# びdoubtnut 

## CHEMISTRY

## BOOKS - PRADEEP CHEMISTRY (HINGLISH)

## EQUILIBRIUM

## PROBLEM FOR PRACTICE

1. The reaction
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
was carried out at $27^{\circ} \mathrm{C}$ by taking one mole of each of the reactants. The reaction reached equilibrium when $2 / 3 \mathrm{rd}$ of the reactants were consumed. Calculate the free energy change for the reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.
2. A magician took yellow colured solution in one test tube and added a colourless solution Into It and announced the fun of getting red colour. Then he added red coloured solution into it and announced the fun of colour becoming lighter. What chemicals he musthave used and explain how all this might have happened ?

## - View Text Solution

2. Why tooth decay occurs when we eat too much sweets?

## - Watch Video Solution

3. Some reactions yield greater amount of products on heating while some others give lesser amount. Why ?
4. At $0^{\circ} \mathrm{C}$, ice and water are present in equilibrium. What will happen on increasing the pressure?

## - Watch Video Solution

## ADVANCED PROBLEMS

1. The degree of dissociation of HI at a particualr temperature is 0.8 .

Calculate the volume of $2 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to neutralise the iodine present in an equilibrium mixture of a reaction when 2 mol each of $H_{2}$ and $I_{2}$ are heated in a closed vessel of $2 L$ capacity and the equilibrium mixture is freezed.

## - Watch Video Solution

2. $\mathrm{NH}_{3}$ is heated at 15 at, from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the
reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate \% moles of $\mathrm{NH}_{3}$ actually decomposed.

## - Watch Video Solution

3. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at 0.28 and 1.1atm, respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

## - Watch Video Solution

4. When 0.15 mol of CO taken in a 2.5 L flask is maintained at 750 K along with a catalyst, the following reaction takes place
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed.

Calculate
a. $K_{p}$ and $K_{c}$
b. The final pressure, if the same amount of CO and $\mathrm{H}_{2}$ as before are used, but with no catalyst so that the reaction does not take place.

## - Watch Video Solution

5. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the $K_{c}$ at $25^{\circ} C$ is $4 \times 10^{-19}$ Calculate $\left[A g^{\oplus}\right]$ in solution which was originally 0.1 M in KCN and 0.03 M in $\mathrm{AgNO}_{3}$.

## ( Watch Video Solution

6. A sample of air consisting of $N_{2}$ and $O_{2}$ was heated to 2500 K until the equilibrium
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
was established the intial composition of air in mole fraction of $N_{2}$ and $O_{2}$.
7. At $817^{\circ} \mathrm{C}, \mathrm{K}_{p}$ for the reaction between $\mathrm{CO}_{2(g)}$ and excess hot graphite (s) is 10atm.
(a) What are the equilibrium concentration of the gases at $817^{\circ} \mathrm{C}$ and a total pressure of 5atm?
(b) At what total pressure, the gas contains $5 \% \mathrm{CO}_{2}$ by volume?

## - Watch Video Solution

8. The value of $K_{p}$ is $1 \times 10^{-3} \mathrm{~atm}^{-1}$ at $25^{\circ} \mathrm{C}$ for the reaction: $2 \mathrm{NO}+\mathrm{Cl}_{2} \Leftrightarrow 2 \mathrm{NOCl}$. A flask contains NO at 0.02 atm and at $25^{\circ} \mathrm{C}$. Calculate the mole of $\mathrm{Cl}_{2}$ that must be added if $1 \%$ of the NO is to be converted to NOCl at equilibrium. The volume of the flask is such that 0.2 mole of gas produce 1 atm pressure at $25^{\circ} \mathrm{C}$. (Ignore probable association of NO to $\mathrm{N}_{2} \mathrm{O}_{2}$.)

## - Watch Video Solution

9. The $K_{p}$ for the reaction $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is 640 mm at 775 K . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm . At what pressure, the dissociation will be $50 \%$ ?

## - Watch Video Solution

10. The equilibrium constant of a reaction doubles on increasing the temperature of the reaction from $25^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. Calculate enthalpy change of the reaction, assumpting it to be constant in this temperature range.

## - Watch Video Solution

11. A mixture in which the mole ratio of $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ is $2: 1$ is used to prepare water by the reaction.

$$
2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction.

Determine the final pressure at $120^{\circ} \mathrm{C}$ after reaction assuming $80 \%$ yield of water.

## - Watch Video Solution

12. For a hypothetical reaction $\mathrm{P}(\mathrm{g})+\mathrm{Q}(\mathrm{g})$ hArr $\mathrm{R}(\mathrm{g})+\mathrm{S}(\mathrm{g})$, " a graph between $\log K$ and " $T^{\wedge}(-1)$ " is a straight line as hsown in the fig. in which " theta $=\tan ^{\wedge}(-1) 0 * 5$ and $\mathrm{OA}=10$. " Assuming "Delta $\mathrm{H}^{\wedge}(@)$ " is independent of temperature , calculate the equilibrium constant of the reaction at 298 K and 798 K respectively.

## - View Text Solution

13.2 mole of an equimolar mixture of alchols ROH and $\mathrm{R}^{\prime} \mathrm{OH}$ are taken in! L flask. One mole of acetic acid is added to it. At equilibrium , $80 \%$ of acetic acid is found to be reacted and the ratio of $\mathrm{RCOOCH}_{3}$ and $\mathrm{R}^{\prime} \mathrm{COOCH}_{3}$ formed is $3: 2$, Calculate the equilibrium constant for the esterification of ROH.
14. The values of $K_{p}$ and $K p_{2}$ for the reactions $X \Leftrightarrow Y+Z$, (a) and $A \Leftrightarrow 2 B$, (b)
are in the ration of $9: 1$. If the degree of dissociation of $X$ and $A$ is equal, then the total pressure at equilibriums (a) and (b) is in the ratio

## - Watch Video Solution

15. Formaldehyde polymerizes to form glucose according to the reaction, $6 \mathrm{HCHO} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ The theoretically computed equilibrium constant for this reaction is found to be $6 \times 10^{22}$ If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be :

## - Watch Video Solution

1. For reaction,
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})$
the value of $K_{c}$ at $250^{\circ} \mathrm{C}$ is 26 . The value of $K_{p}$ at this temperature will be
A. $0 \cdot 61$
B. $0 \cdot 57$
C. $0 \cdot 83$
D. $0 \cdot 46$

## Answer: A::B::C::D

## - Watch Video Solution

2. $K_{p} / K_{c}$ for the reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})$ is
A. 1
B. RT
C. $1 / \sqrt{R T}$
D. $(R T)^{1 / 2}$

## Answer: A::B::C::D

## - Watch Video Solution

3. For the reaction $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$, the value of $K_{c}$ at $800^{\circ} \mathrm{C}$ is 0.1. When the equilibrium concentrations of both the reactants is 0.5 mol , what is the value of $K_{p}$ at the same temperature
A. $0 \cdot 5$
B. $0 \cdot 1$
C. $0 \cdot 01$
D. $0 \cdot 025$
4. In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled then the equilibrium constant will :
A. Reduced to half its original value
B. Reduced to one fourth of its original value
C. Doubled
D. Constant

## Answer: D

## - Watch Video Solution

5. The equilibrium constant for a reacton
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NO}(\mathrm{g})$ is $4 \times 10^{-4}$ at 2000 K . In the presence of catalyst,
the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
A. $40 \times 10^{-4}$
B. $4 \times 10^{-4}$
C. $4 \times 10^{-3}$
D. difficult to compute without more data.

## Answer: B

## - Watch Video Solution

6. For the hypothetic reaction, the equilibrium constant (K) values are given
$A \Leftrightarrow B, K_{1}=2.0$
$B \Leftrightarrow C, K_{2}=4.0$
$C \Leftrightarrow D, K_{3}=3.0$
The equilibrium constant for the reaction
$A \Leftrightarrow D$ is
A. 48
B. 6
C. 12
D. 24

## Answer: A::B::C::D

## - Watch Video Solution

7. For the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400 \mathrm{~K}, \mathrm{~K}_{p}=41$

Find the value of $K_{p}$ for the following reaction:
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
A. $6 \cdot 4$
B. $0 \cdot 02$
C. 50
D. $4 \cdot 6$

## D Watch Video Solution

8. 

$K_{p}$ for the following reaction will be equal to $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}$
A. $\left(p_{\mathrm{H}_{2}}\right)^{4}\left(p_{\mathrm{Fe}_{3} \mathrm{O}_{4}}\right)$
B. $\frac{p_{\mathrm{H}_{2}}}{p_{\mathrm{H}_{2} \mathrm{O}}}$
$\left(p_{H_{2}}\right)^{4}$
C.
$\left(p_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}$
D. $\frac{\left(p_{\mathrm{H}_{2}}\right)\left(p_{\left.\mathrm{Fe}_{3} \mathrm{O}_{4}\right)}\right.}{p_{F_{e}}}$

## Answer: C

## - Watch Video Solution

9. a' moles of $\mathrm{PCl}_{5}$ are heated in a closed container to equilibrate $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ at a pressure of p atm. If x moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium , then
A. $0 \cdot 04$
B. $0 \cdot 025$
C. $0 \cdot 02$
D. $0 \cdot 05$

## Answer: A

## - Watch Video Solution

10. The what manner will increase of pressure affect the following equation?
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
A. Shift in the forward direction
B. Shift in the reverse direction
C. Increase in the yield of hydrogen
D. No effect.

## Answer: B

## - Watch Video Solution

11. Formation of $\mathrm{SO}_{3}$ take place according to the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}, \Delta H=-45.2 \mathrm{kcal}$ Which of the following factors favours the formation of $\mathrm{SO}_{3}$ ?
A. Increase in temperature
B. Increase in pressure
C. Removal of oxygen
D. Increase in volume

## Answer: B

12. Le Chatelier's principle is not applicable to
A. $F e(s)+S(s) \Leftrightarrow F_{e} S(s)$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$

## Answer: A::B::C::D

## - Watch Video Solution

13. In which one of the following reactions, the yield of the products decreases by in creasing the pressure ?
A. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
C. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$

## Answer: A:C

## - Watch Video Solution

14. What would happen to a reversible dissociation reaction at equilibrium when an inert gas is added while the pressure remains unchanged ?
A. Less of the product will be formed
B. More of the product will be formed
C. More of thereactants will be fromed
D. It remains unaffected.

## Answer: B

15. The supply of oxygen to the tissues by blood (haemoglobin) can be examined by
A. Boyle's law
B. Le chatelier's principle
C. Dalton's law
D. Charles'law

## Answer: B

## - Watch Video Solution

## CONCEPTUAL QUESTIONS

1. In a chemical reaction under equilibrium , there is no change in moler conertration of products and reactants. Does the reaction stop?
2. Reaction between ethyl acetate and water attains a state of equilibrium in an open vessel but not the decomposition of $\mathrm{CaCO}_{3}$. Explain.

## - Watch Video Solution

3. If concentration are expressed in moles $L^{-1}$ and pressure in atmospheres, what is the ratio of $K_{p} \operatorname{to} K_{c}$ for the reaction, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ ?

## - Watch Video Solution

4. The value of equlibrium constant depends on what?

## - Watch Video Solution

5. The equilibrium constant for the reactions
$\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}$ and (ii)2NO $+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$ are $K_{1}$ and $K_{2}$ respectively, then what will be the equilibrium constant for the reaction
$\mathrm{N}_{2}+2 \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$

## - Watch Video Solution

6. For the reactions, $N_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$. At $400 \mathrm{~K}, \mathrm{~K}_{p}=41 \mathrm{~atm}^{-2}$.

Find the value of $K_{p}$ for each of the following reactions at the same temperature:
(i) $2 \mathrm{NH}_{3(\mathrm{~g})} \Leftrightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$,
(ii) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$,
(iii) $2 \mathrm{~N}_{2(\mathrm{~g})}+6 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NH}_{3(\mathrm{~g})}$

## - Watch Video Solution

7. 

The
equilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(v)$ is attained in a closed container at $40^{\circ} \mathrm{C}$. The aqueous
tension of water at $40^{\circ} \mathrm{C}$ is 23 mm . What is $K_{p}$ for the said equilibrium ?

## - Watch Video Solution

8. The concentration quotient of a reversible reaction is $Q$, and the equilibrium constant is K. What do youconclude if $Q=K(i i) Q>K(i i i) Q<K ?$

## ( Watch Video Solution

9. What does the equilibrium constant K less than 1 indicate?

## - Watch Video Solution

10. What quantiative information can you obtain from the value of the equilibrium constant?
11. In which one of the following reactions, the yield of the product will be maximum ?

$$
2 A+B \Leftrightarrow C, K=10^{-5}, C+2 D \Leftrightarrow E, K=10^{5}, D+3 B \Leftrightarrow f, K=10^{3} .
$$

## - Watch Video Solution

12. 

For
the
reaction
$H_{2}+I_{2} \Leftrightarrow 2 H I$, if intially 25 mL of $H_{2}$ and 20 mL of $I_{2}$ are present ia a container in a container and at equilibrium, 30 mL of HI is foprmed, then calculate equilibrium constant.

## Watch Video Solution

13. 

$\Delta_{r} G^{\circ}=-R T$ In K . For the same reaction at the same temperature using $K_{c}$ and are found to be different. Why ?
14. What happence to the equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$, if nitrogen gas is added to it (i)at constant volume(ii) at constant pressure ? Give reasons.

## - Watch Video Solution

15. What two changes on the equilibrium, $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta H=-92.4 \mathrm{~kJ}$. can keepitsstate undisturbed ?

## - Watch Video Solution

16. The following system is equilibrium : $\mathrm{SO}_{2} \mathrm{Cl}_{2}+\mathrm{Heat} \Leftrightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$

What will happen to the temperature of the system if some $\mathrm{Cl}_{2}$ gas is added at equilibrium

## - Watch Video Solution

17. Areaction $A(g)+B(g) \leftrightarrow 2 C(g)$ is an equlibrium at a certain temperature. Can we increases the amount of products by (i) adding catayst (ii) increasing pressure?

## - Watch Video Solution

18. $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{No}(\mathrm{g}), \Delta H>0$

What will be the effect on equilibrium when
(i) Volume of the vessel increases ? (ii) Temperature decreases ?

## - Watch Video Solution

19. Some process are given below. What happens to the process if it is subjected to a change given in the barckets ?
M.pt
(ii) Dissolution of Ice $\Leftrightarrow$ Water (Pressure is increased )
(ii) Dissolution of NaOH in water ( Temperature is increased)
(iii) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)-180 \cdot 7 \mathrm{~kJ}$ (pressure is increased and temperature is decreased).
20. What is the effect of the reduction of the volume of the system for the equilibrium
$2 C(s)+O_{2}(g) \Leftrightarrow 2 C O(g) ?$

## - Watch Video Solution

21. In the direction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at equilibrium, helium gas is injected into the vessel without disturbing the overall pressure of the system. What will be the effect on the equilibrium ?

## - Watch Video Solution

## NCERT QUESTIONS AND EXERCISES WITH ANSWERS

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will be the final vapour pressure?

## - Watch Video Solution

2. What is $K_{c}$ for the following equilibrium concentration of each substance is:

$$
\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M} \text { and }\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M} ?
$$

$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

## - Watch Video Solution

3. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vaour contain $40 \%$ by volume of iodine atmos $\left[I_{2}(g) \Leftrightarrow 2 I(g)\right]$. Calculate $K_{p}$ for the equilibrium.
4. Write the expression for the equilibrium constant $K_{c}$ for each of the following reactions:
a. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
c. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$
d. $\mathrm{Fe}^{3+}(a q)+3 \mathrm{OH}^{\Theta}(a q) \Leftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
e. $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

## - Watch Video Solution

5. Find out the value of $K_{c}$ for each of the following equilibrium from the value of $K_{p}$ :
a. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{p}=1.8 \times 10^{-2}$ at 500 K
b. $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p}=167$ at 1073 K
6. For the following equilibrium, $K_{c}=6.3 \times 10^{14} a t 1000 \mathrm{~K}$
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is $K_{c}$, for the reverse reaction?

## - Watch Video Solution

7. Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?

## - Watch Video Solution

8. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole}_{2}$ and 0.933 mole of $\mathrm{O}_{2}$ is placed in a reaction vessel of volume $10 l i t r e$ and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ itremol $^{-1}$. Determine the composition of equilibrium mixture.
9. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}$.
When 0.087 mole of NO and 0.0437 mole of $\mathrm{Br}_{2}$ are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

## - Watch Video Solution

10. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$
What is $K_{c}$ at this temperature?

## - Watch Video Solution

11. A sample of $\mathrm{HI}(\mathrm{g})$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $\mathrm{HI}(\mathrm{g})$ is 0.04atm. What is $K_{p}$ for the given equilibrium?
$2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

## - Watch Video Solution

12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of $\mathrm{H}_{2}$ and 8.13 mol of $\mathrm{NH}_{3}$ is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant $K_{c}$ for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is $1.7 \times 10^{2}$. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

## - Watch Video Solution

13. The equilibrium constant expression for a gas reaction is :
$K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.}$

Write the balanced chemical equation corresponding to this expression.

## - Watch Video Solution

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre vessel and heated to 725 K . At equilibrium, 40percent of water (by mass) reacts with carbon monoxide according to the equation,
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \Leftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}$
Calculate the equilibrium constant for the reaction.

## - Watch Video Solution

15. At 700 K equilibrium constant for the reaction, $\mathrm{H}_{2(\mathrm{~g})}+I_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{HI}{ }_{(\mathrm{g})}$ is 54.8 . If 0.5 mollitre ${ }^{-1}$ of $\mathrm{HI}_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $\mathrm{HI}_{(\mathrm{g})}$ and allowed it to reach equilibrium at 700 K .

## - Watch Video Solution

16. What is the equilibrium concentration of each of the substance in the equilibrium when the initial concentration of $I C l$ was 0.78 M ?
$2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14$

## - Watch Video Solution

17. $K_{p}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0atm pressure and allowed to come to equilibrium?

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

## - Watch Video Solution

18. Ethyl accetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as :

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) .
$$

19. A sample of pure $\mathrm{PCl}_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of $\mathrm{PCl}_{5}$ was found to be $0.5 \times 10^{-1}$ mollitre $^{-1}$. If value of $K_{c}$ is $8.3 \times 10^{-3}$ mollitre $^{-1}$. What are the concentrations of $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at equilibrium ?

## - Watch Video Solution

20. One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and $\mathrm{CO}_{2}$.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=0.265$ atm at 1050 K
What are the equilibrium partial pressure of CO and $\mathrm{CO}_{2}$ at 1050 K if the partical pressure are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$ ?

## - Watch Video Solution

21. 

Equilibrium
constant,
$K_{c}$ for the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ at 500 K is $0 \cdot 061$. At a
particular time, the analysis shows that composition of the reaction mixture is $3 \cdot 0 \mathrm{~mol} L^{-1} N_{2}, 2 \cdot 0 \mathrm{~mol} L^{-1} H_{2}$ and $5 \cdot 0 \mathrm{~mol} L^{-1} N H_{3}$. Is the reaction at equilibrium ? If not , in which direction does the reaction tend to reach equilibrium ?

## - Watch Video Solution

22. Bromine monochloride, ( BrCl ) decomposes into bromine and chlorine and reaches the equilibrium.
$2 \mathrm{BrCl}_{(g)} \Leftrightarrow \mathrm{Br}_{2(g)}+\mathrm{Cl}_{2(\mathrm{~g})}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of $3.30 \times 10^{-3}$ mollitre ${ }^{-1}$, what is its molar concentration in the mixture at equilibrium?

## - Watch Video Solution

23. At 1127 K and 1 atm pressure, a gaseous mixture of CO and $\mathrm{CO}_{2}$ in equilibrium with solid carbon has $90.55 \%$ CO by mass:
$C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}$
Calculate $K_{c}$ for the reaction at the above temperature.

## - Watch Video Solution

24. Calculate (a) $\Delta G^{\Theta}$ and (b) the equilibrium constant for the formation of $\mathrm{NO}_{2}$ from NO and $\mathrm{O}_{2}$ at 298 K
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ where

$$
\Delta_{f} G^{\Theta}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}(N O)=87.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}\left(O_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol} .
$$

## - Watch Video Solution

25. Does the number of moles of reaction products increase, decrease or remain same when each of the folllowing equilibria is subjected to a decrease by increasing the volume ?

## - View Text Solution

26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction the reaction to go into forward of backward direction.
a. $\mathrm{COCl}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $\mathrm{CH}_{4}(g)+2 \mathrm{~S}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
c. $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g})$
d. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
e. $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
f. $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

## - Watch Video Solution

27. The equilibrium constant for the following reaction is $1.6 \times 10^{5}$ at 1024K
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K .
28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Write an expression for $K_{-}(p)$ for the above reaction.
b. How will the value of $K_{-}(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

## - Watch Video Solution

29. Decribe the effect of:
a. Addition of $\mathrm{H}_{2}$
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$

## - Watch Video Solution

30. At $473 K$, equilibrium constant $K_{c}$ for decomposition of phosphorus pentachloride, $\mathrm{PCl}_{5}$ is $8.3 \times 10^{-3}$. If decomposition is depicted as, $\operatorname{PCl}_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \Delta_{r} H^{\Theta}=124.0 \mathrm{kJmol}^{-1}$
a. Write an expression for $K_{c}$ for the reaction.
b. What is the value of $K_{c}$ for the reverse reaction at the same temperature?
c. What would be the effect on $K_{c}$ if
i. More $\mathrm{PCl}_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

## - Watch Video Solution

31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of CO and $\mathrm{H}_{2}$. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction,
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of $\mathrm{H}_{2}$ at equilibrium? $K_{p}=0.1$ at $400^{\circ} \mathrm{C}$.

## - Watch Video Solution

32. Predict which of the following reaction will have appreciable concentration of reactants and product
$(a) \mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{Cl}(\mathrm{g}), K_{c}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2}(g)=2 \mathrm{NO}(g) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g}), K_{c}=3 \cdot 7 \times 10^{8}$
(c ) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=1 \cdot 8$
33. 

$\mathrm{K}_{\mathrm{c}}$ for the reaction, $3 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$, is $2 \cdot 0 \times 10^{-50}$ at $25^{\circ} \mathrm{C}$. If the equilibri $K_{c}$ for the reaction, $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$, is $2 \cdot 0 \times 10^{-50}$ at $25^{\circ} \mathrm{C}$. If t What is the concentration of $\mathrm{O}_{3}$ ?

## - Watch Video Solution

34. The reaction, $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, is at equilibrium at 1300 K in a 1 L flask. It also contains $0 * 30 \mathrm{~mol}$ of $\mathrm{CO}, 0^{*} 10 \mathrm{~mol}$ of $\mathrm{H}_{2}$ and $0 \cdot 02 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of $\mathrm{CH}_{4}$ in the flask. Determine the concentration of $\mathrm{CH}_{4}$ in the mixture. The equilibrium constant, $K_{c}$, for the reaction at the given temperature is $3 \cdot 90$.

## - View Text Solution

1. Which measurable property becomes constant in water $\Leftrightarrow$ watervapour equilibrium at constant temperature.

## - Watch Video Solution

2. Give one example of everyday life in which there is gas solution equilibrium .

## ( Watch Video Solution

3. Give one example of a reversible reaction taking place in aqueous solution.

## - Watch Video Solution

4. Write the reversible reaction taking place between ferric ions and thiocyanate ions and write the colour of each reactant and product.
5. 

What
will
$K_{p}$ for the reaction $2 \mathrm{NOCl}(\mathrm{g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at 1000 K ? $K_{c}$ at 1000 K is 3.

## - Watch Video Solution

6. Under what condition, a reversible process becomes irreverible?

## - Watch Video Solution

7. What is the effect on equilibrium and on the value of equilibrium constant on adding catalyst ?

## - Watch Video Solution

8. If the equilibrium constant for a reaction is $4 \cdot 0$, what will be the equilibrium constant for the reverse reaction.
A. 1
B. 4
C. 0.25
D. 25

## Answer: C

## - Watch Video Solution

9. Write the expression for equilibrium constant $K_{p}$ for the reaction,
$3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$.

## ( Watch Video Solution

10. What is van't Hoff reaction isotherm ?

## - Watch Video Solution

11. What happens to the disociation of $\mathrm{PCl}_{5}$ in a closed vassel if helium gas is introduced into it at the same temperature?

## - Watch Video Solution

12. What happens when potassium ferrocyanide solution is added to a ferric salt solution?

## - Watch Video Solution

13. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in this equilibrium system if the pressure is increased at $25^{\circ} \mathrm{C}$ then the value of K will

## - Watch Video Solution

14. What are the conditions for getting maximum yield of $\mathrm{NH}_{3}$ by Haber's process?

## ADDITIONAL QUESTIONS (SHORT ANSWER QUESTIONS)

1. What do you understand by term 'Equilibrium' ? Explain physical equilibrium with one suitable example.

## - Watch Video Solution

2. Give one example of each of the following equilibria :
(i) Solid - Liquid Equilibria (ii) Liquid - Gas Equilibrium (iii) Solid - Solutions

Equilibrium

## - Watch Video Solution

3. Define the terms ' Vapour pressure and 'Solubility'.
4. Define Henry Law. Why the gas fizzes out when a soda water bottle is opened?

## - Watch Video Solution

5. What do you understand by Reversible and Irreversible reactions? Illustrate your answer with two examples of each. Under what conditions a reversible reaction becomes irreversible ?

## - Watch Video Solution

6. What do you understand by chemical equilibrium? Explain with one suitable example.

## - Watch Video Solution

7. List any four important characteristics of a chemical equilibrium.
8. State and explain the Law of Mass Action.

## - Watch Video Solution

9. State and explain the 'Law of Chemical Equilibrium.'

## - Watch Video Solution

10. Derive a general expression for the equilibrium constant.

## - Watch Video Solution

11. What do you understand by $K_{c}$ and $K_{p}$ ? Derive a relationship between them.
12. $K_{p}$ and $K_{c}$ are related by $K_{p}=K_{c}(R T)^{\Delta n}$. Under what practical condition $/ \mathrm{s}, K_{p}=K_{c}$ ?

## - Watch Video Solution

13. Characteristics of Equilibrium constant continued..

## - Watch Video Solution

14. Discuss the effect of temperature of the equilibrium constant. How does it change for (a) exothermi reaction (b) endothermic reaction © reaction having zero heat of reaction?

## - Watch Video Solution

15. Define 'Homogeneous Equlibria and Heterogeneous Equilibria'. Give two examples of each of them.
16. Applying the law of chemical equilibrium, explain why vapour pressure of water is constant at constant temperature.

## - Watch Video Solution

17. Why strictly speaking equilibrium constant has no units ?

## - Watch Video Solution

18. How does the magnitude of equilibrium constant give an idea of the relative amounts of the reactants and products ?
19. Write the relationship between standard free energy change and equilibrium constant of a reaction. Express it in the exponential form. Using this relation how does + or $-\operatorname{signof} \Delta G$ decided the extent of reaction in the forward direction?

## - Watch Video Solution

20. What is the effect of adding a catalyst on a reaction which is (a) in equilibrium (b) not in equilibrium ?

## - Watch Video Solution

21. What is the effect of adding 1 mole of $\mathrm{He}(\mathrm{g})$ to a flask containing $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and $\mathrm{SO}_{3}$ in equilibrium at constant temperature ?

## - Watch Video Solution

22. For the reaction at equilibrium, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ Heat, indicate the direction in which the equilibrium will shift when the following changes are made :
(i) Temperature of the system is decreased
(ii) Total pressure is decreased
(iii) Volume of the container is increased (iv) A catalyst is added.

## - Watch Video Solution

23. Consider the following reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=58.6 \mathrm{KJ}$
What will be the effect of the following changes on the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium?
(i) Increasing the pressure (ii) Increasing the temperature
(iii) Increasing the volume
(iv) Adding more $\mathrm{NO}_{2}(\mathrm{~g})$ to the system without changing temperature and pressure (v) Adding catalyst.
24. What will be the effect of increased pressure on the following equilibria?
(i) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(iii) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$,
(iv) $2 \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
(v) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

## - Watch Video Solution

25. Using Le chatelier's principle , predict the effect of
(i) decreasing the temperature and (ii) increasing the pressure on each of the following equilibria :
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ Heat B. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+$ Heat
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ Heat $\Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ D. $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+$ Heat
26. In the reaction equilibrium , $A+B \Leftrightarrow C+D$, what will happen to concentration of $A, B$ and $D$ if the concentration of $C$ is increased ?

## - Watch Video Solution

27. Mention at least three ways which the concentration of $\mathrm{SO}_{3}$ can be increased after the equilibrium is establish in the reaction : $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}+$ Heat

## - Watch Video Solution

28. Why does manufacture of ammonia by Haber's process require higher pressure, low temperature, use of catalyst and pure gases ?

## - Watch Video Solution

1. Why is there a fizz when a soda water bottle is opened?

## - Watch Video Solution

2. For an exothermic reaction, what happens to the equilibrium constant if temperature is raised?

## - Watch Video Solution

3. The equilibrium constant of a reaction is $2 \times 10^{-3}$ at $25^{\circ} \mathrm{C}$ and $2 \times 10^{-2}$ at $50^{\circ} \mathrm{C}$. Is the reaction exothermic or endothermic?

## - Watch Video Solution

4. Why is equilibrium constant related to standard free energy change and not free energy change ?
5. The following reaction has attained equilibrium

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \cdot \Delta H^{\circ}=-92.0 \mathrm{KJmol}^{-1}
$$

What will happen if
(i) Volume of the reaction vessel is suddenly reduced to half?
(ii) the partial pressure of hydrogen is suddenly doubled?
(iii) an inert gas is added to the system at constant volume.

## - Watch Video Solution

6. Why does ice melt showly at higher altitudes?

## - Watch Video Solution

7. Show that degree of dissociation ( $\alpha$ ) for the dissociation of $P C l_{5}$ into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ at pressure P is given by $\alpha=\left[\frac{k p}{P+k p}\right]^{1 / 2}$
8. At temperature T , a compound $A B_{2}(g)$ dissociation according to the reaction, $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$ with degree of dissociation, $\alpha$, which is small compared to unity. Deduce the expression for $\alpha$ in terms of the equilibrium constant $K_{p}$ and the total pressure P .

## - Watch Video Solution

9. Prove that the pressure necessary to obtain $50 \%$ dissociation of $\mathrm{PCl}_{5}$ at 500 K is numerically three times the value of $K_{p}$.

## - Watch Video Solution

## ANALYTICAL QUESTIONS AND PROBLEMS WITH ANSWER/SOLUTIONS (PROBLEMS)

1. The equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ at $100^{\circ} \mathrm{C}$ is 50 . If a one litre flask containing one mole of $A_{2}$ is connected to a two litre flask containing two moles of $B_{2}$, how many moles of $A B$ will be formed at $373 K$ ?

## - Watch Video Solution

2. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ gases is maintained in a 10 L flask at a temperature at which the equilibrium constant for the reaction is 100 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. If the number of moles of $\mathrm{SO}_{2}$ and $\mathrm{SO}_{3}$ in the flask are equal. How many moles of $\mathrm{O}_{2}$ are present?
b. If the number of moles of $\mathrm{SO}_{3}$ in flask is twice the number of moles of $\mathrm{SO}_{2}$, how many moles of oxygen are present?

## - Watch Video Solution

3. The equilibrium constant $K_{p}$ of the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining $\mathrm{SO}_{3}$ and $\mathrm{O}_{2}$ having initial pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at 800 K at equilibrium.

## - Watch Video Solution

4. When sulphur in the form of $S_{8}$ is heated at $900 K$, the initial pressure of 1 atm falls by $10 \%$ at equilibrium. This is because of conversion of some $S_{8}$ to $S_{2}$. Find the value of equilibrium constant for this reaction.

## - Watch Video Solution

5. $\mathrm{K}_{\mathrm{c}}$ for $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ at $986^{\circ} \mathrm{C}$ is 0.63 . A mixture of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ is allowed to react to come to an equilibrium. The equilibrium pressure is 2.0 atm .
a. Hoe many moles of $H_{2}$ are present at equilibrium ?
b. Calculate partial pressure of each gas at equilibrium.

## - Watch Video Solution

6. Calculate the percent dissociation of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ if 0.1 mol of $\mathrm{H}_{2} \mathrm{~S}$ is kept in $0.4 L$ vessel at $1000 K$. For the reaction:
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})$
The value of $K_{c}$ is $1.0 \times 10^{-6}$

## - Watch Video Solution

7. At some temperature and under a pressure of $4 \mathrm{~atm}, P C l_{5}$ is $10 \%$ dissociated. Calculated the pressure at which $P C l_{5}$ will be $20 \%$ dissociated temperature remaining same.

## - Watch Video Solution

8. An equilibrium mixture $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ present in a vessel of one litre capacity at 1000 K was found to contain0 $\cdot 4$ mole of CO , $0 \cdot 3$ mole of $\mathrm{H}_{2} \mathrm{O}, 0 \cdot 2$ mole of $\mathrm{CO}_{2}$ and $0 \cdot 6$ mole of $\mathrm{H}_{2}$. If it is desired to increase the concentration of CO to $0 \cdot 6$ mole by adding $\mathrm{CO}_{2}$ into the vessel, how many moles of it must be added into equilibrium mixture at constant temperature in order to get this change?

## - Watch Video Solution

9. At $540 \mathrm{~K}, 0.10 \mathrm{~mol}$ of $\mathrm{PCl}_{5}$ is heated in a 8 L flask. The pressure of equilibrium mixture is found to be 1.0atm. Calculate $K_{p}$ and $K_{c}$ for the reaction.

## - Watch Video Solution

10. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a two-litre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate $K_{c}$ and $K_{p}$ for the reaction at $27^{\circ} \mathrm{C}$. (ii)

What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

## - Watch Video Solution

11. For
the
reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), K_{p}=1 \cdot 16 \mathrm{~atm}$. If $20 \cdot 0 \mathrm{~g}$ of $\mathrm{CaCO}_{3}$ is heated $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p}=1 \cdot 16 \mathrm{~atm}$. If $20 \cdot 0 \mathrm{~g}$ of CaCC would remain unreached at equilibrium ? ( Mol. wt. of $\mathrm{CaCO}_{3}=100, R$

## - Watch Video Solution

12. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$.
In a closed vessel, solid ammonium carbonate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the partial pressure of $\mathrm{NH}_{3}$ at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that
of original total pressure. Also find the partial pressure of ammonia gas added.

## - Watch Video Solution

13. Some solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in flask containing 0.5 atm of $\mathrm{NH}_{3}$. What would be the pressure of $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$ when equilibrium is reached.
$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{g}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \mathrm{K}_{p}=0.11$

## Watch Video Solution

14. The degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into $\mathrm{NO}_{2}$ at 1 atm $40^{\circ} \mathrm{C}$ is 0.310 .

Calculate its $K_{p}$ at $40^{\circ} \mathrm{C}$. Also report the degree of dissociation at 10 atm pressure at same temperature.

## - Watch Video Solution

15. When $\alpha-D$ glucose is dissolved in water, it undergoes a partial converion to $\beta-D$ glucose to exhibit mutarotation. This conversion stops when 63.6 \% of glucose is in $\beta$ form. Assuming that equilibrium has been attained, calculate $K_{c}$ for mutarotation.

## - Watch Video Solution

16. At $77^{\circ} \mathrm{C}$ and one atmospheric pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is $70 \%$ dissociated into $\mathrm{NO}_{2}$ What will be the volume occupied by the mixture under these conditions if we start with 10 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ ?

## - Watch Video Solution

17. 0.1 mole of $N_{2 O_{4}(g)}$ was sealed in a tude under one atmospheric conditions at $25^{\circ} \mathrm{C}$ Calculate the number of moles of $\mathrm{NO}_{2}(\mathrm{~g})$ preesent, if the equilibrium $N_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)\left(K_{P}=0.14\right)$ is reached after some time :
18. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P \mathrm{Pl}_{3}+\mathrm{Cl}_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm (relative atomic mass of P is 31.0 and Fl is 35.5).

## - Watch Video Solution

19. One mole of $\mathrm{H}_{2}$, two moles of $I_{2}$ and three moles of HI are injected in a litre flask. What will be the concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium at $490^{\circ} \mathrm{C}$ ?

The equiibrium constant for the reaction at $490^{\circ}$ is 45.9

## ( Watch Video Solution

20. A mixtue of $\mathrm{H}_{2}$ and $I_{2}$ (vapour) in molecular proportion of 2: 3 was heated at $449^{\circ} \mathrm{C}$ till the reaction $\mathrm{H}_{2}+\mathrm{I}_{2} \Leftrightarrow 2 \mathrm{HI}$ reached equilibrium state . Calculate the percentage of iodine converted into $H I\left(K_{c}\right.$ at440 ${ }^{\circ} \mathrm{C}$ is $\left.0 \cdot 02\right)$.

## - Watch Video Solution

## Competition Focus (Jee(Main and advanced)/Medical Entrance) I. MULTIPLE CHOICE QUESTIONS (with one correct answer)

1. The vapour pressure of a liquid in a closed container depends upon
A. depandes upon the amount of the liquid taken $s$
B. Keeps on increasing continously as more and more liquid evaporates
C. has a constant value depending only on the nature of the liquid
D. had a constant value at constant temperature

## D Watch Video Solution

2. For the synthesis of ammonia by the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber's process ,the attainment of equilibrium is correctly predicated bt the curve
A.

B.

C.

D.


## Answer: A

## Watch Video Solution

3. For the reversible reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
at $500^{\circ} \mathrm{C}$, the value of $K_{p}$ is $1.44 \times 10^{-5}$ when the partial pressure is measured in atmosphere. The corresponding value of $K_{c}$ with concentration in $\mathrm{mol}^{-1}$ is
A. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 500)^{-2}$
B. $1 \cdot 44 \times 10^{-5} /(8 \cdot 314 \times 773)^{-2}$
C. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 773)^{2}$
D. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 7773)^{-2}$

## Answer: D

## - Watch Video Solution

4. The temperature at which $K_{c}$ and $K_{p}$ will have the same value for the equilibrium ,
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is
A. 0 K
B. 273 K
C. 1 K
D. 12.18 K

## Answer: D

5. The pressure at which equilibrium constant in terms of pressures is found to be equal to that in terms of mole fraction for the equilibrium,

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

A. 10 atm
B. 1 atm
C. $0 \cdot 1 \mathrm{~atm}$
D. 2 atm

## Answer: B

## - Watch Video Solution

6. White solid balls of naphthalene $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)$ used as moth balls were kept in a closed container at room temperature $\left(27^{\circ} \mathrm{C}\right)$. The vapour pressure above the balls was found to be 0.10 mm Hg . The value of $K_{c}$ for the sublimation equilibrium,
$\mathrm{C}_{10} \mathrm{H}_{8}(\mathrm{~s}) \Leftrightarrow \mathrm{C}_{10} \mathrm{H}_{8}(v)$ is
A. $1 \cdot 32 \times 10^{-4}$
B. $5 \cdot 36 \times 10^{-6}$
C. $3 \cdot 4 \times 10^{-7}$
D. $0 \cdot 10$

## Answer: B

## - Watch Video Solution

7. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$, If $K_{p}=K_{c}(R T)^{x}$ where the symbols have usual meaning then, the value of x is (assuming ideality).
A. 1
B. -1
C. $-\frac{1}{2}$
D. $\frac{1}{2}$
8. For the reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{CI}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{COCI}_{2}(\mathrm{~g})$
$K_{p} / K_{c}$ is equal to
A. $\sqrt{R T}$
B. RT
C. $\frac{1}{R T}$
D. $1 \cdot 0$

## Answer: C

## - Watch Video Solution

9. The equilibrium constant $K_{p}$ for the reaction $\mathrm{H}_{2}(g)+I_{2}(g) \Leftrightarrow 2 \mathrm{HI}(g)$ changes if:
A. total pressure
B. temperature
C. catalyst
D. amount of $\mathrm{H}_{2}$ and $I_{2}$ present

## Answer: B

## - Watch Video Solution

10. Given : $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}=3 \cdot 5 \times 10^{33}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}=6 \cdot 7 \times 10^{16}$
$2 \mathrm{NO}(\mathrm{g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}=2 \cdot 2 \times 10^{30}$
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}+1 \cdot 2 \times 10^{34}$
Which oxide of nitrogen is most stable?
A. $\mathrm{N}_{2} \mathrm{O}$
B. $\mathrm{NO}_{2}$
C. NO
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

## Answer: B

## - Watch Video Solution

11. The equilibrium constant for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
at temperature T is $4 \times 10^{-4}$.
The value of $K_{c}$ for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. $50 \cdot 0$
B. $0 \cdot 02$
C. $2 \cdot 5 \times 10^{2}$
D. $4 \times 10^{-4}$

## Watch Video Solution

12. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , the equilibrium
constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be
A. $\frac{1}{2} K$
B. K
C. $K^{2}$
D. $K^{1 / 2}$

## Answer: D

## - Watch Video Solution

13. Consider the following gaseous equilibria with equilibrium constant $K_{1} \operatorname{and} K_{2}$
$\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}), 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constant are related as :
A. $K_{1}^{2}=\frac{1}{K_{2}}$
B. $2 k_{1}=K_{2}^{2}$
C. $K_{2}=\frac{2}{K_{1}^{2}}$
D. $K_{2}^{2}=\frac{1}{K_{1}}$

## Answer: A

## - Watch Video Solution

14. The following equilibria are given by :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant of the reaction $2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of $K_{1}, K_{2}$ and $K_{3}$ is
A. $K_{1} K_{3}^{3} / k_{2}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3} / K_{1}$
D. $K_{2}^{3} K_{3} / K_{1}$

## Answer: B

## - Watch Video Solution

15. For the chemical equilibrium,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$\Delta_{r} H^{\ominus}$ can be determined from which one of the following plots?



## Answer: A

## - Watch Video Solution

16. A schematic plot of $\operatorname{In} K_{e q}$ versus inverse of temperature for a reaction is shown below :


The reaction must be
A. exothermic
B. endothermic
C. one with negliable enthalpy change
D. highly spontaneous at ordianary temperature

## Answer: A

17. The variation of equilibrium constant ( $K$ ) with temperature ( $T$ ) was stupied by plotting $\log \mathrm{K}$ versus $1 / \mathrm{T}$ The plot obtained is shown iin the Fig . Hence, enthalpy change $\left(\Delta H^{\circ}\right)$ of the reaction is

A. +2 cal
B. -2 cal
C. +4.606 cal
D. -4.606 cal

## Answer: D

## - Watch Video Solution

18. In the preparation of CaO from $\mathrm{CaCO}_{3}$ using the equilibrium,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
$K_{p}$ is expressed as
$\log K_{p}=7.282-\frac{8500}{T}$
For complete decomposition of $\mathrm{CaCO}_{3}$, the temperature in celsius to be used is:
A. 1167
B. 894
C. 8500
D. 850

## Answer: B

19. For a given exothermic reaction,$K_{p}$ and $k_{p}^{\prime}$ are the equilibrium constants at temperatures $T_{1}$ and $T_{2}$ respectively. Assuming that heat of reaction is constant in temperature range between $T_{1}$ and $T_{2}$, it is readily observed that
A. $K_{p}>K_{p}{ }^{\prime}$
B. $K_{p}<K_{p}{ }_{p}$
C. $K_{p}=K_{p}^{\prime}$
D. $K_{p}=\frac{1}{K_{p}^{\prime}}$

## Answer: A

## - Watch Video Solution

20. If the value of equilibrium constant for a particular reaction is
$1.6 \times 10^{12}$, then art equilibrium the system will contain
A. mostly products
B. similar amounts of reactants and products
C. all reactants
D. mostly reactants

## Answer: A

## - Watch Video Solution

21. An aqueous solution contains $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$ and 0.20 M HCl . If the equilibrium constants for the formation of HS from HS is $1.0 \times 10^{-7}$ and that of $\mathrm{S}^{2-}$ ? from $\mathrm{HS}^{-}$ions is $1.2 \times 10^{-7}$ then the concentration of $\mathrm{S}^{2-}$ ions in aqueous solution is
A. $5 \times 10^{-8}$
B. $3 \times 10^{-20}$
C. $6 \times 10^{-21}$
D. $5 \times 10^{-19}$

## - Watch Video Solution

22. The following equilibrium constants are given :
$\mathrm{N}_{2}+3 \mathrm{H}_{3} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant for the oxidation of $\mathrm{NH}_{3}$ by oxygen to give NO is :
A. $K_{1} K_{2} / K_{3}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3}^{2} / K_{1}$
D. $K_{2}^{2} K_{3} / K_{1}$

## Answer: B

23. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are $1.5 \times 10^{-5}$ and $4.5 \times 10^{-10}$, respectively. The equilibrium constant for the equilibirum $\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. $3.0 \times 10^{-5}$
B. $3.0 \times 10^{-4}$
C. $3.0 \times 10^{4}$
D. $3.0 \times 10^{5}$

## Answer: C

## - Watch Video Solution

24. Consider the following reactions in which all the reactants and the products are in gasous state

$$
2 P Q \Leftrightarrow P_{2}+Q_{2}, K_{1}=2.5 \times 10^{5}
$$

$$
P Q+\frac{1}{2} R_{2} \Leftrightarrow P Q R, K_{2}=5 \times 10^{-3}
$$

The value of $K_{3}$ for the equilibrium
$1 / 2 P_{2}+1 / 2 Q_{2}+1 / 2 R_{2} \Leftrightarrow P Q R$, is
A. $2.5 \times 10^{-3}$
B. $2.5 \times 10^{3}$
C. $1.0 \times 10^{-5}$
D. $5 \times 10^{3}$

## Answer: C

## - Watch Video Solution

25. Partial pressure of $\mathrm{O}_{2}$ in the reaction
$1 / 2 P_{2}+1 / 2 Q_{2}+1 / 2 R_{2} \Leftrightarrow P Q R$,
A. $K_{p}$
B. $\sqrt{K_{p}}$
C. $\sqrt[3]{K_{p}}$
D. $2 K_{p}$

## Answer: A

## - View Text Solution

26. Mercurous chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$, in a saturated solution has the equilibrium called solubility equilibrium . The equilibrium constant for this solubility equilibrium will be
A. $\left[\mathrm{Hg}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
B. $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}$
c. $\left[\mathrm{Hg}_{2}^{2} \cdot{ }^{+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
D. $2\left[\mathrm{Hg}^{+}\right] \times 2\left[\mathrm{Cl}^{-}\right]$

## Answer: C

## - Watch Video Solution

27. In a reaction $A+2 B \Leftrightarrow 2 C, 2.0$ moles of ' $A$ ' 3 moles of ' $B$ ' and 2.0 moles of ' C ' are placed in a 2.0 L flask and the equilibrium concentration of ' C ' is $0.5 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant $(\mathrm{K})$ for the reaction is
A. 0.073
B. 0.147
C. 0.05
D. 0.026

## Answer: C

## - Watch Video Solution

28. 500 ml vessel contains 1.5 M each of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D at equlibrium. If 0.5 M each of $C$ and $D$ are taken out, the value of $K_{c}$ for $A+B \Leftrightarrow C+D$ will be
A. 1.0
B. $1 / 9$
C. $4 / 9$
D. $8 / 9$

## Answer: A

## - Watch Video Solution

29. When two reactants, $A$ and $B$ are mixed to give products $C$ and $D$, the reaction quotient $Q$, at the initial stages of the reaction.
A. is zero
B. decreases with time
C. is independent of time
D. increases with time.

## Answer: D

30.9.2 grams of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$. At equilibrium, $50 \% N_{2} O_{4(g)}$ is dissociated. What is the equilibrium constant (in mol litre ${ }^{-1}$ ) (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$ ) ?
A. 0.1
B. 0.2
C. 0.4
D. 2

## Answer: B

## - Watch Video Solution

31. Calculate the partial pressure of carbon monoxide from the following data :
$\mathrm{CaCO}_{3} \stackrel{\Delta}{\Leftrightarrow} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2} \uparrow, \mathrm{~K}(\mathrm{p})=8 \times 10^{-2}$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \Leftrightarrow 2 \mathrm{CO}(\mathrm{g}), \mathrm{K}_{p}=2$
A. $0 \cdot 2$
B. $0 \cdot 4$
C. $1 \cdot 6$
D. 4

## Answer: B

## - Watch Video Solution

32. The equilibrium:
$P_{4}(g)+6 C l_{2}(g) \Leftrightarrow 4 \mathrm{PCl}_{3}(g)$
is attained by mixing equal moles of $P_{4}$ and $C l_{2}$ in an evacuated vessel.
Then at equilibrium:
A. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{PCl}_{3}\right]$
B. $\left[\mathrm{Cl}_{2}\right]>\left[P_{4}\right]$
C. $\left[P_{4}\right]>\left[\mathrm{Cl}_{2}\right]$
D. $\left[\mathrm{PCl}_{3}\right]<\left[\mathrm{P}_{4}\right]$

## Answer: C

## - Watch Video Solution

33. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure.Ammonium hydrogen sulphide decomposes to yield $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask.When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm ? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is :
A. 0.30
B. $0 \cdot 18$
C. $0 \cdot 17$
D. $0 \cdot 11$

## Answer: D

34. $A+B \Leftrightarrow C+D$. If finally the concentrations of $A$ an $d B$ are both equal but at equilibrium concentration of $D$ will be twice of that of $A$ then what will be the equilibrium constant of reaction.
A. $4 / 9$
B. $0 \cdot 18$
C. $0 \cdot 17$
D. $0 \cdot 11$

## Answer: D

## - Watch Video Solution

35. The equilibrium constant at 298 K for a reaction, $A+B \Leftrightarrow C+D$ is 100 . If the initial concentrations of all the four species were 1 M each, then equilibirum concentration of $D$ (in $\mathrm{mol}^{-1}$ ) will be

$$
\text { A. } 0 \cdot 182
$$

B. $0 \cdot 818$
C. $1 \cdot 818$
D. $1 \cdot 182$

## Answer: C

## - Watch Video Solution

36. $\mathrm{NH}_{4} \mathrm{COONH}_{2}(\mathrm{~s}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})$ If equilibrium pressure is 3 atm for the above reaction, then $K_{p}$ for the reaction is
A. 4
B. 27
C. $4 / 27$
D. $1 / 27$

## Answer: A

37. The equilibrium pressure for the reaction $\mathrm{MSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \Leftrightarrow \mathrm{MSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $\pi / 4 \mathrm{~atm}$ at 400 K . The $K_{p}$ for the giver is
A. $\pi^{2} / 4$
B. $\pi / 6$
C. $\pi^{2} / 16$
D. $\frac{\pi}{16}$

## Answer: C

## - Watch Video Solution

38. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x moles /litres of hydrogen is consummed at equilibrium , the correct expression of $K_{p}$ is :
A. $\frac{x^{2}}{(1-x)^{2}}$
B. $\frac{(1+x)^{2}}{(1-x)^{2}}$
C. $\frac{x^{2}}{(2+x)^{2}}$
D. $\frac{x^{2}}{(1-x)^{2}}$

## Answer: A

## - Watch Video Solution

39. A mixture of nitrogen and hydrogen in the ratio of $1: 3$ reach equilibrium with ammonia, when $50 \%$ of the mixture has reacted. If the total pressure is $P$, the partial pressure of ammonia in the equilibrium mixture was:
A. $P / 2$
B. $P / 3$
C. $P / 4$
D. $P / 6$

## - Watch Video Solution

40. For the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I, K=47.6$. If the initial number of moles of each reactant and product is 1 mole then at equilibrium
A. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]>[H I]$
B. $\left[I_{2}\right]<\left[H_{2}\right],\left[I_{2}\right]=[H I]$
C. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]<[H I]$
D. $\left[I_{2}\right]>\left[H_{2}\right],\left[I_{2}\right]=[H I]$

## Answer: C

## D Watch Video Solution

41. The equilibrium constant $\left(K_{p}\right)$ for the decomposition of gaseous $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g)$
is related to the degree of dissociation $\alpha$ at a total pressure P by
A. $K_{p}=\frac{\alpha^{3} p^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
B. $K_{p}=\frac{\alpha^{3} p^{3 / 2}}{(1-\alpha)(2+\alpha)}$
C. $K_{p}=\frac{\alpha^{3 / 2} p^{2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
D. $K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$

## Answer: D

## - Watch Video Solution

42. a' moles of $\mathrm{PCl}_{5}$ are heated in a closed container to equilibrate $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at a pressure of p atm. If x moles of $\mathrm{PCl}_{5}$ dissociate at equilibrium , then
A. $\frac{x}{a}=\left(\frac{K_{p}}{p}\right)^{1 / 2}$
B. $\frac{x}{a}=\frac{K_{p}}{K_{p}+p}$
C. $\frac{x}{a}=\left(\frac{K_{p}}{K_{p}+p}\right)^{1 / 2}$
D. $\frac{x}{a}=\left(\frac{K_{p}+p}{K_{p}}\right)^{1 / 2}$

## Answer: C

## ( Watch Video Solution

43. If the concentration of $\mathrm{OH}^{-}$ions in the reaction
$\mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{Fe}^{3+}$ (aq. $)+3 \mathrm{OH}^{-}($aq. $)$
is decreased by $1 / 4$ times, then the equilibrium concentration of $\mathrm{Fe}^{3+}$ will increase by
A. 8 times
B. 16 times
C. 64 times
D. 4 times

## Answer: C

## D Watch Video Solution

44. The dissociation equilibrium of a gas $A B_{2}$ can be represented as, $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$. The degree of disssociation is ' $x$ ' and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant $k_{p}$ and total pressure P is
A. $\left(2 K_{p} / P\right)$
B. $\left(2 K_{p} / P\right)^{1 / 3}$
C. $\left(2 K_{p} / P\right)^{1 / 2}$
D. $\left(K_{p} / P\right)$

## Answer: B

## D Watch Video Solution

45. Equimolar concentrations of $\mathrm{H}_{2}$ and $I_{2}$ are heated to equilibrium in a 2 L flask. At equilibrium, the forward and backward rate constants are found to be equal. What percentage of initial concentration of $\mathrm{H}_{2}$ has reached at equilibrium ?
A. $33 \%$
B. $66 \%$
C. $50 \%$
D. 40 \%

## Answer: C

## - Watch Video Solution

46. 5 moles of $\mathrm{SO}_{2}$ and 5 moles of $\mathrm{O}_{2}$ are allowed to react .At equilibrium, it was foumnd that $60 \%$ of $\mathrm{SO}_{2}$ is used up .If the pressure of the equilibrium mixture is one aatmosphere, the parital pressure of $O_{2}$ is :
A. $0 \cdot 52 \mathrm{~atm}$
B. $0 \cdot 21$ atm
C. $0 \cdot 41$ atm
D. $0 \cdot 82 \mathrm{~atm}$

## Answer: C

## - Watch Video Solution

47. Consider thr reaction where $K_{p}=0.497$ at 500 K
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the htree gasses are mixed in a right container so that the partial pressure of each gas in initially 1 atm ,then which is correct observation ?
A. More $\mathrm{PCl}_{5}$ will be produced
B. More $\mathrm{PCl}_{3}$ will be produced
C. Equilibrium will be established when $50 \%$ of the reaction is complete
D. None of the above

## Answer: A

## - Watch Video Solution

48. The reaction,
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+D(g)$
is begun with the concentration of $A$ and $B$ both at an intial value of 1.00
$M$. When equilibrium is reached, the concentration of $D$ is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression:
A. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(1.00)^{2}(1.00)\right]$
B. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 50)^{2}(0 \cdot 75)\right]$
C. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 50)^{2}(0 \cdot 75)\right]$
D. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 75)^{2}(0 \cdot 25)\right]$

## Answer: B

## - Watch Video Solution

49. For the reaction, $A B(g) \Leftrightarrow A(g)+B(g), A B$ is $33 \%$ dissociated at a total pressure of ' p ' Therefore, ' p ' is related to $K_{p}$ by one of the following options
A. $P=K_{p}$
B. $P=3 K_{p}$
C. $P=4 K_{p}$
D. $P=8 K_{p}$

## Answer: D

## - Watch Video Solution

50. A vessel at 1000 K contains $\mathrm{CO}_{2}$ with a pressure of 0.5 atm . Some of the $\mathrm{CO}_{2}$ is converted to CO on addition of graphite. Calculate the value of K , if the total pressure at equilibrium is 0.8 atm.
A. 3 atm
B. $0 \cdot 3 \mathrm{~atm}$
C. $0 \cdot 18 \mathrm{~atm}$
D. 1-8 atm

## Answer: D

## - Watch Video Solution

51. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g}), k_{p}=63 \mathrm{~atm}$ at 100 K . If at equilibrium $p_{\mathrm{CO}}=10 p_{\mathrm{CO}_{2}}$ then the total pressure of the gases at equilibrium is
A. $6 \cdot 3 \mathrm{~atm}$
B. $6 \cdot 93 \mathrm{~atm}$
C. $0 \cdot 63 \mathrm{~atm}$
D. $0 \cdot 693 \mathrm{~atm}$

## Answer: B

## - Watch Video Solution

52. In the reaction $A B(g) \Leftrightarrow A(g)+B(g)$ at $30^{\circ} C$, $k_{p}$ for the dissociation equilibrium is $2.56 \times 10^{-2} \mathrm{~atm}$. If the total pressure at equilibrium is 1 atm , then the percentage dissociation of $A B$ is
A. 0.87
B. 0.13
C. $43 \cdot 5 \%$
D. 0.06

## ( Watch Video Solution

53. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(g)$ at pressure 0.4 atm and an excess of SrO (neglect the volume of slid SrO ). The volume of the
container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of $\mathrm{CO}_{2}$ attains its maximum value, will be
[Given that: $\left.\mathrm{SrCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{Kp}=1.6 \mathrm{~atm}\right]$
A. 5 litre
B. 10 litre
C. 4 litre
D. 2 litre

## Answer: A

## - Watch Video Solution

54. Which of the following statement is correct for a reversible process in a state of equilibrium ?
A. $\Delta G^{\circ}=-2 \cdot 30 R T \log K$
B. $\Delta G^{\circ}=2 \cdot 30 R T \log K$
C. $\Delta G=-2 \cdot 30 R \log K$
D. $\Delta G=230 R T \log K$

## Answer: A

## - Watch Video Solution

55. The standard Gibbs energy change at 300 K for the reaction $2 A \Leftrightarrow B+C$ is 2494 . $2 J$. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the $(R=8.314 J K / \mathrm{mole}=2.718)$
A. Forward direction because $Q>K_{c}$
B. Reverse direction because $Q>K_{c}$
C. Forward direction because $Q<K_{C}$
D. Reverse direction because $Q<K_{c}$

## Answer: B

56. Choose the equilibrium that is not influenced by pressure
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
B. $\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$

## Answer: D

## - Watch Video Solution

57. The reaction, $\mathrm{SO}_{2}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}$ is exothermic and reversible. A mixture of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is at equilibrium in a closed container . Now a certain quantity of extra $\mathrm{SO}_{2}$ is introduced into the container, the volume remaining the same. Which of the following is / are/ true ?
A. The pressure inside the container will not change
B. The temperature will not change
C. The temperature will increases
D. The temperature will decrease.

## Answer: C

## - Watch Video Solution

58. Consider the following equilibrium in a closed container
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements hold true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation ( $\alpha$ )?
A. neither $K_{p}$ nor $\alpha$ changes
B. both $K_{p}$ and $\alpha$ change
C. $K_{p}$ changes but $\alpha$ does not change
D. $K_{p}$ does not change but $\alpha$ changes

## Answer: D

## - Watch Video Solution

59. Given reaction is $2 X_{(\text {gas })}+Y_{(\text {gas })} \Leftrightarrow 2 Z_{(\text {gas })}+80$ Kcal

Which combination of pressure and temperature gives the highest yield of $Z$ at equilibrium ?
A. 1000 atm and $200^{\circ} \mathrm{C}$
B. 500 atm and $500^{\circ} \mathrm{C}$
C. 500 atm and $200^{\circ} \mathrm{C}$
D. 500 atm and $100^{\circ}$

## Answer: A

## - Watch Video Solution

60. The following two reactions:
i. $P C l_{5}(g) \Leftrightarrow$ PCl $_{3}(g)+\mathrm{Cl}_{2}(g)$
(ii) $\mathrm{COCl}_{2}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{Cl}_{2}(g)$
are simultaneously in equilibrium in a container at constant volume. A few moles of $C O(g)$ are later introduced into the vessel. After some time, the new equilibrium concentration of
A. $P C l_{5}$ will increases
B. $P C l_{5}$ will remain unaffected
C. $\mathrm{Cl}_{2}$ will increases
D. $\mathrm{PCl}_{5}$ will decreases

## Answer: B

## - Watch Video Solution

61. At equilibrium of the reaction
$2 X(g)+Y(g) \Leftrightarrow X_{2} Y(g)$
the number of moles of $X_{2} Y$ at equilibrium is affected by the
A. temperature and pressure
B. temperature only
C. pressure only
D. temperature , pressure and catalyst used

## Answer: A

## - Watch Video Solution

62. To an equilibrium mixture of
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
some helium, an inert gas, is added at constant volume. The addition of helium causes the total pressure to double. Which of the following is true ?
A. The concentration of the three gases is unchanged
B. The concentration of sulphur trioxide increases
C. The number of moles of sulphur trioxide increases
D. The concentration of sulphur dioxide increases

## Answer: A

## - Watch Video Solution

63. The equilibrium of the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ will be shifted to the right when:
A. by increasing the concentration of $\mathrm{NH}_{3}$
B. by decreasing the pressure
C. by decreasing the pressure
D. by decreasing the concentration of $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$

## Answer: D

## - Watch Video Solution

64. The \% yield of ammonia as a function as a function of time in the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}<0$ at $\left(P, T_{1}\right)$ is given below


If this reaction is cnducted at $\left(P, T_{2}\right)$ with $\left.T_{2}>T_{1}\right)$ the $\%$ yield of ammonia as a function of time is
(a)

A.
B.


C.
D.


## Answer: B

## D View Text Solution

65. In which one of the following the increase of presure favours the backward reaction?
A. Formation of equilibrium ammonia from $N_{2}(g)$ and $H_{2}(g)$
B. Decomposition equilibrium of $\mathrm{HI}(\mathrm{g})$ to $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$
C. Synthesis of $\mathrm{SO}_{3}(\mathrm{~g})$ by contact process
D. Production of 'syngas' by coal gasification

## Answer: D

## - View Text Solution

66. Consider the reaction equilibrium

Ice (Greater volume ) $\Leftrightarrow$ Water (Lesser volume) - 2kcal
The favourable conditions for forward reaction are
A. low temperature, high pressure and excess of ice
B. low temperature ,low pressure and excess of ice
C. high temperature , low pressure and excess
D. high temperature, high pressure and excess of ice

## Answer: D

## - Watch Video Solution

67. Which one of the following condition will favour maximum formation of the product in the reaction. $A_{2}(g)+B_{2}(g) \Leftrightarrow X_{2}(g) \Delta_{r} H=-X \mathrm{~kJ}$ ?
A. Low temperature and high pressure
B. Low temperature and low pressure
C. High temperature and high pressure
D. High temperature and low pressure

## Answer: A

## - Watch Video Solution

68. A mixture of $\mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a vapor density of 38.3 at 300 K . What is the number of moles of $\mathrm{NO}_{2}$ in 100 g of themixture?
A. $0 \cdot 043$
B. $4 \cdot 4$
C. $3 \cdot 4$
D. $0 \cdot 437$

Answer: D

## - Watch Video Solution

69. Ammonium carbamate when heated to $200^{\circ} \mathrm{C}$ gives a mixture of $\mathrm{NH}_{3}$ and $\mathrm{CO}_{2}$ vapours with a density of $16 \cdot 0$. What is the degree of disociation of ammonium carbamate ?
A. 3/2
B. $1 / 2$
C. 2
D. 1

## Answer: D

## - View Text Solution

70. The vapour density of fully dissociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be
A. double than that of $\mathrm{NH}_{4} \mathrm{Cl}$
B. half than that of $\mathrm{NH}_{4} \mathrm{Cl}$
C. same as that of $\mathrm{NH}_{4} \mathrm{Cl}$
D. determined by the amount of solid $\mathrm{NH}_{4} \mathrm{Cl}$ taken

## Answer: B

## - Watch Video Solution

71. $\mathrm{N}_{2} \mathrm{O}_{4}$ is $10 \%$ dissociated at a total pressure $P_{1}$ and $20 \%$ dissociated at a total pressure $P_{2}$. Thenratio' $\frac{P_{1}}{P_{2}}$ is
A. $\frac{1}{2}$
B. $\frac{2}{1}$
C. $\frac{1}{4}$
D. $\frac{4}{1}$

## Answer: D

## - Watch Video Solution

72. At equilibrium of the reaction,

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

the observed molecular weight of $\left.N_{92}\right) O_{4}$ is $80 \mathrm{~g} \mathrm{~mol}^{-1}$ at 350 K . The percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 350 K is
A. 0.1
B. 0.15
C. 0.2
D. 0.18

## Answer: B

## - Watch Video Solution

73. The values of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions
$X \Leftrightarrow Y+Z \ldots$....(i)
and $A \Leftrightarrow 2 B$...(ii)
are in ratio of $9: 1$. If degree of dissociation of $X$ and $A$ be equal, then total presure at equilibrium (i) and (ii) are in the ratio.
A. $3: 1$
B. 1:9
C. 36:1
D. 1:1

## Answer: C

## - Watch Video Solution

74. 3 moles of $A$ and 4 moles of $B$ are mixed together and allowed to come into equilibrium according to the following reaction
$A(g)+4 B(g) \Leftrightarrow 2 C(g)+3 D(g)$

When equilirium is reached, there is 1 mole of $C$. The equilibrium extent of the reaction is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. 1

## Answer: C

## - Watch Video Solution

75. Which of the following lines correctly show the temperature dependence of equilibrium constant K , for an exothermic reaction ?

A. A and B
B. B and C
C. C and D
D. A and D

## Answer: A

1. Which of the following are reversible reactions ?
A. $\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow$
$\mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}(\mathrm{aq})$
B. $\mathrm{KNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow$
$\mathrm{KCl}(\mathrm{aq})+\mathrm{NaNO}_{3}$
C. $\mathrm{BaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow$
$\mathrm{BaSO}_{4}(\mathrm{~s})+2 \mathrm{NaCl}(\mathrm{aq})$
D. $\mathrm{AgCl}(\mathrm{s})+$ Water $\rightarrow \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)$

## Answer: B::D

## - View Text Solution

2. Which of the following statement are wrong ?
A. Equilibrium constant of a reaction is doubled if the equilibrium concentration of the products become double
B. If a reaction mixture is compressed to half the volume, equilibrium constant is halved
C. Equilibrium , constant increases of tempertature
D. Equilibrium concentrations increase in the presence of a catalyst .

## Answer: A::B::C::D

## - View Text Solution

3. The equilibrium
$\mathrm{SO}_{2} \mathrm{CI}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g})$
is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced. Which of the following statement (s) is/are correct ?
(1).concentrations of $\mathrm{SO}_{2}, \mathrm{CI}_{2}$ and $\mathrm{SO}_{2} \mathrm{CI}_{2}$ change
(2). More chlorine is formed
(3).Concentration of $\mathrm{SO}_{2}$ is reduced
(4).More $\mathrm{SO}_{2} \mathrm{CI}_{2}$ is formed
A. Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change
B. More chlorine is formed
C. Concentration of $\mathrm{SO}_{2}$ is reduced
D. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed

## - Watch Video Solution

4. For the reaction,
$\mathrm{PCl}_{5(\mathrm{~g})} \Leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$, the forward reaction at constant temperature is favoured by:
A. introducing an inert gas at constant volume
B. introducing $\mathrm{PCl}_{5}$ at constant volume.
C. introducing an inert gas at constant pressure
D. increasing the volume of the container

## Answer: B::C::D

## - Watch Video Solution

5. The equilibrium: $2 \mathrm{Cu}^{1} \Leftrightarrow \mathrm{Cu}^{0}+\mathrm{Cu}^{u}$ in aqueous medium at $25^{\circ} \mathrm{C}$ shifts towards the left in the presence of
A. $\mathrm{NO}^{-}$
B. $\mathrm{Cl}^{-}$
C. $S_{C N}{ }^{-}$
D. $\mathrm{CN}^{-}$

## Answer: B::C::D

## - Watch Video Solution

6. The thermal dissociation of equilibrium of $\mathrm{CaCo}_{3}(s)$ is studied under different conditions

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

For this equilibrium, the correct statement (s) is/are
A. $\Delta H$ is dependent on $T$
B. K is independent of the itial amount of $\mathrm{CaCO}_{3}$
C. K is indepdent of the pressure of $\mathrm{CO}_{2}$ at a given T
D. $\Delta H$ is independent of the catalyst , ifany

## Answer: A::B::D

## - Watch Video Solution

> Competition Focus (Jee(Main and advanced)/Medical Entrance) III. MULTIPLE CHOICE QUESTIONS (Based on the given Passage/Comprehension)

1. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, $Q$, is similar to that for equilibrium constant $K$. The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, $\Delta H^{\circ}$, is taken as constant in the small temperature range.

The equilibrium constant for the reaction between $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ to formCS $2(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, at 1173 K is $3 \cdot 6$. For the following composition of the reaction mixture, decide which of the following option is correct ?

[^0]2. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant K . The value of $Q$ for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, $d$ In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, $\Delta H^{\circ}$, is taken as constant in the small temperature range.

The reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}$ is in equilibrium . Now the reaction mixture is compressed to half the volume
A. More of ammonia will be formed
B. Ammonia will dissociate back into $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$
C. There will be no effect on equilibrium
D. Equilibrium constant of the reaction will change

## Answer: A

## - View Text Solution

3. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, $Q$, is similar to that for equilibrium constant $K$. The value of $Q$ for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium. It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, $\Delta H^{\circ}$, is taken as constant in the small temperature range.

For the above reaction in equilibrium, helium gas was added but the mixture was allowed to expand to keep the pressure constant. Then
A. More of ammonia will be formed
B. Ammonia will dissociate back into $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$
C. There will be no effect on equilibrium
D. Equilibrium constant of the reaction will change

## Answer: B

## - View Text Solution

4. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, $Q$, is similar to that for equilibrium constant $K$. The value of $Q$ for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, $\Delta H^{\circ}$, is taken as constant in
the small temperature range.
Which of the following will be correct ?
A. Plot of $\ln k_{p}$ versus $1 / T^{2}$ will be linear with + ve slope
B. Plot of $\operatorname{In} K_{p} v e r u s 1 / T$ will be linear with + vve slope
C. Plot of $\operatorname{In} K_{p}$ versus $1 / T^{2}$ will be linear with -ve slope
D. Plot of $\operatorname{In} K_{p}$ versus $1 / T$ will be linear with -ve slope

## Answer: D

## - View Text Solution

5. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant $K$. The value of $Q$ for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value
of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation , d in $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, $\Delta H^{\circ}$, is taken as constant in the small temperature range.

In which of the following case, equilibrium constant decreases with increase of temperature?
A. When the reaction is exothermic
B. When the reaction is endothermic
C. When the reaction is in the gaseous phase
D. When the reaction takes place in the solution.

## Answer: A

## - View Text Solution

6. Thermal decomposition of gaseous $X_{2}$ to gaseous X at 298 K takes place according to the equation :
$X_{2}(g) \Leftrightarrow 2 X(g)$ The standard reaction Gibbs energy, $\Delta_{r} G^{\circ}$ of this reaction
is positive. At the start of the reaction, there is positive. At the start of the reaction, there is one mole of $X_{2}$ and no. As the reaction proceeds, the number of moles of X formed is given by $\beta$. Thus $\beta_{\text {equilbrium }}$ is the number of moles of $X$ formed at equilibrium . The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally .
( Given : R = $0 \cdot 0833 \mathrm{~L}$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$ ).
The equilibrium constant $K_{p}$ for this reaction at 298 K , in terms of $\beta_{\text {equilibrium }}$, is
$8 \beta_{\text {equilibrium }}^{2}$
A. $\overline{2-\beta_{\text {equilibrium }}}$
B. $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
C. $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
D. $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$

## Answer: B

7. Thermal decomposition of gaseous $X_{2}$ to gaseous $X$ at 298 K takes place according to the following equation:

$$
X(g) \Leftrightarrow 2 X(g)
$$

The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of $X_{2}$ and no $X$. As the reaction proceeds, the number of moles of $X$ formed is given by $\beta$. Thus $\beta_{\text {equilibrium }}$ is the number of moles of $X$ formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
[Given, $R=0.083 L$ bar K $^{-1} \mathrm{~mol}^{-1}$ )
The incorrect statement among the following for this reaction, is
A. Decrease in the total pressure will result in formation of more moles of gaseous $X$
B. At the start of the reaction, dissociation of gaseous $X_{2}$ takes place spontaneously
C. $\beta$.equilibrium $=0 \cdot 7$
D. $K_{c}<1$

## Answer: C

## D Watch Video Solution

## Competition Focus (Jee(Main and advanced)/Medical Entrance) VI. INTEGER TYPE QUESTIONS

1. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers $\mathrm{A}, \mathrm{B}$, C and D (say) are 4,0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side :

If concentrations of $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ in the equilibrium reaction, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ are quadrupled, the concentration of $\mathrm{SO}_{3}$ now will be times .......... times.

## - Watch Video Solution

2. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers $\mathrm{A}, \mathrm{B}$, $C$ and $D$ (say) are 4,0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side :
Equilibrium constant for the reaction
$A_{3}(g)+3 B_{2}(g) \Leftrightarrow 3 A B_{2}(g)$ is $64 \cdot 0$ Then the equilibrium constant for the reaction will be

## - Watch Video Solution

3. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers $A, B$, $C$ and $D$ (say) are $4,0,9$ and 2 respectively, then the correct darkening of bubbles should be as shown on the side :

For the reaction involving oxidation of ammonia by oxygen to form nitric oxide and water vapour, the equilibrium constant has the units (bar) ${ }^{n}$. Then n is

## Competition Focus (Jee(Main and advanced)/Medical Entrance) VII. NUMERICAL VALUE TYPE QUESTIONS

1. The approach to the following equilibrium was observed kinetically from both directions :
$\mathrm{PtCl}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$ ? $\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}^{-}\right]+\mathrm{Cl}^{-}$at $25^{\circ} \mathrm{C}$, it was found that

What is the value of equilibrium constant for the complexation of the fourth $\mathrm{Cl}^{-}$by $\mathrm{Pt}(\mathrm{II})$ ?

## - Watch Video Solution

## Competition Focus (Jee(Main and advanced)/Medical Entrance) VII. ASSERTION - REASON TYPE QUESTIONS (TYPE - I)

1. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT - 2 (Reason). It has four choice (a), (b), ( c ) and (d) out of which

ONLY ONE is correct. Choose the correct option as under :
Statement -1 Adding inert gas to dissociation equilibrium of $\mathrm{N}_{2} \mathrm{O}_{4}$ at constant pressure and temperature increases the dissociation.

Statement -2. Molar concentrations of the reactants and products decrease.
A. (a) Statement -1 is True, Statement -2 is true, Statement -2 is the correct explanation of Statement -1
B. (b) Statement -1 is True , Statement -2 is not a correct expanation of Statement -1 .
C. (c) Statement -1 is True, Statement -2 is False .
D. (d) Statement -1 is False , Statement -2 is True .

## Answer: A

## - Watch Video Solution

2. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), ( c ) and (d) out of which ONLY ONE is correct . Choose the correct option as under :

Statement $-1 K_{p}$ is always greater than $K_{c}$
Statement -2. The reactions in the gaseous phase are usually faster than the reactions in the liquid phase.

## - Watch Video Solution

3. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), ( c ) and (d) out of which ONLY ONE is correct. Choose the correct option as under :

Statement -1. Reaction quotiet of a reaction at any time decides the direction in which the reaction will proceed.

Statement -2 . The value of reaction quotient cannot be greater than the equilibrium constant .
4. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), ( c ) and (d) out of which ONLY ONE is correct . Choose the correct option as under :

Statement -1. Equilibrium constant of an endothermic reaction increases with increase of temperature .

Statement -2 . With increase in temperature, an endothermic reaction is favoured more in the forward direction.

## - Watch Video Solution

## Competition Focus (Jee(Main and advanced)/Medical Entrance) VIII. ASSERTION - REASON TYPE QUESTIONS (TYPE - II)

1. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. The vapour pressure of a pure liquid has a fixed value at a
particular temperature .

Reason. When equilibrium is reached, no more vapour are formed.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: C

## - Watch Video Solution

2. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. A reversible reaction cannot be carried out in an open vessel.

Reason. When equilibrium is reached, no more vapour are formed.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: D

## - Watch Video Solution

3. Assertion (A) : For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
unit of $K_{C}=L^{2} \mathrm{~mol}^{-2}$

Reason (R) : For the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ $\left[\mathrm{NH}_{3}\right]^{2}$
equilibrium constant $K_{c}=\frac{}{\left[\mathrm{N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}}$
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: A

## - Watch Video Solution

4. Assertion (A) : The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature.

Reason (R) : The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: A

## - Watch Video Solution

5. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion . The equilibrium constant of a reaction increases if
temperature is increased .

Reason . The forward reaction becomes faster with increase of temperature .
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: D

## - Watch Video Solution

6. Assertion (A) : The active mass of pure solid and pure liquid is taken unity.

Reason (R) : The active mass of pure solids and liquids depends on the
density and molecular mass. The density and molecular of a mass of pure liquids and solids are constant.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: A

## - Watch Video Solution

7. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. If standard free energy change of a reaction is zero, this
implies that equilibrium constant of the reaction is unity .

Reason. For a reaction in equilibrium, equilibrium constant is always unity.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: C

## - Watch Video Solution

8. Assertion (A) : When a catalyst is added to a reaction mixture in equilibrium the amount of the products increases.

Reason (R) : The forward reaction becomes faster on adding the catalyst.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: D

## - Watch Video Solution

9. Statement: The reaction: $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2}$ is favoured in the forward direction with increase of pressure.

Explanation: The reaction is exothermic.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: B

## - Watch Video Solution

10. Assertion (A) : A catalyst does not influences the values of equilibrium constant

Reason (R) : Catalyst influences the rate of both forward and backward reactions equally.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

## Answer: A

## - Watch Video Solution

## Sample Problem

1. At $700 K$, the equilibrium constant $K_{p}$ for the reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is $1.80 \times 10^{-3} \mathrm{kPa}$. What is the numerical value of $K_{c}$ in moles per litre for this reaction at the same temperature?

## - Watch Video Solution

2. At 773 K , the equilibrium constant $K_{c}$ for the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ is $6.02 \times 10^{-2} \mathrm{~L}^{2} \mathrm{~mol}^{-2}$.

Calculate the value of $K_{p}$ at the same temperature.

## ( Watch Video Solution

3. For the equilibrium
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
the value of the equilibrium constant, $K_{c}$ is $3.75 \times 10^{-6}$ at $1069 K$.

Calcualate the $K_{p}$ for the reaction at this temperature?

## (D) Watch Video Solution

4. $K_{p}$ for the reaction,$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}$ is 49 at a certain temperature. Calculate the value $K_{p}$ at the same temperature for the reaction

## ( Watch Video Solution

5. The following concentrations were obtained for the formation of $\mathrm{NH}_{3}$ from $N_{2}$ and $H_{2}$ at equilibrium at 500 K.
$\left[\mathrm{~N}_{2}\right]=1.5 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_{2}\right]=3.0 \times 10^{-2} \mathrm{M}$,
and $\left[\mathrm{NH}_{3}\right]=1.2 \times 10^{-2} \mathrm{M}$.

Calculate the equilibrium constant.

## - Watch Video Solution

6. For an equilibrium reaction, the rate constants for the forward and the backward reaction are $2.38 \times 10^{-4}$ and $8.15 \times 10^{-5}$, respectively. Calculate the equilibrium constant for the reaction.

## - Watch Video Solution

7. In a reaction between $\mathrm{H}_{2}$ and $I_{2}$ at a certain temperature, the amounts of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium were found to be $0.45 \mathrm{~mol}, 0.39 \mathrm{~mol}$, and 3.0 mol respectively. Calculate the equilibrium constant for the reaction at the given temperature.
8. Two moles of $P C l_{5}$ were heated to $327^{\circ} \mathrm{C}$ in a closed two-litre vessel, and when equilibrium was achieved, $\mathrm{PCl}_{5}$ was found to be $40 \%$ dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. Calculate the equilibrium constant $K_{p}$ and $K_{c}$ for this reaction.

## - Watch Video Solution

9. For the reaction,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
the partial pressure of $\mathrm{N}_{2}$ and $\mathrm{H}_{2}$ are 0.80 and 0.40 atmosphere, respectively, at equilibrium. The total pressure of the system is 2.80 atm .

What is $K_{p}$ for the above reaction?

## - Watch Video Solution

10. 0.1 mol of $\mathrm{PCl}_{5}$ is vaporised in a litre vessel at $260^{\circ} \mathrm{C}$. Calculate the concentration of $\mathrm{Cl}_{2}$ at equilibrium, if the equilibrium constant for the dissociation of $\mathrm{PCl}_{5}$ is 0.0414 .

## - Watch Video Solution

11. At $1,000 \mathrm{~K}$ in the reaction $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$

The value of $P_{\mathrm{CO}_{2}}=0.48$ bar and $\mathrm{P}_{\mathrm{CO}}=0 \mathrm{bar}$. Pure graphite is present. The equilibrium partial pressures of CO and $\mathrm{CO}_{2}$ are 0.66 bar and 0.15 bar respectively. Calculate $K_{P}$ of the reaction.

## - Watch Video Solution

12. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of $K_{p}$ if total pressure at equilibrium is $0.8 a t m$.

$$
13 .
$$

The value
of $K_{c}$ for the reaction, $2 A \Leftrightarrow B+C$ is $2 \cdot 0 \times 10^{-3} \mathrm{AT}$ a given time, the compositio In which direction, the reaction will proceed?

## - Watch Video Solution

14. In the equilibrium, $\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, at 1073 K , the pressure of $\mathrm{CO}_{2}$ is found to be 2 . What is the equilibrium constant of this reaaction at 1073 K ?

## - Watch Video Solution

15. $A B_{2}$ dissociates as
$A B_{2}(g) \Leftrightarrow A B(g)+B(g)$. If the initial pressure is 500 mm of Hg and the total pressure at equilibrium is 700 mm of Hg . Calculate $K_{p}$ for the reaction.
16. The degree of dissociation of $\mathrm{PCl}_{5}$ ata certain temperature and atmospheric pressure is $0 \cdot 2$. Calculate the pressure at which it will be half ( $50 \%$ ) dissociated at the same temperature .

## - Watch Video Solution

17. Determine the concentration of $\mathrm{CO}_{2}$ which will be in equilibrium with
$2.5 \times 10^{-2} \mathrm{~mol} \mathrm{~L}{ }^{-1}$ ofCOat $100^{\circ} \mathrm{C}$ for the reaction
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}, \mathrm{~K}_{\mathrm{c}}=5.0$

## - Watch Video Solution

18. The value of $K_{c}=4.24$ at 800 K for the reaction.
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
Calculate equilibrium concentration of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K . If only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentrations of 0.10 M each.

## (D) Watch Video Solution

19. 3.00 mol of $\mathrm{PCl}_{5}$ kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate the composition of the mixture at equilibrium. $K_{c}=1.80$.

## - Watch Video Solution

20. At 700 K , hydrogen and bromine react to form hydrogen bromine. The value of equilibrium constant for this reaction is $5 \times 10^{8}$. Calculate the amount of the $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr at equilibrium if a mixture of 0.6 mol of $\mathrm{H}_{2}$ and 0.2 mol of $\mathrm{Br}_{2}$ is heated to 700 K .

## - Watch Video Solution

21. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in 1 L reaction vessel at 400 K and allowed to attain equilibrium : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$.
the total pressure at equilibrium was found to be 9.15 bar. Calculate $K_{c}, K_{p}$ and partial pressure at equilibrium .

## - Watch Video Solution

22. The value of $\Delta G^{\ominus}$ for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{kJmol}^{-1}$. Find the value of $K_{c}$ at $298 \mathrm{~K}^{2}$

## - Watch Video Solution

23. $K_{p}$ for the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at $400^{\circ} \mathrm{C}$ is $1.64 \times 10^{-4}$. Find $K_{c}$. Also find $\Delta G^{\ominus}$ using $K_{p}$ and $K_{c}$ values and interpret the difference.

## - Watch Video Solution

24. The vapour density of $\mathrm{PCl}_{5}$ at 43 K is is found to be 70.2. Find the degree of dissociation of $\mathrm{PCl}_{5}$ at this temperature.
25. At $627^{\circ} \mathrm{C}$ and 1 atm $\mathrm{SO}_{3}$ is partially dissociated into $\mathrm{SO}_{2}$ and $\mathrm{O}_{2}$ by the reaction
$\mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow \mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
The density of the equilibrium mixture is $0.925 g L^{-1}$. What is the degree of dissociation?

## - Watch Video Solution

26. $20 \% N_{2} \mathrm{O}_{4}$ molecules are dissociated in a sample of gas at $27^{\circ} \mathrm{C}$ and 760 torr. Calculate the density of the equilibrium mixture.

## - Watch Video Solution

27. Calculate the degree of dissociation and concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in 0.01 M solution of formic acid $\left(K_{c}=2.1 \times 10^{-4}\right.$ at 298 K$)$
28. What will be the conjugate bases for the Bronsted acids ? $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCO}_{3}^{-}$

## - Watch Video Solution

29. Write the conjugate acids for the Bronsted bases : $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and $\mathrm{HCOO}^{-}$

## - Watch Video Solution

30. Write four species which act both as Bronsted acid as well as base.

Write their corresponding conjugate acids and bases.

## - Watch Video Solution

31. Classify the following species into Lewis acid and Lewis base and show how these act as such.
$\Theta$
a. $O H$ b. $F^{\Theta}$ c. $H^{\oplus}$ d. $B C I_{3}$

## - Watch Video Solution

32. Classify the following species as Lewis acids and Lewis bases
$\mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{SnCl}_{4}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CO}, \mathrm{Ni}^{2+}$

## - Watch Video Solution

33. Calculate t the $\mathrm{H}^{+}$ion concentration in 0.10 M acetic acid solution. Given that the dissociation constant of acetic acid in water is $1.8 \times 10^{-5}$

## - Watch Video Solution

34. Nicotinic acid $\left(K_{a}=1.4 \times 10^{-5}\right)$ is repersented by the formula HNiC.

Calculate its per cent dissociation in a solution, which contains 0.10 mole of nicotinic acid per 2.0 litre of solution.
35. Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{OH}^{-}$ion concen- trations at $25^{\circ} \mathrm{C}$ in
(i) 0.02 N HCl solution (ii) 0.005 N NaOH solution

## - Watch Video Solution

36. Calculate the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a mixture of 0.02 M acetic acid and 0.2 M sodium acetate. Given that the ionization constant $\left(K_{a}\right)$ for acetic acid is $1.8 \times 10^{-5}$.

## - Watch Video Solution

37. Calcuate the pH value of (assume $100 \%$ ionization)
(i) $10^{-2}$ molar $\mathrm{HNO}_{3}$ solution
(ii) 0.03 MHCl solution $(\log 3=0.4771)$
(iii) $0.0005 \mathrm{MH}_{2} \mathrm{SO}_{4}$ solution
38. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

## - Watch Video Solution

39. A solution has been prepared by dissolving 0.63 g of nitric acid in 100 mL . What is its pH value ? Assume that the acid is completely dissociated.

## - Watch Video Solution

40. Calculate the pH of $\frac{N}{1000}$ sodium hydroxide $(\mathrm{NaOH})$ solution assuming complete ionisation.

## - Watch Video Solution

41. 4.0 g of NaOH are dissolved per litre. Find (i) molarity of the solution
(ii) $\mathrm{OH}^{-}$ion concentration (iii) pH value of the solution (At. Masses : $\mathrm{Na}=$

## D Watch Video Solution

42. Calculate the pH of a 0.01 N solution of acetic acid. $\mathrm{K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$.

## - Watch Video Solution

43. Calculate the $\mathrm{H}^{+}$ion concentration in 0.1 M CH 3 COOH if the degree of dissociation of the acid is 0.0132

## - Watch Video Solution

44. Calculate the pH of a $5.0 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$ solution and the equilibrium concentrations of the species
$H_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{2-}$ and $\mathrm{PO}_{4}^{3-} \cdot\left(K_{a_{1}}=7.5 \times 10^{-5} \times 10^{-3}, K_{a_{2}}=6.2 \times 10^{-8}, K_{a_{3}}=\right.$
45. What would be the pH of a solution obtained by mixing 100 ml of 0.1 N HCl and 9.9 ml of 1.0 N NaOH solution?

## - Watch Video Solution

46. Calculate the pH of a solution obtained by mixing equal volumes of the solutions with $\mathrm{pH}=3$ and $\mathrm{pH}=5$.

## - Watch Video Solution

47. Equal volumes of two solutions with $\mathrm{pH}=4$ and $\mathrm{pH}=10$ are mixed. The pH of resulting solution will be
48. Calculate the pH of the solution obtained by mixing $100 \mathrm{~cm}^{3}$ of solution with $\mathrm{pH}=3$ with $400 \mathrm{~cm}^{3}$ of solution with $\mathrm{pH}=4$.

## Watch Video Solution

49. The value of $k_{w}$ is $9.55 \times 10^{-14}$ at a certain temperature. Calculate the pH of water at this temperature .

## - Watch Video Solution

50. Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution having pH 6.58 .

## - Watch Video Solution

51. Calculate the mass of HCl present per litre of the solution whose pH value is 1.301 .

## - Watch Video Solution

52. How many grams of NaOH must be dissolved in one litre of the solution to give it a pH value of 12 ?

## - Watch Video Solution

53. The pH of a solution obtained by dissolving 0.1 mole of an acid HA is 100 ml of the aqueous solution was found to be 3.0 . Calculate the dissociation constant of the acid.

## - Watch Video Solution

54. Calculate the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ solution .

## - Watch Video Solution

55. Calculate the pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution.
56. An acid having $\mathrm{pH}=6$ is diluted 1000 times. What will be the pH of the final solution?

## - Watch Video Solution

57. $1 \mathrm{~cm}^{3}$ of 0.01 N HCl solution is added to one litre of sodium chloride solution. Calculate the pH of the resulting solution.

## - Watch Video Solution

58. The ionization constant of HF is $3.2 \times 10^{-4}$. Calculate the degree of dissociation of HF in its 0.02 M solution. Calculate the concentration of all the species present $\left(\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{F}^{-}\right.$and HF$)$ in the solution and its pH .

## - Watch Video Solution

59. Calculate the pH of the solution in which $0.2 \mathrm{MNH}_{4} \mathrm{Cl}$ and $0.1 \mathrm{MNH}_{3}$ are present. The $p K_{b}$ of ammonia solution is 4.75.

## - Watch Video Solution

60. Calcuate the degree of ionisation and pH of 0.05 M solution of a weak base having the ionization constant $\left(K_{b}\right)$ is $1.77 \times 10^{-5}$. Also calculate the ionisation constnat of the conjugate acid of this base.

## - Watch Video Solution

61. The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization if the solution is 0.01 M on HCl also?

## - Watch Video Solution

62. Calculate the hydrolysis constant, degree of hydrolysis and pH of 0.10 M KCN solution at $15^{\circ} \mathrm{C}$. For $\mathrm{HCN}, K_{a}=6.2 \times 10^{-10}$.

## Watch Video Solution

63. What is the pH of a 0.50 M aqueous NaCN solution ? $\left(p K_{b} o f C N^{-}=4.70\right)$

## - Watch Video Solution

64. Calculate the percentage of hydrolysis in 0.003 M aqueous solution of $\mathrm{NaOCN} . K_{a}$ for $\mathrm{HOCN}=3.33 \times 10^{-4} \mathrm{M}$.

## - Watch Video Solution

65. Calculate the pH of 0.10 M solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The dissociation constant $\left(K_{b}\right)$ of $\mathrm{NH}_{3}$ is $1.6 \times 10^{-5}$.

## - Watch Video Solution

66. The $p K_{a}$ fo acetic acid and $p K_{b}$ of ammonium hydroxide are 4.76 and 4.75 respectively. Calculate the pH of ammonium acetate solution .

## - Watch Video Solution

67. The solubility of AgCl in water at $25^{\circ} \mathrm{C}$ is found to be $1.06 \times 10^{-5}$ moles per litre. Calculate the solubility product of AgCl at this temperature.

## - Watch Video Solution

68. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $8.352 \times 10^{-3} \mathrm{~g} / \mathrm{litre}$ at $290^{\circ} \mathrm{C}$. Find out its $K_{s p}$ at this temperature.

## - Watch Video Solution

69. Calculate the pH after 50.0 mL of 0.1 M ammonia solution is treated with 25.0 mL of 0.10 M HCl . The dissociation constant of ammonia , $K_{b}=1.77 \times 10^{-5}$

## Watch Video Solution

70. The solubility product for silver choride is $1.2 \times 10^{-10}$ at 298 K .

Calculate the solubility of silver chloride at 298 K.

## - Watch Video Solution

71. Lead chloride has a solubility product of $1.7 \times 10^{-5}$ at 298 K. Calculate its solubility at this temperature.

## Watch Video Solution

72. The solubility product of AgCl in water is $1.5 \times 10^{-10}$.Calculate its solubility in 0.01 M NaCl aqueous solution.

## Watch Video Solution

73. Given that solubility product of $\mathrm{BaSO}_{4}$ is $1 \times 10^{-10}$, will precipiate form when
a. Equal volumes of $2 \times 10^{-3} \mathrm{MBaC1}_{2}$ solution and $2 \times 10^{-4} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution, are mixed?
b. Equal volumes of $2 \times 10^{-8} \mathrm{MBaC1}_{2}$ solution and $2 \times 10^{-3} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution, are mixed?
c. 100 mL of $10^{-3} \mathrm{MBaC1}_{2}$ and 400 mL of $10^{-6} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ are mixed?

## - Watch Video Solution

74. Calculate pH at which $\mathrm{Mg}(\mathrm{OH})_{2}$ begins to precipitate from a solution containing $0.10 \mathrm{M} \mathrm{Mg}^{2+}$ ions. $\left(\mathrm{K}_{\text {sp }}\right.$ of $\left.\mathrm{Mg}(\mathrm{OH})_{2}=1 \times 10^{-11}\right)$

## - Watch Video Solution

75. Calculate the pH of a buffer which is 0.1 M in acetic acid and
0.15 M in sodium acetate. Given that the ionization constants of acetic acid is $1.75 \times 10^{-5}$. Also calculate the change in pH of the buffer if to 1 litre of the buffer
(i) 1 cc of 1 M NaOH are added (ii) 1 cc of 1 M HCl are added.

Assume that the change in volume is negligible.
What will be the buffer index of the above buffer ?

## - View Text Solution

76. Calculate the pH of a solution obtained by mixing 5 mL of $0.1 \mathrm{M} \mathrm{NH}_{4}$ OH with 250 mL of 0.1 M NH 44 Cl solution. $\mathrm{K}_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$.

## - Watch Video Solution

77. A buffer solution with pH 9 is to be prepared by mixing
$\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$. Calculate the number of moles of $\mathrm{NH}_{4} \mathrm{Cl}$ that should be added to one litre of $1.0 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}\left(K_{b}=1.8 \times 10^{-5}\right)$

## (D) Watch Video Solution

78. $\mathrm{pH}=7.40, \mathrm{~K}_{1} \mathrm{of} \mathrm{H}_{2} \mathrm{CO}_{3}=4.5 \times 10^{-7}$. What will be the ratio of $\left[\mathrm{HCO}_{3}^{-}\right]$ to $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ ?

## - Watch Video Solution

79. Calculate the pH in a solution that is 0.1 M in acetic acid and 0.1 M in benozic acid. $\mathrm{K}_{a} f$ or $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOHare} 1.8 \times 10^{-5}$ and $6.5 \times 10^{-5}$ respectively.

## - Watch Video Solution

80. Calculate the pH of a solution that contains 1.00 M HF $\left(K_{a}=7.2 \times 10^{-4}\right)$ and $5.00 \mathrm{M} \mathrm{HClO}\left(K_{a}=3.5 \times 10^{-8}\right)$.

## Example

1. Calculate the simultaneous solubilities of AgSCN and AgBr .

$$
K_{s p}(\mathrm{AgSCN})=1.0 \times 10^{-12}, K_{s p}(\mathrm{AgBr})=5.0 \times 10^{-13}
$$

## - Watch Video Solution

## Curiosity Question

1. Why solution of sugar in water does not conduct electricity whereas that of common salt in water does ?

## - Watch Video Solution

2. Neutral solutions have $\mathrm{pH}=7$ at 298 K . A sample of pure water is found to have $\mathrm{pH}<7$. Does it mean that it is acidic ? Explain.
3. A student prepared solutions of $\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NH}_{4} \mathrm{Cl}$. He put them separately in three test tubes. He forgot to label them. All solutions were colourless. How should he proceed to know the solutions present in the three test tubes?

## ( Watch Video Solution

4. Why pH of our blood remains almost constant of 7.4 though we quite often eat spicy food?

## - Watch Video Solution

## Problems For Practice

1. $K_{p}$ for the reaction :
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.157 atm at $27^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate $K_{c}$ for the reaction.
2. For the reaction $A(g)+B(s) \Leftrightarrow C(g)+D(g), K_{c}=49 \mathrm{moldm}^{-3}$ at $127^{\circ} \mathrm{C}$.

Calculate $K_{p}$.

## - Watch Video Solution

3. At equilibrium, the concentrations of
$N_{2}=3 \cdot 0 \times 10^{-3} \mathrm{M}, O_{2}=4 \cdot 2 \times 10^{-3} \mathrm{M}$ and $N o=2 \cdot 8 \times 10^{-3} \mathrm{M} \quad$ in $\quad$ a
sealed vessel at 800 K . What will be $K_{c}$ for the raction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) ?$

## - Watch Video Solution

4. $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{MPCl}_{3}, 1.59 \mathrm{MCl}_{2}$ and $1.41 \mathrm{MPCl}_{5}$. Calculate $K_{c}$ for the reaction,

$$
P C l_{5} \Leftrightarrow P C l_{3}+\mathrm{Cl}_{2}
$$

5. Calculate the equilibrium constants $K_{p}$ and $K_{c}$ for the reaction , $\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}$

Given that the partial pressures at equilibrium in a vessel at 3000 K are $p_{c o}=0.4 \mathrm{~atm} \cdot p_{\mathrm{co}_{2}}=0.6 \mathrm{~atm}$ and $p_{o_{2}}=0.2 \mathrm{~atm}$

## - Watch Video Solution

6. 1.5 mol of $\mathrm{PCl}_{5}$ are heated at constant temperature in a closed vessel of $4 L$ capacity. At the equilibrium point, $P C l_{5}$ is $35 \%$ dissociated into $\mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$. Calculate the equilibrium constant.

## - Watch Video Solution

7. The equilibrium composition for the reaction is
$\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{PCl}_{5}$
0.20
0.10
$0.40 \mathrm{molL}^{-1}$

What will be the equilibrium concentration of $\mathrm{PCl}_{5}$ on adding 0.10 mol of $\mathrm{Cl}_{2}$ at the same temperature?

## - Watch Video Solution

8. If 1 mole of acetic acid and 1 mole of ethyl alchol are mixed and reaction proceeds to equilibrium , the concentrations of acetic acid and water are found to be $1 / 3$ and $2 / 3$ mole respectively. If 1 mole of ethyl acetate and 3 moles of water are mixed, how much ester is present when equilibrium is reached?

## - Watch Video Solution

9. Calculate the degree of dissociation of HI at $450^{\circ} \mathrm{C}$ if the equilibrium constant for the dissociation reaction is 0.263 .
10. One mole of pure ammonia was injected into a one litre flask at a certain temperature. The equilibrium mixture was then analysed and found to contain 0.30 mole of $\mathrm{H}_{2}$. Calculate (i) the concentration of of $\mathrm{N}_{2}$ and (ii) the concentration of $\mathrm{NH}_{3}$ at equilibrium.

## - Watch Video Solution

11. Amount of $\mathrm{PCl}_{5}$ (in moles) need to be added to one litre vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of $\mathrm{Cl}_{2}$ for the given change is:
$P C l_{5} \Leftrightarrow P C l_{3}+\mathrm{Cl}_{2}, K_{c}=0.0414$ mollitre ${ }^{-1}$

## - Watch Video Solution

12. In an experiment, 2 moles of HI are taken into an evacuated 10.0 litre container at 720 K . The equilibrium constant equals to 0.0156 for the gaseous reaction, $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$. find equilibrium concentration of $\mathrm{HI}(\mathrm{g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{I}_{2}(\mathrm{~g})$.

## - Watch Video Solution

13. When $\mathrm{PCl}_{5}$ is heated in a closed vessel at 575 K , the total pressure at equilibrium is found to be 1 atm and partial pressure of $\mathrm{Cl}_{2}$ is found to the 0.324 atm . Calculate the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction.

## - Watch Video Solution

14. In the dissociation of $\mathrm{HI}, 20 \%$ of HI is dissociated at equilibrium.

Calculate $K_{p}$ for

$$
H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)
$$

## - Watch Video Solution

15. A reaction mixture containing
$N_{2}$ at $0 \cdot 50 \mathrm{~atm}$, at $0 \cdot 05 \mathrm{atmNH} H_{3}$ and $3 \cdot 0 \mathrm{~atm}$ of hydrogen is heated to $450^{\circ}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$ will go if $K_{p}$ is $4 \cdot 28 \times 10^{-5} ?$

## - Watch Video Solution

16. The equilibrium constant for the reaction :

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}
$$

is 4.0 at $25^{\circ} \mathrm{C}$. Calculate the weight of ethyl acetate that will be obtained when 120 g of acetic acid are reacted with 92 g of ethyl alcohol.

## - Watch Video Solution

17. At $448^{\circ} \mathrm{C}$, the equilibrium constant $\left(K_{c}\right)$ for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
is 50.5 . Presict the direction in which the reaction will proceed to reach equilibrium at $448^{\circ} \mathrm{C}$, if we start with $2.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{HI}, 1.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{H}_{2}$ and $3.0 \times 10^{-2} \mathrm{~mol}$ of $I_{2}$ in a 2.0 L constainer.
18. For the reaction, $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NOCl}(\mathrm{g})$ and the following info is given:
$p_{\text {NOCI }}=0.32 \mathrm{~atm}$
$p_{\text {NO }}=0.22 \mathrm{~atm}$
$p_{C l_{2}}=0.11 \mathrm{~atm}$
then find $K_{p}$

## - Watch Video Solution

19. The $K_{p}$ values for the reaction, $\mathrm{H}_{2}+I_{2} \Leftrightarrow 2 \mathrm{HI}$, at $460^{\circ} \mathrm{C}$ is 49 . If the initial pressure of $\mathrm{H}_{2}$ and $I_{2}$ is 0.5 atm respectively, determine the partial pressure of each gas at equilibrium.

## - Watch Video Solution

20. Calculate the degree of ionisation and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of 0.01 M acetic acid solution.$K_{a}$ for acetic at 298 K is $1.8 \times 10^{-5}$

## - Watch Video Solution

21. A 0.01 M solution of acetic acid is 1.34 \% ionised (degree of dissociation $=0.0134$ ) at 298 K . What is the ionization constant of acetic acid ?

## - Watch Video Solution

22. What will be the percentage of dissociation in $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ at equilibrium having dissociation constant of $1.8 \times 10^{-5}$ ?

## - Watch Video Solution

23. Nicotinic acid $\left(K_{a}=1.4 \times 10^{-5}\right)$ is repersented by the formula HNiC. Calculate its per cent dissociation in a solution, which contains 0.10 mole of nicotinic acid per 2.0 litre of solution.

## - Watch Video Solution

24. Calculate the concentration of $\mathrm{H}^{+}(\mathrm{aq})$ in 0.2 M solution of HCN . Given that the dissociation constant of HCN in water is $4.9 \times 10^{-10}$.

## - Watch Video Solution

25. If hydrogen ion concentration in a solution is $1 \times 10^{-5}$ moles/litre, calculate the concentration of OH ion in this solution $\left(K_{w}=10^{-14}\right.$ moles $\left.^{2} L^{-2}\right)$.
26. Calculate the pH value of $0.001 \mathrm{~N} \mathrm{HNO}_{3}$ solution.

## - Watch Video Solution

27. Calculate the pH value of $10^{-3} \mathrm{M} \mathrm{HCl}$ solution.

## - Watch Video Solution

28. What is the pH of a solution whose $\mathrm{H}^{+}$ion concentration is $2 \times 10^{-5} \mathrm{~g}$ ions/litre?

## - Watch Video Solution

29. 0.049 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dissolved per litre of the given solution. Calculate the pH of the solution.

## - Watch Video Solution

30. Calculate the pH of a solution which is $1 \times 10^{-3} \mathrm{M}$ with respect to sulphuric acid.

## - Watch Video Solution

31. The concentration of hydronium ions in a cup of black coffee is $1.3 \times 10^{-5} \mathrm{M}$. Find the pH of the coffee. Is this coffee acidic or alkaline ?

## - Watch Video Solution

32. Calculate the pH value of (a) 0.0001 M NaOH (b) 0.01 M NaOH and (c) 0.04 M NaOH solution at $25^{\circ} \mathrm{C}$.

## - Watch Video Solution

33. Calculate the pH of a solution containing 2 g caustic soda/litre of water.
34. How many grams of sodium hydroxide must be dissolved in one litre of water to prepare its $\mathrm{N} / 10$ solution ? What will be its pH value ?

## - Watch Video Solution

35. Acetic acid has a dissociation constant of $1.8 \times 10^{-5}$. Calculate the pH value of the decinormal solution of acetic acid.

## - Watch Video Solution

36. A 0.05 N solution of acetic acid is found to be $1.9 \%$ ionized at $25^{\circ} \mathrm{C}$.

Calculate (i) $K_{a}$ for acetic acid and (ii) the pH of the solution.

## - Watch Video Solution

37. Calculate the pH value of a solution of $0.1 \mathrm{M} \mathrm{NH}_{3}\left(K_{b}=1.8 \times 10^{-5}\right)$

## ( Watch Video Solution

38. A sample of sour milk was found to be 0.1 M solution of lactic acid $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}$. What is the pH of the sample of milk ? $\mathrm{K}_{a}$ for lactic acid at $25^{\circ} \mathrm{C}$ is $1.37 \times 10^{-4}$.

## - Watch Video Solution

39. Calculate the pH of 0.15 M solution of hypochlorous acid HClO $\left(K_{a}=9.6 \times 10^{-6}\right)$.

## - Watch Video Solution

40. Calculate the pH and concentration of all
species present at equilibrium in $0.1 \mathrm{M} H_{3} \mathrm{PO}_{4}$ solution.
$K_{a_{1}}=7.5 \times 10^{-3}, K_{a_{2}}=6.2 \times 10^{-8}, K_{a_{3}}=4.2 \times 10^{-13}$

## - Watch Video Solution

41. Calculate the pH of a solution obtained by mixing 50 ml of 0.2 M HCl with 49.9 mL of 0.2 m NaOH solution.

## ( Watch Video Solution

42. The pH of a solution obtained by mixing equal volumes of $\frac{\mathrm{N}}{10} \mathrm{NaOH}$ and $\frac{N}{20} \mathrm{HCl}$

## - Watch Video Solution

43. Calculate the pH value of a mixture containing 50 ml of 1 N HCl and 30 ml of 1 N NaOH solution, assuming both to be completely dissociated.

## - Watch Video Solution

44. A 50 ml solution of $p H=1$ is mixed with a 50 ml solution of $p H=2$. The $p H$ of the mixture will be nearly

## Watch Video Solution

45. What will be the resultant pH when 200 mL of an aqueous solution of $\mathrm{HCl}(\mathrm{pH}=2.0)$ is mixed with 300 mL of an aqueous solution of $\mathrm{NaOH}(\mathrm{pH}$ =12.0) ?

## - Watch Video Solution

46. The value of $K_{w}$ at a certain temperature is $6.25 \times 10^{-14}$. Calculate the pH of water.

## - Watch Video Solution

47. Calculate the $\mathrm{H}_{3} \mathrm{O}^{+}$ion concentration of a solution having a pH of 10.6

## - Watch Video Solution

48. The pH of blood serum is 7.4 . What is the hydrogen ion concentration of blood serum ?

## - Watch Video Solution

49. Urine has a pH of 6.0 . If a patient eliminates 1300 ml of urine per day, how many gram equivalents of the acid he eliminates per day?

## - Watch Video Solution

50. Lemon juice has a $\mathrm{pH}=2.1$. If all the acid in lemon is citric acid $\left(H C i t . \Leftrightarrow H^{+}+\mathrm{Cit}^{-1}\right)$ and $K_{a}$ for citric acid is $8.4 \times 10^{-4}$ mole/litre, what
is the concentration of citric acid in lemon juice?

## - Watch Video Solution

51. The pH of 0.1 M solution of an organic acid is 3.0 . Calculate the dissociation constant of the acid.

## - Watch Video Solution

52. It has been found that the pH of a 0.01 M solution of an organic acid is
4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

## - Watch Video Solution

53. The pH of 0.005 M codenine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95. Calculate its ionisation constant and $p K_{b}$.
54. $10^{-6} \mathrm{M} \mathrm{NaOH}$ solution is diluted 100 times. Calculate the pH of the diluted base.

## - Watch Video Solution

55. What will be the pH of the resulting solution if to a 100 ml of HCl solution of $\mathrm{pH}=1.0,900 \mathrm{ml}$ of distilled water is added ?

## - Watch Video Solution

56. The pH of a solution is 5 . Its hydrogen ion concentration is increased 100 times. What is the pH of the resulting solution ?

## - Watch Video Solution

57. Calculate the pH of a solution obtained by diluting 25 ml of $\mathrm{N} / 100 \mathrm{HCl}$ to 500 ml .

## - Watch Video Solution

58.1 ml of 13.6 M HCl is diluted with water to give 1 litre of the solution.

Calculate pH of the resulting solution.

## - Watch Video Solution

59. The $p H$ of 0.1 M monobasic acid is 4.50 . Calculate the concentration of species, $H^{\oplus}, A^{\Theta}$, and $H A$ at equilibrium. Also determine the value of $K_{a}$ and $p K_{a}$ of the monobasic acid.

## - Watch Video Solution

60. Calculate the pH of 0.08 solution of HOCI (hydrochlorous acid). The ionisation constant of the acid is $2.5 \times 10^{-5}$. Determine the percent dissociation of HOCI.

## - Watch Video Solution

61. The pH of 0.04 M hydrazine solution is 9.7 . Calculate its ionization constant $K_{b}$ and $p K_{b}$.

## - Watch Video Solution

62. What would be the pH of 0.1 molar sodium acetate solution, given that the dissociation constant of acetic acid is $1.8 \times 10^{-5}$.

## - Watch Video Solution

63. The dissociation constant of aniline $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right)$ as a base is $5.93 \times 10^{-10}$. The ionic product of water at $25^{\circ} \mathrm{C}$ is $1.02 \times 10^{-14}$. Calculate the percentage hydrolysis of aniline hydrochloride in 1.0 N solution at $25^{\circ}$ C.Also calculate the pH of the solution.

## - Watch Video Solution

64. At $25^{\circ} \mathrm{C}$, the ionisation constant of anilinium hydroxide is $4.6 \times 10^{-10}$. Taking ionic product of water as $1 \times 10^{-14}$, calculate (a) hydrolysis constant of anilinium chloride (b) the degree of hydrolysis and pH value of 0.2 molar solution of the salt.

## D View Text Solution

65. Calculate the pH of 0.05 M sodium acetate solution, if the $p K_{a}$ of acetic acid is 4.74.
66. The $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ and $p K_{a}$ of $n \mathrm{H}_{4} \mathrm{OH}$ is 4.76 and 4.75 , respectively. Calculate the hydrolysis constant of ammonium acetate $\left(\mathrm{CH}_{3} \mathrm{COONH}_{4}\right)$ at 298 K and also the drgree of hydrolysis and pH of its (a) 0.01 M and (b) $0.04 M$ solutions.

## - Watch Video Solution

67. Calculate the pH of 0.01 M solution of $\mathrm{NH}_{4} \mathrm{CN}$. The dissociation constants $K_{a}$ for $H C N=6.2 \times 10^{-10}$ and $K_{b}$ for $N H_{3}=1.6 \times 10^{-5}$.

## - Watch Video Solution

68. Calculate the pH of an aqueous solution of 1.0 M ammonium formate assuming complete dissociation. $p K_{a}$ of formic acid $=3.8$ and $p K_{b}$ of ammonia $=4.8$ )

## - Watch Video Solution

69. Calculate the hydrolysis constant of the salt containing $\mathrm{NO}_{2}^{-}$. Given the $K_{a}$ for $\mathrm{HNO}_{2}=4.5 \times 10^{-10}$

## - Watch Video Solution

70. Calculate the solubility product of silver bromide if the solubility of the salt in saturated solution is $5.7 \times 10^{-7}$ moles/litre.

## - Watch Video Solution

71. A saturated solution of sparingly soluble lead chloride on analysis was found to contain $11.84 \mathrm{~g} /$ litre of the salt at room temperature. Calculate the solubility product constant at room temperature. (At. wt . : Pb = 207, $\mathrm{Cl}=35.5$ )

## - Watch Video Solution

72. The solubility of lead iodide in water is $0.63 \mathrm{~g} /$ litre. Calculate the solubility product of lead iodide. (At mass of $\mathrm{Pb}=207, \mathrm{I}=127$ )

## - View Text Solution

73. Calculate the solubility of silver chloride in water at room temperature if the solubility product of AgCl is $1.6 \times 10^{-10}$.

## - Watch Video Solution

74. If solubility product for $\mathrm{CaF}_{2}$ is $1.7 \times 10^{-10}$ at 298 K , calculate the solubility in $\mathrm{mol} L^{-1}$.

## - Watch Video Solution

75. How many moles of $\operatorname{AgBr}\left(K_{s p}=5 \times 10^{-13}\right)$ will dissolve in a 0.01 M NaBr solution? ( NaBr is completely ionised in solution)
76. Calcualte the solubility of $M_{2} X_{3}$ in pure water, assuming that neither kind of ion reacts with $\mathrm{H}_{2} \mathrm{O}$. The solubility product of $M_{2} X_{3}, K_{s p}=1.1 \times 10^{-23}$.

## - Watch Video Solution

77. The values of $K_{s p}$ of two sparingly solubles salts, $\mathrm{Ni}(\mathrm{OH})_{2}$ and AgCN are $2.0 \times 10^{-15}$ and $6 \times 10^{-7}$ respectively, which salt is more soluble?

## Explain

## - Watch Video Solution

78. Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 M NaOH Given that the ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is $2 \times 10^{-15}$.
79. Given that the solubility product of radium sulphate $\left(\mathrm{RaSO}_{4}\right)$ is $4 \times 10^{-11}$. Calculate the solubility in (a) pure water (b) $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$.

## - Watch Video Solution

80. Predict whether a precipitate will be formed or not on mixing 20 mL of 0.001 M NaCl with 80 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ solution $\left(K_{s p}\right.$ for $\left.A g C I=1.5 \times 10^{-10}\right)$

## - Watch Video Solution

81. If 20 ml of $2 \times 10^{-5} \mathrm{BaCl}_{2}$ solution is mixed with 20 ml of $1 \times 10^{-5} \mathrm{MNa}_{2} \mathrm{SO}_{4}$ solution, will a ppt. form ? $\left(K_{\text {sp }} \mathrm{forBaSO}_{4}\right.$ is1.0 $\left.\times 10^{-10}\right)$

## - Watch Video Solution

82. 0.03 mole of $\mathrm{Ca}^{2+}$ ions is added to a litre of $0.01 \mathrm{M} \mathrm{SO}_{4}^{2-}$ solution. Will it cause precipitation of $\mathrm{CaSO}_{4}$ ? $K_{\text {sp }} \mathrm{forCaSO}_{4}=2.4 \times 10^{-5}$.

## - Watch Video Solution

83. $\mathrm{PbCl}_{2}$ has a solubility product of $1.7 \times 10^{-8}$. Will a precipitate of $\mathrm{PbCi}_{2}$ form when 0.010 mole of lead nitrate and 0.010 mole of potassium chloride are mixed and water added upto 1 litre ?

## - Watch Video Solution

84. How much volume of 0.1 M Hac should be added to 50 mL of 0.2 M NaAc solution if we want to prepare a buffer solution of pH 4.91 . Given $p K_{a}$ for acetic acid is 4.76.

## - Watch Video Solution

85. How much of $0.3 M$ ammonium hydroxide should be mixed with 30 mL of 0.2 M solution of ammonium chloride to give buffer solutions of $\mathrm{pH8} .65$ and 10 ? (Give: $\left.\mathrm{pK}_{b} \mathrm{Of} \mathrm{NH}_{4} \mathrm{OH}=4.75\right)$

## - Watch Video Solution

86. The ionization constant of fromic acid is $1.8 \times 10^{-4}$. Calculate the ratio of sodium formate and formic acid in a buffer of pH 4.25 .

## - Watch Video Solution

## Advanced Problems (For Competitions)

1. Given: $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+} \Leftrightarrow \mathrm{Ag}^{+} 2 \mathrm{NH}_{3}, K_{C}=6.2 \times 10^{-8} \quad$ and $K_{S P}$ of $\mathrm{AgCI}=1.8 \times 10^{-10}$ at 298 K . Calculate the concentration of the complex in 1.0 M aqueous ammonia.
2. Calcium lactate is a salt of weak acid and represented as $\operatorname{Ca}(\mathrm{LaC})_{2}$. A saturated solution of $\mathrm{Ca}(\mathrm{LaC})_{2}$ contains 0.13 mole of salt in 0.50 litre solution. The pOH of this is 5.60 . Assuming complete dissociation os salt, calculate $K_{a}$ of lactic acid.

## - Watch Video Solution

3. An aqueous solution of a metal bromide $\mathrm{MBr}_{2}(0.05 M)$ is saturated with $H_{2} S$. What is the minimum pH at which MS will precipitate ? $K_{S P}$ for $M S=6.0 \times 10^{-21} \quad$ Concentration of saturqated $H_{2} S=0.1 M, K_{1}=10^{-7}$ and $K_{2}=1.3 \times 10^{-13}$ for $H_{2} S$.

## - Watch Video Solution

4. 0.15 mole of pyridinium chloride has been added into $500 \mathrm{~cm}^{3}$ of 0.2 M pyridine solution. Calculate pH and hydroxyl ion contration in the
resulting solution, assuming no change in volume. $\left(K_{b}\right.$ for pyridine $\left.=1.5 \times 10^{-9} \mathrm{M}\right)$

## - Watch Video Solution

5. A sample of hard water contains 96 ppm . ofSO $\mathrm{A}_{4}^{2-}$ and 183 ppmof $^{-1} \mathrm{CO}_{3}^{-}$, with $\mathrm{Ca}^{2+}$ as the only cation. How many moles of CaO will be required to remove $\mathrm{HCO}_{3}^{-}$from 1000 kg of this water? If 1000 kg of this water is treated with the amount of CaO calculated above, what will be the concentration (in ppm)of residual $\mathrm{Ca}^{2+}$ ions (Assume $\mathrm{CaCO}_{3}$ to be completely insoluble in water)? If the $\mathrm{Ca}^{2+}$ ions in one litre of the treated water are completely exchange with hydrogen ions, what will be its pH (One ppm means one part of the substance in one million part of water, weight/weight)?

## - Watch Video Solution

6. The ionisation constant of $\mathrm{NH}_{4}^{+}$in water is $5.6 \times 10^{-10}$ at $25^{\circ} \mathrm{C}$. The rate constant for the rection of $\mathrm{NH}_{4}^{+}$and $\mathrm{OH}^{-}$to form $\mathrm{NH}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C} 3.4 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~S}^{-1}$. Calculate the rate constant for proton from water to $\mathrm{NH}_{3}$.

## - Watch Video Solution

7. An aqueous solution of aniline of concentration 0.24 M is prepared.

What concentrator of sodium hydroxide is needed in this solution so that anilinium ion concentration remains at $1 \times 10^{-8} \mathrm{M}$ ?

$$
\left(K_{a} \text { for } C_{6} H_{5} \mathrm{NH}_{3}^{+}=2.4 \times 10^{-6} \mathrm{M}\right)
$$

## - View Text Solution

8. Determine the number of mole of Agl which may be dissolved in 1.0 litre of $1 M C N^{-}$solution. $K_{S P}$ for AgI and $K_{C}$ for $\mathrm{Ag}(C N)_{2}^{-}$are $1.2 \times 10^{-17} M^{2}$ and $7.1 \times 10^{19} M^{-2}$ respectively.
9. Determine the concentration of $\mathrm{NH}_{3}$ solution whose one litre can dissolve 0.10 mole $\mathrm{AgCl} . K_{S P}$ of AgCl and $K_{f}$ of $\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}$are $1.0 \times 10^{-10} M^{2}$ and $1.6 \times 10^{7} M^{-2}$ respectively.

## - Watch Video Solution

10. The average concentration of $\mathrm{SO}_{2}$ in the atmosphere over a city on a cetrain day is 10 ppm , when the average temperature is 298 K . Given that the solubility of $\mathrm{SO}_{2}$ in water at 298 K is $1.3653 \mathrm{~mol} \mathrm{litre}^{-1}$ and the $p K_{a}$ of $\mathrm{H}_{2} \mathrm{SO}_{3}$ is 1.92 , estimate the pH of rain on that day.

## - Watch Video Solution

11. What $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$must be maintained in a saturated $\mathrm{H}_{2} \mathrm{~S}$ solution to precipitate $\mathrm{Pb}^{2+}$, but not $\mathrm{Zn}^{2+}$ from a solution in which each ion is
present at a concetration of 0.01 M ? $\left(K_{S P}\right.$ for $H_{2} S=1.1 \times 10^{-22}, K_{S P}$ for $\mathrm{ZnS}=1.0 \times 10^{-21}$ )

## - Watch Video Solution

12. 500 mL of 0.2 M aqueous solution of acetic acid is mixed with 500 mL of 0.2 M HCl at $25^{\circ} \mathrm{C}$.
(i) Calculate the degree of dissociation of acetic acid in the resulting solution and pH of the solution.
(ii) If 6 g of NaOH is added to the above solution, determine the final pH [Assume there is no change in volume on mixing : $K_{a}$ of acetic acid is $\left.1.75 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}\right]$

## - View Text Solution

13. An aqueous solution contains $10 \%$ amonia by mass and has a density of $0.99 \mathrm{gcm}^{-3}$. Calculate hydroxy 1 and hydrogen ion concentration in this solution $K_{a}$ for $\mathrm{NH}_{4}^{\oplus}=5.0 \times 10^{-10} \mathrm{M}$.
14. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaHCO}_{3}$ concentrations. What volume of 5 M NaHCO 3 solution, shnould be mixed with 10 mL sample of blood, which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of $7.4\left(\mathrm{~K}_{a} f\right.$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood $\left.=7.8 \times 10^{-7}\right)$

## - Watch Video Solution

15. A sample of hard water contains 100 ppm of $\mathrm{CaSO}_{4}$. What minimum fraction of water should be evaporated off so that solid $\mathrm{CaSO}_{4}$ begins to separate out ? $K_{\text {sp }}$ for $\mathrm{CaSO}_{4}$ is $9.0 \times 10^{-6}$.

## D View Text Solution

16. Calculate the solubility of AgCN in a buffer solution of $\mathrm{pH} 3 \cdot 00 . K_{s p}$ for AgCN is $2.2 \times 10^{-16}$ and $K_{a}$ for HCN is $6.2 \times 10^{-12}$.
17. 0.16 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ are dissolved in water and the total volume made upto 500 mL . Calculate the percentage of $\mathrm{N}_{2} \mathrm{H}_{4}$ that has reacted with water in this solution. $\left(K_{b} f\right.$ or $\left.N_{2} H_{4}=4.0 \times 10^{-6}<\right)$

## - Watch Video Solution

18. The $K_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ is $4.42 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. A 500 ml of saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ is mixed with an equal volume of 0.4 MNaOH . How much $\mathrm{Ca}(\mathrm{OH})_{2}$ in mg is precipitated ?

## - Watch Video Solution

19. Calculate the pH of
(i) $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
(ii) $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$
(iii) $10^{-2} \mathrm{MH}_{2} \mathrm{SO}_{4}$ solutions.

Given that the second ionization constant $\left(K_{a_{2}}\right)$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ if $10^{-2}$.

## Test Your Grip ( I. Multiple choice Questions)

1. What is the conjugate base of $\mathrm{OH}^{-}$?
A. $\mathrm{O}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{O}^{-}$
D. $O^{2-}$

## Answer: D

## - Watch Video Solution

2. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ acts as ....... In $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$.
A. strong acid
B. weak acid
C. strong base
D. weak base

## Answer: A::B::C::D

## - Watch Video Solution

3. Which of the following molecules acts as a Lewis acid?
A. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
B. $\left(\mathrm{CH}_{3}\right)_{3} P$
C. $\left(\mathrm{CH}_{3}\right)_{3} N$
D. $\left(\mathrm{CH}_{3}\right)_{3} B$

## Answer: B::C::D

4. Which of the following can act both as a Bronsted acid as well as a Bronsted base ?
A. $\mathrm{H}_{3} \mathrm{PO}_{4}$
B. $\mathrm{AlCl}_{3}$
C. $\mathrm{CH}_{3} \mathrm{COO}^{-}$
D. $\mathrm{H}_{2} \mathrm{O}$

## Answer: D

## - Watch Video Solution

5. The $K_{a}$ value of formic acid and acetic acid are respectively $1.77 \times 10^{-4}$ and $1.75 \times 10^{-5}$. The ratio of the acid strength of 0.1 N acids is
A. 10
B. 3.178
C. 0.3
D. 0.1

Answer: A: B

## - Watch Video Solution

6. The correct order of acidity for the following is
A. $\mathrm{HCN}>\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}$
B. $\mathrm{HCN}>\mathrm{HCOON}>\mathrm{ClCH}_{2} \mathrm{COON}>\mathrm{CH}_{3} \mathrm{COOH}$
C. $\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{COOH}>\mathrm{HCN}$
D. $\mathrm{ClCH}_{2} \mathrm{COOH}>\mathrm{HCN}>\mathrm{HCOOH}>\mathrm{CH}_{3} \mathrm{COOH}$

## Answer: C

## - Watch Video Solution

7. When rain is accompanied by a thunderstorm, the collected rain water will have a pH value
A. slightly higer than that when the thunder storm is not there
B. uninfluenced by the thunder storm
C. which depends on the amount of dust in air
D. slightly lower than that of rain water without thunder storm

## Answer: A::C::D

## - Watch Video Solution

8. An acid $H A$ ionizes as $H A \Leftrightarrow H^{+}+A^{-}$The $p H$ of $1.0 M$ solution is 5 . Its dissociation constant would be
A. $1 \times 10^{-10}$
B. 5
C. $5 \times 10^{-8}$
D. $1 \times 10^{-5}$

## Answer: A

## - Watch Video Solution

9. What is the percentage hydrolysis of NaCN is $\mathrm{N} / 80$ soluiton, when the dissociation constant for HCN is $1.3 \times 10^{-9}$ and $K_{w}=1.0 \times 10^{-14}$
A. 2.48
B. 5.26
C. 8.2
D. 9.6

## Answer: A::C

## - Watch Video Solution

10. If $p K_{a}$ of acetic acid and $p K_{b}$ of ammonium hydroxide are 4.76 each. Find the pH of ammonium acetate.
A. 7
B. less than 7
C. more than 7
D. zero

## Answer: A::B::C::D

## - Watch Video Solution

11. The ionization constant of ammonium hydroxide is $1.77 \times 10^{-5}$ at 298 K .Hydrolysis constant of ammonium chloride is
A. $6.50 \times 10^{-12}$
B. $5.65 \times 10^{-13}$
C. $5.65 \times 10^{-12}$
D. $5.65 \times 10^{-10}$

## Answer: B::D

## D Watch Video Solution

12. The aqueous solution of which of the salts has pH close to 7 ?
A. $\mathrm{FeCl}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COONa}$
C. $\mathrm{CH}_{3} \mathrm{COONH}_{4}$
D. $K C N$

## Answer: C

## - Watch Video Solution

13. In the titration of a weak acid aginst a strong base, at the halfequivalence point (half. Neutralisation )
A. $p H=\frac{1}{2} p K_{a}$
B. $p H=p K_{a}$
C. $p H=2 p K_{a}$
D. None of these

## Answer: B

## - View Text Solution

14. Volume of 0.1 M NaOH needed for the neutralisation of 20 mL of 0.05

M oxalic acid is
A. 10 mL
B. 15 mL
C. 20 mL
D. 30 mL

Answer: A: $\mathrm{B}: \mathrm{C}$

## - Watch Video Solution

15. What is the correct representation for the solubility product of $\mathrm{SnS}_{2}$ ?
A. $\left[S n^{2+}\right]\left[\mathrm{S}^{2-}\right]^{2}$
B. $\left[S n^{4+}\right]\left[s^{2-}\right]^{2}$
c. $\left[\operatorname{Sn}^{2+}\right]\left[2 S^{2-}\right]^{2}$
D. $\left[\mathrm{Sn}^{2+}\right]\left[2 \mathrm{~S}^{2-}\right]^{2}$

## Answer: B

## - Watch Video Solution

16. The $K_{\text {sp }}$ of $\mathrm{PbCrO}_{4}$ is $1.0 \times 10^{-16}$. Then the molar solubility of $\mathrm{PbCrO}_{4}$ is
A. $1.0 \times 10^{-6}$
B. $1.0 \times 10^{-4}$
C. $1.0 \times 10^{-16}$
D. $1.0 \times 10^{-8}$

## Answer: B::C::D

## - Watch Video Solution

17. In a mixture of weak acid and its salt, the ratio of concentration of acid to salt is increased ten-fold. The pH of the solution
A. decreases by one
B. decreases by one tenth
C. increases by one
D. increases ten-fold.

## Answer: A::C::D

## - Watch Video Solution

18. The principal buffer present in human blood is
A. $\mathrm{NaH}_{2} \mathrm{PO}_{4}+\mathrm{Na}_{2} \mathrm{HPO}_{4}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NaH}_{2} \mathrm{PO}_{4}$
C. $\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{Na}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{HCO}_{3}^{-}$

## Answer: D

## ( Watch Video Solution

19. Which of the following will occur if a 0.1 M solution of a weak acid is diluted to 0.01 M at constant temperature
A. $\left[\mathrm{H}^{+}\right]$will decrease to 0.01 M
B. pH will decrease
C. percentage ionization will increase
D. $K_{a}$ will increase.

## Answer: C

## - Watch Video Solution

## Test Your Grip (II. Fill in the blanks)

1. A bulb containing $\mathrm{N}_{2} \mathrm{O}_{4}$ is colourless in ice. Its colour inboiling water is ............. while in water at 298 K , it is ..............
2. Equimolar amounts of $\mathrm{H}_{2}$ and $I_{2}$ were taken in a bulb maintained at $500^{\circ} \mathrm{C}$. Dark violet colour faded to light violet which does not change further. This shows that the bulb contains .............. amounts of

## - Watch Video Solution

3. According to law of mass action rate of a chemical reaction is proportional to

## - Watch Video Solution

4. In terms of rate constants for forward and backward reactions ( $k_{f}$ and $k_{b}$ ), equilibrium constant of a reaction is equal to

## - Watch Video Solution

5. Equilibrium constant of a reaction does not change with ......... but changes with .

## Watch Video Solution

6. Ratio $K_{p} / K_{c}$ of the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is equal to

## - Watch Video Solution

7. Equilibrium constant for the reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K , then equilibrium constant for the reaction, $\mathrm{NH}_{3} \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2}$ will be

## - Watch Video Solution

8. Adding a catalyst to a reaction at equilibrium
9. The equilibrium constant of an endothermic reaction .......... . with increase of temperature.

## - Watch Video Solution

10. Write the expression for equilibrium constant $K_{p}$ for the reaction, $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$.

## - Watch Video Solution

11. If the concentration quotient of a reaction in greater than its equilibrium constant, then the reaction will proceed in the direction.

## - Watch Video Solution

12. $N_{2}$ gas id added to the reaction equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at constant temperature. If pressure is kept constant, equilibrium constant will ...... and equilibrium will shift in the .......... direction.

## - Watch Video Solution

13. Solution of $\mathrm{FeCl}_{3}$ (yellow ) and $\mathrm{NH}_{4} \mathrm{SCN}$ (colourless) were mixed in a beaker. Red colour was obtained. On adding $\mathrm{HgCl}_{2}$ to the solution, the intensity of colour will $\qquad$

## - Watch Video Solution

14. Exothermic reactions are favoured by $\qquad$ in temperature

## - Watch Video Solution

15. Low pressure is favourable for those reversible reactions in which there is $\qquad$ in the number of molecules.

## - Watch Video Solution

16. When the pressure is applied over system ice $\Leftrightarrow$ wate what will happen

## - Watch Video Solution

17. The degree of dissociation of a weak electrolyte is $\qquad$ one whereas that of a strong electrolyte is $\qquad$ one.

## - Watch Video Solution

18. If c is the molar concentration of the solution of a weak electrolyte, then its degree of dissociation is proportional to $\qquad$
19. $\mathrm{H}^{+}$ions in aqueous solutions exist as ..........ions.

## - Watch Video Solution

20. A substance which can act both as an acid and a base is called

## - Watch Video Solution

21. The conjugate acid of $\mathrm{OH}^{-}$ions is $\qquad$ and conjugate base is $\qquad$

## - Watch Video Solution

22. In the reaction between $\mathrm{BF}_{3}$ and $\mathrm{NH}_{3}, B F_{3}$ acts as $\qquad$ whereas $\mathrm{NH}_{3}$ acts as
23. If $K_{a_{1}}$ and $K_{a_{2}}$ are the dissociation constants of two acids $H A_{1}$ and $H A_{2}$, then the ratio of strengths of their solutions with equimolar concentration is $\qquad$

## - Watch Video Solution

24. If $K_{1}$ is ionization constant of $H_{2} S(a q) \Leftrightarrow 2 H^{+}(a q)+S^{2-}(a q)$ and $K_{2}$ is that for $H_{2} S(a q) \Leftrightarrow H^{+}(a q)+H S^{-}(a q)$, then ionization constant of $H S^{-}(a q) \Leftrightarrow H^{+}(a q)+S^{2-}(a q)$ will be equal to $\qquad$

## - Watch Video Solution

25. Will ionic product of water increase or decrease if temperature is increased?
26. If $K_{a}$ and $K_{b}$ are the dissociation constants of weak acid and its conjugate base , $p K_{a}+p K_{b}$

## - Watch Video Solution

27. The pH of $10^{-8} \mathrm{M}$ acid solution lies between $\qquad$ .and

## - Watch Video Solution

28. The pH of $10^{-10} \mathrm{M} \mathrm{NaOH}$ solution lies between........and $\qquad$

## - Watch Video Solution

29. The relation between $\mathrm{pH}, p K_{a}$ and concentration c of the solution of a weak acid is $\qquad$
30. pH of a solution of $\mathrm{CuSO}_{4}$ is.......... Than 7 and that of solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is .than 7.

## - Watch Video Solution

31. pH , ionization constant $K_{a}$ and concentration c of the solution of the salt of a weak acid and strong base (like $\mathrm{CH}_{3} \mathrm{COOna}$ ) are related as

## - Watch Video Solution

32. The expression for the solubility product of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will be $K_{s p}=$

## - Watch Video Solution

33. The solubility of AgCl in water is ........than that in NaCl solution.
34. Mixing of solutions of $\mathrm{BaCl}_{2}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ results in the formation of a precipitate of $\mathrm{BaSO}_{4}$ only if......greater than

## - Watch Video Solution

35. An acidic buffer mixture consists of .and........ .

## - Watch Video Solution

36. The number of moles of an acid or base added to one litre of the buffer solution so as to change its pH by one unit is called $\qquad$ of the buffer.

## - Watch Video Solution

Conceptual Questions (I. Storng and weak electrolytes, ionic equilibrium and Ostwalds dilution law)

1. How does the degree of ionization (assuming lt lt 1) of a weak electroyte vary with concentration ? Give exact relationship.

## D Watch Video Solution

## Conceptual Questions (II. Various concepts of Acids and Bases, their dissociation constants and strength )

1. What si the correct order of decreasing stability of the following carbocations.

$$
\begin{aligned}
& \mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{3} \mathrm{I} . \quad \mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{OCH}_{3} \mathrm{II} . \\
& \mathrm{CH}_{3}-\stackrel{\oplus}{\mathrm{C}} \mathrm{H}-\mathrm{CH}_{2}-\mathrm{OCH}_{3} \mathrm{III} .
\end{aligned}
$$

## - Watch Video Solution

2. Write down the conjugate acid and conjugate base of
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{HSO}_{4}^{-}$
(iii) $\mathrm{NH}_{3}$
(iv) $\mathrm{HS}^{-}$
3. Arrange the following in order of their Increasing basicity: $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{O}^{-}$

## - Watch Video Solution

4. Ionization constants $K_{a}$ for formic acid and acetic acid are $17.7 \times 10^{-5}$ and $1.77 \times 10^{-5}$. Which acid is stronger and how many times the other if equimolar concentrations of the two are taken ?

## - Watch Video Solution

## Conceptual Questions ( III. Ionic product of water and pH)

1. What is the effect of temperature on ionic porduct of water and why?
2. What happens to the ionic product of water if some acid is added into water?

## - Watch Video Solution

3. What are pH and pOH value of the neutral solution at a temperature at which $K_{W}=10^{-13}$ ?

## - Watch Video Solution

4. What pH do you expect for $10^{-8} \mathrm{M}$ solution of an acid ?

## - Watch Video Solution

5. Will the pH of water be same at $4^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ ? Explain.

## - Watch Video Solution

## Conceptual Questions (IV. Salt hydrolysis)

1. For an aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, prove that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathrm{K}_{h} \mathrm{C}}$.

## - Watch Video Solution

## Conceptual Questions (V. Acid-base titrations)

1. The pH of an enzyme catalysed reaction has to be maintained between

7 and 8 . What indicator should be used to monitor and a control the pH ?

## - Watch Video Solution

2. The $p K_{\text {ind }}$ of an indicator is 10.5 For which pH transition range is the indicator most suitable.
3. Benzoic acid is a monobasic acid. When 1.22 g of its pure sample are dissolved in water and titrated against base, 50 ml of 0.2 M NaOH are used up. Calculate the molar mass of benzoic acid.

## - Watch Video Solution

## Conceptual Questions ( VI. Solubility product, common ion effect and their applications)

1. What is the diffrerence between ionic product and solubility product?

## - Watch Video Solution

2. When is a precipitate formed when solutions of $\mathrm{BaCl}_{2}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed ?
3. Why solid NaCl starts separating out from a saturated solution of NaCl if HCl gas is passed through it ?

## ( Watch Video Solution

4. Through a solution containing $\mathrm{Cu}^{2+}$ and $\mathrm{Ni}^{2+}, \mathrm{H}_{2} \mathrm{~S}$ gas is passed after adding dil HCl , which will precipitate out and why?

## - View Text Solution

5. Two sparingly soluble salts $A B$ and $X Y Z$ have the same soubility product.

Which salt will be more soluble?

## D Watch Video Solution

1. The ionization constant of formic acid is $1.8 \times 10^{-4}$. Around what pH will its mixture with sodium formate give buffer solution of highest capacity ?

## - Watch Video Solution

2. Blood is a buffer of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\left[\mathrm{HCO}_{3}^{-}\right]$with $\mathrm{pH}=7.40$. Given $\mathrm{K}_{1}$ of $\mathrm{H}_{2} \mathrm{CO}_{3}=4.5 \times 10^{-7}$. What will be the ratio of $\left[\mathrm{HCO}_{3}^{-}\right]$to $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ in the blood?

## - Watch Video Solution

## NCERT (Questions and Exercises with Answers)

1. What is meant by the conjugate acid-base pair? Find the conjugate acid /base for the following species:
$\mathrm{HNO}_{2}, \mathrm{CN}^{\Theta}, \mathrm{HClO}_{4}, \mathrm{~F}^{\Theta}, \stackrel{\Theta}{\mathrm{O}}, \mathrm{CO}_{3}^{2-}$, and $\mathrm{S}^{2-}$
2. Which of the followings are Lewis acids: $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{\oplus}$ and $\mathrm{NH}_{4}$ ?

## ( Watch Video Solution

3. What will be the conjugate bases for the Bronsted acids ? $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{HCO}_{3}^{-}$

## ( Watch Video Solution

4. Write the conjugate acids for the Bronsted bases : $\mathrm{NH}_{2}^{-}, \mathrm{NH}_{3}$ and $\mathrm{HCOO}^{-}$

## - Watch Video Solution

5. The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{\Theta}, \mathrm{HSO}_{4}^{\Theta}$ and $\mathrm{NH}_{3}$ can act both as Bronsted acids and bases. For each case give the corresponding conjugate acid and

## - Watch Video Solution

6. Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
$\Theta$
a. $O H$, b. $F^{\Theta}$, c. $H^{\oplus}$, d. $B C l_{3}$

## - Watch Video Solution

7. The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. What is its pH ?

## - Watch Video Solution

8. The $p H$ of a sample of vinegar is 3.76 , Calculate the concentration of hydrogen ion in it.
9. The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and $4.8 \times 10^{-9}$ respectively. Calculate the ionization constant of the corresponding conjugate base.

## - Watch Video Solution

10. The ionization constant of phenol is $1.0 \times 10^{-10}$. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate?

## - Watch Video Solution

11. The first ionization constant of $H_{2} \mathrm{~S}$ is $9.1 \times 10^{-8}$. Calculate the concentration of $\mathrm{HS}^{\Theta}$ ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant if $\mathrm{H}_{2} \mathrm{~S}$ is $1.2 \times 10^{-13}$, calculate the concentration of $S^{2-}$ under both conditions.

## (D) Watch Video Solution

12. The ionization constant of acetic acid $1.74 \times 10^{-5}$. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH .

## - Watch Video Solution

13. It has been found that the pH of a 0.01 M solution of an organic acid is
4.15. Calculate the concentration of the anion, the ionization constant of the acid and its $p K_{a}$.

## - Watch Video Solution

14. Assuming complete dissociation, calculate the pH of the following solutions,
a. $0.003 \mathrm{MHCl}, b .0 .005 \mathrm{MNaOH}$,
c. 0.002 MHBr, d. 0.002 MKOH

## (D) Watch Video Solution

15. Calculate the pH of the following solutions:
a. $2 g$ of TlOH dissolved in water to give 2 litre of solution.
b. 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c. 0.3 g of NaOH dissolved in water to give 200 mL of solution.
d. 1 mL of 13.6 MHCl is duluted with water to give 1 litre of solution.

## - Watch Video Solution

16. The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 .

Calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.

## - Watch Video Solution

17. The pH of 0.005 M codenine $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$ solution is 9.95 . Calculate its ionisation constant and $p K_{b}$.
18. What is the pH of 0.001 M aniline solution? The ionization constant of aniline $4.27 \times 10^{-10}$. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

## - Watch Video Solution

19. Calculate the degree of ionisation of 0.05 M acetic acid if its $p K_{a}$ value is 4.74 . How is the degree of dissociation affected when its solution also contains

a. 0.01 M , b. 0.1 M in HCl ?

## - Watch Video Solution

20. The ionisation constant of dimethylamine is $5.4 \times 10^{-4}$. Calculate its degree of ionization in its $0.02 M$ solution. What percentage of
dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

## - Watch Video Solution

21. Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below :
(a) Human muscle - fluid, 6.83
(b) Human stomach fluid, 1.2
(c) Human blood, 7.38
(d) Human saliva, 6.4

## (D) Watch Video Solution

22. The $p H$ of milk, black coffee, tomato juice, lemon juice and egg white are 6.8, 5.0, 4.2, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

## - Watch Video Solution

23. If 0.561 g of $(\mathrm{KOH})$ is dissolved in water to give. 200 mL of solution at 298K. Calculate the concentration of potassium, hydrogen and hydroxyl ions. What is its pH ?

## - Watch Video Solution

24. The solubility of $\operatorname{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{gL}^{-1}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.

## - Watch Video Solution

25. The ionization constant of propanoic acid is $1.32 \times 10^{-5}$. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization if the solution is 0.01 M on HCl also?

## - Watch Video Solution

26. The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionisation in the solution.

## - Watch Video Solution

27. The ionization constant of nitrous acid is $4.5 \times 10^{-4}$. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

## - Watch Video Solution

28. A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine.

## - Watch Video Solution

29. Predict if the solutions of the following salts are neutral, acidic or basic: $\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

## Watch Video Solution

30. The ionization constant of chloroacetic acid is $1.35 \times 10^{-3}$. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

## - Watch Video Solution

31. The ionic product of water at 310 K is $2.7 \times 10^{-14}$. What is the pH of neutral water at this temperature ?

## - Watch Video Solution

32. Calculate the pH of the resultant mixtures:
(a) 10 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 M HCl
(b) 10 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}\left(\mathrm{OH}_{2}\right)$
(c) 10 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 M KOH

## - Watch Video Solution

33. Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298 K form their solubility product constants given below. Determine also the molarities of individual ions.

$$
\begin{aligned}
& K_{S P}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.1 \times 10^{-12}, \\
& K_{S P}\left(\mathrm{BaCrO}_{4}\right)=1.2 \times 10^{-10}, \\
& K_{S P}\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]=1.0 \times 10^{-38}, \\
& K_{S P}\left(\mathrm{PbCI}_{2}\right)=1.6 \times 10^{-5}, \\
& K_{S P}\left(\mathrm{Hg}_{2} I_{2}\right)=4.5 \times 10^{-29}
\end{aligned}
$$

## - Watch Video Solution

34. The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are $1.1 \times 10^{-12}$ and $5.0 \times 10^{-13}$ respectively. Calculate the ratio of the molarities of their saturated solutions.

## - Watch Video Solution

35. Equal volumes of 0.002 M solution of sodium iodate and copper chlorate are mixed together. Will it lead to precipitation of copper iodate ? For copper iodate $K_{s p}=7.4 \times 10^{-4}$

## - Watch Video Solution

36. The ionization constant of benzoic acid is $6.46 \times 10^{-5}$ and $K_{s p}$ for silver benzol is $2.5 \times 10^{-13}$. How many times is silver benzoate more soluble in a buffer of pH is 3.19 compared to its solubility in pure water?

## - Watch Video Solution

37. What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $\left.K_{s p}=6.3 \times 10^{-18}\right)$.

## - Watch Video Solution

38. What is the minimum volume of water required to dissolve 1.0 g of calcium sulphate at 298 K ?
(For calcium sulphate , $K_{\text {sp }} i s 9.1 \times 10^{-6}$ ).

## - Watch Video Solution

39. The concentration of sulphide ion in 0.01 M HCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this solution is added to 5 mL of 0.04 M solution of the following : $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and $\mathrm{CdCl}_{2}$, in which of these solutions precipitation will take place ?

## - Watch Video Solution

## Supplementary NCERT Exercise

1. A certain buffer is made by mixing sodium formate and formic acid in water. With the help of equations explain how this buffer neutratlizes addition of small amount of acid of base.

## - Watch Video Solution

2. A basic buffer is made by mixing ammonium hydroxide and ammonium nitrate in water. Explain how this buffer resists change in its pH on addition of a small amount of an acid or a base.

## - Watch Video Solution

3. What would be the pH of a solution obtained by mixing 10 g of acetic acid and 15 g of sodium acetate and making the volume equal to LL . Dissociation constant of acetic acid at $25^{\circ} \mathrm{C}$ is $1.75 \times 10^{-5}$.

## - Watch Video Solution

4. A buffer solution contains 0.40 mol of ammonium hydroxide and 0.50 mol of ammonium chloride to make a buffer solution of 1 L . Calculate the pH of the resulting buffer solution. Dissociation constant of ammonium hydroxide at $25^{\circ} \mathrm{C}$ is $1.81 \times 10^{-5}$.

## - Watch Video Solution

## NCERT Exemplar Problems with answers, Hints and Solutions (Multiple choice Questions-l)

1. The relationship between $K_{p}$ and $K_{c}$ is $K_{p}=K_{c}(R T)^{\Delta n}$. What would be the value of $\Delta n$ for the reaction :
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) ?$
A. 1
B. 0.5
C. 1.5
D. 2

## Answer: D

## - Watch Video Solution

2. For the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$, the standard free energy is $\Delta G^{\Theta}>0$. the equilibrium constant (k) would be.
A. $K=0$
B. $K>1$
C. $K=1$
D. $K<1$

## Answer: D

## D Watch Video Solution

3. Which of the following is not a general characteristic of equilibrium involving physical processes ?
A. Equilibrium is possible only in a closed system at a given temperature.
B. All measurable properties of the system remain constant.
C. All the physical processes stop at equilibrium.
D. The opposing processes occur at the same rate and there is dynamic but stable condition.

## Answer: C

## - Watch Video Solution

4. $\mathrm{PCl}_{5}, \mathrm{PCl}_{3}$ and $\mathrm{Cl}_{2}$ are at equilibrium at 500 K in a closed container and their concentrations are $0.8 \times 10^{-3} \mathrm{~mol} L^{-1}, 1.2 \times 10^{-3} \mathrm{~mol}$ $L^{-1}$ and $1.2 \times 10^{-3} \mathrm{~mol} L^{-1}$ respectively. The value of $K_{c}$ for the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ will be
A. $1.8 \times 10^{-3} \mathrm{~mol} L_{-}{ }^{1}$
B. $1.8 \times 10^{-3}$
C. $1.8 \times 10^{-3} \mathrm{Lmol}^{-1}$
D. $0.55 \times 10^{4}$

## Answer: B

## - Watch Video Solution

5. Which of the following statements is incorrect ?
A. In equilibrium mixture of ice and water kept in perfectly insulated flask, mass of ice and water does not change with time.
B. The intensity of red colour increases when oxalic acid is added to a solution containing iron (III) nitrate and potassium thiocyanate.
C. On addition of catalyst, the equilibrium constant value is not affected.
D.Equilibrium constant for a reaction with negative $\Delta H$ value decreases as the temperature increases.

## Answer: B

## - Watch Video Solution

6. When hydrochloric aicd is addded to cobalt and nitrate solution at room temperautre, the following reaction takes place and the reaction mixture becomes blue. On cooling the mixture it becomes pink. On the basis of this information mark the corect ansewer.
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{\mathrm{pink}^{3+}(a q)+4 \mathrm{CI}^{-} \Leftrightarrow}{ }^{3}$
$\mathrm{CoCI}_{4}$ blue $^{2-}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. $\Delta H>0$ for the reaction
B. $\Delta<0$ for the reaction
C. $\Delta H=0$ for the reaction
D. The sign of $\Delta H$ cannot be predicted on the basis of this information.

## Answer: A

## - Watch Video Solution

7. The Ph OF NEUTRAL WATER AT $25^{\circ} \mathrm{C}$ is 7.0 . As the temperature increases, ionisation of water increases, however the concentration of $\mathrm{H}^{+}$ ions nad $\mathrm{OH}^{-}$ions equal. What will be the ph of puire water at $60^{\circ} \mathrm{C}$ ?
A. Equal to 7.0
B. Greater than 7.0
C. Less than 7.0
D. Equal to zero

## Answer: C

## D Watch Video Solution

8. The ionisation cosntabnt of an acid, $K_{a}$ is the meaure of strength of an acid. The $K_{a}$ values of acetic acid, hypochlorous acid and formic acid are $1.74 \times 10^{-5}, 3.0 \times 10^{-8}$ and $1.8 \times 10^{-4}$ respectively. Which of the following orders of ph of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solutions of these acids is correct?
A. acetic acid $>$ hypochlorous acid $>$ formic acid
B. hypochlorous acid > acetic acid > formic acid
C. formic acid > hypochlorous acid > acetic acid
D. fromic acid > acetic acid > hypochlorous acid

## Answer: D

## - Watch Video Solution

9. $K_{a 1}, K_{a 2}$ and $K_{a 3}$ are the respective ionisation constants for the following reactions.
$H_{2} S \Leftrightarrow H^{+}+H S^{-}, H S^{-} \Leftrightarrow H^{+} S^{-2}$
$H_{2} S \Leftrightarrow 2 H^{+}+S^{2-}$
The correct relationship between $K_{a 1}, K_{a 2}$ and $K_{a 3}$ is
A. $K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$
B. $K_{a_{3}}=K_{a_{1}}+K_{a_{2}}$
C. $K_{a_{3}}=K_{a_{1}}-K_{a_{2}}$
D. $K_{a_{3}}=K_{a_{1}} / K_{a_{2}}$

## Answer: A

## - Watch Video Solution

10. Acidity of $B F_{3}$ can be explained on ths basis of which of the follwoing concepts?
A. Arrhenius concept
B. Bronsted Lowry concept
C. Lewis concept
D. Bronsted Lowry as well as Lewis concept.

## Answer: C

## - Watch Video Solution

11. Which of the following will produce a buffer sollution when mixed in equal volumes?
A. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
B. $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
C. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NH}_{4} \mathrm{OH}$ and $0.05 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$
D. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COONa}$ and $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$

## Answer: C

12. In which of the following solvents silver chloride easily soluble ?
A. $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{AgNO}_{3}$ solution
B. $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ solution
C. $\mathrm{H}_{2} \mathrm{O}$
D. Aqueous ammonia

## Answer: D

## - Watch Video Solution

13. What will be the value of pH of 0.01
$\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{CH}_{3} \mathrm{COOH}\left(K_{1}=1.74 \times 10^{-5}\right) ?$
A. 3.4
B. 3.6
C. 3.9
D. 3.0

## Answer: A

## - Watch Video Solution

14. $\mathrm{K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.8 \times 10^{-5}$ and $K_{b}$ for $\mathrm{NH}_{4} \mathrm{OH}$ is $1.8 \times 10^{-5}$ The pH of ammonium acetate will be :
A. 7.005
B. 4.75
C. 7.0
D. between 6 and 7 .

## Answer: C

15. Which of the following options will be correct for the stage of half completion of the reaction : $A \Leftrightarrow B$ ?
A. $\Delta G^{\Theta}=0$
B. $\Delta G^{\Theta}>0$
C. $\Delta G^{\Theta}=<0$
D. $\Delta G^{\Theta}=-R T \ln 2$

## Answer: A

## - Watch Video Solution

16. On increasing the pressure, in which dirction will the gas phase reaction proceed to re-establish equilibrium, is predicated by applying the Le Chatelier's principle. Consider the reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Which of the following is correct, if the total pressure at which the
equlibrium is established, is increased without changing the temperature ?
A. $K$ will remain same
B. K will decrease
C. K will increase
D. $K$ will increase initially and decrease when pressure is very high.

## Answer: A

## ( Watch Video Solution

17. What will be the correct order of vapour pressure of water, acetone and ether at $30 .{ }^{\circ} \mathrm{C}$. Given that among these compounds, water has maximum boiling point and ether has minimum boiling point ?
A. Water $<$ ether $<$ acetone
B. Water < acetone < ether
C. Ether < acetone < water
D. Acetone < ether < water

## Answer: B

## - Watch Video Solution

18. At 500 K , equlibrium constant, $K_{c}$ for the following reaction is 5 .
$1 / 2 H_{2}(g)+1 / 2(g) \Leftrightarrow H I(g)$
What would be the equilibrium constant $K_{c}$ for the reaction $2 h i(g) \Leftrightarrow H_{2}(g)+l_{2}(g)$
A. 0.04
B. 0.4
C. 25
D. 2.5

## Answer: A

19. In which of the following reactions, the equilibrium reamins unaffected on addition of small amount of argon at constant volume?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $P C l_{5}(g) \Leftrightarrow \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. The equilibrium will remain unaffected in all the three cases.

## Answer: D

## - Watch Video Solution

## NCERT Exemplar Problems with answers, Hints and Solutions (Multiple Choice Questions-II)

1. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$, the value of K is 50 at 400 K and 1700 at 500 K . Which of the following options is correct?
A. The reaction is endothermic
B. The reaction is exothermic
C. If $\mathrm{NO}_{2}(g)$ and $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ are mixed at 400 K at partial pressures 20 bar and 2 bar respectively, more $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ will be formed,
D. The entropy of the system increases.

## Answer: A::C::D

## - Watch Video Solution

2. At a particular temperature and atmospheric pressure, the solid and liquid phases of a pure substance can exist $i$ equilibrium. Which of the following term defines this temperature?
A. Normal melting point
B. Equilibrium temperature
C. Boiling point
D. Freezing point

## D Watch Video Solution

## NCERT Exemplar Problems with answers, Hints and Solutions (Short Answer Questions)

1. The ionisation of hydrochloric in water is given below:
$\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+} \mathrm{Cl}^{-}(a q)$
Label two conjugate acid- base pairs in this ionisation.

## - Watch Video Solution

2. The aqueous solution of sugart does not conduct electricity. However when sodium chloride is added to water, it conducts electricity. How will you explain this statement on the basis of ionisation and how is it affected by concentration of sodium chloride?
3. $B F_{3}$ does not have proton but still acts as an acid and reacts with $\mathrm{NH}_{3}$. Why is it so? What type of bond is formed between the two ?

## - Watch Video Solution

4. Ionisation constant of a weak base MOH, is given by the expression
$K_{b}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{MOH}]}$
Values of ionisation constant of some weak bases at a particular temperature are given below :

Base $_{b}$ Dimethylamine5.4×10-4 $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) 1.3 \times 10^{-14}$ Pyridine1. $77 \times 10^{-9}$ Ammonia
Arrange the bases in decreasing order of the extent of their ionisation at equilibrium. Which of the above base is the strongest?

## - Watch Video Solution

5. Conjugate acid of a weak base is always stronger. What will be the decrinsing order of basic strength of the following conjugate bases? $\mathrm{OH}^{-}, \mathrm{RO}^{-}, \mathrm{CH}_{3}, \mathrm{COO}^{-}, \mathrm{CI}^{-}$

## - Watch Video Solution

6. Arrange the following in increasing order of ph:
$\mathrm{KNO}_{3}(a q), \mathrm{CH}_{3} \mathrm{COONa}^{(a q)}, \mathrm{NH}_{4} \mathrm{CI}(a q), \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONH}_{4}(a q)$

## - Watch Video Solution

7. The value of $K_{c}$ for the reaction $2 \mathrm{HI}(\mathrm{g}) \Leftrightarrow \mathrm{H}_{2}+I_{2}(\mathrm{~g})$ is $1 \times 10^{-4}$. At a given time, t he composition of reaction mixture is $[\mathrm{HI}]=2 \times 10^{-5} \mathrm{~mol},\left[\mathrm{H}_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ and $\left[\mathrm{I}_{2}\right]=1 \times 10^{-5} \mathrm{~mol}$ In which direction will the reaction proceed ?

## - Watch Video Solution

8. On the basis of the equation $p h=-\log \left[H^{+}\right]$,the ph of $10^{-8} \mathrm{~mol} \mathrm{dm}^{-3}$ solution of HCl should be 8 . However, it is observed to be less than 7.0. Explain the reason.

## - Watch Video Solution

9. ph of a solution of a strong acid is 5.0 . What will be the ph of the solution obtained after dilluting the given solution to 100 times ?

## - Watch Video Solution

10. A sparingly soluble salt gets precipitated only when the prudct of concentration of its ions in th e solution $\left(Q_{S p}\right)$ becomes greater than its solubility product. If solubility of $\mathrm{BaSO}_{4}$ in water is $8 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$.

Calculater its solubility in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$.

## - Watch Video Solution

11. pH of $0.08 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HOCl}$ solution is 2.85 . Calculate its ionisation constant.

## - Watch Video Solution

12. Calculate the ph of a solution formed by mixing equal volumes of two solutions $A$ and $B$ of a strong acids having $p h=6$ and $p h=4$ respectively.

## - Watch Video Solution

13. The solubility product of $\mathrm{Al}(\mathrm{OH})_{3}$ is $2.7 \times 10^{-11}$. Calculate its solubility is $g L^{-1}$ and also find out pH of this solution.

## - Watch Video Solution

14. Calculate the volume of water required to dissolve 0.1 g lead (II) chloride to get a saturaed solution $\left(K_{s p}\right.$ of $\mathrm{PbCI}_{2}=3.2 \times 10^{-8}$, atomic
mass of $P b=207 u$ ). Multiply your answer with 10 to get answer.

## - Watch Video Solution

15. A reaction between ammonia and boron triflurdie is given below :
$: \mathrm{NH}_{3}+\mathrm{BF}_{3} \rightarrow \mathrm{H}_{3} \mathrm{~N}: \mathrm{BF}_{3}$

Identify the acid and base in this reaction. Which theory explanis it ?

What is the hybridsation of B and N in the additon compound ?

## D Watch Video Solution

16. Following data is given for the reaction : $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Given that $\Delta_{f} H^{\circ}[\mathrm{CaO}(\mathrm{s})]=-635.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}\left[\mathrm{CO}_{2}(g)\right]=-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]=-1206.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Predict the effect of temperature on the equilibrium constant of the above reaction.

## NCERT Exemplar Problems with answers, Hints and Solutions (Matching Type Questions)

1. Match the tererms given is Column I with the type of solutions given in Column II.

ColumnI
A. Soda water
B. Sugar solution
C. German silver
D. Air
E. Hydrogen gas in palladium.
5. A solution of gas in liquid.
6. A solution of liquid in solid.

1. A solution of gas in solid.
2. A slution of gas in gas.
3. A solution of solid in liquid.
4. A solution of solid in solid.
5. For the reaction : $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\left[\mathrm{NH}_{3}\right]^{2}
$$

Equilibrium constant $K_{c}=$

$$
\left[N_{2}\right]\left[H_{2}\right]^{3}
$$

Some reactions are written below in Column I and their equilibrium constants in terms of $K_{c}$ are written in Column II. Match the following
reactions with the corresponding equilibrium constant

## - View Text Solution

(A) $\Delta G^{\Theta}>0$
(i) $K>1$
(B) $\Delta G^{\Theta}<0$
(ii) $K=1$
(C) $\Delta G^{\Theta}=0$
(iii) $K=0$
(iv)K $<1$
3.

## - Watch Video Solution

4. Match the following species with the corresponding conjugate acid Species Conjugate acid
(i) $\mathrm{NH}_{3}$
(a) $\mathrm{CO}_{3}^{2-}$
(ii) $\mathrm{HCO}_{3}^{-}$
(b) $\mathrm{NH}_{4}^{+}$
(iii) $\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{H}_{3} \mathrm{O}^{+}$
(iv) $\mathrm{HSO}_{4}^{-}$
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}$
(e) $\mathrm{H}_{2} \mathrm{CO}_{3}$
5. Match the following graphical variation with their description

## - View Text Solution

6. Match Column I with Column II.
Column I
Column II
(i) Equilibrium
(a) $\Delta G>0, K<1$
(ii) Spontaneous reaction
(b) $\Delta G=0$
(iii) Non-spontaneous reaction
(c) $\Delta G^{\Theta}=0$
(d) $\Delta G<0, K>1$

## - Watch Video Solution

NCERT Exemplar Problems with answers, Hints and Solutions (Assertion and Reason Type Questions )

1. Asseration (A) : Increasing order of acidity of hydrogen halides is $\mathrm{HF}<\mathrm{HCI}<\mathrm{HBr}<\mathrm{HI}$

Reason (R): While comparing acids formed by the elements belonging to the same group of periodic table, $\mathrm{H}-\mathrm{A}$ bond strength is a more important factor in determining acidity of an acid than the polar nature of the bond.
A. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: A

## - Watch Video Solution

2. Asseration : A solution containing a mixture of acetic acid and sodium acetate maintains a constant value of ph on addition of small amounts of acid or alkali.

Reason : A solution containing a mixture of acetic acid and sodium acetate acts as a buffer solution around ph 4.75.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: A

## - Watch Video Solution

3. Asseration : The ionisation of hydrogen sulphide in water is low in the presence of hydrochloric acid.

Reason : Hydrogen sulphide is a weak acid.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: B

## - Watch Video Solution

4. Assertion (A) : For any chemical reaction at particular temperature, the equilibrium constant is fixed and is a characteristic property.

Reason (R) : Equilibrium constant is independent of temperature.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: C

## - Watch Video Solution

5. Statement-1: Aqueous solution of ammonium carbonate is basic.

Statement-2: Acidic/basic nature of a salt solution of a salt of weak acid and weak base depends on $K_{a}$ and $K_{b}$ value of the acid and the base forming it.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: A

## - Watch Video Solution

6. Asseration : An aqeous solution of ammonium acetate can act as buffer.

Reason: Acetic acid is a weak acid and $\mathrm{NH}_{4} \mathrm{OH}$ is a weak base.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: B

## D Watch Video Solution

7. Asseration : In the dissociation of $\mathrm{PCI}_{5}$ at constant pressure and temperature addition of helium at equilibrium increases the dissociation of $\mathrm{PCI}_{5}$.

Reason : Helium removes $\mathrm{CI}_{2}$ from the field of action.
$A$. Both $A$ and $R$ are true and $R$ is the correct explanation of $A$.
B. Both $A$ and $R$ are true but $R$ is not the correct explanation of $A$.
C. $A$ is true but $R$ is false.
D. Both $A$ and $R$ are false.

## Answer: C

## - Watch Video Solution

## NCERT Exemplar Problems with answers, Hints and Solutions (Long Answer Questions)

1. How can you predict the following stages of a reaction by comparing the value of $K_{c}$ and $Q_{c}$ ?
(i) Net reaction proceeds in the forward direction.
(ii) Net reaction proceeds in the backward direction.
(iii) No net reaction occurs.

## - Watch Video Solution

2. On the basis of Le Chatelier principle explain how temperature and pressure can be adjusted to increase the yield of ammonia int he following reaction.
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g), \Delta H=-92.38 \mathrm{KJMol}^{-1}$
What will be the effect of addition of argon to the avove mixture at cosntant volume ?

## - Watch Video Solution

3. A sparingly soluble salt having general formula $A_{x} B_{y}$ and molar solubility $s$ is in equilibrium with its saturated solution. Derive a relationship between the solubility and solubility product for such salt.

## ( Watch Video Solution

4. Write a relation between $\Delta G$ and Q and deifine the meaning of each term and answer the following :

Why a reaction proceeds forward when $Q<K$ and no net reaction occure when $Q=K$.

Explain the effect of increase in presure in terms of reaction quotient Q for the reaction : $\mathrm{CO}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

# Additional Questions (Very short answer questions) (I. Strong and weak electrolytes, ionic equilibrium and Ostwalds dilution law) 

1. How does the degree of ionization (assuming lt lt 1)' of a weak electroyte vary with concentration ? Give exact relationship.

## - Watch Video Solution

Additional Questions (Very short answer questions)

1. What is the difference between a conjugate acid and its conjugate base
?

- Watch Video Solution

Additional Questions (Very short answer questions) (II. Various concepts of Acids and Bases, their dissocaition constants and strength )

1. Which concept can justify that $\mathrm{CaO}+\mathrm{SO}_{3} \rightarrow \mathrm{CaSO}_{4}$ is an acid-base reaction ?

## - Watch Video Solution

2. Fill in the blanks : A strong acid has a weak.......and a weak base has a strong

## - Watch Video Solution

3. What is the active mass of water ?

## - Watch Video Solution

> Additional Questions (Very short answer questions) (III. Ionic product of water and pH)

1. What is $p K_{w}$ ? What is its value of $25^{\circ} \mathrm{C}$ ?

## - Watch Video Solution

2. What is the relationship between $p K_{a}$ and $p K_{b}$ values where $K_{a}$ and $K_{b}$ represent constants of the acid and its conjugate base respectively ?

## - View Text Solution

3. What is the relationship between pH and pOH ?

## - Watch Video Solution

Additional Questions (Very short answer questions) (IV. Salt hydrolysis and Calculation of $K_{h}, h$ and $p H$ )

1. What will be the pH of $1 \mathrm{M} \mathrm{NaNO}_{3}$ solution at $25^{\circ} \mathrm{C}$ ?

Additional Questions (Very short answer questions) (V. Acid-base titrations)

1. Which indicator should preferably be used for titration of $\mathrm{NH}_{4} \mathrm{OH}$ with HCl solution?

## - Watch Video Solution

2. What is the relationship between $p K_{\mathrm{ln}}$ and $p H$ at the equivalence point ?

## - Watch Video Solution

3. At half neutralisation of weal acid with a strong base,what is the relationship between $p H$ and dissocaition constant $\left(K_{a}\right)$ of weak acid ?
4. What is the range of a pH indicator in terms of its dissociation constant $\left(K_{\text {ln }}\right)$ ?

## - Watch Video Solution

## Additional Questions (Very short answer questions) (V. Solubility product, common ion effect and their applications)

1. Write the expression for solubility product of calcium phosphate in terms of its molar solubility, S.

## - Watch Video Solution

2. What is the function of adding $\mathrm{NH}_{4} \mathrm{OH}$ in group V ?

## - View Text Solution

Additional Questions (Very short answer questions) ( VII. Buffer solutions)

1. What happens to the pH if a few drops of acid are added to the $\mathrm{CH}_{3} \mathrm{COOH}$ solution?

## - Watch Video Solution

## Additional Questions ( short answer questions) (I. Strong and weak electrolytes, ionic equilibrium and Ostwalds dilution law)

1. What are strong and weak electrolytes? Derive an expression for the calculation of the degree of ionization of a weak electrolyte.

## - Watch Video Solution

2. Derive and define Ostwald's Dilution Law.

## - Watch Video Solution

Additional Questions ( short answer questions) (II. Various concepts of Acids and Bases, their dissociation constants and strength)

1. Discuss Lowry-Bronsted and Lewis concept of acids and bases.

## - Watch Video Solution

2. What is meant by the conjugate acid-base pair ?

## - Watch Video Solution

3. Discuss Lewis definition of acids and bases. How is it more useful than the Bronsted defination ?

## - Watch Video Solution

4. Define the terms 'acid' and 'base' according to each of the following concepts:
(i) Arrhenius (ii) Bronsted-Lowry (iii) Lewis

## - Watch Video Solution

5. Derive expression for dissociation constants of weak acids

## - Watch Video Solution

6. How do you explain the strengths of acids and bases on the basis of Arrhenius theory?

## - Watch Video Solution

7. Justify the statement that a strong acid has a weak conjugate base and strong base has a weak conjugate acid.

## - Watch Video Solution

1. What do you understand by the term 'ionic product of water' ? How has this concept been useful in defining the acidity and basicity of a solution ?

## - Watch Video Solution

2. Explain the term 'ionic product of water'

## - Watch Video Solution

3. How does $K_{w}$ vary with temperature and why ?

## - Watch Video Solution

4. Briefly explain the term 'pH'.

## 0 <br> Watch Video Solution

## Additional Questions ( short answer questions) (V. Acid-base titrations)

1. Briefly explain why phenophthalein is not a suitable indicator when the base is weak acid why methyl orange is not suitable when the acid is weak.

## - Watch Video Solution

Additional Questions ( short answer questions) (V. Solubility product, common ion effect and their applications)

1. Explain the term (i) Solubility product (ii) Common ion effect. <br> Watch Video Solution}
2. What is the Buffer solution ? Give an example of an acidic buffer and explain

## - Watch Video Solution

2. Derive Henderson-Hasselbalch equation.

## - Watch Video Solution

## Additional Questions ( long answer questions)

1. What are strong and weak electrolytes ? Define the term 'degree of ionization' and derive how the degree of ionization is related to the concentration of the solution of the electrolyte.
2. What are acids and bases according to (i) arrhenius concept

Bronsted-Lowry concept ? In what respects (ii) is superior to (i) ?

## - Watch Video Solution

3. What is Lewis concept of Acids and Bases ? Classify the following into
Lewis acids or Lewis bases giving reasons :
$\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{NH}_{3}, \mathrm{SiF}_{4}, \mathrm{Ag}^{+}, \mathrm{Cl}^{-}, \mathrm{CO}_{2}$
What are the advantages and limitations of this concept over the earlier concepts?

## - Watch Video Solution

## Analytical Questions And Problems With Answers/Solutions (Questions)

1. Out of $\mathrm{CH}_{3} \mathrm{COO}^{-}$and $\mathrm{OH}^{-}$which is stronger base and why ?
2. why is ammonia termed as a base though it does not contain $\mathrm{OH}^{-}$ions ?

## - Watch Video Solution

3. Between $\mathrm{Na}^{+}$and $\mathrm{Ag}^{+}$which is stronger Lewis acid and why?

## - Watch Video Solution

4. Explain why pH of 0.1 molar solution of acetic acid will be higher than that of 0.1 molar solution of HCl ?

## - Watch Video Solution

5. A solution turns methyl orange into yellow. The approximate pH of solution is: $\backslash$
6. NaCl solution is added to a saturated solution of $\mathrm{PbCl}_{2}$. What will happen to the concentration of $\mathrm{Pb}^{+2}$ ions?

## - Watch Video Solution

7. Will AgCl be more soluble in aqueous solution or NaCl solution and why?

## - Watch Video Solution

8. Why common salt is added to precipitate out soap form the solution during its manufacturing ?

## - Watch Video Solution

9. Why in Group V of qualitative analysis, sufficient $\mathrm{NH}_{4} \mathrm{OH}$ solution should be added before adding $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ solution ?

## - Watch Video Solution

10. A buffer solution of acetic acid and sodium acetate is diluted 10 times.

What is the effect on its pH ?

## - Watch Video Solution

11. Anhydrous $\mathrm{AlCl}_{3}$ is covalent. From the data given below, predict whether it would remain covalent or become ionic in aqueous solution
(Ionization energy for
$A l=5137 \mathrm{kJmol}^{-1}, \Delta H_{\text {hydration }}$ for $A l^{3+}=-4665 \mathrm{kJmol}^{-1}, \Delta H_{\text {hydration }} \quad$ for $\left.C l^{-1}=-381 \mathrm{kJmol}^{-1}\right)$.
12. Give reasons for the following :
(i) Magnesium is not precipitated from a solution of its salt by $\mathrm{NH}_{4} \mathrm{OH}$ in the presence of $\mathrm{NH}_{4} \mathrm{Cl}$.
(ii) Ammonium chloride is acidic in liquid ammonia solvent

## - Watch Video Solution

13. What type of salts are $\mathrm{Na}_{2} \mathrm{HPO}_{3}$ and NaHS ?

## - Watch Video Solution

14. Calssify the following as acid or base according to Bronsted-Lowry theory and name their corresponding conjugate base or acid
(i) $\mathrm{NH}_{3}$ (ii) $\mathrm{CH}_{3} \mathrm{COO}^{-}$
(iii) $\mathrm{H}_{3} \mathrm{O}^{+}$(iv) $\mathrm{H}^{-}$(v) $\mathrm{HOO}^{-} \quad$ (vi) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$.

## - Watch Video Solution

15. Prove that the dergee of dissociation of weak acid is given by:
$\alpha=\frac{1}{1+10^{p K_{a}-p H}}$
where $K_{a}$ is its dissociation constant of the weak acid.

## - Watch Video Solution

16. Arrange the following oxides in the increasing order of Bronsted basicity. $\mathrm{CI}_{2} \mathrm{O}_{7}, \mathrm{BaO}, \mathrm{SO}_{3}, \mathrm{CO}_{2}, \mathrm{~B}_{2} \mathrm{O}_{3}$

## - Watch Video Solution

17. What are the conjugate bases of the following ?
$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{HN}_{3},\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$.

## - Watch Video Solution

18. Glycine is an $\alpha$-amino acid. It exists in the form of Zwitter ion as .${ }^{+} \mathrm{NH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}$. Write the formula of its (i) conjugate acid (ii) conjugate base.

## - Watch Video Solution

19. Write reaction for autoprotolysis of water. How is ionic product of water related to ionization constant of water ? Derive the relationship.

## - Watch Video Solution

20. Give reason for the following :
(i) Zinc is not precipitated as $\mathrm{Zn}(\mathrm{OH})_{2}$ on adding $\mathrm{NH}_{4} \mathrm{OH}$ to a zinc salt solution containing $\mathrm{NH}_{4} \mathrm{Cl}$.
(ii) $\mathrm{BaSO}_{4}$ precipitate is washed with water containing a small amount of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in gravimetric analysis.
(iii) $\mathrm{CO}_{2}$ is more soluble in aqueous NaOH solution than in water.
(iv) A brown precipitate in a bottle containing aqueous $\mathrm{FeCl}_{3}$ solution appears pm standing.

## - View Text Solution

21. Why $\mathrm{PO}_{4}^{3-}$ ion is not amphiprotic ?

## - Watch Video Solution

22. In the reaction between $\mathrm{BF}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$ which one of them will act as an acid ? Justify your answer.

## - Watch Video Solution

## Analytical Questions And Problems With Answers/Solutions (Problems)

1. The pH of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 , respectively. $\Theta$
Calculate the heat of formation of water from $\mathrm{H}^{\oplus}$ and OH .

## - Watch Video Solution

2. Approximate pH of 0.01 M aqueous $\mathrm{H}_{2} \mathrm{~S}$ solution, when $K_{1}$ and $K_{2}$ for $H_{2} S$ at $25^{\circ} \mathrm{C}$ are $1 \times 10^{-7}$ and $1.3 \times 10^{-13}$ respectively:

## Watch Video Solution

3. What volume of $0.1 M$ sodium formate solution should be added to 50 mL of 0.05 M formic acid to produce a buffer solution of $\mathrm{pH}=4.0$ ? $\left(p K_{a}\right.$ of fomic acid = 3.80)

## - Watch Video Solution

4. Calculate the pH at equivalence point when a solution of 0.10 M acetic acid is titrated with a solution of 0.10 M hydroxide
$\left(K_{a}\right.$ for acetic acid is $\left.1.9 \times 10^{-5}\right)$
5. A certain weak acid has a disspciatoin constant $1.0 \times 10^{-4}$, the equilibrium constant for its reaction with strong base is :-

## - Watch Video Solution

6. The pH of 0.05 M aqueous solution of diethylamine is 12.0 . Calculate its $K_{b}$.

## - Watch Video Solution

7. 0.1 M HA is tritrated against 0.1 M NaOH . Find the pH the end point . Dissociation constant for the end acid HA is $5 \times 10^{-6}$ and degree of hydrolysis, $h<1$

## - Watch Video Solution

8. A sample of AgCl was treated with 5.00 mL of $1.5 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solubility to give $\mathrm{Ag}_{2} \mathrm{CO}_{3}$. The remaining solution contained $0.0026 \mathrm{gofCI}{ }^{-}$per litre. Calculate the solubility product of $\mathrm{AgCl} .\left(K_{S P} f\right.$ or $\left.\mathrm{Ag}_{2} \mathrm{CO}_{3}=8.2 \times 10^{-12}\right)$

## - Watch Video Solution

9. An acid type indicator, H In differs in colour from its conjugate base $\left(I n^{-}\right)$. The human eye is sensitive to colour differences only when the ratio $\left[\mathrm{In}^{-}\right] /[\mathrm{HIn}]$ is greater than 10 or smaller than 0.1 . What should to observe a complete colour change ? $\left(K_{a}=1.0 \times 10^{-5}\right)$

## - Watch Video Solution

10. Calculate the amount of $\mathrm{NH}_{3}$ and $\mathrm{NH}_{4} \mathrm{CI}$ required to prepare a buffer solution of pH 9.0 when total concentration of buffering reagents is $0.6 \mathrm{molL}^{-1} .\left(p K_{b} f\right.$ or $\left.\mathrm{NH}_{3}=4.7, \log 2=0.30\right)$
11. $K_{a}$ for ascorbic acid (Hasc)is5 $\times 10^{-5}$. Calculate the hydrogen in an aqueous solution in which the concentration of $\mathrm{Asc}^{-}$ions in 0.02 M .

## - Watch Video Solution

12. The solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in water is $6.7 \times 10^{-6} \mathrm{M}$. Calculate the solubility of $\mathrm{Pb}(\mathrm{OH})_{2}$ in a buffer solution of $\mathrm{pH}=8$.

## - Watch Video Solution

13. Two buffer, $(\mathrm{X})$ and $(\mathrm{Y})$ of pH 4.0 and 6.0 respectively are prepared from acid HA and the salt NaA. Both the buffers are 0.50 M in HA. What would be the pH of the solution obtained by mixing equal volumes of the two buffers ? $\left(K_{H A}=1.0 \times 10^{-5}\right)$

## - Watch Video Solution

14. A sample of mixed alkalis containing NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is titrated in the following two schemes :
(i) 10 ml of above mixture requires 8 ml of 0.1 N HCl by using phenolphthalein.
(ii) 10 ml of above mixture requires 10 ml of 0.1 N HCl by using methyl orange.

Calculate the ratio of the weight of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the sample mixture.

## - View Text Solution

15. How many times of the acetic acid concentration, acetate salt should be added to a given acetic acid solution to obtain a solution of $\mathrm{pH}=7.0$ ( $K_{a}$ for $\left.\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}\right)$.

## - Watch Video Solution

16. Calculate the percentage dissociation of 0.5 M NH 3 at $25^{\circ} \mathrm{C}$ in a solution of $\mathrm{pH}=12$.

## Watch Video Solution

17. The ratio of pH of solution (1) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}^{2} 1$ mole of HCl and solution (II) containing 1 mole of $\mathrm{CH}_{3} \mathrm{COONa}$ and 1 mole of acetic acid in one litre is :

## - Watch Video Solution

18. $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution is titrated against 0.05 M NaOh . Calculate pH at $1 / 4^{\text {th }}$ and $3 / 4^{\text {th }}$ stage of neutralization of acid, the pH for 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$ is 3 .

## - Watch Video Solution

19. Calculate the weight of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ which must be added to 500 mL of $0.2 \mathrm{MNH}_{3}$ to yield a solution of $p H=9.35 . K_{a}$ for $\mathrm{NH}_{3}=1.78 \times 10^{-5}$.

## - Watch Video Solution


#### Abstract

Competition Focus (I. Multiple Choice Questions(with one correct Answer)) (I. Storng and weak electrolytes, ionic equilibrium and Ostwalds dilution law)


1. Which one of the following is the correct quadratic form of the Ostwald's dilution law equation
A. $\alpha^{2} C+\alpha K-K=0$
B. $\alpha^{2} C-\alpha K-K=0$
C. $\alpha^{2} C-\alpha K+K=0$
D. $\alpha^{2} C+\alpha K+K=0$

## Answer: A

2. The percentage of pyridine $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ that forms pyridinium ion $\left(C_{5} H_{5} N^{+} H\right)$ in a 0.10 M aqueous pyridine solution ( $K_{b}$ for $\left.\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}=1.7 \times 10^{-9}\right)$ is
A. 0.0077
B. 0.016
C. 6.0E-5
D. 0.00013

## Answer: D

## - Watch Video Solution

3. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.7 \times 10^{-5}$ and concentration of $\mathrm{H}^{+}$ions is $3.4 \times 10^{-4}$. Then, find out initial concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules.
A. $3.4 \times 10^{-4}$
B. $3.4 \times 10^{-3}$
C. $6.8 \times 10^{-3}$
D. $1.7 \times 10^{-3}$

## Answer: C

## - Watch Video Solution

4. At $25^{\circ} \mathrm{C}$, the dissociation constant of a base. BOH is $1.0 \times 10^{-12}$. The concentration of hydroxyl ions in 0.01 M aqueous solution of the base would be
A. $1.0 \times 10^{-6} \mathrm{~mol} L^{-1}$
B. $1.0 \times 10^{-7} \mathrm{~mol} L^{-1}$
C. $2.0 \times 10^{-6} \mathrm{~mol} L^{-1}$
D. $1.0 \times 10^{-5} \mathrm{~mol} L^{-1}$

## Answer: B

## - Watch Video Solution

5. For a concentrated solution of $a$ weak electrolyte, $A_{x} B_{y}$ of concentration ' C ', the degree of dissociation $\alpha$ is given by
A. $\alpha=\sqrt{K_{e q} / C(x+y)}$
B. $\alpha=\sqrt{K_{e q} C /(x y)}$
C. $\alpha=\left(K_{e q} / C^{x+y-1} x^{x} y^{y}\right)^{1 /(x+y)}$
D.

## Answer: C

## D View Text Solution

6. A weak monobasic acid is $1 \%$ ionized in 0.1 M solution at $25^{\circ} \mathrm{C}$. The percentage of ionization in its 0.025 M solution is :
A. 1
B. 2
C. 3
D. 4

## Answer: B

## - Watch Video Solution

7. Aqueous solution of which of the following compounds is the best conductor of electric current?
A. Ammonia, $\mathrm{NH}_{3}$
B. Fructose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. Acetic acid, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
D. Hydrochloric acid HCl

## Answer: D

Competition Focus (I. Multiple Choice Questions(with one correct Answer))
(II. Various concepts of Acids and Bases, their dissociation constants and strength)

1. In the equation $I_{2}+I^{-} \rightarrow, I_{3}^{-}$which is Lewis base
A. $I_{2}$
B. $I^{-}$
C. $I_{3}^{-}$
D. None of these

## Answer: B

## - <br> Watch Video Solution

2. Which of the following are Lewis acids?
A. $\mathrm{PH}_{3}$ and $\mathrm{BCl}_{3}$
B. $\mathrm{AlCl}_{3}$ and $\mathrm{SiCl}_{4}$
C. $\mathrm{PH}_{3}$ and $\mathrm{SiCl}_{4}$
D. $\mathrm{BCl}_{3}$ and $\mathrm{AlCl}_{3}$

## Answer: D

## D Watch Video Solution

3. Conjugate base of $\mathrm{H}_{2}$ is
A. $H_{3}^{+}$
B. $\mathrm{H}_{3}^{-}$
C. $\mathrm{H}^{+}$
D. $H^{-}$

## Answer: D

4. The conjugate base of $\mathrm{OH}^{-}$is :
A. $O^{2-}$
B. $O^{-}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{O}_{2}$

## Answer: A

## - Watch Video Solution

5. Which one of the following is the correct statement ?
A. $\mathrm{HC}_{3}^{-}$is the conjugate base of $\mathrm{CO}_{3}^{2-}$
B. $\mathrm{NH}_{2}^{-}$is the conjugate acid of $\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}$ is the conjugate base of $\mathrm{NH}_{2}^{-}$
D. $\mathrm{H}_{2} \mathrm{CO}_{3}$ is the conjugate base of $\mathrm{HCO}_{3}^{-}$

## Answer: C

## - Watch Video Solution

6. Which one of the following species cannot act as both Bronsted acid and base ?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{HCO}_{3}^{-}$
C. $\mathrm{HSO}_{4}^{-}$
D. $\mathrm{NH}_{2}^{-}$

## Answer: D

## - Watch Video Solution

7. Which one of the following behaves as Lewis base as well as BronstedLowry base?
A. Carbonium ion
B. Carbanion
C. Carbenium ion
D. All of these

## Answer: B

## - Watch Video Solution

8. $\mathrm{Mg}^{2+}$ is .......... Than $\mathrm{Al}^{3+}$
A. stronger Lewis acid
B. stronger Lewis base
C. weaker Lewis acid
D. weaker Lewis base

## Answer: C

## D Watch Video Solution

9. Sulphanilic acid is a/an:
A. Arrhenius acid
B. Lewis base
C. Both (a) and (b)
D. Neither (a) nor (b)

## Answer: C

## - Watch Video Solution

10. Choose the correct order arranged in decreasing order of basicity

$$
\text { A. } \mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{OH}^{-}
$$

B. $\mathrm{OH}^{-}>\mathrm{CH}_{3} \mathrm{O}^{-} \mathrm{CH}-=\mathrm{C}^{-}$
C. $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{OH}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}$
D. $\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{CH} \equiv \mathrm{C}^{-}>\mathrm{OH}^{-}$

## Answer: A

## - Watch Video Solution

11. Which one of the following ionic species has the greatest proton affinity to form stable compound?
A. $I^{-}$
B. $H S^{-}$
C. $\mathrm{NH}_{2}^{-}$
D. $F^{-}$

## Answer: C

12. The correct order of increasing basicity of the given conjugate bases $\left(\mathrm{R}=\mathrm{CH}_{3}\right)$ is
A. $\mathrm{CRCOO}^{-}<\mathrm{NH}_{2}^{-}<\mathrm{HC} \equiv \mathrm{C}^{-}<\mathrm{R}^{-}$
B. $\mathrm{RCOO}^{-}<\mathrm{HC} \equiv \mathrm{C}^{-}<\mathrm{NH}_{2}^{-}<\mathrm{R}^{-}$
C. $\mathrm{RCOO}^{-}<\mathrm{HC} \equiv \mathrm{C}^{-}<\mathrm{R}^{-}<\mathrm{NH}_{2}^{-}$
D. $\mathrm{R}^{-}<\mathrm{HC} \equiv \mathrm{C}^{-}<\mathrm{RCOO}^{-}<\mathrm{NH}_{2}^{-}$

## Answer: B

## - Watch Video Solution

13. Three reactions involving $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$are given below
I. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
II. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HPO}_{4}^{2-}+\mathrm{H}_{3} \mathrm{O}^{+}$
III. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{O}^{2+}$

In which of the above does $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$act as an acid?
A. (iii) only
B. (i) only
C. (ii) ony
D. (i) and (ii)

## Answer: C

## - Watch Video Solution

14. Which one of the following molecules hydrides acts as a Lewis acid ?
A. $\mathrm{CH}_{4}$
B. $\mathrm{NH}_{3}$
C. $\mathrm{H}_{2} \mathrm{O}$
D. $B_{2} H_{6}$

## Answer: D

15. Which of the of the following fluoro -compouds is most likely to beahve as a Lewis base?
A. $B F_{3}$
B. $P F_{3}$
C. $C F_{4}$
D. $\mathrm{SiF}_{4}$

## Answer: B

## - Watch Video Solution

16. Which of the following statements about $\mathrm{HCO}_{3}^{-}$are correct ?
17. It is a Bronsted acid
18. It can ionize in water to form $\mathrm{CO}_{3}^{2-}$ (aq)
19. It does not exist in aqueous solution
20. It is a Bronsted base.

Select the correct answer using the codes given below
A. 1, 2 and 3
B. 2, 3 and 4
C. 1, 3 and 4
D. 1, 2 and 4

## Answer: D

## - View Text Solution

17. Which of the following is least likely to behave as Lewis acid?
A. $\mathrm{OH}^{-}$
B. $\mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{NH}_{3}$
D. $B F_{3}$

## Answer: D

## - Watch Video Solution

18. The correct order of increasing $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the following aqueous solution is:
A. $0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}<0.01 \mathrm{MNaCl}<0.01 \mathrm{MNaNO}_{2}$
B. $0.01 \mathrm{MNaCl}<0.01 \mathrm{MNaNO}_{2}<0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
C. $0.01 \mathrm{MNaNO}_{2}<0.01 \mathrm{MNaCl}<0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$
D. $0.01 \mathrm{MH}_{2} \mathrm{~S}<0.01 \mathrm{MNaNO}_{2}<0.01 \mathrm{MNaCl}<0.01 \mathrm{MH}_{2} \mathrm{SO}_{4}$.

## Answer: C

## - Watch Video Solution

19. Strongest conjugate base is
A. $\mathrm{Cl}^{-}$
B. $\mathrm{Br}^{-}$
C. $F^{-}$
D. $I^{-}$

## Answer: C

## - Watch Video Solution

20. The strongest base of the following species is
A. $\mathrm{NH}^{2-}$
B. $\mathrm{OH}^{-}$
C. $\mathrm{O}^{2-}$
D. $S^{2-}$

## Answer: A

21. In $\mathrm{HS}^{-}, I^{-}, R-\mathrm{NH}_{2}, \mathrm{NH}_{3}$ order of proton accepting tendency will be
A. $\mathrm{I}^{-}>\mathrm{NH}_{3}>\mathrm{R}-\mathrm{NH}_{2}>\mathrm{HS}^{-}$
B. $\mathrm{NH}_{3}>\mathrm{R}-\mathrm{NH}_{2}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
C. $\mathrm{R}-\mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{HS}^{-}>\mathrm{I}^{-}$
D. $\mathrm{HS}^{-}>\mathrm{R}-\mathrm{NH}_{2}>\mathrm{NH}_{3}>\mathrm{I}^{-}$

## Answer: C

## - Watch Video Solution

22. In which cases, the order of acidic strength is not correct?
A. $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
B. $\mathrm{HIO}_{4}>\mathrm{HBrO}_{4}>\mathrm{HClO}_{4}$
C. $\mathrm{HClO}_{4}>\mathrm{HClO}_{3}>\mathrm{HClO}_{2}$

$$
\text { D. } \mathrm{HF}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}
$$

## Answer: B

## - Watch Video Solution

23. In aqueous solution the ionization constants for carbonic acid are:
$K_{1}=4.2 \times 10^{-7}$ and $K_{2}=4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034 M$ solution of the carbonic acid.
A. The concentrations of $\mathrm{H}^{+}$and $\mathrm{HCO}_{3}^{-}$are approximately equal.
B. The concentration of $\mathrm{H}^{+}$is double that of $\mathrm{CO}_{3}^{-}$.
C. The concentration of $\mathrm{CO}_{3}^{2-}$ is 0.034 M .
D. The concentration of $\mathrm{CO}_{3}^{2-}$ is greater than that of $\mathrm{HCO}_{3}^{-}$.

## Answer: A

24. The correct order of decreasing acidic nature of $\mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}, \mathrm{CH} \equiv \mathrm{CH}$ and $\mathrm{NH}_{3}$ is
A. $\mathrm{CH} \equiv \mathrm{Ch}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}>\mathrm{NH}_{3}$
B. $\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{NH}_{3}$
C. $\mathrm{ROH}>\mathrm{NH}_{3}>\mathrm{CH} \equiv \mathrm{CH}>\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{H}_{2} \mathrm{O}>\mathrm{rOH}>\mathrm{NH}_{3}>\mathrm{CH} \equiv \mathrm{CH}$

## Answer: B

## - View Text Solution

25. Which one of the following is a hard base ?
A. $\mathrm{Ag}^{+}$
B. $\mathrm{Cr}^{3+}$
C. $I^{-}$
D. $F^{-}$

## D Watch Video Solution

26. Which of the following solvents are aprotic?
A. 1,2,3
B. 1,3,4
C. 2,3
D. 1,3

## Answer: C

Watch Video Solution
27. According to hard and soft acid base principle, a hard acid
A. has low charge density
B. shows preference for soft bases
C. shows preference for donor atoms of low electronegativitiy
D. is not polarizable

## Answer: D

## D Watch Video Solution

28. Calculate $\left[\mathrm{OH}^{-}\right]$and $\%$ dissociation of 0.01 M solution of ammonium hydroxide solution. The ionization constant for
$\mathrm{NH}_{4} \mathrm{OH}\left(K_{b}\right)=1.8 \times 10^{-5}$
A. $1.8 \times 10^{-7}$
B. $1.8 \times 10^{-6}$
C. $1.8 \times 10^{-4}$
D. $1.8 \times 10^{-3}$

## Answer: B

29. Boric acid is an acid because its molecule
A. contains replaceable $H^{+}$ion
B. gives up a proton
C. accepts $\mathrm{OH}^{-}$from water releasing proton
D. combines with proton from water molecule

## Answer: A

## - Watch Video Solution

30. In the following reactions, ZnO is respectively acting as $\mathrm{a} / \mathrm{an}$
$\mathrm{ZnO}+\mathrm{Na}_{2} \mathrm{O} \Rightarrow \mathrm{NaZnO}_{2}$
$\mathrm{ZnO}+\mathrm{CO}_{2} \rightarrow \mathrm{ZnCO}_{3}$
A. Acid and acid
B. Acid and base
C. Base and acid
D. Base and base

## Answer: B

## - Watch Video Solution

Competition Focus (I. Multiple Choice Questions(with one correct Answer))
(III. Ionic product of water and pH)

1. The pH of $10^{-8} \mathrm{M}$ solution of HCl in water is
A. 8
B. -8
C. between 7 and 8
D. between 6 and 7 .

## Answer: D

## - Watch Video Solution

2. Which of the following will decrease the pH of a 50 ml solution of 0.01MHCI ?
A. Addition of 50 mL of 0.01 M HCl
B. Addition of 50 mL of 0.002 M HCl
C. Addition of 150 mL of 0.002 M HCl
D. Addition of 5 mL of 1 M HCl

## Answer: D

## - Watch Video Solution

3. If a neutral solution has $p K_{w}=13.36$ at $50^{\circ} \mathrm{C}$, then pH of the solution is
A. 6.68
B. 7
C. 7.63
D. None of these

## Answer: A

## - Watch Video Solution

4. If $p K_{b}$ for fluoride ion at $25^{\circ} \mathrm{C}$ is 10.83 the ionisation constant of hydrofluoric acid at this temperature is
A. $1.74 \times 10^{-5}$
B. $3.52 \times 10^{-3}$
C. $6.75 \times 10^{-4}$
D. $5.38 \times 10^{-2}$.

## Answer: C

5. The pH of a solution obtained by mixing 100 mL of a solution $\mathrm{pH}=3$ with 400 mL of a solution of $\mathrm{pH}=4$ is
A. $3-\log 2.8$
B. $7-\log 2.8$
C. $4-\log 2.8$
D. $5-\log 2.8$

## Answer: C

## - Watch Video Solution

6. The pH of a 0.1 M aqueous solution of a weak acid (HA) is 3 . What is its degree of dissociation?

$$
\text { A. } 0.01
$$

B. 0.1
C. 0.5
D. 0.25

## Answer: A

## - Watch Video Solution

7. The $p K_{a}$ of acetic acid is 4.74 . The concentration of $\mathrm{CH}_{3} \mathrm{COOH}$ is 0.01 M . The pH of $\mathrm{CH}_{3} \mathrm{COOH}$ is
A. 3.37
B. 4.37
C. 4.74
D. 0.474

## Answer: A

8. 0.365 g of HCl gas was passed through $100 \mathrm{~cm}^{3}$ of 0.2 M NaOH solution. The pH of the resulting solution would be
A. 1
B. 5
C. 8
D. 13

## Answer: D

## - Watch Video Solution

9. How many times a 0.1 M strong monobasic solution should be diluted so that the pH of the resulting solution is tripled ?
A. 20 times
B. 200 times
C. $5.55 \times 10^{2}$ times
D. $5.55 \times 10^{4}$ times

## Answer: D

## - Watch Video Solution

10. Aspirin (acetyl salicyclic acid, molar mass $180 \mathrm{gmol}^{-1}$ ) used as analgesic has $p K_{a}$ value of 2 . Two tablets of aspirin each weighing 90 mg are dissolved in 100 mL of water. The pH of the solution is
A. 0.5
B. 1.0
C. 2.0
D. 4.0

## Answer: C

11. The pH of a solution obtained by mixing 50 mL of 0.2 M HCl with 50 mL of $0.20 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ is
A. 0.30
B. 0.70
C. 1.00
D. 2.00

## Answer: C

## D View Text Solution

12. Calculate the pH of $10^{-8} \mathrm{M} \mathrm{HCl}$ solution .
A. $9.525 \times 10^{-8} \mathrm{M}$
B. $1.0 \times 10^{-8} \mathrm{M}$
C. $1.0 \times 10^{-6} \mathrm{M}$
D. $1.0525 \times 10^{-7} \mathrm{M}$

## Answer: D

## - Watch Video Solution

13. 40 ml of 0.1 M ammonia is mixed with 20 ml of 0.1 MHCI . What is the pH of the mixture ? ( $p K_{b}$ of ammonia solution is 4.74.)
A. 4.74
B. 2.26
C. 9.26
D. 5.00

## Answer: C

14. $10^{-6} \mathrm{MNaOH}$ is diluted by 100 times. The pH of diluted base is
A. between 5 and 6
B. between 6 and 7
C. between 10 and 11
D. between 7 and 8

## Answer: D

## - Watch Video Solution

15. 0.023 g of sodium metal is reacted with $100 \mathrm{~cm}^{3}$ of water. The pH of the resulting solution is
A. 10
B. 11
C. 9
D. 12

## - Watch Video Solution

16. 0.1 M HCl and $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$, each of volume 2 ml are mixed and the volume is made up to 6 ml by adding 2 ml of 0.01 N NaCl solution. The pH of the resulting mixture is
A. 1.17
B. 1.0
C. 0.3
D. $\log 2-\log 3$

## Answer: B

17. The pH of the solution produced by mixing equal volume of $2.0 \times 10^{-3} \mathrm{MHClO}_{4}$ and $1.0 \times 10^{-2} \mathrm{MKClO}_{4}$ is
A. 2.7
B. 2.3
C. 3.0
D. 1.0

## Answer: C

## - Watch Video Solution

18. pH value of which of the following is not equal to one
A. $0.1 \mathrm{MCH}_{3} \mathrm{COOH}$
B. $0.1 \mathrm{MHNO}_{3}$
C. $0.05 \mathrm{MH}_{2} \mathrm{SO}_{4}$
D. $50 \mathrm{~cm}^{3} 0.4 \mathrm{MHCl}+50 \mathrm{~cm}^{3} 0.2 \mathrm{MNaOH}$

## - Watch Video Solution

19. The pH of the solution formed on mixing 20 mL of $0.05 \mathrm{MH}_{2} \mathrm{SO}_{4}$ with 5.0 mL of 0.45 M NaOH of 298 K is
A. 6
B. 2
C. 12
D. 7

## Answer: C

## - Watch Video Solution

20. How many litres of water must be added to $1 L$ of an aqueous solution of HCl with a pH of 1 to create an aqueous solution with pH of 2 ?
A. 9.0 L
B. 0.1 L
C. 0.9 L
D. 2.0 L

## Answer: A

## - Watch Video Solution

21. The correct descending order of the heat liberated (in kJ) during the neutralization of the acids $\mathrm{CH}_{3} \mathrm{COOH}(W), \mathrm{HF}(\mathrm{X}), \mathrm{HCOOH}(\mathrm{Y})$ and $\mathrm{HCN}(\mathrm{Z})$ under indentical conditions
$\left(\mathrm{K}_{a}\right.$ of $\mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}, \mathrm{HCOOH}=1.8 \times 10^{-4}, \mathrm{HCN}=4.9 \times 10^{-10}$ and is
A. $Y>X>Z>W$
B. $X>Y>W>Z$
C. $Z>X>Y>Z$
D. $Z>W>X>Y$

## Answer: B

## - View Text Solution

22. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
a. $60 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+40 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
b. $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
c. $75 \mathrm{~mL} \frac{M}{5} \mathrm{HCl}+25 \mathrm{~mL} \frac{M}{5} \mathrm{NaOH}$
d. $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCl}+100 \mathrm{~mL} \frac{M}{10} \mathrm{NaOH}$
pH of which one of them will be equal to 1 ?
A. (2)
B. (1)
C. (4)
D. (3)

## Answer: D

## - Watch Video Solution

Competition Focus (I. Multiple Choice Questions(with one correct Answer)) (IV. Salt hydrolysis)

1. The pH of 0.1 M solution of the following salts increases in the order
A. $\mathrm{NaCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCN}<\mathrm{HCl}$
B. $\mathrm{HCl}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{NaCl}$
C. $\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}<\mathrm{NaCl}<\mathrm{HCl}$
D. $\mathrm{HCl}<\mathrm{NaCl}<\mathrm{NaCN}<\mathrm{NH}_{4} \mathrm{Cl}$.

## Answer: B

2. A weak acid HX has the dissociation constant $1 \times 10^{-5}$. M. It forms a salt NaX on reaction with alkali. The degree of hydrolysis of 0.1 M solution of NaX is
A. $0.0001 \%$
B. $0.01 \%$
C. 0.1 \%
D. $0.15 \%$

## Answer: B

## - Watch Video Solution

3. The $p K_{a}$ of an acid HA is 4.77 and $p K_{b}$ of a base of BOH is 4.75 . The pH of 0.1 M aqueous solution of the salt AB is
A. 7.02
B. 7.01
C. 6.99
D. 7.00

## Answer: B

## D Watch Video Solution

4. Equimolar solutions of the following were prepared in water separately. Which one of the solutions will record the highest pH ?
A. $\mathrm{SrCl}_{2}$
B. $\mathrm{BaCl}_{2}$
C. $\mathrm{MgCl}_{2}$
D. $\mathrm{CaCl}_{2}$

## Answer: B

5. Which of the following salts will give highest pH in water ?
A. KCl
B. NaCl
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{CuSO}_{4}$

## Answer: C

## Watch Video Solution

6. The aqueous solution of which of the following salt will have the lowest
pH ?
A. NaClO
B. $\mathrm{NaClO}_{4}$
C. $\mathrm{NaClO}_{3}$
D. $\mathrm{NaClO}_{2}$

## - Watch Video Solution

7. $p K_{a}$ of a weak acid ( HA ) and $p B_{b}$ of a weak base $(\mathrm{BOH})$ are 3.2 and 3.4 respectively. The pH of their salt (AB) solution is
A. 7.0
B. 1.0
C. 7.2
D. 6.9

## Answer: D

## - Watch Video Solution

8. Which of the following salts is the most basic in aqueous solution ?
A. $\mathrm{Al}(\mathrm{CN})_{3}$
B. $\mathrm{CH}_{3} \mathrm{COOK}$
C. $\mathrm{FeCl}_{3}$
D. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$

## Answer: B

## - Watch Video Solution

## Competition Focus (I. Multiple Choice Questions(with one correct Answer)) (V. Acid-base titrations)

 titrated with $\frac{2}{15} \mathrm{M} \mathrm{HCl}$ in water at $25^{\circ} \mathrm{C}$. The concentration of $\mathrm{H}^{+}$at equivalence point is $\left(K_{w}=1 \times 10^{-14} \mathrm{at} 25^{\circ} \mathrm{C}\right)$
A. $3.7 \times 10^{-13} M$
B. $3.2 \times 10^{-7} \mathrm{M}$
C. $3.2 \times 10^{-2} \mathrm{M}$
D. $2.7 \times 10^{-2} \mathrm{M}$

## Answer: C

## - Watch Video Solution

2. 20 mL of 0.5 M HCl and 35 mL of 0.1 N NaOH are mixed. The resulting solution will
A. be neutral
B. be basic
C. turn phenolphthalein solution pink
D. turn methyl orange red

## Answer: D

## - Watch Video Solution

3. Determine the pH of the solution that results from the addition of 20.00 mL of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ to 30.00 mL of 0.01 M HCl
A. 11.30
B. 10.53
C. 2.70
D. 8.35

## Answer: A

## - Watch Video Solution

4. What is the $p H$ of the resulting solution when equal volumes of 0.1 MNaOH and 0.01 MHCl are mixed?
A. 7.0
B. 1.04
C. 12.65
D. 2.0

## Answer: C

## - Watch Video Solution

5. 30 cc of $\frac{M}{3} \mathrm{HCl}, 20 \mathrm{cc}$ of $\frac{M}{2} \mathrm{HNO}_{3}$ and 40 cc of $\frac{M}{4} \mathrm{NaOH}$ solutions are mixed and the volume was made upto $1 \mathrm{dm}^{3}$. The pH of the resulting solution is :
A. 2
B. 1
C. 3
D. 8

## Answer: A

6. A solution containing $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaOH requires 300 mL of 0.1 N HCl using phenolphthalein as an indicator. Methyl orange is then added to above titrated solution when a further 25 mL of 0.2 M HCl is required. The amount of NaOH present in the original solution is
A. 0.5 g
B. 1 g
C. 2 g
D. 4 g

## Answer: B

## - View Text Solution

$7.50 \mathrm{~cm}^{2}$ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued after is completed by adding 0.5 N KOH . The volume of KOH required for completing the titration is
A. $12 \mathrm{~cm}^{3}$
B. $10 \mathrm{~cm}^{3}$
C. $25 \mathrm{~cm}^{3}$
D. $10.5 \mathrm{~cm}^{3}$

## Answer: B

## - View Text Solution

8. 20.0 L of 0.2 M weak acid $\left(p K_{a}=5.0\right)$ is titrated against 0.2 M strong base. What is the pH at the equivalence point ?
A. 5.0
B. 7.0
C. 9.0
D. 11.0

## Answer: C

9. The rapid change of $p H$ near the stoichiometric point of an acid-base titration is the basic of indicator detection. pH of the solution is related to the ratio of the concentration of conjugate acid $(H \in)$ and base $\left(I^{-}\right)$ forms of the indicator by the expression

$$
\begin{aligned}
& \text { A. log. } \frac{\left[\mathrm{In}^{-}\right]}{\left[\mathrm{In}^{-}\right]}=p K_{I n}-p H \\
& \text { B. log. } \frac{\left[\mathrm{HIn}^{-}\right]}{\left[I n^{-}\right]}=p K_{I n}-p H \\
& \text { C. log. } \frac{\left[H I n^{-}\right]}{\left[I n^{-}\right]}=p H_{I n}-p K_{I n} \\
& \text { D. log. } \frac{\left[I n^{-}\right]}{\left[H I n^{-}\right]}=p H_{I n}-p K_{\text {In }}
\end{aligned}
$$

## Answer: D

10. An alkali is titrated against an acid with methyl orange as indicator, which of the following is a correct combination?
Base Acid End point
A.
(a) Weak Strong Colourless to pink
Base Acid End point
B.
(b) Strong Strong Pinkish red to yellow
Base Acid End point
C. (b) Weak Strong Yellow to pinkish red
Base Acid End point
D. (b) Strong Strong Pink to colourless

## Answer: C

## - Watch Video Solution

## Competition Focus (I. Multiple Choice Questions(with one correct Answer)) (VI. Solubility product, common ion effect and their applications)

1. Amongest the following hydroxides, the one which has the lowest value of $K \mathrm{sp}$ at ordinary temperature is:

$$
\text { A. } \mathrm{Mg}(\mathrm{OH})_{2}
$$

B. $\mathrm{Ca}(\mathrm{OH})_{2}$
C. $\mathrm{Ba}(\mathrm{OH})_{2}$
D. $\mathrm{Be}(\mathrm{OH})_{2}$

## Answer: D

## - Watch Video Solution

2. The solubility of $\mathrm{AgCl}(\mathrm{s})$ having solubility product $1.6 \times 10^{-10}$, in 0.2 M NaCl solution will be
A. $1.26 \times 10^{-5} \mathrm{M}$
B. $1.6 \times 10^{-9} \mathrm{M}$
C. $1.6 \times 10^{-11} M$
D. zero

## Answer: B

3. The solubility product of AgCl is $4.0 \times 10^{-10}$ at 298 K . The solubility of AgCl in $0.04 \mathrm{M} \mathrm{CaCl}_{2}$ will be
A. $2.0 \times 10^{-5} \mathrm{~m}$
B. $1.0 \times 10^{-4} \mathrm{~m}$
C. $5.0 \times 10^{-9} \mathrm{~m}$
D. $2.2 \times 10^{-4} \mathrm{~m}$

## Answer: C

## - Watch Video Solution

4. the solubility of $A_{2} B_{3}$ is $y \mathrm{~mol} \mathrm{dm}-$. Its solubility product is
A. $6 y^{4}$
B. $64 y^{4}$
C. $36 y^{5}$
D. $108 y^{5}$

## Answer: D

## - Watch Video Solution

5. The molar solubility ( in $\mathrm{mol} L^{-1}$ ) of a sparingly soluble salt $M X_{4}$ is ' $s^{\prime}$. The corresponding solubility product $K_{s p}$ ' $s^{\prime}$ is given in terms of $K_{s p}$ by the relation
A. $S=\left(\frac{K_{s p}}{129}\right)^{1 / 4}$
B. $S=\left(\frac{K_{s p}}{256}\right)^{1 / 5}$
C. $S=\left(256 K_{s p}\right)^{1 / 5}$
D. $s=\left(128 K_{s p}\right)^{1 / 4}$

## Answer: B

6. On adding 0.1 M solution each of $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}$ ions in a $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution, $\begin{array}{lcr}\text { species } & \text { first } & \text { precipita } \\ & \\ \left.\text {, } K_{s p} \mathrm{CaSO}_{4}=10^{-6}, K_{s p} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}\right)\end{array}$
$\left(K_{s p} \mathrm{BaSO}_{4}=10^{-11}, K_{s p} \mathrm{CaSO}_{4}=10^{-6}, K_{s p} \mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}\right)$
A. $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
B. $\mathrm{BaSO}_{4}$
C. $\mathrm{CaSO}_{4}$
D. all of these

## Answer: B

## - Watch Video Solution

7. Equal volumes of the following $\mathrm{Ca}^{2+}$ and $F^{-}$solutions are mixed. In which of the solutions will precipitation occur ?
$\left(K_{s p}\right.$ ofCaF $\left.{ }_{2}=1.7 \times 10^{-10}\right)$
(1) $10^{-2} \mathrm{MCa}^{2+}+10^{-5} \mathrm{MF}^{-}$
(2) $10^{-3} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
(3) $10^{-4} \mathrm{MCa}^{2+}+10^{-2} \mathrm{MF}^{-}$
(4) $10^{-2} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$

Select the correct answer using the codes given below:
A. $10^{-2} \mathrm{MCa}^{2+}+10^{-5} \mathrm{MF}^{-}$
B. $10^{-3} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$
C. $10^{-4} \mathrm{MCa}^{2+}+10^{-2} \mathrm{MF}^{-}$
D. $10^{-2} \mathrm{MCa}^{2+}+10^{-3} \mathrm{MF}^{-}$

## Answer: D

## - View Text Solution

8. The $K_{s p}$ of $\mathrm{PbCO}_{3}$ and $\mathrm{MgCO}_{3}$ are $1.5 \times 10^{-15}$ and $1 \times 10^{-15}$ respectively at 298 K . The concentration of $\mathrm{Pb}^{2+}$ ions in a saturated solution containing $\mathrm{MgCO}_{3}$ and $\mathrm{PbCO}_{3}$ is

$$
\text { A. } 1.5 \times 10^{-8} M
$$

B. $3 \times 10^{-8} \mathrm{M}$
C. $2 \times 10^{-8} \mathrm{M}$
D. $2.5 \times 10^{-8} \mathrm{M}$

## Answer: B

## - Watch Video Solution

9. $K_{\text {sp }}$ for $\mathrm{Ca}(\mathrm{OH})_{2}$ is $5.5 \times 10^{-6}$. What is the maximum pH that can be attained in a sewage tank treated with slaked lime ?
A. 9.35
B. 10.35
C. 11.35
D. 12.35

## Answer: d

10. For which of the following sparingly soluble salt the solubility (s) and solubility product $\left(K_{s p}\right)$ are related by the expression $s=\left(K_{s p} / 4\right)^{1 / 3}$
A. $\mathrm{BaSO}_{4}$
B. $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
C. $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
D. $\mathrm{Ag}_{3} \mathrm{PO}_{4}$

## Answer: C

## - Watch Video Solution

11. When 30 mL of 5.93 millimolar solution of $\mathrm{AgNO}_{3}$ was added to 2.0 mL of 8.89 millimolar solution of KCl , the mixture turns turbid. The solubility product of AgCl is

$$
\text { A. } 1.96 \times 10^{-6} \mathrm{~mol}^{2} L^{-2}
$$

B. $3.92 \times 10^{-6} \mathrm{~mol}^{2} L^{-2}$
C. $1.96 \times 10^{-6} \mathrm{~mol}^{-1} L^{-1}$
D. $3.92 \times 10^{-6} \mathrm{~mol}^{-1} L^{-1}$

## Answer: A

## - Watch Video Solution

12. In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_{3}$ (molecular mass $=283$ ) the equilibrium which sets in is $\mathrm{AgIO}_{3}(s) \Leftrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{IO}_{3}^{-}(a q)$ If the solubility product constant $K_{S P}$ of $\mathrm{AgIO}_{3}$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_{3}$ cotained in 100 mL of its saturated solution?
A. $1.0 \times 10^{-4} g$
B. $28.3 \times 10^{-2} g$
C. $2.83 \times 10^{-3} g$
D. $1.0 \times 10^{-7} g$

## Answer: C

## - Watch Video Solution

13. Solubility product constant $\left(K_{s p}\right)$ of salts of types $M X, M X_{2}$ and $M_{3} X$ at temperature 'T' are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and $2.7 \times 10^{-15}$, respectively. Solubilities (mol. $\mathrm{Dm}^{-3}$ of the salts at temperature ' T ' are in the order
A. $M X>M X_{2}>M_{3} X$
B. $M_{3} X>M X_{2}>M X$
C. $M X_{2}>M_{3} X>M X$
D. $M X>M_{3} X>M X_{2}$

## Answer: D

14. The solubility product of a sparingly soluble metal hydroxide $\left[\mathrm{M}(\mathrm{OH})_{2}\right]$ is $5 \times 10^{-16} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ at 298 K . Find the pH of its saturated aqueous solution.
A. 5
B. 9
C. 11.5
D. 2.5

## Answer: B

## - Watch Video Solution

15. Solubility product of silver bromide is $5.0 \times 10^{-13}$. The quantity of potassium bromide (molar mass taken as $120 \mathrm{gmol}^{-1}$ ) to be added to 1 L of 0.05 M solution of silver nitrate to start the precipitation of AgBr is
A. $6.2 \times 10^{-5} g$
B. $5.0 \times 10^{-8} g$
C. $1.2 \times 10^{-10} g$
D. $1.2 \times 10^{-9} g$

## Answer: D

## - Watch Video Solution

16. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $1.0 \times 10^{-11}$. At which pH , will $\mathrm{Mg}^{2+}$ ions start precipitating in the form of $\mathrm{Mg}(\mathrm{OH})_{2}$ from a solution of $0.001 \mathrm{MMg}^{2+}$ ions ?
A. 11
B. 8
C. 9
D. 10

## Answer: D

17. If pH of a saturated solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ is 12 , the value of its $K_{(S P)}$ is
A. $5.00 \times 10^{-7} \mathrm{M}^{3}$
B. $4.00 \times 10^{-6} \mathrm{M}^{3}$
C. $4.00 \times 10^{-7} \mathrm{M}^{3}$
D. $5.00 \times 10^{-6} M^{3}$

## Answer: A

## - Watch Video Solution

18. When solid lead iodide is added to water, the equilibrium concentration of $I^{-}$becomes $2.6 \times 10^{-3} \mathrm{M}$. What is the $K_{s p}$ for $\mathrm{PbI}_{2}$ ?
A. $2.2 \times 10^{-9}$
B. $8.8 \times 10^{-9}$
C. $1.8 \times 10^{-8}$
D. $3.5 \times 10^{-8}$

## Answer: B

## - Watch Video Solution

19. The solubility product $\left(K_{s p}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$

Compound $\quad \mathrm{K}_{s p}$

| AgCl | $1.1 \times 10^{-10}$ |
| :--- | :--- |
| Agl | $1.0 \times 10^{-16}$ |
| $\mathrm{PbCrO}_{4}$ | $4.0 \times 10^{-14}$ |
| $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ | $8.0 \times 10^{-12}$ |

The most soluble and least soluble compound are respectively
A. AgCl and $\mathrm{PbCrO}_{4}$
B. AgI and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
C. AgCl and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and AgI

## - Watch Video Solution

20. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}, \mathrm{AgCl}, \mathrm{AgBr}$ and AgI are respectively, $1.1 \times 10^{-12}, 1.8 \times 10^{-10}, 5.0 \times 10^{-13}, 8.3 \times 10^{-17}$. Which one of the following salts will precipitate last if $\mathrm{AgNO}_{3}$ solution is added to the solution containing equal moles of $\mathrm{NaCl}, \mathrm{NaBr}, \mathrm{NaI}$ and $\mathrm{Na}_{2} \mathrm{CrO}_{4}$ ?
A. AgBr
B. $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$
C. Ag I
D. AgCl

## Answer: B

## - Watch Video Solution

21. At $25^{\circ} \mathrm{C}$, the solubility product of $\mathrm{Hg}_{2} \mathrm{CI}_{2}$ in water is $3.2 \times 10^{-17} \mathrm{~mol}^{3} \mathrm{dm}^{-9}$ what is the solubility of $\mathrm{Hg}_{2} \mathrm{CI}_{2}$ in water at $25^{\circ} \mathrm{C}$ ?
A. $1.2 \times 10^{-12} M$
B. $3.0 \times 10^{-6} \mathrm{M}$
C. $2 \times 10^{-6} \mathrm{M}$
D. $1.2 \times 10^{-16} M$

## Answer: C

## - Watch Video Solution

22. What is the minimum volume of water required to dissolve 1 g of calcium sulphate at $298 \mathrm{~K} . \mathrm{K}_{\text {sp }}$ for $\mathrm{CaSO}_{4}$ is $9.0 \times 10^{-6}$.
A. 2.45 L
B. 4.08 L
C. 4.90 L
D. 3.00 L

Answer: A

## - Watch Video Solution

23. If the salt $M_{2} X, Q Y_{2}$ and $P Z_{3}$ have the same solubilites, their $K_{s p}$ values are related as ( $\mathrm{s}<1$ )
A. $K_{s p}\left(M_{2} X\right)=K_{s p}\left(Q Y_{2}\right)<K_{s p}\left(P Z_{3}\right)$
B. $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
C. $K_{s p}\left(M_{2} X\right)<K_{s p}\left(Q Y_{2}\right)=K_{s p}\left(P Z_{3}\right)$
D. $K_{s p}\left(M_{2} X\right)>K_{s p}\left(Q Y_{2}\right)>K_{s p}\left(P Z_{3}\right)$

## Answer: A

## - Watch Video Solution

24. $\mathrm{H}_{2} \mathrm{~S}$ is passed into one $\mathrm{dm}^{3}$ of a solution containing 0.1 mole of $\mathrm{Zn}^{2+}$ and 0.1 mole of the $\mathrm{Cu}^{2+}$ till the sulphide ion concentration reaches $8.1 \times 10^{-10}$ moles. Which one of the following statements is true? $\left[K_{s p}\right.$ of ZnS and CuS are $3 \times 10^{-22}$ and $8 \times 10^{-36}$ respectively]
A. Only ZnS precipitates
B. Both CuS and ZnS precipitate
C. Only CuS precipitates
D. No precipitation occurs

## Answer: B

## - Watch Video Solution

25. Passing $\mathrm{H}_{2} \mathrm{~S}$ gas into a mixture of $\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and $\mathrm{Hg}^{2+}$ ions in an acidified aqueous solution precipitates
B. MnS and CuS
C. MnS and NiS
D. NiS and HgS

## Answer: A

## D Watch Video Solution

26. In presence of $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S}$ results the precipitation of group-2 radicals but not group-4 radicals during qualitative analysis. It is due to
A. higher concentration of $\mathrm{H}^{+}$
B. lower concentration of $H^{+}$
C. higher concentration of $S^{2-}$
D. lower concentration of $S^{2-}$

## Answer: D

27. In qualitative analysis, the metals of group I can be separated from other ions by precipitating them as chloride salts. A solution initially contains $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{+}$at a concentration of 0.10 M . Aqueous HCl is added to this solution until be $\mathrm{Cl}^{-}$concentration is 0.10 M . What will be concentration of $\mathrm{Ag}^{+}$and $\mathrm{Pb}^{2+}$ be at equilibrium ?
$\left(K_{\text {sp }}\right.$ for $\mathrm{AgCl}=1.8 \times 10^{-10}$
$K_{s p}$ for $\mathrm{PbCl}_{2}=1.7 \times 10^{-5}$ )
A. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-7} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-6} \mathrm{M}$
B. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-5} \mathrm{M}$
C. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-9} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=1.7 \times 10^{-3} \mathrm{M}$
D. $\left[\mathrm{Ag}^{+}\right]=1.8 \times 10^{-11} \mathrm{M},\left[\mathrm{Pb}^{2+}\right]=8.5 \times 10^{-4} \mathrm{M}$

## Answer: C

28. The $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is $1.1 \times 10^{-12}$ at 298 K . The solubility (in $\mathrm{mol} / \mathrm{L}$ ) of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in a $0.1 \mathrm{MAgNO}_{3}$ solution is
A. $1.1 \times 10^{-11}$
B. $1.1 \times 10^{-10}$
C. $1.1 \times 10^{-12}$
D. $1.1 \times 10^{-9}$

## Answer: B

## - Watch Video Solution

29. Concentration of the $\mathrm{Ag}^{+}$ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{CO}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{molL}^{-1}$ Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is:
A. $2.42 \times 10^{-8}$
B. $2.66 \times 10^{-12}$
C. $4.5 \times 10^{-11}$
D. $5.3 \times 10^{-12}$

Answer: D

## - Watch Video Solution

30. Using the Gibbs energy change, $\Delta G^{\circ}=+63.3 \mathrm{~kJ}$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(a q)+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. $3.2 \times 20^{-26}$
B. $8.0 \times 10^{-12}$
C. $2.9 \times 10^{-3}$
D. $7.9 \times 10^{-12}$

## Answer: B

31. MY and $N Y_{3}$ two nearly insoluble salts, have the same $K_{s p}$ values of $6.2 \times 10^{-13}$ at room temperature. Which statement would be true in rearged to MY and $\mathrm{NY}_{3}$ ?
A. The addition of the salt of $K Y$ to the solution of $M Y$ and $N Y_{3}$ will have no effect on their solubilities
B. The molar solubilities of MY and $\mathrm{NY}_{3}$ in water are identical
C. The molar solubility of MY in water is less than that of $N Y_{3}$
D. The salts MY and $N Y_{3}$ are more soluble in 0.5 M KY than in pure water.

## Answer: C

## - Watch Video Solution

32. The solubility of $\mathrm{BaSO}_{4}$ in water is $2.42 \times 10^{-3} \mathrm{gL}^{-1}$ at 298 K . The value of its solubility product $\left(K_{s p}\right)$ will be (Given molar mass of $\left.\mathrm{BaSO}_{4}=233 \mathrm{gmol}^{-1}\right)$
A. $1.08 \times 10^{-10} \mathrm{~mol}^{2} L^{-2}$
B. $1.08 \times 10^{-12} \mathrm{~mol}^{2} L^{-2}$
C. $1.08 \times 10^{-14} \mathrm{~mol}^{2} L^{-2}$
D. $1.08 \times 10^{-8} \mathrm{~mol}^{2} L^{-2}$

## Answer: A

## - Watch Video Solution

33. An aqueous solution contains an unknown concentration of $\mathrm{Ba}^{2+}$. When 50 mL of a 1 M solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is added, $\mathrm{BaSO}_{4}$ just begins to precipitate. The final volume is 500 mL . The solubility product of $\mathrm{BaSO}_{4}$ is $1 \times 10^{-10}$. What is the original concentration of $B a^{2+}$ ?
A. $5 \times 10^{-9} M$
B. $2 \times 10^{-9} M$
C. $1.1 \times 10^{-9} M$
D. $1.0 \times 10^{M}$

## Answer: C

## - Watch Video Solution

Competition Focus (I. Multiple Choice Questions(with one correct Answer))
(VII. Buffer solutions)

1. Which one of the following pairs of solution is not an acidic buffer?
A. $\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. $\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Na}_{3} \mathrm{PO}_{4}$
C. $\mathrm{HClO}_{4}+\mathrm{NaClO}_{4}$
D. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$

## Answer: C

## - Watch Video Solution

2. How much sodium acetate should be added to a 0.1 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$ to give a solution of $\mathrm{pH}=5.5\left(p K_{a}\right.$ of $\left.\mathrm{CH}_{3} \mathrm{COOH}=4.5\right)$
A. 0.1 M
B. 0.2 M
C. 1.0 M
D. 10.0 M

## Answer: C

## - Watch Video Solution

3. 0.1 mole of $\mathrm{CH}_{3} \mathrm{NH}_{2}\left(\mathrm{~K}_{b}=5 \times 10^{-4}\right)$ is mixed with 0.08 mole of HCl and diluted to one litre. The $\left[\mathrm{H}^{+}\right]$in solution is
A. $1.6 \times 10^{-11}$
B. $8 \times 10^{-11}$
C. $5 \times 10^{-5}$
D. $8 \times 10^{-2}$

## Answer: B

## - Watch Video Solution

4. In which volume ratio $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ solutions (each 1 M ) should be mixed to get a buffer solution of $\mathrm{pH} 9.80 ?\left(\mathrm{pK}_{b} \mathrm{ofNH} \mathrm{H}_{4} \mathrm{OH}=4.74\right)$
A. $1: 2.5$
B. $2.5: 1$
C. 1:3.5
D. 3.5: 1

## Answer: C

5. The ratio of volumes of $\mathrm{CH}_{3} \mathrm{COOH}, 0.1 \mathrm{~N}$ to $\mathrm{CH}_{3} \mathrm{COONa}, 0.1 \mathrm{~N}$ required to prepare a buffer solution of pH 5.74 is (given : $\mathrm{pK}_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4+74)
A. 10:1
B. $5: 1$
C. 1:5
D. 1: 10

## Answer: D

## - Watch Video Solution

6. Buffer index of a buffer of 0.1 M NH $\mathrm{NH}_{4} \mathrm{OH}=4.74$ )
A. 0.116
B. 0.232
C. 0.058
D. 0.348

## Answer: A

## - View Text Solution

7. In a basic buffer, 0.0025 mole of $\mathrm{NH}_{4} \mathrm{Cl}$ and 0.15 mole of $\mathrm{NH}_{4} \mathrm{OH}$ are present. The pH of the solution will be $\left(p K_{a}=4.74\right)$
A. 11.04
B. 10.24
C. 6.62
D. 5.48
8. The $p K_{a}$ of a weak acid $(H A)$ is 4.5. The $p O H$ of an aqueous buffered solution of $H A$ in which $50 \%$ of the acid is ionized is:
A. 7.0
B. 4.5
C. 2.5
D. 9.5

## Answer: D

## - Watch Video Solution

9. What is $\left[\mathrm{H}^{+}\right]$in $\mathrm{mol} / \mathrm{L}$ of a solution that is 0.20 M in $\mathrm{CH}_{3} \mathrm{COONa}$ and 0.1 M in $\mathrm{CH}_{3} \mathrm{COOH} ? \mathrm{~K}_{a}$ for $\mathrm{CH}_{3} \mathrm{COOH}$ is $1.8 \times 10^{-5}$ ?
A. $9.0 \times 10^{-6}$
B. $3.5 \times 10^{-4}$
C. $1.1 \times 10^{-5}$
D. $1.8 \times 10^{-5}$

## Answer: A

## - Watch Video Solution

10. A buffer solution contains 0.1 mole of sodium acetate in $1000 \mathrm{~cm}^{3}$ of 0.1 M acetic acid. To the above buffer solution, 0.1 M acetic acid. To the above buffer solution, 0.1 mole of sodium acetate is further added and dissolved. The pH of the resulting buffer is equal to $\qquad$ .
A. $p K_{a}-\log 2$
B. $p K_{a}$
C. $p K_{a}+2$
D. $p K_{a}+\log 2$

## - Watch Video Solution

11. A weak acid of dissociation constant $10^{-5}$ is being titrated with aqueous NaOH solution. The pH at the point of one third of neutralization of the acid will be
A. $5 \log 2-\log 3$
B. $5-\log 2$
C. $5-\log 3$
D. $5-\log 6$

## Answer: B

12. A buffer solution is prepared in which the concentration of $\mathrm{NH}_{3}$ is 0.30 M and the concentration of $\mathrm{NH}_{4}^{+}$is 0.20 M . If the equilibrium constant, $K_{b}$ for $\mathrm{NH}_{3}$ equals $1.8 \times 10^{-5}$, what is the pH of this solution? ( $\log 2.7=0.43)$
A. 8.73
B. 9.08
C. 9.43
D. 11.72

## Answer: C

## - Watch Video Solution

Competition Focus (I. Multiple Choice Questions(with one correct Answer)) (VIII. Miscellaneous)

1. What is the $p H$ of 0.01 M glycine solution? For glycine, $K_{a_{1}}=4.5 \times 10^{-3}$ and $K_{a_{2}}=1.7 \times 10^{-10}$ at $298 K$
A. 3.0
B. 10.0
C. 6.1
D. 7.2

## Answer: C

## - Watch Video Solution

2. Autoprotolysis constant of $\mathrm{NH}_{3}$ is
A. $\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{3}\right]$
B. $\left[\mathrm{NH}_{2}^{-}\right]\left[\mathrm{NH}_{3}\right]$
C. $\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NH}_{2}^{-}\right]$
D. $\left[\mathrm{NH}_{2}^{-}\right] /\left[\mathrm{NH}_{2}^{-}\right]$

## Answer: C

## - Watch Video Solution

3. A patient is said to suffer from acidosis when the pH of his blood
A. falls below 7.35
B. rises above 7.35
C. shows sudden fall and rise
D. has strong basic character

## Answer: A

## - Watch Video Solution

4. $\mathrm{NaHCO}_{3}$ and NaOH cannot exist in a solution because of
A. common ion effect due to common $\mathrm{Na}^{+}$ions
B. redox reaction occurring between the two
C. neutralization reaction occurring between the two
D. different solubilities of the two in water.

## Answer: C

## D Watch Video Solution

5. The charge balance equation of species in 0.100 M acetic solution is given by
A. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
B. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
C. $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$
D. $2\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$

## Answer: C

6. If $\mathrm{CO}_{2}$ is allowed to escape from the following reaction at equilibrium

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{H}^{+}+2 \mathrm{HCO}_{3}^{-}
$$

A. pH will decrease
B. pH will remain constant
C. pH will increase
D. forward reaction will be favoured

## Answer: C

## - Watch Video Solution

Competition Focus (II. Multiple Choice Questions(with one or more than one correct Answers))

1. Which of the following statements are correct ?
A. According to Bronsted Lowry concept, $\mathrm{H}_{2} \mathrm{SO}_{4}$ can also act as a base
B. $\mathrm{SiF}_{4}$ is an acid according to Lewis concept
C. Stronger the acid, higher is its $p K_{a}$ value
D. $\mathrm{HCl}, \mathrm{HNO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ act as equally strong acids in any solvent.

## Answer: A::B

## - Watch Video Solution

2. Which of the following statements are wrong?
A. pH of neutral water is always 7.0
B. When a base is titrated against an acid, the pH at the end point is
C. Lesser is the pH than 7 , more acidic is the solution and higher the pH than 7 , less basic is the solution
D. AgCl is more soluble in $\mathrm{NH}_{3}$ than in water.

## Watch Video Solution

3. Which of the following will have nearly equal pH ?
A. 100 ml 0.1 M HCl mixed with 50 ml water
B. $50 \mathrm{ml} 0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ mixed with 50 ml water
C. 50 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ mixed with 100 ml water
D. 50 ml of 0.1 M HCl mixed with 50 ml of water

## Answer: A:C

## - Watch Video Solution

4. A buffer solution can be prepared from a mixture of
A. sodium acetate and acetic acid in water
B. sodium acetate and hydrochloric acid in water
C. ammonia and ammonium chloride in water
D. ammonia and sodium hydroxide in water

## Answer: A::C

## - Watch Video Solution

5. The pair(s) of ions where BOTH the ions are precipitated upon passing $\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dilute HCl is (are)
A. $\mathrm{Ba}^{2+}, \mathrm{Zn}^{2+}$
B. $\mathrm{Bi}^{3+}, \mathrm{Fe}^{3+}$
C. $\mathrm{Cu}^{2+}, \mathrm{Pb}^{2+}$
D. $\mathrm{Hg}^{2+}, \mathrm{Bi}^{3+}$

## Answer: C::D

## - Watch Video Solution

 Passage/Comprehension))1. A proper control of pH is very essential for many industrial as well as biological processes. Solutions with a definite pH can be prepared from single salts or mixtures of acids/bases and their salts. We also require solutions which resist change in pH and hence have a reserve value. Such solutions are called Buffer solutions. Henderson gave a theoretical equation for preparing acidic buffers of definite pH . The equation is
$p H=p K_{a}+\log \cdot \frac{[\text { Salt }]}{[\text { Acid }]}$
a similar equation is used for basic buffers. The pH of aqueous solution of single salts is calculated by using an expression whose exact form depends upon the nature of the salt. For example, for salts of strong acid and weak base, the expression is
$p H=7-\frac{1}{2} p K_{b}-\frac{1}{2} \log c$
For weak acids and bases used by a chemist, data are given below:
$K_{a}=1.8 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$
Also logarithmic values of some numbers are given below:
$\log 1.8=0.2553, \log 2=0.3010$,
$\log 3=0.4771, \log 5=0.6990$
Report the correct pH value in each of the following cases.
100 mL of 0.10 M NaOH mixed with 100 ml of $0.05 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution
A. 10.4
B. 11.4
C. 12.4
D. 13.4

## Answer: C

## - View Text Solution

2. A proper control of pH is very essential for many industrial as well as biological processes. Solutions with a definite pH can be prepared from single salts or mixtures of acids/bases and their salts. We also require solutions which resist change in pH and hence have a reserve value. Such solutions are called Buffer solutions. Henderson gave a theoretical equation for preparing acidic buffers of definite pH . The equation is
$p H=p K_{a}+\log \cdot \frac{[\text { Salt }]}{[\text { Acid }]}$
a similar equation is used for basic buffers. The pH of aqueous solution of single salts is calculated by using an expression whose exact form depends upon the nature of the salt. For example, for salts of strong acid and weak base, the expression is
$p H=7-\frac{1}{2} p K_{b}-\frac{1}{2} \log c$
For weak acids and bases used by a chemist, data are given below:
$K_{a}=1.8 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$
Also logarithmic values of some numbers are given below:
$\log 1.8=0.2553, \log 2=0.3010$, $\log 3=0.4771, \log 5=0.6990$

Report the correct pH value in each of the following cases.
100 mL of 0.05 M NaOH mixed with 100 ml of 0.10 M CH 3 COOH solution
A. 3.75
B. 4.75
C. 5.75
D. 6.75

## Answer: B

## - View Text Solution

3. A proper control of pH is very essential for many industrial as well as biological processes. Solutions with a definite pH can be prepared from single salts or mixtures of acids/bases and their salts. We also require solutions which resist change in pH and hence have a reserve value. Such solutions are called Buffer solutions. Henderson gave a theoretical equation for preparing acidic buffers of definite pH . The equation is
$p H=p K_{a}+$ log. $\frac{\text { [Salt] }}{[\text { Acid }]}$
a similar equation is used for basic buffers. The pH of aqueous solution of single salts is calculated by using an expression whose exact form depends upon the nature of the salt. For example, for salts of strong acid and weak base, the expression is
$p H=7-\frac{1}{2} p K_{b}-\frac{1}{2} \log c$
For weak acids and bases used by a chemist, data are given below:

$$
K_{a}=1.8 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}
$$

Also logarithmic values of some numbers are given below :
$\log 1.8=0.2553, \log 2=0.3010$,
$\log 3=0.4771, \log 5=0.6990$
Report the correct pH value in each of the following cases.
100 mL of 0.10 M NaOH mixed with $100 \mathrm{~mL} 0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution
A. 5.72
B. 6.72
C. 7.72
D. 8.72

## Answer: D

## - View Text Solution

4. A proper control of pH is very essential for many industrial as well as biological processes. Solutions with a definite pH can be prepared from single salts or mixtures of acids/bases and their salts. We also require solutions which resist change in pH and hence have a reserve value. Such
solutions are called Buffer solutions. Henderson gave a theoretical equation for preparing acidic buffers of definite pH . The equation is
$p H=p K_{a}+$ log. $\frac{\text { [Salt] }}{\text { [Acid] }}$
a similar equation is used for basic buffers. The pH of aqueous solution of single salts is calculated by using an expression whose exact form depends upon the nature of the salt. For example, for salts of strong acid and weak base, the expression is
$p H=7-\frac{1}{2} p K_{b}-\frac{1}{2} \log c$
For weak acids and bases used by a chemist, data are given below:
$K_{a}=1.8 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$
Also logarithmic values of some numbers are given below :
$\log 1.8=0.2553, \log 2=0.3010$, $\log 3=0.4771, \log 5=0.6990$

Report the correct pH value in each of the following cases.
100 mL of $0.10 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ mixed with 100 of 0.05 M HCl solution
A. 6.25
B. 7.25
C. 8.25

## D. 9.25

## Answer: D

## - View Text Solution

5. A proper control of pH is very essential for many industrial as well as biological processes. Solutions with a definite pH can be prepared from single salts or mixtures of acids/bases and their salts. We also require solutions which resist change in pH and hence have a reserve value. Such solutions are called Buffer solutions. Henderson gave a theoretical equation for preparing acidic buffers of definite pH . The equation is
$p H=p K_{a}+\log \cdot \frac{[\text { Salt }]}{[\text { Acid }]}$
a similar equation is used for basic buffers. The pH of aqueous solution of single salts is calculated by using an expression whose exact form depends upon the nature of the salt. For example, for salts of strong acid and weak base, the expression is
$p H=7-\frac{1}{2} p K_{b}-\frac{1}{2} \log c$
For weak acids and bases used by a chemist, data are given below:
$K_{a}=1.8 \times 10^{-5}, K_{b}=1.8 \times 10^{-5}$
Also logarithmic values of some numbers are given below:
$\log 1.8=0.2553, \log 2=0.3010$,
$\log 3=0.4771, \log 5=0.6990$
Report the correct pH value in each of the following cases.
100 mL of $0.05 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ mixed with 100 mL of 0.10 M HCl solution
A. 1.6
B. 2.6
C. 3.6
D. 4.6

## Answer: A

## - View Text Solution

6. When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temerature increase of $0.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt. 1). Because the
enthalpy of neutralization of a strong acid with a strong base is a constant ( $-57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ), the experiment could be used to measure the calorimeter constant.

In a second experiment (Expt. 2), 100 mL of 2.0 M acetic acid $\left(K_{a}=2.0 \times 10^{-5}\right)$ was mixed with 100 mL of 1.0 M NaOH . (under identical conditions of Expt.1) where hte temperature rise of $5.6^{\circ} \mathrm{C}$ was measured. (Consider heat capacity of all solutions as $4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{~m} \mathrm{~mL}^{-1}$ )

Enthalpy of dissociation (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) of acetic acid obtained from Expt. 2 is
A. 1.0
B. 10.0
C. 24.5
D. 51.4

## Answer: A

7. When 100 mL of 1.0 M HCl was mixed with 100 mL of 1.0 M NaOH in an insulated beaker at constant pressure, a temerature increase of $0.7^{\circ} \mathrm{C}$ was measured for the beaker and its contents (Expt. 1). Because the enthalpy of neutralization of a strong acid with a strong base is a constant ( $-57.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ), the experiment could be used to measure the calorimeter constant. In a second experiment (Expt. 2), 100 mL of 2.0 M acetic acid $\left(K_{a}=2.0 \times 10^{-5}\right)$ was mixed with 100 mL of 1.0 M NaOH . (under identical conditions of Expt.1) where hte temperature rise of $5.6^{\circ} \mathrm{C}$ was measured.
(Consider heat capacity of all solutions as $4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$ and density of all solutions as $1.0 \mathrm{~m} \mathrm{~mL}^{-1}$ )

The pH of the solution after Expt. 2 is
A. 2.8
B. 4.7
C. 5.0
D. 7.0

## Answer: B

## - View Text Solution

Competition Focus (IV. Matching Type Questions)

1. Match the entries of column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question.
A. A-q, B-p, C-r, D-s
B. A-r, B-s, C-q, D-p
C. A-q, B-p, C-s, D-r
D. A-p, B-q, C-s, D-r

## Answer: C

2. 

Column I
(A) Solubility of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ in 0.1 M NaCl solution.
(B) Solubility of $\mathrm{PbI}_{2}$ in 0.01 M KI solution
(C) Solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ in $0.25 \mathrm{MK}_{2} \mathrm{CrO}_{4}$ solution.
(D) Solubility of calcium oxalate in 0.1 M oxalic acid aolution.
(s) $\sqrt{K_{s p}}$
A. A-q, B-r, C-s, D-p
B. A-r, B-q, C-p, D-s
C. A-q, B-p, C-s, D-r
D. A-p, B-r, C-s, D-q

## Answer: A

## - View Text Solution

Column I
(A) MilK
(p) 2.2
3. (B) Human saliva (q) 6.4
(C) Human blood (r) 6.8
(D) Lemon juice
(s) 7.4 Column II (pH)
A. A-p, B-q, C-s, D-r
B. A-r, B-q, C-s, D-p
C. A-r, B-s, C-q, D-p
D. A-q, B-r, C-s, D-p

## Answer: B

## - Watch Video Solution

4. Dilution process of different aqueous solutions with water are given in List-I. The effects of dilution of the solutions on $\left[H^{+}\right]$are given in List-II. (Note : Degree of dissociation $(\alpha)$ of weak acid and weak base is $\ll 1$, degree of hydrolysis of salt $\ll 1,\left[\mathrm{H}^{+}\right]$represents the concentration

## of $\mathrm{H}^{+}$ions )

A. $P \rightarrow 4, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 1$
B. $P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 3$
C. $P \rightarrow 1, Q \rightarrow 4, R \rightarrow 5, S \rightarrow 3$
D. $P \rightarrow 1, Q \rightarrow 5, R \rightarrow 4, S \rightarrow 1$

## Answer: D

## D View Text Solution

## Competition Focus (V. Matrix-Match Type Questions)

Column I (Solvent)
(A) Methyl alcohol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ (p) Protophilic

1. ${ }^{(B)}$ Benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$
(q) Protogenic
(C) Ammonia $\left(\mathrm{NH}_{3}\right)$
(r) Amphiprotic
(D) Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
(s) Aprotic

## - Watch Video Solution

Column I(Types of titration) Column II (Indicator used)
(A) Strong acid vs strong base
(p) Methyl orange
2. (B) Strong acid vs weak base
(q) Methyl red
(C) Weak acid vs strong base
(r) Phenolphthalein
(D) Weak acid vs weak base
(s) Bromothymol blue

## - Watch Video Solution

## Competition Focus (V. Integer Type Questions)

1. The number of weak electrolytes among the following is $\mathrm{CH}_{3} \mathrm{COONa}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{HCOOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{HN}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{H} \mathrm{\Lambda}$
2. If the dissociation constants of two weak acids $H A_{1}$ and $H A_{2}$ are $K_{1}$ and $K_{2}$, then the relative strengths of $H A_{1}$ and $H A_{2}$ are given by

## Watch Video Solution

3. The pH of $10^{-2} \mathrm{M} \mathrm{NaOH}$ solution is ............. Times the pH of $10^{-2} \mathrm{M} \mathrm{HCl}$ solution

## - Watch Video Solution

4. If $p K_{a}$ of a weak acid is 5 , then $p K_{b}$ of the conjugate base will

## - Watch Video Solution

5. If 0.049 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$ are present in 10 litre of the solution, the pH of the solution will be
6. Calculate the pH of the solution in which $0.2 \mathrm{MNH}_{4} \mathrm{Cl}$ and $0.1 \mathrm{MNH}_{3}$ are present. The $p K_{b}$ of ammonia solution is 4.75.

## - Watch Video Solution

7. Most of the indicators have a useful colour change over a pH range of .............. units.

## - View Text Solution

8. Universal indicator shows green colour when pH of the solution is nearly......
A. 4
B. 11
C. 12
D. 7

## Answer: D

## - Watch Video Solution

9. The dissociation constant of a substituted benzoic acid at $25^{\circ} \mathrm{C}$ is
$1.0 \times 10^{-4}$. The pH of 0.01 M solution of its sodium salt is

## - Watch Video Solution

10. The total number of diprotic acids among the following is
$\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$
$\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{BO}_{3}$
$\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{2} \mathrm{CrO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}$

- Watch Video Solution

11. Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is:
$\mathrm{KCN} \quad \mathrm{K}_{2} \mathrm{SO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad \mathrm{NaCI}$
$\mathrm{ZN}\left(\mathrm{NO}_{3}\right)_{2} \quad \mathrm{FeCl}_{3} \quad \mathrm{~K}_{2} \mathrm{CO}_{3} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}$
LiCN

## - Watch Video Solution

12. $\begin{gathered}\text { In } \\ \mathrm{AgCl}\end{gathered}\left[K_{s p}(\mathrm{AgCl})=\right.$
$\left.=1.6 \times 10^{-19}\right]$, is added. The resultant concentration of $\mathrm{Ag}^{+}$in the solution is $1.6 \times 10^{-x}$. The value of " $x$ " is

## - Watch Video Solution

Competition Focus (VII. Numerical Value Type Questions) (In Decimal Notation)

1. The solubility of a salt of weak acid (AB) at pH 3 is $Y \times 10^{-3} \mathrm{~mol}^{-1}$. The value of $Y$ is $\qquad$ . (Given that the value of solubility product of $A B$ $\left(K_{\text {sp }}\right)=2 \times 10^{-10}$ and the value of ionization constant of HB $\left.\left(K_{a}\right)=1 \times 10^{-8}\right)$

## - Watch Video Solution

## Competition Focus (VIII. Assertion-Reason Type Questions)

1. Statement-1. The $p K_{a}$ of a weak acid becomes equal to pH of the solution at the mid-point of its titration.

Statement-2. The molar concentrations of proton acceptor and proton donor become equal at mid point of a weak acid.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation of Statement-1.
B. Statement-1 is True, Statement - 2 is True , Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

## Answer: A

## - View Text Solution

2. Assertion (A): pH of $H C I$ solution is less than that of acetic acid of the some concentartion.

Reason (R) : In equimolar solution, the number of titrable protons present in HCI is less than that present in acetic acid.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation of Statement-1.
B. Statement-1 is True, Statement - 2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

## Answer: C

## - Watch Video Solution

3. Statement $-1 \mathrm{HCO}_{3}^{-}$ion can act as a strong base.

Statement - $\mathrm{CO}_{3}^{2-}$ ion can act as a weak base.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation of Statement-1.
B. Statement-1 is True, Statement - 2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.
4. STATEMENT-1: pH of water decreases with increase in temperature.

STATEMENT-2 : $K_{w}$ of water decreases with increase in temperature.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation of Statement-1.
B. Statement-1 is True, Statement - 2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

## Answer: D

## - Watch Video Solution

5. Statement I In water, orthoboric acid behaves as a weak monobasic acid.

Statement II In water, orthoboric acid acts as a proton donor.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation of Statement-1.
B. Statement-1 is True, Statement - 2 is True, Statement-2 is NOT a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

## Answer: C

## - Watch Video Solution

6. Assertion. Degree of ionization of weak electrolyte increases with dilution.

Reason. Degree of ionization is inversely proportional to molar concentration.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: C

## - Watch Video Solution

7. Assertion. In case of polyprotic acids, first ionization constant in lowest.

Reason. The removal of first proton is most difficult. Further ionization becomes easier.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: D

## - Watch Video Solution

8. Assertion (A): pH of neutral solution is always 7 .

Reason $(\mathrm{R})$ : pH of solution does not depend upon temperature.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: D

## - Watch Video Solution

9. Asseration : A queous solution of ammonium carbonate is basic.

Reason : Acidic/basic nature of a salt of weak acid base depends on $K_{a}$ and $K_{b}$ value of the acid and the base forming it.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: A

## - Watch Video Solution

10. Assertion. The pH at the end point of any acid-base titration is always 7.

Reason. The aqueous solution of a salt is always neutral.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: D

11. Assertion : Sb (III) is not precipitated as sulphide when in its alkaline solution $\mathrm{H}_{2} \mathrm{~S}$ is passed.

Reason : The concentration of $S^{2-}$ ion in alkaline medium is inadequate for precipitation.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: C

12. Assertion: Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate AgBr rather than AgCl .

Reason : $K_{s p}$ of $\mathrm{AgCl}<K_{\text {sp }}$ of AgBr .
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: C

## - Watch Video Solution

13. Assertion : On mixing 500 ml of $10^{-6} \mathrm{MCa}^{2+}$ ion and 500 ml of $30 \times 10^{-6} \mathrm{MF}^{-}$ion, the precipitate of $C a F_{2}$ will be obtained. $K_{s p}\left(\right.$ CaF $\left._{2}=10^{-18}\right)$
Reason : If $K_{s p}$ is greater than ionic product, a precipitate will develop.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: D

## - Watch Video Solution

14. Assertion: NaCl is precipitated when HCl gas is passed in a saturated solution of NaCl . Reason: HCl is strong acid.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: B

## - Watch Video Solution

15. Assertion. Precipitation of soap is made by the addition of salt ( NaCl ).

Reason. Presence of common ion suppresses the dissociation of weak
acid.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: C

## - View Text Solution

16. Assertion. An aqueous solution of ammonium acetate can act as buffer.

Reason. An aqueous solution of any pure salt acts as a buffer.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assertion.
C. If aasertion is true, but reason is false.
D. If both assertion and reason are false.

## Answer: C

## - Watch Video Solution


[^0]:    - View Text Solution

