©゙doubtnut

 India's Number 1 Education App
CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

STRUCTURE OF ATOM

Sample Problem

1. Calculate the number of protons, neutrons and electrons in ${ }_{35}^{80} \mathrm{Br}$.

- Watch Video Solution

2. Total number of electrons, protons and neutrons present in the nucleus of ${ }_{.92} U^{238}$ is
3. Nuclear radius is of the order of $10^{-13} \mathrm{~cm}$ while atomic radius is of order $10^{-8} \mathrm{~cm}$. Assuming the nucleus and the atom to be spherical .What fraction of an atom is occupied by nucleus?

(Watch Video Solution

4. Complete the following tables:

Particle	Mass No.	Atomic No.	Protons	Neutrons	Electrons
Nitrogen atom	-	-	-	7	7
Calcium ion	-	20	-	20	-
Oxygen atom	16	8	-	-	-
Bromide ion	-	-	-	45	36

- Watch Video Solution

5. The number of electrons, protons and neutrons in a species are equal to 18,16 and 16 respectively. Assign the proper symbol of the species.

- Watch Video Solution

6. Calculate (a) Wavenumber and (b) frequency of yellow radiation having wavelength $5800 A^{\circ}$.

- Watch Video Solution

7. the vividh bharati station of All india Radio, Delhi, broadcasts on a frequency of $1,368 \mathrm{kHz}$ (kilo hertz). Calculate the wavelength of the electromagnetic radiation emitted by transmitter. Which part of the electromagnetic spectrum does it belong to

- Watch Video Solution

8. The wave length range of the visible spectrum extends from violet (400 $\mathrm{nm})$ to red (750 nm). Express these wavelengthsin frequencies (Hz)

$$
\left(1 n m=10^{-9} m\right)
$$

- Watch Video Solution

9. (a) What are the frequency and wavelength of a photon emitted during transition from $\mathrm{n}=5$ state to $\mathrm{n}=2$ state in the hydrogen atom?
(b) In which region of the electromagnetic spectrum will this radiation lie?

- Watch Video Solution

10. The wavelength of the first line in the balmer series is 656 nm .

Calculate the wavelength of the second line and the limiting line in the Balmer series.

- Watch Video Solution

11. Calculate the wavelength emitted during the transition of an electron in between two level of $L i^{2+}$ ion whose sum is 4 and difference is 2 .
12. Calculate the wavelength of the radiation emitted when an electron in a hydrogen atom undergoes a transition from 4th energy level to the 2nd energy level. In which part of the electromagnetic spectrum does this line lie?

- Watch Video Solution

13. calculate the energy assoclated with the first orbit of He^{+}. What is the radius of this orbit?

- Watch Video Solution

14. Calculate the radius of Bohr's fifth orbit for hydrogen atom. Also calculate the radius of third orbit of He^{+}ion

- Watch Video Solution

15. Calculate the velocity of electron in the first Bohr orbit of hydrogen atom. Given that Bohr radius $=0.529 \AA$, Planck's constant, $h=6.626 \times 10^{-34} \mathrm{Js}$, mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$ and $1 J=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$. Also calculate the velocity of electron in third orbit of He^{+}ion

- Watch Video Solution

16. Calculate (i) First excitation energy of the electron in the hydrogen atom. (ii) lonization energy of the hydrogen atom

- Watch Video Solution

17. The ionization energy of He^{+}is $8.72 \times 10^{-18} \mathrm{Jatom}^{-1}$. Calculate the energy of first stationary state of $L i^{2+}$.

- Watch Video Solution

18. The ionization energy of hydrogen in excited state is +0.85 eV . What will be the energy of the photon emitted when it returns to the ground state?

- Watch Video Solution

19. To which orbit the electron in H atom will jump on absorbing 12.1 eV energy ?

- Watch Video Solution

20. what is the total number of orbitals associated with the principal quartum number $\mathrm{n}=3$?

- Watch Video Solution

Problem

1. Calculate the frequency and energy of a photon of radiation having wavelength $6000 \AA$

Watch Video Solution

2. calculate energy of one mole of photons of radiation whose frequency is $5 \times 10^{14} h z$

- Watch Video Solution

3. A 100 watt bulb emits monochromatic light of wavelength 400 nm .

Calculate the number of photons emitted per second by the bulb.

- Watch Video Solution

4. Calculate the kinetic energy of the electron ejected when yellow light of frequency $5.2 \times 10^{14} \mathrm{sec}^{-1}$ falls on the surface of potassium metal.

Threshold frequency of potassium is $5 \times 10^{14} \mathrm{sec}^{-1}$

- Watch Video Solution

5. When electromagnetic radiation of wavelength 300 nm falls on the surface of sodium, electrons are emitted with kinetic energy of $1.68 \times 10^{5} \mathrm{Jml}^{-1}$. What is the minimum energy needed to remove an electron from sodium ? What is the maximum wavelength that will cause a photoelectron to be emitted.

- Watch Video Solution

6. The threshold frequency v_{0} for a metal is $7 \times 10^{14} s^{-1}$. Calculate the kinetic energy of an electron emitted when radiation of frequency $v=1.0 \times 10^{15} s^{-1}$ hits the metal.

- Watch Video Solution

7. Calculate the wavelength of a photon in Angstrons having an energy of 1 electron-volt.

- Watch Video Solution

8. Calculate the wavelength associated with an electron (mass $9.1 \times 10^{-31} \mathrm{~kg}$) moving with a velocity of $10^{3} m \mathrm{sec}^{-1}\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$

- Watch Video Solution

9. what will be the wavelength of a ball of mass 0.1 kg moving with a velocity of $10 \mathrm{~ms}^{-1}$?

- Watch Video Solution

10. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$. If its K.E. is $3.0 \times 10^{-25} \mathrm{~J}$, calculate its wavelength

- Watch Video Solution

11. Calculate the mass of a photon with wavelength $3.6 \AA$.

- Watch Video Solution

12. Two particles A and B are in motion. If the wavelength associated with particle A is $5 \times 10^{-8} \mathrm{~m}$, calculate the wavelength associated with particle B if its momentum is half of A.

- Watch Video Solution

13. The kinetic energy of a subatomic particle is $5.85 \times 10^{-25} \mathrm{~J}$. Calculate the frequency of the particle wave.
14. Calculate the de Broglie wavelength of an electron that has been accelerated from rest through a potential differecne of 1 kV .

- Watch Video Solution

15. When would the be Broglie wavelength of a moving electron become equal to that of a moving proton? Mass of electron $=9.1095 \times 10^{-31} \mathrm{~kg}$ and mass of proton $=1.6725 \times 10^{-27} \mathrm{~kg}$

- Watch Video Solution

16. A microscope using suitable photons is employed to locate an electron in an atom within a distance of 0.1 Ã.... What is the uncertainty involved in the measurement of its velocity?
17. Calculate the uncertainty in the velocity of a wagon of mass 3000 kg whose position is known to an accuracy of $\pm 10 \mathrm{pm}$ (Planck's constant $=$ $6.63 \times 10^{-34} \mathrm{Js}$)

- Watch Video Solution

18. Calculate the uncertainty in the position of an electron if the uncertainty in its velocity is $5.7 \times 10^{5} \mathrm{~m} / \mathrm{sec}\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right.$, mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}$)

- Watch Video Solution

19. A golf ball has a mass of 40 g and a speed of $45 \mathrm{~m} / \mathrm{s}$. If the speed can be measured within accuracy of 2%, calculate the uncertainty in the position.

- Watch Video Solution

20. If an electron is moving with velocity $500 \mathrm{~ms}^{-1}$, which is accurate up to 0.005% then calculate uncertainty in its position. $\left[h=6.63 \times 10^{-34} \mathrm{~J}-s\right.$, mass of electron $\left.=9.1 \times 10^{-31} \mathrm{~kg}\right]$

- Watch Video Solution

21. how fast is an electron moving if it has a wavelength equal to the distance traveled in one second ?

- Watch Video Solution

22. A proton is accelerated to $1 / 10$ th of the velocity of light. If its velocity can be measured with a precision of $\pm 0.5 \%$, what must be its uncertanity in position?

- Watch Video Solution

23. An electron is in $4 f$ orbital. What possible values for quantum numbers, $\mathrm{n}, \mathrm{l}, \mathrm{m}$ and s can it have ?

Watch Video Solution

24. Write down the quantum numbers n, I and m for the following orbitals:
(i) $3 d_{x^{2}-y^{2}}$ (ii) $4 d_{z^{2}}$ (iii) $3 d_{x y}$ (iv) $4 d_{x z}$ (v) $2 p_{z}$ (vi) $3 p_{x}$

- Watch Video Solution

25. Usings,p,d,f notations, describe the orbital with the following quantum numbers.
(i) $n=2, l=1$
(ii) $n=4, l=0$

9iii) $n=5, l=3$
(iv) $n=3, l=2$
26. Which of the following sets of quantum numbers are not permitted?
(i)

$$
\begin{equation*}
n=2, l=2, m=-1, s=+1 / 2 \tag{ii}
\end{equation*}
$$

$n=2, l=1, m=-1,2=-1 / 2$
(iii) $n=2, l=0, m=0, s=0$ (iv) $n=2, l=1, m=2, s=+1 / 2$

Watch Video Solution

27. Which of the following orbitals are not possible?
$1 \mathrm{p}, 2 \mathrm{~s}, 3 \mathrm{f}$ and 4 d

- Watch Video Solution

28. If $\mathrm{n}=5$, how many electrons can have $m_{l}=+1$?

- Watch Video Solution

29. Find the number of unpaired electrons present in phosphorus (atomic no.15), chromium (atomic no. 24) and copper (atomic no. 29) after writing their orbital electronic configurations.

- Watch Video Solution

30. Write the electronic configurations of the elements with the following atomic numbers :
$3,8,14,17,21,38,57$
Also mention the groups of the periodic table to which they belong.

- Watch Video Solution

31. What atoms are indicated by the following eletronic configurations ?
(i) $1 s^{2} 2 s^{2} 2 p^{1}$ (ii) $[A r] 4 s^{2} 3 d^{1}$

- Watch Video Solution

32. A neutral atom of element has $2 \mathrm{~K}, 8 \mathrm{~K}$ and 5 M electrons. Find out the following : (a) Atomic No. of the element (b) Total No. of s electrons (c) Total No. of p - electrons (d) No. of protons in the nucleus and (e) Valency of the element.

Watch Video Solution

33. Give the electronic configuration of the following ions :
(i) Cu^{2+}
(ii) Cr^{3+}
(iii) Fe^{2+} and Fe^{3+}
(iv) H^{-}
(v) S^{2-}

- Watch Video Solution

34. Discuss the possibility of the atom for existing in the following electronic configurations :
(i) $1 s^{2} 2 s^{2} 2 p_{x}^{1}$ (ii) $1 s^{2} 2 s^{1} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$ (iii) $1 s^{2} 2 s^{1} 2 p_{x}^{2} 2 p_{y}^{1}$ (iv) $1 s^{2} 2 s^{2} 3 s^{2}$

- Watch Video Solution

35. Consider the electronic configurations: (i) $1^{2} 2 s^{1}$ (ii) $1 s^{2} 3 s^{1}$
(a) Name the element corresponding to (i)
(b) Does (ii) correspond to the same or different element ?
(c) How can (ii) be obtained from (i) ?
(d) Is it easier to remove one electron from (ii) or (i) ? Explain.

- Watch Video Solution

Curiosity Question

1. What is the basic principle of a television picture tube or fluorescent light tubes?

- Watch Video Solution

2. A piece of iron is heated in a flame. It first becomes dull red then becomes reddish yellow and finally turns to white hot. The correct explanation for the above observation is possible by using.
3. What is the range of frequencles used in a microwave oven ?

- Watch Video Solution

4. Give one Important pratical application of photoelectric effect

- Watch Video Solution

5. We do not see a car moving as a wave on the road. Explain.

- Watch Video Solution

6. Iron pieces are attracted towards a magnet but zinc pieces are no. Why

Problem for Practice

1. Neutrons can be found in all atomic nuclei except in one case. Which is this atomic nucleus and what does it consist of?

- Watch Video Solution

2. How many nucleous are present in an atom of Nobelium, ${ }_{102}^{254}$ No ? How many electrons are present n the atom ? How many nucleons may be considered as neutrons?

- Watch Video Solution

3. Complete the table:

Particle	Atomic No.	Mass No.	No. of electrons	No. of protons	No. of neutron
Sodium atom	11	-	-	-	12
Aluminium ion	-	27	10	-	-
Chloride ion	-	-	18	-	18
Phosphorus atom	-	31	-	15	-
Cuprous ion	-	-	28	-	35

4. Complete the table:

Name of the particle	Mass No.	Atomic No.	Protons	No. of Electrons	Neutrons
Oxygen	-	-	8	-	8
Sodium ion	23	-	11	-	-
Bromine	-	-	-	35	45

D Watch Video Solution

5. Find the number of protons, electrons and neutrons in (a) ${ }_{\cdot 13}^{27} A l^{3+}$

(Watch Video Solution

6. The elements P (Atomic weight 39) and Q (Atomic weight 80) contain 20 and 45 neutrons respectively their nucleus. Give their electronic arrangements separately.
7. Give the name and atomic number of the inert gas atom in which the total number of d-electrons is equal to the difference in number to the p and $-s$-electrons.

- Watch Video Solution

8. A monoatomic anion of unit charge contains 45 neutrons and 36 electrons. Find the atomic number, mass number of the ion with its identification.

- Watch Video Solution

9. Calculate the frequency of infrared radiations having wavelength, $3 \times 10^{6} \mathrm{~nm}$.

- Watch Video Solution

10. Calculate the range of frequencies of visible light from $3800-7600 \AA$

- Watch Video Solution

11. How long would it take a radio wave of frequency $6 \times 10^{3} \mathrm{sec}^{-1}$ to travel from mars to the earth, a distance of $8 \times 10^{7} \mathrm{~km}$?

- Watch Video Solution

12. Calculate the wave number of radiations having a frequency of $4 \times 10^{14} \mathrm{~Hz}$

- Watch Video Solution

13. A particular radiostation broadcasts at a frequency of 1120 Kilo Hertz another radio station broadcasts at a frequency of 98.7 mega Hertz. What are the wave length of radiations from each station?
14. Which has a higher energy : a photon of red light with a wavelegth of $7500 \AA$ or a photon of green light with a wavelength of $5250 \AA$?

- Watch Video Solution

15. In the ultraviolet region of the atomic spectrum of hydrogen, a line is obtained at $1026 \AA$. Calculate the energy of photon of this wavelength ($h=6.626 \times 10^{-34} \mathrm{~J}$-sec)

- Watch Video Solution

16. In the infrared region of the atomic spectrum of hydrogen, a line is obtained at $3802 \mathrm{~cm}^{-1}$. Calculate the energy of this photon $\left(h=6.626 \times 10^{-34} J \mathrm{sec}\right)^{\prime}$
17. Light of wavelenght $4000 \AA$ falls on the surface of cesium . Calculate the maximum kinetic energy of the photoelectron emiited. The critical wavelenght for photoelectric effect in cesium is $6600 \AA$.

- Watch Video Solution

18. What is the ratio between the energies of two radiations, one with a wavelength of $6000 \AA$ and the other with $2000 \AA\left[1 \AA=10^{-10} \mathrm{~m}\right]$?

- Watch Video Solution

19. The threshold energy for photoelectric emission of electrons from a metal is 3.056×10^{-15} joule. If light of $4000 \AA$ wavelength is used, will the electrons be efected or not ? $\left(h=6.63 \times 10^{-34}\right.$ Joule sec)

- Watch Video Solution

20. Calculate the wavelength of a photon in Angstrons having an energy of 1 electron-volt.

Watch Video Solution

21. Sodium street lamp gives off a characteristic yellow light of wavelength 588 nm . Calculate the energy mole (in $\mathrm{kJ} / \mathrm{mol}$) of these photons.

- Watch Video Solution

22. Calculate the wavelength of the radiations in nanometers emitted when an electron in hydrogen atom jumps from third orbit to the ground state. $\left(R_{H}=109677 \mathrm{~cm}^{-1}\right)$

- Watch Video Solution

23. Calculate the wavelength from the Balmer formula when $n_{2}=3$.

- Watch Video Solution

24. Calculate the wavelength of spectral line in Lyman series corresponding to $n_{2}=3$.

- Watch Video Solution

25. If the energy difference between the electronic states is $214.68 \mathrm{kJmol}^{-1}$, calculate the frequency of light emited when an electron drop form the height to the lower state. Planck's constant , $h=39.79 \times 10^{-14} \mathrm{kJsmol}^{-1}$

- Watch Video Solution

26. In hydrogen atom, an electron jumps from 3d orbit to the 2nd orbit. Calculate the wavelength of the radiatoin emitted. $\left(h=6.63 \times 10^{-34} \mathrm{Jsec}\right)$

- Watch Video Solution

27. Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.

- Watch Video Solution

28. Applyig bohr's model when H-atom comes from $n=4$ to $n=2$, calcualte its wavelength. In this process, write whether energy is released or aborbed? Also write the range of radiation $R_{H}=2.18 \times 10^{-18} J, h=6.63 \times 10^{-34} J-s$

- Watch Video Solution

29. Calculate the momentum of a particle which has a de Broglie wavelength of $2 \AA,\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$

- Watch Video Solution

30. Calculate the wavelength of an electron moving at $3.0 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1} \quad$ (mass of the electron $\left.=9.11 \times 10^{-31} \mathrm{~kg}, h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$

- Watch Video Solution

31. The kinetic energy of an electron is $5 \times 10^{5} \mathrm{eV}$ (electron volts).

Calculate the wavelength of the wave associated with the electron. The mass of the electron may be taken as $10^{-30} \mathrm{~kg}$
32. A proton (mass $=1.66 \times 10^{-27} \mathrm{~kg}$) is moving with kinetic energy $5 \times 10^{-27} J$ calculate the de Broglie wavelength associated with it? $\left(h=6.6 \times 10^{-34} J s\right)$

- Watch Video Solution

33. A particle having a wavelength of $6.6 \times 10^{-6} \mathrm{~m}$ is moving with a velocity of $10^{4} \mathrm{~m} / \mathrm{sec}$. Find the mass of the particle. Planck's constant is $6.62 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}$

- Watch Video Solution

34. What must be the velocity of a beam of electrons if they are to disply a de Broglie wavelength of $100 \AA$ (mass of electron $\left.=9.1 \times 10^{-31} \mathrm{~kg}, h=6.6 \times 10^{-34} \mathrm{Js}\right)$?

- Watch Video Solution

35. What will be the wavelength of oxygen molecule in picometers moving with a velocity of $660 \mathrm{~ms}^{-1}\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}\right)$

- Watch Video Solution

36. A tennis ball of mass $6.0 x 10^{-2} \mathrm{~kg}$ is moving with a speed of $62 \mathrm{~ms}^{-1}$.

Calculate the wavelength associated with this moving tennis ball. Will the movement of this ball exhibit a wave character?

(Watch Video Solution

37. Calculate de Broglie wavelength of an electron travelling at 1% of the speed of light.

- Watch Video Solution

38. The sodium flame test has a characteristic yellow colour due to the emission of a wavelength of 589 nm . What is the mass equivalent of one
photon of this wavelength?

- Watch Video Solution

39. Calculate the wavelength of an electron that has been accelerated in a particle accelerator through a potentiation difference of 100 million volts

$$
\left[1 \mathrm{eV}=1.6 \times 10^{-19} J, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}, h=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3.0 \times\right.
$$

- Watch Video Solution

40. Calculate the kinetic energy of an α-particle which has a wavelength of 12 pm

- Watch Video Solution

41. A moving electron has 4.55×10^{-25} joules of kinetic energy. Calculate its wavelength (mass $=9.1 \times 10^{-31} \mathrm{~kg}$ and $h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$)
42. The energy of an α-particle is $6.8 \times 10^{-18} \mathrm{~J}$. What will be the wavelength associated with it?

- Watch Video Solution

43. Calculate the ratio between the wavelength of an electron and a proton, if the proton is moving at half the velocity of the electron (mass of the proton $=1.67 \times 10^{-27} \mathrm{~kg}$, mass of the electron $=9.11 \times 10^{-2} \mathrm{~m}$.

- Watch Video Solution

44. The approximate mass of an electron is $10^{-27} g$. Calculate the uncertainty in its velocity if the uncertainty in its position were of the order of $10^{-11} m\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{sec}^{-1}\right)$
45. Calculate the product of uncertainty in position and velocity for an electron of mass $9.1 \times 10^{-31} \mathrm{~kg}$ according to Heisenberg uncertainty principle

- Watch Video Solution

46. Calculate the uncertainty in the velocity of a cricket hall (mass
$=0.15 \mathrm{~kg})$ uncertainty in position is of the order of $1 \AA$

- Watch Video Solution

47. Calculate the minimum uncertainty in velocity of a particle of mass $1.1 \times 10^{-27} \mathrm{~kg}$ if uncertainty in its position is $3 \times 10^{-10} \mathrm{~cm}$. $\left(h=6.62 \times 10^{-34} \mathrm{~kg} . \mathrm{m}^{2} \mathrm{~s}^{-1}\right)$

- Watch Video Solution

48. The uncertainties in the position and velocity of a particle are $10^{-10} \mathrm{~m}$ and $5.27 \times 10^{-24} \mathrm{~ms}^{-1}$ respectively. Calculate the mass of the particle $\left(h=6.625 \times 10^{-24} J . s\right)$

- Watch Video Solution

49. The mass of electron is $9.11 \times 10^{-31} \mathrm{~kg}$. Calculate the uncertainty in its velocity if the uncertainty in position is the uncertainty in position is of the order of ± 10 pm. $\left(h=6.6 \times 10^{-34} \mathrm{kgm}^{2} s^{-1}\right)$.

- Watch Video Solution

50. An electron has a speed of $500 \mathrm{~m} s^{-1}$ with uncertainty of 0.02%.

What is the uncertainty in locating its position ?

- Watch Video Solution

51. A proton is accelerated to one tenth of velocity of light. If the velocity can be measured with a precision of $\pm 0.5 \%$, what must be the uncertainty in its position ? $\left(m_{p}=1.675 \times 10^{-27} \mathrm{~kg}\right)$.

- Watch Video Solution

52. Calculate the uncertainty in the position of a dust particle with mass equal to 1 mg if the uncertainty in its velocity is $5.5 \times 10^{-20} \mathrm{~ms}^{-1}$

- Watch Video Solution

53. The uncertainty in the momentum of a particle is $2.2 \times 10^{-4} \mathrm{gcms}^{-1}$. With what accuracy can its position be deterimed ? $\left(h=6.626 \times 10^{-27} \operatorname{erg} s\right)$

- Watch Video Solution

54. Calculate the uncertainty in the velocity in the velocity of an electron if the uncertainty in its position is $1 \AA$ or $100 \mathrm{pm}\left(10^{-10} \mathrm{~m}\right)$

Watch Video Solution

55. What is the minimum uncertainty in theh position of a bullet of mass

5g that is known to have a speed somewhere between 550,00000 and $550,00001 \mathrm{~ms}^{-1}$?

- Watch Video Solution

56. If n is equal to 3 , what are the values of quantum number I and m ?

- Watch Video Solution

57. How many orbitals are present in the subshells with (a) $n=3, l=2$
(b) $\mathrm{n}=4, \mathrm{l}=2$ (c) $\mathrm{n}=5, \mathrm{l}=2$?
58. What are the value of n, I and m for 2 p -orbitals?

- Watch Video Solution

59. Write the correct orbital notations for each of the following sets of quantum numbers:
(i) $\mathrm{n}=2, \mathrm{l}=1$, (ii) $\mathrm{n}=3, \mathrm{l}=0$ (iii) $\mathrm{n}=5, \mathrm{l}=3$ and (iv) $\mathrm{n}=4, \mathrm{I}=2$?

- Watch Video Solution

60. What designation is given to an orbital having
$n=2, I=1$, (ii) $n=3, I=0$, (iii) $n=5, l=3$ (iv) $n=4, I=2$?

- Watch Video Solution

61. Give the value of the quantum numbers for the electron with the highest energy in sodium atom

Watch Video Solution

62. Which of the following orbitals are not possible? 7s, 2d, 3 f and 1 p

- Watch Video Solution

63. What of the following sets of quantum numbers are not possible?
(i) $\mathrm{n}=3, \mathrm{I}=2, \mathrm{~m}=0, \mathrm{~s}=-1 / 2$ (ii) $\mathrm{n}=3, \mathrm{I}=2, m=-2, s=-1 / 2$
(iii) $\quad n=3, l=3, m=-3, s=+1 / 2$
$n=3, l=1, m=0, s+1 / 2$

- Watch Video Solution

64. Give the electronic configurations of :
(i_Scandium (Z = 21)
(ii) Chromium ($Z=24$)

- Watch Video Solution

65. Write the electronic configurations and the names of the elements having the atomic numbers 5, 9, 10, 19 and 20.

(Watch Video Solution

66. Give the electronic configurations of the elements : $\cdot{ }_{19} K, \cdot{ }_{25} M n, \cdot{ }_{20} C a$

- Watch Video Solution

67. Write the electronic configurations of the elements : Chlorine and Phosphorus.

Watch Video Solution

68. Given the electronic configurations of the ions: (i) H^{-1} (ii) $N a^{+}$(iii) N^{-1} (iv) N^{2+}

- Watch Video Solution

69. Write down the electronic configuration of an element with atomic number 14. Which group in the periodic table does this element belong to ?

- Watch Video Solution

70. Name the elements that correspond to the given electronic configurations. Write down their atomic number also. (i) $1 s^{2} 2 s^{2} 2 p^{2}$ (ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{1}$ (iii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$

- Watch Video Solution

71. Correct the following electronic configurations of the elements in the ground state :
(i) $1 s^{2} 2 s^{1} 2 p_{x}^{2} 2 p_{y}^{2} 2 p_{z}^{2} 3 s^{2} 3 p_{x}^{1}$
(ii) $1 s^{2} 2 s^{1} 2 p_{y}^{2} 2 p_{y}^{2} 2 p_{z}^{1}$
(iii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5}$
(iv) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{4} 4 s^{2}$

- Watch Video Solution

72. The atomic mass of an element is double its atomic number. If there are four electrons in the 2 p-orbital, the draw the model of the atom showing the arrangement of protons, neutrons and electrons. Give its valence and name the element.

- Watch Video Solution

73. Write the electronic configuration of the elements
(i). ${ }_{9}^{19} F$, (ii) ${ }_{18}^{36} A r$, (iii) $\cdot{ }_{16}^{32} S$

Point out the element with (a) Maximum nuclear charge ,(b) Minimum number of neutrons , (c) Maximum mass number. , (d) Maximum number of unpaired electrons.

- Watch Video Solution

74. What are thhe atomic numbers of elements whose outermost electrons are represented by
(i) $3 s^{1}$ (ii) $2 p^{3}$ and (iii) $3 d^{6}$?

- Watch Video Solution

75. What atoms are indicated by the following configuration ?
$[H e] 2 s^{1}$
$[N e] 3 s^{2} 3 p^{3}$
$[A r] 4 s^{2} 3 d^{1}$

- Watch Video Solution

76. Which of the following configurations represent the elemnet in the ground and which in the excited state ? Name the element in each case :
(i) $1 s^{2} 2 s^{1} 2 p^{1}$
(ii) $1 s^{2} 2 s^{2} 2 p^{1} 2 p^{1}$
(ii) $1 s^{2} 2 s^{2} 2 p^{1}$
(iii) $1 s^{2} 2 s^{1} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$ (iv)
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p_{x}^{1} 3 p_{y}^{1} 3 p_{z}^{1} 3 d^{1}$

- Watch Video Solution

77. A p-sub-shell which consists of px, py and pz orbitals contains only one electron. In which one of these three orbitals should the electron be located ?
78. Which of the following quantum numbers for orbitals in hydrogen atom has a greater energy for electrons ?
(i) $n=3, l=2$ and $m=+1$ (ii) $n=3, l=2$ and $m=-1$

- Watch Video Solution

Advanced Problems For Competitions

1. A hydrogen like atom (atomic number z) is in a higher excited state of quantum number n. This excited atom can make a transition to the first excited state by successively emitting two photons of energies 10.2 eV and 17.0 eV respectively. Alternatively the atom from the same excited state can make a transition to the second excited state by successively emitting 2 photons of energy 4.25 eV and 5.95 eV respectively. Determine the value of $(n+z)$

- Watch Video Solution

2. An iodine molecule dissociates into atom after absorbing light of wavelength $4500 \AA$. If quantum of radiation is absorbed by each molecule calculate the kinetic energy of iodine (Bond energy of I_{2} is $240 \mathrm{kJmol}^{-1}$)

- Watch Video Solution

3. Calculate the angular frequency of an electron occuppying the second Bohr orbit of He^{+}ion.

- Watch Video Solution

4. A leaser emits monochromatic radiation of wavelength 663 nm . If it emits 10^{5} quanta per second per square metre, calculate the power output of the laser in joule per square metre per second.

- Watch Video Solution

5. Find the quantum number n corresponding to the excited state of $H e^{+}$ion, if on transition to the ground state that ion emits two photons in succession with wave lengths 108.5 and 30.4 nm .

- Watch Video Solution

6. 1.8 g hydrogen atoms are excited to raditions. They study of spectra indicates that 27% of the atoms are
in 3rd energy level and 15% of atom in 2nd energy level and the rest in ground state .If .I.P.of H is
21.7×10^{-8} erg . Calcute-
(i) No. the atoms present in III \& II energy level.
(ii) Total energy evolved when all the atoms when all the atoms return to ground state.

- Watch Video Solution

7. The velocity of electron in a certain Bohr's orbit of H -atom bears the ratio 1:275 to the velocity of light. What is the number of orbit ?

- Watch Video Solution

8. In hydrogen atom, energy of first excited state is $-3.4 e V$. Then, $K E$ of the same orbit of hydrogen atom is.

- Watch Video Solution

9. Photoelectric emission is observed from a surface for frequencies $v_{1} \operatorname{and} v_{2}$ of the incident radiation $\left(v_{1}>v_{2}\right)$. If maximum kinetic energies of the photo electrons in the two cases are in the ratio $1: K$, then the threshold frequency is given by:

- Watch Video Solution

10. A photon with initial frquency $10^{11} \mathrm{~Hz}$ scatters off an electron at rest. Its final frequency is $0.9 \times 10^{11} \mathrm{~Hz}$. The speed of scattered electron is close to :

$$
\left(h=6.63 \times 10^{-34} J s, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)
$$

- Watch Video Solution

11. When a hydrogen atoms emits a photon of energy 12.1 eV , its orbital angular momentum changes by (where h os Planck's constant)

- Watch Video Solution

12. The angular momentum of electron in a Bohr's orbit of H atom is $4.2178 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$. Calculate the wavelength of the spectral line when the electrton falls from this level to the next lower level.

- Watch Video Solution

13. The radial wave equation for hydrogen of radial nodes from nucleus are:
$\Psi_{1 s}=\frac{1}{16 \sqrt{4}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left[(\mathrm{x}-1)\left(\mathrm{x}^{2}-8 \mathrm{x}+12\right)\right] e^{-x / 2}$
where, $x=2 r / a_{0}, a_{0}=$ radius of first Bohr orbit
The minimum and maximum position of radial nodes from nucleus are:

- Watch Video Solution

14. Calculate the momentum of electron moving with $1 / 3$ 3rd velocity of light.

- Watch Video Solution

15. An electron beam can undergo defraction by crystals. Through what potential should a beam of electrons be accelerated so that its wavelength becomes 1.54 Å?

- Watch Video Solution

16. If He^{+}ions are known to have the wavelength difference of the first lines of Balmer series and first line of Lyman series equal to $\Delta \lambda=132 n m$ then the value of Rydberg constant (R) is

- Watch Video Solution

17. An electron in H -atom in its ground state absorbs 1.5 times as much energy as the minimum required for its escape (i. e., 13.6 eV) from the atom. Calculate the wavelength of emitted electron.

- Watch Video Solution

18. The wavelength of H_{α} line of Balmer series is $6500 \AA$. What is the wavelength of H_{β} line of Balmer series?

- Watch Video Solution

1. Deuterium nucleus contains:
A. $1 p+1 n$
B. $2 p+0 n$
C. $1 p+1 e^{-}$
D. $2 p+2 n$

Answer: A

- Watch Video Solution

2. Which one of the following pairs constitutes isotones?
A. ${ }_{6} C^{13}$ and ${ }_{66} C^{14}$
B. ${ }_{6} C^{13}$ and ${ }_{7} N^{14}$
C. ${ }_{7} N^{14}$ and ${ }_{.9} F^{19}$
D. ${ }_{7} N^{14}$ and ${ }_{7} N^{15}$

Answer: B

- Watch Video Solution

3. Among the following groupings which represents the collection of isoelectronic species?
A. $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}$
B. $N_{2}, C_{2}^{-2}, C O, N O$
C. $\mathrm{CO}, \mathrm{NO}^{+}, C N^{-}, C_{2}^{2}$
D. $\mathrm{NO}, C N^{-}, N_{2}, O_{2}^{-}$

Answer: C

- Watch Video Solution

4. 1 mol of photons each of frequency $250 \mathrm{~s}^{-1}$ would have approximately a total enegry of
A. 1 erg
B. 1 joule
C. 1 eV
D. 1 MeV

Answer: A

D Watch Video Solution

5. In photoelectric effect, the kinetic energy of photoelectrons increases linearly with the
A. wavelength of incident light
B. frequency of incident light
C. velocity of incident light
D. atomic mass of the element
6. visible line of hydrogen spectrum will be
A. Lyman
B. Balmer
C. Paschen
D. Brackett

Answer: B

- Watch Video Solution

7. For which of the following species, Bohr theory is not applicable ?
A. $B e^{3+}$
B. $L i^{2+}$
C. $H e^{2+}$
D. H.

Answer: C

- Watch Video Solution

8. In a hydorgen atom, enegry of the first excited state is -3.4 eV . Find out the kinetic enegry of the same orbit of H atom.
A. +3.4 eV
B. +6.8 eV
C. -13.6 eV
D. +13.6 eV

Answer: A

- Watch Video Solution

9. Which of the following transitions have minimum wavelength
A. $n_{4} \rightarrow n_{1}$
B. $n_{2} \rightarrow n_{1}$
C. $n_{4} \rightarrow n_{2}$
D. $n_{3} \rightarrow n_{1}$

Answer: A

- Watch Video Solution

10. Planck's constant has the dimension (unit) of
A. work
B. energy
C. angular momentum
D. linear momentum

Answer: C

- Watch Video Solution

11. According to Boohr's theory the angular momentum of an electron in 5th orbit is :
A. $10 h / \pi$
B. $2.5 h / \pi$
C. $25 h / \pi$
D. $1.0 h / \pi$

Answer: B

- Watch Video Solution

12. The radius of the forst Bohr orbit of hydrogen atom is $0.59 \AA$. The radius of the third orbit of He^{+}will be
A. $8.46 \AA$
B. $0.705 \AA$
C. $1.59 \AA$
D. $2.38 \AA$

Answer: D

- Watch Video Solution

13. The line spectrum of He^{+}ion will resemble that of :
A. Hydrogen atom
B. Li^{+}ion
C. Helium atom
D. Lithium atom

Answer: A

14. In the Sommerfeld's modification of Bohr's theory, the trajectory of an electron in a hydrogen atom is
A. a perfect ellipse
B. a closed ellipse like curve, narrower at the perihelion position and flatter at the aphelion position
C. a closed loop on the spherical surface
D. a rosette

Answer: d

- Watch Video Solution

15. When the electron of a hydrogen atom jumps from the $n=4$ to the $n=1$
state , the number of all pos - sible spectral lines emitted is :-
A. 15
B. 9
C. 6
D. 3

Answer: C

- Watch Video Solution

16. Which of the following has the largest de Brogile wavelength provided all have equal velocity?
A. Carbon dioxide molecule
B. Electron
C. Ammonia molecule
D. Proton

Answer: B

17. Which of the following relates to photons both as wave motion and as a stream of particles?
A. Interference
B. $E=m c^{2}$
C. Diffraction
D. $E=h v$

Answer: D

- Watch Video Solution

18. The de Broglie wavelength of a ball of mass 10 g moving with a velocity of $10 \mathrm{~ms}^{-1}$ is $\left(h=6.626 \times 10^{-34} \mathrm{Js}\right)$
A. $6.626 \times 10^{-33} \mathrm{~m}$
B. $6.626 \times 10^{-29} \mathrm{~m}$
C. $6.626 \times 10^{-31} \mathrm{~m}$
D. $6.626 \times 10^{-36} m$

Answer: A

- Watch Video Solution

19. The position of both, an electron and a helium atom is known within
1.0 nm . Further the momentum of the electron is known within $5.0 \times 10^{-26} \mathrm{kgms}^{-1}$ The minimum uncertainty in the measurement of the momentum of the helium atom is
A. $50 \mathrm{kgms}^{-1}$
B. $5.0 \times 10^{-26} \mathrm{kgms}^{-1}$
C. $80 \mathrm{kgms}^{-1}$
D. $80 \times 10^{-26} \mathrm{kms}^{-1}$

Answer: B

20. Given: The mass of electron is $9.11 \times 10^{-31} \mathrm{Kg}$ Planck constant is $6.626 \times 10^{-34} \mathrm{Js}$, the uncertainty involved in the measurement of velocity within a distance of 0.1Å is:-
A. $5.79 \times 10^{8} \mathrm{~ms}^{-1}$
B. $\left.5.79 \times 10^{5}\right) \mathrm{ms}^{-1}$
C. $5.79 \times 10^{6} \mathrm{~ms}^{-1}$
D. $5.79 \times 10^{7} \mathrm{~ms}^{-1}$

Answer: C

- Watch Video Solution

21. The number of nodal planes ' 5 d ' orbital has, is
A. zero
B. one
C. two
D. three.

Answer: C

- Watch Video Solution

22. Principal azimuthal , and magnetic quantum numbers are respetively related to
A. Size, orientation and shape
B. Size, shape and orientation
C. Shape, size and orientation
D. None of these

Answer: B

23. The number of $2 p$ electrons having spin quantum number $s=-1 / 2$
are
A. 6
B. 0
C. 2
D. 3

Answer: D

- Watch Video Solution

24. The angular momentum of an electron is zero. In which orbital may it be present?
A. 2 s
B. $2 p$
C. 3d
D. 4 f

Answer: A

- Watch Video Solution

25. Which of the following expression respresents the electron probability function (D) ?
A. $4 \pi r d r P s h i^{2}$
B. $4 \pi r^{2} d r \Psi$
C. $4 \pi r^{2} d r \Psi^{2}$
D. $4 \pi r d r \Psi$

Answer: C

26. The number of radial nodes in $3 s$ and $2 p$, respectively, are
A. 2 and 0
B. 1 and 2
C. 0 and 2
D. 2 and 1

Answer: A

Watch Video Solution

27. The five d-orbitals are designated as $d_{x y}, d_{y z}, d_{x z}, d_{x^{2}-y^{2}}$ and $d_{z^{2}}$. Choose the correct statement.
A. The shapes of the first three orbitals are similar but that of the fourth and fifth orbitals are difference
B. The shapes of all the five d-orbitals are similar
C. The shapes of the first four orbitals are similar but that of the fifth orbital is different
D. The shapes of all the five d -orbitals are different

Answer: C

- Watch Video Solution

28. The orbital diagram in which the Aufbau principle is violated is
A.
(a) 1 \square
B. (b) \square
\square
C. ${ }^{(c)}$ \$ \square
D. ${ }^{(d)}$ it

Answer: B

29. The outer shell configuration of the most electronegative element is
A. $n s^{2} n p^{3}$
B. $n s^{2} n p^{4}$
C. $n s^{2} n p^{5}$
D. $n s^{2} n p^{6}$

Answer: C

- Watch Video Solution

30. The electronic configuration, $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$, represents a
A. Metal atom
B. Non-metal atom
C. Non-metallic anion
D. Metallic cation

Answer: D

- Watch Video Solution

Test Your Grip (Fill in the Blanks)

1. Cathode rays are produced in the discharge tube when a voltage of about volts is applied and the pressure of the gas inside is of the order of....atm

(Watch Video Solution

2. When cathode rays strike the surface of hard metals like tungsten, molybdenum etc.are produced.

- Watch Video Solution

3. The charge and mass of the electron are....coulombs and kg respectively
4. Proton was discovered by

- Watch Video Solution

5. Rutherford's scattering experiment led to the discovery of

- Watch Video Solution

6. Isotone differ in terms ofandbut have identical.....

- Watch Video Solution

7. Out of cosumic rays, λ-rays, X -rays and radiowaves,....have minimum wavelength andhave maximum wavelength
8. The minimum energy required to ejected an electron from the surface of a metal is called \qquad .

- Watch Video Solution

9. The energy possessed by one mole of photons is called

- Watch Video Solution

10. Balmer series of the hydrogen spectrum lies in theregion

- Watch Video Solution

11. The limiting line of any spectral series in the hydrogen spectrum is the line when n_{2} in the Rydberg's formula is \qquad
12. The different orbits or energy levels of an atom according to Bohr model are called

Watch Video Solution

13. If Bohr radius is represented by a_{0}, the radius of the second orbit of helium ion $\left(\mathrm{He}^{+}\right)$will be......

- Watch Video Solution

14. If v_{0} is the velocity of electron in the first orbit of hydrogen atom, then the velocity of electron in the first orbit of $L i^{2+}$ ion will be.....
A. v_{0}
B. $2 v_{0}$
C. $3 v_{0}$
D. $5 v_{0}$

Answer: C

- Watch Video Solution

15. Humphrey series in the hydrogen spectrum is obtainned as a result of the jump of electrons from $n_{2} \geq \ldots$. to $n_{1}=\ldots . . .$.

- Watch Video Solution

16. If an electron is accelerated by a potential of V volts, the wavelength acquired by the electron will be......

- Watch Video Solution

17. According to Heisenberg's uncertainty principle, the product of uncertainty in position and uncertainty in momenutm should be $\geq \ldots . .$.
18. On solving Schrodinger wave equation for hydrogen atom, the values of the enery obtained are called......and the corresponding values of the wavefunction (Ψ) are called.......

- Watch Video Solution

19. The quantum number which tells about the angular momenta of the different electrons present in an atom is called

- Watch Video Solution

20. The quantum number which tells about the orientation of different orbitals of an atom is called........

- Watch Video Solution

21. The number of spherical nodes and planar nodes present in $4 d_{x^{2}-y^{2}}$ andandrespectively.

Watch Video Solution

22. The expression for radial probability is

- Watch Video Solution

23. The stability of exactly half-filled and completely filled configuration is due to .and

- Watch Video Solution

24. The IUPAC name of the element with atomic number 104 is

- Watch Video Solution

1. Give two examples from everyday life where cathode ray tubes are used

- Watch Video Solution

2. What is the difference in the origin of cathode rays and anode rays ?

- Watch Video Solution

3. When different gases are taken in the discharge tube, how do the e/m values of cathode rays and canal rays vary ?

- Watch Video Solution

4. When α-rays hit a thin foil of gold, very few α - particles are deflected back. What does it prove?
5. What is the difference between mass number and atomic mass?

- Watch Video Solution

6. Calculate the approximate charge in coulombs and approximate mass in kilograms of the nucleus of lithium-7 isotope

- Watch Video Solution

7. Give one example of each of the following:
(i) Isotope of ${ }_{17}^{35} \mathrm{Cl}$ (ii) Isobar of ${ }_{18}^{40} \mathrm{Ar}$ (iii) Isotone of ${ }_{6}^{14} \mathrm{C}$

- Watch Video Solution

8. What is the main difference between electromagnetic wave theory and Planck's quantum theory ?
9. What is difference between a quantum and a photon?

- Watch Video Solution

10. What do you understand by ground state and excited state of an atom?

- Watch Video Solution

11. What do you mean by saying that energy of the electron is quantized?

- Watch Video Solution

12. What is the number of spectral line in a hydrogen spectrum ?
13. How much energy must be supplied to hydrogen atom, to free (remove) the electron in the ground state?

- Watch Video Solution

14. Which transition between Bohr orbits corresponds to third line in the Balmer series of the hydrogen spectrum

- Watch Video Solution

15. What are dimensions of Planck's constant. What other physical quantity has the same dimensions ?

- Watch Video Solution

16. Which of the following relate to wave nature of light or particle nature or both?
(a) Interference
(b) Diffraction
(c) Photoelectric effect
(d) Black body radiation
(e) Planck's equation, $\mathrm{E}=\mathrm{hv}$ (f) Einstein equation, $E=m c^{2}$

- Watch Video Solution

17. What will become to the wavelength a moving particle if its velocity is doubled?

- Watch Video Solution

18. Two particles A and B are moving with the same velocity but wavelength of A is found to be double than that of B. What do you conclude?
19. What is the main difference between wave emitted by a bulb or heater and that associated with a particle ?

- Watch Video Solution

20. Why the ball hit with a hockey by a player does not make a wave ?

- Watch Video Solution

21. An electron beam after hitting a nicket crystal produces a diffraction pattern. What do you conclude ?

- Watch Video Solution

22. An electron beam on hitting a ZnS screen produces a scintillation on it. What do you conclude ?
23. The effect of uncertainty principle is significant only for motion of microscopic particles and is negligible for the macroscopic particles. Justify the statement with the help of a suitable example.

- Watch Video Solution

24. Can we apply Heisenberg's uncertainty principle to a stationary state ?

- Watch Video Solution

25. Name the quantum number which does not follow from the solution of Schrodinger wave equation?

- Watch Video Solution

26. What is the difference between the notations I and L ?
27. Which of the four quantum number ($\mathrm{n}, \mathrm{I}, m_{l}, m_{s}$) determine (a) the energy of an electron in a hydrogen atom and in a many electron atom (b) the size of an orbital (c) the shape of an orbital (d) the orientation of an orbital in space ?

- Watch Video Solution

28. Why Pauli exlusion principle is called exlusion principle?

- Watch Video Solution

29. At what distance is the radial probability maximum for 1 s orbital ?

What is this distance called?

- Watch Video Solution

30. Do atomic orbitals have sharp boundaries ? Explain why or why not ? or Why don't we draw a boundary surface diagram within which the probability of finding the electron is 100% ?

- Watch Video Solution

31. Draw the shapes (boundary surfaces) of the following orbitals:
(a) $2 p_{y}$ (b) $3 d_{z^{2}}$ (c) $3 d_{x^{2}-y^{2}}$ (Show coordinate axes in your sketches)

- Watch Video Solution

32. Discuss the similarities and differences between a 1 s and 2 s orbital.

- Watch Video Solution

33. How many radial/spherical nodes will be present in the 5 f orbital ?
34. (i) What is common between $d_{9} x y$) and $d_{x^{2}-y^{2}}$ orbitals ? (ii) What is the difference between them ? (iii) What is the angle between the lobes of the above two orbitals?

- Watch Video Solution

35. For each of the following pair of hydrogen orbitals, indicate which is higher in erergy :
(i) $1 s, 2 s$
(ii) $2 p, 3 p$
$(i i i) 3 d_{x y}, 3 d_{y z} \quad$ (iv) $3 s, 3 d$
$(v) 4 f, 5 s$.

- Watch Video Solution

36. Which orbital in each of the following pairs is lower in energy in a many electron atom?
(i) $2 s, 2 p$
(ii) $3 p, 3 d$
(iii) $3 s, 4 s$
(iv) $4 d, 5 f$

- Watch Video Solution

37. Why Hund's rule is called rule of maximum multiplicity ?

- Watch Video Solution

38. How many electrons in sulphur ($\mathrm{Z}=16$) can have $n+l=3$?

- Watch Video Solution

39. The 4 f subshell of an atom contains 10 electrons. What is the maximum number of electrons having spin in the same direction ?

- Watch Video Solution

40. Which out of $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}$ and Cr^{3+} has highest paramagnetism and why?

Watch Video Solution

41. What is the maximum number of electrons that can be present in an atom in which the highest principal quantum number is 4 ?

- Watch Video Solution

42. One unpaired electron in an atom distributes a magnetic moment of
1.1 B.M. Calculate the magnetic moment of chromium ($\mathrm{Cr}=24$)

- Watch Video Solution

43. The ground-state electronic configurations listed here are incorrect.

Explain what mistake have been made in each and write the correct
electronic configurations

$$
\text { Al }: 1 s^{2} 2 s^{2} 2 p^{4} 3 s^{2} 3 p^{3} \quad B: 1 s^{2} 2 s^{2} 2 p^{5} \quad F: 1 s^{2} 2 s^{2} 2 p^{6}
$$

Watch Video Solution

44. What is the deviation from Aufbau Principle in case of electronic configuration of $\mathrm{La}(\mathrm{Z}=57)$?

- Watch Video Solution

NCERT Questions And Exercises with Answers

1. (i) Calculate the number of electrons which will together with one gram
(ii) Calculate the mass and charge on one mole of electrons.

- Watch Video Solution

2. (i) Calculate the total number of electrons present in one mole of methane
(ii) Find (a) the total number and (b) the total mass of neutrons in 7 mg of . ${ }^{14} C$ (Assume that the mass of neutron $=1.675 \times 10^{-27} \mathrm{~kg}$) (iii) Find (a) the total number and (b) the total mass of protons in 34 mg of NH_{3} at S.T.P. (Assume the mass of proton $=1.6726 \times 10^{-27} \mathrm{~kg}$) Will the answer change if temperature and pressure are changed ?

- View Text Solution

3. how many neutrons and protons are there in the following nuclei ? ${ }_{.}^{13}{ }_{6}^{13},{ }_{8}^{16} \mathrm{O},{ }_{12}^{24} \mathrm{Mg},{ }_{26}^{56} \mathrm{Fe},{ }_{38}^{88} \mathrm{Sr}$

- Watch Video Solution

4. Write the complete symbol for the atom with the given atomic number
(Z) and atomic mass (A).
a. $Z=17, A=35$,
b. $Z=92, A=233$,
c. $Z=4, A=9$

- Watch Video Solution

5. Yellow light emitted from a sodium lamp has a wavelength (λ) of 580 nm . Calculate the frequency (v) and the wave number (\bar{v}) of the yellow light

Watch Video Solution

6. Find energy of each of the photons which
a. correspond to light of frequency $3 \times 10^{15} \mathrm{~Hz}$.
b. have wavelength of $0.50 \AA$.

- Watch Video Solution

7. Calculate the wavelength, frequency, and wave number of a light wave whose period is $2.0 \times 10^{-10} \mathrm{~s}$.

- Watch Video Solution

8. what is the number of photons of light with a wavelength of 4000 pm that provide 1 J of energy ?

- Watch Video Solution

9. A photon of wavelength $4 \times 10^{-7} \mathrm{~m}$ strikes on metal surface, the work function fo the metal being 2.13 eV Calculate :
(i) the energy of the photon (ev)
(ii) the kinetic energy fo the emission and the velocity fo the photoelectron $\left(1 \mathrm{eV}=1,6020 \times 10^{-19} \mathrm{~J}\right)$,

- Watch Video Solution

10. Electromagnetic radiation of wavelength 242 nm is just sufficient to ionise the sodium atom. Calculate the ionisation energy of sodium in kJ mol^{-1}.

- Watch Video Solution

11. A 25 watt bulb emits monochromatic yellow light of wavelength of 0. $57 \mu \mathrm{~m}$. Calculate the rate of emission of quanta per second .

- Watch Video Solution

12. Electrons are emitted with zero velocity from a metal surface when it is exposed to radiation of wavelength $6800 \AA$. Calculate threshold frequency $\left(v_{0}\right)$ and work function $\left(W_{0}\right)$ of the metal.

- Watch Video Solution

13. What is the wavelength of light emitted when the electron of a hydrogen atom undergoes a transition from an energy level with $n=4$ to an energy level with $n=2$? What is the colour corresponding to this wavelength?

- Watch Video Solution

14. How much energy is required to ionise a H - atom if the electron occupie $n=5$ orbit ? Compare your answer with the ionization energy of H -atom (energy required to remove the electron from $n t h$ orbit).

- Watch Video Solution

15. What is the maximum numaber of emission lines obtained when the excited electron of a H atom in $n=6$ drops to the ground state ?

- Watch Video Solution

16. (i) The energy associated with the first orbit in the hydrogen atom is $-2.18 \times 10^{-18} \mathrm{~J} \mathrm{atom}^{-1}$. What is the energy associated with the fifth orbit?
(ii) Calculate the radius of Bohr's fifth orbit for hydrogen atom.

Watch Video Solution

17. Calculate the wave number for the longest wavelength transition in the Balmer series of atomic hydrogen.

- Watch Video Solution

18. What is the energy in joules required to shift the electron of the hydrogen atom from the first Bohr orbit to the fifth Bohr orbit and what is the wavelength of the light emitted when the electron returns to the ground state? The ground state energy is -2.18×10^{-11} ergs.
19. The electron energy in hydrogen atom is given by $E_{n}=\left(-2.18 \times 10^{-18}\right) / n^{2} J$. Calculate the energy required to remove an electron completely from the $n=2$ orbit. What is the longest wavelength of light in cm that can be used to cause this transition?

- Watch Video Solution

20. Calculate the wavelength of an electron moving with a velocity fo 2. $05 \times 10^{7} \mathrm{~ms}^{-1}$.

- Watch Video Solution

21. The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$. If its K.E. is $3.0 \times 10^{-25} \mathrm{~J}$, calculate its wavelength

- Watch Video Solution

22. Which of the following are isoelectronic species, i.e., those having the same number of electrons:
$N a^{\oplus}, K^{\oplus}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{S}^{2-}, \mathrm{Ar}$

- Watch Video Solution

23. (i) write the electronic configurations of the following ions: (a) H^{+} (b) Na^{+}(c) O^{2-} (d) F^{-}Itbr. (ii) What are the atomic number of elements whose outermost electrons are represented by (a) $3 s^{1}$ (b) $2 p^{3}$ and (c) $3 d^{6}$?

- Watch Video Solution

24. What is the lowest value of n that allows g orbitals to exist?

- Watch Video Solution

25. An electron is in one of the $3 d$ orbitals. Give the possible values of n, l, and m for this electron.

- Watch Video Solution

26. An atom of an element contains 29 electrons and 35 neutrons. Deduce
a. The number of protons and
b. The elctonic configuration of the element.

- Watch Video Solution

27. Give the number of electrons in the species $\mathrm{H}_{2}^{+}, \mathrm{H}_{2}$ and O_{2}^{\oplus}

- Watch Video Solution

28. a. An atomic orbital has $n=3$. What are the possible values of l and
b. List the quantum numbers (m and l) of electrons for $3 d$ orbital.
c. Which of the following orbitals are possible" $1 p, 2 s, 2 p$, and $3 f$?

- Watch Video Solution

29. Using s, p, d notations, descibe the orbital with the following quantum numbers.
a. $n=1, l=0$,
b. $n=3, l=1$
c. $n=4, l=2$, d. $n=4, l=3$

- Watch Video Solution

30. Explain, giving reason, which of the following sets of quantum

$$
\begin{aligned}
& a \quad n=0 \quad l=0 \quad m_{1}=0 \quad m_{s}=+1 / 2 \\
& b \quad n=1 \quad l=0 \quad m_{1}=0 \quad m_{s}=-1 / 2 \\
& \text { number are not possible } c \quad n=1 \quad l=1 \quad m_{1}=0 \quad m_{s}=+1 / 2 \\
& d \quad n=2 \quad l=1 \quad m_{1}=0 \quad m_{s}=-1 / 2 \\
& \text { e } n=3 \quad l=3 \quad m_{1}=-3 \quad m_{s}=+1 / 2 \\
& f \quad n=3 \quad l=1 \quad m_{1}=0 \quad m_{s}=+1 / 2
\end{aligned}
$$

31. How many electrons in an atom have the following auantum numbers ?
(i) $n=4, m_{s}=-\frac{1}{2}$ (ii) $n=3, l=0$.

- Watch Video Solution

32. Show that the circumference of the Bohr orbit for the hydrogen atom is an integral multiple of the de Broglie wavelength associated with the electron revolving around the orbit.

- Watch Video Solution

33. What transition in the hydrogen spectrum would have the same wavelength as the Balmer transition $n=4$ to $n=2$ of He^{+}spectrum ?

- Watch Video Solution

34. Calcultte the enrgy required for the process,
$H e^{+}(g) \rightarrow H e^{2+}(g)+e$
The ionization energy for the H -atom in the grounds state is
35. $18 \times 10^{-18} \mathrm{Jatom}^{-1}$.

- Watch Video Solution

35. If the diameter of a carbon atom is 0.15 nm , calculate the number of carbon atom which can be placed side by side in a straight line length of scale of length 20 cm long.

- Watch Video Solution

36. 2×10^{8} atoms of carbon are arranged side by side. Calculate the radius of carbon atom if the length of this arrangement is 3.0 cm

- Watch Video Solution

37. The diameter of zinc atom is 2.6 A . Calculate (a) radius of zinc atom in pm and (b) number of atoms present in a length of 1.6 cm if the zinc atoms are arranged side by side lengthwise.

- Watch Video Solution

38. A certain particle carries $2.5 \times 10^{-16} \mathrm{C}$ of static electric charge.

Calculate the number of electrons present in it.

- Watch Video Solution

39. In Milikan's experiment, static electrons charge on the oil drops has been obtained by shining X-rays. If the static electric charge on the oil drop is $-1.282 \times 10^{-18} C$, calculate the number of electrons present on it.

- Watch Video Solution

40. In Rutherford's experiment, generally the thin foil of heavy atoms, such as gold, platinum, etc. have been used to be bombarded by the α particles. If the thin foil of light atoms such as aluminium atc. Is used, what difference would be observed form the above results?

- Watch Video Solution

41. Symbols ${ }_{35}^{79} \mathrm{Br}$ and.$^{79} \mathrm{Br}$ can be written whereas symbols ${ }_{.79}^{35} \mathrm{Br}$ and ${ }^{\cdot} 35 B r$ are not accepted. Answer in brief.

- Watch Video Solution

42. An element with mass number 81 contains 31.7% more neutrons as compared to protons. Assign the atomic symbol.

- Watch Video Solution

43. An ion with mass number 37 posseses one unit of negative charge. If the ion contains 11.1 \% more neutrons than the electrons, find the symbol of the ion

- Watch Video Solution

44. An ion with mass number 56 contains 3 units of positive charge and 30.4% more neutrons then electrons. Assign the symbol to this ion.

- Watch Video Solution

45. Arrange the following type of radiations in increasing order of frequency: (a) radiation from microwave oven (b) amber light from traffic signal (c). radiation from FM radio (d) cosmic rays from outer space and (e) X-rays

- Watch Video Solution

46. Nitrogen laser produces a radiation at a wavelength of 337.1 nm . If the number of photons emitted is 5.6×10^{24}. Calculate the energy of this laser

- Watch Video Solution

47. Neon gas is generally used in the sign boards. If it emits strongly at 616 nm , calculate
a. The frequency of emission,
b. The distance travelled by this radiation in $30 s$
c. The energy of quantum and
d. The number of quanta present if it produces $2 J$ of energy.

- Watch Video Solution

48. In astronomical observations, signals observed from the distant stars are generally weak. If the photon detector receives a total of
$3.15 \times 10^{-18} \mathrm{~J}$ from the radiations of 600 nm , calculate the number of photons received by the detector.

- Watch Video Solution

49. Lifetimes of the molecules in the excited states are often measured by using pulsed radiation source of duration nearly in the nano second range. If the radiation source has the duration of 2 ns and the number of photons emitted during the pulse is 2.5×10^{15}, calculate the energy of the source.

(Watch Video Solution

50. The longest wavelength doublet absorption is observed at 589 and 589.6 nm . Caiculate the frequency of each transition and energy difference between two excited states.

(D) Watch Video Solution

51. The work function for caesium atom is 1.9 eV . Calculate (a) the threshold wavelength and (b) the threshold frequency of the radiation. If the caesium element is irradiated with a wavelength 500 nm , calculate the kinetic energy and the velocity of the ejected photoelectron.

- Watch Video Solution

52. Following results are observed when sodium metal is irradiated with different wavelengths. Calculate (a) threshold wavelength and (b) Planck's constant.

$\lambda(n m)$	500	450	400
$v \times 10^{-5}\left(\mathrm{cms}^{-1}\right)$	2.55	4.35	5.20

- Watch Video Solution

53. The ejection of the photoelectron from the silver metal in the photoelectric effect exeriment can be stopped by applying the voltage of 0.35 V when the radiation 256.7 nm is used. Calculate the work function for silver metal.

(D) Watch Video Solution

54. If the photon of the wavelength 150 pm strikes an atom and one of its inner bound electrons is ejected out with a velocity of $1.5 \times 10^{7} \mathrm{~ms}^{-1}$, calculate the energy with which it is bound to the nucleus.

- Watch Video Solution

55. Emission transitions in the Paschen series end at orbit $n=3$ and start from orbit n and can be represented as $v=3.29 \times 10^{15}(H z)\left[1 / 3^{2}-1 / n^{2}\right]$. Calculate the value of n if the transition is observed at 1285 nm . Find the region of the spectrum.

- Watch Video Solution

56. Calculate the wavelength for the emission transition if it starts from the orbit having radius 1.3225 nm ends at 211.6 pm . Name the series to which this transition belongs and the region of the spectrum.

(D) Watch Video Solution

57. Dual behaviour of matter proposed by de Broglie led to the discovery of electron microscope often used for the highly magnified images of biological molecules and other type of material. If the velocity of the electron in this microcope is $1.6 \times 10^{6} \mathrm{~ms}^{-1}$. Calculate de Broglie wavelength associated with this electron.

- Watch Video Solution

58. Similar to electron diffraction, neutron diffraction microscope is also used for the determination of the structure of molecules. If the wavelength used here is 800 pm , calculate the characteristic velocity associated with the neutron.

- Watch Video Solution

59. If the velocity of the electron in Bohr's first orbit is $2.19 \times 10^{6} \mathrm{~ms}^{-1}$, calculate the de Broglie wavelength associated with it.

Watch Video Solution

60. The velocity associated with a proton moving in a potential difference of 1000 V is $4.37 \times 10^{5} \mathrm{~ms}^{-1}$. If the hockey ball of mass 0.1 kg is moving with this velocity, calculate the wavelength associated with this velocity.

- Watch Video Solution

61. If the position of the electron is measured within an accuracy of $\pm 0.02 \mathrm{~nm}$, calculate the uncertainty in the momentum of the electron. If suppose the momentum of the electron is

$$
\frac{h}{4 \pi \times 0.05 \mathrm{~nm}}
$$

is there any problem in defining this value?
62. The quantum numbers of six electrons are given below. Arrange them in order of increasing energies. If any of these combination(s) has/have the same energy lists:

1. $n=4, l=2, m_{i}=-2, m_{s}=-1 / 2$
2. $n=3, l=2, m_{l}=1, m_{s}=+1 / 2$
3. $n=4, l=2, m_{l}=-2, m_{s}=-1 / 2$
4. $n=3, l=2, m_{i}=-1, m_{s}=+1 / 2$
5. $n=3, l=1, m_{l}=-1, m_{s}=+1 / 2$
$n=4, l=1, m_{l}=0, m_{s}=+1 / 2$

- Watch Video Solution

63. The bromine atom possesses 35 electrons. It contains 6 electron in $2 p$ orbitals, 6 electrons in $3 p$ orbitals and 5 electrons in $4 p$ orbitals. Which of these electron experiences the lowest effective nuclear charge?

- Watch Video Solution

64. Among the following pairs of orbital which orbital will experience the larger effective nuclear charge?
a. $2 s$ and $3 s$, b. $4 d$ and $4 f$, c. $3 d$ and $3 p$

- Watch Video Solution

65. The unpaired electrons in $A l$ and $S i$ are present in $3 p$ orbital. Which electrons will experience more effective nuclear charge from the nucleus?

(Watch Video Solution

66. Indicate the number of unpaired electrons is
(i) $P(i i) S i(i i i) C r(i v) F e(v) K r$.

- Watch Video Solution

67. (a) How many sub-shells are associated wit $\mathrm{n}=4$? (b) How many electrons will be present in the sub-shell having m_{s} value of $1 / 2$ for $n=4$?

- Watch Video Solution

Abstract

NCERT Exemplar Problems With Answers, Hints and Solution (I. Multiple Choice Questions)

1. Which of the following conclusions couldnot be derived from Rutehrford's α-particle scattering experiment?
A. Most of the space in the atom is empty
B. The radius of the atom is about $10^{-10} \mathrm{~m}$ while that of nucleus is $10^{-15} m$
C. Electrons move in a circular path of fixed energy called orbits
D. Electrons and the nucleus are held together by electrostatic forces of attraction

Answer: C

D Watch Video Solution

2. Which of the following options does not represent ground state electronic configuration of an atom?
A. $1 s^{2} 2 s^{2} 2 p^{2} 3 s^{2} 2 p^{6} 3 d^{8} 4 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9} 4 s^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$

Answer: B

- Watch Video Solution

3. The probability density plots of 1 s and 2 s orbitals are given in Fig:

The density of dots in a region represents the probability density of finding electrons in the regions on the basis of above diagram which one of the following statements is incorrect?
A. 1 s and 2 s orbitals are spherical in shape
B. The probability of finding the electron is maximum near the nucleus
C. The probability of finding the electron at a given distance is equal in all directions
D. The probability density of electrons for $2 s$ orbital decrease uniformly as distance from the nucleus increases.

Answer: D

D View Text Solution

4. Which of the following statement is not correct about the characterstics of cathode rays
A. They start from the cathode and move towards the anode
B. They travel in straight line in the absence of an external electrical or magnetic field
C. Characteristics of cathode rays do not depend upon the material of electrodes in cathode ray tube
D. Characteristics of cathode rays depend upon the nature of gas present in the cathode ray tube

Answer: D

5. Which of the following statements about the electron is incorrect?
A. It is a negatively charged particle
B. The mass of electron is equal to the mass of neutron
C. It is a basic constituent of all atoms
D. It is a constituent of cathode rays

Answer: B

- Watch Video Solution

6. Which of the following properties of atom could be explained correctly by Thomson model of atom?
A. Overall neutrality of atom
B. Spectra of hydrogen atom
C. Position of electrons, protons and neutrons in atom
D. Stability of atom

D Watch Video Solution

7. Two atoms are said to be isobars, if
A. they have same number but different mass number
B. they have same number of electrons but different number of neutrons
C. they have same number of neutrons but different number of electrons
D. sum of the number of protons and neutrons is same but the number of protons is different

Answer: D

- Watch Video Solution

8. The number of radial nodes for 3 p orbital is......
A. 3
B. 4
C. 2
D. 1

Answer: D

9. Number of angular nodes for 4d orbtial is
A. 4
B. 3
C. 2
D. 1

Answer: C

- Watch Video Solution

10. Which of the following is responsible to rule out the existence of definite paths or trajectories of electrons?
A. Pauli's exculsion principle
B. Heisenberg's uncertainty principle
C. Hund's rule of maximum multiplicity
D. Aufbau principle

Answer: B

D Watch Video Solution

11. Total number of orbitals associated with thrid shell will be.....
A. 2
B. 4
C. 9
D. 3

Answer: C

- Watch Video Solution

12. Orbital angular momentum depends on
A. l
B. n and I
C. n and m
D. m and s

Answer: A

13. Chlorine exists in two isotopic forms $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ but its atomic mass is 35.5 . this indicates the ratio of $\mathrm{Cl}-37$ and $\mathrm{Cl}-35$ is approximately
A. 1:2
B. 1:1
C. 1:3
D. 3: 1

Answer: C

- Watch Video Solution

14. The pair of ions having same electronic configuration is \qquad .
A. $\mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$
B. $F e^{3+}, \mathrm{Mn}^{2+}$
C. $\mathrm{Fe}^{3+}, \mathrm{Co}^{3+}$
D. $\mathrm{Sc}^{3+}, C r^{3+}$

Answer: B

- Watch Video Solution

15. For the electrons of oxygen atom, which of the following statemetns correct?
A. $Z_{\text {eff }}$ for an electron in a 2 s orbital is the same as $Z_{\text {eff }}$ for an electron in a $2 p$ orbital
B. An electron in the 2 s orbital has the same energy as an electron in the $2 p$ orbital
C. $Z_{\text {eff }}$ for electron in 1 s orbital is the same $Z_{\text {eff }}$ for an electron in a 2 s orbital
D. The two electrons present in the $2 s$ orbital have spin quantum number m_{s} but of opposite sign

Answer: D

D Watch Video Solution

16. It travelling at same speeds, which of the following matter waves have the shortest wavelength?
A. Electron
B. Alpha particle $\left(H e^{2+}\right)$
C. Neutron
D. Proton

Answer: B

D Watch Video Solution

NCERT Exemplar Problems With Answers, Hints and Solution (II. Multiple Choice Questions)

1. Identify the paris which are not of isotopes?
A. ${ }_{16}^{12} X,{ }_{6}^{13} Y$
B. ${ }_{17}^{35} X,{ }_{17}^{37} Y$
C. ${ }_{16}^{14} X,{ }_{7}^{14} Y$
D. ${ }_{4}^{8} X, .{ }_{5}^{8} Y$

Answer: C::D

- Watch Video Solution

2. Out of the following pairs of electrons, identify the pairs of electrons present in degenerate orbitals :
A. (i) $n=3, l=2, m_{1}=2, m_{s}=-\frac{1}{2}$
(ii) $n=3, l=2, m_{1}=-1, m_{s}=-\frac{1}{2}$
B. (i) $n=3, l=1, m_{1}=, m_{s}=+\frac{1}{2}$
(ii) $n=3, l=2, m_{1}, m_{s}=+\frac{1}{2}$
C. (i) $n=4, l=1, m_{1}=1, m_{s}=+\frac{1}{2}$
(ii) $n=3, l=2, m_{1}=1, m_{s}=+\frac{1}{2}$
D. (i) $n=3, l=2, m_{1}=+2, m_{s}=-\frac{1}{2}$
(ii) $n=3, l=1, m_{1}=+2, m_{s}=+\frac{1}{2}$

Answer: A

- Watch Video Solution

3. Which of the following sets of quantum numbers are correct ?
A. $\begin{array}{lll}n & l & m_{1} \\ 1 & 1 & +2\end{array}$
B. $\begin{array}{lll}n & l & m_{1}\end{array}$
$21+1$
C. $\begin{array}{lll}n & l & m_{1} \\ 3 & 2 & -2\end{array}$
D. $\begin{array}{lll}n & l & m_{1} \\ 3 & 4 & -2\end{array}$

Answer: B::C

4. In which of the following pairs the ions are isoelectronic?
A. $N a^{+}, M g \wedge$
$(2+)$
B. $A l^{3+}, O^{-}$
C. $\mathrm{Na}^{+}, \mathrm{O}^{2-}$
D. $\mathrm{N}^{3}, \mathrm{Cl}^{-}$

Answer: A: C

- Watch Video Solution

5. Which of the following statements concerning the quantum numbers are correct?
A. Angular quantum number determines the three dimensional shape of the orbital
B. The pincipal quantum number determines the orientation and energy of the orbital
C. Magnetic quantum number determines the size of the orbital
D. Spin quantum number of an electron determine the orientation of the spin of electron relative to the chosen axis

Answer: A: D

- Watch Video Solution

NCERT Exemplar Problems With Answers, Hints and Solution (Short Answer questions)

1. Arrange s, p and d subshells of a shell in the increasing order of effective nuclear charge $\left(Z_{e f f}\right)$ experienced by the electron present in them.
2. Show the distribution of electrons in oxygen atom (atomic number 8) using orbital diagram.

- Watch Video Solution

3. Nickel atom can lose two electrons to form $N i^{2+}$ ion. The atomic number of nickel is 28 . From which orbital will nickel lose two electrons?

- Watch Video Solution

4. Which of the following orbitals are degernate?
$3 d_{x y}, 4 d_{x y}, 3 d_{z^{2}, 3 d_{y z}}, 4 d_{y z}, 4 d_{z}{ }^{2}$

- Watch Video Solution

5. Calculate the total number of angular nodes and radial nodes present in $3 p$ - orbital.
6. The arrangement of orbitals on the basis of energy is based upon their $(\mathrm{n}+\mathrm{l})$ value. Lower the value of $(\mathrm{n}+\mathrm{l})$, lower is the energy. For orbitals having same values of $(n+1)$. The orbital with lower value of n will have lower energy.
I. Based upon the baove information arrange the following orbitals in the increasing order of energy.
(a) $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 2 \mathrm{p}$ (b) $4 \mathrm{~s}, 3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~d}$
(c) $25 \mathrm{p}, 4 \mathrm{~d}, 5 \mathrm{~d}, 4 \mathrm{f}, 6 \mathrm{~s}$ (d) $5 \mathrm{f}, 6 \mathrm{~d}, 7 \mathrm{~s}, 7 \mathrm{p}$
II. Based upon the above information Solve the question. give below.
(a) hich of the following orbitals has the lowest energy
$4 d, 4 f, 5 s, 5 p$
(b) which of the following orbitals has the higher energy?
$5 p, 5 d, 5 f, 6 s, 6 p$

- Watch Video Solution

7. Which of the following will not show deflection from the path on passing through an electric field?

Proton,cathode rays, electron,neutron.

- Watch Video Solution

8. An atom having mass number 13 has 7 neutrons. What is the atomic number of the atom.

- Watch Video Solution

9. Wavelengths of different radiations are given below:
(A) 300 nm (B) $300 \mu \mathrm{~m}$ (C) $3 \mathrm{~nm}\left(30 A^{\circ}\right.$

Arrange these radiations in the increasing order of their energies.

- Watch Video Solution

10. The electronic configuration of valence shell of Cu is $3 d^{10} 4 s^{1}$ and not $3 d^{9} 4 s^{2}$. How is this configuration explained?

Watch Video Solution

11. The Balmer series in the hydrogen spectrum corresponds to the transition from $n_{1}=2$ to $n_{2}=3,4$....... This series lies in the visible region. Calculate the wave number of line associated with the transition in Balmer series when the electron moves to $\mathrm{n}=4$ orbit.

$$
\left(R_{H}=109677 \mathrm{~cm}^{-1}\right)
$$

- Watch Video Solution

12. According to de-Brogile, matter should exhibit dual behaviour, that is both particle and wave like properties. However, a cricket ball of mass 100 g does not move like a wave when it is thrown by abowler at a speed of $100 \mathrm{~km} / \mathrm{h}$. calculate the wavelength of the ball and explain why it does not show wave nature.
13. What is the experimental evidence in support of the diea that electronic energies in an atom are quantized?

- Watch Video Solution

14. Out of electron and proton which one will have, a higher velocity to produce matter waves of the same wavelength ? Explain it.

- Watch Video Solution

15. A hypothetical electromagnetic wave is shown in Fig. Find out the wavelength of the radiation

- Watch Video Solution

16. Chlorophyll present in green leaves of plants absorbs light at $4.620 \times 10^{14} \mathrm{~Hz}$. Calculate the wavelength of radiation in nanometer. Which part of the electromagnetic spectrum does it belong to?

- Watch Video Solution

17. What is the difference between the terms orbit and orbital ?

- Watch Video Solution

18. Table-tennis ball has mass 10 g and s peed of $90 \mathrm{~m} / \mathrm{s}$. if speed can be meausred within an accuracy of 4%. What will be the uncertainly in speed and position?

- Watch Video Solution

19. The effect of uncertainty principle is significant only for motion of microscopic particles and is negligible for the macroscopic particles. Justify the statement with the help of a suitable example.

- Watch Video Solution

20. Hydrogen atom has only one electron, So, mutual repulsion between electrons is absent. However, in multielectron atoms mutual repulsion between the electrons is significant. How does this affect the energy of an electron in the orbitals of the same prinicipal quantum number in multielectron atoms?

NCERT Exemplar Problems With Answers, Hints and Solution (Matching type

 Questions)1. Match the following species with their corresponding ground state electronic configuration.

Atom/lon Electronic configuration
(a) Cu
(i) $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}$
(b) cu^{2+}
(ii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2}$
(c) Zn^{2+}
(iii) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
(d) cr^{3+}
(iv) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}$

$$
\text { (v) } \quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{3}
$$

- Watch Video Solution

2. Match the quantum numbers with the information provided by these

Quantum number

(i) Principal quantum number
(ii) Azimuthal quantum number
(iii) Magnetic quantum number
(iv) Spin quantum number

Information provided

(a) orientation of the orbital
(b) energy and size of orbital
(c) spin of electron
(d) shape of the orbital
3. Match the following rules with their statements.

Rules	Statements
A. Hund's Rule	1.No two electrons in an atom can have the same set of four quantum numbers. B. Aufbau Principle2.Half-filled and completely filled orbitals have extra stability. C. Pauli Exclusion Principle3. Pairing of electrons in the orbitals belonging to the same subshell does not take place until each orbital is singly occupied.
D. Heisenberg's Uncertainty4. It is impossible to determine the exact position and exact momentum of a subatomic particle simultaneously.	
In the ground state of atoms, orbitals are filled in the	
order of their increasing energies.	

- Watch Video Solution

4. Match the following :

(a) X-rays
(i) $\quad v=10^{0}-10^{4} \mathrm{~Hz}$
(b) UV
(ii) $\quad \mathrm{v}=10^{10} \mathrm{~Hz}$
(c) Long radio waves
(iii) $\quad \mathrm{v}=10^{16} \mathrm{~Hz}$
(d) Microwave
(iv) $\quad v=10^{18} \mathrm{~Hz}$
5. Match the following :
(a) Photon
(i) value is 4 for N -shell
(b) Electron
(ii) Probability density
(c) ψ^{2}
(iii) Always positive value
(d) Principal quantum number n
(iv) Exhibits both momentum and

Watch Video Solution

6. Match species given in Column I with the electronic configuration given in Column II.

Column I Column II
(a) cr
(i) $\quad[A r] 3 d^{8} 4 s^{0}$
(b) Fe^{2+}
(ii) $[A r] 3 d^{10} 4 s^{1}$
(c) $N i^{2+}$
(iii) $[A r] 3 d^{6} 4 s^{0}$
(d) $C u$
(iv) $[A r] 3 d^{5} 4 s^{1}$
(v) $[A r] 3 d^{6} 4 s^{2}$

D Watch Video Solution

NCERT Exemplar Problems With Answers, Hints and Solution (Assertion And Reason Type Questions)

1. Assertion(A): All isotopes of a given element show the same type of chemical behaviour.

Reason(R) The chemical properties of an atom are controlled by the numb er of electron s in the atom.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. Both A and R are false

Answer: A

- Watch Video Solution

2. Assertion(A) Black body is an ideal body that emits and absorbs radiations of all frequencies.

Reason(R) The frequency of radiation emitted by a body goes from a lower frequency to higher frequency with an increase in temperature.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. Both A and R are false

Answer: B

- Watch Video Solution

3. Assertion (A) It is impossible to determine the exact position and exact momentum of an electron simultaneously.

Reason (R) The path of an electron in an atom is clearly defiened.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true but R is not the correct explanation of A
C. A is true but R is false
D. Both A and R are false

Answer: C

D Watch Video Solution

Abstract

NCERT Exemplar Problems With Answers, Hints and Solution (Long Answer Questions)

1. What is photoelectric effect ? State the result of photoelectric effect experiment that could not be explained on the basis of laws of classical physics. Explain this effect on the basis of quantum theory of electromagnetic radiations.

- Watch Video Solution

2. Thershold frequency, v_{0} is the minimum frequency which a photon must possess to eject an electron from a metal. It is different for different metals. When a photon of frequency $1.0 \times 10^{15} s^{-1}$ was allowed to hit a metal surface, an electron having $1.988 \times 10^{-19} \mathrm{~J}$ of kinetic energy was
emitted. Calculated the threshold frequency of this metal. equal to 600 nm hits the metal surface.

- Watch Video Solution

3. When an electric discharge is passed through hydrogen gas, the hydrogen molecules dissociate to produce excited to produce excited hydrogen atoms. These excited atoms emit electromagnetic radiation of discrete frequencies which can be given by the general formula $\vec{v}=109677\left[\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right]$
What points of Bohr's model of an atom can be used to arrive at this formula? Based on these points derive the above formula giving description of each step and each term.

- Watch Video Solution

4. Calculate the energy and frequency of the radiation emitted when an electron jumps from $n=3$ to $n=2$ ina hydrogen atom.
5. Why was a change in the Bohr Model of atom required? Due to which important development concept of movement of an electron in an orbit was replaced by the concept of probabiltiy of finding electron in an orbital? what is the name given to the changed model of atom?

- Watch Video Solution

Additional Questions (Very Short Answer Questions)

1. What is an electron? Give the values of charge and mass of an electron.

- Watch Video Solution

2. Why electrons present around the nucleus. The force of attractive is balanced by the centrifugal force.
3. Determine the number of protons and neutrons in ${ }_{92} U^{238}$ and ${ }_{90} T h^{234}$.

- Watch Video Solution

4. An atom which does not have any neutron is

- Watch Video Solution

5. How many electrons are present in the ion ${ }_{26}^{56} \mathrm{Fe}^{2+}$?

- Watch Video Solution

6. Name three ions which are isoelectronic with F^{-}ion

- Watch Video Solution

7. Name the different isotopes of hydrogen. Represent them along with their atomic numbers and mass numbers.

- Watch Video Solution

8. What is Ritz combination principle ?

- Watch Video Solution

9. How are frequency and wavelength related to each other ?

- Watch Video Solution

10. Arrange X-rays, cosmic rays and radiowaves according to frequency.

- Watch Video Solution

11. What is the value of Planck's constant?
12. What do you observe in the spectrum of NaCl ?

- Watch Video Solution

13. Which one of the series of hydrogen spectrum is in the visible region?

- Watch Video Solution

14. Write the expression which gives the energy of electron in the nth shell of hydrogen like particles

- Watch Video Solution

15. Give the equation which gives the relationship between wavelength
(λ) and momentum (p) of the particle.
16. What is the most important application of de Broglie concept ?

- Watch Video Solution

17. What happens when an electron hits a zinc sulphide screen and what does it prove?

- Watch Video Solution

18. State de-Broglie hypothesis.

- Watch Video Solution

19. Name two experiments which show the dual nature of electrons.
20. How does the change in velocity of a moving particle alter the wavelength related to the particle ?

- Watch Video Solution

21. What happens to the position and momentum of an electron if a photon of a short wavelength hits the electron?

- Watch Video Solution

22. Why did Heisenberg's uncertainty principle replace the concept of definite orbit by the concept of probability?

- Watch Video Solution

23. Mention the physical significance of Ψ and Ψ^{2}
24. Write Schrodinger wave equation in the briefest possible form

- Watch Video Solution

25. Which quantum number determines the (a) shape (b) orientation and
(c) size of the orbital ?

- Watch Video Solution

26. Define an atomic orbital. What does angular momentum quantum number tell about an orbital ?

- Watch Video Solution

27. Which energy levels do not have p-orbital ?
28. What is the maximum probability for an electron to be present within the atomic orbital ?

- Watch Video Solution

29. Which is the first energy level containing f-orbitals ?

- Watch Video Solution

30. What is the maximum number of electrons that can be accommodated in the d-subshell ?

- Watch Video Solution

31. Which quantum number defines the orientation of orbital in the space around the nucleus?
32. What values of m are permitted for electron having angular quantum number $\mathrm{l}=2$?

- Watch Video Solution

33. What value are permitted for the angular momentum quantum number I for an electron with principal quantum number $\mathrm{n}=4$?

- Watch Video Solution

34. What are the values of n, I and m for $2 p_{x}$ and $3 p_{z}$ orbitals ?

- Watch Video Solution

35. Which orbitals is non-directional ?
36. How many orbitals do you expect to be present in the 5th shell ?

- Watch Video Solution

37. Which d-orbital does not have four lobes and what is its shape called ?

- Watch Video Solution

38. (a) What is radial probability distribution curve ? Draw radial probability distribution curves for 1 s and 2 s orbitals.
(b) Discuss the similarities and difference between 1 s and $2 s$ orbitals.
(c) How many nodes are present in 1 s and 2 s orbitals?

- Watch Video Solution

39. What is the physical significance of the lines in the following depictions of atomic orbitals?

s-orbital

p-orbital

- View Text Solution

40. Draw the shapes of various p and d orbitals.

- Watch Video Solution

41. What will be the order of energy levels $3 \mathrm{~s}, 3 \mathrm{p}$ and 3 d in case of H -atom ?

D Watch Video Solution

42. What are degenerate orbitals?

- Watch Video Solution

43. Which element has only one electron in the d-orbitals ?

- Watch Video Solution

44. Write the electronic configuartion of $C u^{+}$(At. No. of $\mathrm{Cu}=29$)

- Watch Video Solution

45. Copper (I) is diamagnetic while copper (II) is paramagnetic . Explain.

- Watch Video Solution

46. Why is the electronic configuration $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{0}$ not correct for the ground state of nitrogen (atomic number $=7$) ?

(D) Watch Video Solution

47. What are the possible values of principal (n) and azimuthal (I) quantum number for the unpaired electron in the atom of an element whose atomic number is 9 ?

- Watch Video Solution

48. Out of Fe^{2+} and Fe^{3+} which is more paramagnetic and why?

- Watch Video Solution

49. Write the electronic configuration of a divalent ion of a coinage metal.

- Watch Video Solution

50. By what name are the following principles known ?
(i) Electrons with the same spin quantum number cannot be present in the same atomic orbital.
(ii) The wavelength associated with a moving particle is given by $\lambda=h / p$
(iii) Of a pair of conjugate properties, both cannot be measured precisely at the same time

- Watch Video Solution

51. What is the nuclear radius of an atom whose mass number is 125 ?

- Watch Video Solution

Additional Questions (Short Answer question)

1. From which electrode do cathode rays originate?
2. How can you say that electron is a universal constituent of all atoms ?

- Watch Video Solution

3. Describe in brief the experiments to demonstrate that cathode rays
(i) travel along straight path ,
(ii) are made up of material particles,
(iii) are negatively charged .

- Watch Video Solution

4. How was proton discovered ?

- Watch Video Solution

5. What is Thomoson's model of atom?
6. How can you say that nucleus is small in size but heavy in mass ?

- Watch Video Solution

7. Who discovered neutron?

- Watch Video Solution

8. Define atomic number and mass number .

- Watch Video Solution

9. What are isotopes ? How are they represented ?

- Watch Video Solution

10. Define wave length, frequency and wave number. How is frequency related to wave number ?

- Watch Video Solution

11. Plancks Quantum Theory

- Watch Video Solution

12. Explain the dual character of light radiations.

- Watch Video Solution

13. How is the atomic spectra of hydrogen obtained ? Whar are the different series of lines present in it ? In which regions do they lie ?

- Watch Video Solution

14. Using the Rydberg formula, calculate the wavelength of the first four spectral lines in the Lyman series of the hydrogen spectrum.

- Watch Video Solution

15. What is the difference between Rydberg formula and Balmer formula?

- Watch Video Solution

16. What were the drawbacks of Rutherford's model of an atom?

- Watch Video Solution

17. What do you understand by stationary states ?

- Watch Video Solution

18. What do you mean by quantisation of electronic energy and angular momentum ?

- Watch Video Solution

19. Bohr model cannot explain spectrum of

- Watch Video Solution

20. How does Bohr modeal explain the simultaneous appearance of a large number of lines in the hydrogen spectrum ?

- Watch Video Solution

21. Outline the weaknesses of Bohr's model of atom

- Watch Video Solution

22. What is meant by dual nature of particles in motion?

- Watch Video Solution

23. State de Broglie relationship. For what purpose is it used ?

- Watch Video Solution

24. Derive de Broglie equation for microscopic particles.

- Watch Video Solution

25. State de Broglie equation. How would the wavelength of a moving object vary with mass ?
26. Derive a relationship between wavelength (λ) associated with particle of mass (m) moving with a velocity (v). Give the importance of this relation.

- Watch Video Solution

27. State Heisenberg's uncertainty principle. Give mathematical expression for the same

- Watch Video Solution

28. Explain why it is impossible to measure simultaneously the position and velocity of a fast moving small body like an electron

- Watch Video Solution

29. State Heisenberg's uncertainty principle. Why motion of electron around the nucleus cannot be described in terms of orbits ?

- Watch Video Solution

30. In what ways Heisenberg's uncertainty principle contradicts the concept of stationary orbit for electron as suggested by Bohr ? or Give the physical significance of uncertainty principle.

- Watch Video Solution

31. What happened to Bohr's model of atom in the light of uncertainty principle ? Explain the concept of 'probability'. Define 'atomic orbtial'.

- Watch Video Solution

32. What is the significane of wave function Ψ in the Schrodinger wave equation ? What is an atomic orbital ? What Ψ is called orbital wave function?

- Watch Video Solution

33. How are the quantum numbers related to each other?

- Watch Video Solution

34. Define Pauli exclusion principle. Why is it called exclusion principle ?

- Watch Video Solution

35. In an atom, the first shell may contain upto 2 electrons, the second shell upto 8 , the third upto 18 and then fourth shell upto 32 electrons. Explain this arrangement in terms of quantum number.
36. How do $1 \mathrm{~s}, 2 \mathrm{~s}$ and 3 s -orbitals differ from each other ?

Watch Video Solution
37. Draw probability distribution curves for 1 s and 2 s electrons. What observations are made from the graph ?

- Watch Video Solution

38. Draw and discuss the shapes of d-orbitals.

- Watch Video Solution

39. Name five d-orbitals. Give their shapes
40. the current statement on the Aufbau principle is that

- Watch Video Solution

41. State Hund's rule and its importance in filling the orbitals in various energy levels, take atomic number 17 as an example.

- Watch Video Solution

42. State Hund's rule of maximum multiplicity. How is it used for the distribution of electrons in nitrogen (At No.7) and fluorine (At. No. 9) atoms?

- Watch Video Solution

43. Why is the electronic configuartion of oxygen written as $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{1} 2 p_{z}^{1}$ and not as $1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2}$? Name and state the rule
governing this type of distribution

- Watch Video Solution

44. Write the sequence in which electrons fill the various energy subshells in an unexcited atom.

- Watch Video Solution

45. Why do some atoms posses exceptional electronic configuation ? Explain with suitable examples.

- Watch Video Solution

46. Explain why atoms with half filled and completely filled orbitals have extra stability?
47. Write electronic configurations of atoms of Cr (at. no 24) and Cu (at. no. 29). Show the orientations of electron spins by arrow heads.

- Watch Video Solution

Additional Questions (Long Answer Questions)

1. Electron was discovered by

- Watch Video Solution

2. How are cathode rays produced ? Briefly explain their important properties
3. What are Anode Rays ? How do they originate ? List their important properties.

- Watch Video Solution

4. Rutherford's scattering experiment led to the discovery of

(Watch Video Solution

5. How was the nuclear model of atom discovered?

- Watch Video Solution

6. How was the neutrons discovered ? Mention the characteristics of neutrons.

- Watch Video Solution

7. (a) Define the terms Atomic Number and Mass Number
(b) How does mass number differ from atomic mass ? How do atomic number (Z) and mass number (A) help to calculate the number of electrons, protons and neutrons in an atom?

- Watch Video Solution

8. What were the main points of Electromagnetic wave theory ? What were its limitations ? How have these been overcome by Planck's quantum theory?

- Watch Video Solution

9. Write short notes on the following :
(i) Solar spectrum or continuous spectrum.
(ii) Atomic spectra or line spectra.
10. State and explain de Broglie's relation

- Watch Video Solution

11. State and explain Heisenberg's uncertainty principle.

- Watch Video Solution

12. List the main points of difference between orbit and orbital.

- Watch Video Solution

13. The basis of quantum mechanical model of an atom is

- Watch Video Solution

14. Define Quantum numbers and brief them.

Watch Video Solution

15. Define atomic orbital. Give the shapes of s and p orbitals.

- Watch Video Solution

16. State and explain the following:
(i) Aufbau principle
(ii) Pauli exclusion principle
(iii) Hund's rule of maximum multiplicity.

- Watch Video Solution

Analytical Questions And Problems with Answers/solutions (Questions)

1. Why cathode rays are produced only when the pressure of the gas inside the discharge tube is very low ?
2. Name the element in each of the following cases:
(i) A bivalent anion of the element having 10 electrons
(ii) A trivalent cation of the element having 10 electrons.

What is the relationship between the two ions called ?

- Watch Video Solution

3. Why are Bohr orbits called stationary states ?

- Watch Video Solution

4. Why electronic energy is negative ? Comment on the spacing between the energy levels.

- View Text Solution

5. A molecule of O_{2} and that of SO_{2} travel with the same velocity. What is the ratio of their wavelengths ?

- Watch Video Solution

6. Why can't we overcome the uncertainty predicted by Heisenberg principle by building more precise devices to reduce the error in measurement below the $h / 4 \pi$ limit ?

- Watch Video Solution

7. What shell would be the first to have a g-subshell ? How many orbitals will be possible in a g-subshell ?

- Watch Video Solution

8. How many electrons are present in all subshells (fully - filled) with $n+l=5$?

Watch Video Solution

9. What is the angular momentum of an electron in (i) 2 s orbital (ii) 4 f orbital?

- Watch Video Solution

10. What is the difference between angular momentum of an electron present in 3 p orbital from that of an electron present in $4 p$ orbital ?

- Watch Video Solution

11. Why does that splitting of spectral lines occur when the source of the spectrum is placed in a magnetic field ?
12. The plot of radial probability function versus distance from nucleus for 2s orbital is given below:

Distance from nucleus

Calculate the distance between the peaks X and Y

- View Text Solution

13. Which of the two is paramagnetic : $\mathrm{V}(\mathrm{IV})$ or $\mathrm{V}(\mathrm{V})$ and why ?
14. For a hydrogen -like particle, derive the expression : $v_{n}=\left(\frac{Z e^{2}}{m r_{n}}\right)^{1 / 2}$ where v_{n} is the velocity of the electron at distance r_{n} from the nucleus, Z is the atomic number of the H -like particles, m and e are the charge and mass of the electron.

- View Text Solution

15. If the uncertainty in the position of a moving electron is equal to its de Broglie wavelength, then its velocity will be completely uncertain. Explain.

- Watch Video Solution

16. What do you understand by rest mass of the electron ? What is its value on the unified scale ? How is the mass of the electron related to its velocity ? What will be the mass of the electron if it travels with velocity equal to the velocity of light?
17. In H -atoms, the energy of electron in the nth orbit is given as
$E_{n}=-\frac{13.6}{n^{2}} \mathrm{eV}$
Show that $E_{(n+1)}-E_{n}=\frac{13.6 \times 2}{n^{3}} e V$ for large value of n .

- Watch Video Solution

18. The wave function of $2 s$ electron is given by
$\psi_{2 s}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2}\left(2-\frac{r}{a_{0}}\right) e^{-\frac{r}{a_{0}}}$
It has a node at $r=r_{p}$. Find the relation between r_{p} and a.

- Watch Video Solution

19. How many nodes are present in 3p-orbital, Represent diagrammatically

- Watch Video Solution

20. If the energy of an electron in 3rd Bohr orbit is $-E$, what is the energy of the electron in (i) 1st Bohr orbit (ii) 2nd Bohr orbit ?

- Watch Video Solution

21. Show that ground state energy of an electron in H -atom is equal to the first excited state energy of electron in He^{+}ion (assuming their Rydberg's constants to be equal).

- Watch Video Solution

22. The two electrons in the 1s orbital of helium have antiparallel spin.

Why do not they have parallel spin ?

- Watch Video Solution

23. On the basis of uncertainty principle show that an electron cannot exist with in atomic nucleus. (Given : Nuclear radius $=10^{-15} \mathrm{~m}$)
24. In each of the following pairs of salts, which one is more stable and why?
(i) Ferrous and ferric salts (ii) Cuprous and cupric salts.

- Watch Video Solution

25. Heisenberg uncertainty principle has no significance in our every day life. Explain.

- Watch Video Solution

Analytical Questions And Problems with Answers/solutions (Problems)

1. If the kinetic energy of a particle is doubled, by what factor the de Broglie wavelength of the particle increase or decrease?
2. Calculate the accelerating potential that must be imported to a proton beam to give it an effective wavelength of 0.05 nm

- Watch Video Solution

3. With what velocity must an electron travel so that its momentum is equal to that of a photon of wavelength 560 nm ?

- Watch Video Solution

4. If the uncertainties in the measurement of position and momentum of an electron are equal calculate the uncertainty in measuring the velocity

- Watch Video Solution

5. When a certain metal was irradiated with a light of frequency $3.2 \times 10^{16} \mathrm{~Hz}$, the photoelectrons had twice the kinetic energy as emitted when the same was irradiated with light of frequency $2.0 \times 10^{16} \mathrm{~Hz}$. Calculate the threshold frequency $\left(v_{0}\right)$ of the metal.

- View Text Solution

6. Which state of the triply ionized Be^{+++}has the same orbital radius as that of the ground state of hydrogen? Compare the energies of two states.

- Watch Video Solution

7. Find out the number of waves made by a Bohr's electron in one complete revolution in its $3 r d$ orbit.

- Watch Video Solution

8. A bulb emits light of wavelength $4500 \AA$. The bulb is rated as 150 W and 8% of the energy is emmitted as light. How many photons are emitted by the bulb per second?

- Watch Video Solution

9. What is the distance of separation between second and third orbits of H -atom is given as :

$$
r_{n}=0.529 \times n^{2} \AA
$$

- Watch Video Solution

10. To which orbit the electron in the hydrogen atom will jump after absorbing $1.94 \times 10^{-18} J$ of energy ?

- Watch Video Solution

11. The wavelength of a photon is $1.4 \AA$. It collides with an electron. Its wavelength after collision is $2.0 \AA$. Calculate the energy of the scattered electron.

- Watch Video Solution

12. If the binding energy of electrons in a metal is $250 \mathrm{~kJ} \mathrm{~mol}^{-1}$, what is the threshold frequency of the striking photons?

- Watch Video Solution

13. A base ball of mass 200 g is moving with velocity of $3 \times 10^{3} \mathrm{cms}^{-1}$. If we can locate the base ball with an error equal to the magnitude of the wavelength of the light used ($5000 \AA$). How will the uncertainty in momentum be used with the total momentum of the base ball?

- Watch Video Solution

14. Find the velocity (in $m s^{-1}$) of electron in first Bohr orbit of radius a_{0}. Also find the de Broglie wavelength (in m). Find the orbital angular momentum of 2 p orbital of hydrogen atom in units of $h / 2 \pi$.

- View Text Solution

15. The frequency of one of the lines in Paschen series of hydrogen atom is $2.340 \times 10^{11} \mathrm{~Hz}$. The quantum number n_{2} Which produces this transition is.

(Watch Video Solution

16. The longest wavelength of $H e^{+}$in paschen series is " m ", then shortest wavelenght of $B e^{+3}$ in Pacchen series is(in terms of m):

(Watch Video Solution

17. Calculate the de Broglie wavelength of the electron in third orbit of hydrogen atom

- View Text Solution

18. What is the ratio of time periods $\left(T_{1} / T_{2}\right)$ in second orbit of hydrogen atom to third orbit of He^{+}ion?

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (I. Multiple Choice Question) With one correct Answer

1. A strong argument in favour of the particle nature of cathode rays is that they
A. produce fluorescence
B. travel through vacuum
C. can rotate a light paddle wheel placed in their path
D. cast shadow of the objects lying in their path

Answer: C

- Watch Video Solution

2. Which of the following feature of an atom is not a direct result of Rutherford's experiment
A. extraordinary hollow nature of atom
B. existence of circular electronic of atom
C. small size of the nucleus
D. exceptionally high density of the nucleus

Answer: B

- View Text Solution

3. A metallic ion M^{2+} has an electronic configuration of $2,8,14$ and the ionic weight is 56 amu . The number of neutrons in its nucleus is
A. 30
B. 32
C. 34
D. 42

Answer: A

- Watch Video Solution

4. Which one is a set of isolectronic species ?
A. $\mathrm{N}_{2}, C O_{2}, C N^{-}$
B. $\mathrm{N}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}$
C. $N_{2}, C O, C N^{-}$
D. $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Cl}$

Answer: C

- Watch Video Solution

5. In which one of the following pairs, the two species are both isoelectronic and isotopic ? (At. Numbers: $\mathrm{Ca}=20, \mathrm{Ar}=18, \mathrm{~K}=19, \mathrm{Mg}=12$, $\mathrm{Fe}=26, \mathrm{Na}=11)$
A. . ${ }^{40} \mathrm{Ca}^{2+}$ and ${ }^{40} \mathrm{Ar}$
B. ${ }_{39} K^{+}$and.$^{40} K^{+}$
C. ${ }^{24} M g^{2+}$ and.${ }^{25} \mathrm{Mg}$
D. . ${ }^{23} N a$ and.${ }^{24} N a^{+}$

Answer: B

- Watch Video Solution

6. The group having isoelectronic species is
A. $O^{2-}, F^{-}, N a, M g^{2+}$
B. $\mathrm{O}^{-}, \mathrm{F}^{-}, \mathrm{Na} a^{+}, \mathrm{Mg}^{+}$
C. $\mathrm{O}^{2-}, \mathrm{F}^{-}, \mathrm{Na} a^{+}, \mathrm{Mg}^{2+}$
D. $O^{-}, F^{-}, N a, M g$

Answer: C

- Watch Video Solution

7. A standing wave in a string 35 cm long has a total of six nodes including those at the ends. Hence, wavelength of the standing wave is
A. 5.8 cm
B. 4.6 cm
C. 10.4 cm
D. 14 cm
8. For hydrogen atom, Rydberg constant $\left(R_{H}\right)$ is $x m^{-1}$. Then for He^{+} ion, the corresponding value of this constant will be
A. $x \mathrm{~cm}^{-1}$
B. $400 x \mathrm{~cm}^{-1}$
C. $4 x \mathrm{~cm}^{-1}$
D. $0.04 x \mathrm{~cm}^{-1}$

Answer: D

- Watch Video Solution

9. The energies E_{1} and E_{2} of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths, i.e., λ_{1} and λ_{2} will be.
A. $\lambda_{1}=\frac{1}{2} \lambda_{2}$
B. $\lambda_{1}=\lambda_{2}$
C. $\lambda_{1}=2 \lambda_{2}$
D. $\lambda_{1}=4 \lambda_{2}$

Answer: C

- Watch Video Solution

10. The value of planok,s constant is $6.63 \times 10^{-34} \mathrm{Js}$ the speed of light is $3 \times 10^{17} \mathrm{nms}^{-1}$ which value is closest to the wavelength in nanometer of a quantum of light with frequency of $6 \times 10^{15} S^{-1}$?
A. 10
B. 25
C. 50
D. 75

Answer: C

- Watch Video Solution

11. Calculate the wavelength of light required to break the bond between two chlorine atoms in a chlorine molecule. The Cl- Cl bond energy is 243 kJ $\mathrm{mol}^{-1}\left(h=6.6 \times 10^{-34} \mathrm{Js}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, \quad\right.$ Avogadro's number $=6.02 \times 10^{23} \mathrm{~mol}^{-1}$)
A. $8.18 \times 10^{-31} m$
B. $6.26 \times 10^{-21} m$
C. $4.91 \times 10^{-7} \mathrm{~m}$
D. $4.11 \times 10^{-6} m$

Answer: C

- Watch Video Solution

12. A 600 W mercury lamp emits monochromatic radiation of wave length 313.3 nm . How many photons are emitted from the lamp per second ? ($h=6.626 \times 10^{-34} \mathrm{Js}$, velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$)
A. 1×10^{19}
B. 1×10^{20}
C. 1×10^{21}
D. 1×10^{23}

Answer: C

- Watch Video Solution

13. When the frequency of light incident an a metallic plate is doubled, the KE of the emitted photoelectrons will be :
A. doubled
B. halved
C. more than doubled
D. increases but less than doubled.

Answer: C

- Watch Video Solution

14. Photoelectric emission is observed from a metallic surface for frequencies v_{1} and v_{2} of the incident light. If the maximum value of kinetic energies of the photoelectrons emitted in the two cases are in the ratio $n: 1$ then the threshold frequency of the metallic surface is
A. $v_{1}=v_{2}$
B. $\frac{v_{1}-v_{2}}{h}$
C. $2 v_{1}-v_{2}$
D. $2 v_{2}-v_{1}$

Answer: D

15. The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1 , would be :
$\left(\right.$ Rydberg constant $\left.=1.097 \times 10^{7} \mathrm{~m}^{-1}\right)$
A. 91 nm
B. 192 nm
C. 406 nm
D. $9.1 \times 10^{-8} \mathrm{~nm}$

Answer: A

- Watch Video Solution

16. The frequency of light emitted for the transition $n=4$ to $n=2$ of $H e^{+}$is equal to the transition in H atom corresponding to which of the following ?
A. $n=3$ to $n=1$
B. $n=2$ to $n=1$
C. $n=3$ to $n=2$
D. $n=4$ to $n=3$

Answer: B

- Watch Video Solution

17. Based on equation $E=-2.178 \times 10^{-18} J\left(\frac{Z^{2}}{n^{2}}\right)$, certain conclusions are written. Which of them is not correct ?
A. The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at infinite distance from the nucleus.
B. Lower the value of n, the larger is the orbit radius
C. Equation can be used to claculate the change in energy when the electron changes orbit
D. For $n=1$, the electron has a more negative energy that it does for $n=6$ which means that the electron is more lossely bound in the smallest allowed orbit.

Answer: D

- Watch Video Solution

18. The shortest wavelength in hydrogen spectrum of Lyman series when $R_{H}=109678 \mathrm{~cm}^{-1}$ is :-
A. $1002.7 \AA$
B. $1215.67 \AA$
C. $1127.30 \AA$
D. $911.7 \AA$

- Watch Video Solution

19. The ratio of the frequency corresponding to the third line in the lyman series of hydrogen atomic spectrum to that of the first line in Balmer series of $L i^{2+}$ spectrum is
A. $\frac{4}{5}$
B. $\frac{5}{4}$
C. $\frac{4}{3}$
D. $\frac{3}{4}$

Answer: D

20. The wave number of the spectral line in the emission spectrum of hydrogen will be equal to $\frac{8}{9}$ times the Rydberg's constant if the electron jumps from \qquad :-
A. $n=3$ to $n=1$
B. $n=10$ to $n=1$
C. $n=9$ to $n=1$
D. $n=2$ to $n=1$

Answer: A

- Watch Video Solution

21. For balmer series in the spectrum of atomic hydrogen the wave number of each line is given by $\bar{V}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ where R_{H} is a constant and n_{1} and n_{2} are integers. Which of the following statements
(s), is (are correct)
22. As wave length decreases the lines in the series converge
23. The integer n_{1} is equal to 2 .
24. The ionisation energy of hydrogen can be calculated from the wave numbers of three lines.
25. The line of shortest wavelength corresponds to $=3$.
A. 1, 2 and 3
B. 2, 3 and 4
C. 1, 2 and 4
D. 2 and 4 only

Answer: C

D Watch Video Solution

22. According to the Bohr Theory, the third from the red end corresponds to which one of the following transitions in the hydrogen atom will give rise to the least energetic photon ?

$$
\text { A. } n=6 \text { to } n=1
$$

B. $n=5$ to $n=4$
C. $\mathrm{n}=6$ to $\mathrm{n}=5$
D. $\mathrm{n}=5$ to $\mathrm{n}=3$

Answer: C

- Watch Video Solution

23. The angular momentum of electron in ' d ' orbital is equal to:
A. $2 \sqrt{3} h$
B. $0 h$
C. $\sqrt{6} h$
D. $\sqrt{2} h$

Answer: C

24. In hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbits in an atom of hydrogen ?
A. $5 \rightarrow 2$
B. $4 \rightarrow 1$
C. $2 \rightarrow 5$
D. $3 \rightarrow 2$

Answer: A

- Watch Video Solution

25. The frequency of radiation emiited when the electron falls $n=4$ to $n=1$ in a hydrogen atom will be (given ionization energy of $H=2.18 \times 10^{-18} \mathrm{Jatom}^{-1}$ and $\left.h=6.625 \times 10^{-34} \mathrm{Js}\right)$
A. $1.54 \times 10^{15} s^{-1}$
B. $1.03 \times 10^{15} s^{-1}$
C. $3.08 \times 10^{15} s^{-1}$
D. $2.0 \times 10^{15} s^{-1}$

Answer: C

- Watch Video Solution

26. Energy of an electron is given by $E=-2.178 \times 10^{-18} J\left(\frac{Z^{2}}{n^{2}}\right)$. Wavelength of light required to excited an electron in an hydrogen atom from level $n=1$ to $n=2$ will be
$\left(h=6.62 \times 10^{-34} \mathrm{Js}\right.$ and $\left.c=3.0 \times 10^{8} \mathrm{~ms}^{-1}\right)$.
A. $8.500 \times 10^{-7} m$
B. $1.214 \times 10^{-7} m$
C. $2.816 \times 10^{-7} m$
D. $6.500 \times 10^{-7} m$

D Watch Video Solution

27. the radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom?
A. $\mathrm{He}^{+}(n=2)$
B. $L i^{2+}(n=2)$
C. $L i^{2+}(n=3)$
D. $B e^{3+}(n=2)$

Answer: D

- Watch Video Solution

28. One electron species having ionization enegry of 54.4 eV is
A. H
B. $H e^{+}$
C. B^{4+}
D. $L i^{2+}$

Answer: B

D Watch Video Solution

29. The ratio of area covered by second orbital to the first orbital is.
A. $1: 1$
B. 1: 16
C. $8: 1$
D. $16: 1$

Answer: D

30. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a_{0} is Bohr radius] :
A. $\frac{h^{2}}{4 \pi^{2} m a_{0}^{2}}$
B. $\frac{h^{2}}{16 \pi^{2} m a_{0}^{2}}$
C. $\frac{h^{2}}{32 \pi^{2} m a_{0}^{2}}$
D. $\frac{h^{2}}{64 \pi^{2} m a_{0}^{2}}$

Answer: C

- Watch Video Solution

31. The most probable radius (in pm) for finding the electron in He^{+}is
A. 0.0
B. 52.9
C. 26.5
D. 105.8

Answer: C

- Watch Video Solution

32. If ΔE is the energy emitted in electron volts when an electronic transition occurs from higher energy level to a lower energy level in H atom, the wavelength of the line produced is approximately equal to
A. $\frac{19800}{\Delta E} \AA$
B. $\frac{12375}{\Delta E} \AA$
c. $\frac{13600}{\Delta E} \AA$
D. $\frac{21800}{\Delta E} \AA$

Answer: B

- Watch Video Solution

33. If R_{H} represents Rydberg constant, then the energy of the electron in the ground state of hydrogen atom is
A. $-\frac{h c}{R_{H}}$
B. $-\frac{1}{R_{H} c h}$
C. $-R_{H} c h$
D. $-\frac{R_{H} c}{h}$

Answer: C

- Watch Video Solution

34. Ionisation energy of He^{+}is $19.6 \times 10^{-18} \mathrm{Jatom}^{-1}$. The energy of the first stationary state $(n=1)$ of $L i^{2+}$ is.
A. $-2.2 \times 10^{-15} \mathrm{Jatom}^{-1}$
B. $8.82 \times 10^{-17} \mathrm{Jatom}^{-1}$
C. $4.41 \times 10^{-16} \mathrm{Jatom}^{-1}$
D. $-4.41 \times 10^{-17} \mathrm{Jatom}^{-1}$

Answer: D

- Watch Video Solution

35. If an electron travels with a velocity of $1 / 100$ th speed of light in the first in the first Bohr orbit, what is its velocity (relative to the speed of light) in the 5th Bohr orbit ?
A. 0.002
B. 0.1
C. 0.5
D. 0.7

Answer: A

- Watch Video Solution

36. In the hydrogen atom, the electrons are excited to the 5th energy level. The number of lines that may appear in the spectrum will be
A. 4
B. 8
C. 10
D. 12

Answer: C

- Watch Video Solution

37. Which of the following is the energy of a possible excited state of hydrogen?
A. $-3.4 e V$
B. $+6.8 e V$
C. +13.6 eV
D. -6.8 eV

Answer: A

- Watch Video Solution

38. Calculate the energy in joule corresponding to light of wavelength

45 nm :
(Planck' constant $h=6.63 \times 10^{-34} \mathrm{Js}$, speed of light $c=3 \times 10^{8} \mathrm{~ms}^{-1}$)
A. 6.67×10^{15}
B. 6.67×10^{11}
C. 4.42×10^{-15}
D. 4.42×10^{-18}

Answer: D

- Watch Video Solution

39. The radius of the second Bohr orbit for hydrogen atom is :
(Planck's constant, $\quad h=6.6262 \times 10^{-34} \mathrm{Js}$, mass of electron $=$ $9.1091 \times 10^{-31} \mathrm{~kg}, \quad$ charge of electron $\quad e=1.60210 \times 10^{-19} C$, permittivity of vaccum $\left.\epsilon_{0}=8.854185 \times 10^{-12} \mathrm{~kg}^{-1} \mathrm{~m}^{-3} \mathrm{~A}^{2}\right)$
A. $0.529 \AA$
B. $2.12 \AA$
C. $1.65 \AA$
D. $4.76 \AA$

Answer: B

- Watch Video Solution

40. Schrodinger wave equation for a particle in a one-dimension box is
A. $\frac{\delta^{2} \psi}{\delta x^{2}}+\frac{2 m}{h}(E-\infty) \psi=0$
B. $\frac{\delta^{2} \psi}{\delta x^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-V) \psi=0$
C. $\frac{\delta^{2} \psi}{\delta x^{2}}+\frac{2 m}{h}(E-V) \psi=0$
D. $\frac{\delta^{2} \psi}{\delta x^{2}}+\frac{2 \pi^{2} m}{h^{2}}(E-\infty)=0$

Answer: B

- Watch Video Solution

41. $\Psi^{2}=0$ represents
A. a node
B. an orbital
C. angular wave function
D. wave function

Answer: A

- Watch Video Solution

42. The wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^{3} \mathrm{~m} / \mathrm{s}$ is
A. 0.032 nm
B. 0.40 nm
C. 2.5 nm
D. 14.0 nm

Answer: B

- Watch Video Solution

43. If the de-Broglie wavelength of a particle of mass m is 100 times its velocity then its value in terms of its mass (m) and Planck's constant (h) is
A. $\frac{1}{10} \sqrt{\frac{m}{h}}$
B. $10 \sqrt{\frac{h}{m}}$
C. $\frac{1}{10} \sqrt{\frac{h}{m}}$
D. $10 \sqrt{\frac{m}{h}}$

Answer: B

- Watch Video Solution

44. how fast is an electron moving if it has a wavelength equal to the distance traveled in one second ?
A. $\sqrt{\frac{m}{h}}$
B. $\sqrt{\frac{h}{m}}$
C. $\sqrt{\frac{h}{p}}$
D. $\sqrt{\frac{h}{2(K E)}}$

Answer: B

- Watch Video Solution

45. The radius of first Bohr orbit is x, then de-Broglie wavelength of electron in 3rd orbit is nearly
A. $\frac{x}{3}$
B. $9 x$
C. $2 \pi x$
D. $6 \pi x$

Answer: D

- Watch Video Solution

46. The de Broglie wavelength associated with a ball of mass 1 kg having kinetic enegry 0.5 J is
A. $6.626 \times 10^{-34} m$
B. $13.20 \times 10^{-34} \mathrm{~m}$
C. $10.38 \times 10^{-21} \mathrm{~m}$
D. $6.626 \times 10^{-34} \AA$

Answer: A

- Watch Video Solution

47. In an atom, an electron is moving with a speed of $600 \mathrm{~m} / \mathrm{s}$ with an accuracy of 0.05%. The certainty with which the position of the electron can be located is ($\mathrm{h}=6.6 \times 10^{-34} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$, mass of electron , $\left.e_{m}=9.1 \times 10^{-31} \mathrm{~kg}\right):$
A. $1.52 \times 10^{-4} m$
B. $5.10 \times 10^{-3} m$
C. $1.92 \times 10^{-3} m$
D. $3.84 \times 10^{-3} \mathrm{~m}$

Answer: C

48. A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference V esu. If c and m are charge and mass of an electron repectively, then the value of h / λ (where λ is wavelength associated with electron wave) is given by :
A. $m e V$
B. 2 meV
C. $\sqrt{m e V}$
D. $\sqrt{2 m e V}$

Answer: D

- Watch Video Solution

49. Two electrons occupying the same orbital are distinguished by:
A. azimuthal quantum number
B. spin quantum number
C. principal quantum number
D. magnetic quantum number

Answer: B

- Watch Video Solution

50. The total number of atomic orbitals in fourth energy level of an atom is.
A. 4
B. 8
C. 16
D. 32

Answer: C

51. Maximum number of electrons in a sub-shell of an atom is determined by the following.
A. $2 l+1$
B. $4 l-2$
C. $2 n^{2}$
D. $4 l+2$

Answer: D

- Watch Video Solution

52. Which set of quantum numbers is not possible?
A. $\begin{array}{cccc}n & l & m & \mathrm{~s} \\ 3 & 2 & 0 & +1 / 2\end{array}$
B. $\begin{array}{cccc}n & l & m & \mathrm{~s} \\ 2 & 2 & 1 & +1 / 2\end{array}$
C. $\begin{array}{cccc}n & l & m & \mathrm{~s} \\ 1 & 0 & 0 & -1 / 2\end{array}$
D. $\begin{array}{cllc}n & l & m & \mathrm{~s} \\ 3 & 2 & -2 & +1 / 2\end{array}$

Answer: B

- Watch Video Solution

53. For principal quantum number, $n=4$, the toal number of orbitals having $\mathrm{I}=3$ is
A. 3
B. 7
C. 5
D. 9

Answer: B

- Watch Video Solution

54. What is the maximum number of electrons that can be associated with a following set of quantum numbers ?
$(n=3, l=1$ and $m=-1)$.
A. 10
B. 6
C. 4
D. 2

Answer: D

- Watch Video Solution

55. How many delectrons can fit in the orbital for which $\mathrm{n}=3$ and $l=1$?
A. 2
B. 6
C. 10
D. 14
56. The following quantum numbers are possible for how many orbitals $(s) n=3, l=2, m=+2$?
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

57. The orbital angular momentum of a p-electron is given as :
A. $\sqrt{\frac{3}{2}} \frac{h}{\pi}$
B. $\sqrt{6} \frac{h}{2 \pi}$
C. $\frac{h}{\sqrt{2} \pi}$
D. $\sqrt{3} \frac{h}{2 \pi}$

Answer: C

- Watch Video Solution

58. What is the maximum number of orbitals that can be identified with the following quantum numbers ? $n=3, l=1, m_{l}=0$.
A. 1
B. 2
C. 3
D. 4

Answer: A

59. Which of the following orbitals will have zero probability of finding the electron in the yz plane?
A. p_{x}
B. p_{y}
C. p_{z}
D. $d_{y z}$

Answer: A

- Watch Video Solution

60. P is the probability of finding the Is electron of hydrogen atom in a spherical shell of infitesimal thickness, dr, at a distance r from the nucleus. The volume of this shell is $4 \pi r^{2} d r$. The qualitative sketch of the dependence of P on r is

(a)
 A.

 et

B.

C.

D.

Answer: C

- Watch Video Solution

61. The maximum probability of finding electron in the $d_{x y}$ orbital is -
A. along the x-axis
B. along the y-axis
C. at an angle of 45° from the x-axis and y-axis
D. at an angle of 90° from the x-axis and y-axis

Answer: C

- Watch Video Solution

62. Which of the following has zero electron density in xy plane ?
A. $d_{z^{2}}$
B. $d_{x^{2}-y^{2}}$
C. p_{z}
D. $d_{x y}$

Answer: C

63. Which of the following pairs of d-orbitals will hare electron density along the axes ?
A. $d_{z^{2}}, d_{x z}$
B. $d_{x z}, d_{y z}$
C. $d_{z^{2}}, d_{x^{2}-y^{2}}$
D. $d_{x y}, d_{x^{2}-y^{2}}$

Answer: C

64. What would be the IUPAC name for the element with atomic number 120 ?
A. Ununbium
B. Unnibium
C. Unnilunium
D. Unbinilium

Answer: D

- Watch Video Solution

65. Arrabge in decreasing order, the energy of 2 s orbital in the following atoms $\mathrm{H}, \mathrm{Li}, \mathrm{Na}, \mathrm{K}$
A. $E_{2 s}(H)>E_{2 s}(L i)>E_{2 s}(N a)>E_{2 s}(K)$
B. $E_{2 s}(H)>E_{2 s}(N a)>E_{2 s}(L i)>E_{2 s}(K)$
C. $E_{2 s}(H)>E_{2 s}(N a)=E_{2 s}(K)>E_{2 s}(L i)$
D. $E_{2 s}(K)>E_{2 s}(N a)>E_{2 s}(L i)>E_{2 s}(H)$

Answer: A

- Watch Video Solution

66. The orbital diagram in which both the pauli's exclusion principal and Hund's rule are violated is :
A.
(a)

B.
(b) $\uparrow \downarrow \square \downarrow \downarrow$
c. ${ }^{\text {(c) }} 1 \downarrow$ lll
D. ${ }^{(d)}$ T $\uparrow \downarrow \uparrow \downarrow \mid \uparrow$

Answer: A

- Watch Video Solution

67. Which is the correct order of increasing energy of the listed orbitals in the atom of titanium ?
A. 3 s 3 p 3 d 4 s
B. 3 s 3 p 4 s 3 d
C. 3 s 4 s 3 p 3 d
D. 4 s 3 s 3 p 3 d

Answer: B

- Watch Video Solution

68. If $n=6$, the correct sequence for filling of electrons will be.
A. $n s \rightarrow n p \rightarrow(n-1) d \rightarrow(n-2) f$
B. $n s \rightarrow(n-2) f \rightarrow(n-1) d \rightarrow n p$
C. $n s \rightarrow(n-1) d \rightarrow(n-2) f \rightarrow n p$
D. $n s \rightarrow(n-2) f \rightarrow n p \rightarrow(n-1) d$

Answer: B

- Watch Video Solution

69. The number of d-electrons in $F e^{2+}(\mathrm{Z}=26)$ is not equal to the number of electrons in which one of the following ?
A. d-electrons in $\mathrm{Fe}(\mathrm{Z}=26)$
B. p-electrons in $\mathrm{Ne}(\mathrm{Z}=10)$
C. s-electrons in $\mathrm{Mg}(\mathrm{Z}=12)$
D. p-electrons in $\mathrm{Cl}(Z=17)$

Answer: D

- Watch Video Solution

70. The electronic, identified by quantum numbers n and I , (i) $n=4, l=1$, (ii) $n=4, l=0$, (iii) $n=3, l=2$, (iv) $n=3, l=1$ can be placed in order of increasing energy, from the lowest to highest, as
A. (1) $>$
(3) $>$
$>(2)>$
B. $(3)>(4)>(2)>(1)$
C. $(4)>(2)>(3)>(1)$
D. $(2)>(4)>(1)>(3)$

Answer: C

- Watch Video Solution

71. What is the maximum number of electrons which can be accommodated in an atom in which the highest principal quantum number is 4 ?
A. 10
B. 18
C. 36
D. 54

Answer: C

72. If $n=3, l=0$, and $m=0$, then the atomic number is
A. 12,13
B. 13,14
C. 10,11
D. 11,12

Answer: D

- Watch Video Solution

73. How many electron in an atom with atomic number 105 can have $(n+l)=8 ?$
A. 15
B. 17
C. 19
D. 21

Answer: B

- Watch Video Solution

74. According to ($n+l$) rule after completing ' $n \mathrm{p}$ ' level the electron enters int
A. $(n+1) p$
B. $(n+1) s$
C. $(n-1) d$
D. $n d$

Answer: B

- Watch Video Solution

75. The correct set of four quantum numbers for the valence electron of rubidium $(Z=37)$ is
A. $5,1,1,+1 / 2$
B. $6,0,0,+1 / 2$
C. $5,0,0,+1 / 2$
D. $5,1,0,+1 / 2$

Answer: C

- Watch Video Solution

76. The set of quantum number for the $19^{\text {th }}$ electrons in chromium is -
A. $4,0,0, \frac{1}{2}$
B. $4,1,-1, \frac{1}{2}$
C. $3,2,2, \frac{1}{2}$
D. $3,2,-2, \frac{1}{2}$

D Watch Video Solution

77. In Cu (At. no. = 29)
A. 13 electrons have spin in one direction and 16 electrons in other direction
B. 14 electrons have spin in one direction and 15 electrons in other direction
C. one electron can have spin only in the clockwise direction
D. none of the above is correct.

Answer: B

- Watch Video Solution

78. In the Bohr's orbit, what is the ratio of total kinetic energy and total energy of the electron
A. -1
B. -2
C. +1
D. +2

Answer: A

- Watch Video Solution

79. A proton is about 1840 times heavier than an electron. When it is accelerated by a potential difference of $1 k V$. Its kinetic energy will be
A. 1840 keV
B. $1 / 1840$ ke V
C. 1 keV
D. 920 keV

Answer: C

- Watch Video Solution

80. Time taken by an electrons to complete one revolution in the Bohr orbit of the H atom is
A. $\frac{4 \pi^{2} m r^{2}}{n h}$
B. $\frac{n h}{4 \pi^{2} m r}$
C. $\frac{2 \pi m r}{n^{2} h^{2}}$
D. $\frac{h}{2 \pi m r}$

Answer: A

- Watch Video Solution

81. Which is a wrong statement ?
A. Total orbital angular momentum of electron in 's' orbital is equal to zero
B. An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers
C. The electronic configuation of N atom is

D. The value of m for $d_{z^{2}}$ is zero

Answer: C

- Watch Video Solution

82. Which of the following has maximum spin ?
A. Electron
B. Proton
C. Neutron
D. All have equal spin

Answer: D

D Watch Video Solution

83. A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emission is at 680 nm , the other is at :
A. 325 nm
B. 743 nm
C. 518 nm
D. 1035 nm

Answer: B

84. Frequency of the X -rays emitted by an element is $100 s^{-1}$. If constant in the Moseley equation are $a=b=1$, the element will be
A. Na
B. K
C. Rb
D. Cs

Answer: A

- Watch Video Solution

85. The ratio of specific charge of an electron to that of a hydrogen ion is
A. 1:1
B. 2: 1
C. 1840:1

Answer: C

- Watch Video Solution

86. If E_{1}, E_{2} and E_{3} represent respectively the kinetic energies of an electron, an alpha particle and a proton each having same de Broglie wavelength then :
A. $E_{1}>E_{2}>E_{3}$
B. $E_{3}>E_{2}>E_{1}$
C. $E_{1}>E_{3}>E_{2}$
D. $E_{1}=E_{2}=E_{3}$

Answer: C

- Watch Video Solution

87. As electron moves away from the nucleus, its
A. K.E. decreases and P.E. increases
B. Both K.E. and P.E. decrease
C. Both K.E. and P.E. increase
D. K.E. increases but P.E. decreases.

Answer: A

- Watch Video Solution

88. In Bohr's model of hydrogen atom, the period of revolution of an electron in the 1st orbit to that in the 2nd orbit are in the ratio
A. $1: 2$
B. 2:1
C. 1: 4
D. $1: 8$

D Watch Video Solution

89. Three energy levels and the wavelengths of the lines produced by transitions are shown in the Fig. below

Which one of the following relationship is correct ?
A. $\lambda_{3}=\lambda_{1}+\lambda_{2}$
B. $\lambda_{3}^{2}=\lambda_{1}^{2}+\lambda_{2}^{2}$
C. $\lambda_{3}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
D. $\lambda_{1}+\lambda_{2}+\lambda_{3}=0$

Answer: C

90. The energy absorbed by each molecule $\left(A_{2}\right)$ of a substance is $4.4 \times 10^{-19} \mathrm{~J}$ and bond energy per molecule is $4.0 \times 10^{-19} \mathrm{~J}$. The kinetic energy of the molecule per atom will be.
A. $2.2 \times 10^{-19} J$
B. $2.0 \times 10^{-19} \mathrm{~J}$
C. $4.0 \times 10^{-20} J$
D. $2.0 \times 10^{-20} J$

Answer: D

- Watch Video Solution

91. The species $\mathrm{Ar}, \mathrm{K}^{+}$and Ca^{2+} contain the same number of electrons. In which order do their radii increase?
A. $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}$
B. $K^{+}<A r<C a^{2+}$
C. $A r<K^{+}<C a^{2+}$
D. $\mathrm{Ca}^{2+}<\mathrm{Ar}<\mathrm{K}^{+}$

Answer: A

- Watch Video Solution

92. Which one is the wrong statement ?
A. de-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$ where m is the mass of the particle, $v=$ groups velocity of the particle
B. The uncertainty principle is $\Delta E \times \Delta t \geq \frac{h}{4 \pi}$
C. Half-filled and fully-filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement
D. The energy of $2 s$ orbitals is less than the energy of $2 p$ orbital in case of hydrogen like atoms

Answer: D

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (II. Multiple Choice Question)

1. Which of the following statement regarding spectral series is/are correct ?
A. The lines in the Balmer series correspond to the electronic transition from the energy levels higher than $\mathrm{n}=1$ energy level
B. Paschen series appear in the infrared region
C. The line of Lyman series appear in the visible region
D. Transition from higher energy levels to 5th energy level produces Pfund series which falls in the infrared region

Answer: B::D

- Watch Video Solution

2. The orbitals which have same number of nodes are
A. $2 \mathrm{~s}, 2 \mathrm{p}$
B. 3p, 3d
C. $2 \mathrm{~s}, 3 \mathrm{p}$
D. $3 \mathrm{~s}, 4 \mathrm{~d}$

Answer: A: B

- Watch Video Solution

3. Select the pair of atoms having the same number of electrons in their outermost shell
A. Na, Ca
B. Mg , Fe
C. As, Bi
D. Pb, Sb

Answer: B::C

- Watch Video Solution

4. Which of the following set of quantum numbers is not consistent with the theory?
A. $n=2, l=1, m=0, s=+\frac{1}{2}$
B. $n=4, l=3, m=2, s=-\frac{1}{2}$
C. $n=3, l=2, m=3, s=+\frac{1}{2}$
D. $n=4, l=3, m=3, s=+\frac{1}{2}$

Answer: A::B::D

- Watch Video Solution

5. The diagram illustrates a possible electronic configuration of which of the following species

A. Cl^{+}ion
B. S atom
C. $A r^{2+}$ ion
D. P^{3-} ion

Answer: a,b,c

6. The probability of finding the electron in the orbital is
A. zero at the nucleus
B. Maximum on two opposite sides of the nucleus along X -axis
C. Zero on Z-axis
D. same on all sides around the nucles.

Answer: A::B::C

- Watch Video Solution

7. In the ground state, an element has 13 electrons in its M-shell. The element is
A. Manganese
B. Chromium
C. Nickel
D. Iron

- Watch Video Solution

8. Which of the following statement are correct ?
A. The electronic configuration of Cr is $[A r] 3 d^{5} 4 s^{1}$ (Atomic No. of $\mathrm{cr}=$ 24)
B. The magnetic quantum number may have a negative value
C. In silver atom, 23 electrons a spin of one type and 24 of the opposite type (Atomic No. of $\mathrm{Ag}=47$)
D. The oxidation state of nitrogen in $H N_{3}$ is -3

Answer: A::B

- Watch Video Solution

9. The energy of an electron in the first Bohr orbit of H atom is -13.6 eV . The possible energy value (s) of the excited state (s) for electron in Bohr orbits of hydrogen is (are)
A. -3.4 eV
B. -4.2 eV
C. $-6.8 e \mathrm{~V}$
D. -1.5 eV

Answer: A: D

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (III. Multiple Choice Question) (Based on Comprehension)

1. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively.

The energy of the electron in the third orbit will be
A. $-4.4 e \mathrm{~V}$
B. -1.5 eV
C. -40.8 eV
D. -22.4 eV

Answer: B

- Watch Video Solution

2. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. The radius of the third orbit of hydrogen atom will be
A. $1.59 \AA$
B. $4.77 \AA$
C. $3.0 \AA$
D. $6.0 \AA$

Answer: B

- Watch Video Solution

3. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{cms}^{-1}$ respectively.

The velocity of the electron in the third orbit of hydrogen atom will be
A. $0.729 \times 10^{8} \mathrm{cms}^{-1}$
B. $6.564 \times 10^{8} \mathrm{cms}^{-1}$
C. $19.692 \times 10^{8} \mathrm{cms}^{-1}$
D. $0.243 \times 10^{8} \mathrm{cms}^{-1}$

Answer: A

4. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. If the electron absorbs 12.1 eV of energy, it will jump to the orbit
A. 2nd
B. 3rd
C. 4th
D. 5th

Answer: B

- Watch Video Solution

5. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. In which orbit of He^{+}the electron will have same velocity
A. 1st
B. 2nd
C. 4 th
D. None

Answer: D

- Watch Video Solution

6. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. In which orbit of He^{+}the electron will have same velocity
A. 1st
B. 2nd
C. 4 h
D. none

Answer: B

7. The enregy, radius and velocity of the electron in the hydrogen atom in the ground state are $-13.6 \mathrm{eV}, 0.53 \AA$ and $2.188 \times 10^{8} \mathrm{~ms}^{-1}$ respectively. Which shell of He^{+}ion will have the same energy
A. 1st
B. 2nd
C. 3rd
D. 4th

Answer: B

- Watch Video Solution

8. An electron in the hydrogen atom absorbs energy and jumps to the 4th orbit. It jumps back to the ground state in steps e.g., from 4th to 3rd
orbit, then from 3rd to 2nd orbit and finally to the ground state etc.
Total number of lines obtained in the spectrum would be
A. 3
B. 6
C. 9
D. 12

Answer: B

- Watch Video Solution

9. An electron in the hydrogen atom absorbs energy and jumps to the 4th orbit. It jumps back to the ground state in steps e.g., from 4th to 3rd orbit, then from 3rd to 2 nd orbit and finally to the ground state etc.

If λ_{1} is the wave length of line for jump of the electron from 4 th to 3 rd orbit and λ_{2} that of the line for jump from 3 rd to 2 nd orbit, then wavelength of the line for jump from 4th orbit to 2 nd orbit would be
A. $\lambda_{1}+\lambda_{2}$
B. $\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}+\lambda_{2}}$
C. $\frac{\lambda_{1} \lambda_{2}}{\lambda_{1}-\lambda_{2}}$
D. $\frac{\lambda_{1}+\lambda_{2}}{\lambda_{1} \lambda_{2}}$

Answer: D

- Watch Video Solution

10. An electron in the hydrogen atom absorbs energy and jumps to the 4th orbit. It jumps back to the ground state in steps e.g., from 4th to 3rd orbit, then from 3rd to 2 nd orbit and finally to the ground state etc.

If the ionization of the hydrogen atom in the ground state is 13.6 eV . The longest wavelength of the radiation required to remove the electron from Bohr's first orbit will be approximately
A. $612 \AA$
B. $712 \AA$
C. $812 \AA$
D. $912 \AA$

Answer: D

- Watch Video Solution

11. An electron in the hydrogen atom absorbs energy and jumps to the 4th orbit. It jumps back to the ground state in steps e.g., from 4th to 3rd orbit, then from 3rd to 2 nd orbit and finally to the ground state etc.

If a_{0} represents Bohr radius, the de-Broglie wavelength of the electron when it moves in the 3rd orbit after absorbing same definite amount of energy will be
A. $a_{0} / 3$
B. $9 a_{0}$
C. $2 \pi a_{0}$
D. $6 \pi a_{0}$

Answer: D

- Watch Video Solution

12. A physicist was performing experiments to study the effect of varying voltage on the velocity and wavelength of the electrons. In one case, the electron was accelerated through a potential difference of 1 kV and in the second case, it was accelerated through a potential difference of 2 kV The velocity acquired by the electron will be
A. double in the second case than in the first case
B. four times in the second case than in the first case
C. same in both cases
D. 1.4 times in the second case than in the first case

Answer: D

- Watch Video Solution

13. A physicist was performing experiments to study the effect of varying voltage on the velocity and wavelength of the electrons. In one case, the electron was accelerated through a potential difference of 1 kV and in the second case, it was accelerated through a potential difference of 2 kV The wavelength associated with the electron will be
A. double in the second case than in the first case
B. double in the first case than in the second case
C. 1.4 times in the second case than in the first case
D. 1.4 times in the first case than in the second case

Answer: D

- Watch Video Solution

14. A physicist was performing experiments to study the effect of varying voltage on the velocity and wavelength of the electrons. In one case, the electron was accelerated through a potential difference of 1 kV and in the
second case, it was accelerated through a potential difference of 2 kV
In order to have half the velocity in the second case than in the first case, the potential applied should be
A. 0.5 kV
B. 2 kV
C. 0.25 kV
D. 0.75 kV

Answer: C

- Watch Video Solution

15. The uncertainty in the position of a flying dust particle of mass 0.1 mg is found to be $10^{-4} \mathrm{~m}$. The uncertainty in the position of another flying dust particle of mass 0.5 mg is also found to be same The uncertainty in the velocity of the lighter dust particle is nearly

$$
\text { A. } 5 \times 10^{-24} m s^{-1}
$$

B. $2.5 \times 10^{-24} \mathrm{~ms}^{-1}$
C. $1.25 \times 10^{-24} \mathrm{~ms}^{-1}$
D. $5 \times 10^{-25} \mathrm{~ms}^{-1}$

Answer: A

- Watch Video Solution

16. The uncertainty in the position of a flying dust particle of mass 0.1 mg is found to be $10^{-4} \mathrm{~m}$. The uncertainty in the position of another flying dust particle of mass 0.5 mg is also found to be same The uncertainty in the velocity of the heavier dust particle as compared to the lighter dust particle is
A. 5 times
B. $\frac{1}{5} t h$
C. same
D. 50 times

Answer: B

- Watch Video Solution

17. The uncertainty in the position of a flying dust particle of mass 0.1 mg is found to be $10^{-4} \mathrm{~m}$. The uncertainty in the position of another flying dust particle of mass 0.5 mg is also found to be same

If a third flying dust particle of mass 1 mg had the same uncertainty in position as in its velocity, the uncertainty in its momentum would be
A. $5.2 \times 10^{-28} \mathrm{kgms}^{-1}$
B. $5.2 \times 10^{-34} \mathrm{kgms}^{-1}$
C. $7.2 \times 10^{-15} \mathrm{kgms}^{-1}$
D. $7.2 \times 10^{-21} \mathrm{kgms}^{-1}$

Answer: D

- Watch Video Solution

18. The hydrogen like species $L i^{2+}$ is in a spherically symmetric state S_{1} with one radial node. Upon absorbing light, the ion undergoes transition to a state S_{2}. The state S_{2} has one radial node and its energy is equal to the ground state energy of the hydrogen atom The state S_{1} is
A. 1 s
B. 2 s
C. 2 p
D. $3 \mathrm{~s}, 4 \mathrm{~d}$

Answer: B

- Watch Video Solution

19. The hydrogen like species $L i^{2+}$ is in a spherically symmetric state S_{1} with one radial node. Upon absorbing light, the ion undergoes transition to a state S_{2}. The state S_{2} has one radial node and its energy is equal to
the ground state energy of the hydrogen atom
Energy of the state S_{1} in units of the hydrogen atom ground state energy is
A. 0.75
B. 1.50
C. 2.25
D. 4.50

Answer: C

- Watch Video Solution

20. The hydrogen like species $L i^{2+}$ is in a spherically symmetric state S_{1} with one radial node. Upon absorbing light, the ion undergoes transition to a state S_{2}. The state S_{2} has one radial node and its energy is equal to the ground state energy of the hydrogen atom

The orbital angular momentum quantum number of the state S_{2} is
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (IV. Matching type Questions)

1. Match the entries in column I with appropriate entries of column II and choose the correct option out of the four options (a), (b), (c), (d) given at the end of each question

Column I

(A) Lymn series
(B) Paschen series
(C) Pfund series
(D) Humphrey series

Column II
(p) Visible region
(q) Ultraviolet region
(r) Far infrared region
(s) Infrared region
A. $A-s, B-r, C-q, D-p$
B. $A-q, B-p, C-s, D-r$
C. $A-p, B-q, C-r, D-s$
D. $A-r, B-s, C-p, D-q$

Answer: B

- Watch Video Solution

Column I

Light has dual character
Electrons have dual character
N has electronic configuration

Column II
(p) de Broglie
(q) Einstein
(r) Aufbau

$$
1 s^{2} 2 s^{2} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1} \text { and not } 1 s^{2} 2 s^{2} 2 p_{x}^{2} 2 p_{y}^{2}
$$

(D) $4 s$ orbital is filled first than $3 d$
2.
(E) Basis of Quantum mechanics
(s) Hunds
(t) Schrodinger
A. $A-q, B-p, C-s, D-r, E-t$
B. $A-p, B-q, C-r, D-s, E-t$
C. $A-t, B-s, C-r, D-q, E-p$
D. $A-r, B-s, C-t, D-p, E-q$

Answer: A

- Watch Video Solution

Column I (orbital)
(A) $3 p$
(B) $5 d$
(C) $4 f$
(D) $4 s$
(a) A-r, B-q, C-s, D-p
3. (c) A-r, B-s, C-p, D-q

Column II (Radial nodes)
(p) 0
(q) 1
(r) 2
(s) 3
(b) A-p, B-q, C-r, D-s
(d) A-q, B-r, C-p, D-s
A. $A-r, B-q, C-s, D-p$
B. $A-p, B-q, C-r, D-s$
C. $A-r, B-s, C-p, D-q$
D. $A-q, B-r, C-p, D-s$

Answer: D

4. According to Bohr's Theory
$E_{n}=$ total energy, $K_{n}=$ kinetic energy, $V_{n}=$ potential energy, $r_{n}=$ radius of nth orbit

Match that following:

Column I
(A) $\quad \mathrm{V}_{n} / \mathrm{K}_{\mathrm{n}}=$?
(B) $\quad r_{n} \propto \mathrm{E}_{n}^{x}, x=$?
(C) Angular momentum in lowest orbital
(D) $\frac{1}{r_{n}} \propto \mathrm{Z}^{y}, y=$?

Column II

(p) 0
(q) -1
(r) -2
(s) 1
A. $A-p, B-q, C-r, D-s$
B. $A-r, B-q, C-p, D-s$
C. $A-q, B-p, C-s, D-r$
D. $A-s, B-r, C-q, D-p$

Answer: B

Competition Focus (JEE (Main and Advanced)/Medical Entrance (V. Matching type Questions)

1. The wave function, $\Psi_{n, l, m_{1}}$ is a mathematical function whose value depends upon spherical polar coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, I, and m_{1}. Here, r is the distance from the nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_{0} is Bohr radius

Column 1	Column 2	Column 3
(I) 1 s orbital (II) $2 s$ orbital (III) $2 p_{z}$ orbital (IV) $3 d_{z}^{2}$ orbital	(i) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{3 / 2} e^{-\left(\frac{\mathrm{Z} r}{a_{0}}\right)}$ (ii) One radial node (iii) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{5 / 2} r e^{-\left(\frac{\mathrm{Z} r}{2 a_{0}}\right)} \cos \theta$ (iv) $x y$-plane is a nodal plane	(P) (Q) Probability density at nucleus $\propto \frac{1}{a_{0}^{3}}$ (R) Probability density is maximum at nucleus (S) Energy needed to excite electron from $n=2$ state to $n=4$ state is $\frac{27}{32}$ times the energy needed to excite electron from $n=2$ state to $n=6$ state

For He^{+}ion, the only INCORRECT combination is
A. (I) (i) (S)
B. (II) (ii) (Q)
C. (I) (iii) (R)
D. (I) (i) (R)

Answer: C

- View Text Solution

2. The wave function, $\Psi_{n, l, m_{1}}$ is a mathematical function whose value depends upon spherical polar coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, I, and m_{1}. Here, r is the distance from the nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_{0} is Bohr radius

Column 1	Column 2	Column 3
(I) 1s orbital	(i) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{3 / 2} e^{-\left(\frac{\mathrm{Z} r}{a_{0}}\right)}$	(P) $\quad \psi_{n, l, m_{l}}(r)$
(II) $2 s$ orbital (III) $2 p_{z}$ orbital	(ii) One radial node (iii) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{5 / 2} r e-\left(\frac{\mathrm{Zr}}{2 a_{0}}\right) \cos \theta$	(Q) Probability density at nucleus $\propto \frac{1}{a_{0}^{3}}$ (R) Probability density is maximum at nucleus
(IV) $3 d_{z}^{2}$ orbital	(iv) $x y$-plane is a nodal plane	(S) Energy needed to excite electron from $n=2$ state to $n=4$ state is $\frac{27}{32}$ times the energy needed to excite electron from $n=2$ state to $n=6$ state

For the given orbital in column 1, the only CORRECT combination for any hydrogen -like species is
A. (II) (ii) (P)
B. (I) (ii) (S)
C. (IV) (iv) (R)
D. (III) (iii) (P)

Answer: A

- View Text Solution

3. The wave function, $\Psi_{n, l, m_{1}}$ is a mathematical function whose value depends upon spherical polar coordinates (r, θ, ϕ) of the electron and characterized by the quantum numbers n, I, and m_{1}. Here, r is the distance from the nucleus, θ is colatitude and ϕ is azimuth. In the mathematical functions given in the Table, Z is atomic number and a_{0} is

Bohr radius

Column 1	Column 2	Column 3
(I) 1 s orbital (II) $2 s$ orbital (III) $2 p_{z}$ orbital (IV) $3 d_{z}^{2}$ orbital	(i) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{3 / 2} e^{-\left(\frac{\mathrm{Z} r}{a_{0}}\right)}$ (ii) One radial node (iii) $\psi_{n, l, m_{l}} \propto\left(\frac{\mathrm{Z}}{a_{0}}\right)^{5 / 2} r e^{-\left(\frac{\mathrm{Z} r}{2 a_{0}}\right)} \cos \theta$ (iv) $x y$-plane is a nodal plane	(P) (Q) Probability density at nucleus $\propto \frac{1}{a_{0}^{3}}$ (R) Probability density is maximum at nucleus (S) Energy needed to excite electron from $n=2$ state to $n=4$ state is $\frac{27}{32}$ times the energy needed to excite electron from $n=2$ state to $n=6$ state

For hydrogen atom, the only CORRECT combination is
A. (I) (i) (P)
B. (I) (iv) (R)
C. (II) (i) (Q)
D. (I) (i) (S)

Answer: D

- View Text Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (V. MatrixMatch Type Questions)

Column I (Electronic configuration)

(A) $[\mathrm{Ar}] 3 d^{8} 4 s^{2}$
(B) $[\mathrm{Ar}] 3 d^{10}$
(C) $[\mathrm{Ar}] 3 d^{1}$
(D) $[\mathrm{Ar}] 3 d^{9}$
1.

- Watch Video Solution

2. Match the entries in Column I with the correctly related quantum number(s) in Column II. Indicate your answer by darkening the
appropriates bubbles of the 4×4 matrix given in the ORS

Column I

(A) Orbital angular momentum of the electron in a hydrogen-like atomic orbital
(B) A hydrogen-like one-electron wave function obeying Pauli principle
(C) Shape, size and orientation of hydrogenlike atomic orbitals
(D) Probability density of electron at the nucleus in hydrogen-like atom

Column II

(p) Principal quantum number
(q) Azimuthal quantum number
(r) Magnetic quantum number
(s) Electron spin quantum number

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (VII. Integer Type Questions)

1. The inner shell to which the electrons jump from the outer shells in the formation of Pfund series in the hydrogen spectrum is

- Watch Video Solution

2. Number of times radius of the 3rd shell of the H -atom as compared to
3. How many times is the velocity of the electron in the first shell of $\mathrm{He}{ }^{+}$ ion as compared to that in the first shell of hydrogen atom?

- Watch Video Solution

4. Total number of nodes (planar and spherical) present in the 5f-orbital is

(Watch Video Solution

5. How many times is the distance of maximum probability of $2 p$ electron from the nucleus as compared to Bohr radius ?

- Watch Video Solution

6. How many times is the ionization energy of He^{+}ion as compared to that of H -atom?

- Watch Video Solution

7. The work function (ϕ) of some metals is listed below. The number of metals which will show photoelectric effect when light of 300 nm wavelength falls on the metal is :

Metal	Li	Na	K	Mg	Cu	Ag	Fe	Pt	W
$\phi(\mathbf{e V})$	2.4	2.3	2.2	3.7	4.8	4.3	4.7	6.3	4.75

- Watch Video Solution

8. The maximum number of electrons that can have principal quantum number, $\mathrm{n}=3$, and spin quantum number $m_{s}=-1 / 2$, is

- Watch Video Solution

9. The atomic masses of He and Ne are 4 and 20 amu respectively. The value of the de Broglie wavelength of He gas at $-73 .{ }^{\circ} C$ is "M" times that of the de Broglie wavelength of Ne at $727 .{ }^{\circ} \mathrm{C} . \mathrm{M}$ is

- Watch Video Solution

10. In an atom, the total number of electrons having quantum numbers
$n=4,\left|m_{l}\right|=1$ and $m_{s}=-\frac{1}{2}$ is

- Watch Video Solution

11. Not considering the electronic spin, the degenracy of the second excited state of H^{-}is

- Watch Video Solution

1. The atomic spectrum of hydrogen is found to contain a series of lines of wavelength $656.46,486.27,434.17$ and 410.29 nm . The wavelength (in $n m$) of the next line in the series will be....

- Watch Video Solution

Competition Focus (JEE (Main and Advanced)/Medical Entrance (IX. Assertion And Reason Type Questions (Type I))

1. Statement-I : 2 p orbitals do not have spherical nodes.

Because

Statement-II : The number of spherical nodes in p-orbitals is given by
$(n-2)$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: A

- Watch Video Solution

2. Assertion (A) : $\mathrm{Fe}^{3+}(\mathrm{g})$ ion is more stable than $F e^{2+}(g)$ ion.

Reason (R) : Fe^{3+} ion has more number of unpaired electrons than $F e^{2+}$ ion.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-2
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-2
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: B

- Watch Video Solution

3. Statement-1. The opposite lobes of a p-orbital have opposite sign whereas opposite lobes of d-orbital have the same sign

Statement-2 The opposite lobes of a p-orbital have opposite charge whereas opposite of lobes of d-orbital have the same charge
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement-2 is True

Answer: C

4. Statement-1. The radii of corresponding orbitals in all H-like particles are equal

Statement-2 All H-like particles contain only one electron.
A. Statement- 1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: D

- Watch Video Solution

5. Statement-1. The number of radial nodes in 3 s and 4 p orbitals is not equal.

Statement-2 The number of radial nodes in any orbital depends upon the values of ' n ' and 'l' which are different for $3 s$ and $4 p$ orbitals
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-5
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-2
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: D

- Watch Video Solution

1. Assertion. Cathode rays originate from the cathode and move towards andoe.

Reason. Electrons present in the material of the cathode are continuously emitted on applying high voltage
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

2. Assertion. According to Thomson model of atom, mass of the atom is concentrated in the centre of the atom.

Reason. According to Thomson model, positive charge is concentrated in the centre of the atom
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

3. Assertion(A): All isotopes of a given element show the same type of chemical behaviour.

Reason(R) The chemical properties of an atom are controlled by the numb er of electron s in the atom.
A. If both assertion and reason are true, and reason is the true explanation of the arrertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

4. Assertion (A) : Hydrogen has only one electron in its 1s orbital but it produces several spectral lines.

Reason (R) : There are many excited energy levels available in H atoms.
A. If both assertion and reason are true, and reason is the true explanation of the arrertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

5. Assertion. In Lyman series of H -spectra, the maximum wavelength of lines is 121.56 nm

Reason. Wavelength is maximum when the transition is from the very next level
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

6. Assertion. The plots of probability density and radial probability function versus distance r from the nucleus for any particular orbital are not identical

Reason. Probability density is Ψ^{2} whereas radial probability function represents probability of finding the electron in a shell of thickness $d r$.
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

7. Assertion (A) : A spectral line will be seen for $2 p_{x}-2 p_{y}$ transition

Reason (R): Energy is raleased in the form of wave of light when the electron drops from $2 p_{x}$, to $2 p_{y}$ orbital.
A. If both assertion and reason are true, and reason is the true explanation of the arrertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

8. Assertion : The energy of an electron is mainly determined by principal quantum number.

Reason : The principal quantum number is the measure of the most probable distance of finding the electron around the nucleus.
A. If both assertion and reason are true, and reason is the true
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

9. Assertion. Electronic configurations of Cr^{3+} (containing 21 electrons) is same as that of $S c(Z=21)$, i.e., isoelectronic species have the same electronic configuration

Reason. Orbitals of atoms as well as ions are filled in order of increasing energy following aufbau principle
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

10. STATEMENT-1 : The $19^{\text {th }}$ electron in potassium atom enters into 4 s orbital than in 3d-orbital.
and
STATEMENT-2 : $(n+1 l)$ rule is followed for determining the orbital of lowest energy state.
A. If both assertion and reason are true, and reason is the true explanation of the arrertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

11. Assertion. Only principal quantum number determines the energy of an electron in an orbital of Na atom.

Reason. For one electron system, the expression of energy is quite different from that obtained in Bohr's theory.
A. If both assertion and reason are true, and reason is the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

12. The free gaseous $C r$ atom has six unpaired electrons.

Half-filled s-orbital has greater stability.
A. If both assertion and reason are true, and reason is the true explanation of the arrertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertional
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: C

