B. 0 and diamagnetic
C. 1 and paramagnetic
D. 0 and paramagnetic

Answer: A

- Watch Video Solution

94. Which statements are correct for the peroxide ion ?
(1) It has five completely filled anti - bonding molecular orbitals
(2) It is diamagnetic
(3) It has bond order one
(4) It is isoelectronic with neon
A. (iii) and (iv)
B. (i), (ii) and (v)
C. (ii) and (iii)
D. (i) and (v)

Answer: C

- Watch Video Solution

95. The pairs of species of oxygen and their magnetic behaviour are noted below. Which of the following presents the correct description ?
A. O_{2}^{-}, O_{2}^{2} - Bone diamagnetic
B. O^{+}, O_{2}^{2} - Both paramagnetic
C. O_{2}^{+}, O_{2} - Both paramagnetic
D. O, O_{2}^{2-} - Both paramagnetic

Answer: C

- Watch Video Solution

96. Which one of the following is not correct with respect to bond length of the species?
A. $C_{2}>C_{2}^{2-}$
B. $B_{2}^{+}>B_{2}$
C. $L i_{2}^{+}>L i_{2}$
D. $O_{2}>O_{2}^{-}$

- Watch Video Solution

97. Which of the following species has lowest ionisation potential?
A. 0
B. O_{2}
C. O_{2}^{+}
D. O_{2}^{-}

Answer: D

D Watch Video Solution

98. Arrange the following ions in the order of decreasing $X-O$ bond length where X is the central atom:
A. $\mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{SiO}_{4}^{4-}$
B. $\mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
C. $\mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}$
D. $\mathrm{SiO}_{4}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}$

Answer: B

- Watch Video Solution

99. The correct order in which the O-O bond length increases in the following is
A. $O_{3}<H_{2} O_{2}<O_{2}$
B. $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
C. $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
D. $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}<\mathrm{O}_{3}$

Answer: B

- Watch Video Solution

100. In which of the following pairs of molecules/ions, both the species are not likely to exist?
A. H_{2}^{-}, H_{2}^{2+}
B. $H_{2}^{+}, \mathrm{He}_{2}^{2-}$
C. $H_{2}^{-}, H e_{2}^{2-}$
D. $H_{2}^{2+}, \mathrm{He}_{-}(2)^{\prime}$
101. According to molecular orbital theory, which of the following will not be a viable molecule?
A. $H e_{2}^{2-}$
B. $\mathrm{He}{ }_{2}^{+}$
C. H_{2}^{-}
D. H_{2}^{2-}

Answer: D

- Watch Video Solution

102. Stability of the species $L i_{2}, L i_{2}^{-}$and $L i_{2}^{+}$increases in the order of
A. $L i_{2}^{-}<L i_{2}<L i_{2}^{+}$
B. $L i_{2}<L i_{2}^{+}<L i_{2}^{-}$
C. $L i_{2}^{-}<L i_{2}^{+}<L i_{2}$
D. $L i_{2}<L i_{2}^{-}<L i_{2}^{+}$

Answer: C

- Watch Video Solution

103. Which of the following is paramagnetic?
A. CO
B. O_{2}^{-}
C. $C N^{-}$
D. NO^{+}

Answer: B

104. Assuming $2 s-2 p$ mixing is not operative, the paramagnetic species among the following is
A. $B e_{2}$
B. B_{2}
C. C_{2}
D. N_{2}

Answer: C

- Watch Video Solution

105. The maximum possible number of hydrogen bonds a water molecule can form is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

106. Which of the following hydrogen halide is most volatile?
A. HF
B. HCl
C. HBr
D. HI .

Answer: B

- Watch Video Solution

107. How many hydrogen-bonded water molecule(s) are associated in

$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$?

A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

108. Ortho -nitrophenol is less soluble in water than p-and m nitrophenols because
A. Melting point of o-Nitrophenol is lower than those of m - and p -isomers
B. o-Nitrophenol is more volatile is steam than m-and p-isomers .
C. o-Nitrophenol shown Intramolecular H-
bonding
D. o-Nitrophenol shows Intermolecular H-bonding

Answer: C

- Watch Video Solution

109. The hydrogen bond is shortest in
A. $S-H----S$
B. $N-H---O$
C. $S-H-----O$
D. $F-H---\quad F$
110. Which one of the following statement is correct ?
A. Melting point of and boiling point of HI are
greater than those of HF
B. Boiling point of HI is less than that of HF but
melting point of HI is greater than that of HF
C. Boiling point of HI is greater than that of HF
but melting point of HI is less than that of HF
D. Melting point and boiling point of HI are less
than that of HF

Answer: B

- View Text Solution

111. The variation of the boiling points of the hydrogen halides is in the order $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$.

What explains the higher boiling point of hydrogen fluoride?
A. There is strong hydrogen bonding between HF molecules
B. The bond energy of HF molecules is greater
than in other hydrogen halides
C. The effect of nuclear shielding is much reduced
in fluorine which polarises the HF molecule
D. The electronegativity of flurine is much
higher than for other elements in the group .

Answer: A

- Watch Video Solution

112. Which one of the following compounds shows the presence of intramolecular hydrogen bond?
A. $\mathrm{H}_{2} \mathrm{O}_{2}$
B. HCN
C. Cellulose
D. Concentrated acetic acid

Answer: C

- Watch Video Solution

113. Among $\mathrm{KO}_{2}, \mathrm{KAlO}_{2}, \mathrm{CaO}_{2}$ and NO_{2}^{+}, unpaired electrons is present in :
A. NO_{2}^{+}and BaO_{2}
B. KO_{2} and AlO_{2}^{-}
C. KO_{2} only
D. BaO_{2} only

Answer: C

- Watch Video Solution

114. Hybridisation of Al in AlCl_{3} (monomeric from ltbgt above $800^{\circ} \mathrm{C}$) and $\mathrm{Al}_{2} \mathrm{Cl}_{6}$ (dimeric form below $400^{\circ} \mathrm{C}$) respectively are
A. $s p^{2}, s p^{3}$
B. $s p^{2}, s p^{2}$
C. $s p^{3}, s p^{3}$
D. $s p^{2}, d s p^{2}$

Answer: A

- Watch Video Solution

115. Which one of the following statements about carbon monoxide is correct ?
A. It has two lone pairs of electrons on oxygen atom
B. Carbon atom in it is $s p$ hybridized
C. In formaing metal carbonyls, oxygen is attached to the metal atom
D. It has large value of diple moment

Answer: B

- Watch Video Solution

116. In Which of the following molecule would you expect the introgen to nitrogen bond to be longest ?
A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{N}_{2} \mathrm{O}_{4}$
C. $\mathrm{N}_{2} \mathrm{H}_{4}$
D. N_{2}

Answer: B

- Watch Video Solution

117. The bond dissociation energy of $B-F$ in $B F_{3}$ is $646 \mathrm{~kJ} \mathrm{~mol}^{-1}$ whereas that of $C-F$ in $C F_{4}$ is $515 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The correct reason for higher $B-F$ bond dissociation energy as compared to that of $C-F$ is
A. smallar size of B-atom as compared to that of

C-atom
B. stronger σ-bond between B and F in $B F_{3}$ as
compared to that between C and F in CF_{4}
C. significant $p \pi-p \pi$ interaction between B and

F in $B F_{3}$ whereas there is no possibility of such
D. lower degree of $p \pi-p \pi$ interaction between B
and F in $B F_{3}$ than between C and F in
$C F_{4}$

Answer: C

- Watch Video Solution

118. Which one of the following statements about water is false?
A. Watr is oxidized to oxygen during photo-synthesis
B. Water can act both as an acid and as a base
C. There is extensive intramolecular hydrogen
bonding in the condensed phase
D. Ice formed by heavy water sinks in normal water

Answer: C

119. Among the following, which one is the wrong statement
A. $P H_{5}$ and $B i C l_{5}$ do not exist
B. $p \pi-d \pi$ bonds are present in SO_{2}
C. $S e F_{4}$ and CH_{4} have same shape
D. I_{3}^{-}has bent geometry.

Answer: C

- Watch Video Solution

120. Which of the following species is not paramagnetic?
A. O_{2}
B. B_{2}
C. NO
D. $C O$

Answer: D

- Watch Video Solution

121. Which one of the following pairs of species have the same bond order
?
A. $C O, N O$
B. $\mathrm{O}_{2}, \mathrm{NO}^{+}$
C. $C N^{-}, N O^{+}$
D. N_{2}, O_{2}^{-}

Answer: C

- Watch Video Solution

1. Which of the following statements are not correct ?
A. $N a C l(s)$ being an ionic compound, is a good
conductor of electricity
B. In cononical structures there is a difference in
the arrangement of atoms
C. Hybrid orbitals form stronger bonds the p-orbitals.
D. VSEPR theory connot explain the equare
planar geometry of XeF_{4}

Answer: A::B::D

2. Paramagnetic species are
A. O_{2}^{+}
B. O_{2}^{-}
C. $\mathrm{N}_{2}{ }^{+}$
D. N_{2}^{-}

Answer: A::B::C::D

- Watch Video Solution

3. Which of the following statements about CO_{3}^{2-} ion are correct ?
A. The C-O bond order is 1.33
B. The formal charge on each oxygen atom is
0.67 units
C. It has two $\mathrm{C}-\mathrm{O}$ single bonds and one $\mathrm{C}=\mathrm{O}$
double bond
D. The hybridization of central atom is $s p^{3}$

Answer: A::B

- Watch Video Solution

4. Dipole moment is possessed by (one or more)
A. 1,4-Dichlorobenzene
B. cis 1, 2-Dichloroethene
C. trans-1, 2-Dichloroethene
D. trans-2, 3-Dichloro-2-pentene

Answer: B::D

5. Which of the following species have same shape/same bond order ?
$\mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-}, \mathrm{CO}_{2}, \mathrm{O}_{3}$
A. (i) and (ii)
B. (iii) and (iv)
C. (i) and (iii)
D. (ii) and (iv)

Answer: A::B

- Watch Video Solution

6. CO_{2} is isostructural with
A. $H g C l_{2}$
B. SnCl_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. NO_{2}

- Watch Video Solution

7. The linear struture is assumed by :
A. SnCl_{2}
B. NCO^{-}
C. NO_{2}^{+}
D. $C S_{2}$

Answer: B::C::D

- Watch Video Solution

8. Which one of the following molecules is expected to exhibit diamagnetic behaviour?
(i) N_{2} (ii) O_{2}
(iii) S_{2} (iv) C_{2}
A. S_{2}
B. C_{2}
C. N_{2}
D. O_{2}

Answer: B::C

- Watch Video Solution

9. The correct statement(s) about O_{3} is/are
A. O-O bond length are equal
B. Thermal decomposition of O_{3} is endothermic
C. O_{3} is diamgentic in nature
D. O_{3} has a bent structure

D Watch Video Solution

10. Hydrogen bonding plays a central role in which of the following phenomena?
A. Ice floats in water
B. Higher Lewis basicity of primary amines than
tertiary amines in aqueous solution
C. Formic acid is more acidic than acetic acid
D. Dimerisation of acetic acid in benzene

Answer: A::B::D

- Watch Video Solution

11. The compound (s) with two lone pairs of electrons on the central atom is (are)
A. $B r F_{5}$
B. CIF_{3}
C. XeF_{4}
D. $S f_{4}$

Answer: B::C

- Watch Video Solution

12. According to molecular orbital theory,
A. C_{2}^{2-} is expected to be diamgnetic
B. O_{2}^{2+} is expected to have a longer bond length then O_{2}
C. N_{2}^{+}and N_{2}^{-}have the same order
D. He_{2}^{+}has the same energy as two isolated. He atoms

D Watch Video Solution

13. Which of the following pairs of ions are isoelectronic and isostructural ?
A. $\mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
B. $\mathrm{CIO}_{3}^{-}, \mathrm{CO}_{3}^{2-}$
C. $\mathrm{SO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
D. $\mathrm{CIO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$

Answer: A::D

- Watch Video Solution

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (III. MULTIPLE CHOICE QUESTIONS (Based on the given Passage/Comprehension))

1. The study of diple moment of a molecule is useful to explain the shape of a molecule and also to predict a The net dipole moment of a polyatomic molecule is the resltant of the different bond moments present in that molecule. The values are generalluy expressed in Debye or in the S.I. units in terms of Coulomb meter (C m) 1 Debye is equivalent to
A. $3.33 \times 10^{-30} \mathrm{Cm}$
B. $1.602 \times 10^{-27} \mathrm{Cm}$
C. $10^{-20} \mathrm{Cm}$
D. $3.33 \times 10^{-12} \mathrm{Cm}$

Answer: A

- Watch Video Solution

2. The study of diple
moment of a molecule is useful to explain the
shape of a molecule and also to predict a
The net dipole moment of a polyatomic molecule is the resItant of the different bond moments present in that molecule. The values are generalluy expressed in Debye or in the S.I. units in terms of Coulomb meter (C m)

Which our of the following will have maximum dipole moment ?
A. $N F_{3}$
B. NCl_{3}
C. NBr_{3}
D. NH_{3}

Answer: D

- Watch Video Solution

3. The study of diple

moment of a molecule is useful to explain the shape of a molecule and also to predict a

The net dipole moment of a polyatomic molecule is the resltant of the different bond moments present in that molecule. The values are generalluy expressed in Debye or in the S.I. units in terms of Coulomb meter (C m) A covalent molecule, $X-Y$ is found to have a dipole moment of $1.5 \times 10^{-29} \mathrm{C} \mathrm{m}$ and a bond length of 150 pm . The per cent ionic character of the bond will be
A. 50%
B. 62.5%
C. 75%
D. 90%

Answer: B

4. Atomic orbitals of bonded atoms combine to form molecular orbitals.

The number of molecular orbitals formed is equal to the number of atomic orbitals taking part in the bond formation. When two atomic orbitals combine, two molecular orbitals are formed one of which has lower energy than the combining orbitals and is called bonding Molecular Orbital (MO). Whereas the other having higher energy than the two combining atomic orbitals is called Anti Bonding Molecular orbitals (ABMO) The two combining atomic orbitals must have comparable energies and should be properly oriented to allow considerable overlapping. If the overlapping is end to end along internuclear axis, the molecular orbital is called sigma and if the overlapping is lateral 1.e., sidewise the molecular orbital is called pie. Just like atomic orbitals, the molecular orbitals also have varying energy levels. Filling of electrons in molecular orbitals takes place following the same rules as followed for filing of atomic orbitals. The order of filling may not be same for all the molecules or their ions. Bond order is a useful parameter for comparing
the various characteristics of molecules.
The bond order (BO) in B_{2} molecule is
A.
B.
C.
D.

Answer: C

- Watch Video Solution

5. Which of the following molecular orbitals has maximum number of nodal planes?
A. $\sigma_{1 s}^{*}$
B. $\sigma_{2 p_{z}}^{*}$
C. $\pi_{2 p_{x}}$
D. $\pi_{2 p_{y}}^{*}$

Answer: D

- Watch Video Solution

6. Molecular orbitals are
formed by the overlap of atomic orbitals. Two
atomic orbitals combine to form two
molecular orbitals, called Bonding Molecular

Orbital (BMO) and Anti - Bonding Molecular

Orbital (ABMO). Different atomic orbitals
of one atom combine with those atomic
orbitals of the second atom which have comparable energles and proper orientation

Further, if overlapping is head on, the molecular orbitals is called 'sigma' and if the overlap is lateral, the molecular orbital is
called 'pi' . The molecular orbitals are filled
with electrons following the same rules as
followed for filling of atomic orbitals .
However, the order of filling in not the same
for of the most important parameter to
compare a number of their characteristics
$H_{2}, L i_{2}, B_{2}$ each has bond order equal to 1 . The order of their stability is
A. $H_{2}=L i_{2}=B_{2}$
B. $H_{2}>L i_{2}>B_{2}$
C. $H_{2}>B_{2}>L i_{2}$
D. $B_{2}>L i_{2}>H_{2}$

Answer: C

- View Text Solution

7. In whihc of the following pair the moelcular orbitals are gerade or
A. $\sigma_{2 s}, \pi_{2 p_{x}}$
B. $\sigma_{2 s}^{*}, \pi_{2 p_{x}}^{*}$
C. $\sigma_{2 s}^{*}, \pi_{2 p_{x}}$
D. $\pi_{2 p_{x}}, \pi_{2 p_{x}}^{*}$

Answer: C

- Watch Video Solution

8. Whihc of the following statements is correct ?
A. In the formation of dioxygen form oxygen atoms, 10 molecular orbitals will be formed.
B. All the molecular orbitals in the dioxygen will be completely filled
C. Total number of bonding molecular orbitals will not be same as total number of antibonding orbitals in dioxygen.
D. Number of filled bonding orbitals will be same as number of filled antibonding orbitals

Answer: A

- Watch Video Solution

9. Which of the following molecular orbitals has maximum number of nodal planes ?
A. $\sigma^{*} 1 s$
B. $\sigma^{*} 2 p_{z}$
C. $\pi_{2 p_{x}}$
D. $\pi^{*}-2 p_{Y}$

Answer: D

10. Which of the following pair is expected to have the same bond order ?
A. O_{2}, N_{2}
B. O_{2}^{+}, N_{2}^{-}
C. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{+}$
D. $\mathrm{O}_{2}^{-}, \mathrm{N}_{2}^{-}$

Answer: B

Watch Video Solution

11. In which of the following molecules, $\sigma 2 p_{z}$ molecular orbital is filled after $\pi 2 p_{x}$ and $\pi 2 p_{y}$ molecular orbitals ?
A. O_{2}
B. $N e_{2}$
C. N_{2}
D. F_{2}

- Watch Video Solution

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (IV. MATCHING TYPE QUESTIONS)

1. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question

Column I (Ion)
(A) $\quad \mathrm{ICl}_{2}^{-}$
(B) NH_{2}^{-}
(C) NH_{4}^{+}
(D) $\left[\mathrm{PtCl}_{4}\right]^{2-}$

Column II (Shape)
(p) V-shape
(q) Linear
(r) Tetrahedral
(s) Square planar
A. A - r, B-s, C-q, D-p
B. A - q, B-p, C-r, D-s
C. A - q, B-p, C-r, D-s
D. A-s, B-p, C-q, D-r

D Watch Video Solution

2. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question

Column I
-(A) $s p^{2}$
(B) $d s p^{2}$
(C) $s p^{3} d$
(D) $s p^{3} d^{2}$

Column II

(p) $\mathrm{ICl}_{4}^{-} \cdots$
(a) TeCl_{4}
(r) SnCl_{2}
(s) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
A. A-r, B-s, C-q, D-p
B. A-r, B-p, C-q, D-s
C. A-p, B-r, C-q, D-s
D. A-q, B-s, C-r, D-p

Answer: A

3. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question

Golumn I (Molcoulellon)
(A) NO
(B) CO
(C) BN
(D) CN^{-}
(p) 1.5
(q) 2
(r) 2.5
(s) 3
A. A-r, B-s, C-q, D-p
B. A-s, B-s, C-p, D-q
C. A-r, B-r, C-p, D-s
D. A-r, B-s, C-q, D-s

Answer: D

- Watch Video Solution

4. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question
A. A-p, B-s, C-r, D-q, E-t
B. A-q, B-s, C-p, D-r, E-u
C. A-r, B-s, C-p, D-q, E-u
D. A-r, B-s, C-p, D-q, E-t

Answer: D

- View Text Solution

5. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question
A. A-r, B-q , C-t, D-s, E-p
B. A-t, B-r, C-q, D-s, E-p
C. A-p, B-s, C-t, D-q, E-r
D. A-p, B-q, C-r, D-s, E-t

Answer: B

- View Text Solution

6. Match the entries of column I with appropriate of column II and choose the correct option out of the four option (a), (b),(c), (d) given at the end of each question
A. $\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}2 & 1 & 3 & 4\end{array}$
B. $\begin{array}{llll}P & Q & R & S \\ 4 & 3 & 1 & 2\end{array}$
$\begin{array}{llll}P & Q & R & S\end{array}$
C.
$\begin{array}{llll}2 & 3 & 1 & 4\end{array}$
D. $\begin{array}{llll}P & Q & R & S\end{array}$
$\begin{array}{llll}4 & 1 & 3 & 2\end{array}$

Answer: C

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (V MATRIX-MATCH TYPE QUESTIONS)

1. Match the entries of column I with appropriate of column II and choose the correct option
out of the four option (a), (b),(c), (d) given at the end of each question
Column I
(Compound)
(A) CaC_{2}
(B) SnCl_{2}
(C) $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$ (r) Coordinate
(D) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Watch Video Solution
2.

Column I(Molecular orbital)
Column II (Nodal planes present
(A) $\sigma_{2 s}$
(p) 0
(B) $\sigma_{2 p_{z}}$
(q) 1
(C) $\pi_{2 p_{x}}^{*}$
(r) 2
(D) $\pi_{2 p_{y}}^{*}$
(s) Gerade
(Take Z-axis as the internuclear axis)

- Watch Video Solution

Column I Column II
(A) B_{2}
(p) Paramagnetic
(B) N_{2}
(q) Undergoes oxidation
(C) O_{2}^{-}
(r) Undergoes reduction
(D) $O_{2} \quad(s) \quad$ Bond order ≥ 2
(t) Mixing of s and p-orbitals

- Watch Video Solution

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (V. INTEGER TYPE QUESTIONS)

1. In $A l_{2} C l_{6}$ each Al atoms is linked to how many Cl atoms ?

- Watch Video Solution

2. Total number of lone pairs present in the structure of HNO_{3} is
3. Total number of electron pairs (both lone and bond pairs) around central atom of $X e F_{4}$ is

- Watch Video Solution

4. Total number of molecular orbitals occupying one or two electrons in O_{2}^{+}is

- Watch Video Solution

5. The number of 90° bond angles present in $S F_{4}$ molecules is

- Watch Video Solution

6. Total number of σ-bond present in the molecula of propyne is
7. Total number of coordinate bonds present in $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

8. Number of H_{2} molecules attached to each $\mathrm{H}_{2} \mathrm{O}$ molecule through hydrogen bonding is

- Watch Video Solution

9. The number of water molecule(s) directly bonded to the metal centre in $\mathrm{CuSO} \mathrm{C}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ is-
10. Based on VSEPR theory, the number of 90 degree $\mathrm{F}-\mathrm{Br}-\mathrm{F}$ angles in $B r F_{5}$, is

- Watch Video Solution

11. A list of species having the formula of $X Z_{4}$ is given below $\mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{SiF}_{4}, \mathrm{BF}_{4}^{-}, \mathrm{BrF}_{4}^{-},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]^{2+},\left[\mathrm{FeCl}_{4}\right]^{2-},\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{PtCl}_{4}\right]^{2-}$

Defining shape on the basis of the locatiion of X and Z atoms, the total number of species having a square planar shape is

- Watch Video Solution

12. The total number of lone pair of electrons in $\mathrm{N}_{2} \mathrm{O}_{3}$ is

- Watch Video Solution

13.

$\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{lCl}_{2}^{-}, l_{3}^{-}$and XeF_{2}, the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d - orbitals (s) is [atomic number of $S=16, C l=17, I=53$ and $X e=54]$

- Watch Video Solution

14. The sum of the number of lone pair of electrons on each central atom in the following species is $\left[T e B r_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{2+}, S N F_{3}$, and $\left[\mathrm{XeF}_{3}\right]^{-}$
(Atomic number: $\mathrm{N}=7, \mathrm{~F}=9, \mathrm{~S}=16, \mathrm{Br}=35, \mathrm{Te}=52, \mathrm{Xe}=54$)

- Watch Video Solution

15. Among $\mathrm{H}_{2}, \mathrm{He}_{2}^{+}, \mathrm{Li}_{2}, \mathrm{Be} e_{2}, B_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}^{-}$and F_{2}, the number of diamagnetic species is

- Watch Video Solution

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (VII. NUMERICAL VALUE TYPE QUESTIONS (IN DECIMAL NOTATION))

1. Calculate the electronegativity of fluorine from following data :
$E_{H-H}=104.2 \mathrm{kcal} \mathrm{mol}^{-1}$
$E_{F-F}=36.6 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
$E_{H-F}=134.6 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
Electronegativity of H is 2.05 .

- Watch Video Solution

COMPETITION FOCUS JEE (Main and Advanced)/ MEDICAL ENTRANCE SPECIAL (VIII. ASSERTION-REASON TYPE QUESTIONS TYPE I)

1. Statement-1 . LiCl is covalent whereas NaCl is ionic.

Statement-2. Greater the size of the cation, greater is its polarising power.
A. Statement-1 is Ture , Statement-2 is Ture, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True , Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.

Answer: c

- Watch Video Solution

2. Assertion : H_{2} molecule is more stable than $\mathrm{He}-\mathrm{H}$ molecule .

Reason : The antibonding electron in $\mathrm{He}-\mathrm{H}$ molecule decreases the bond order thereby the stability.
A. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture , Statement-2 is Ture , Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.

Answer: b

- Watch Video Solution

3. Assertion Both NO_{3}^{Θ} and CO_{3}^{2-} ions are triangular planar Reasoning Hybridisation of central atom in both NO_{3}^{Θ} and CO_{3}^{2-} is $s p^{2}$.
A. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture , Statement-2 is Ture , Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.

Answer: a

- Watch Video Solution

4. Statement 1: $B F_{3}$ moleculeis planar while $N F_{3}$ is pyramidal.

Statement 2: N atom is smaller in size as compared ot B atom.
A. Statement-1 is Ture , Statement-2 is Ture, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True , Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.

Answer: b

- Watch Video Solution

5. Statement 1: o-nitrophenol has higher boilling point than p nitrophenol.

Statement 2: Intermolecular hydrogen bonding is present in pnitrophenol and intrmolecular hydrogen bonding in o-nitrophenol.
A. Statement-1 is Ture , Statement-2 is Ture , Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True , Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.

- Watch Video Solution

6. Statement-1. The boiling point of NH_{3} lies between that of SbH_{3} and BiH_{3}

Statement -2. PH_{3} has much lower boiling than NH_{3} but it increases from PH_{3} to AsH_{3} to SbH_{3} to BiH_{3} due to increase in van dar Waals forces
A. Statement-1 is Ture , Statement-2 is Ture, Statement-2 is a correct explanation for Statement-1.
B. Statement-1 is Ture, Statement-2 is Ture, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True , Statement-2 is False .
D. Statement-1 is False, Statement-2 is True.
7. Assertion . Nitrogen shown a valency of 3 as well as 5 .

Reason. Lewis symbol of nitrogen is : N.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

- Watch Video Solution

8. Assertion . Ionic compounds tend to be non-volatile.

Reason . Ionic compounds are solid
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

9. Assertion. Water is specially effective in screeniing the electrostatic interactions between the dissolved ions

Reason. The electrostatic forces between two charged ions are inversely proportional to the dielectic constant of the solvent .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- View Text Solution

10. Assertion (A): $S F_{6}$ molecule is unstable.

Reason (R): A stable molecule must have 8 electrons around the central atom. i.e. octet rule should be satisfied.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: d

D Watch Video Solution

11. Assertion. The bond anlge of $P B r_{3}$ is greater than that of $P H_{3}$ but bond angle of NBr_{3} is less than that of
NH_{3}.
Reason.Electronegativity of phosphorus atom is less than that of nitrogen .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- View Text Solution

12. Assertion : H-S-H bond angle in $H_{2} S$ is closer to 90° but H-O-H bond angle in $\mathrm{H}_{2} \mathrm{O}$ is 104.5°

Reason: Ip-Ip repulsion is stronger in $\mathrm{H}_{2} \mathrm{~S}$ than in $\mathrm{H}_{2} \mathrm{O}$
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

13. Assertion. When two hydrogen atoms approach each other to form a covalent bond , nearly $435.8 \mathrm{KJmol}^{-1}$ of energy is released .

Reason. When two atoms approach eachother to form a covalent bond between them, potential energy of the system is released .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: c

- View Text Solution

14. Assertion (A): Pi bond is never formed alone. It is formed along with a sigma bond

Reason (R): Pi bond is formed by sideway overlap of p-orbitals only.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: c

- Watch Video Solution

15. Assertion : The atoms in a covalent molecule are said to share electrons, yet some covalent molecule are polar.

Reason :In a polar covalent molecule, the shared electron spend more time on the average near one of the atoms .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: c

- Watch Video Solution

16. Assertion : Boiling points of cis-isomers are higher than trans isomers.

Reason : Dipole moments of cis - isomers are higher than trans - isomers.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

17. Assertion:- NO_{3}^{-}is planar while NH_{3} is pyramidal

Reason:- N in NO_{3}^{-}is $s p^{2}$ and in NH_{3} it is $s p^{3}$ hybridised with one ione pair.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

- Watch Video Solution

18. Asseration: $S e C l_{4}$, does not havea tetrahedral structure.

Reason: $S e$ in $S e l_{4}$ has two lone pairs.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: c

- Watch Video Solution

19. Assertion: N_{3}^{-}is a weaker base than NH_{2}^{-}

Reason: The lone pair of electrons on N atom in N_{3}^{-}is in a $s p^{2}$-orbital while in NH_{2}^{-}it is in an $\mathrm{sp}^{\wedge}(3)^{\wedge}$-orbital.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

- Watch Video Solution

20. Assertion(A) - $B F_{3}$ molecule is planar but $N F_{3}$ is pyramidal Reason(R)-N atom is smaller than B
A. If both assertion and reason are correct, and reason is the correct
explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

21. Assertion . The resonance hybrid is more stable than any of the contributing structure .

Reason. The contributing structures contain the same number of umpaired elelctrons and have the real existance.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: c

- Watch Video Solution

22. Assertion Both $\pi\left(2 P_{x}\right)$ and $\pi^{*}\left(2 P_{x}\right) M O^{\prime} s$ have one nodal plane each

Reasoning All $M O^{\prime} s$ formed by side way overlapping of $2 p$ orbitals have one nodal plane.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: d

23. Assertion $H_{2}, L i_{2}, B_{2}$ each has a bond order of 1 and hence are equally stable

Reasoning Stability of molecule//ion depends only on bond order .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: d

- Watch Video Solution

24. Assertion : Bond order can assume any value number including zero.

Reason :Higher the bond order ,shorter is bond length and greater is bond energy.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

25. Assertion B_{2} molecule is diamagnetic

Reasoning The highest occupied molecular orbital is of sigma type .
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: d

- Watch Video Solution

26. (A) Molecular nitrogen is less reactive than molecular oxygen.
(R) The bond length of N_{2} is shorter than that of oxygen.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

D Watch Video Solution

27. Assertion : H_{2} molecule is more stable than $H e-H$ molecule .

Reason : The antibonding electron in $H e-H$ molecule decreases the bond order thereby the stability.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

28. Assertion. The $H F_{2}^{-}$ion exists in the solid state and also in liquid state but not in aqueous solution.

Reason. The magnitude of hydrogen bonds in between HF-HF molecule is weaker than that in between HF and $\mathrm{H}_{2} \mathrm{O}$ molecules.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: a

- Watch Video Solution

29. Assertion Both o-hydroxy benzaldehyde and p-hydroxy benzaldehyde have
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- View Text Solution

30. Assertion (A) $\mathrm{H}_{2} \mathrm{O}$ is the only hydride of group - 16 which is liquid at ordinary temperature.

Reason (R) In ice, each oxygen atom is surrounded by two covalent bonds and two hydrogen bonding.
A. If both assertion and reason are correct, and reason is the correct explanation of the assertion.
B. If both assertion and reason are correct, but reason is not the correct explanation of the assertion.
C. If assertion is correct, but reason is incorrect .
D. If both assertion and reason are incorrect.

Answer: b

- Watch Video Solution

1. The space model which is obtained by joining the points representing various bonded atoms gives the shape of the molecule. The geometry of the molecule is definite relative arrangement of the bonded atoms in a molecule. The shape and geometry of a molecule is explained by valence shell electron pair repulsion theory given by Gillespie and Nyholm.

Select the correct code for the following repulsion orders, according to VSEPR theory :
(I) lone pair -lone pair > lone pair-bond pair
(II) lone pair-bond pair > bond pair -bond pair
(III) lone pair -lone pair > bond pair-bond pair
(IV) lone pair - bond pair > lone pair-lone pair

- Watch Video Solution

2. What type of structure is possessed by $\mathrm{H}_{2} \mathrm{O}_{2}$ molecule ? Draw it and label the varous bond angles and bond length . Comment on the dipole moment of $\mathrm{H}_{2} \mathrm{O}_{2}$ molecule .
3. You are given the following species

$$
C_{2}^{+}, O_{2}^{2+}, B e_{2}, C_{2}, O_{2}^{2-}, C_{2}^{-}
$$

Arrange them in order of increasing bond strength giving reason.

- Watch Video Solution

4. You are given the following species:
$P H_{3}, P_{2} H_{6}^{2+}, P_{2} H_{5}^{+}$and $P H_{4}^{+}$
Which of these has least covalent P-H character and why?

- Watch Video Solution

5. Choose the correct answer in each of the following and explain with reason
(i) $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{MgCl}_{2}, \mathrm{CaCl}_{2}$ - most ionic
(ii) $\quad \mathrm{Ba} \rightarrow \mathrm{Ba}^{2+}-, \mathrm{Be} \rightarrow \mathrm{Be}^{2+}, \mathrm{Cs} \rightarrow \mathrm{C} \mathrm{s}^{+}, \mathrm{Li}^{+} \quad-\quad$ maximum ionization energy
(iii) $\mathrm{AlCl}_{3}, \mathrm{All}_{3}, \mathrm{MgI}_{2}, \mathrm{NaI}$-most covalent
(iv) $R b F, C s F, N a F, K F$-highest lattice energy
(v) $L i^{-}, B e^{-}, B^{-}, C^{-}$- least stable species
(vi) $\mathrm{CIO}_{3}, \mathrm{XeF}_{4}, \mathrm{SF}_{4}, \mathrm{I}_{3}^{-}$- maximum number of lone pairs of electrons on central atom

- View Text Solution

6. Estimate the lattice energy of CaCO_{3} if $r_{c a^{2}+}=114 \pm$ and $r_{-}\left(\mathrm{CO}_{-} 3^{\wedge}(2-)\right)=185 \mathrm{pm}$.

(D) Watch Video Solution

7. The $H-O-H$ bond angle in the water molecule is 105°, the $\mathrm{H}-\mathrm{O}$ bond distance being $0.94 \AA$, The dipole moment for the moelcule is 1.85 D
. Calculate the charge on the oxygen atom .

- Watch Video Solution

8. Bond angle between two hybrid orbitals is 105° Percentage of s-orbital character of hybrid orbital is between

- Watch Video Solution

9. The molecule electronic configuration of oxygen molecule is.

- Watch Video Solution

10. Four elements A, B, C and D form a series of compounds having the formulae $\mathrm{AB}, B_{2}, C B_{3}, D B_{2}$ and $D B_{3}$. If the jumbled up atomic numbers of A, B, C and D are $13,19,26$ and 35 , What are the ordered atomic numbers of $A, B C$ and C ?

- Watch Video Solution

11. (a) In a polar solvenbt, PCl_{5} undergoes an ionization reaction as follows : $2 P C l_{5} \Leftrightarrow \mathrm{PCl}_{4}^{+}+\mathrm{PCl}_{6}^{-}$Wht will be the geometrical shape of
each
species present In the equalilbrium maxture?
(b) Why does PCl_{5} exist as $\left[\mathrm{PCl}_{4}\right]^{+}\left[\mathrm{PCl}_{6}\right]^{-}$?

- Watch Video Solution

Problem For Practice

1. The observed dipole mement of a molecule $A B$ is 1.45 D and its bond length is $1.654 \AA$. Calculate the precentage of ionic character in the bond

- Watch Video Solution

2. Calculate the ratio of partial positive charge on H -atom in HCl to that in

HI from the following date :
Dipole moment of $\mathrm{HCl}=1.03 \mathrm{D}$, Bond length $=127 \mathrm{pm}$. Dipole moment of
$\mathrm{HI}=0.38 \mathrm{~d}$,

Bond length - 161 pm

Curiosity Questions

1. Why can sugar (sucrose) melts on heating but common salt (sodium chloride) does not melt so easily ?

-
 Watch Video Solution

2. Generally solids sink into water but ice floats on water. Explain why ?
