© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

EQUILIBRIUM IN PHYSICAL AND CHEMICAL PROCESSES

Sample Problem

1. At $700 K$, the equilibrium constant K_{p} for the reaction
$2 \mathrm{SO}_{3}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
is $1.80 \times 10^{-3} \mathrm{kPa}$. What is the numerical value of K_{c} in moles per litre for this reaction at the same temperature?
2. At 773 K , the equilibrium constant K_{c} for the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ is $6.02 \times 10^{-2} L^{2} \mathrm{~mol}^{-2}$.
Calculate the value of K_{p} at the same temperature.

- Watch Video Solution

3. For the equilibrium
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
the value of the equilibrium constant, K_{c} is 3.75×10^{-6} at $1069 K$.
Calcualate the K_{p} for the reaction at this temperature?

- Watch Video Solution

4. K_{p} for the reaction,$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}$ is 49 at a certain temperature. Calculate the value K_{p} at the same temperature for the reaction
5. The following concentrations were obtained for the formation of NH_{3} from N_{2} and H_{2} at equilibrium at 500 K .

$$
\begin{aligned}
& {\left[N_{2}\right]=1.5 \times 10^{-2} M,\left[H_{2}\right]=3.0 \times 10^{-2} M} \\
& {\left[N H_{3}\right]=1.2 \times 10^{-2} M . \text { Calculate the equilibrium constant. }}
\end{aligned}
$$

- Watch Video Solution

6. For an equilibrium reaction, the rate constants for the forward and the backward reaction are 2.38×10^{-4} and 8.15×10^{-5}, respectively.

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

7. In a reaction between H_{2} and I_{2} at a certain temperature, the amounts of H_{2}, I_{2} and HI at equilibrium were found to be $0.45 \mathrm{~mol}, 0.39 \mathrm{~mol}$, and 3.0 mol respectively. Calculate the equilibrium constant for the reaction at the given temperature.
8. Two moles of $P C l_{5}$ were heated to $327^{\circ} \mathrm{C}$ in a closed two-litre vessel, and when equilibrium was achieved, $P C l_{5}$ was found to be 40% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant K_{p} and K_{c} for this reaction.

- Watch Video Solution

9. For the reaction,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
the partial pressure of N_{2} and H_{2} are 0.80 and 0.40 atmosphere, respectively, at equilibrium. The total pressure of the system is 2.80 atm. What is K_{p} for the above reaction?

- Watch Video Solution

10. 0.1 mol of PCl_{5} is vaporised in a litre vessel at $260^{\circ} \mathrm{C}$. Calculate the concentration of $C l_{2}$ at equilibrium, if the equilibrium constant for the dissociation of PCl_{5} is 0.0414 .

- Watch Video Solution

11. At $1,000 \mathrm{~K}$ in the reaction $\mathrm{CO}_{2}(g)+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(g)$

The value of $P_{\mathrm{CO}_{2}}=0.48$ bar and $P_{C O}=0$ bar. Pure graphite is present. The equilibrium partial pressures of CO and CO_{2} are 0.66 bar and 0.15 bar respectively. Calculate K_{P} of the reaction.

- Watch Video Solution

12. A vessel at 1000 K contains carbon dioxide with a pressure of 0.5 atm .

Some of the carbon dioxide is converted to carbon monoxide on addition of graphite. Calculate the value of K_{p} if total pressure at equilibrium is 0.8 atm .

13.

The value of
K_{c} for the reaction, $2 A \Leftrightarrow B+C$ is $2 \cdot 0 \times 10^{-3}$ AT a given time, th In which direction, the reaction will proceed?

- Watch Video Solution

14. In the equilibrium, $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$, at 1073 K , the pressure of CO_{2} is four What is the equilibrium constant of this reaaction at 1073 K ?

- Watch Video Solution

15. $A B_{2}$ dissociates as
$A B_{2}(g) \Leftrightarrow A B(g)+B(g)$. If the initial pressure is 500 mm of Hg and the total pressure at equilibrium is 700 mm of Hg . Calculate K_{p} for the reaction.
16. The degree of dissociation of PCl_{5} ata certain temperature and atmospheric pressure is $0 \cdot 2$. Calculate the pressure at which it will be half (50%) dissociated at the same temperature .

- Watch Video Solution

17. Determine the concentration of CO_{2} which will be in equilibrium with
$2.5 \times 10^{-2} \mathrm{~mol} L^{-1}$ ofCOat $100^{\circ} \mathrm{C}$ for the reaction
$\mathrm{FeO}(s)+\mathrm{CO}(g) \Leftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}, \mathrm{~K}_{c}=5.0$

- Watch Video Solution

18. The value of $K_{c}=4.24$ at $800 K$ for the reaction.

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Calculate equilibrium concentration of $\mathrm{CO}_{2}, \mathrm{H}_{2}, \mathrm{CO}$ and $\mathrm{H}_{2} \mathrm{O}$ at 800 K . If only CO and $\mathrm{H}_{2} \mathrm{O}$ are present initially at concentrations of 0.10 M each.

(D) Watch Video Solution

19. 3.00 mol of $P C l_{5}$ kept in 1 L closed reaction vessel was allowed to attain equilibrium at 380 K . Calculate the composition of the mixture at equilibrium. $K_{c}=1.80$.

- Watch Video Solution

20. At 700 K , hydrogen and bromine react to form hydrogen bromine. The value of equilibrium constant for this reaction is 5×10^{8}. Calculate the amount of the $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr at equilibrium if a mixture of 0.6 mol of H_{2} and 0.2 mol of $B r_{2}$ is heated to 700 K .

- Watch Video Solution

21. 13.8 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was placed in 1 L reaction vessel at 400 K and allowed to attain equilibrium : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$.
the total pressure at equilibrium was found to be 9.15 bar. Calculate K_{c}, K_{p} and partial pressure at equilibrium .

- Watch Video Solution

22. The value of ΔG^{\ominus} for the phosphorylation of glycose in glycolysis is $13.8 \mathrm{kJmol}^{-1}$. Find the value of K_{c} at $298 K$

- Watch Video Solution

23. K_{p} for the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at $400^{\circ} \mathrm{C}$ is 1.64×10^{-4}.

Find K_{c}. Also find ΔG^{\ominus} using K_{p} and K_{c} values and interpret the difference.

- Watch Video Solution

24. The vapour density of $P C l_{5}$ at $43 K$ is is found to be 70.2 . Find the degree of dissociation of PCl_{5} at this temperature.
25. At $627^{\circ} \mathrm{C}$ and 1 atm SO_{3} is partially dissociated into SO_{2} and O_{2} by the reaction
$S O_{3}(g) \Leftrightarrow S O_{2}(g)+1 / 2 O_{2}(g)$
The density of the equilibrium mixture is $0.925 g L^{-1}$. What is the degree of dissociation?

- Watch Video Solution

26. $20 \% \mathrm{~N}_{2} \mathrm{O}_{4}$ molecules are dissociated in a sample of gas at $27^{\circ} \mathrm{C}$ and 760 torr. Calculate the density of the equilibrium mixture.

- Watch Video Solution

Problems For Practice

1. K_{p} for the reaction:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.157 atm at $27^{\circ} \mathrm{C}$ and 1 atm pressure. Calculate K_{c} for the reaction.

- Watch Video Solution

2. For the reaction $A(g)+B(s) \Leftrightarrow C(g)+D(g), K_{c}=49 \mathrm{moldm}^{-3}$ at $127^{\circ} \mathrm{C}$. Calculate K_{p}.

- Watch Video Solution

3. At equilibrium, the concentrations of $N_{2}=3 \cdot 0 \times 10^{-3} M, O_{2}=4 \cdot 2 \times 10^{-3} M$ and $N o=2 \cdot 8 \times 10^{-3} M$ in a sealed vessel at 800 K . What will be K_{c} for the raction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g) ?$

- Watch Video Solution

4. $P C l_{5}, P C l_{3}$ and $C l_{2}$ are at equilibrium at 500 K and having concentration $1.59 \mathrm{MPCl}_{3}, 1.59 \mathrm{MCl}_{2}$ and $1.41 \mathrm{MPCl}_{5}$. Calculate K_{c} for the reaction,
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$

Watch Video Solution

5. Calculate the equilibrium constants K_{p} and K_{c} for the reaction ,
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}$
Given that the partial pressures at equilibrium in a vessel at 3000 K are $p_{c o}=0.4 \mathrm{~atm} \cdot p_{c o 2}=0.6 \mathrm{~atm} \quad$ and $p_{o_{2}}=0.2 \mathrm{~atm}$

- Watch Video Solution

6. 1.5 mol of PCl_{5} are heated at constant temperature in a closed vessel of $4 L$ capacity. At the equilibrium point, $P C l_{5}$ is 35% dissociated into PCl_{3} and Cl_{2}. Calculate the equilibrium constant.
7. The equilibrium composition for the reaction is
$\mathrm{PCl}_{3}+\mathrm{Cl}_{2} \Longleftrightarrow \mathrm{PCl}_{5}$
0.20
0.10
$0.40 \mathrm{~mol}^{-1}$

What will be the equilibrium concentration of PCl_{5} on adding 0.10 mol of Cl_{2} at the same temperature?

- Watch Video Solution

8. If 1 mole of acetic acid and 1 mole of ethyl alchol are mixed and reaction proceeds to equilibrium , the concentrations of acetic acid and water are found to be $1 / 3$ and $2 / 3$ mole respectively. If 1 mole of ethyl acetate and 3 moles of water are mixed, how much ester is present when equilibrium is reached?

- Watch Video Solution

9. Calculate the degree of dissociation of HI at $450^{\circ} \mathrm{C}$ if the equilibrium constant for the dissociation reaction is 0.263 .

(D) Watch Video Solution

10. One mole of pure ammonia was injected into a one litre flask at a certain temperature. The equilibrium mixture was then analysed and found to contain 0.30 mole of H_{2}. Calculate (i) the concentration of of N_{2} and (ii) the concentration of NH_{3} at equilibrium.

- Watch Video Solution

11. Amount of PCl_{5} (in moles) need to be added to one litre vessel at $250^{\circ} \mathrm{C}$ in order to obtain a concentration of 0.1 mole of Cl_{2} for the given change is:
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}, K_{c}=0.0414$ mollitre ${ }^{-1}$

- Watch Video Solution

12. In an experiment, 2 moles of HI are taken into an evacuated 10.0 litre container at 720 K . The equilibrium constant equals to 0.0156 for the
gaseous reaction, $\quad 2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$. find equilibrium concentration of $\mathrm{HI}(\mathrm{g}), \mathrm{H}_{2}(\mathrm{~g}), I_{2}(\mathrm{~g})$.

- Watch Video Solution

13. When $P C l_{5}$ is heated in a closed vessel at 575 K , the total pressure at equilibrium is found to be 1 atm and partial pressure of $C l_{2}$ is found to the 0.324 atm . Calculate the equilibrium constant $\left(K_{p}\right)$ for the decomposition reaction.

- Watch Video Solution

14. In the dissociation of $\mathrm{HI}, 20 \%$ of HI is dissociated at equilibrium.

Calculate K_{p} for

$$
H I(g) \Leftrightarrow 1 / 2 H_{2}(g)+1 / 2 I_{2}(g)
$$

- Watch Video Solution

15. A reaction mixture containing
N_{2} at 0.50 atm , at $0.05 \mathrm{~atm} N H_{3}$ and 3.0 atm of hydrogen is he In which direction the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ will go if K_{p} is $4 \cdot 28 \times 10^{-5}$?

- Watch Video Solution

16. The equilibrium constant for the reaction :
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O}$
is 4.0 at $25^{\circ} \mathrm{C}$. Calculate the weight of ethyl acetate that will be obtained when 120 g of acetic acid are reacted with 92 g of ethyl alcohol.

- Watch Video Solution

17. At $448^{\circ} C$, the equilibrium constant $\left(K_{c}\right)$ for the reaction

$$
H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)
$$

is 50.5 . Presict the direction in which the reaction will proceed to reach
equilibrium at $448^{\circ} \mathrm{C}$, if we start with $2.0 \times 10^{-2} \mathrm{~mol}$ of $\mathrm{HI}, 1.0 \times 10^{-2}$ mol of H_{2} and $3.0 \times 10^{-2} \mathrm{~mol}$ of I_{2} in a 2.0 L constainer.

- Watch Video Solution

18. For the reaction , $2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g) \Leftrightarrow 2 \mathrm{NOCl}(g)$ and the following info is given:
$p_{\text {NOCl }}=0.32 \mathrm{~atm}$
$p_{N O}=0.22 a t m$
$p_{C l_{2}}=0.11 \mathrm{~atm}$
then find K_{p}

- Watch Video Solution

19. The K_{p} values for the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I$, at $460^{\circ} C$ is 49 . If the initial pressure of H_{2} and I_{2} is 0.5 atm respectively, determine the partial pressure of each gas at equilibrium.

Problem For Practice

1. The reaction
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
was carried out at $27^{\circ} \mathrm{C}$ by taking one mole of each of the reactants. The reaction reached equilibrium when $2 / 3 \mathrm{rd}$ of the reactants were consumed. Calculate the free energy change for the reaction $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

Curiosity Questions

1. A magician took yellow colured solution in one test tube and added a colourless solution Into It and announced the fun of getting red colour. Then he added red coloured solution into it and announced the fun of
colour becoming lighter. What chemicals he musthave used and explain how all this might have happened ?

- View Text Solution

2. Why tooth decay occurs when we eat too much sweets?

- Watch Video Solution

3. Some reactions yield greater amount of products on heating while some others give lesser amount. Why?

- Watch Video Solution

4. At $0^{\circ} C$, ice and water are present in equilibrium. What will happen on increasing the pressure ?
5. The degree of dissociation of $H I$ at a particualr temperature is 0.8 .

Calculate the volume of $2 \mathrm{MNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution required to neutralise the iodine present in an equilibrium mixture of a reaction when 2 mol each of H_{2} and I_{2} are heated in a closed vessel of $2 L$ capacity and the equilibrium mixture is freezed.

- Watch Video Solution

2. NH_{3} is heated at 15 at, from $25^{\circ} \mathrm{C}$ to $347^{\circ} \mathrm{C}$ assuming volume constant. The new pressure becomes 50 atm at equilibrium of the reaction $2 \mathrm{NH}_{3} \Leftrightarrow \mathrm{~N}_{2}+3 \mathrm{H}_{2}$. Calculate $\%$ moles of NH_{3} actually decomposed.

- Watch Video Solution

3. An equilibrium mixture at 300 K contains $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} at 0.28 and 1.1 atm, respectively. If the volume of container is doubles, calculate the new equilibrium pressure of two gases.

- Watch Video Solution

4. When 0.15 mol of CO taken in a $2.5 L$ flask is maintained at 750 K along with a catalyst, the following reaction takes place
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Hydrogen is introduced until the total pressure of the system is 8.5 atm at equilibrium and 0.08 mol of methanol is formed.

Calculate
a. K_{p} and K_{c}
b. The final pressure, if the same amount of CO and H_{2} as before are used, but with no catalyst so that the reaction does not take place.

- Watch Video Solution

5. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is 4×10^{-19} Calculate $\left[A g^{\oplus}\right]$ in solution which was originally $0.1 M$ in $K C N$ and $0.03 M$ in AgNO_{3}.

- Watch Video Solution

6. A sample of air consisting of N_{2} and O_{2} was heated to 2500 K until the equilibrium

$$
N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)
$$

was established the intial composition of air in mole fraction of N_{2} and O_{2}.

- View Text Solution

7. At $817^{\circ} \mathrm{C}, K_{p}$ for the reaction between $\mathrm{CO}_{2(\mathrm{~g})}$ and excess hot graphite (s) is 10 atm .
(a) What are the equilibrium concentration of the gases at $817^{\circ} \mathrm{C}$ and a
total pressure of 5 atm ?
(b) At what total pressure, the gas contains $5 \% \mathrm{CO}_{2}$ by volume?

- Watch Video Solution

8. The value of K_{p} is $1 \times 10^{-3} \mathrm{~atm}^{-1}$ at $25^{\circ} \mathrm{C}$ for the reaction: $2 \mathrm{NO}+\mathrm{Cl}_{2} \Leftrightarrow 2 \mathrm{NOCl}$. A flask contains NO at 0.02 atm and at $25^{\circ} \mathrm{C}$. Calculate the mole of $C l_{2}$ that must be added if 1% of the $N O$ is to be converted to NOCl at equilibrium. The volume of the flask is such that 0.2 mole of gas produce 1 atm pressure at $25^{\circ} \mathrm{C}$. (Ignore probable association of NO to $\mathrm{N}_{2} \mathrm{O}_{2}$.)

- Watch Video Solution

9. The K_{p} for the reaction $\mathrm{N}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{NO}_{2}$ is 640 mm at 775 K . Calculate the percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium pressure of 160 mm . At what pressure, the dissociation will be 50% ?
10. The equilibrium constant of a reaction doubles on increasing the temperature of the reaction from $25^{\circ} \mathrm{C} \rightarrow 35^{\circ} \mathrm{C}$. Calculate enthalpy change of the reaction, assumpting it to be constant in this temperature range.

- Watch Video Solution

11. A mixture in which the mole ratio of H_{2} and O_{2} is $2: 1$ is used to prepare water by the reaction.
$2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} \mathrm{C}$ after reaction assuming 80% yield of water.

- Watch Video Solution

12. For a hypothetical reaction $\mathrm{P}(\mathrm{g})+\mathrm{Q}(\mathrm{g})$ hArr $\mathrm{R}(\mathrm{g})+\mathrm{S}(\mathrm{g})$, " a graph between $\log K$ and " $T^{\wedge}(-1)$ " is a straight line as hsown in the fig. in which " theta $=\tan ^{\wedge}(-1) 0 * 5$ and $\mathrm{OA}=10$. " Assuming "Delta $\mathrm{H}^{\wedge}(@)$ " is independent of temperature, calculate the equilibrium constant of the reaction at 298 K and 798 K respectively.

D View Text Solution

13.2 mole of an equimolar mixture of alchols ROH and R'OH are taken in! L flask. One mole of acetic acid is added to it. At equilibrium , 80% of acetic acid is found to be reacted and the ratio of RCOOCH_{3} and $\mathrm{R}^{\prime} \mathrm{COOCH}_{3}$ formed is $3: 2$, Calculate the equilibrium constant for the esterification of ROH .

- Watch Video Solution

14. The values of K_{p} and $K p_{2}$ for the reactions $X \Leftrightarrow Y+Z$, (a) and $A \Leftrightarrow 2 B$, (b)
are in the ration of $9: 1$. If the degree of dissociation of X and A is equal, then the total pressure at equilibriums (a) and (b) is in the ratio

- Watch Video Solution

15. Formaldehyde polymerizes to form glucose according to the reaction, $6 \mathrm{HCHO} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22} If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be :

- Watch Video Solution

Test Your Grip Multiple Choice Questions

1. For reaction,
$P C l_{3}(g)+C l_{2}(g) \Leftrightarrow P C l_{5}(g)$
the value of K_{c} at $250^{\circ} C$ is 26 . The value of K_{p} at this temperature will be .
A. $0 \cdot 61$
B. $0 \cdot 57$
C. $0 \cdot 83$
D. $0 \cdot 46$

Answer: A::B::C::D

- Watch Video Solution

2. K_{p} / K_{c} for the reaction
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{CO}_{2}(g)$ is
A. 1
B. RT
C. $1 / \sqrt{R T}$
D. $(R T)^{1 / 2}$

Answer: A::B::C::D

- Watch Video Solution

3. For the reaction $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$, the value of K_{c} at $800^{\circ} \mathrm{C}$ is 0.1 . When the equilibrium concentrations of both the reactants is 0.5 mol, what is the value of K_{p} at the same temperature
A. $0 \cdot 5$
B. $0 \cdot 1$
C. $0 \cdot 01$
D. $0 \cdot 025$

Answer: A::B::C::D

- Watch Video Solution

4. In a reversible chemical reaction having two reactants in equilibrium, if the concentration of the reactants are doubled then the equilibrium constant will :
A. Reduced to half its original value
B. Reduced to one fourth of its original value
C. Doubled
D. Constant

Answer: D

- Watch Video Solution

5. The equilibrium constant for a reacton
$N_{2}(g)+O_{2}(g)=2 N O(g)$ is 4×10^{-4} at 2000 K . In the presence of catalyst, the equilibrium constant is attained 10 times faster. The equilibrium constant in the presence of catalyst, at 2000 K is
A. 40×10^{-4}
B. 4×10^{-4}
C. 4×10^{-3}
D. difficult to compute without more data.

Answer: B

- Watch Video Solution

6. For the hypothetic reaction, the equilibrium constant (K) values are given
$A \Leftrightarrow B, K_{1}=2.0$
$B \Leftrightarrow C, K_{2}=4.0$
$C \Leftrightarrow D, K_{3}=3.0$
The equilibrium constant for the reaction
$A \Leftrightarrow D$ is
A. 48
B. 6
C. 12
D. 24

Answer: A::B::C::D

- Watch Video Solution

7. For the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ at $400 \mathrm{~K}, K_{p}=41$ Find the value of K_{p} for the following reaction:
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow \mathrm{NH}_{3}(\mathrm{~g})$
A. $6 \cdot 4$
B. $0 \cdot 02$
C. 50
D. $4 \cdot 6$

Answer: A: D

8.

K_{p} for the following reaction will be equal to $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3}($
A. $\left(p_{\mathrm{H}_{2}}\right)^{4}\left(p_{\mathrm{Fe}_{3} \mathrm{O}_{4}}\right)$
B. $\frac{p_{\mathrm{H}_{2}}}{p_{\mathrm{H}_{2} \mathrm{O}}}$
C. $\frac{\left(p_{\mathrm{H}_{2}}\right)^{4}}{\left(p_{\mathrm{H}_{2} \mathrm{O}}\right)^{4}}$
D. $\frac{\left(p_{H_{2}}\right)\left(p_{\mathrm{Fe}_{3} O_{4}}\right)}{p_{F_{e}}}$

Answer: C

- Watch Video Solution

9. a' moles of PCl_{5} are heated in a closed container to equilibrate $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ at a pressure of p atm. If x moles of $P C l_{5}$ dissociate at equilibrium , then
A. $0 \cdot 04$
B. $0 \cdot 025$
C. $0 \cdot 02$
D. $0 \cdot 05$

Answer: A

- Watch Video Solution

10. The what manner will increase of pressure affect the following equation?

$$
\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)
$$

A. Shift in the forward direction
B. Shift in the reverse direction
C. Increase in the yield of hydrogen
D. No effect.

Answer: B

11. Formation of SO_{3} take place according to the reaction $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}, \Delta H=-45.2$ kcal Which of the following factors favours the formation of SO_{3} ?
A. Increase in temperature
B. Increase in pressure
C. Removal of oxygen
D. Increase in volume

Answer: B

- Watch Video Solution

12. Le Chatelier's principle is not applicable to

$$
\text { A. } F e(s)+S(s) \Leftrightarrow F_{e} S(s)
$$

B. $H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: A::B::C::D

- Watch Video Solution

13. In which one of the following reactions, the yield of the products decreases by in creasing the pressure ?
A. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
B. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
C. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
D. $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$

Answer: A:C

14. What would happen to a reversible dissociation reaction at equilibrium when an inert gas is added while the pressure remains unchanged ?
A. Less of the product will be formed
B. More of the product will be formed
C. More of thereactants will be fromed
D. It remains unaffected.

Answer: B

- Watch Video Solution

15. The supply of oxygen to the tissues by blood (haemoglobin) can be examined by
A. Boyle's law
B. Le chatelier's principle
C. Dalton's law
D. Charles'law

Answer: B

- Watch Video Solution

Test Your Grip li Fill In The Blanks

1. A bulb containing $\mathrm{N}_{2} \mathrm{O}_{4}$ is colourless in ice. Its colour inboiling water is while in water at 298 K , it is

- Watch Video Solution

2. Equimolar amounts of H_{2} and I_{2} were taken in a bulb maintained at $500^{\circ} \mathrm{C}$. Dark violet colour faded to light violet which does not change
further. This shows that the bulb contains amounts of

- Watch Video Solution

3. According to law of mass action rate of a chemical reaction is proportional to

- Watch Video Solution

4. In terms of rate constants for forward and backward reactions (k_{f} and k_{b}) , equilibrium constant of a reaction is equal to

- Watch Video Solution

5. Equilibrium constant of a reaction does not change with but changes with
6. Ratio K_{p} / K_{c} of the reaction $2 \mathrm{SO}_{2}+O_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is equal to

- Watch Video Solution

7. Equilibrium constant for the reaction , $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K , then equilibrium constant for the reaction, $N H_{3} \Leftrightarrow \frac{1}{2} N_{2}+\frac{3}{2} H_{2}$ will be

- Watch Video Solution

8. Adding a catalyst to a reaction at equilibrium

- Watch Video Solution

9. The equilibrium constant of an endothermic reaction with increase of temperature.

D Watch Video Solution

10. Write the expression for equilibrium constant K_{p} for the reaction, $3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)$.

- Watch Video Solution

11. If the concentration quotient of a reaction in greater than its equilibrium constant, then the reaction will proceed in the \qquad direction.

- Watch Video Solution

12. N_{2} gas id added to the reaction equilibrium $\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$ at constant temperature. If pressure is kept constant, equilibrium constant will and equilibrium will shift in the direction.

- Watch Video Solution

13. Solution of FeCl_{3} (yellow) and $\mathrm{NH}_{4} \mathrm{SCN}$ (colourless) were mixed in a beaker. Red colour was obtained. On adding HgCl_{2} to the solution, the intensity of colour will

- Watch Video Solution

14. Exothermic reactions are favoured by \qquad in temperature

- Watch Video Solution

15. Low pressure is favourable for those reversible reactions in which there is \qquad in the number of molecules.

- Watch Video Solution

16. When the pressure is applied over system ice \Leftrightarrow wate what will happen

- Watch Video Solution

Conceptual Questions

1. In a chemical reaction under equilibrium , there is no change in moler conertration of products and reactants. Does the reaction stop?

- Watch Video Solution

2. Reaction between ethyl acetate and water attains a state of equilibrium in an open vessel but not the decomposition of $\mathrm{CaCO} \mathrm{Cl}_{3}$. Explain.

- Watch Video Solution

3. If concentration are expressed in moles L^{-1} and pressure in atmospheres, what is the ratio of $K_{p} \operatorname{to} K_{c}$ for the reaction, $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrow 2 S O_{3}(g)$ at $25^{\circ} \mathrm{C} ?$

D Watch Video Solution

4. The value of equlibrium constant depends on what?

- Watch Video Solution

5. The equilibrium constant for the reactions
$N_{2}+O_{2} \Leftrightarrow 2 N O$ and $(i i) 2 N O+O_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$ are K_{1} and K_{2}
respectively, then what will be the equilibrium constant for the reaction $N_{2}+2 O_{2} \Leftrightarrow 2 \mathrm{NO}_{2}$

- Watch Video Solution

6. For the reactions, $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$. At 400 K , $K_{p}=41 \mathrm{~atm}^{-2}$. Find the value of K_{p} for each of the following reactions at the same temperature:
(i) $2 \mathrm{NH}_{3(g)} \Leftrightarrow N_{2(g)}+3 H_{2(g)}$,
(ii) $\frac{1}{2} N_{2(g)}+\frac{3}{2} H_{2(g)} \Leftrightarrow N H_{3(g)}$,
(iii) $2 \mathrm{~N}_{2(g)}+6 \mathrm{H}_{2(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NH}_{3(g)}$

- Watch Video Solution

7.

The
equilibrium
$\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(v)$ is attained in a closed container at $40^{\circ} \mathrm{C}$. The aqueous tension of water at $40^{\circ} \mathrm{C}$ is 23 mm . What is K_{p} for the said equilibrium?
8. The concentration quotient of a reversible reaction is Q, and the equilibrium constant is K. What do youconclude if (i) $Q=K(i i) Q>K(i i i) Q<K ?$

- Watch Video Solution

9. What does the equilibrium constant K less than 1 indicate ?

- Watch Video Solution

10. What quantiative information can you obtain from the value of the equilibrium constant?

- Watch Video Solution

11. In which one of the following reactions, the yield of the product will be maximum ?

$$
2 A+B \Leftrightarrow C, K=10^{-5}, C+2 D \Leftrightarrow E, K=10^{5}, D+3 B \Leftrightarrow f, K=10^{3} .
$$

- Watch Video Solution

12.

For
the
reaction
$H_{2}+I_{2} \Leftrightarrow 2 H I, \quad$ if intially 25 mL of H_{2} and 20 mL of $I_{2} \quad$ are present ia a container in a container and at equilibrium, 30 mL of HI is foprmed, then calculate equilibrium constant.

- Watch Video Solution

13.

$\Delta_{r} G^{\circ}=-R T$ In K. For the same reaction at the same temperature usin are found to be different. Why ?
14. What happence to the equilibrium $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$, if nitrogen gas is added to it (i)at constant volume(ii) at constant pressure ? Give reasons.

- Watch Video Solution

15. What two changes on the equilibrium,
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H=-92.4 \mathrm{~kJ} . \quad$ can keepitsstate undisturbed?

- Watch Video Solution

16. The following system is equilibrium : $\mathrm{SO}_{2} \mathrm{Cl}_{2}+\mathrm{Heat} \Leftrightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$

What will happen to the temperature of the system if some Cl_{2} gas is added at equilibrium

- Watch Video Solution

17. Areaction $A(g)+B(g) \leftrightarrow 2 C(g)$ is an equlibrium at a certain temperature. Can we increases the amount of products by (i) adding catayst (ii) increasing pressure?

- Watch Video Solution

18. $2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 4 \mathrm{No}(\mathrm{g}), \Delta H>0$

What will be the effect on equilibrium when
(i) Volume of the vessel increases ? (ii) Temperature decreases ?

- Watch Video Solution

19. Some process are given below. What happens to the process if it is subjected to a change given in the barckets ?
(ii) Dissolution of Ice $\stackrel{M . p t}{\Longleftrightarrow}$ Water (Pressure is increased)
(ii) Dissolution of NaOH in water (Temperature is increased)
(iii) $N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)-180 \cdot 7 k J$ (pressure is increased and temperature is decreased).
20. What is the effect of the reduction of the volume of the system for the equilibrium
$2 C(s)+O_{2}(g) \Leftrightarrow 2 C O(g) ?$

- Watch Video Solution

21. In the direction , $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ at equilibrium, helium gas is injected into the vessel without disturbing the overall pressure of the system. What will be the effect on the equilibrium ?

- Watch Video Solution

Ncert Questions And Exercises With Answers

1. A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a. what is the initial effect of the change on vapour pressure?
b. How do rates of evaporation and condensation change initially?
c. What happens when equilibrium is restored finally and what will be the final vapour pressure?

- Watch Video Solution

2. What is K_{c} for the following equilibrium concentration of each substance is:
$\left[S O_{2}\right]=0.60 M,\left[O_{2}\right]=0.82 M$ and $\left[S O_{3}\right]=1.90 M ?$
$2 S_{2}(g)+O_{2}(g) \Leftrightarrow 2 S_{3}(g)$

- Watch Video Solution

3. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vaour contain 40% by volume of iodine atmos $\left[I_{2}(g) \Leftrightarrow 2 I(g)\right]$. Calculate K_{p} for the equilibrium.
4. Write the expression for the equilibrium constant K_{c} for each of the following reactions:
a. $2 \mathrm{NOCl}(g) \Leftrightarrow 2 \mathrm{NO}(g)+\mathrm{Cl}_{2}(g)$
b. $2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(s) \Leftrightarrow 2 \mathrm{CuO}(s)+4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$
c. $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(1) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)$
d. $\mathrm{Fe}^{3+}(a q)+3 O H^{\Theta}(a q) \Leftrightarrow \mathrm{Fe}(O H)_{3}(s)$
e. $I_{2}(s)+5 F_{2} \Leftrightarrow 2 I F_{5}$

- Watch Video Solution

5. Find out the value of K_{c} for each of the following equilibrium from the value of K_{p} :
a. $2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), K_{p}=1.8 \times 10^{-2}$ at 500 K
b. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g), K_{p}=167$ at 1073 K

- Watch Video Solution

6. For the following equilibrium, $K_{c}=6.3 \times 10^{14}$ at 1000 K
$N O(g)+O_{3}(g) \Leftrightarrow N O_{2}(g)+O_{2}(g)$
Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

- Watch Video Solution

7. Explain why pure liquids and solids can ignored while writing the equilibrium constant expression?

- Watch Video Solution

8. Reaction between nitrogen and oxygen takes place as following:
$2 N_{2(g)}+O_{2} \Leftrightarrow 2 N_{2} O_{(g)}$
If a mixture of $0.482 \mathrm{~mole} N_{2}$ and 0.933 mole of O_{2} is placed in a reaction vessel of volume 10litre and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$ itremol $^{-1}$. Determine the composition of equilibrium mixture.
9. Nitric oxide reacts with bromine and gives nitrosyl-bromide as per reaction given below:
$2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(g)} \Leftrightarrow 2 \mathrm{NOBr}_{(g)}$.
When 0.087 mole of NO and 0.0437 mole of Br_{2} are mixed in a closed container at constant temperature, 0.0518 mole of NOBr is obtained at equilibrium. Calculate equilibrium amount of nitric oxide and bromine.

- Watch Video Solution

10. At $450 K, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
What is K_{c} at this temperature?

- Watch Video Solution

11. A sample of $H I(g)$ is placed in flask at a pressure of 0.2 atm . At equilibrium. The partial pressure of $\operatorname{HI}(g)$ is $0.04 a t m$. What is K_{p} for the given equilibrium?
$2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

- Watch Video Solution

12. A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and 8.13 mol of NH_{3} is introduced into a $20 L$ reaction vessel at $500 K$. At this temperature, the equilibrium constant K_{c} for the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ is 1.7×10^{2}. Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

- Watch Video Solution

13. The equilibrium constant expression for a gas reaction is :

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}
$$

Write the balanced chemical equation corresponding to this expression.

- Watch Video Solution

14. One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in a 10litre vessel and heated to 725 K . At equilibrium, 40percent of water (by mass) reacts with carbon monoxide according to the equation,

$$
\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{(g)} \Leftrightarrow \mathrm{H}_{2(g)}+\mathrm{CO}_{2(g)}
$$

Calculate the equilibrium constant for the reaction.

- Watch Video Solution

15. At 700 K equilibrium constant for the reaction,

$$
H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}
$$

is 54.8 . If 0.5 mollitre ${ }^{-1}$ of $H I_{(g)}$ is present at equilibrium at 700 K , what are the concentrations of $H_{2(g)}$ and $I_{2(g)}$, assuming that we initially started with $H I_{(g)}$ and allowed it to reach equilibrium at 700 K .
16. What is the equilibrium concentration of each of the substance in the equilibrium when the initial concentration of $I C l$ was $0.78 M$?

$$
2 I C l(g) \Leftrightarrow I_{2}(g)+C l_{2}(g), K_{c}=0.14
$$

- Watch Video Solution

17. $K_{p}=0.04 a t m$ at $899 K$ for the equilibrium shown below. What is the equilibrium concentration of $C_{2} H_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

$$
C_{2} H_{6}(g) \Leftrightarrow C_{2} H_{4}(g)+H_{2}(g)
$$

- Watch Video Solution

18. Ethyl accetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as :
$\mathrm{CH}_{3} \mathrm{COOH}(l)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l) \Leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(l)+\mathrm{H}_{2} \mathrm{O}(l)$.
19. A sample of pure $P C l_{5}$ was introduced into an evacuted vessel at 473 K . After equilibrium was attained,concentration of PCl_{5} was found to be 0.5×10^{-1} mollitre $^{-1}$. If value of K_{c} is 8.3×10^{-3} mollitre $^{-1}$. What are the concentrations of PCl_{3} and Cl_{2} at equilibrium ?

- Watch Video Solution

20. One of the reaction that takes plece in producing steel from iron ore is the reduction of iron(II) oxide by carbon monoxide to give iron metal and CO_{2}.
$F e O(s)+C O(g) \Leftrightarrow F e(s)+\mathrm{CO}_{2}(g), K_{p}=0.265$ atm at 1050 K
What are the equilibrium partial pressure of CO and CO_{2} at 1050 K if the partical pressure are: $p_{\mathrm{CO}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

- Watch Video Solution

K_{c} for the reaction, $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$ at $500 K$ is $0 \cdot 061$.
At a particular time, the analysis shows that composition of the reaction mixture is
$3 \cdot 0 \mathrm{~mol} L^{-1} N_{2}, 2 \cdot 0 \mathrm{~mol} L^{-1} H_{2}$ and $5 \cdot 0 \mathrm{~mol} L^{-1} N H_{3}$. Is the reaction at equilibrium ? If not , in which direction does the reaction tend to reach equilibrium ?

- Watch Video Solution

22. Bromine monochloride, (BrCl) decomposes into bromine and chlorine and reaches the equilibrium.
$2 B r C l_{(g)} \Leftrightarrow B r_{2(g)}+C l_{2(g)}$
For which $K_{c}=32$ at 500 K . If initially pure BrCl is present at a concentration of 3.30×10^{-3} mollitre $^{-1}$, what is its molar concentration in the mixture at equilibrium?
23. At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has $90.55 \% C O$ by mass:

$$
C_{(s)}+C O_{2(g)} \Leftrightarrow 2 C O_{(g)}
$$

Calculate K_{c} for the reaction at the above temperature.

- Watch Video Solution

24. Calculate (a) ΔG^{Θ} and (b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K
$\mathrm{NO}(g)+1 / 2 \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$ where
$\Delta_{f} G^{\Theta}\left(N O_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}(N O)=87.0 \mathrm{~kJ} / \mathrm{mol}, \Delta_{f} G^{\Theta}\left(O_{2}\right)=$

- Watch Video Solution

25. Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease by increasing the volume ?
26. Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction the reaction to go into forward of backward direction.
a. $\mathrm{COCl}_{2}(g) \Leftrightarrow C O(g)+C l_{2}(g)$
b. $\mathrm{CH}_{4}(g)+2 S_{2}(g) \Leftrightarrow C S_{2}(g)+2 H_{2} S(g)$
c. $\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 C O(g)$
d. $2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)$
e. $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
f. $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \Leftrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

- Watch Video Solution

27. The equilibrium constant for the following reaction is 1.6×10^{5} at $1024 K$
$H_{2}(g)+B r_{2}(g) \Leftrightarrow 2 H B r(g)$
find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at $1024 K$.

- Watch Video Solution

28. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
a. Write an expression for $\mathrm{K}_{-}(\mathrm{p})$ for the above reaction.
b. How will the value of $K_{_}(p)$ and composition of equilibrium mixture be affected by
i. Increasing the pressure
ii. Increasing the temperature
iii. Using a catalyst?

- Watch Video Solution

29. Decribe the effect of:
a. Addition of H_{2}
b. Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c. Removal of $C O$
d. Removal of $\mathrm{CH}_{3} \mathrm{OH}$
on the equilibrium of the reaction:

$$
2 \mathrm{H}_{2}(g)+\mathrm{CO}(g) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(g)
$$

(Watch Video Solution

30. At $473 K$, equilibrium constant K_{c} for decomposition of phosphorus pentachloride, $P C l_{5}$ is 8.3×10^{-3}. If decomposition is depicted as,

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g) \Delta_{r} H^{\Theta}=124.0 \mathrm{kJmol}^{-1}
$$

a. Write an expression for K_{c} for the reaction.
b. What is the value of K_{c} for the reverse reaction at the same temperature?
c. What would be the effect on K_{c} if
i. More $P C l_{5}$ is added
ii. Pressure is increased
iii. The temperature is increased?

- Watch Video Solution

31. Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of the two 2 stage reaction involves the formation of CO and H_{2}. In second stage, $C O$ formed in first stage is reacted with more steam in water gas shift reaction,

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

If a reaction vessel at $400^{\circ} C$ is charged with an equimolar mixture of $C O$ and steam such that $p_{\mathrm{CO}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K_{p}=0.1$ at $400^{\circ} \mathrm{C}$.

- Watch Video Solution

32. Predict which of the following reaction will have appreciable concentration of reactants and product $(a) C l_{2}(g) \Leftrightarrow 2 C l(g), K_{c}=5 \times 10^{-39}$
(b) $\mathrm{Cl}_{2}(g)=2 \mathrm{NO}(g) \Leftrightarrow 2 N O C l(g), K_{c}=3 \cdot 7 \times 10^{8}$
(c) $\mathrm{Cl}_{2}(g)+2 \mathrm{NO}_{2}(g) \Leftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}), K_{c}=1 \cdot 8$

- Watch Video Solution

33. The value of
K_{c} for the reaction, $3 O_{2}(g) \Leftrightarrow 2 O_{3}(g)$, is $2 \cdot 0 \times 10^{-50}$ at $25^{\circ} \mathrm{C}$. If t What is the concentration of O_{3} ?

- Watch Video Solution

34. The reaction , $\mathrm{CO}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g)$, is at equilibrium at 1300 K in a 1 L flask. It also contains $0 * 30 \mathrm{~mol}$ of $\mathrm{CO}, 0^{*} 10$ mol of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture. The equilibrium constant, K_{c}, for the reaction at the given temperature is $3 \cdot 90$.

D View Text Solution

Additional Questions Very Short Answer Questions

1. Which measurable property becomes constant in water
\Leftrightarrow watervapour equilibrium at constant temperature.

Watch Video Solution

2. Give one example of everyday life in which there is gas solution equilibrium .

- Watch Video Solution

3. Give one example of a reversible reaction taking place in aqueous solution.

- Watch Video Solution

4. Write the reversible reaction taking place between ferric ions and thiocyanate ions and write the colour of each reactant and product.
5.

- Watch Video Solution

6. Under what condition, a reversible process becomes irreverible?

- Watch Video Solution

7. What is the effect on equilibrium and on the value of equilibrium constant on adding catalyst ?

- Watch Video Solution

8. If the equilibrium constant for a reaction is $4 \cdot 0$, what will be the equilibrium constant for the reverse reaction.
A. 1
B. 4
C. 0.25
D. 25

Answer: C

- Watch Video Solution

9. Write the expression for equilibrium constant K_{p} for the reaction, $3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+4 \mathrm{H}_{2}(\mathrm{~g})$.

- Watch Video Solution

10. What is van't Hoff reaction isotherm ?
11. What happens to the disociation of PCl_{5} in a closed vassel if helium gas is introduced into it at the same temperature?

D Watch Video Solution

12. What happens when potassium ferrocyanide solution is added to a ferric salt solution?

(Watch Video Solution

13. $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in this equilibrium system if the pressure is increased at $25^{\circ} \mathrm{C}$ then the value of K will

D Watch Video Solution

14. What are the conditions for getting maximum yield of NH_{3} by Haber's process?

- Watch Video Solution

Additional Questions Short Answer Questions

1. What do you understand by term 'Equilibrium' ? Explain physical equilibrium with one suitable example.

- Watch Video Solution

2. Give one example of each of the following equilibria :
(i) Solid - Liquid Equilibria (ii) Liquid - Gas Equilibrium (iii) Solid - Solutions Equilibrium

- Watch Video Solution

3. Define the terms ' Vapour pressure and 'Solubility'.

- Watch Video Solution

4. Define Henry Law. Why the gas fizzes out when a soda water bottle is opened?

- Watch Video Solution

5. What do you understand by Reversible and Irreversible reactions? Illustrate your answer with two examples of each. Under what conditions a reversible reaction becomes irreversible ?

- Watch Video Solution

6. What do you understand by chemical equilibrium? Explain with one suitable example.
7. List any four important characteristics of a chemical equilibrium.

- Watch Video Solution

8. State and explain the Law of Mass Action.

- Watch Video Solution

9. State and explain the 'Law of Chemical Equilibrium.'

- Watch Video Solution

10. Derive a general expression for the equilibrium constant.

- Watch Video Solution

11. What do you understand by K_{c} and K_{p} ? Derive a relationship between them.

- Watch Video Solution

12. K_{p} and K_{c} are related by $K_{p}=K_{c}(R T)^{\Delta n}$. Under what practical condition $/ \mathrm{s}, K_{p}=K_{c}$?

- Watch Video Solution

13. Characteristics of Equilibrium constant continued..

- Watch Video Solution

14. Discuss the effect of temperature of the equilibrium constant. How does it change for (a) exothermi reaction (b) endothermic reaction © reaction having zero heat of reaction ?
15. Define 'Homogeneous Equlibria and Heterogeneous Equilibria'. Give two examples of each of them.

- Watch Video Solution

16. Applying the law of chemical equilibrium, explain why vapour pressure of water is constant at constant temperature.

- Watch Video Solution

17. Why strictly speaking equilibrium constant has no units ?

- Watch Video Solution

18. How does the magnitude of equilibrium constant give an idea of the relative amounts of the reactants and products ?
19. Write the relationship between standard free energy change and equilibrium constant of a reaction. Express it in the exponential form. Using this relation how does + or $-\operatorname{signof} \Delta G$ decided the extent of reaction in the forward direction?

- Watch Video Solution

20. What is the effect of adding a catalyst on a reaction which is (a) in equilibrium (b) not in equilibrium ?

- Watch Video Solution

21. What is the effect of adding 1 mole of $\mathrm{He}(\mathrm{g})$ to a flask containing $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} in equilibrium at constant temperature ?
22.

$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+$ Heat, indicate the direction in which the equilibrium will shift when the following changes are made :
(i) Temperature of the system is decreased
(ii) Total pressure is decreased
(iii) Volume of the container is increased (iv) A catalyst is added.

- Watch Video Solution

23. Consider the following reaction
$\mathrm{N}_{2} \mathrm{O}_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g) \Delta H=58.6 \mathrm{KJ}$
What will be the effect of the following changes on the concentration of
$\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium?
(i) Increasing the pressure (ii) Increasing the temperature
(iii) Increasing the volume
(iv) Adding more $\mathrm{NO}_{2}(\mathrm{~g})$ to the system without changing temperature and pressure (v) Adding catalyst.

- Watch Video Solution

24. What will be the effect of increased pressure on the following equilibria?
$(i) H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(iii) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$,
(iv) $2 \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{O}_{2}(\mathrm{~g})$
(v) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

- Watch Video Solution

25. Using Le chatelier's principle, predict the effect of
(i) decreasing the temperature and (ii) increasing the pressure on each of the following equilibria :
A.

$$
\begin{equation*}
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g) H e a t \tag{В.}
\end{equation*}
$$

$N_{2}(g)+O_{2} \Leftrightarrow 2 N O(g)+$ Heat
C.

$$
H_{2} O(g)+H e a t \Leftrightarrow H_{2}(g)+\frac{1}{2} O_{2}(g)
$$

D.
$2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+$ Heat

- Watch Video Solution

26. In the reaction equilibrium , $A+B \Leftrightarrow C+D$, what will happen to concentration of A, B and D if the concentration of C is increased ?

- Watch Video Solution

27. Mention at least three ways which the concentration of SO_{3} can be increased after the equilibrium is establish in the reaction : $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}+$ Heat

- Watch Video Solution

28. Why does manufacture of ammonia by Haber's process require higher pressure, low temperature, use of catalyst and pure gases ?

Analytical Questions And Problems With Answer Solutions Questions

1. Why is there a fizz when a soda water bottle is opened?

- Watch Video Solution

2. For an exothermic reaction, what happens to the equilibrium constant if temperature is raised?

- Watch Video Solution

3. The equilibrium constant of a reaction is
2×10^{-3} at $25^{\circ} \mathrm{C}$ and 2×10^{-2} at $50^{\circ} \mathrm{C}$. Is the reaction exothermic or endothermic ?
4. Why is equilibrium constant related to standard free energy change and not free energy change ?

- Watch Video Solution

5. The following reaction has attained equilibrium
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \cdot \Delta \mathrm{H}^{\circ}=-92.0 \mathrm{KJmol}^{-1}$
What will happen if
(i) Volume of the reaction vessel is suddenly reduced to half?
(ii) the partial pressure of hydrogen is suddenly doubled?
(iii) an inert gas is added to the system at constant volume.

- Watch Video Solution

6. Why does ice melt showly at higher altitudes?
7. Show that degree of dissociation (α) for the dissociation of $P C l_{5}$ into $P C l_{3}$ and $C l_{2}$ at pressure P is given by $\alpha=\left[\frac{k p}{P+k p}\right]^{1 / 2}$

(Watch Video Solution

8. At temperature T , a compound $A B_{2}(g)$ dissociation according to the reaction, $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$ with degree of dissociation, α, which is small compared to unity. Deduce the expression for α in terms of the equilibrium constant K_{p} and the total pressure P.

- Watch Video Solution

9. Prove that the pressure necessary to obtain 50% dissociation of PCl_{5} at 500 K is numerically three times the value of K_{p}.

- Watch Video Solution

1. The equilibrium constant of the reaction $A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A B(g)$ at $100^{\circ} C$ is 50 . If a one litre flask containing one mole of A_{2} is connected to a two litre flask containing two moles of B_{2}, how many moles of $A B$ will be formed at 373 K ?

- Watch Video Solution

2. A mixture of $\mathrm{SO}_{3}, \mathrm{SO}_{2}$ and O_{2} gases is maintained in a 10 L flask at a temperature at which the equilibrium constant for the reaction is 100 :
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
a. If the number of moles of SO_{2} and SO_{3} in the flask are equal. How many moles of O_{2} are present?
b. If the number of moles of SO_{3} in flask is twice the number of moles of SO_{2}, how many moles of oxygen are present?

- Watch Video Solution

3. The equilibrium constant K_{p} of the reaction: $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is $900 \mathrm{~atm}^{-1}$ at 800 K . A mixture constaining SO_{3} and O_{2} having initial pressure of 1 atm and 2 atm respectively, is heated at constant volume to equilibriate. Calculate the partial pressure of each gas at 800 K at equilibrium.

- Watch Video Solution

4. When sulphur in the form of S_{8} is heated at 900 K , the initial pressure of 1 atm falls by 10% at equilibrium. This is because of conversion of some S_{8} to S_{2}. Find the value of equilibrium constant for this reaction.

- Watch Video Solution

5. K_{c} for $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \Leftrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g)$ at $986^{\circ} \mathrm{C}$ is 0.63 . A mixture of $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $3 \mathrm{~mol} \mathrm{CO}_{2}(\mathrm{~g})$ is allowed to react to come to an equilibrium. The equilibrium pressure is 2.0 atm.
a. Hoe many moles of H_{2} are present at equilibrium ?
b. Calculate partial pressure of each gas at equilibrium.

- Watch Video Solution

6. Calculate the percent dissociation of $H_{2} S(g)$ if 0.1 mol of $\mathrm{H}_{2} \mathrm{~S}$ is kept in $0.4 L$ vessel at $1000 K$. For the reaction:
$2 \mathrm{H}_{2} S(g) \Leftrightarrow 2 \mathrm{H}_{2}(g)+S_{2}(g)$
The value of K_{c} is 1.0×10^{-6}

- Watch Video Solution

7. At some temperature and under a pressure of $4 \mathrm{~atm}, P C l_{5}$ is 10% dissociated. Calculated the pressure at which $P C l_{5}$ will be 20% dissociated temperature remaining same.

- Watch Video Solution

8. An equilibrium mixture $\mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ present in a vessel of one litre capacity at 1000 K was found to contain $0 \cdot 4$ mole of CO, $0 \cdot 3$ mole of $\mathrm{H}_{2} \mathrm{O}, 0 \cdot 2$ mole of CO_{2} and $0 \cdot 6$ mole of H_{2}. If it is desired to increase the concentration of CO to $0 \cdot 6$ mole by adding CO_{2} into the vessel , how many moles of it must be added into equilibrium mixture at constant temperature in order to get this change ?

- Watch Video Solution

9. At $540 \mathrm{~K}, 0.10 \mathrm{~mol}$ of $P C l_{5}$ is heated in a 8 L flask. The pressure of equilibrium mixture is found to be 1.0 atm . Calculate K_{p} and K_{c} for the reaction.

- Watch Video Solution

10. When 3.06 g of solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into a two-litre evacuated flask at $27^{\circ} \mathrm{C}, 30 \%$ of the solid decomposes into gaseous ammonia and hydrogen sulphide. (i) Calculate K_{c} and K_{p} for the reaction at $27^{\circ} C$. (ii)

What would happen to the equilibrium when more solid $\mathrm{NH}_{4} \mathrm{HS}$ is introduced into the flask?

- Watch Video Solution

11. For the reaction
$\mathrm{CaCO}_{3}(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{K}_{p}=1 \cdot 16 \mathrm{~atm}$. If $20 \cdot 0 \mathrm{~g}$ of CaCl would remain unreached at equilibrium ? (Mol. wt. of $\mathrm{CaCO}_{3}=100, R$

- Watch Video Solution

12. Solid Ammonium carbamate dissociates as:
$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$.
In a closed vessel, solid ammonium carbonate is in equilibrium with its dissociation products. At equilibrium, ammonia is added such that the partial pressure of NH_{3} at new equilibrium now equals the original total pressure. Calculate the ratio of total pressure at new equilibrium to that of original total pressure. Also find the partial pressure of ammonia gas added.
13. Some solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in flask containing 0.5 atm of NH_{3}. What would be the pressure of NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ when equilibrium is reached.
$N H_{4} H S(g) \Leftrightarrow N H_{3}(g)+H_{2} S(g), K_{p}=0.11$

- Watch Video Solution

14. The degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into NO_{2} at $1 \mathrm{~atm} 40^{\circ} \mathrm{C}$ is 0.310 .

Calculate its K_{p} at $40^{\circ} \mathrm{C}$. Also report the degree of dissociation at 10 atm pressure at same temperature.

- Watch Video Solution

15. When $\alpha-D$ glucose is dissolved in water, it undergoes a partial converion to $\beta-D$ glucose to exhibit mutarotation. This conversion
stops when 63.6% of glucose is in β form. Assuming that equilibrium has been attained, calculate K_{c} for mutarotation.

- Watch Video Solution

16. At $77^{\circ} \mathrm{C}$ and one atmospheric pressure, $\mathrm{N}_{2} \mathrm{O}_{4}$ is 70% dissociated into NO_{2} What will be the volume occupied by the mixture under these conditions if we start with 10 g of $\mathrm{N}_{2} \mathrm{O}_{4}$?

- Watch Video Solution

17. 0.1 mole of $N_{2 O_{4}(g)}$ was sealed in a tude under one atmospheric conditions at $25^{\circ} \mathrm{C}$ Calculate the number of moles of $\mathrm{NO}_{2}(\mathrm{~g})$ preesent, if the equilibrium $N_{2} O_{4}(g) \Leftrightarrow 2 \mathrm{NO}_{2}(g)\left(K_{P}=0.14\right)$ is reached after some time :

- Watch Video Solution

18. The degree of dissociation is 0.4 at 400 K and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at 400 K and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

- Watch Video Solution

19. One mole of H_{2}, two moles of I_{2} and three moles of HI are injected in a litre flask. What will be the concentration of H_{2}, I_{2} and HI at equilibrium at $490^{\circ} C$?

The equiibrium constant for the reaction at 490° is 45.9

- Watch Video Solution

20. A mixtue of H_{2} and I_{2} (vapour) in molecular proportion of 2: 3 was heated at $449^{\circ} \mathrm{C}$ till the reaction $H_{2}+I_{2} \Leftrightarrow 2 H I$ reached equilibrium
state . Calculate the percentage of iodine converted into $H I\left(K_{c}\right.$ at $440^{\circ} C$ is $\left.0 \cdot 02\right)$.

Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance I Multiple Choice Questions With One Correct Answer

1. The vapour pressure of a liquid in a closed container depends upon
A. depandes upon the amount of the liquid taken s
B. Keeps on increasing continously as more and more liquid evaporates
C. has a constant value depending only on the nature of the liquid
D. had a constant value at constant temperature

Answer: D

2. For the synthesis of ammonia by the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber's process ,the attainment of equilibrium is correctly predicated bt the curve

- Watch Video Solution

3. For the reversible reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
at $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when the partial pressure is measured in atmosphere. The corresponding value of K_{c} with concentration in $\mathrm{mol} L^{-1}$ is
A. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 500)^{-2}$
B. $1 \cdot 44 \times 10^{-5} /(8 \cdot 314 \times 773)^{-2}$
C. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 773)^{2}$
D. $1 \cdot 44 \times 10^{-5} /(0 \cdot 082 \times 7773)^{-2}$

Answer: D

- Watch Video Solution

4. The temperature at which K_{c} and K_{p} will have the same value for the equilibrium,

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \text { is }
$$

A. 0 K
B. 273 K
C. 1 K
D. 12.18 K

Answer: D

- Watch Video Solution

5. The pressure at which equilibrium constant in terms of pressures is found to be equal to that in terms of mole fraction for the equilibrium,

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

A. 10 atm
B. 1 atm
C. $0 \cdot 1$ atm
D. 2 atm

Answer: B

D Watch Video Solution

6. White solid balls of naphthalene $\left(C_{10} H_{8}\right)$ used as moth balls were kept in a closed container at room temperature $\left(27^{\circ} C\right)$. The vapour pressure above the balls was found to be 0.10 mm Hg . The value of K_{c} for the sublimation equilibrium,

$$
C_{10} H_{8}(s) \Leftrightarrow C_{10} H_{8}(v) \text { is }
$$

A. $1 \cdot 32 \times 10^{-4}$
B. $5 \cdot 36 \times 10^{-6}$
C. $3 \cdot 4 \times 10^{-7}$
D. $0 \cdot 10$

D Watch Video Solution

7. For the reaction, $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(g)$, If $K_{p}=K_{c}(R T)^{x}$ where the symbols have usual meaning then, the value of x is (assuming ideality).
A. 1
B. -1
C. $-\frac{1}{2}$
D. $\frac{1}{2}$

Answer: C

8. For the reaction
$C O(g)+C I_{2}(g) \Leftrightarrow \mathrm{COCI}_{2}(g)$
K_{p} / K_{c} is equal to
A. $\sqrt{R T}$
B. RT
C. $\frac{1}{R T}$
D. $1 \cdot 0$

Answer: C

- Watch Video Solution

9. The equilibrium constant K_{p} for the reaction
$H_{2}(g)+I_{2}(g) \Leftrightarrow 2 H I(g)$ changes if:
A. total pressure
B. temperature
C. catalyst
D. amount of H_{2} and I_{2} present

Answer: B

- Watch Video Solution

10. Given : $2 N_{2} O(g) \Leftrightarrow 2 N_{2}(g)+O_{2}(g), K=3 \cdot 5 \times 10^{33}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}), \mathrm{K}=6 \cdot 7 \times 10^{16}$
$2 N O(g) \Leftrightarrow N_{2}(g)+O_{2}(g), K=2 \cdot 2 \times 10^{30}$
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \Leftrightarrow 2 \mathrm{~N}_{2}(g)+5 \mathrm{O}_{2}(g), K+1 \cdot 2 \times 10^{34}$
Which oxide of nitrogen is most stable?
A. $\mathrm{N}_{2} \mathrm{O}$
B. NO_{2}
C. NO
D. $\mathrm{N}_{2} \mathrm{O}_{5}$

Watch Video Solution

11. The equilibrium constant for the reaction
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$
at temperature T is 4×10^{-4}.
The value of K_{c} for the reaction
$N O(g) \Leftrightarrow \frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g)$
at the same temperature is
A. $50 \cdot 0$
B. $0 \cdot 02$
C. $2 \cdot 5 \times 10^{2}$
D. 4×10^{-4}

Answer: A

12. If the equilibrium constant for
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g)$ is K , the equilibrium
constant for $\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow N O(g)$ will be
A. $\frac{1}{2} K$
B. K
C. K^{2}
D. $K^{1 / 2}$

Answer: D

- Watch Video Solution

13. Consider the following gaseous equilibria with equilibrium constant $K_{1} \operatorname{and} K_{2}$ respectively.
$\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}), 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The equilibrium constant are related as :
A. $K_{1}^{2}=\frac{1}{K_{2}}$
B. $2 k_{1}=K_{2}^{2}$
C. $K_{2}=\frac{2}{K_{1}^{2}}$
D. $K_{2}^{2}=\frac{1}{K_{1}}$

Answer: A

- Watch Video Solution

14. The following equilibria are given by :
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, \mathrm{~K}_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of $\mathrm{K}_{1}, \mathrm{~K}_{2}$ and K_{3} is
A. $K_{1} K_{3}^{3} / k_{2}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3} / K_{1}$
D. $K_{2}^{3} K_{3} / K_{1}$

Answer: B

- Watch Video Solution

15. For the chemical equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
$\Delta_{r} H^{\ominus}$ can be determined from which one of the following plots?

A.
(a) $1 / T$
B.

c. (c) $\log _{10} T$
D.

Answer: A

- Watch Video Solution

16. A schematic plot of $\operatorname{In} K_{e q}$ versus inverse of temperature for a reaction is shown below :

The reaction must be
A. exothermic
B. endothermic
C. one with negliable enthalpy change
D. highly spontaneous at ordianary temperature

Answer: A

17. The variation of equilibrium constant (K) with temperature (T) was stupied by plotting $\log \mathrm{K}$ versus $1 / \mathrm{T}$ The plot obtained is shown iin the Fig . Hence, enthalpy change $\left(\Delta H^{\circ}\right)$ of the reaction is

A. +2 cal
B. -2 cal
C. +4.606 cal
D. -4.606 cal

Answer: D

D Watch Video Solution

18. In the preparation of CaO from CaCO_{3} using the equilibrium,
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
K_{p} is expressed as
$\log K_{p}=7.282-\frac{8500}{T}$
For complete decomposition of CaCO_{3}, the temperature in celsius to be used is:
A. 1167
B. 894
C. 8500
D. 850

Answer: B

19. For a given exothermic reaction, K_{p} and k_{p}^{\prime} are the equilibrium constants at temperatures T_{1} and T_{2} respectively. Assuming that heat of reaction is constant in temperature range between T_{1} and T_{2}, it is readily observed that
A. $K_{p}>K_{p}{ }^{\prime}$
B. $K_{p}<K_{p}^{\prime}$
C. $K_{p}=K_{p}^{\prime}$
D. $K_{p}=\frac{1}{K_{p}^{\prime}}$

Answer: A

- Watch Video Solution

20. If the value of equilibrium constant for a particular reaction is
1.6×10^{12}, then art equilibrium the system will contain
A. mostly products
B. similar amounts of reactants and products
C. all reactants
D. mostly reactants

Answer: A

- Watch Video Solution

21. An aqueous solution contains $0.10 \mathrm{M}_{2} S$ and 0.20 M HCl . If the equilibrium constants for the formation of HS from HS is 1.0×10^{-7} and that of S^{2-} ? from $H S^{-}$ions is 1.2×10^{-7} then the concentration of S^{2-} ions in aqueous solution is
A. 5×10^{-8}
B. 3×10^{-20}
C. 6×10^{-21}
D. 5×10^{-19}

- Watch Video Solution

22. The following equilibrium constants are given :
$\mathrm{N}_{2}+3 \mathrm{H}_{3} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant for the oxidation of NH_{3} by oxygen to give NO is :
A. $K_{1} K_{2} / K_{3}$
B. $K_{2} K_{3}^{3} / K_{1}$
C. $K_{2} K_{3}^{2} / K_{1}$
D. $K_{2}^{2} K_{3} / K_{1}$

Answer: B

23. The dissociation constants for acetic acid and HCN at $25^{\circ} \mathrm{C}$ are 1.5×10^{-5} and 4.5×10^{-10}, respectively. The equilibrium constant for the equilibirum $\mathrm{CN}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \Leftrightarrow \mathrm{HCN}+\mathrm{CH}_{3} \mathrm{COO}^{-}$would be
A. 3.0×10^{-5}
B. 3.0×10^{-4}
C. 3.0×10^{4}
D. 3.0×10^{5}

Answer: C

- Watch Video Solution

24. Consider the following reactions in which all the reactants and the products are in gasous state
$2 P Q \Leftrightarrow P_{2}+Q_{2}, K_{1}=2.5 \times 10^{5}$
$P Q+\frac{1}{2} R_{2} \Leftrightarrow P Q R, K_{2}=5 \times 10^{-3}$

The value of K_{3} for the equilibrium
$1 / 2 P_{2}+1 / 2 Q_{2}+1 / 2 R_{2} \Leftrightarrow P Q R$, is
A. 2.5×10^{-3}
B. 2.5×10^{3}
C. 1.0×10^{-5}
D. 5×10^{3}

Answer: C

- Watch Video Solution

25. Partial pressure of O_{2} in the reaction
$1 / 2 P_{2}+1 / 2 Q_{2}+1 / 2 R_{2} \Leftrightarrow P Q R$,
A. K_{p}
B. $\sqrt{K_{p}}$
C. $\sqrt[3]{K_{p}}$
D. $2 K_{p}$

Answer: A

- View Text Solution

26. Mercurous chloride , $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$, in a saturated solution has the equilibrium called solubility equilibrium . The equilibrium constant for this solubility equilibrium will be
A. $\left[\mathrm{Hg}^{+}\right]\left[\mathrm{Cl}^{-}\right]$
B. $\left[\mathrm{Hg}^{+}\right]^{2}\left[\mathrm{Cl}^{-}\right]^{2}$
c. $\left[\mathrm{Hg}_{2}^{2} .^{+}\right]\left[\mathrm{Cl}^{-}\right]^{2}$
D. $2\left[\mathrm{Hg}^{+}\right] \times 2\left[\mathrm{Cl}^{-}\right]$

Answer: C

- Watch Video Solution

27. In a reaction $A+2 B \Leftrightarrow 2 C, 2.0$ moles of ' A ' 3 moles of ' B ' and 2.0 moles of ' C ' are placed in a 2.0 L flask and the equilibrium concentration of ' C ' is $0.5 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant (K) for the reaction is
A. 0.073
B. 0.147
C. 0.05
D. 0.026

Answer: C

- Watch Video Solution

28. 500 ml vessel contains 1.5 M each of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D at equlibrium. If 0.5 M each of C and D are taken out, the value of K_{c} for $A+B \Leftrightarrow C+D$ will be
A. 1.0
B. $1 / 9$
C. $4 / 9$
D. $8 / 9$

Answer: A

- Watch Video Solution

29. When two reactants, A and B are mixed to give products C and D, the reaction quotient Q, at the initial stages of the reaction.
A. is zero
B. decreases with time
C. is independent of time
D. increases with time.

Answer: D

30. 9.2 grams of $N_{2} O_{4(g)}$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$. At equilibrium, $50 \% N_{2} O_{4(g)}$ is dissociated. What is the equilibrium constant (in mol litre ${ }^{-1}$) (Molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$)?
A. 0.1
B. 0.2
C. 0.4
D. 2

Answer: B

- Watch Video Solution

31. Calculate the partial pressure of carbon monoxide from the following data :
$\mathrm{CaCO}_{3} \stackrel{\Delta}{\Longleftrightarrow} \mathrm{CaO}(s)+\mathrm{CO}_{2} \uparrow, \mathrm{~K}(p)=8 \times 10^{-2}$
$\mathrm{CO}_{2}(g)+C(s) \Leftrightarrow 2 \mathrm{CO}(g), K_{p}=2$
A. $0 \cdot 2$
B. $0 \cdot 4$
C. $1 \cdot 6$
D. 4

Answer: B

- Watch Video Solution

32. The equilibrium:
$P_{4}(g)+6 C l_{2}(g) \Leftrightarrow 4 P C l_{3}(g)$
is attained by mixing equal moles of P_{4} and $C l_{2}$ in an evacuated vessel.
Then at equilibrium:
A. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{PCl}_{3}\right]$
B. $\left[\mathrm{Cl}_{2}\right]>\left[\mathrm{P}_{4}\right]$
C. $\left[P_{4}\right]>\left[C l_{2}\right]$
D. $\left[P C l_{3}\right]<\left[P_{4}\right]$

Answer: C

- Watch Video Solution

33. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm pressure.Ammonium hydrogen sulphide decomposes to yield NH_{3} and $H_{2} S$ gases in the flask.When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm ? The equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature is :
A. 0.30
B. $0 \cdot 18$
C. $0 \cdot 17$
D. $0 \cdot 11$

Answer: D

34. $A+B \Leftrightarrow C+D$. If finally the concentrations of A an d B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
A. $4 / 9$
B. $0 \cdot 18$
C. $0 \cdot 17$
D. $0 \cdot 11$

Answer: D

- Watch Video Solution

35. The equilibrium constant at $298 K$ for a reaction, $A+B \Leftrightarrow C+D$ is 100. If the initial concentrations of all the four species were 1 M each, then equilibirum concentration of D (in mol L^{-1}) will be

$$
\text { A. } 0 \cdot 182
$$

B. $0 \cdot 818$
C. $1 \cdot 818$
D. $1 \cdot 182$

Answer: C

- Watch Video Solution

36. $\mathrm{NH}_{4} \mathrm{COONH}_{2}(s) \Leftrightarrow 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g)$ If equilibrium pressure is 3 atm for the above reaction, then K_{p} for the reaction is
A. 4
B. 27
C. $4 / 27$
D. $1 / 27$

Answer: A

37. The equilibrium pressure for the reaction $\mathrm{MSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(s) \Leftrightarrow \mathrm{MSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(g)$ is $\pi / 4 \mathrm{~atm}$ at 400 K . The K_{p} is
A. $\pi^{2} / 4$
B. $\pi / 6$
C. $\pi^{2} / 16$
D. $\frac{\pi}{16}$

Answer: C

- Watch Video Solution

38. For the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \Leftrightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, if the initial concentration of $\left[\mathrm{H}_{2}\right]=\left[\mathrm{CO}_{2}\right]$ and x moles /litres of hydrogen is consummed at equilibrium, the correct expression of K_{p} is :
A. $\frac{x^{2}}{(1-x)^{2}}$
B. $\frac{(1+x)^{2}}{(1-x)^{2}}$
C. $\frac{x^{2}}{(2+x)^{2}}$
D. $\frac{x^{2}}{(1-x)^{2}}$

Answer: A

- Watch Video Solution

39. A mixture of nitrogen and hydrogen in the ratio of $1: 3$ reach equilibrium with ammonia, when 50% of the mixture has reacted. If the total pressure is P, the partial pressure of ammonia in the equilibrium mixture was:
A. $P / 2$
B. $P / 3$
C. $P / 4$
D. $P / 6$

- Watch Video Solution

40. For the reaction, $H_{2}+I_{2} \Leftrightarrow 2 H I, K=47.6$. If the initial number of moles of each reactant and product is 1 mole then at equilibrium
A. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]>[H I]$
B. $\left[I_{2}\right]<\left[H_{2}\right],\left[I_{2}\right]=[H I]$
C. $\left[I_{2}\right]=\left[H_{2}\right],\left[I_{2}\right]<[H I]$
D. $\left[I_{2}\right]>\left[H_{2}\right],\left[I_{2}\right]=[H I]$

Answer: C

- Watch Video Solution

41. The equilibrium constant $\left(K_{p}\right)$ for the decomposition of gaseous

$$
H_{2} O(g) \Leftrightarrow H_{2}(g)+\frac{1}{2} O_{2}(g)
$$

is related to the degree of dissociation α at a total pressure P by
A. $K_{p}=\frac{\alpha^{3} p^{1 / 2}}{(1+\alpha)(2+\alpha)^{1 / 2}}$
B. $K_{p}=\frac{\alpha^{3} p^{3 / 2}}{(1-\alpha)(2+\alpha)}$
C. $K_{p}=\frac{\alpha^{3 / 2} p^{2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$
D. $K_{p}=\frac{\alpha^{3 / 2} p^{1 / 2}}{(1-\alpha)(2+\alpha)^{1 / 2}}$

Answer: D

- Watch Video Solution

42. a' moles of PCl_{5} are heated in a closed container to equilibrate $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$ at a pressure of p atm. If x moles of $P C l_{5}$ dissociate at equilibrium , then
A. $\frac{x}{a}=\left(\frac{K_{p}}{p}\right)^{1 / 2}$
B. $\frac{x}{a}=\frac{K_{p}}{K_{p}+p}$
C. $\frac{x}{a}=\left(\frac{K_{p}}{K_{p}+p}\right)^{1 / 2}$
D. $\frac{x}{a}=\left(\frac{K_{p}+p}{K_{p}}\right)^{1 / 2}$

Answer: C

D Watch Video Solution

43. If the concentration of OH^{-}ions in the reaction
$F e(O H)_{3}(s) \Leftrightarrow F e^{3+}(a q)+.3 O H^{-}(a q$.
is decreased by $1 / 4$ times, then the equilibrium concentration of $F e^{3+}$ will increase by
A. 8 times
B. 16 times
C. 64 times
D. 4 times

Answer: C

44. The dissociation equilibrium of a gas $A B_{2}$ can be represented as, $2 A B_{2}(g) \Leftrightarrow 2 A B(g)+B_{2}(g)$. The degree of disssociation is 'x' and is small compared to 1 . The expression relating the degree of dissociation (x) with equilibrium constant k_{p} and total pressure P is
A. $\left(2 K_{p} / P\right)$
B. $\left(2 K_{p} / P\right)^{1 / 3}$
C. $\left(2 K_{p} / P\right)^{1 / 2}$
D. $\left(K_{p} / P\right)$

Answer: B

- Watch Video Solution

45. Equimolar concentrations of H_{2} and I_{2} are heated to equilibrium in a 2 L flask. At equilibrium, the forward and backward rate constants are
found to be equal. What percentage of initial concentration of H_{2} has reached at equilibrium ?
A. 33%
B. 66%
C. 50%
D. 40%

Answer: C

- Watch Video Solution

46. 5 moles of SO_{2} and 5 moles of O_{2} are allowed to react .At equilibrium, it was foumnd that 60% of SO_{2} is used up .If the pressure of the equilibrium mixture is one aatmosphere, the parital pressure of O_{2} is :
A. $0 \cdot 52 \mathrm{~atm}$
B. $0 \cdot 21 \mathrm{~atm}$
C. $0 \cdot 41$ atm
D. $0 \cdot 82 \mathrm{~atm}$

Answer: C

- Watch Video Solution

47. Consider thr reaction where $K_{p}=0.497$ at 500 K
$P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
If the htree gasses are mixed in a right container so that the partial pressure of each gas in initially 1 atm ,then which is correct observation ?
A. More PCl_{5} will be produced
B. More PCl_{3} will be produced
C. Equilibrium will be established when 50% of the reaction is complete
D. None of the above

Answer: A

48. The reaction,
$2 A(g)+B(g) \Leftrightarrow 3 C(g)+D(g)$
is begun with the concentration of A and B both at an intial value of 1.00
M. When equilibrium is reached, the concentration of D is measured and found to be 0.25 M . The value for the equilibrium constant for this reaction is given by the expression:
A. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(1.00)^{2}(1.00)\right]$
B. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 50)^{2}(0 \cdot 75)\right]$
c. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 50)^{2}(0 \cdot 75)\right]$
D. $\left[(0 \cdot 75)^{3}(0 \cdot 25)\right] \div\left[(0 \cdot 75)^{2}(0 \cdot 25)\right]$

Answer: B

- Watch Video Solution

49. For the reaction, $A B(g) \Leftrightarrow A(g)+B(g), A B$ is 33% dissociated at a total pressure of ' p ' Therefore, ' p ' is related to K_{p} by one of the following options
A. $P=K_{p}$
B. $P=3 K_{p}$
C. $P=4 K_{p}$
D. $P=8 K_{p}$

Answer: D

- Watch Video Solution

50. A vessel at 1000 K contains CO_{2} with a pressure of 0.5 atm . Some of the CO_{2} is converted to CO on addition of graphite. Calculate the value of K, if the total pressure at equilibrium is 0.8 atm.
A. 3 atm
B. $0 \cdot 3 \mathrm{~atm}$
C. $0 \cdot 18 \mathrm{~atm}$
D. 1.8 atm

Answer: D

- Watch Video Solution

51. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g), k_{p}=63$ atm at 100 K . If at equilibrium $p_{C O}=10 p_{\mathrm{CO}_{2}}$ then the total pressure of the gases at equilibrium is
A. $6 \cdot 3 \mathrm{~atm}$
B. $6 \cdot 93 \mathrm{~atm}$
C. $0 \cdot 63 \mathrm{~atm}$
D. $0 \cdot 693 \mathrm{~atm}$

Answer: B

52. In the reaction $A B(g) \Leftrightarrow A(g)+B(g)$ at $30^{\circ} C, k_{p}$ for the dissociation equilibrium is $2.56 \times 10^{-2} \mathrm{~atm}$. If the total pressure at equilibrium is 1 atm , then the percentage dissociation of $A B$ is
A. 0.87
B. 0.13
C. $43 \cdot 5 \%$
D. 0.06

Answer:

- Watch Video Solution

53. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of slid SrO). The volume of the container is now decreased by moving the movable piston fitted in the
container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be
[Given that : $\mathrm{SrCO}_{3}(s) \Leftrightarrow \mathrm{SrO}(s)+\mathrm{CO}_{2}(g), \mathrm{Kp}=1.6 \mathrm{~atm}$]
A. 5 litre
B. 10 litre
C. 4 litre
D. 2 litre

Answer: A

D Watch Video Solution

54. Which of the following statement is correct for a reversible process in a state of equilibrium ?
A. $\Delta G^{\circ}=-2 \cdot 30 R T \log K$
B. $\Delta G^{\circ}=2 \cdot 30 R T \log K$
C. $\Delta G=-2 \cdot 30 R \log K$
D. $\Delta G=230 R T \log K$

Answer: A

- Watch Video Solution

55. The standard Gibbs energy change at $300 K$ for the reaction $2 A \Leftrightarrow B+C$ is 2494. $2 J$. At a given time, the composition of the reaction mixture is $[A]=\frac{1}{2},[B]=2$ and $[C]=\frac{1}{2}$. The reaction proceeds in the
$(R=8.314 J K /$ mole $=2.718)$
A. Forward direction because $Q>K_{c}$
B. Reverse direction because $Q>K_{c}$
C. Forward direction because $Q<K_{c}$
D. Reverse direction because $Q<K_{c}$

Answer: B

56. Choose the equilibrium that is not influenced by pressure
A. $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
B. $\mathrm{CO}_{2}(g)+3 \mathrm{H}_{2}(g) \Leftrightarrow \mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
C. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
D. $2 H I(g) \Leftrightarrow H_{2}(g)+I_{2}(g)$

Answer: D

D Watch Video Solution

57. The reaction , $\mathrm{SO}_{2}+\mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}$ is exothermic and reversible . A mixture of $\mathrm{SO}_{2}(\mathrm{~g}), \mathrm{Cl}_{2} \Leftrightarrow \mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is at equilibrium in a closed container. Now a certain quantity of extra SO_{2} is introduced into the container, the volume remaining the same. Which of the following is / are/ true?
A. The pressure inside the container will not change
B. The temperature will not change
C. The temperature will increases
D. The temperature will decrease.

Answer: C

- Watch Video Solution

58. Consider the following equilibrium in a closed container
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements hold true regarding the equilibrium constant (K_{p}) and degree of dissociation (α) ?
A. neither K_{p} nor α changes
B. both K_{p} and α change
C. K_{p} changes but α does not change
D. K_{p} does not change but α changes

Answer: D

- Watch Video Solution

59. Given reaction is $2 X_{(\text {gas })}+Y_{(\text {gas })} \Leftrightarrow 2 Z_{(\text {gas })}+80 \mathrm{Kcal}$

Which combination of pressure and temperature gives the highest yield of Z at equilibrium ?
A. 1000 atm and $200^{\circ} \mathrm{C}$
B. 500 atm and $500^{\circ} \mathrm{C}$
C. 500 atm and $200^{\circ} \mathrm{C}$
D. 500 atm and 100°

Answer: A

- Watch Video Solution

60. The following two reactions:
i. $P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)$
(ii) $\mathrm{COCl}_{2}(g) \Leftrightarrow C O(g)+C l_{2}(g)$
are simultaneously in equilibrium in a container at constant volume. A few moles of $C O(g)$ are later introduced into the vessel. After some time, the new equilibrium concentration of
A. $P C l_{5}$ will increases
B. $P C l_{5}$ will remain unaffected
C. $C l_{2}$ will increases
D. $P C l_{5}$ will decreases

Answer: B

- Watch Video Solution

61. At equilibrium of the reaction
$2 X(g)+Y(g) \Leftrightarrow X_{2} Y(g)$
the number of moles of $X_{2} Y$ at equilibrium is affected by the
A. temperature and pressure
B. temperature only
C. pressure only
D. temperature , pressure and catalyst used

Answer: A

- Watch Video Solution

62. To an equilibrium mixture of
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
some helium , an inert gas, is added at constant volume. The addition of helium causes the total pressure to double. Which of the following is true ?
A. The concentration of the three gases is unchanged
B. The concentration of sulphur trioxide increases
C. The number of moles of sulphur trioxide increases
D. The concentration of sulphur dioxide increases

Answer: A

- Watch Video Solution

63. The equilibrium of the reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$ will be shifted to the right when:
A. by increasing the concentration of NH_{3}
B. by decreasing the pressure
C. by decreasing the pressure
D. by decreasing the concentration of $N_{2}(g)$ and $H_{2}(\mathrm{~g})$

Answer: D

- Watch Video Solution

64. The \% yield of ammonia as a function as a function of time in the reaction

$$
N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g), \Delta H<0 \text { at }\left(P, T_{1}\right) \text { is given below }
$$

If this reaction is cnducted at $\left(P, T_{2}\right)$ with $\left.T_{2}>T_{1}\right)$ the \% yield of ammonia as a function of time is
(a)

A.
B.

C.
D.

Answer: B

D View Text Solution

65. In which one of the following the increase of presure favours the backward reaction?
A. Formation of equilibrium ammonia from $N_{2}(g)$ and $H_{2}(g)$
B. Decomposition equilibrium of $\mathrm{HI}(\mathrm{g})$ to $H_{2}(g)$ and $I_{2}(g)$
C. Synthesis of $\mathrm{SO}_{3}(\mathrm{~g})$ by contact process
D. Production of 'syngas' by coal gasification

Answer: D

D View Text Solution

66. Consider the reaction equilibrium
$\underset{\text { (Greater volume) }}{\text { Ice }} \Leftrightarrow \underset{\text { (Lesser volume) }}{\text { Water }}-2 \mathrm{kcal}$
The favourable conditions for forward reaction are
A. low temperature , high pressure and excess of ice
B. low temperature ,low pressure and excess of ice
C. high temperature , low pressure and excess
D. high temperature, high pressure and excess of ice

Answer: D

- Watch Video Solution

67. Which one of the following condition will favour maximum formation of the product in the reaction. $A_{2}(g)+B_{2}(g) \Leftrightarrow X_{2}(g) \Delta_{r} H=-X \mathrm{~kJ}$?
A. Low temperature and high pressure
B. Low temperature and low pressure
C. High temperature and high pressure
D. High temperature and low pressure

Answer: A

- Watch Video Solution

68. A mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ has a vapor density of 38.3 at 300 K . What is the number of moles of NO_{2} in 100 g of themixture ?

$$
\text { A. } 0 \cdot 043
$$

B. $4 \cdot 4$
C. $3 \cdot 4$
D. $0 \cdot 437$

Answer: D

- Watch Video Solution

69. Ammonium carbamate when heated to $200^{\circ} \mathrm{C}$ gives a mixture of NH_{3} and CO_{2} vapours with a density of $16 \cdot 0$. What is the degree of disociation of ammonium carbamate?
A. $3 / 2$
B. $1 / 2$
C. 2
D. 1

Answer: D

70. The vapour density of fully dissociated $\mathrm{NH}_{4} \mathrm{Cl}$ would be
A. double than that of $\mathrm{NH}_{4} \mathrm{Cl}$
B. half than that of $\mathrm{NH}_{4} \mathrm{Cl}$
C. same as that of $\mathrm{NH}_{4} \mathrm{Cl}$
D. determined by the amount of solid $\mathrm{NH}_{4} \mathrm{Cl}$ taken

Answer: B

- Watch Video Solution

71. $\mathrm{N}_{2} \mathrm{O}_{4}$ is 10% dissociated at a total pressure P_{1} and 20% dissociated at a total pressure P_{2}. Thenratio' $\frac{P_{1}}{P_{2}}$ is
A. $\frac{1}{2}$
B. $\frac{2}{1}$
C. $\frac{1}{4}$
D. $\frac{4}{1}$

Answer: D

- Watch Video Solution

72. At equilibrium of the reaction,
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
the observed molecular weight of $\left.N_{92}\right) O_{4}$ is $80 \mathrm{~g} \mathrm{~mol}^{-1}$ at 350 K . The percentage dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ at 350 K is
A. 0.1
B. 0.15
C. 0.2
D. 0.18

Answer: B

73. The values of $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions
$X \Leftrightarrow Y+Z \ldots$....(i)
and $A \Leftrightarrow 2 B$...(ii)
are in ratio of $9: 1$. If degree of dissociation of X and A be equal, then total presure at equilibrium (i) and (ii) are in the ratio.
A. 3:1
B. 1: 9
C. $36: 1$
D. 1:1

Answer: C

- Watch Video Solution

74. 3 moles of A and 4 moles of B are mixed together and allowed to come into equilibrium according to the following reaction
$A(g)+4 B(g) \Leftrightarrow 2 C(g)+3 D(g)$

When equilirium is reached, there is 1 mole of C. The equilibrium extent of the reaction is
A. $1 / 4$
B. $1 / 3$
C. $1 / 2$
D. 1

Answer: C

- Watch Video Solution

75. Which of the following lines correctly show the temperature dependence of equilibrium constant K , for an exothermic reaction ?

A. A and B
B. B and C
C. C and D
D. A and D

Answer: A

1. Which of the following are reversible reactions ?
A. $\mathrm{AgNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow$
$\mathrm{AgCl}(s)+\mathrm{NaNO}_{3}(a q)$
B. $\mathrm{KNO}_{3}(a q)+\mathrm{NaCl}(a q) \rightarrow$
$\mathrm{KCl}(a q)+\mathrm{NaNO}_{3}$
C. $\mathrm{BaCl}_{2}(a q)+\mathrm{Na}_{2} \mathrm{SO}_{4} \rightarrow$
$\mathrm{BaSO}_{4}(s)+2 \mathrm{NaCl}(a q)$
D. $A g C l(s)+W a t e r \rightarrow A g^{+}(a q)+C l^{-}(a q)$

Answer: B::D

- View Text Solution

2. Which of the following statement are wrong ?
A. Equilibrium constant of a reaction is doubled if the equilibrium concentration of the products become double
B. If a reaction mixture is compressed to half the volume, equilibrium constant is halved
C. Equilibrium , constant increases of tempertature
D. Equilibrium concentrations increase in the presence of a catalyst .

Answer: A::B::C::D

- View Text Solution

3. The equilibrium
$S O_{2} C I_{2}(g) \Leftrightarrow S O_{2}(g)+C I_{2}(g)$
is attained at $25^{\circ} \mathrm{C}$ in a closed container and inert gas helium is introduced. Which of the following statement (s) is / are correct ?
(1).concentrations of $\mathrm{SO}_{2}, \mathrm{CI}_{2}$ and $\mathrm{SO}_{2} \mathrm{CI}_{2}$ change
(2). More chlorine is formed
(3).Concentration of SO_{2} is reduced
(4).More $\mathrm{SO}_{2} \mathrm{CI}_{2}$ is formed
A. Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ change
B. More chlorine is formed
C. Concentration of SO_{2} is reduced
D. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed

Answer:

- Watch Video Solution

4. For the reaction,
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the forward reaction at constant temperature is favoured by:
A. introducing an inert gas at constant volume
B. introducing $P C l_{5}$ at constant volume.
C. introducing an inert gas at constant pressure
D. increasing the volume of the container

Answer: B::C::D

- Watch Video Solution

5. The equilibrium: $2 C u^{1} \Leftrightarrow C u^{0}+C u^{u}$ in aqueous medium at $25^{\circ} C$ shifts towards the left in the presence of
A. NO^{-}
B. Cl^{-}
C. $S C N^{-}$
D. $C N^{-}$

Answer: B::C::D

- Watch Video Solution

6. The thermal dissociation of equilibrium of $\mathrm{CaCo}_{3}(s)$ is studied under different conditions
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
For this equilibrium, the correct statement (s) is/are
A. ΔH is dependent on T
B. K is independent of the itial amount of CaCO_{3}
C. K is indepdent of the pressure of CO_{2} at a given T
D. ΔH is independent of the catalyst , ifany

Answer: A::B::D

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance lii Multiple Choice Questions Based On The Given Passage Comprehension

1. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant K . The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, ΔH°, is taken as constant in the small temperature range.

The equilibrium constant for the reaction between $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ to formCS $\mathrm{S}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$, at 1173 K is $3 \cdot 6$. For the following composition of the reaction mixture, decide which of the following option is correct ?

- View Text Solution

2. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant K . The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, ΔH°, is taken as constant in the small temperature range.

The reaction $N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}$ is in equilibrium . Now the reaction mixture is compressed to half the volume
A. More of ammonia will be formed
B. Ammonia will dissociate back into N_{2} and H_{2}
C. There will be no effect on equilibrium
D. Equilibrium constant of the reaction will change

Answer: A

- View Text Solution

3. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant K . The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium. It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, ΔH°, is taken as constant in the small temperature range.

For the above reaction in equilibrium, helium gas was added but the mixture was allowed to expand to keep the pressure constant. Then
A. More of ammonia will be formed
B. Ammonia will dissociate back into N_{2} and H_{2}
C. There will be no effect on equilibrium
D. Equilibrium constant of the reaction will change

Answer: B

- View Text Solution

4. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q, is similar to that for equilibrium constant K. The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d In $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, ΔH°, is taken as
constant in the small temperature range.
Which of the following will be correct ?
A. Plot of $\ln k_{p}$ versus $1 / T^{2}$ will be linear with + ve slope
B. Plot of In K_{p} verus1 $/ T$ will be linear with + vve slope
C. Plot of $\ln K_{p}$ versus $1 / T^{2}$ will be linear with -ve slope
D. Plot of $\operatorname{In} K_{p}$ versus $1 / T$ will be linear with -ve slope

Answer: D

- View Text Solution

5. The expression for the reaction quotient, Q , is similar to that for equilibrim constant, Q , is similar to that for equilibrium constant K . The value of Q for the given composition of a reaction mixture helps us to know whether the reaction will move forward or backward or remain in equilibrium . It also helps to predict the effect of pressure on the direction of the gaseous reaction .In certain reactions, addition of inert gas also favours either the formation of reactants or products. The value
of equilibrium constant of a reaction changes with change of temperature and the change is given by van't Hoff equation, d in $K_{p} / d T=\Delta H^{\circ} / R T^{2}$ where enthaply change, ΔH°, is taken as constant in the small temperature range.

In which of the following case, equilibrium constant decreases with increase of temperature ?
A. When the reaction is exothermic
B. When the reaction is endothermic
C. When the reaction is in the gaseous phase
D. When the reaction takes place in the solution.

Answer: A

- View Text Solution

6. Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes place according to the equation :
$X_{2}(g) \Leftrightarrow 2 X(g)$ The standard reaction Gibbs energy, $\Delta_{r} G^{\circ}$ of this
reaction is positive. At the start of the reaction, there is positive . At the start of the reaction, there is one mole of X_{2} and no. As the reaction proceeds , the number of moles of X formed is given by β. Thus $\beta_{\text {equilbrium }}$ is the number of moles of X formed at equilibrium . The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
(Given : R = 0 $\cdot 0833 \mathrm{~L}$ bar $K^{-1} \mathrm{~mol}^{-1}$).

The equilibrium constant K_{p} for this reaction at 298 K , in terms of
$\beta_{\text {equilibrium }}$, is
A. $\frac{8 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
B. $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
C. $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
D. $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$

Answer: B

7. Thermal decomposition of gaseous X_{2} to gaseous X at $298 K$ takes place according to the following equation:
$X(g) \Leftrightarrow 2 X(g)$
The standard reaction Gibbs energy $\Delta_{r} G^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus
$\beta_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
[Given, $R=0.083 L$ bar $K^{-1} \mathrm{~mol}^{-1}$)
The incorrect statement among the following for this reaction, is
A. Decrease in the total pressure will result in formation of more moles of gaseous X
B. At the start of the reaction, dissociation of gaseous X_{2} takes place spontaneously
C. β.equilibrium $=0 \cdot 7$
D. $K_{c}<1$

Answer: C

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Vi Integer Type Questions

1. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4,0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side :

If concentrations of SO_{2} and O_{2} in the equilibrium reaction , $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$ are quadrupled, the concentration of $S O_{3}$ now will be times times.

- Watch Video Solution

2. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4,0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side :
Equilibrium constant for the reaction $A_{3}(g)+3 B_{2}(g) \Leftrightarrow 3 A B_{2}(g)$ is $64 \cdot 0$ Then the equilibrium constant for t will be

- Watch Video Solution

3. The answer to each of the folowing questions is a single digit integar, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are $4,0,9$ and 2 respectively, then the correct darkening of bubbles should be as shown on the side :

For the reaction involving oxidation of ammonia by oxygen to form nitric oxide and water vapour, the equilibrium constant has the units (bar) ${ }^{n}$. Then n is

Competition Focus Jee Main And Advanced Medical Entrance Vii Numerical Value Type Questions

1. The approach to the following equilibrium was observed kinetically from both directions :
$\mathrm{PtCl}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O} ?\left[\mathrm{Pt}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}^{-}\right]+\mathrm{Cl}^{-}$at $25^{\circ} \mathrm{C}$, it was found that $-\frac{\Delta}{\Delta t}\left[\right.$ PtCl $\left._{4}^{2-}\right]=\left[3.9 \times 10^{-5} \mathrm{sec}^{-1}\right]\left[\mathrm{PtCl}_{4}^{2-}\right]-\left[\begin{array}{ll}2.1 \times 10^{-3} & \mathrm{~L} . \mathrm{mol}^{-1}\end{array}\right.$ What is the value of equilibrium constant for the complexation of the fourth Cl^{-}by $\mathrm{Pt}(\mathrm{II})$?

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Viii Assertion Reason Type Questions Type I

1. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), (c) and (d) out of which

ONLY ONE is correct. Choose the correct option as under :
Statement -1 Adding inert gas to dissociation equilibrium of $\mathrm{N}_{2} \mathrm{O}_{4}$ at constant pressure and temperature increases the dissociation .

Statement -2. Molar concentrations of the reactants and products decrease.
A. (a) Statement -1 is True, Statement -2 is true, Statement -2 is the correct explanation of Statement -1
B. (b) Statement -1 is True , Statement -2 is not a correct expanation of Statement -1 .
C. (c) Statement -1 is True, Statement -2 is False .
D. (d) Statement -1 is False , Statement -2 is True .

Answer: A

- Watch Video Solution

2. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), (c) and (d) out of which ONLY ONE is correct . Choose the correct option as under :

Statement -1 K_{p} is always greater than K_{c}
Statement -2. The reactions in the gaseous phase are usually faster than the reactions in the liquid phase.

- Watch Video Solution

3. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), (c) and (d) out of which ONLY ONE is correct. Choose the correct option as under :

Statement -1. Reaction quotiet of a reaction at any time decides the direction in which the reaction will proceed.

Statement -2. The value of reaction quotient cannot be greater than the equilibrium constant .
4. Each question given below contains STATEMENT -1 (Assertion) and STATEMENT -2 (Reason). It has four choice (a), (b), (c) and (d) out of which ONLY ONE is correct . Choose the correct option as under :

Statement -1. Equilibrium constant of an endothermic reaction increases with increase of temperature .

Statement -2 . With increase in temperature, an endothermic reaction is favoured more in the forward direction.

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Viii Assertion Reason Type Questions Type li

1. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. The vapour pressure of a pure liquid has a fixed value at a
particular temperature .

Reason. When equilibrium is reached, no more vapour are formed.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: C

- Watch Video Solution

2. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. A reversible reaction cannot be carried out in an open vessel.

Reason. When equilibrium is reached, no more vapour are formed.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: D

- Watch Video Solution

3. Assertion (A) : For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 \mathrm{NH}_{3}(g)$
unit of $K_{c}=L^{2} \mathrm{~mol}^{-2}$

Reason (R) : For the reaction
$N_{2}(g)+3 H_{2}(g) \Leftrightarrow 2 N H_{3}(g)$
equilibrium constant $K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right] \times\left[\mathrm{H}_{2}\right]^{3}}$
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: A

- Watch Video Solution

4. Assertion (A) : The equilibrium constant is fixed and characteristic for any given chemical reaction at a specified temperature.

Reason (R) : The composition of the final equilibrium mixture at a particular temperature depends upon the starting amount of reactants.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: A

D Watch Video Solution

5. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion . The equilibrium constant of a reaction increases if temperature is increased.

Reason . The forward reaction becomes faster with increase of temperature .
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: D

- Watch Video Solution

6. Assertion (A) : The active mass of pure solid and pure liquid is taken unity.

Reason (R) : The active mass of pure solids and liquids depends on the density and molecular mass. The density and molecular of a mass of pure liquids and solids are constant.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: A

- Watch Video Solution

7. In each of the following questions, a statement of Assertion is given followed by a corresponding statement of Reason just below it. Of the statements, mark the correct answer as

Assertion. If standard free energy change of a reaction is zero, this implies that equilibrium constant of the reaction is unity.

Reason. For a reaction in equilibrium, equilibrium constant is always unity.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: C

- Watch Video Solution

8. Assertion (A) : When a catalyst is added to a reaction mixture in equilibrium the amount of the products increases.

Reason (R) : The forward reaction becomes faster on adding the catalyst.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: D

- Watch Video Solution

9. Statement: The reaction: $2 \mathrm{NO}_{(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{NO}_{2}$ is favoured in the forward direction with increase of pressure.

Explanation: The reaction is exothermic.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true but reason is the true explanation of the assertion.
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: B

- Watch Video Solution

10. Assertion (A) : A catalyst does not influences the values of equilibrium constant

Reason (R) : Catalyst influences the rate of both forward and backward reactions equally.
A. If both assertion and reason are true, and reason is the true explanation of the assertion .
B. If both assertion and reason are true but reason is the true explanation of the assertion .
C. If assertion is true, but reason is false.
D. If both assertion and reason are false .

Answer: A

Watch Video Solution

