©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY
 (HINGLISH)

SOLID STATE

Problem

1. Calculate the number of atoms per unit cell present in simple, fcc and bcc unit cells.
2. A compound formed by elements A and B has a cubic structure in which A atoms are at the corner of the cube and B atoms are at the face centres. Derive the fomula of the compound.
3. A cubic solid is made up iof two elements X
and Y. Atoms Y are present at the corners of
the cube and atoms X at the body centre.
What is the formula of the compound ? What are the coordination number of X and Y ?

- Watch Video Solution

4. An ionic compand made up of atoms A and
B has a face- centred cubic arrangement in
which atoms A are at the cornere and atoms B
are at the face- centres. If one of the atoms is missing from the corrner, what is the simplest formula of the compound?

D Watch Video Solution

5. Calculate the number of unit cells in 8.1 g of aluminium if it crystalliz3es in aface cented cubic (f.c.c) structure. (Atomic mass of Al= 27 gmol^{-1})
6. A compound is formed by two elements X
and Y. Atoms of the element Y (as anion)
make ccp and those of element X (as cation)
occupy all the octahedral voids. What is the formula of the compound?

- Watch Video Solution

2. Atoms of elements B from hcp lattice and
those of element A occupy two-thirds of
tetrahedral voids. What is the formula of the compound formed by elements A and B ?

D Watch Video Solution

3. In a crystalline solid anions B are arranged in cubic close packing. Cation A are equally distributed between octahedral and tetrahedral voids. If all the octahedral voids are occupied, the formula for the solid is

D Watch Video Solution

4. In the mineral, spinel, having the formula
$\mathrm{MgAl}_{2} \mathrm{O}_{4}$ oxide ions ar arranged, in the cubic close packing, Mg^{2+} ions occupy the tetrahedrel voids while $A l^{3+}$ ions occupy the octahedral voids.
(i) What precnetage of tetrahedral voids is occupied by Mg^{2+} ions ?
(ii) What precentage of octahedral voids is occupied by $A l^{3+}$ ions ?

- Watch Video Solution

5. What is the percent by mass of titanium in rutile, a mineral that contain Titanium and oxygen, if structure can be described as a closet packed array of oxide ions, with titanium in one half of the octahedral holes.

What is the oxidation number of titanium ?

- Watch Video Solution

6. Calculate the approximate number of unit cells present in 1 g of ideal NaCl crystals.
7. Two ions A^{\oplus} and B^{Θ} have radii 88 and 200 pm, respectively. In the close-packed crystal of compound $A B$, predict coodination number of A^{\oplus}.

- Watch Video Solution

8. Br^{-}ions form a close packed structure. If
the radius of Br^{-}ions is 195 pm , calculate the radius of the cation that just fits into the
tetrahedral hole. Can a cation A^{+}having a radius of 82 pm be shipped into be octahedral hole of the crystal $A^{+} B r^{-}$?

D Watch Video Solution

9. Xenon crystallizes in the face-centred cubic
lattice and the edge of the unit cell is 620 pm .

What is the nearest neighbour distance and what is the redius of xenon atom?
10. $C s C l$ has $b c c$ arrangement and its unit cell edge length is 400 pm . Calculate the interionic distance in CsCl .

- Watch Video Solution

11. Sodium metal crystallises in body centred cubic lattic with the cell edge, $4.29 \AA$. What is the radius of radius of sodium atom ? What is the length of the body dioganl of the unit cell ?
12. In face - centred cubic (fcc) crystal lattice, edge length is 400 pm . Find the diameter of the greatest sphere which can be fitted into the interstital void without distortion of the lattice.

D Watch Video Solution

13. Silver froms ccp lattice and X-ray studies of
its crystals show that the edge length of its
unit cell is 408.6 pm . Calculate the density of silver (atomic mass $=107.9 u$).

D Watch Video Solution

14. Sodium has a bcc structure with nearest neighbour distance of 365.9 pm . Calculate its density. (Atomic mass of sodium $=23$)

D Watch Video Solution

15. Gold (atomic mass $=197 \mathrm{u}$) has atomic radius $=0.144 \mathrm{~nm}$. It crystallises in face centred
unit cell. Calculate the density of gold. (No = $\left.6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)$

D Watch Video Solution

16. Gold has a close-packed structure which
can be viewed as-spheres occupying 0.74 of
the total volume. If the density of gold is 19.3
g / cc, calculate the apparent radius of a gold ion in the solid

D Watch Video Solution

17. $C s C l$ has cubic structure. Its density is
$3.99 \mathrm{gcm}^{-3}$. What is the distance between
$C s^{\oplus}$ and $C l^{\Theta}$ ions?
(Atomic mass of $C s=133$)
18. The density of aluminium is $2700 \mathrm{kgm}^{-3}$,

Aluminium crytallises in face - centred cubic lattic. Calculate the radius of aluminium atom in meters (Atomic mass of Al $=27$)

- Watch Video Solution

19. The edge length of unit cell of a metal
having molecular weight $75 \mathrm{~g} / \mathrm{mol}$ is $5 \AA$ a which
crystallises in cubic lattice. If the density is 2
$\mathrm{g} / \mathrm{c} . \mathrm{c}$. , then the radius of the metal atom in pm is

D Watch Video Solution

20. Calculate the value of Avogadro's number from the following data:

Density of $\mathrm{NaCl}=2.165 \mathrm{gcm}^{-3}$
Distance between $N a^{\oplus}$ and $C l^{\Theta}$ in
$N a C l=281 \mathrm{pm}$
21. The density of $K C l$ is $1.9893 \mathrm{gcm}^{-3}$ and the length of a side unit cell is $6.29082 \AA$ as determined by X - ray diffraction. Calculation the value of Avogadro's number.

D Watch Video Solution

22. X-rays diffraction studies show that copper crystallizes in an fcc unit cell with cell edge of $3.608 \times 10^{-8} \mathrm{~cm}$. In a separte experiment, copper is determined to have a
density of $8.92 \mathrm{gcm}^{3}$. Calculate the atomic mass of copper.

- Watch Video Solution

23. An element crystallizes into a structure which may be describes by a cubic type of unit cell having one atom on each corner of the cube and two atoms on one of its diagonals. If the volume of this unit cell is $24 \times 10^{-24} \mathrm{~cm}^{3}$ and density of element is $7.2 \mathrm{gcm}^{-3}$. Calculate
the number of atoms present in 200 g of element.

D Watch Video Solution

24. Density of Li is $0.53 \mathrm{~g} \mathrm{~cm}^{-3}$. The edge length of Li is $3.5 \AA$. Find the number of Li atoms in a unit cell
$\left(N_{0}=06.023 \times 10^{23}, M=6.94\right)$.

D Watch Video Solution
25. The density of KBr is $2.75 \mathrm{gcm}^{-3}$, The length of edge of the unit cell is 654 pm . Predict, the type of cubic lattice to which unit cell of KBr belongs
$\left(N_{0}=6.023 \times 10^{23} \mathrm{~mol}^{-1}\right.$, At mass : $\mathrm{K}=29$
, $\mathrm{Br}=80$)

D Watch Video Solution

26. The density of copper metal is
$8.95 \mathrm{~g} \mathrm{~cm}^{-3}$. If the redius of copper atom
be 127.8 pm , is the copper unit cell simple cubic, body - centred or face- centred cubic ?
(Given : atomic mass of $\mathrm{Cu}=63.5 \mathrm{~g} / \mathrm{mol}$)

D Watch Video Solution

27. If NaCl is doped with $10^{-3} \mathrm{~mol}$ percent of
$\operatorname{SrCI} I_{2}$, what is the concentration of cation
vacancy?
28. If $A l^{3+}$ replaces $N a^{+}$at the edge centre of NaCl lattice ,then the cation vacancies in 1 mole of NaCl will be

- Watch Video Solution

29. The composition of a sample of Wustite is
$\mathrm{Fe}_{0.93} \mathrm{O}_{1.00}$. What percentage of the iron is present in the form of $\mathrm{Fe}(I I I)$?
30. Why is glass of window panes of very old builidings found to be thicker at the bottom than as the top and why is it milky?

D Watch Video Solution

2. What ar optical fibers ? What are their advatages over ordinary glass like that of window panes?

Problem For Pactice

1. A compound formed by elements X and Y crysstallixzes in the cubic struture where Y atoms are at the corners of the cube and X atoms are at the alterante faces. What is the formula of the compound.?

- Watch Video Solution

2. Calculate the number of atoms in a cubic based unit cell having one atome on each corner and two atoms on each body diagonal.

D Watch Video Solution

3. A compound made up of elements A and B
crystallizes in the cubic structures. Atoms A
are present on the corners as well as face centres whereas atoms B are present on the edge centres centres as well as body centre.

What is the formula of the compound? Draw the structure of its unit cell.

D Watch Video Solution

4. If three elements X, Y and Z crystallize in a cubic solid with X atoms at the corners, Y atoms at the cube centres and Z atoms at the
face of the cube, then write the formula of the compound.
5. Sodium crystallizes in a bcc unit cell.

Calcuate the approximate number of unit cells in 9.2 g of sodium (Atomic mass of $\mathrm{Na}=23$)

D Watch Video Solution

6. Calculate the approximate number of unit cells present in 1 g of gold. Given that gold cyrstallises in a face centred cubic lathce
(Given atomic mass of gold $=197 \mathrm{u}$).

Watch Video Solution

1. A bcc lattic is made up of hollow spheres of X. spheres of soldid ' Y ,' are present in hollow spheres of X. The radius of ' Y ' is half of the radius of ' X ' . Calculate the ratio of the total volume of spherees of ' X ' unoccupied by Y in a unit cell and volume of the unit cell ?

- Watch Video Solution

2. A metal crystallizes into two cubic phases, face-centred cubic and body-centred cubic, which have unit cell lengths 3.5 and $3.0 A$, respectively. Calculate the ration of densities of fcc and bcc.

- Watch Video Solution

3. The density of solid argon is $1.65 \mathrm{~g} / \mathrm{mL}$ at $-233^{\circ} \mathrm{C}$. If the argon atom is assumed to be sphere of radius $1.54 \times 10^{-8} \mathrm{~cm}$, what
percentage of solid argon is apparentaly empty space ? $(A t . W t$. of $A r=40)$

D Watch Video Solution

4.

In
the
cubic
crystal
of
$C s C l\left(d=3.97 \mathrm{gcm}^{-3}\right)$, the eight corners are occupied by $C l^{\Theta}$ with a $C s^{\oplus}$ at the centre and vice versa. Calculate the distance between
the neighbouring $C s^{\oplus}$ and $C l^{\Theta}$ ions. What is
the radius of the two ions? ($A w$ of
$C s=132.91$ and $C l=35.45)$
5. An ionic compound $A B$ has a rock salt structure with $A: B=1: 1$. the formula mass of $A B$ is 6.023 y amu and the closest $A-B$ distance is $y^{1 / 3} \mathrm{~nm}$.
(a) Calculate the density of the attice.
(b) If the observed density of the lattice is found to be $20 \mathrm{~kg} \mathrm{~m}^{-3}$. then predict the type of defect.
6. An element crystallises in f.c.c. lattice having edge length 400 pm . Calculate the maximum diameter, which can be placed in interstitial sites without disturbing the structure.

D Watch Video Solution

7. In diamond lattice, all attice point and alternate tetrahedral voids are occupied by carbon atoms.
if diamond crystallizes in fcc form with edge
length 'a' find out .
(b) distance between the next nearest neighbours.

- Watch Video Solution

8. A metallic crystal cystallizes into a lattice containing a sequence of layers $A B A B A B \ldots$..

Any packing of spheres leaves out voids in the lattice. What percentage by volume of this lattice is empty spece?
9. Calculate the distance between (111) planes
in a crystal of calcium. Repeat the calculation for (222) planes. Which palnes are closer ? (a= 0.556 nm)

D Watch Video Solution

10. Determine the miller indices of the shaded plane. Coordinates of the corner of the plane
11. The coordinate of the three corners of a
shaded face on a cubic unit cell are $\left(\frac{1}{2}, \frac{1}{2}, 1\right),\left(0,1, \frac{1}{2}\right)$ and $\left(1,1, \frac{1}{2}\right)$ as
shown in the figure. Determine the Miller indices of the plane.

D View Text Solution

12. The density of sodium chloride at $25^{\circ} C$ is $2.163 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ When X -rays rom a palladium target having waveleth of 58.1
pm are used, the (200) reflection of sodium chloride occurs at an angle of 5.90°. How many Na^{+}and Cl^{-}ions are present in the unit cell ? (Molar mass of $\mathrm{NaCl}=58.5$

$$
\left.\mathrm{mol}^{-1} \sin 5.9^{\circ}=0.1028\right)
$$

- Watch Video Solution

13. What fraction $(\mathrm{n} / \mathrm{N})$ of the lattice sites are vacant at 298 K for a crystal in which the energy required to make a defect is 1 eV . $\left(1 e V=1.602 \times 10^{-19} J\right)$
14. Metallic magnesium has a hexagonal close packed structure and a density of $1.74 \mathrm{~g} / \mathrm{cm}^{3}$. Assuming magnesium atoms to be spherical, calculate the volume of each atom and atomic radius of Mg atom (Atomic mass of $\mathrm{Mg}=24$)

D Watch Video Solution

15. Calculate the packing fraction and density of diamond if $a=3.57 \AA ̊$. Diamond crystallizes
in fcc lattice with some more carbon atoms in alternate tetrahedral voids.

D Watch Video Solution

16. Calculate the packing effeciency of a fcc crystal in which all the tetrahedral and octahedral voids are occupied by the largest spheres without disturibing the lattice.

D Watch Video Solution

17. Using X-rays of wavelength 154.1 pm and staring from the glancing angle, the reflection
fro sliver crystal was found to occur at
$\theta=22.20^{\circ}$. Calculate the spacing between the planes of Ag atoms that gave rise to the above reflection. $\left(\sin 22.20^{\circ}=0.3778\right)$

D Watch Video Solution

18. A reflaction from (111) planes of a cubic crystal was observed ad at a glancing angle of
11.2° when X-rays of wavelength 154 pm were used. What is the length of the side of the unit cell $?\left(\sin 11.2^{\circ}=0.1944\right)$

D Watch Video Solution

19. When an electron in an excited state of Mo
atom falls L to K-shell, an X-ray is emitted.
These X-rays are diffranted at angle of 7.75° by planes with a sepration of $2.64 \AA$. What is the difference in energy between K -shelll and L
-shell in Mo, assuming a first order diffraction
$?^{`}\left(\sin 7.75^{\wedge}(@)=0.1349\right)$

- Watch Video Solution

