©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

THERMODYNAMICS

33390

1. Calculate $\Delta_{r} S_{m}^{\Theta}$ for the reaction:
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
Given that $S_{m}^{\Theta}(F e)=27.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S_{m}^{\Theta}\left(O_{2}\right)=205.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $S_{m}^{\Theta}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)=87.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

1. Express the change in internal energy of a system when
(i) No heat is absorbed by the system from the surroundings, but work (w) is done on the system. What type of wall does the system have?
ii) No work is done on the system, but q amount of heat is taken out from the system and given to the surroundings. What type of wall does the system have?
(iii) w amount of work is done by the system and q amount of heat is supplied to the system. What type of system would it be?

- Watch Video Solution

2. The combustion of 1 mole of benzene takes place at 298 K and 1 atm.

After combustion, $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are produced and 3267.0 KJ of heat is liberated. Calculate the standard enthalpy of formation, $\Delta_{f} H^{0}$ of benene. Standard enthalpies of formation of $\mathrm{CO}_{2(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are $-393.5 \mathrm{KJ} \mathrm{mol}^{-1}$ and $-285.83 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively

- Watch Video Solution

3. Calculate the entropy change involved in conversion of one mole (18 g) of solid ice at 273 K to liquid water at the same temperature (latent heat of fusion $=6025 \mathrm{Jmol}^{-1}$)

- Watch Video Solution

4. Enthalpy and entropy changes of reaction are $40.63 \mathrm{kJmol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Predict the feasibility of the reaction at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

Problem 2

1. Calculate the internal energy change in each of the following cases :
(i) A system absorbs 5 kJ of heat and does 1 kJ of work.
(ii) 5 kJ of work is done on the system and 1 kJ of heat is given out by the system.
2. Calculate the enthalpy of formation of methane given that the enthalpies of combustion of methane, graphite and hydrogen are 890.2 $\mathrm{KJ}, 393.4 \mathrm{KJ}$ and $285.7 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively

- Watch Video Solution

3. Entropy change involve in conversation of 1 mole of liquid water at 373 K to vapour at the same temperature (latent heat of vaporisation of water $=2.257 \mathrm{kJg}^{-1}$)

- Watch Video Solution

4. At $0^{\circ} \mathrm{C}$ ice and water are in equilibrium and $\Delta H=6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for this process:

$$
\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

The values of ΔS and ΔG for conversion of ice into liquid water at $0^{\circ} \mathrm{C}$ are:

- Watch Video Solution

Problem 3

1. Calculate the amount of work done in each of the following cases : -
(i) One mole of an ideal gas contained in a bulbof 10 litre capacity at 1 bar is allowed to enter into an evacuated bulb of 100 litre capacity.
(ii) One mole of a gas is allowed to expand from a volumeof 1 litre to a volume of 5 litres against the constant external pressure of 1 bar (1 litre bar $=100 \mathrm{~J})$

Calculate the internal energy change (ΔU) in each case if the process were carrid out adiabatically.

- Watch Video Solution

2. Calculate the heat of formation of KCl from the following data :
(i) $\mathrm{KOH}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{KCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$, $\Delta H=-57.3 k J$
(ii) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H=-286.2 k$
(iii) $\frac{1}{2} H_{2}(g)+\frac{1}{2} C l_{2}(g)+a q \rightarrow \mathrm{HCl}(a q)$,
$\Delta H=-164.4 k$
(iv) $K(s)+\frac{1}{2} O_{2}(g)+\frac{1}{2} \mathrm{H}_{2}(g)+a q \rightarrow K O H(a q)$,
$\Delta H=-487.4 k$
(v) $\mathrm{KCl}(s)+a q \rightarrow \mathrm{KCl}(a q)$,
$\Delta H=+18.4 k J$

- Watch Video Solution

3. A heated copper block at $130^{\circ} \mathrm{C}$ loses 340 J of heat to the surroundings which are at room temperature of $32^{\circ} \mathrm{C}$. Calculate
(i) the entropy change of the system (copper block) (ii) the entropy change in the surrounding
(iii) the total entropy change in the universe due to this process Assume that the temperature of the block and the surroundings remains constant.

- Watch Video Solution

4.

$A+B \rightarrow C+D, \Delta H=-10,000 \mathrm{Jmol}^{-1}, \Delta S=-33.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
(i) At what temperature the reaction will occur spontaneously from left to right?
(ii) At what temperature, the reaction will reverse?

- Watch Video Solution

Problem 4

1. Calculate w, q and ΔU when 0.75 mol of anideal gas expands isothermally and revensibly at $27^{\circ} \mathrm{C}$ from a volume of 15 L to 25 L

- Watch Video Solution

2. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{CI}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} C I_{2}$
$\Delta H=-270.6 \mathrm{JJmol}^{-1} \mathrm{~K}^{-1}, \Delta S=-139 J$
a. Is the reaction favoured by entropy, enthalpy both or none?
b. Find ΔG if $T=300 K$.

- Watch Video Solution

Problem 5

1. Carbon monoxiole is allowed to expand isothermally and reversibly from $10 \mathrm{~m}^{3}$ to $20 \mathrm{~m}^{3}$ at 300 K and work obtained is 4.754 KJ . Calculate the number of moles of carbon monoxide

- Watch Video Solution

Problem 6

1. A $5 L$ cylinder contained 10 moles of oxygen gas at $27^{\circ} \mathrm{C}$. Due to sudden leakage through the hole, all the gas escaped into the
atmosphere and the cylinder got empty. If the atmospheric pressure is 1.0 atm , calculate the work done by the gas.

- Watch Video Solution

Problem 7

1. Two moles of an ideal gas initially at $27^{\circ} \mathrm{C}$ and one atmospheric pressure are compressed isothermally and reversibly till the final pressure of the gas is 10 atm calculate q, w and Δw for the process

- Watch Video Solution

Problem 8

1. Two litres of an ideal gas at a pressure of 10 atm expands Isothermally into vacuum until its total volume is 10 litres. How muach heat is absorbed and howmuch work is done in the expansion ? What would be
the heat absorbed andwork done
(i) if the same expansion takes place against a constant external pressure of 1 atm ?
(ii) if the same expansion takes place to a final volume of 10 litres conducted reversibly?

- Watch Video Solution

Problem 9

1. The heat of combusion of benzene in a bomb calorimeter (i.e constant volume) was found to be $3263.9 \mathrm{kJmo} 1^{-1}$ at $25^{\circ} \mathrm{C}$ Calculate the heat of combustion of benzene at constan pressure .

- Watch Video Solution

1. If water vapour is assumed to be a perfect gas, molar enthalpy change for vaporisation of 1 mol of water at 1 bar and $100^{\circ} \mathrm{C}$ is $41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
.Calculate the internal energy change, when
(a) 1 mol of water is vaporised at 1 bar pressure and $100^{\circ} \mathrm{C}$.
(b) 1 mol of water is converted into ice.

- Watch Video Solution

Problem 11

1. A swimmer coming out from a pool is covered with a film of water weighing about 18 g . how much heat must be supplied to evaporate this water at 298 K ? Calculate the internal energy of vaperization at $100^{\circ} \mathrm{C}$.
$\Delta_{\text {vap }} H^{\Theta}$ for water at $373 \mathrm{~K}=40.66 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Watch Video Solution

1. Find out the internal energy change for the reaction $A(l) \rightarrow A(g)$ at 373 K . Heat of vaporisation is $40.66 \mathrm{~kJ} / \mathrm{mol}$ and $R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

Sample Problem 1

1. (a)Calculate the energy needed to raise the temperature of 10.0 g of iron from $25^{\circ} \mathrm{C}$ to $250^{\circ} \mathrm{C}$ if specific heat capacity of iron is 0.45 J
.${ }^{\circ} C^{-1} g^{-1}$.
(b) What mass of copper (specific heat capacity $=0.385 \mathrm{~J} .{ }^{\circ} C^{-1} g^{-1}$) can be heated through the same temperature difference when supplied with the same amount of energy as above.

- Watch Video Solution

2. 1g of graphite is burnt in a bomb calorimeter in excess of oxygen at 298
K and 1 atmospheric pressure according to the equation

C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
During the reaction, temperature rises from 298 K to 299 K . If the heat capacity of the bomb calorimeter is $20.7 \mathrm{~kJ} / \mathrm{K}$, what is the enthalpy change for the above reaction at 298 K and 1 atm ?

- Watch Video Solution

3. Calculate enthalpy of formation of methane $\left(\mathrm{CH}_{4}\right)$ from the following data :
(i) $C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{r} H^{\circ}=-393.5 \mathrm{KJmol}^{-1}$
(ii) $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), D \eta_{r} H^{\circ}=-285.5 \mathrm{kJmol}^{-1}$
(iii)
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta_{r} \mathrm{H}^{\circ}=-890.3 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

4. Calculate the ethalpy of combustion of ethylene (g) to form CO_{2} (gas) and $\mathrm{H}_{2} \mathrm{O}$ (gas) at 298 K and 1 atmospheric pressure. The enthalpies of
formation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ are $-393.7,-241.8+52.3 \mathrm{~kJ}$ per mole respectively.

- Watch Video Solution

5. Given the following thermochemical equations :
(i) S (rhombic) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-297.5 \mathrm{kJmol}^{-1}$
(ii) S (monoclinic) $+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-300.0 \mathrm{kJmol}^{-1}$

Calculate ΔH for the transformation of one gram atomof rhombic sulphur into monochlinic sulphur.

- Watch Video Solution

6. Predict in which of the following entropy of the system increases / decreases:
(P) A liquid crystalizes into a solid
(Q) Temperature of a crystalline solid is raised
(R) $2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g)$
(S) $H_{2}(g) \rightarrow 2 H(g)$

- Watch Video Solution

Sample Problem 2

1. $5.6 \mathrm{dm}^{3}$ of an unknown gas at $S . T . P$ requires 52.25 of heat to raise its temperature by $10^{\circ} \mathrm{C}$ at constant volume. Calculate C_{V}, C_{P} and atomicity of the gas

- Watch Video Solution

2. Calculate the amount of heat evolved when
(i) $500 \mathrm{~cm}^{3}$ of 0.1 M hydrochloric acid is mixed with $200 \mathrm{~cm}^{3}$ of 0.2 M sodium hydroxide solution
(ii) $200 \mathrm{~cm}^{3}$ of 0.2 M sulphuric acid is mixed with $400 \mathrm{~cm}^{3}$ of 0.5 M potassium hydroxide solution.

Assuming that the specific heat of water is $4.18 \mathrm{JK}^{-1} g^{-1}$ and ignoring the heat absorbed by the container, thermometer, stirrer etc, what would be the rise in temperature in each of the above cases ?

- Watch Video Solution

3. Calculate the enthalpy of formation of carbon monoxide (CO) from the following data
(i) $C_{(s)}+O_{2(g)} \rightarrow C O_{2(g)}, \Delta_{r} H^{0}=-393.5 K J \mathrm{~mole}^{-1}$
(ii) $\mathrm{CO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}, \Delta_{r} H^{0}=-283.5 \mathrm{KJ} \mathrm{mole}^{-1}$

Watch Video Solution

4. Enthalpies of solution of $\mathrm{BaCI}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and BaCI_{2} are 8.8 and $-20.6 \mathrm{kJmol}^{-1}$ respectively.Calculate the heat of hydration of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$

- Watch Video Solution

5. Predict the sign of entropy change in each of the following :
(i) H_{2} (at $\left.298 \mathrm{~K}, 1 \mathrm{~atm}\right) \rightarrow H_{2}$ at $\left.298 \mathrm{~K}, 10 \mathrm{~atm}\right)$
(ii) $\mathrm{H}_{2} \mathrm{O}$ (at $\left.298 \mathrm{~K}, 1 \mathrm{~atm}\right) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (at 330K, 1atm)
(iii) $2 \mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
(iv) Crystallization of copper sulphate from its saturated solution.
(v) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

Sample Problem 3

1. Calculate the enthalpy change accompanying the transformation of

C (graphite) to C (diamond). Given that the enthalpies of combustion of graphite and diamond are 393.5 and 395.4 KJ respectively

- Watch Video Solution

Sample Problem 4

1. Calculate the enthalpy of hydration of anhydrous copper sulphate (CuSO_{4}) into hydrated copper sulphate $\left(\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}\right)$. Given that
the enthalpies of solution of anhydrous copper sulphate and hydrated copper sulphate are -66.5 and $+11.7 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

Problem

1. Calculate the enthalpy of hydrogenation of ethylene, given that the enthalpy of combustion of ethylene, hydrogen and ethane are $-1410.0,-286.2$ and $-1560.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively at 298 K

- Watch Video Solution

2. The thermite reaction used ofr welding of metals involves the reaction
$2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{s})$
What is ΔH° at $25^{\circ} \mathrm{C}$ for this reaction ? Given that the standard heats of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are -1675.7 kJ and $-828.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
3. The heat evolved in the combustion of methane is given by the equation :
$\mathrm{CH}_{4}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-890.3 \mathrm{kJmol}^{-1}$
(a) How manygrams of methane would be required to produce 445.15 kJ of heat of combustion ?
(b) How many grams of carbon dioxide would beformed when 445.15 kJ of heat is evolved?
(c) What volume of oxygen at STP would be used in the combustion process (a) or (b) ?

- Watch Video Solution

4. The heat evolved in the combustion of glucose is shown in the equation :

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \Delta_{c} \mathrm{H}=-2840 \mathrm{kJmol}^{-1}
$$

What is the energy requirement for production of 0.36 g of glucose by the reverse reaction?

- Watch Video Solution

5. The heat evolved in the combustion of benzene is given by the equation:
$C_{6} H_{6}(g)+\frac{15}{2} \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta H=-3264.6 \mathrm{kJJol}^{-1}$ The heat energy changes when 39 g of $C_{6} H_{6}$ are burnt im an open ontainer will be:

- Watch Video Solution

6. The thermochemical equation for solid and liquid rocket fuel are given
below:
$2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow A I_{2} O_{3}(s), \Delta H=-1667.8 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-285.9 k J$
a. If equal masses of aluminium and hydrogen are used, which is a better rocket fuel?
b. Determine ΔH for the reaction
$\mathrm{AI}_{2} \mathrm{O}_{3}(s) \rightarrow 2 \mathrm{AI}(\mathrm{s})+1 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$

- Watch Video Solution

7. When $1 g$ liquid naphthalene $\left(C_{10} H_{8}\right)$ solidifies, 149 J of heat is evolved.

Calculate the enthalpy of fusion of naphthalene.

- Watch Video Solution

8. If a man takes a diet which giveshim energy equal to 9500 kJ per day and he expends energy in all forms to a total of 12000 kJ per day, what is the change in internal energy per day ? If the energy lost was stored as sucrose (1632 kJ per 100 g) , how many days should it take to lose 1 kg ? Ignore the water loss.

- Watch Video Solution

9. Standard vaporisation enthalpy of benzene at its boiling point is 230.8 kJ mol^{-1}. For how long would a 100 W electric heater have to operate to vaporize a 100 g sample of benezene at its boiling temperature ? (power $=$ energy $/$ time, $1 \mathrm{~W}=1 \mathrm{Js}^{-1}$)

- Watch Video Solution

10. Calculate the bond enthalpy of HCl . Given that the bond enthalpies of H_{2} and Cl_{2} are $430 \mathrm{KJmol}^{-1}$ and $242 \mathrm{KJmol}^{-1}$ respectively and $\Delta_{f} H^{0} \mathrm{HCl}$ is $-91 \mathrm{KJmol}^{-1}$)

- Watch Video Solution

11. Calculate the bond energy of $C-H$ bond, given that the heat of formation of CH_{4}, heat of sublimation of carbon and heat of dissociation of H_{2} are $-74.8+719.6$ and $435 \mathrm{kJmol}^{-1}$ respectively.
12. Calculate the enthalpy change for the reaction $\mathrm{H}_{2}(g)+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}(g)$ Give that the bond enthalpies of $-\mathrm{H}, \mathrm{Br}-\mathrm{Br}$ and $\mathrm{H}-\mathrm{Br}$ are 435 , 192 and $364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

13. Propane has the structure $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$. Calculate the change in enthalpy for the reaction :

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Given that average bond enthalpies are :

$C-C$	$C-H$	$C=0$	$O=O$	$O-H$
347	414	714	498	$464 \mathrm{kJmol}^{-1}$

- Watch Video Solution

14. Calculate the energy of $\mathrm{C}-\mathrm{Cl}$ bond from the following data :
$\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=-100.3 \mathrm{~kJ}$
The bond energy of $\mathrm{C}-\mathrm{H}, \mathrm{Cl}-\mathrm{Cl}$ and $\mathrm{H}-\mathrm{Cl}$ bonds are 413,243 and 431 kJ mol^{-1} respectively.

- Watch Video Solution

15. Calculate ΔH of the reaction
$H-\stackrel{H}{\stackrel{H}{\mid}} \underset{C l}{\mid}-C l(g) \rightarrow C(g)+2 H(g)+2 C l(g)$
The average bond energies of C-H bond and C-Cl bond are 416 kJ and 325 kJ mol^{-1} respectively.

- Watch Video Solution

16. Calculate the standard free energy change for the reaction, $4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \rightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$. Given that the standard free energies of formation $\left(\Delta_{f} G^{0}\right)$ for $\mathrm{NH}_{3(g)}, N O_{(g)}$ and $\mathrm{H}_{2} \mathrm{O}_{(l)}$ are $-16.8,+86.7$ and $-237.2 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively. Predict the feasiblity of the above reaction at the standard state.

- Watch Video Solution

17. Calculate ΔG^{Θ} for the conversion of oxygen to ozone, $\left(\frac{3}{2}\right) O_{2}(g) \Leftrightarrow O_{3}(g)$ at $298 K$, of K_{p} for this conversion is 2.47×10^{-29}.

(Watch Video Solution

18. Hydrolysis of sucrose gives

Sucrose $+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow$ Glucose + Fructose
Equilibrium constant K_{c} for the reaction is 2×10^{13} at 300 K . Calculate ΔG^{\ominus} at $300 K$.

- Watch Video Solution

19. Calculate the equilibrium constant, K for the following reaction at 400K?
$2 \mathrm{NOCl}_{(g)} \Leftrightarrow 2 N O_{(g)}+C l_{2(g)}$
Given that $\Delta_{r} H^{0}=80.0 \mathrm{~K} \mathrm{Jmol}^{-1}$ and $\Delta_{r} S^{0}=120 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 400 K.
20. At $60^{\circ} \mathrm{C}$, dinitrogen tetroxide is 50 per cent dissociated. Calculate the standard free energy change at this temperature and at one atmosphere.

- Watch Video Solution

PROBLEMS FOR PRACTICE

1. 500 joule of heat was supplied to a system at constant volume. It resulted in the increase of temperature of the system from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. What is the change in internal energy of the system ?

- Watch Video Solution

2. What would be the work done on / by the system if the internal energy of the system falls by the 100 joules even when 200 joules of heat is supplied to it ?
3. Calculate the work done when 1.0 mol of water at 373 K vaporises against an atmosheric pressure of 1.0atm. Assume ideal gas behaviour.

- Watch Video Solution

4. Two moles of an ideal gas at 2 atm and $27^{\circ} \mathrm{C}$ is compressed isothermally to one-half of its volume by an external pressure of 4 atm .

Calculate q, w, and ΔU.

- Watch Video Solution

5. The heat of combustion of $\mathrm{CH}_{4}(\mathrm{~g})$ at constant volume is measured in a bomb calorimeter at 298.2 K and found to be $-885389 \mathrm{~J} / \mathrm{mol}$. Find the value of enthalpy change.
6. The enthalpy change (ΔH) for the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
is -92.38 kJ at 298 K . What is ΔU at 298 K ?

- Watch Video Solution

7. The internal energy change (ΔU) for the reaction $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $-885 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K. What is ΔH at 298 K ?

- Watch Video Solution

8. When $\mathrm{NH}_{4} \mathrm{NO}_{2}(s)$ decomposes at373K, it forms $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(g)$. The ΔH. For the reaction at one atmospheric pressure and 373 K is $-223.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of $\mathrm{NH}_{4} \mathrm{NO}_{2}(s)$ decomposed. What is the value of ΔU for the reaction under the same conditions? (Given $R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
9. When 0.532 g of benzene $\left(C_{6} H_{6}\right)$, boiling point 353 K , is burnt with excess of oxygen in a constant volume system 22.3 kJ of heat is given out. Calculate ΔH for the combustion process $\left(R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$.

- Watch Video Solution

10. The heat of combustion of naphthalene $\left(C_{10} H_{8}(s)\right)$ at constant volume was found to be $-5133 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Calculate the value of enthalpy change.

- Watch Video Solution

11. The molar heat of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$ is -367.5 kJ and those of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are +81.46 kJ and -285.78 kJ respectively at $25^{\circ} C$ and 1 atmospheric pressure. Calculate the ΔH and ΔU for the reaction,
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
12. Determine the value of ΔH and ΔU for the reversible isothermal evaporation of 90.0 g of water at 100° C.Assume that water vapour behaves as an ideal gas and heat of evaporation of water is $540 \mathrm{calg}^{-} R=2.0 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

13. It is required to raise the temperature of water of a swimming pool from $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. The pool holds $10^{5} \mathrm{~L}$ of water. How much energ in joules will be required ? Given that the specific heat of water is 4.184 $J K^{-1} g^{-1}$

- Watch Video Solution

14. Specific heat of an elementary gas is found to be 0.313 J at constant volume. If the molar mass of the gas is $40 \mathrm{~g} \mathrm{~mol}^{-1}$, what is the atomicity

- Watch Video Solution

PROBLEM FOR PRACTICE

1. A 1.250 g sample of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ is burned in excess of oxygen in a bomb calorimeter. The temperatre of the calorimeter rises from 294.05 K to 300.78 K . If heat capacity of the calorimeter is $8.93 \mathrm{~kJ} / \mathrm{K}$, find the heat transferred to the calorimeter. Also calculate the enthalpy combustion of the sample of octane.

- Watch Video Solution

2. 20.0 g of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ is dissolved In 125 g of water in a coffee-cup calorimeter, the temperature falls from 296.5 K to 286.4 K .

Find the value of q for the calorimeter. (Hint: heat capacity of water as the heat capacity of the calorimeter and its content)
3. 0.16 g of methane was subjected to combustion at $27^{\circ} \mathrm{C}$ in a bomb calorimeter. The temperature of calorimeter system (including water) was found to rise by $0.5^{\circ} \mathrm{C}$. Calculate the heat of combustion of methane at (i) constant volume and (ii) constant pressure. The thermal capacity of the calorimeter system is $17.7 \mathrm{kJK}^{-1}$.

- Watch Video Solution

4. Ethylene on combustion gives carbon dioxide and water. Its heat of combustion is $1410.0 \mathrm{kJmol}^{-1}$. If the heat of formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are 393.3 kJ and $286.2 k J$, respectively. Calculate the heat of formation of ethylene.

- Watch Video Solution

5. Calculate the standard heat of formation of carbon disulphide (I). Given that the standard heats of combustion of carbon (s), sulphur (s) and carbon disulphide (I) are -393.3, -293.72 and $-1108.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

6. Calculate the enthalpy of formation of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ from the following data :
(i) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-5200.7 \mathrm{kJmol}^{-1}$
(ii)

$$
\begin{equation*}
\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \Delta H=-395.5 \mathrm{kJmol}^{-1} \tag{iii}
\end{equation*}
$$

$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow h_{2} \mathrm{O}, \Delta H=-285.8 \mathrm{kJmol}^{-1}$

- View Text Solution

7. Calculate the standard enthalpy of formation of SO_{3} at 298 K using the following reactions and enthalpies.

$$
S_{8}(s)+8 O_{2}(g) \rightarrow 8 S_{2}(g), \Delta H^{\circ}=-2775 \mathrm{kmol}^{-1}
$$

$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}), \Delta H^{\circ}=-198 \mathrm{kJmol}^{-1}$.

(D) Watch Video Solution

8. Calculate the enthalpy of formation of anhydrous aluminium chloride, $A l_{2} \mathrm{Cl}_{6}$ from the following data :
(i) $2 \mathrm{Al}(\mathrm{s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{Al}_{2} \mathrm{Cl}_{6}(a q)+3 \mathrm{H}_{2}(g), \Delta_{r} \mathrm{H}^{\circ}=-1004.0 \mathrm{~kJ}$
(ii)
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta_{r} H^{\circ}=-183.9 k J, \Delta_{r} H^{\circ}=-183.9 \mathrm{~kJ}$
(iii) $\mathrm{HCl}(g)+a q \rightarrow \mathrm{HCl}(a q), \Delta_{r} H^{\circ}=-73.2 k J$
$A l_{2} C l_{6}(s)+a q \rightarrow A l_{2} C l_{2}(a q), \Delta_{r} H^{\circ}=-643.0 k J$

- Watch Video Solution

9. From the following thermochemical equations, calculate the standard enthalpy of formation of $\mathrm{HCl}(\mathrm{g})$.
(A)

$$
H_{2}(g) \rightarrow 2 H(g), \Delta H^{0}=+436.0 \mathrm{kJmol}^{-1}
$$

$(B) \mathrm{Cl}_{2}(g) \rightarrow 2 C l(g), \Delta H^{0}=+242.7 \mathrm{kJmol}^{-1}$
(C) $\mathrm{HCl}(g) \rightarrow H(g)+C l(g), \Delta H^{0}=+431.8 \mathrm{kJmol}^{-1}$
10. Calculate the enthalpy of formation of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ if its enthalpy of combustion is $867 \mathrm{kJmol}^{-1}$. The enthalpies of fromation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -393.5 and -285.9 kJmol^{-1} respectively.

(D) Watch Video Solution

11. The enthalpy of combustion of ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is 1380.7 kJ mol^{-1}. If the enthalpies of formation of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are 394.5 and $286.6 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$ respectively, calculate the enthalpy of formation of ethyl alcohol.

- Watch Video Solution

12. Calculate the heat of combustion of benzene form the following data:
a. $6 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(g) \rightarrow C_{6} H_{6}(l), \Delta H=49.0 \mathrm{~kJ}$
b. $\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-285.8 \mathrm{~kJ}$
c. $C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-389.3 k J$

(D) Watch Video Solution

13. The enthalpies of formation of methane,carbon dioxide and water (liquid) are $-74.8,-393.5$ and -286.2 kJ respectively. Calculate the enthalpy of combustion of methane at ordinary temperature.

- Watch Video Solution

14. Calculate the enthalpy of reaction for $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$ Given $C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-393.5 \mathrm{kJmol}^{-1}$
$C(s)+\frac{1}{2} O_{2}(g) \rightarrow C O(g) \Delta H=-110.5 \mathrm{kmol}^{-1}$

- Watch Video Solution

15. Find the enthalpy of combustion of carbon (graphite) to produce carbon monoxide(g)on the basis of data given below: C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+393.4 \mathrm{kJmol}^{-1}$
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+283.0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

16. Diborane is a potential rocket fuel which undergoes combustion according to the reaction,
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
From the following data, calculate the enthalpy change for the combustion of diborane:
(i) $2 B(s)+\left(\frac{3}{2}\right) O_{2}(g) \rightarrow B_{2} O_{3}(s), \Delta H=01273 \mathrm{~kJ} / \mathrm{mol}$
(ii) $\mathrm{H}_{2}(\mathrm{~g})+\left(\frac{1}{2}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-286 \mathrm{~kJ} / \mathrm{mol}$
(iii) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \Delta \mathrm{H}=44 \mathrm{~kJ} / \mathrm{mol}$
(iv) $2 B(s)+3 H_{2}(G) \rightarrow B_{2} H_{6}(g), \Delta H=36 \mathrm{~kJ} / \mathrm{mol}$

- Watch Video Solution

17. The enthalpies of combustion of graphite and diamond are 393.5 kJ and 395.4 kJ respectively. Calculate the enthalp change accompanying the transformation of 1 mole of graphite into diamond.
18. There are two crystalline forms of PbO , one is yellow and the other isred. The standard enthalpies of formation of these twoforms are - 217.3 and -219.0 kJ per mole respectively. Calculate the enthalpy change for the solid - solid phase transition.

PbO (yellow) $\rightarrow \mathrm{PbO}$ (red)

- Watch Video Solution

19. The enthalpies of solution of anhydrous CuSO_{4} and hydrated $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ are -66.5 and $11.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.Calculate the enthalpy of hydration of CuSO_{4} to $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

20. The enthapy of formation of carbon monoxide and steam are - 110.5 and -243.0 kJ respectively.Calculate the heat of the reaction when steam is
passed over coke as: $\mathrm{C}(s)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2}(g)$.

- Watch Video Solution

21. Chloroform is passed from methane according to the reaction :

$$
\mathrm{CH}_{4}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CHCl}_{3}(\mathrm{l})+3 \mathrm{HCl}(\mathrm{~g})
$$

Calculate ΔH for the reaction given that enthalpies of formation of $\mathrm{HCl}(\mathrm{g}), \mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{CHCl}_{3}(\mathrm{~g})$ are - $92.0,-74.9$ and -134.3 kJ per mole respectively.

- Watch Video Solution

22. Calculate the enthalpy of reaction $\left(\Delta H^{\circ}\right)$ when ammonia is oxidized
$4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{H}_{2} \mathrm{O}(g)+4 \mathrm{NO}(g)$
Standard enthalpies of formation $\left(\Delta_{f} \mathrm{H}^{\circ}\right)$ at $25^{\circ} \mathrm{Cfor} \mathrm{NH}_{3}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ and $N O(g)$ are $-46.2,-241.8$ and $+90.4 k J /$ mole respectively.
23. The enthalpy of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$ is $-824.2 \mathrm{kJmol}^{-1}$. Calculate the enthalpy change for the reaction :
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

- Watch Video Solution

24. The standard ethelpy of combustion at $25^{\circ} \mathrm{C}$ of hydrogen, cyclohexene ($C_{6} H_{10}$), and cyclohexane $\left(C_{6} H_{12}\right)$ are $-241,-3800$, and $-3920 \mathrm{kJmol}^{-1}$ repectively. Calculate the heat of hydrogenation of cyclohexane.

- Watch Video Solution

25. Calculate ΔH for the reaction :
$2 \mathrm{Li}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Li}^{+}(a q)+2 \mathrm{OH}^{-}(a q)+\mathrm{H}_{2}(g)$
Given that the standard enthalpies of formation of $\mathrm{Li}^{+}(a q), \mathrm{OH}^{-}(a q)$
and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -278.5,-228.9 and $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-}$respectively (all at 298 K)

- Watch Video Solution

26. The molar heat of formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(s)$ is $-367.5 k J$ and those of $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are +81.46 kJ and -285.78 kJ respectively at $25^{\circ} C$ and 1 atmospheric pressure. Calculate the ΔH and ΔU for the reaction,
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

- Watch Video Solution

27. Which is a good fuel CH_{4} or $\mathrm{C}_{2} \mathrm{H}_{6}$?

The standard enthalpy of formation of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are
$-74.8,-84.6,-393.5$ and $-286 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

28. Given that:
i. C (graphite) $+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \Delta H=-393.7 k J$
ii. $C($ diamond $) \rightarrow C($ graphite $), \Delta H=-2.1 k J$
a. Calculate ΔH for burning of diamond of CO_{2}.
b. Calculate the quantity of graphite that must be burnt to evolve 5000 kJ of heat.

- Watch Video Solution

29. Compare quantity of heat produced by the combustion of 1.0 g glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ with that produced by 1.0 g sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$. Given that the standard heats of formation of $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ glucose and sucrose are $\quad-393.5,-285.9,-1260$ and $-2221 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

30. Calculate the enthalpy change for the reaction between CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ to produce one mole of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. What would be enthalpy change for the production of 18 g of glucose ? The enthalpy of combustion of glucose is $2840 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

31. a. A cylinder of gas is assumed to contain 11.2 kg of butane. If a normal family needs 20000 kJ of energy per day for cooking, how long will the cylinder last? Given that the heat of combustion of butane is $2658 \mathrm{kJmol}^{-1}$.
b. If the air supply of the burner is insufficient (i.e. you have a yellow instead of a blue flame), a portion of the gas escape without combustion.

Assuming that 33% of the gas is wasted due to this inefficiency, how long would the cylinder last?

- Watch Video Solution

32. An average personneeds about $10,000 \mathrm{~kJ}$ per day. How much carbohydrates (in mass) will he haveto consume, assuming that all his energy needs are met only by carbohydrates in the form glucose ? Given that the heat of combustion of glucose is $2900 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Watch Video Solution

33. Red phosphorus reacts with liquid bromine in an exothermic reaction
$2 P(s)+3 \mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{PBr}_{3}(g), \Delta_{r} H^{\circ}=-243 k J$
Calculated the enthalpy change when $2.63 g$ of phosphorus reacts with an excess of bromine in this way.

- Watch Video Solution

34. Calculate the enthalpy change when $2.38 g$ of carbon monoxide (CO) vaporise at its normal boiling point.
35. Which is a good fuel CH_{4} or $\mathrm{C}_{2} \mathrm{H}_{6}$?

The standard enthalpy of formation of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are $-74.8,-84.6,-393.5$ and $-286 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

36. Standard heat of formation of $\mathrm{CH}_{4}, \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ are $-76.2,-394.8$ and $-241.6 \mathrm{kJmol}^{-1}$ respectively. Calculate the amount of heat evolved by burning $1 m^{3}$ of $C H_{4}$ measured under normal conditions.

- Watch Video Solution

37. A gas fired power plant burns methane, $\mathrm{CH}_{4}(g)$ for which standard enthalpy of combustion is $-890 \mathrm{~kJ} \mathrm{~mol}^{-1}$. How many moles of CO_{2} gas are produced for every 1.0 MJ (mega joule) of energy produced by it ?
38. Find the enthalpy of formation of hydrogen flouride on the basis of following data:

Bond energy of $H-H$ bond $=434 \mathrm{kJmol}^{-1}$
Bond energy of $F-F$ bond $=158 \mathrm{kJmol}^{-1}$ Bond enegry of $H-F$ bond $=565 \mathrm{kJmol}^{-1}$

- Watch Video Solution

39. Calculate the enthalpy change for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$

Given that the bond energies of $\mathrm{H}-\mathrm{H}, \mathrm{I}-\mathrm{I}$ and $\mathrm{H}-\mathrm{I}$ are433, 151 and 299 kJmol^{-1} respectively.

- Watch Video Solution

40. Calculate the enthalpy of formation of water, given that the bond energies of $H-H, O=O \quad$ and $\quad O-H \quad$ bond \quad are $433 \mathrm{kJmol}^{-1}, 492 \mathrm{kJmol}^{-1}$, and $464 \mathrm{kJmol}^{-1}$, respectively.

(D) Watch Video Solution

41. From the following data at $25^{\circ} \mathrm{C}$, calculate the bond energy of $\mathrm{O}-\mathrm{H}$ bond:
(i) $H_{2}(g) \rightarrow 2 H(g), \Delta H_{1}=104.2 \mathrm{kcal}$
(ii) $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}_{2}=118.4 \mathrm{kcal}$
(iii) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}_{3}=-57.8 \mathrm{kcal}$

- Watch Video Solution

42. Calculate the enthalpy of hydrogenation of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ to $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$.
(Given bond energies: $C-H=414.0 \mathrm{kJmol}^{-1}$,
$C \equiv C=827.6 \mathrm{kJmol}^{-1}$,
$C=C=606.0 \mathrm{kJmol}^{-1}$,
$\left.H-H=430.5 \mathrm{kJmol}^{-1}\right)$

- Watch Video Solution

43.

is -150 kJ . Calculate the bond energy of $C \equiv N$ bond.
[Given bond energies of $C-H=414 \mathrm{kJmol}^{-1}$,
$H-H=435 \mathrm{kJmol}^{-1}$,
$C-N=293 k \mathrm{Jmol}^{-1}$,
$N-H=396 \mathrm{kJmol}^{-1}$]

- Watch Video Solution

44. Calculate the C-C bond enthalpy from the following data :

2 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}), \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \Delta_{r} H^{\circ}=-84.67 \mathrm{mkJ}$
C (graphite),$\rightarrow C(g) \Delta_{r} H^{\circ}=716.7 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g}), \rightarrow 2 \mathrm{H}(\mathrm{g}) \Delta_{r} H^{\circ}=435.9 \mathrm{~kJ}$
Assume 416 kJ as the C-H bond enthalpy.
45. Calculate ΔH° for the reaction
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Given that the average bond energies of the different bonds are :

Bond		$C-H$	$O=O$	$C=O$	$O-H$	$C=C$
Bond energy	$\left(\mathrm{kJmol}^{-1}\right)$	414	499	724	460	619

- Watch Video Solution

46. Calculate enthalpy change of the following reaction :
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3(\mathrm{~g})}$
The bond energy of $C-H, C-C, C=C, H-H$ are 414, 347, 615 and $435 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

47. Calculate the entropy change of n-hexane when 1 mole of it evaporates at $341.7 \mathrm{~K}\left(\Delta_{v a p} H=29.0 \mathrm{kJmol}^{-1}\right)$.
48. Calculate the temperature in centrigrade when vaporisation of water in equilibrium at one atmospheric pressure (Enthalpy of vaporisation $\left.=40.63 \times 10^{3} \mathrm{Jmol}^{-1}, \Delta_{v a p} S=108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

49. Enthalpy change $\left(\Delta_{\text {vap }} H\right)$ for the transition of liquid water to steam at $100^{\circ} \mathrm{C}$ is $40.8 \mathrm{kJmol}^{-1}$. Calculate the entropy change for the process.

- Watch Video Solution

50. Ethanol boils at $78.4^{\circ} \mathrm{C}$ and the enthalpy of vaporisation of ethanol is $42.4 \mathrm{kJmol}^{-1}$. Calculate the entropy of vaporisation of ethanol.

- Watch Video Solution

51. What is entropy change for the conversion of one gram of ice to water at 273 K and one atmospheric pressure?
$\left(\Delta H_{\text {fusion }}=6.025 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$

- Watch Video Solution

52. The entropy change for the vaporisation of water is $109 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Calculate the enthalpy change for the vaporisation of water at 373K.

- Watch Video Solution

53. Calculate the entropy change for the conversion of 2 moles of liquid water at 373 K to vapours, if $\Delta_{\text {vap }} \mathrm{H}$ is $37.3 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

54. The enthalpy of vaporisation of benzene $\left(C_{6} H_{6}\right)$ is $30.8 \mathrm{kJmol}^{-1}$ at its boiling point $\left(80.1^{\circ} \mathrm{C}\right)$. Calculate the entropy change in going from:
a. liquid to vapour and
b. vapour to liquid at $80.1^{\circ} \mathrm{C}$.

- Watch Video Solution

55.10 kg of cold water at $2^{\circ} C$ absorbs 50 J of heat from the surrounding which were at a temperature of $37^{\circ} C$. What is the entropy change of (i) the system (ii) the surroundings (iii) the universe ? Assume the change in temperature of the water and the surroundings to be negligible.

- Watch Video Solution

56. The enthalpy and entropy changes for the reaction $C(s)$ diamond $+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ and 1 atm . Are $-393.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and 0.006 $\mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$ respectively. Is the conversion of diamond to CO_{2} at room temperature a spontaneous process ?

(D) Watch Video Solution

57. ΔH and ΔS for the reaction:
$\mathrm{Ag}_{2} \mathrm{O}(s) \rightarrow 2 \mathrm{Ag}(\mathrm{s})+(1 / 2) \mathrm{O}_{2}(\mathrm{~g})$
are $30.56 \mathrm{kJmol}^{-1}$ and $66.0 \mathrm{JJK}^{-1} \mathrm{~mol}^{-1}$ respectively. Calculate the temperature at which free energy change for the reaction will be zero.

Predict whether the forward reaction will be favoured above or below this temperature.

- Watch Video Solution

58. ΔH and ΔS for the system $H_{2} O(l) \Leftrightarrow H_{2} O(g)$ at 1 atm are $40.63 \mathrm{kJol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. Calculate the temperature at which the rates of forward and backward reactions will be the same. Predict the sign of free enegy for this transformation above this temperature.
59. In the reaction $A^{+}+B \rightarrow A+B^{+}$, there is no entropy change. Enthalpy change, ΔH equals $22 \mathrm{~kJ} \mathrm{~mol}^{-1}$ of A^{+}. Calculate the ΔG for the reaction. Under what condition free energy change will have negative value?

- Watch Video Solution

60. Calculate the free energy change in dissolving one mole of sodium chloride at $25^{\circ} \mathrm{C}$. Lattic energy $=+777.8 \mathrm{kJmol}^{-1}$. Hydration energy of $\mathrm{NaCl}=-774.1 \mathrm{kJmol}^{-1}$ and ΔS at $25^{\circ} \mathrm{C}=0.043 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

61. The following data is known about the melting of KCl :
$\Delta H=7.25 \mathrm{~kJ} \mathrm{~mol}^{1}$ and $\Delta S=+0.007 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ Calcualte its melting point.
62. The free enegry changes for the two reactions given below are
a. $S O_{2}(g)+C I_{2}(g) \rightarrow S O_{2} C I_{2}(g), \Delta G=-2270 \mathrm{cal}$
b. $S($ Rhom $)+O_{2}(g)+C I_{2}(g) \rightarrow S O_{2} C I_{2}(g), \Delta G=-74060 \mathrm{cal}$

Find ΔG for the reaction $S(R h o m)+O_{2}(g) \rightarrow \mathrm{SO}_{2}(g)$

- Watch Video Solution

63. At what temperature does the reduction of lead oxide to lead by carbon becomes spontaneous?
$\mathrm{PbO}+\mathrm{C} \rightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{CO}(g)$
For the reacion, ΔH and ΔS at $25^{\circ} C$ are $108.4 \mathrm{kmol}^{-1}$ and $190 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

64. For the reaction : $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(g)$, the enthalpy and entropy changes are $-113.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $-145 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Find the temperature below which this reaction is spontaneous.

- Watch Video Solution

65. For a hypothetical reaction , $X \rightarrow Y$, the enthalpy and entropy changes are $46.3 \mathrm{kJmol}^{-1}$ and $108.80 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. Find the temperature. Find the temperature above which this reaction is spontaneous

Watch Video Solution

66. The standard free energy change for a reaction is $-212.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If the enthalpy change of the reaction is $-216 \mathrm{kJmol}^{-1}$, calculate the entropy change for the reaction.

- Watch Video Solution

67. For the reaction $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-95.4 \mathrm{Kj}$ and $\Delta S=-198.300 \mathrm{JK}^{-1}$. Calculate the temperature in centrigrade at which it attains equilibrium.

(D) Watch Video Solution

68. A chemist claims that the following reaction is feasible at 298 K
$S F_{6}(g)+8 H I(g) \rightarrow H_{2} S(g)+6 H F(g)+4 I_{2}(g)$
Verify his claim. Given that ΔG_{f}° for $S F_{6}(g), H I(g), H_{2} S(g)$ and $H F(g)$ are $-991.61,1.30,-33.01$ and $-270.73 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

69. Calculate the standard free energy change for the reaction $: \mathrm{Fe}_{2} \mathrm{O}_{3}(s)+4 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{Fe}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$ Given that the standard free energies of formation of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ are - 741.0 and -237.2kJ mol^{-1} respectively.

- Watch Video Solution

70. A chemist claims that the following reaction is feasible at 298 K

$$
S F_{6}(g)+8 H I(g) \rightarrow H_{2} S(g)+6 H F(g)+4 I_{2}(g)
$$

Verify his claim. Given that ΔG_{f}° for $S F_{6}(g), H I(g), H_{2} S(g)$ and $H F(g)$ are - 991.61, 1.30, -33.01 and $-270.73 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

71. The value of K_{p} for the water gas reaction, $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$ is 1.06×10^{5} at $25^{\circ} \mathrm{C}$. Calculate the standard free energy change for the reaction at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

72. Calculate the equilibrium constant for the reaction :
$N O(g)+\frac{1}{2} O_{2}(g) \Leftrightarrow \mathrm{NO}_{2}(g)$
Given,
$\Delta_{f} H^{\circ}$ at $298 \mathrm{~K}: N O(g)=90.4 k \mathrm{kmol}^{-1}, N O_{2}(g)=33.8 \mathrm{kJmol}^{-1} \quad$ and
ΔS° at $298 K=-70.8 J K^{-1} \mathrm{~mol}^{-1}, R=8.31 J K^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

73. Calculate the standard entropy change for a reaction $X \leftrightarrow Y$, If the value of $\Delta H^{\circ}=28.40 \mathrm{~kJ}$ and equilibrium constant is 1.8×10^{-7} at 298 K.

- Watch Video Solution

74. Using the following data, calculate the value of equilibrium constant for the following reaction at 298 K
$\underset{\text { Acetylene }}{3 H C} \equiv \underset{\text { Benzene }}{C H}$
Assuming ideal behaviour
$\Delta_{f} G^{\Theta}(H C \equiv C H)=2.09 \times 10^{5} \mathrm{Jmol}^{-1}$
$\Delta_{f} G^{\Theta}\left(C_{6} H_{6}\right)=1.24 \times 10^{5} \mathrm{Jmol}^{-1}$,
$R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Can the reaction be recommended for the synthesis of benzene?

- Watch Video Solution

75. Find out the value of equilibrium constant for the following reaction at 298 K .
$2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \Leftrightarrow \mathrm{NH}_{2} \mathrm{CONH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(1)$
Standard Gibbs energy change, $\Delta_{r} G^{\ominus}$ at the given temperature is $-13.6 \mathrm{kJmol}^{-1}$

- Watch Video Solution

76. Calculate the standard free energy change for the reaction :
$H_{2}(g)+I_{2}(g) \rightarrow 2 H I(g) \Delta H^{\circ}=51.9 k \mathrm{Jmol}^{-1} \quad$ Given
$S^{\circ}\left(H_{2}\right)=130.6 J K^{-1} \mathrm{~mol}^{-1}$
$S^{\circ}\left(I_{2}\right)=116.7 J^{-1} \mathrm{~mol}^{-1}$ and $S^{\circ}(H I)=206.3 J^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

77. Calculate the standard entropy change for the following reaction :
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$ at 298 K

Given

$$
S_{H_{2}}^{\circ}=131 \mathrm{JK}^{\circ} \mathrm{mol}^{-1}, S_{C_{l_{2}}}^{\circ}=223 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}
$$ $S_{H C l}^{\circ}=187 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

- Watch Video Solution

78. Calculate the standard Gibbs energy change for the formation of propane at 298 K :
$3 \mathrm{C}($ graphite $)+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$
$\Delta_{f} H^{\circ}$ for propane, $C_{3} H_{8}(g)=-103.8 \mathrm{kJmol}^{-1}$.
Given : $S_{m}^{0}\left[C_{3} H_{8}(g)\right]=270.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S_{m}^{\circ}($ graphite $)=5.70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
and $S_{m}^{0}\left[H_{2}(g)\right]=130.7 J^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

79. For oxidation of iron.
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
entropy change is $-549.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 298 K . Inspite of negative
entropy change of this reaction, why is the reaction spontaneous?
$\left(\Delta_{r} H^{\ominus}\right.$ for this reaction is $\left.-1648 \times 10^{3} \mathrm{Jmol}^{-1}\right)$

- Watch Video Solution

CURIOSITY QUESTIONS

1. Can we convert graphite into diamond ? Which one is more stable and why?

- Watch Video Solution

2. Which reaction is a source of energy in our body ?

- Watch Video Solution

3. NaCl crystals require energy (called lattice energy) to break into ions.

Then why NaCl is soluble in water ?

- Watch Video Solution

4. If we mix H_{2} and O_{2}, they do not combine to form $\mathrm{H}_{2} \mathrm{O}$, is the reaction spontaneous or non-spontaneous ? Give reason.

- Watch Video Solution

ADVANCED PROBLEMS (FOR COMPETITIONS)

1. In a gobar gas plant, gobar gas in obtained by bacterial fermentation of animal refuse. The main combustible gas present in the gobar is found to be methane (80% by weight) whose heat of combustion is 809 $k \mathrm{Jmol}^{-1}$). How much gobar gas would have to produced per day for a village of 100 families, if the average consumption of a family is $20,000 \mathrm{~kJ}$ per day to meet all its energy requirements .

- View Text Solution

2. In an ovan , due to insufficient supply of oxygen, 60% of the carbon is converted to carbon dioxide wehreas the remaining 40% is converted into carbon monoxide. If the heat of combustion of carbon to CO_{2} is $394 \mathrm{kJol}^{-1}$ while that of its oxidation to CO is $111 \mathrm{~kJ} \mathrm{~mol}^{-1}$, calculate the total heat produced in the oven by burning 10 kg of coal containing 80% carbon by weight. Also calculate the efficiency of the oven.

- Watch Video Solution

3. (a) A 1000 watt hour is kept on in a room whose dimensions are $5 m \times 5 m \times 3 m$. Howmuch temperature of the room will rise after half an hour? Given the following data :

Heat capacity ofair at room temperature and $1 \mathrm{~atm}=0.71 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$
Density ofair $=1.22 \times 10^{-3} \mathrm{gmL} L^{-1}$
(b) How much temperature of the room willrise if 25% heat is lost by radiation?

- View Text Solution

4. An intimate mixture of ferric oxide and aluminium is used as solid fuel in rockets. Calculate the fuel value per cm^{3} of the mixture. Heats of formation and densities are as follows:
$H_{f\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)}=-399 \mathrm{kcal} \mathrm{mol}^{-1}, H_{f\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)}=-199 \mathrm{kcal} \mathrm{mol}^{-1}$ Itbr. Density of $\mathrm{Fe}_{2} \mathrm{O}_{3}=5.2 \mathrm{~g} / \mathrm{cm}^{3}, \quad$ Density of $\mathrm{Al}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$

D Watch Video Solution

5. A gas mixture of $3.67 L$ of ethylene and methane on complete combustion at $25^{\circ} \mathrm{C}$ produces 6.11 L of CO_{2}. Find out the heat evolved on buring $1 L$ of the gas mixture. The heats of combustion of ethylene and methane are -1423 and $-891 \mathrm{kJmol}^{-1}$, respectively, at $25^{\circ} \mathrm{C}$.

- Watch Video Solution

6. In order to get maximum calorific output a burner should have an optimum fuel to oxygen ratio which corresponds to 3 times as much oxygen as required theoretically for complete combustion of fuel. A
burner which has been adjusted for methane as fuel (with x litre/hour of CH_{4} and 6 x litre/hour of O_{2}) is to be readjusted for butane $C_{4} H_{10}$. In order to get some calorific output, what should be the rate of supply of butane and oxygen? Assume that losses due to incomplete combustion etc., are the same for both fuels and that gases behave ideally. Heals of combustion, $C H_{4}=-809 \mathrm{~kJ} / \mathrm{mol}, C_{4} H_{10}=-2878 \mathrm{~kJ} / \mathrm{mol}$.

- Watch Video Solution

7. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expands reversibly and adiabatically from $1.25 d \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. Calculate the enthalpy change in this process. $C_{v m}$ for orgon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.

- Watch Video Solution

8. 1 mol of an ideal gas undergoes reversible isothermal expansion form an initial volume V_{1} to a final volume $10 V_{1}$ and does 10 kJ of work. The initial pressure was $1 \times 10^{7} \mathrm{~Pa}$.
a. Calculate V_{2}.
b. If there were 2 mol of gas, what must its temperature have been?

- Watch Video Solution

9. There is 1 mol liquid (molar volume 100 ml) in an adiabatic container initial, pressure being 1 bar Now the pressure is steeply increased to 100 bar, and the volume decreased by 1 ml under constant pressure of 100 bar. Calculate ΔH and ΔE. [Given 1bar $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$]

(Watch Video Solution

10. For the reaction: $N_{2} O_{4}(g) \Leftrightarrow 2 N O_{2}(g)$
(i) In a mixture of $5 \mathrm{molNO} \mathrm{O}_{2}$ and $5 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$ and pressure of 20 bar. Calculate the value of ΔG for the reaction. Given $\Delta G_{f}^{\circ}\left(N O_{2}\right)=50$ $\mathrm{KJ} / \mathrm{mol}, \Delta G_{f}^{\circ}\left(\left(N_{2} O_{4}\right)=100 \mathrm{KJ} / \mathrm{mol}\right.$ and $\mathrm{T}=298 \mathrm{~K}$. (ii) Predict the direction in which the reaction will shift, in order to attain equilibrium
[Given at $T=298 K, 2.303 \mathrm{RT}=5.7 \mathrm{KJ} / \mathrm{mol}$.]
11. Calcualte the work done when 11.2 g of iron dissolves in hydrochloric acid in (i) a closed vessel (ii) an open beaker at $25^{\circ} C$ (Atomic meass of $F e=56 u)$

- Watch Video Solution

12. It is planned to carry the reaction
$\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$
at 1273 K and 1 bar
(a) Is this reaction spontaneous at this temperature and pressure ?
(b) Calculate the value of
(i) K_{p} at 1273 K for the reaction and
(ii) partial pressure of CO_{2} at equilibrium

Given $\Delta_{f} H^{\circ}$ values $\left(\mathrm{kJmol}^{-1}\right)$:
$\mathrm{CaCO}_{3}(s)=-1206.9, \mathrm{CaO}(s)=-635.1, \mathrm{CO}_{2}(g)=-393.5$ S° value $\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
$\mathrm{CaCO}_{3}(s)=92.9, \mathrm{CaO}(s)=39.8, \mathrm{CO}_{2}(g)=213.7$.

(D) Watch Video Solution

13. A chemist while studying the properties of gaseous $C C l_{2} F_{2}$, a chlorofluorocarbon refrigerant, cooled a 1.25 g sample at constant atmospheric prssure of 1.0 atm from 320 K to 293 K . During cooling the sample volume decreased from 274 to 248 mL . Calculate ΔH and ΔU for the chlorofluorocaron for this process. For $\mathrm{CCl}_{2} \mathrm{~F}_{2}, C_{p}=80.7 \mathrm{~J} /(\mathrm{molK})$.

- View Text Solution

14. When 10 g of anhydrous CaCl_{3} is dissolved in 200 g of water, the temperature of the solution rises by $7.7^{\circ} \mathrm{C}$. Calculate the heat of hydration of CaCl_{2} to $\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$. Given that the heat of dissolution of $\mathrm{CaCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$ is $19.08 \mathrm{kJmol}^{-1}$. Assume specific heat of the solution to be same as that of water, i.e., $4.184 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$
15. Calculate the entropy change when 1 kg of water is heated from $27^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ forming supper heated steam under constant pressure. Given specific heat of water $=4180 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and specific heat of steam $=1670+0.49 T \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and latent heat of vaporisation $=23 \times 10^{5} \mathrm{Jkg}^{-1}$.

- Watch Video Solution

16. The lattice energy of NaCl is $180 \mathrm{kcal} / \mathrm{mol}$. The dissociation of the solid in water in the form of ioins is endothermicto the extent of $1 \mathrm{kcal} /$ mol.If the solvation energies of Na^{+}and Cl^{-}ions are in theratesof6:5, calculate the enthalpy of hydration of Na^{+}ions.

D View Text Solution

17. An ideal gas has a molar heat capacity at constant pressure of $C p=2.5 R$. The gas is kept in a closed vessel of volume $0.0083 \mathrm{~m}^{3}$, at a temperature of 300 K and a pressure of $1.6 \times 10^{6} \mathrm{Nm}^{-2}$. An amount
$2.49 \times 10^{4} J$ of heat energy is supplied to the gas. Calculate the final temperature and pressure of the gas.

- Watch Video Solution

18. A room of $10 m \times 15 m \times 4 m$ dimenstion having perfectly insulated walls, ceiling and floor has 60 students seated inside. The air inside the room is at $25^{\circ} C$ and 1 atm pressure. If each student loses 200 joules of heat in one second, calculate the rise in temperature noticedin 20 minutes (Neglect loss of air to the outside as temperature is raised and C_{p} for air $\left.=\frac{7}{2} R\right)$.

- View Text Solution

19. In a measurement of quantum efficiency of photosynthesis in gree plants, it was found that 8 quanta of red light of $6850 \AA$ were needed to evolve 1 moleculeof CO_{2}. The average energy storage in the
photosynthesis process is $112 \mathrm{kcal} / \mathrm{mol} O_{2}$ evolved. Calculatethe percent efficiency of energy conversion in this experiment.

- View Text Solution

20. 1.2g of Mg atoms in vapour phase absorb 50.0 kJ of energy to convert

Mg atoms into Mg ions. The energy absorbed is needed for the following changes :

$$
\begin{aligned}
& M g(g) \rightarrow M g^{+}(g)+e^{-}, \Delta H=750 \mathrm{kJmol}^{-1} \\
& M g^{+}(g) \rightarrow M g^{2+}(g)+e^{-}, \Delta H=1450 \mathrm{kJmol}^{-1}
\end{aligned}
$$

Calculate the percentage of Mg^{+}and $M g^{2+}$ ions in the final mixture.

TEST YOUR GRIP(MULTIPLE CHOICE QUESTIONS)

1. Which one of the following pairs does not represent example for intensive property?
A. Temperature and density
B. Pressure and molar volume
C. Molar heat capacity and density
D. Heat capacity and enthalpy

Answer: D

- Watch Video Solution

2. One mole of an ideal gas at 300 K is expanded isothermally from an inital volume of 1 litre to 10 litres. The ΔE for this process is $\left(R=2\right.$ calmol $\left.^{-1} K^{-1}\right)$
A. 16.3cal
B. zero
C. 138.1 cal
D. 9 lit atm.

D Watch Video Solution

3. Which of the following are not state functions?
(I) $q+w$
(II) q
(III) w
(IV) $H-T S$
A. (I) and (IV)
B. (II), (III) and (IV)
C. (I),(II) and (III)
D. (II) and (III)

Answer: d

4. Molar heat capacity of aluminium is $25 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The heat necessary to raise the temperature of 54 g of aluminium (Atomic mass $27 \mathrm{~g} \mathrm{~mol}^{-1}$) from $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ is
A. 1.51 kJ
B. 0.5 kJ
C. 1.0 kJ
D. 2.05 Kj

Answer: A::C::D

- Watch Video Solution

5. Which of the following reactions is defines $\Delta_{f} H^{\Theta}$?
A. $C_{\text {diamond }}+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

6. The lattice enthalpy and hydration enthalpy of four compounds are given below:

Compound	Lattice enthalpy $(\mathrm{kJ} / \mathrm{mol})$	Hydration enthalpy $(\mathrm{kJ} / \mathrm{mol})$
P	+780	-920
Q	+1012	-812
R	+828	-878
S	+632	-600

the pair of compounds which is soluble in water is:
A. P and Q
B. Q and R
C. R and S
D. P and R

D Watch Video Solution

7. The standard enthalpies of formation of
$A\left(\mathrm{NH}_{3}\right), B\left(\mathrm{CO}_{2}\right), C(\mathrm{HI})$ and $D\left(\mathrm{SO}_{2}\right)$ are respectively -46.19,-393.4,
+24.94 and $-296.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The increasing order of their stability is
A. $B<D<A<C$
B. $C<A<D<B$
C. $D<B<C<A$
D. $A<C<D<B$

Answer: b
8. The species which by definition has zero standard molar enthalpy of formation at 298 K is
A. $B r_{2}(g)$
B. $C l_{2}(g)$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $\mathrm{CH}_{4}(\mathrm{~g})$

Answer: b

- Watch Video Solution

9. Thermodynamically the most stable form of carbon is
A. diamond
B. graphite
C. fullerences
D. coal

D Watch Video Solution

10. The sublimation energy of I_{2} (solid) is $57.3 \mathrm{KJ} / \mathrm{mole}$ and enthalpy of fusion is $15.5 \mathrm{KJ} /$ mole. The enthalpy of vapourisation of I_{2} is
A. $41.8 \mathrm{~kJ} / \mathrm{mol}$
B. $-41.8 k J / \mathrm{mol}$
C. $72.8 \mathrm{~kJ} / \mathrm{mol}$
D. $-72.8 k J / \mathrm{mol}$

Answer: a

D Watch Video Solution

11. Given that $C+O_{2} \rightarrow C O_{2}, \Delta H^{\circ}=-x k J$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta H^{\circ}=-y k J$

What is heat of formation of CO?
A. $y-2 x$
B. $\frac{2 x-y}{2}$
C. $\frac{y-2 x}{2}$
D. $2 x-y$

Answer: c

- Watch Video Solution

12. The bond energies of $H--H, B r--B r$ and $H--B r$ are $433,, 192$ and $364 \mathrm{KJmol}^{-1}$ respectively. The ΔH° for the reaction $\mathrm{H}_{2}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{HBr}(g)$ is
A. -261 kJ
B. $+103 k J$
C. $+261 k J$
D. $-103 k J$

Answer: d

- Watch Video Solution

13. Predict the sign of ΔS° for the following reaction :
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
A. $+v e$
B. $-v e$
C. zero
D. cannot be predicted

Answer: b

- Watch Video Solution

14. Which one of the following demonstrates a decrease in entropy?
A. Dissolving a solid into solution
B. An expanding universe
C. Burning a log in a fire place
D. Raking up leaves into a trash bag

Answer: D

- Watch Video Solution

15. If the enthalpy change for the transition of liquid water to steam is $30 \mathrm{kJmol}^{-1}$ at $27^{\circ} \mathrm{C}$, the entropy change for the process would be
A. $100 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $10 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. 1. $0 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $0.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: a

- Watch Video Solution

16. A catalyst
A. increase the free energy change of the reaction
B. decreases the free energy change of the reaction
C. neither increases nor decreases the free energy of the reaction
D. may increases or decrease depending upon the nature of the catalyst

Answer: c

- Watch Video Solution

17. A process is taking place at constant temperature and pressure. Then
A. $\Delta H=\Delta E$
B. $\Delta H=T \Delta S$
C. $\Delta H=0$
D. $\Delta S=0$

Answer: b

- Watch Video Solution

18. In an irreversible process taking place at constant T and P and in which only pressure-volume work is being done, the change in Gibbs free energy ($d G$) and the change in entropy $(d S)$ satisfy the criteria
A. $(d S)_{V, E}>0,(d G)_{T, P}<0$
B. $(d S)_{V, E}=0,(d G)_{T, P}=0$
C. $(d S)_{V, E}=0,(d G)_{T, P}>0$
D. $(d S)_{V, E}<0,(d G)_{T, P}<0$

Answer: a

- Watch Video Solution

19. A reaction occurs spontaneously if
A. $T \Delta S>\Delta H$ and ΔH is $+v e$ and ΔS is -ve
B. $T \Delta S=\Delta H$ and both ΔH and ΔS are $+v e$
C. $T \Delta S<\Delta H$ and both ΔH and ΔS are $+v e$
D. $T \Delta S>\Delta H$ and both ΔH and ΔS are $+v e$

Answer: d

Watch Video Solution

20. Ths standard free energy change ΔG° is related to K (equilibrium constant) as`
A. $K_{p}=-R T \ln \Delta G^{\circ}$
B. $K=\left(\frac{e}{R T}\right)^{\Delta G^{\circ}}$
c. $K_{p}=\frac{\Delta G^{\circ}}{R T}$
D. $K_{p}=e^{-\Delta G^{\circ} / R T}$

Answer: d

- Watch Video Solution

21. If $K<1.0$, what will be the value of ΔG° out of the following ?
A. 1.0
B. Zero
C. Negative
D. Positive

Answer: d

FILL IN THE BLANKS

1. A system which can exchange energy with the surroundings but no matter is called

- Watch Video Solution

2. The property of a system which does not depend upon the amount of substance is calledproperty.

- Watch Video Solution

3. Force is property whereas pressure is property in thermodynamics .
4. A process in which heat can flow from system to surroundings or viceversa is called process.

- Watch Video Solution

5. During isothermal expansion of an ideal gas, the change in internal energy is \qquad

- Watch Video Solution

6. For the isothermal reversible expansion of an ideal gas from volume V_{1} to volume V_{2}, the work done is given by $w_{\text {rev }}=\ldots \ldots \ldots$. whereas for the irreversible expansion, it is given by $w_{\text {irrev }}=\ldots \ldots \ldots \ldots .$.

- Watch Video Solution

7. If a system absorbs heat and expands through a volume ΔV against external pressure, P accompanied by increas in internal energy, ΔU, then
\qquad

- Watch Video Solution

8. If a gas expands through a volume of 100 mL against atmospheric pressure, the work done by the gas $=. . \ldots \ldots \ldots \ldots .$.

Watch Video Solution

9. Internal energy change of a system is the heat absorbed or evolved at constant whereas enthalpy change is that at constant

- Watch Video Solution

10. If in a reaction at constant temperature, n_{1} moles of the gaseous reactants change into n_{2} moles of gaseous products, the difference in
the enthalpy change and internal energy change of the reaction will be equal to

- Watch Video Solution

11. Molar heat capacity of aluminium will be times its specific heat.

- Watch Video Solution

12. For n moles of a gas, the difference between the molar heat capacity at constant pressure and that at constant volume is equal to

- Watch Video Solution

13. For triatomic gases such as CO_{2} the ratio $\frac{C_{p}}{C_{v}}$ is equal to
14. Bomb calorimeter is used to determine the value of

- Watch Video Solution

15. For exothermic reactions, the enthalpy of products is........... than enthalpy of reactants.

- Watch Video Solution

16. The enthalpy of combustionof 1 mole of H_{2} to form $\mathrm{H}_{2} \mathrm{O}(l)$ is
............ kJ whereas to form $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, it is kJ.

- Watch Video Solution

17. The heat produced from the complete combustion of 1 g of fuel or food is called its.
18. The allotropic form of sulphur for which standard enthalpy of formation is taken as zero is \qquad

- Watch Video Solution

19. The enthalpy of solution of sodium chloride is $4 \mathrm{kJmol}^{-1}$ and its enthalpy of hydration of ion is $-784 \mathrm{kJmol}^{-1}$. Then the lattice enthalpy of $\mathrm{NaCl}\left(\right.$ in $\left.\mathrm{kJmol}^{-1}\right)$ is

- Watch Video Solution

20. The enthalpies of solution of anhydrous CuSO_{4} and hydrated $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ are -66.5 and $11.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.Calculate the enthalpy of hydration of CuSO_{4} to $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
21. The bond energy of H_{2} is found to be $435 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Therefore, the enthalpy of formation of hydrogen atom will be \qquad

Watch Video Solution

22. Enthalpy of dissociation of $\mathrm{H}_{2} \mathrm{O}$ molecules into H^{+}and OH^{-}ions iskJmol ${ }^{-1}$

- Watch Video Solution

23. For an endothermic process to be spontaneous, the factor $T \Delta S$ should be ΔH in magnitude (equal to or less than or greater than).

- Watch Video Solution

24. Why is the enthalpy of sublimation equal to the sum of enthalpy of fusion and enthalpy of vaporisation?

Watch Video Solution

25. The expression for the entropy change when a gas expands from volume V_{1} to volume V_{2} at constant temperature T is $\Delta S_{T}=$

- Watch Video Solution

26. Gibbs-Helmholtz equation is \qquad

- Watch Video Solution

27. In terms of work, the decrease in free energy during a process is equal to
28. Free energy change (ΔG) is related to the total entropy change ($\left.\Delta S_{\text {totalviz }} \Delta S_{\text {system }}+\Delta S_{\text {surrounding }}\right)$ as

- Watch Video Solution

29. A reaction is nono-spontaneous at high temperature but became spontaneousat low temperature. The reaction is

- Watch Video Solution

30. Standard free energy change $\left(\Delta G^{\circ}\right)$ of a reaction is related to its equilibrium constant as : $K=10^{x}$ where $x=\ldots \ldots \ldots \ldots \ldots \ldots \ldots$

- Watch Video Solution

31. Entropy of perfectly crystalline solid is taken as zero at 0 K .

- Watch Video Solution

CONCEPTUAL QUESTIONS(I. General Introduction andsome basic terms and concepts)

1. To what type of system the following belong ?
(i) Tree (ii) Pond(iii) Animals (iv) Tea placed in a kettle (v) Tea placed in thermos flask(vi) Tea placed in a cup.

- Watch Video Solution

2. Separate out the following into extensive and intensive.

Volume, Temperature, Pressure, Boiling point, Free energy.
3. One mole of CO_{2} at 300 K and1 atm pressure is heated in a closed vessel so that temperature is 500 K is pressure is 5 atm. Then it is cooled so that temperature is 300 K and pressure is 1 atm . What is the change in internal energy of the gas ?

- Watch Video Solution

4. One litre-atmosphere is approximately equal to

- Watch Video Solution

CONCEPTUAL QUESTIONS(II. First law of thermodynamics)

1. Water decomposes by absorbing 286.2 kJ of electrical energy per mole.

When H_{2} and O_{2} combine to form one mole of $\mathrm{H}_{2} \mathrm{O}, 286.2 \mathrm{~kJ}$ of heat is produced. Which law is proved ? What statement of the law followsfrom it?

CONCEPTUAL QUESTIONS(III.Enthalpy change and its relation with internal energy change)

1. Under what condition ΔH becomes equal to ΔU ?

- Watch Video Solution

2. C_{v} value of He isalways $3 R / 2$ but C_{v} value of H_{2} is $3 R / 2$ at low temperature and $5 R / 2$ at moderate temperature and more than $5 R / 2$ at higher temperature . Explain in two or threelines.

- View Text Solution

3. In a bomb calorimeter, volume is constant. Do you think that
$\Delta H=\Delta U$? Why or why not ?
4. Why standard heat of formation of diamond is not zero though it is an element?

Watch Video Solution

5. The enthalpy of formation of gaseous iodine is $62.5 \mathrm{kJmol}^{-1}$. What is the enthalpy of sublimation of iodine at $25^{\circ} \mathrm{C}$?

- Watch Video Solution

6. Given that :
$O(g)+e^{-} \rightarrow O^{-}(g) \Delta H=-142 k J \mathrm{~mol}^{-1}$
$O(g)+2 e^{-} \rightarrow O^{2-}(g) \Delta H=+712 k \mathrm{Jmol}^{-1}$
what will be the ΔH for the reaction:
$O^{-}(g)+e^{-} \rightarrow O^{2-}(g)$

- Watch Video Solution

7. Is the bond energy of all the four $\mathrm{C}-\mathrm{H}$ bonds in CH_{4} molecule equal? If not then why? How is the bond energy then reported?

- Watch Video Solution

8. Water can be lifted into the water tank at the top of the house with the help of a pump. Then why is not considered to be spontaneous?

- Watch Video Solution

9. We are consuming a lot of electrical energy, solar energy etc. Do you, therefore, conclude that energy of the universe is continuously decreasing ? Explain which other thermodynamic quantity is continuously increasing or decreasing ?

- Watch Video Solution

10. Under what condition, the heat evolved or absorbed in a reaction is equal to its free change ?

Watch Video Solution

11. The standard free energy of a reaction is found to be zero. What is its equilibrium constant ?

- Watch Video Solution

12. Calculate ΔG and ΔG° for the reaction : $A+B \Leftrightarrow C+D$ at $27^{\circ} C$.Equilibrium constnat (K) for this reaction $=10^{2}$

- Watch Video Solution

13. Entropy of perfectly crystalline solid is taken as zero at 0 K .

NCERT QUESTIONS AND EXERCISES WITH ANSWERS

1. Choose the correct answer. A thermodynamic state function is a quantity
(i) used to determine the heat changes
(ii) whose value is independent of path
(iii) used to determine pressure - volume work
(iv)whose the value depends on temperature only.

- Watch Video Solution

2. For the process to occur under adiabatic conditions, the correct condition is

- Watch Video Solution

3. The enthalpies of all elements in their standard states are :

- Watch Video Solution

4. ΔU° of combustion of methane is $-\mathrm{XkJmol}^{-1}$. The value of ΔH° is
(i) $=\Delta U^{\circ}$
(ii) $>\Delta U^{\circ}$
(iii) $<\Delta U^{\circ}$ (iv) $=0$

- Watch Video Solution

5. The enthalpy of combustion of methane, graphite and dihydrogen at 298 K are $-890.3 \mathrm{kJmol}^{-1},-393.5 \mathrm{kJmol}^{-1}$ and $-28.5 \mathrm{kJmol}^{-1}$ respectively. Enthalpy of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ will be :
(i) $-74.8 \mathrm{kJmol}^{-1}$
(ii) $-52.27 \mathrm{kJmol}^{-1}$
(iii) $+74.8 \mathrm{kJmol}^{-1}$
$+52.26 \mathrm{kJmol}^{-1}$
A. $-74.8 \mathrm{kJmol}^{-1}$
B. $-52.27 \mathrm{kJmol}^{-1}$
C. $+74.8 \mathrm{kJmol}^{-1}$
D. $+52.26 \mathrm{kJmol}^{-1}$

- Watch Video Solution

6. A reaction, $A+B \rightarrow C+D+q$ is found to havea positive entropy change. The reaction will be
(i) possible at high temperature (ii) possible only at low temperature
(iii) not possible at any temperature (iv) possible at any temperature

- Watch Video Solution

7. In a process, 701 J of heat is absorbed by a system and 394 J of work is done by the system. What is the change in internal energy for the process?

- Watch Video Solution

8. The reaction of cyanamide, $\mathrm{NH}_{2} \mathrm{CN}(s)$, with dioxygen was carried out in a bomb calorimeter, and ΔU was found to be $-742.7 \mathrm{kJmol}^{-1}$ at $298 K$. Calculate enthalpy change for the reaction at $298 K$.
$\mathrm{NH}_{2} \mathrm{CN}(g)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{N}_{2}(g)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

(Watch Video Solution

9. Calculate the number of $K J$ necessary to raise the temperature of 60.0 g of aluminium from 35° to $55^{\circ} \mathrm{C}$. Molar heat capcacity of Al is $24 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

10. Calcualte the enthalpy change on freezing of 1.0 mole of water at $10.0^{\circ} \mathrm{C}$ to ice at $-10^{\circ} \mathrm{C} . \Delta_{f s} H=6.03 \mathrm{kJmol}^{-1}$ at $0^{\circ} \mathrm{C}$.
$C_{p}\left[H_{2} O(l)\right]=75.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}, C_{P}\left[H_{2} O(s)\right]=36.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
11. Enthalpy of combustion of carbon to CO_{2} is $-393.5 \mathrm{kJmol}^{-1}$. Calculate the heat released upon formation of $35.2 g$ of CO_{2} from carbon and dioxygen gas.

- Watch Video Solution

12. Enthalpies of formation of $\mathrm{CO}(\mathrm{g}), \mathrm{CO}_{2}(\mathrm{~g}), \mathrm{N}_{2} \mathrm{O}(\mathrm{g})$ and $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are $-110,-393,81$ and $9.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate $\Delta_{r} H$ for the reaction:
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})+3 \mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{CO}_{2}(\mathrm{~g})$.

- Watch Video Solution

13. Given

$$
N_{2}(g)+3 H_{2}(g) \rightarrow 2 N_{3}(g), \Delta_{r} H^{\ominus}=-92.4 \mathrm{kJmol}^{-1}
$$

What is the standard enthalpy of formation of NH_{3} gas?
14. Calculate the standard enthalpy of formation of $\mathrm{CH}_{3} \mathrm{OH}(l)$ from the following data:
$\mathrm{CH}_{3} \mathrm{OH}(l)+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l), \ldots(i), \Delta_{r} H_{1}^{\Theta}=-726 k J n$ $C(g)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g), \ldots(i i), \Delta_{c} H_{2}^{\Theta}=-393 \mathrm{kJmol}^{-1}$
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l), \ldots(i i i), \Delta_{f} H_{3}^{\Theta}=-286 \mathrm{kJmol}^{-1}$

- Watch Video Solution

15. Calculate the enthalpy change for the process
$C l_{4}(g) \rightarrow C(g)+4 C l(g)$ and calculate bond enthalpy of $C-C l$ in $C C l_{4}(g)$.
$\Delta_{v a p} H^{\Theta}\left(C C l_{4}\right)=30.5 \mathrm{kJmol}^{-1}$
$\Delta_{f} H^{\Theta}\left(C C l_{4}\right)=-135.5 \mathrm{kJmol}^{-1}$
$\Delta_{a} H^{\Theta}(C)=715.0 \mathrm{kJmol}^{-1}$, where $\Delta_{a} H^{\Theta}$ is enthalpy of atomisation
$\Delta_{a} H^{\Theta}\left(C l_{2}\right)=242 k \mathrm{Jmol}^{-1}$

- Watch Video Solution

16. For an isolated system, $\Delta U=0$, what will be ΔS ?

- Watch Video Solution

17. For the reaction at 298 K
$2 A+B \rightarrow C$
$\Delta H=400 \mathrm{kJmol}^{-1}$ and $\Delta S=0.2 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
At what temperature will the reaction becomes spontaneous considering
ΔH and ΔS to be contant over the temperature range.

- Watch Video Solution

18. For the reaction
$2 C l(g) \rightarrow C l_{2}(g)$, what are the signs of ΔH and $\Delta S ?$

- Watch Video Solution

19. For the reaction,
$2 A(g)+B(g) \rightarrow 2 D(g)$
$\Delta U^{\Theta}=-10.5 k J$ and $\Delta S^{\Theta}=-44.1 J K^{-1}$
Calculate ΔG^{Θ} for the reaction, and predict whether the reaction may occur spontaneously.

- Watch Video Solution

20. The equilibrium constant for a reaction is 10 . What will be the value of
$\Delta G^{\Theta} ? R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}$.

- Watch Video Solution

21. Comment on the thermodynamic stability of $\mathrm{NO}(g)$, given
$\frac{1}{2} N_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow N O(g), \Delta_{r} H^{\Theta}=90 \mathrm{kJmol}^{-1}$
$\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g), \Delta_{r} H^{\Theta}=-74 \mathrm{kJmol}^{-1}$
22. Calculate the entropy change in surroundings when 1.00 mol of $\mathrm{H}_{2} \mathrm{O}(l)$ is formed under standard conditions, $\Delta_{r} H^{\Theta}=-286 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

NCERT SUPPLEMENTARY EXERCISE

1. State second law of thermodynamics.

- Watch Video Solution

2. Write the conditions in terms of ΔH and ΔS when a reaction would be always spontaneous.

- Watch Video Solution

3. When $\Delta H>0$ and $\Delta S<0$, reaction is never spontaneous. Explain .
4. Comment on the spontaneity of a reaction at constant temperature and pressure in the following cases. (i) $\Delta H<0$ and $\Delta S>0$ (ii) $\Delta H>0$ and $\Delta S<0$ (iii) $\Delta H<0$ and $\Delta S<0$ (iv) $\Delta H>0$ and $\Delta S>0$

- Watch Video Solution

5. State the third law of thermodynamics.

- Watch Video Solution

6. Explain the term residual entropy.

- Watch Video Solution

NCERT EXEMPLAR PROBLEMS WITH ANSWERS, HINTS AND SOLUTIONS(

 MULTIPLE CHOICE QUESTIONS-I)1. Thermodynamics is not concerned about....
A. energy changes involved in a chemical reaction.
B. the extent to which a chemical reaction proceeds.
C. the rate at which a reaction proceeds.
D. the feasibility of a chemical reaction.

Answer: C

- Watch Video Solution

2. Which of the following statement is correct ?
A. The presence of reaction speciesin a covered beaker is an example of open system.
B. There is an exchange of energy as well as matter between the system and the surroundings in a closed system.
C. The presence of reactants in a closed vessel made up of copper is an example of a closed system.
D. The presence of reactants in a thermos flask or any other closed
insolated vessel isan example of a closed system.

Answer: c

- Watch Video Solution

3. The state of gas can be described by quoting the relationship between
A. pressure, volume, temperature
B. temperature,amount,pressure
C. amount, volume, temperature
D. pressure, volume, temperature, amount

Answer: d

4. The volume of gas is reduced to half from its original volume. The specific heat will be
A. reduce to half
B. be doubled
C. remain constant
D. increase four times.

Answer: c

- Watch Video Solution

5. During complete combustion of one mole of butane , 2658 Kj of heat is released. The thermochemical reaction for above change is
A.

$$
2 C_{4} H_{10}(g)+13 O_{2}(g) \rightarrow 8 \mathrm{CO}_{2}(g)+10 H_{2} O(l) \Delta_{c} H=-2658.0 k J r
$$

B.

$$
C_{4} H_{10}(g)+\frac{13}{2} O_{2}(g) \rightarrow 4 C O_{2}(g)+5 H_{2} O(g) \Delta_{c} H=-1329.0 k J m
$$

C.

$$
C_{4} H_{10}(g)+\frac{13}{2} O_{2}(g) \rightarrow 4 C O_{2}(g)+5 H_{2} O(l) \Delta_{c} H=-2658.0 k J m \iota
$$

D.

$$
C_{4} H_{10}(g)+\frac{13}{2} O_{2}(g) \rightarrow 4 C O_{2}(g)+5 H_{2} O(l) \Delta_{c} H=+2658.0 k J m \iota
$$

Answer: c

- Watch Video Solution

6. $\delta_{f} U^{\ominus}$ of formation of $C H_{4}(g)$ at a certain temperature is $-393 \mathrm{Jmol}^{-1}$. The value of $\delta H^{\ominus} i s:$
A. zero
B. $<\Delta_{f} U^{c-}$
C. $>\Delta_{f} U^{c-}$
D. equalto $\Delta_{f} U^{c-}$

Answer: b

- Watch Video Solution

7. In an adibatic process, no transfer of heat takes place between system and surroundings. Choose the correct option for free expansion of an ideal gas under adiabatic conditions from the following :
A. $q=0, \Delta T-0, w=0$
B. $q=0, \Delta T=0, w=0$
C. $q=0, \Delta T=0, w=0$
D. $q=0, \Delta T=0, w \nearrow 0$

Answer: c

- Watch Video Solution

8. The pressure volume work for an ideal gas can be calculated by using the expression $w=-\int_{V_{i}}^{v_{f}} P e x d V$. The work can also be calculated from the pV -plot by using the area under the curve within the specified limits. When an ideal gas is compressed (a) reversibly or (B) irreversibly from volume V_{i} to V_{f} choose the correct option.
A. w (reversible) $=w$ (irreversible)
B. w (reversible) < w(irreversible)
C. w(reversible) > w(irreversible)
D. $\mathrm{w}($ reversible $)=\mathrm{w}$ (irreversible) $+p_{e x} \Delta V$

Answer: b

- Watch Video Solution

9. The entropy change can be calculated by using the expression $\Delta S-\frac{q_{r e v}}{T}$. When water freezes in a glass beaker, choose the correct statement amongst the following:
A. ΔS (system) decreases but ΔS (surroundings) remainsthe same.
B. ΔS (system) increases but ΔS (surroundings) decreases
C. ΔS (system) decreases but ΔS (surroundings) increases.
D. ΔS (system) decreases and ΔS (surroundings) also decreases.

Answer: c

- Watch Video Solution

10. On the basic of thermochemical equations (I),(II)and (III), Find out which of the algebraic relationships given in options (a)to (d) is correct ?
(I) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$,

(II) C (graphite) $+\frac{1}{2} O_{2}(g) \rightarrow \mathrm{CO}(g)$,
$\Delta_{r} H=y K \mathrm{Jmol}^{-1}$
$(\mathrm{III}) \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta_{r} \mathrm{H}=z \mathrm{KJmol}^{-1}$
A. $z=x+y$
B. $x=y-z$
C. $x=y+z$
D. $y=2 z-x$

Answer: c

- Watch Video Solution

11. Consider the reactions given below .On the basis of these reactions ,Find out which of the algebraic relations given in options (a) to(d) is correct?
$(p) C(g)+4 H(g) \rightarrow C H_{4}(g), \Delta_{r} H=x K \mathrm{Jmol}^{-1}$
$(Q) C($ graphite $)+2 \mathrm{H}_{2}(g) \rightarrow \mathrm{CH}_{4}(g)$,
$\Delta_{r} H=y K J m o l=1$
A. $x=y$
B. $x=2 y$
C. $x>y$
D. $x<y$

Answer: c

- Watch Video Solution

12. The enthalpy of elements in their standard atates are taken as zero
.The enthalpy of formation of a compound:
A. is always negative
B. is always positive
C. may be positive or negative
D. is never negative

Answer: c

- Watch Video Solution

13. Enthalpy of sublimation of a substance is equal to :
A. enthalpy of fusion + enthalpy of vaporisation
B. enthalpy of fustion
C. enthalpy of vaporisation
D. twice the enthalpy of vaporisation

Answer: a

- Watch Video Solution

14. Which of the following is not correct?
A. ΔG is zero for a reversible reaction
B. ΔG is positive for a spontaneous reaction
C. ΔG is negative for a spontaneous reaction
D. ΔG is positive for a non- spontaneous reaction

Answer: B

- Watch Video Solution

NCERT EXEMPLAR PROBLEMS WITH ANSWERS, HINTS AND SOLUTIONS(MULTIPLE CHOICE QUESTIONS-II)

1. Thermodynamics mainly deals with:
A. interrelation of various forms of energy and their transformation from one formto another.
B. energy changes in the processes which depend only on initial and
final statesof the microscopic system containing a few molecules.
C. how and at what rate these energy transformations are carried out.
D. the system in equilibrium state or moving from one equilibrium
state to another equilibrium state.
2. In an exothermic reaction heat is evolved and system loses heat to the surrounding. For such system
A. q_{p} will be negative
B. $\Delta_{r} H$ will be negative
C. _ (p) will be positive
D. $\Delta_{r} H$ will be positive

Answer: a,b

- Watch Video Solution

3. The spontaneity means having the potential to proceed without assistance of external agency. The processes which occur spontaneously are
A. a flow of heat from colder to warmer body.
B. gas in a container contracting into one corner.
C. gas expanding to fill the available volume.
D. burning carbon in oxygen to give carbon dioxide.

Answer: c,d

- Watch Video Solution

4. For an ideal gas, the work of reversible expansion under isothermal condition can be calculated by using expression $=-n R T \ln \cdot \frac{V_{f}}{V_{i}}$. A sample containing 1.0 mol of an ideal gas is expanded isothermally and reversible to ten times of its original volume, in two separate experiments. The expansion is carried out at 300 K and at 600 K respectively. Choose the correct option
A. Work done at 600 K is 20 times at the work done at 300 K
B. Work done at 300 K is twice the work done at 600 K
C. Work done at 600 K is twice the work done at 300 K
D. $\Delta U=0$ in both cases

Answer: c,d

- Watch Video Solution

5. Consider the following reaction between zinc and oxygen and choose the correct options out of the options given below

$$
2 Z n(s)+O_{2}(g) \rightarrow 2 Z n O_{s}: \Delta H=-693.8 \mathrm{kJmol}^{-1}
$$

A. The enthalpy of two molesof ZnO is less than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 kJ
B. The enthalpy of two enthalpy of two moles of ZnO is more than the total enthalpy of two moles of Zn and one mole of oxygen by 693.8 Kj
C. $693.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ energy is evolved in the reaction
D. $693.8 \mathrm{kJmol}^{-1}$ energy is absorbed in the reaction.

Answer: a,c

D Watch Video Solution

NCERT EXEMPLAR PROBLEMS WITH ANSWERS, HINTS AND SOLUTIONS(SHORT ANSWER QUESTIONS)

1. 18.0 g of water completely vaporises at $100^{\circ} \mathrm{C}$ and 1 bar pressure and the enthalpy change in the process is $40.79 \mathrm{kJmol}^{-1}$. What will be the enthalpy change for vaporising two moles of water under the same conditions? What is the standard enthalpy of vaporisation for water ?

(Watch Video Solution

2. One mole of acetone requires less heat to vaporise than 1 mole of water. Which of the two liquids has higher enthalpy of vaporisation ?
3. Standard molar enthalpy of formation, $\Delta_{f} H^{\Theta}$ is just a special case of enthalpy of reaction, $\Delta_{r} H^{\Theta}$. Is the $\Delta_{r} H^{\Theta}$ for the following reaction same as $\Delta_{f} H^{\Theta}$? Given reason for your answer.
$\mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \rightarrow \mathrm{CaCO}_{3}(s), \Delta_{f} \mathrm{H}^{\Theta}=-178.3 \mathrm{kJmol}^{-1}$

- Watch Video Solution

4. The value of $\Delta_{f} H^{\Theta}$ for NH_{3} is $-91.8 \mathrm{kJmol}^{-1}$. Calculate enthalpy change for the following reaction.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

- Watch Video Solution

5. Enthalpy is an extensive property. In general, if enthalpy of an overall reaction $A \rightarrow B$ along one route is $\Delta_{r} H$ and $\Delta_{r} H_{1}, \Delta_{r} H_{2}, \Delta_{r} H_{3} \ldots .$. Represent enthalpies of intermediate reactions leading to product B. What will be the relation between $\Delta_{r} H$ overall reaction and $\Delta_{r} H_{1}, \Delta_{r} H_{2}$... etc for intermediate reaction.

(D) Watch Video Solution

6. The enthaply of atomisation for the reaction : $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$ is $1665 \mathrm{kJmol}^{-1}$. What is the bond enthalpy of C-H bond?

- Watch Video Solution

7. Use the following data to calculate $\Delta_{\text {lattice }} H^{\circ}$ for $\mathrm{NaBr} . \Delta_{\text {sub }} H^{\circ}$ for sodium metal $=108.4 \mathrm{kJmol}^{-1}$. Ionization enthalpy of sodium $=496$ $k \mathrm{Jmol}^{-1}$ Electron gain enthalpy of bromine $=-325 \mathrm{kJmol}^{-1}$. Bond dissociation enthalpy of bromine $=192 \mathrm{~kJ} \mathrm{~mol}^{-1} . \Delta_{f}^{H^{\circ}}$ for $\mathrm{NaBr}(\mathrm{s})=$ $-360.1 k J \mathrm{~mol}^{-1}$.

- Watch Video Solution

8. Given that $\Delta H=0$ for mixing of two gases. Explain whether the diffusion of these gases into each other in a closed container is a

- Watch Video Solution

9. Heat has randomising influence on a system and temperature is the measure of average chaotic motion of particles in the system.Write the mathematical relation which relates these three parameters.

- Watch Video Solution

10. Increase in enthalpy of the surroundings is equal to decrease in enthalpy of the system. Will the temperature of system and surroundings be the same when they are in thermal equilibrium?

- Watch Video Solution

11. At $298 \mathrm{~K}, K_{p}$ for the reaction : $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 0.98 . Predict whether the reaction is spontaneous or not.
12. A sample of 1.0 mole of a monoatomic ideal gas is taken through a cyclic process of expansion and compression as shown in figure. What will be the value of ΔH for the cycle as a whole?

- View Text Solution

13. The standard molar entropy of $\mathrm{H}_{2} \mathrm{O}(l)$ is $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. Will the standard molar entropy of $\mathrm{H}_{2} \mathrm{O}(s)$ be more or less than $70 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$?

- Watch Video Solution

14. Identify the state functions and path functions out of the following: enthalpy, entropy, heat, temperature, work, free energy.
15. The molar enthalpy of vapourisation of acetone is less than that of water.Why?

- Watch Video Solution

16. Which quantity out of $\Delta_{r} G$ or $\Delta_{r} G^{\circ}$ will be zero at equilibrium?

- Watch Video Solution

17. Predict the change in internal energy for an isolated system at constant volume.

- Watch Video Solution

18. Although heat is a path function but heat absorbed by the system under certain specific conditions is independent of path. What are those conditions? Explain.
19. Expansion of a gas in vaccum is called free expansion.Calculate the work done and the change in internal energy when 1 litre of ideal gas expands isothermally into vaccum until its total volume is 5 litre?

- Watch Video Solution

20. Heat capacity $\left(C_{p}\right)$ is an extensive property but specific heat (C) is an intensive property.What will be the relation between C_{p} and C for 1 mol of water?

- Watch Video Solution

21. The difference between C_{p} and C_{v} can be derived using the empirical relation $\mathrm{H}=\mathrm{U}+\mathrm{pV}$. Calculate the difference between C_{p} and C_{v} for 10 moles of an ideal gas.
22. If the combustion of 1 g of graphite produces -20.7 kJ of heat, what will be molar enthalpy change? Give the significance of sign also.

- Watch Video Solution

23. The net enthalpy change of a reaction is the amount of energy required to break all the bonds in reactant molecules minus amount of energy required to form all the bonds in the product molecules. What will be the enthalpy change for the following reaction.
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
Given that bond energy of $\mathrm{H}_{2}, \mathrm{Br}_{2}$ and HBr is $435 \mathrm{~kJ} \mathrm{~mol}^{-1}, 192 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $368 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

24. The enthalpy of vaporisation of $C C I_{4}$ is $30.5 \mathrm{kJmol}^{-1}$. Calculate the heat required for the vapourisation of 284 g of CCI_{4} at constant pressure. (Molar mass of $C C I_{4}=154 u$).

- Watch Video Solution

25. The enthalpy of reaction for thr equation
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $\Delta H^{\circ}=-572 k \frac{j}{m} o l$
what will be the standard enthalpy for the formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$?

- Watch Video Solution

26. What will be the work done on an ideal gas enclosed in a cylinder, when it is compressed by a constant external pressure, $p_{\text {ext }}$ in a single step as shown in Figure. Explain graphically.
27. How will you calculate work done on an ideal gas in a compression, when change in pressure is carried out in infinite steps?

- Watch Video Solution

28. Represent the potential energy/enthalpy change in the following process graphically
(a) Throwing a stone from the ground to roof.
(b) $\frac{1}{2} H_{2}(g)+\frac{1}{2} \mathrm{Cl}_{2}(g) \mathrm{HCl}(g) \Delta_{r} H^{\circ}=-93.2 \mathrm{kJmol}^{-1}$

In which of the process potential energy/enthalpy change in contributing factor to the spontaneity?

- Watch Video Solution

29. Enthalpy diagram for a particular reaction is given in the figure, below. Is it possible to decide spontaneity of a reaction from given diagram ?

Explain .

Reaction coordinate

- View Text Solution

30. 1.0 mol of a monoatomic ideal gas isexpanded from state (1) to state
(2) as shown in the adjoining figure. Calculate the work done for the
expansion of gas from state (1) to state (2) at 298 K

$V(L) \Longrightarrow$

View Text Solution

31. An ideal gas is allowed to expand against a constant pressure of 2 bar from 10 L to 50 L in one step. The amount of work done by the gas is x . if the same expansion were carried out reversible, what is the relation of work done with the earlier case?

MATCHING TYPE QUESTIONS

1. In the following questions morethan one correlation is possible between options of both columns.

Match the following :
$A \quad B$
(i) Adiabatic process
(ii) Isolated system
(iii) Isothermal change
(iv) Path function
(v) State function
(vi) $\Delta U=q$
(vii) Law of conservation of energy
(viii) Reversible process
(ix) Free expansion
(x) $\quad \Delta H=q$
(ξ) Intensive property
(ξ) Extensive property
(i) Heat
(b) At constant volume
(c) First law of thermodynamics
(d) No exchange of energy and me
(e) No transfer of heat
(f) Constant temperature
(g) Internal energy
(h) $p_{\text {ext }}=0$
(i) At constant pressure
(j) Infinitely slow process which
(k) Entropy
(l) Pressure
(m) Specific

- View Text Solution

2. Match the following processes with entropy change:

Reaction
(i) A liquid vapourises
(ii) Reaction is non-spontaneous at all temperatures and ΔH is positive (iii) Adiabetic reversible expansion of an ideal gas

- Watch Video Solution

3. In the following questions morethan one correlation is possible between options of both columns.

Match the following :
Δ (Parameters) Description

$$
\Delta_{r} H^{c-} \quad \Delta_{r} S^{c-} \quad \Delta_{r} G^{c-}
$$

(i) $+\quad-\quad+\quad$ (a) None-spontaneous at high temf
(ii) - $\quad-\quad+$ at high T
(b) Spontaneous at all temperature
(iii) $-\quad+\quad-$
(c) Non-spontaneous at all temper:

- Watch Video Solution

4. Match the following
(i) Entropy of vapourisation
(a) decreases
(ii) K for spontaneous process positive
(b) is always iii Crystalline solid state
(c) lowest entropy
(iv) ΔU in adiabatic expansion of ideal gas
(d) $\frac{\Delta H_{\text {vap }}}{T_{b}}$

D Watch Video Solution

Column I
Column II
(A) Isothermal process (p) $q=\Delta U$
5. (B) Adiabatic process (p) $w=-p P \Delta V$
(C) Isobaric process $\quad(r) \quad w=\Delta U$
(D) Isochoric process
(s) $\quad w=n R T \ln \left(V_{2} / V_{1}\right)$
(a) $A-s, B-q, C-r, D-p$ (b) $A-s, B-r, C-q, D-p$ (c)
$A-p, B-r, C-q, D-s(d) A-r, B-p, C-s, D-q$

- Watch Video Solution

6.

Column I(Solutions mixed)
Colv
(A) $500 \mathrm{mLof0} 0.1 \mathrm{M} \mathrm{HCl}$ acid +200 mLof 0.2 MNaOH solution (p) 4568
(B) $200 \mathrm{mLof0} 0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}+400 \mathrm{mLof0} 0.5 \mathrm{MKOH}$ solution
(q) 2284
(C) $500 \mathrm{mLof0.1MHCl+500mLof00.1MNHH}_{4} \mathrm{OH}$
(r) 2760
(D) $500 \mathrm{mLof0} 0.1 \mathrm{Macetic}$ acid $+500 \mathrm{mLof0.1MNaOH}$
(s) 2575
(a) $A-r, B-p, C-s, D-q$ (b) $A-p, B-r, C-q, D-s \quad$ (c)
$A-q, B-p, C-s, D-r$ (d) $A-, B-s, C-p, D-r$

- View Text Solution

Column I (Gas) Column II(Ratio $\gamma=C_{p} / C_{v}$)
(A) Ammonia
(p) 1.20
7. (B) Carbon dioxide
(q) 1.30
(C) Carbon monoxide $\quad(r) 1.40$
(D) Helium
(s) 1.66
(a) $A-s, B-r, C-q, D-p$ (b) $A-p, B-q, C-r, D-s$ (c)
$A-s, B-q, C-r, D-p(d) A-r, B-s, C-q, D-p$

- Watch Video Solution

8. Match List -I (Equations) with List -II (Type of processes) and select the correct option.

	List -I		List -II
	Equation		Type of processes
(a)	$K_{p}>Q$	(i)	Non spontaneous
(b)	$\Delta G^{\circ}<R T \ln Q$	(ii)	Equilibrium
(c)	$K p=Q$	(iii)	Spontaneous and endothermic
(d)	$T>\frac{\Delta H}{\Delta S}$	(iv)	Spontaneous

- Watch Video Solution

ASSERTION AND REACTION TYPES QUESTIONS

1. Assertion (A). Combustion of all organic compounds is an exothermic reaction.

Reason (R). The enthalpies of all elements in their standard state are zero

- Watch Video Solution

2. Assertion (A). Spontaneous process is an irreversible process and may be reversed by some external agency.

Reason (R). Decrease in enthalpy is a contributory factor for spontaneity

(Watch Video Solution

3. Assertion (A). A liquid crystallises into a solid and is accompanied by decrease in entropy.

Reason (R). In crystals, molecules organise in an ordered manner.

- Watch Video Solution

LONG ANSWER QUESTIONS

1. Derive the relationship between ΔH and ΔU for an ideal gas. Explain each term involved in the equation.
2. Extensive properties depend on the quantity of matter but intensive properties do not. Explain whether the following properties are extensive or intensive.

Mass, internal energy, pressure, heat capacity, molar heat capacity, density, mole fraction, specific heat, temperature and molarity.

- Watch Video Solution

3. The lattice enthalpy of an ionic compound is the enthalpy when one mole of an ionic compoud present in its gaseous state, dissociates into its ions. It is impossible to determine it directly by experiment. Suggest and explain in indirect method to measure lattice enthalpy of $\mathrm{NaCl}(\mathrm{s})$.

- Watch Video Solution

4. ΔG is net energy available to do useful work and is thus a measure of " free energy".Show mathematically that ΔG is a measure of free
energy.Find the unit of ΔG.If a reaction has positive enthalpy change and positive entropy change, under what condition will the reaction be spontaneous?

- Watch Video Solution

5. Graphically shoe the total work done in an expansion when the state of an ideal gas is changed reversibly and isothermally from $\left(p_{i}, V_{i}\right)$ to $\left(p_{f}, V_{f}\right)$. With the help of a $\mathrm{p} V$ plot compare the work done in the above case with that carried out against a constant pressure p_{f}.

- Watch Video Solution

6. Define 'thermodynamics' . Briefly describe the importance and limitations of thermodynamics.

- Watch Video Solution

7. Define the following terms : (i) System (ii) State variables (iii) State function (iv) Extensive and intensive properties (v)Isothermal process (vi) Adiabatic process (vii) Reversible process (viii) Internal energy .

- Watch Video Solution

8. Briefly explain the terms 'internal energy ' and 'internal energy change'.

- Watch Video Solution

9. State the first law of thermodynamics.

- Watch Video Solution

10. Explain the term enthalpy. How is it related to the internal energy of the system?
11. Briefly explain the following :
(i) Heat of combustion (ii) Bond energy .

- Watch Video Solution

12. Explain the difference between bond energy and dissociation energy with the help of one example of each type.

- Watch Video Solution

13. What do you understandby a spontaneous process ?Explain with suitable examples. Explain why neither the energy facor nor the randomness factor alone can explain the spontaneity of a process.

- Watch Video Solution

14. Define entropy. Why is it a state function? Explain the effect of increased temperature on the entropy of a substance.

- Watch Video Solution

15. State and explain second law of thermodynamics. What is its significance?

- Watch Video Solution

16. What are the limitations of the first law of thermodynamics?State second law of thermodynamics in as many ways as you can.

- Watch Video Solution

17. Explain the terms 'entropy', 'enthalpy' and 'free energy'.
18. Explain what is meant by Gibb's free energy change. "The sign of the free energy is very important .' Justify the statement.

- Watch Video Solution

19. Briefly explain the effectof temperature on the spontaneity of
(a) an endothermic reaction
(b) an exothermic reaction.

- Watch Video Solution

20. Define ' standard free energy of formation '. Taking a suitable example , explain the spontaneity of a reversible reaction.

- Watch Video Solution

21. State and explain the 'third law of thermodynamics'.

- Watch Video Solution

ADDITIONAL QUESTIONS(VERY SHORT ANSWER QUESTIONS)

1. Which of the thermodynamic properties out of $\mathrm{E}, \mathrm{S}, \mathrm{T}, \mathrm{P}, \mathrm{V}, \mathrm{H}$ and G are intensive propertiesand why?

- Watch Video Solution

2. Why internal energy is a state function but work is not ?

- Watch Video Solution

3. Intensive property.
4. Extensive property.

- Watch Video Solution

5. In an adiabatic process

- Watch Video Solution

6. In thermodynamics, a process is called reversible when-

- Watch Video Solution

7. What are diathermic and adiabatic containers?
8. Write mathematical statement of first law of thermodynamics.

- Watch Video Solution

9. What is the relationship between q_{p} and q_{v} ?

- Watch Video Solution

10. Write the relationship between enthalpy change, ΔH and internal energy change, ΔU, for a process occuring at constant pressure and constant temperature.

- Watch Video Solution

11. What is the value of ΔH in the following reaction at 300 K ?
$\mathrm{CH}_{4}(\mathrm{~g}) 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{U}=885389 \mathrm{~J} / \mathrm{mol}$.
12. Why heat changes reported are usually enthalpy changes and not internal energy changes?

- Watch Video Solution

13. Define molar heat capacity and specific heat capacity.

- Watch Video Solution

14. Why is 'bomb calorimeter ' called so ?

- Watch Video Solution

15. Two reactions are given below:
(i) $\mathrm{H}_{2} \mathrm{O}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$
(ii) $\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{H}_{2} \mathrm{O}(g)$

Which one will have greater value of ΔH and why ?

- Watch Video Solution

16. Write an expression in the form of a chemical equation of the standard enthalpy of formation of CO.

- Watch Video Solution

17. Define the terms: (i) Enthalpy of formation (ii) Enthalpy of combustion.

- Watch Video Solution

18. What is bond energy? How are the bond energies related to change in enthalpy of a reaction?
19. Comment on the bond energies of four C-H bonds present in CH_{4}.

- Watch Video Solution

20. What is the limitation of the first law of thermodynamics?

- Watch Video Solution

21. Write a general expression for the entropy change during a phase transformation, or Give a relation between entropy change and heat absorbed or evolved for a reversible reaction occuring at temperature T .

- Watch Video Solution

22. What is entropy? Give its units.
23. Predict the sign of entropy change in the following reaction :
(i) $\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
(ii) $\mathrm{CaC}_{2} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{g})$
(iii) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

- Watch Video Solution

24. What is the effect of temperature on entropy?

- Watch Video Solution

25. Entropy of diamond is less than that of graphite.What conclusion do you draw from this?

- Watch Video Solution

26. Explain the terms entropy and free energy.Why does entropy of a solid increase on fusion?
27. What do you meanby Entropy of vaporisation or Entropy of fusion or Entropy of sublimation .

- Watch Video Solution

28. Give a statement which includes the main ideas of the first law and second law of the thermodynamics.

- Watch Video Solution

29. State the second law of thermodynamics.

- Watch Video Solution

30. What is the Gibbs Helmhotz equation ?
31. What is free energy? How is it related to the spontaneity of a reaction.

- Watch Video Solution

32. How are internal energy change(at constant pressure), free energy change and entropy change related to one another?

- Watch Video Solution

33. How are the following related ? (Give mathematical relation)
(i) Free energy change and electrical work.
(ii) Free energy change, enthalpy change and entropy change.

- Watch Video Solution

34. A reversible reaction has ΔG° negative for forward reaction ? What will be sign of ΔG° for backwork reaction ?

- Watch Video Solution

35. What is the criteria for spontaneity in terms of free energy change ?

- Watch Video Solution

36. Why for predicting the spontaneity of a reaction, free energy criteria is better than the entropy criteria ?

- Watch Video Solution

37. State the thermodynamic condition of spontaneous occurance of a process?
38. Why a non- spontaneous reaction becomes spontaneous when coupled with a suitable spontaneous reaction ?

- Watch Video Solution

39. Write down the expression for standard free energy change in terms of equilibrium constant. State meaning of the symbols used.

- Watch Video Solution

40. State the third law of thermodynamics.

- Watch Video Solution

41. When is the entropy of a perfectly crystalline solid zero?
42. State the law governing entropy and temperature.

- Watch Video Solution

43. Which out of the following can be determined ?

Absolute internal energy, absolute enthalpy, absolute entropy.

- Watch Video Solution

SHORT ANSWER QUESTIONS

1. What do you understand by open, closed and isolated system ? Illustrate with suitable examples.
2. What are extensive and intensive properties? Give two examples of each.

- Watch Video Solution

3. Classify, giving reason, the following into intensive and extensive properties.
(i)Entropy (ii) Viscosity (iii) Heat capacity (iv) Surface tension (v) Vapour pressure (vi) Refractive index

- Watch Video Solution

4. Explain, giving reasons, which of the quantities out of internal energy, heat and work are state functions and which is not .

- Watch Video Solution

5. Derive an expression for the work of expansion of a gas $(w=-P \delta V)$.

- Watch Video Solution

6. How will you distinguish between the two?
(i) Open and closed system.
(ii) Extensive and intensive properties.

- Watch Video Solution

7. State the law of conservation of energy. Give some examples in which this law is obeyed.

- Watch Video Solution

8. q and w are not state function but $q+w$ is state function. Why?
9. Discuss the significance of the mathematical expression in which the heat absorbed by a system is related to internal energy and work done by the system.

- Watch Video Solution

10. State first law of thermodynamics.Write it mathematical expression.

- Watch Video Solution

11. Briefly explain the term 'enthalpy'. How does if differ from internal energy?

- Watch Video Solution

12. Starting with the thermodynamic relationships, $\Delta U=q-P \Delta V$ and $H=V+P V$, derive the relationship $\Delta H=q_{p}$.

Watch Video Solution

13. Starting with the thermodynamic relationships $H=U+P V$ derive the following relationship :
$\Delta H=\Delta U+(\Delta n) R T$

- Watch Video Solution

14. Derive the relationship between heat of reaction at constant pressure q_{p} and heat of reaction at constant volume q_{v}.

- Watch Video Solution

15. What do you understand by K_{c} and K_{p} ? Derive a relationship between them.

Watch Video Solution

16. Explain the calculations involved in the determination of heat of combustion by bomb calorimeter?

- Watch Video Solution

17. Define ΔH. What will be the sign of ΔH in
(i) exothermic reaction and
(ii) endothermic reaction?

- Watch Video Solution

18. Briefly explain the term 'standard heat of formation' . What is standard state of an element and what is its value for the standard heat of formation?

- Watch Video Solution

19. What is the basic difference between enthalpy of formation and enthalpy of reaction? Illustrate with suitable examples.

- Watch Video Solution

20. Define Hess's law of constant heat summation.

- Watch Video Solution

21. Define the term 'bond enthalpy'.Why an average value is taken in the polyatomic molecules?
22. What is meant by average bond energy? In what way is it different from bond energy of a diatomic molecule ? Give suitable examples.

- Watch Video Solution

23. Explain spontaneous and non-spontaneous processes.

- Watch Video Solution

24. What is meant by enthalpy ? Can a decrease in enthalpy be the criterion for the sponatneity of all reactions? If not, why?

- Watch Video Solution

25. Neither the enthalpy change nor the entropy change alone can be used to explai the spontaneity of a reaction.Explain.

- Watch Video Solution

26. What is entropy ? State the effect of increased temperature on the entropy of a substance.

- Watch Video Solution

27. Explain the entropy concept and discuss the nature of change in entropy (increase or decrease) for :
(i) $\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{H}_{2} \mathrm{O}(s)$
(ii) $\mathrm{MgCO}_{3}(s) \rightarrow \mathrm{MgO}(s)+\mathrm{CO}_{2}(g)$
(iii) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

- Watch Video Solution

28. Correlate entropy and disorder with the help of fusion and vaporisation processes.

- Watch Video Solution

29. What is Entropy ? What are the units of Entropy ? What is its significance of Entropy change?

- Watch Video Solution

30. Giving suitable reasons, predict the sign of entropy change (ΔS) for the following :
(i) sublimation of ammonium chloride
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
31. Will entropy increase or decrease in the following changes and give reasons for your answer?
(i) Sugar dissolves in water (ii) Water freezes to form ice.

- Watch Video Solution

32. Predict whether entropy change in the following processes would be positive or negative.
(i) $\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ (ii) Freezing of water
(iii) $\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$

- Watch Video Solution

33. Account for the fact that entropy of ice is less than that of water.

- Watch Video Solution

34. State whether the entropy of the system increases,decreases or remains unchanged in the following processes :
(a)one gram of water evaporates into steam at the same pressure and temperature.
(b) one gram of water freezes into ice at the same pressure and temperature.

- Watch Video Solution

35. How does $T \Delta S$ determine the spontaneity of process?

- Watch Video Solution

36. Derive the criteria for predicting the spontaneity of a process in terms of entropy change ($\Delta S_{\text {total }}$)

- Watch Video Solution

37. Give two statements for the second law of thermodynamics.

- Watch Video Solution

38. What is Gibbs free energy change? Discuss its physical significance.

- Watch Video Solution

39. What do symbols $\Delta H, \Delta S$ and ΔG signify ? How are they interrelated?

- Watch Video Solution

40. State Gibbs-Helmholtz equation and explain its use in predicting the spontaneity of a reaction.

- Watch Video Solution

41. Explain the terms entropy and free energy.Entropy of a solid substance increases on melting. Explain.

- Watch Video Solution

42. What is meant by free energy of a subtance ? Entropy of a solid substance increases on melting . Explain.

- Watch Video Solution

43. Explain why is ΔG, the free energy change, called free energy. Define efficiency of a process.

- Watch Video Solution

44. What is the energy and free energy change?Show that change is free energy is equal to the useful work done.
45. Starting with the thermodynamics relationship $\Delta U=q+w$,derive the following relationship :
$-\Delta G=w_{\text {non- expansion }}$

- Watch Video Solution

46. Explain: (i) Spontaneity (ii) Free energy (iii) Reversibility (iv) Internal energy

- Watch Video Solution

47. What atre the conditions for the spontaneity of a reaction in terms of enthalpy and entropy changes?

- Watch Video Solution

48. How is spontaneity of a change related to change in entropy and free energy?

Watch Video Solution

49. For a reaction both ΔH and ΔS are positive.Under what conditions does the reaction occur spontaneously?

- Watch Video Solution

50. Predict the feasibility of a reaction when (i) both ΔH and ΔS increase
(ii) both ΔH and ΔS decrease (iii) ΔH decrease but ΔS increases (iv)
ΔH increases and ΔS decreases.

- Watch Video Solution

51. Expalin the state of chemical reactions when :
(i) $\Delta G=0$ (ii) $\Delta G<0$ and (iii) $\Delta G>0$

- Watch Video Solution

52. How Gibbs free energy is related to enthalpy, entropy and temperature of a system? How itthis used in determining the spontaneity of a process ?

- Watch Video Solution

53. What is meant by free energy of a system? Derive Gibbs- Helmholtz equation. What is the value of free energy when the system is in equilibrium?

- Watch Video Solution

54. What are spontaneous processes? Mention the condition for a reaction to be spontaneous at a constant temperature and pressure.

Watch Video Solution

55. (a) An endothermicreaction $A \rightarrow B$ proceeds to completion. Predict the sign of ΔS.
(b) What will be the sign of ΔS for the reaction
$: N_{2}(g)+O_{2}(g) \rightarrow 2 N O(g) ?$
Given reasons in support of your answer.

- View Text Solution

56. Predict the enthalpy change, free energy change and entropy change when ammonium chloride is dissolved in water and the solution becomes colder.
57. For a hypothetical process, $A \rightarrow B$, predict whether the process is spontaneous or not when.
(a) ΔH is $+v e, T \Delta S$ is $+v e$ and $T \Delta S$ is greater than Δ
(b) ΔH is $+v e, T \Delta S$ is $-v e$ and $T \Delta S$ is equal to ΔH
(c) ΔH is $-v e, T \Delta S$ is $-v e$ and $T \Delta S$ is greater than ΔH
(d) ΔH is $-v e, T \Delta S$ is $-v e$ and ΔH is greater than $T \Delta S$.

- Watch Video Solution

58. Starting with the thermodynamic relationship , $G=H-T S$, derive the following relationship :
$\Delta G=-T \Delta S_{\mathrm{total}}$

- Watch Video Solution

59. Write Gibb's Helmhotz equation which relates the enthalpy change and the energy change of a process at constant temperature and pressure. Explain the effect of temperature on feasiblity for
(a) Endothermic process
(b) Exothermic process in terms of Gibb['s Helmholtz equation.

- Watch Video Solution

60. Define the terms 'standard free energy change' and'standard free energy of formation '. How is the former related to the equilibrim constant of a reaction ?

Watch Video Solution

61. How is that a reversible reaction is spontaneous in the forward as well as backward reaction?

- Watch Video Solution

62. Define " Third law of thermodynamics".Give its molecular interpretation.What is the most important application of this law?
63. Enthalpy of formation of an elements in its standard stat ($298 \mathrm{~K}, 1$ atm) is zero but entropy of formation is not zero under the same condition. Explain.

- Watch Video Solution

64. State third law of thermodynamics. Discuss its one application or How is this law useful for calculating the absolute value of the entropy?

- Watch Video Solution

65. Define the following :
(i) Second law of thermodynamics (ii) Third law of thermodynamics (iii) Entropy of a system. (iv) Enthalpy of a system (v) Free energy of a system.
66. Can the absolute value of internal energy be determined? Why or why not?

- Watch Video Solution

2. For the same increase in volume,why work done is more if the gas is allowed to expand reversibly at higher temperature?

- Watch Video Solution

3. One kilogram of graphite is burnt in a closed vessel.The same amount of graphite is burnt in an open vessel.Will the heat evolved in two cases be same or different?
4. Same mass of diamond and graphite (both being carbon) are burnt in oxygen. Will the heat produced be same or different? Why? Give reasons for the following:

- Watch Video Solution

5.

Find out: (i) Heat of formation of $C H_{4}$ in terms of $\Delta H_{1}, \Delta H_{2}$ etc.
(ii) Heat of sublimation of $C_{\text {graphite }}$ in terms of $\Delta H_{1}, \Delta H_{2}$ etc.
(iii) Heat of dissociation of H_{2} in terms of $\Delta H_{1}, \Delta H_{2}$) etc.

- View Text Solution

6. Rank the following in the order of increasing entropy :
(a) 1 mole of $\mathrm{H}_{2} \mathrm{O}(l)$ at $25^{\circ} \mathrm{C}$ and 1 atm. Pressure.
(b) 2 moleof $\mathrm{H}_{2} \mathrm{O}(s)$ at $0^{\circ} \mathrm{C}$ and 1 atm . Pressure.
(c) 1 moleof $\mathrm{H}_{2} \mathrm{O}(v)$ at $100^{\circ} \mathrm{C}$ and 1 atm . Pressure.
(d) 1 mole of $\mathrm{H}_{2} \mathrm{O}(l)$ at $0^{\circ} \mathrm{C}$ and 1 atm . pressure.

- Watch Video Solution

7. An exothermic reaction $A \rightarrow B$ is spontaneous in the backward direction. What will be the sign of ΔS for the forward reaction?

- Watch Video Solution

8. Predict whether following reaction will be exothermic or endothermic .

Give reaction for your answer
$H-H(g)+C l-C l(g) \rightarrow 2 H-C l(g)$

- Watch Video Solution

9. At a certain temperature 'T',the endothermic reaction $A \rightarrow B$ proceeds virtually to the end. Determine.
(i) Signof ΔS for this reaction
(ii) sign of ΔS for the reaction $B \rightarrow A$ at the temperature T , and
(iii) the possibility of reaction $B \rightarrow A$ proceeding at a low temperature.

- Watch Video Solution

10. Why endothermic reactions are favoured at high temperature?

- Watch Video Solution

11. Comment on the validity of the following statements, giving reasons:
(i) Thermodynamically, an exothermic reaction is sometimes not spontaneous.
(ii) The entropy of steam is more than that of water at its boiling point.
(iii)The equilibrium constant fora reaction isone or more if $\Delta_{r} G^{\circ}$ for it is less than zero.

(D) Watch Video Solution

12. Give reasons : (a) Neither q nor w is a state function but $q+w$ is a state function.
(b) The dissociation of ammonium chloride in water is endothermic still it dissolved in water.
(c) A real crystal has more entropy than an ideal crystal.

- Watch Video Solution

13. Show that in an isothermal expansion of an ideal gas, a $\Delta U=0$ and b. $\Delta H=0$.

- Watch Video Solution

14. Air contain about 99% of N_{2} and O_{2} gases. Why do not they combine to form NO under the standard conditions? Standard Gibbs energy of formation of $N O(g)$ is $86.7 \mathrm{kJmol}^{-1}$.
15. What is meant by entropy driven reaction? How can the reaction with positive change of enthalpy and entropy driven?

- Watch Video Solution

16. When an ideal gas expands in vaccum, there is neither absorption nor evolution of heat. Why?

- Watch Video Solution

17. Justify the following statement :
(a) An exothermic reaction is always thermodynamically spontaneous.
(b) The entropy of a substance increases on going from liquid to vapour state at any temperature.
18. Why standard entropy of an elementary substance is not zero whereas standard enthalpy of formation is taken as zero?

- Watch Video Solution

19. Justify the following statements :
(a)Reactions with $\Delta G^{\circ}<0$ always have an equilibrium constant greater than 1.
(b)Many thermodynamically enthalpy feasible reactions do not occur under ordinary conditions.
(c) At low temperature, enthalpy change dominates the ΔG expression and at high temperatures, it is entropy whch dominatest the value of ΔG

- Watch Video Solution

20. A system containing an idealgas was subjected to a number of changes as shown in the P.V.diagram. Temperature at different points are indicated in the diagram.
(i) Name the type of presence at each step.
(ii) What will be the value of $\Delta U f$ for the complete process?
(iii) At which point, the number of moles of the gas will be maxmimum ?

- View Text Solution

21. Write expression for the work done by 1 mole of the gas in each of the following cases :
(i) For irreversible expansion of the gas from volume V_{1} to V_{2}.
(ii) For reversible isothermal expansion of the gas from volume V_{1} to V_{2}.
(iii)For expansion of the gas into an evaluated vessel.
(iv) For reversible isothermal compression of the gas from pressure P_{1} to P_{2}
(v)For adiabatic expansion resulting into change of temperature from T_{1} to T_{2}.

- View Text Solution

22. Calculate the work of expansion when 100 g of water is electrolysed at a constant pressureof1 atm and temperature of $25^{\circ} \mathrm{C}$.

- Watch Video Solution

23. An athelete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to 1560 kJ . He utilises 50% of this gained enegry in the event. In order to avoid storage of enegry in the body, calculate the weight of water he would need to perspire. The enthalpy of evaporation of water is $441 \mathrm{~kJ} / \mathrm{mol}$.
24. Using the data (all values are in kilocalorie per mole at $25^{\circ} \mathrm{C}$) given below, calculate the bond enegry of $C-C$ and $C-H$ bonds.
ΔH^{Θ} combustion of ethane $=-372.0$
ΔH^{Θ} combustion of propane $=-530.0$
ΔH^{Θ} for C (garphite) $\rightarrow C(g)=+172.0$
Bond enegry of $H-H$ bond $=+104.0$
$\Delta_{f} H^{\Theta}{ }_{o f} H_{2} O(l)=-68.0$
$\Delta_{f} H^{\Theta} o f C_{2}(g)=-94.0$

- Watch Video Solution

25. Calculate the resonance energy of $\mathrm{N}_{2} \mathrm{O}$ from the following data :
$\Delta H_{f}^{\circ} \quad$ of $\quad N_{2} O=82 \mathrm{kJmol}^{-1}$, Bond energies of $N \equiv N$, $N=N, O=O$ and $N=O$ bonds are 946, 418, 498 and $607 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

26. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{kJmol}^{-1}$. Twenty five per cent of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometer, what is the maximum distance that a person will be able to walk after eating 120 g of glucose?

- Watch Video Solution

27. The polymerisation of ethylene to linear polyethylene is represented by the reaction
$n \mathrm{CH}_{2}=\mathrm{CH}_{2} \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
When n has a large integral value. Given theat the average enthalpies of bond dissociation for $C=C$ and $C-C$ at $298 K$ are +590 and $+331 \mathrm{kJmol}^{-1}$ respectively, calculate the enthalpy of polymerisation per mole of ethylene at 298 K .

- Watch Video Solution

28. The standard molar enthalpies of formation of cyclohexane (I) and benzene (I) at $25^{\circ} \mathrm{C}$ are -156 and $+49 \mathrm{kJmol}^{-1}$, respectively. The standard enthaly of hydrogenation of cyclohenxene (I) at $25^{\circ} \mathrm{C}$ is $-119 \mathrm{kJmol}^{-1}$ Use this data to estimate the magnitude of the resonance enegry of benzene.

- Watch Video Solution

29. Compute the heat of formation of liquie methyl alcohol is kilojoule per mol using the following data. Heat of vaporisation of liquid methyl alcohol $=38 \mathrm{~kJ} / \mathrm{mol}$. Heat of formation of gaseous atoms from the elements in their standard states
: $H=218 \mathrm{~kJ} / \mathrm{mol}, C=715 \mathrm{~kJ} / \mathrm{mol}, O=249 \mathrm{~kJ} / \mathrm{mol}$.
Average bond energies:
$C-H 415 k J / m o l, C-O 356 \mathrm{~kJ} / \mathrm{mol}, \mathrm{O}-\mathrm{H} 463 \mathrm{~kJ} / \mathrm{mol}$.

- Watch Video Solution

30. $10 g$ of argon gas is compressed isothermally and reversibly at a temperature of $27^{\circ} C$ from $10 L$ to $5 L$. Calculate $q, w, \Delta U$, and ΔH for this process. $R=2.0 \mathrm{calK} \mathrm{K}^{-1} \mathrm{~mol}^{-1}, \log _{10} 2=0.30$. Atomic weight of $A r=40$.

- Watch Video Solution

31. From the following data, calculate the enthalpy change for the combustion of cyclopropane at 298 K . The enthalpy of formation of $\mathrm{CO}_{2(g)}, \mathrm{H}_{2} \mathrm{O}_{(l)}$ and Propene $_{(g)}$ are $-393,-285.8$ and $20.42 \mathrm{kJmol}^{-1}$ respectively. The enthalpy of isomerisation of cyclopropane to propene is $-33.0 \mathrm{kJmol}^{-1}$

- Watch Video Solution

32. Estimate the average $S-F$ bond enthalpy in $S F_{6}$. The values of standard enthalpy of formation of $S F_{6}(g), S(g)$ and $F(g)$ are :-1100, 274 and $80 \mathrm{kJmol}^{-1}$ respectively.

- Watch Video Solution

33. Two moles of a perfect gas undergo the following processes:
a. A reversible isobaric expansion from (1.0atm, 20.0L) to (1.0atm, 40.0L).
b. A reversible isochroic change of state from (1.0atm, 40.0L) to
(0.5atm, 40.0L)
c. A reversible isothermal expansion from
$(0.5 \mathrm{~atm}, 40.0 \mathrm{~L}) \rightarrow(1.0 \mathrm{~atm}, 20.0 \mathrm{~L})$.
i. Sketch with lables each of the processes on the same $P-V$ diagram.
ii. Calculate the total work (w) and the total heat change (q) involved in the above process.
iii. What will be the values of ΔH for the overall process?

- Watch Video Solution

34. For the reaction, $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}, \Delta \mathrm{H}=-560 \mathrm{~kJ}$. Two moles of CO and one mole of O_{2} are taken in a container of volume 1 L . They
completely form two moles of CO_{2}, the gases deviate appreciably from ideal behaviour. If the pressure in the vessel changes from 70 to 40 atm, find the magnitude (absolute value) of ΔU at 500 K .

- Watch Video Solution

35. The internal energy change in the conversion of 1.0 mole of the calcite form of CaCO_{3} to the aragonite form is +0.21 KJ . Calculate the enthalpy change when the pressure is 1.0bar, given the densities of the solids are $2.71 \mathrm{gcm}^{-3}$ and $2.93 \mathrm{gcm}^{-3}$ respectively.

- Watch Video Solution

36. Calculate ΔU and ΔH in calories if one mole ofa monoatomic ideal gas is heated at constant pressure of 1 atom from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

- Watch Video Solution

37. 5 moles of an ideal gas expand isothermally and reversible from a pressure of 10 atm to 2 atom at 300 K . What is the largest mass which can be lifted through a height of 1 metre in this expansion?

- Watch Video Solution

38. The figure given below represents $P-V$ diagram of different stages of a thermodynamic process. Calculate thework done in each stage and also the net work done in the complete cyclic process.

39. The enthalpy change for the reaction
$Z n(s)+2 H^{+}(a q) \rightarrow Z n^{2+}(a q)+H_{2}(g)$, is $-154.0 \mathrm{kJmol}^{-1}$. The formation of 2 g of hydrogen expands the system by 22.4 litresat 1 atm pressure. What is the internal energy of the reaction?

- Watch Video Solution

40. Sodium carbonate ($\mathrm{Na}_{2} \mathrm{CO}_{3} 0$ can be obtained by heating sodium hydrogen carbonate, NaHCO_{3}
$2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}_{2}(g)$
Calculate the temperature above which NaHCO_{3} decomposes to form products at 1 bar .

Given

$$
\Delta_{f} H^{\circ}\left(k J m o l^{-1}\right): \mathrm{NaHCO}_{3}(s)==-947.7, \mathrm{Na}_{2} \mathrm{CO}_{3}(s)=-1130.9
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})=-241.8, \mathrm{CO}_{2}(\mathrm{~g})=-393.5
$$

$S^{\circ}\left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right): \mathrm{NaHCO}_{3}(s)=102.1, \mathrm{Na}_{2} \mathrm{CO}_{3}(s)=136.0$, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=188.8, \mathrm{CO}_{2}(\mathrm{~g}) 213.7$

- Watch Video Solution

41. Calculate the amount of heat absorbed in the cyclic process shown below :

- View Text Solution

42. Work done in expansion of an ideal gas from $4 d m^{3}$ to $6 d m^{3}$ against a constant external pressure of 2.5 atm was usedup to heat 1 mole of water at $20^{\circ} \mathrm{C}$. Calculate the final temperature of water (Given : specific heat of water $=4.184 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$).

- Watch Video Solution

43. Consider the following reaction : $\mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$

When 10.0 mL of $1.0 \mathrm{MAgNO}_{3}$ solution is added to 10 mL of 1.0 mL NaCl solution at $25^{\circ} \mathrm{C}$ in a calorimeter, a white ppt. of AgCl is formed and the temperature of the aqueous mixture mixture risesto $32.6^{\circ} \mathrm{C}$. Assuming that the specific heatof the aqueous mixture is $4.18 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$, that the density of the mixture is $1.0 \mathrm{gmL} L^{-1}$ and that the calorimeter itself absorbs a negligible amountofheat, calculate the value of enthalpy change accompanying the processin $\mathrm{kJ} \mathrm{mol}^{-1}$ ofAgCl.

- View Text Solution

44. Calculate $q, W, \Delta U$ and ΔH for the isothermal reversible expansion of one mole of an ideal gas from an initial pressure of 1.0 bar to a final pressure of 0.1 bar at a constant temperature of 273 K .

- Watch Video Solution

45. Calculate the value of $\log K_{p}$ for the reaction, $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ at $25^{\circ} \mathrm{C}$. The standard enthalpy of formation of $\mathrm{NH}_{3(g)}$ is -46 kJ and standard entropies of $\mathrm{N}_{2(\mathrm{~g})}, \mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{NH}_{3(\mathrm{~g})}$ are 191, 130, $192 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. respectively. ($R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)

- Watch Video Solution

COMPETITION FOCUS (JEE (main andAdvanced) /Medical Entrance Special)

1. Which one of the following sets of units represents the smallest and the largest amout of energy, respectively?
A. J and erg
B. erg and cal
C. cal and eV
D. eV and lit atm

Answer: d

- Watch Video Solution

2. A gas expands from a volume of $1 m^{3}$ to a volume of $2 m^{3}$ against an external pressure of $10^{5} \mathrm{Nm}^{-2}$. The work done of the gas will be
A. $10^{5} k J$
B. $10^{2} k J$
C. $10^{2} \mathrm{~J}$
D. $10^{3} \mathrm{~J}$
3. Calculate the work done (in joules) when 0.2 mole of an ideal gas at $300 K$ expands isothermally and reversible from an initial volume of 2.5 litres to the final volume of 25 litres.
A. 996
B. 1148
C. 11.48
D. 897

Answer: b

- Watch Video Solution

4. Calculate the work done when 1 mol of an ideal gas is compressed reversibly from 1 bar to 4 bar at a constant temperature of 300 K
A. 3.46 kJ
B. -8.20 kJ
C. 18.02 kJ
D. -14.01 kJ

Answer: A

- Watch Video Solution

5. The different in the work done when one mole of $A l_{4} C_{3}(s)$ reacts with water in a closed vesselat $27^{\circ} \mathrm{C}$ against atmospheric pressure and that in an open vessel under the same conditions is
A. greater in the open vessel by 600 cal
B. greater in the closed vessel by 600 cal
C. greater in the open vessel by 1800 cal
D. greater in the closed vessel by 1800 cal

Answer: C

- Watch Video Solution

6. If W is the amount of work done by the system and q is the amount of heat supplied to the system, identify the type of the system
A. isolated system
B. closed system
C. open system
D. system with thermally conducting walls

Answer: b

- Watch Video Solution

7. Changes in a system from a initial state to the final state were made by a different manner that ΔH remains same but q changes because
A. ΔH is a path function and q is astate function
B. ΔH is a state function and q is a path function
C. Both ΔH andq are state function
D. Both ΔH and q are path function

Answer: b

- Watch Video Solution

8. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of $37.0^{\circ} \mathrm{C}$. As it does so, it absorbs $208 J$ of heat. The value of q and w for the process will be: $(R=8.314 J / m o l K)(\ln 7.5=2.01)$
A. $q=+208 J, w=+208 J$
B. $q=+208 J, w=-208 J$
C. $q=-208 J, w=-208 J$
D. $q=-208 J, w=+208 J$

D Watch Video Solution

9. Which of the following is correct option for the free expansion of an ideal gas under adiabatic condition ?
A. $q=0, \Delta T<0, w<0$
B. $q=0, \Delta T>0, w=0$
C. $q=0, \Delta T, w=0$
D. $q=0, \Delta T=0, w=0$

Answer: D

- Watch Video Solution

10. When 1 mol of gas is heated at constant volume temperature is raised from 298 to 308 K. Heat supplied to the gas is 500 J . Then which
statement is correct ?
A. $q=W=500 J, \Delta U=0$
B. $q=\Delta U=500 J, W=0$
C. $q=W=500 J, \Delta U=W=0$
D. $\Delta U=0, q=W=-500 J$

Answer: B

- Watch Video Solution

11. Which one of the following equations does not correctly respresents the first law of thermodynamics for the given process?
A. isothermal process: $q=-w$
B. cyclic process : $q=-w$
C. isochoric process : $\Delta E=q$
D. adiabatic process : $\Delta E=-w$

- Watch Video Solution

12. ΔE is always positive when
A. system absorbs heat and work id done on it.
B. system emits heat and work is done on it.
C. system emits heat and nowork is done on it
D. system absorbs heat and work is done by it

Answer: a

- Watch Video Solution

13. Based on first law of thermodynamics, which one of the following is

correct ?

A. For an isochoric proces, $\Delta U=-q$
B. For an adiabatic process, $\Delta U=-w$
C. For an isothermal process, $q=+w$
D. For a cyclic process, $q=-w$

Answer: D

D Watch Video Solution

14. δU is equal to
A. adiabatic work
B. isothermal work
C. isochoric work
D. isobaric work

Answer: a

15. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of $4.50 L$. The change in internal energy ΔU of the gas in joules will be:
A. $1136.25{ }^{`}$
B. -500 J
C. -505 J
D. +505 J

Answer: c

- Watch Video Solution

16. Standard enthalpy of vaporisation $\Delta V_{\text {vap }} . H^{\Theta}$ for water at $100^{\circ} \mathrm{C}$ is $40.66 \mathrm{kJmol}^{-1}$. The internal energy of Vaporization of water at $100^{\circ} C\left(\mathrm{in} \mathrm{kJ} \mathrm{mol}^{-1}\right)$ is
A. +37.56
B. -43.76
C. +43.76
D. +40.66

Answer: A

- Watch Video Solution

17. The value of enthalpy change (ΔH) for the reaction
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$ at $27^{\circ} \mathrm{C}$ is $-1366.5 \mathrm{kJmol}^{-1}$.

The value of internal energy change for the above reactio at this temperature will be
A. $-1371.5 k J$
B. $-1369.0 k J$
C. $-1364.0 k J$
D. -1361.5 kJ

Answer: c

- Watch Video Solution

18. One mole of non-ideal gas undergoes a change of state (2.0 atm , 3 . 0 $\mathrm{L}, 95 \mathrm{~K} \rightarrow(4.0 \mathrm{~atm}, 5.0 \mathrm{~L}, 245 \mathrm{~K})$ with a change in internal energy, $\Delta U=30.0 \mathrm{~L}$ atm . The change in enthalpy (ΔH) of the process in L atm is
A. 40.0
B. 42.3
C. 44.0
D. non defined, because process is no constant

Answer: C

19. Two moles of an ideal gas is expanded isothermally and reversibly from 1 liter to 10 liter at 300 K . The enthalpy change (in $k J$) for the process
A. 11.4 kJ
B. $-11.4 k J$
C. 0 kJ
D. 4.8 kJ

Answer: c

- Watch Video Solution

20. The temperature of 2 moles of an ideal gas is raised from $27^{\circ} \mathrm{C}$ to $77^{\circ} C$. What is the value for $\Delta H-\Delta U$ for the process ? $\left(R=8.3 J K^{-1} \mathrm{~mol}^{-1}\right)$
A. 415 J
B. 830 J
C. 1660 J
D. None of these

Answer: b

- Watch Video Solution

21. The reaction $A \rightarrow B, \Delta H=+24 k J /$ mole. For the reaction $B \rightarrow C, \Delta H=-18 \mathrm{~kJ} / \mathrm{mole}$. The decreasing order of enthalpy of A, B , C follow the order
A. A, B, C
B. B, C, A
C. C, B, A
D. C, A, B
22. For the complete combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ the amount of heat produced as measured in bomb calorimeter is $1364.47 \mathrm{KJmol}^{-1}$ at $25^{\circ} \mathrm{C}$
. Assuming ideality, the enthalpy of combustion, ΔH_{C}, for the reaction will be
$\left[R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$
A. $-1350.50 \mathrm{kJmol}^{-1}$
B. $-1366.95 \mathrm{kJmol}^{-1}$
C. $-1361.95 \mathrm{kJmol}^{-1}$
D. $-1460.50 \mathrm{kJmol}^{-1}$

Answer: B

23. The combustion of benzene (I) gives $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. Given that heat of combustion of benzene at constant volume is $-3263.9 \mathrm{kJmol}^{-1}$ at $25^{\circ} \mathrm{C}$, heat of combustion (in kJmol^{-1}) of benzene at constant pressure will be
$(\mathrm{R}=8.314 \mathrm{JK}-1 \mathrm{~mol}-1)$
A. 4152.6
B. -452.46
C. 3260
D. -3267.6

Answer: D

- Watch Video Solution

24. Molar heat capacity of water in equilibrium with ice at constant pressure is
A. zero
B. infinity
C. $40.50 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: B

D Watch Video Solution

25. One mole of an ideal monoatomic gas is mixed with 1 mole of an ideal diatomic gas The molar specific heat of the mixture at constant volume is
A. 4 cal
B. 6 cal
C. 8 cal
D. 3 cal

D Watch Video Solution

26. The temperature of 1 mole helium gas is increased by $1^{\circ} C$. Find the increase in internal energy.
A. 2 cal
B. 3 cal
C. 4 cal
D. 5 cal

Answer: B

- Watch Video Solution

27. When 0.1 mol of a gas absorbs 41.75 J of heat at constant volume, the rise in temperature occurs equal to $20^{\circ} \mathrm{C}$. The gas must be
A. triatomic
B. diatomic
C. polyatomic
D. monoatomic

Answer: B

- Watch Video Solution

28. How many calories are required to heat 40 g of argon from $40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant volume? $\left(R=2 \mathrm{calmol}^{-1} \mathrm{~K}^{-1}\right)$
A. 120
B. 2400
C. 1200
D. 180
29. 4.48 L of an ideal gas at $S T P$ requires 12 cal to raise its temperature by $15^{\circ} \mathrm{C}$ at constant volume. The C_{P} of the gas is
A. 3 cal
B. 4 cal
C. 7 cal
D. 6 cal

Answer: D

D Watch Video Solution

30. A 1.0 g sample of substance A at $100^{\circ} \mathrm{C}$ is added to 100 mL of $\mathrm{H}_{2} \mathrm{O}$ at
$25^{\circ} \mathrm{C}$. Using separate 100 mL portions of $\mathrm{H}_{2} \mathrm{O}$, the procedure is repeated with substance B and then with substance C. How will the final
temperatures of the water compare?
Substance Specific heat
A
$\left.0.60 \mathrm{Jg}^{-1 \wedge}(@) \mathrm{C}^{\wedge}(-1)\right),\left(\mathrm{B}, 0.40 \mathrm{~J} \mathrm{~g}^{\wedge}(-1){ }^{\circ} C^{-1}\right.$
$C \quad 0.20 J^{-1 \circ} C^{-1}$
A. $T_{C}>T_{B}>T_{A}$
B. $T_{B}>T_{A}>T_{C}$
C. $T_{A}>T_{B}>T_{C}$
D. $T_{A}=T_{B}=T_{C}$

Answer: C

- Watch Video Solution

31. Which one of the following is correct when an ideal gas is expanded adaibatically and reversibly ?
A. $q=0, W=n C_{v} d T, \Delta U=n C_{v} d T$
B. $q=0, W=0, \Delta U=n C_{v} d T$
C. $q=0, W=n C_{v} d, \Delta U=0$
D. None of the above

Answer: A

- Watch Video Solution

32. Under which of the following conditions is the relation,
$\Delta H=\Delta E+P \Delta V$ valid for a system :-
A. constant pressure
B. constant temperature
C. constant temperature and pressure
D. constant temperature, pressure and composition

Answer: A

- Watch Video Solution

33. The heat liberated when $1.89 g$ of benzoic acid is burnt in a bomb calorimeter at $25^{\circ} \mathrm{C}$ increases the temperture of 18.94 kg of water by $0.632^{\circ} \mathrm{C}$. If the specific heat of water at $25^{\circ} \mathrm{C}$ is $0.998 \mathrm{cal} / \mathrm{gdeg}$, the value of the heat of combustion of benzoic acid is
A. 88.11 kcal
B. 771.4 kcal
C. 981.1 kcal
D. 871.2 kcal

Answer: B

- Watch Video Solution

34. An endothermic reaction is allowed to take place very rapidly in the air. The temperature of the surrounding air
A. increase
B. decreases
C. remain unaffected
D. may increases or decrease

Answer: B

- Watch Video Solution

35. The enthalpy of the reaction
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(g) \quad$ is $\quad \Delta H_{1} \quad$ and \quad that of
$H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2} O(l)$ is ΔH_{2}. Then
A. $\Delta H_{1}>\Delta H_{2}$
B. $\Delta H_{1}<\Delta H_{2}$
C. $\Delta H_{1}=\Delta H_{2}$
D. None of these is correct
36. In the reaction $: S+\frac{3}{2} O_{2} \rightarrow S O_{3}+2 x k J \quad$ and $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}+y k J$ heat of formation of SO_{2} is
A. $x-y$
B. $2 x+y$
C. $x+y$
D. $y-2 x$

Answer: d

Watch Video Solution

37. Calorific value of hydrogen gas is $-143 \mathrm{kJg}^{-1}$. The standard enthalpy of formation of $\mathrm{H}_{2} \mathrm{O}$ will be
A. $-143 k \mathrm{Jmol}^{-1}$
B. $+143 \mathrm{kJmol}^{-1}$
C. $-286 \mathrm{kJmol}^{-1}$
D. $+286 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

38. Find out the heat evolved in combustion if 112 litre (at 1 atm, 273 K) of water gas (mixture of equal volume of $H_{2}(g)$ and $\mathrm{CO}(\mathrm{g})$) is combusted with excess oxygen.
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta=-241.8 \mathrm{~kJ}$
$\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta=-283 k J$
A. -1414.0 kJ
B. -1209.0 kJ
C. -1312.0 kJ
D. -524.8 kJ

Answer: c

D Watch Video Solution

39. Heat of dissociation of acetic acidis $0.30 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. Hence,enthalpy change when 1 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ is completely neutralized by acetic acid would be
A. -13.4 kcal
B. -27.1 kcal
C. -26.8 kcal
D. $-27.4 k c a l$

Answer: c

40. The enthalpy change when 1 L of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is completely neutralized by 1 L of $1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ will be
A. -13.7 kcal
B. $-27.4 k \mathrm{cal}$
C. -1.37 kcal
D. -2.74 kcal

Answer: b

- Watch Video Solution

41. 0.06 mole of KNO_{3} is added to $100 \mathrm{~cm}^{3}$ of water at 298 K . The enthalpy of $\mathrm{KNO}_{3}(a q)$ solution is $35.8 \mathrm{kJmol}^{-1}$. After the solute is dissolved, the temerature of the solution will be

A. 293 K

B. 298 K
C. 301 K
D. 304 K

Answer: a

- Watch Video Solution

42. The bond energies of $C=C$ and $C-C$ at $298 K$ are 590 and $331 \mathrm{kJmol}^{-1}$, respectively. The enthalpy of polymerisation per mole of ethaylene is
A. $+259 \mathrm{kJmol}^{-1}$
B. $+72 \mathrm{kJmol}^{-1}$
C. $-259 \mathrm{kJmol}^{-1}$
D. $-72 \mathrm{kJmol}^{-1}$

Answer: D

43. If 150 kJ of energy is needed for muscular work to walk a distance of one km, than how much of gulcose one has to consume to walk a distance of five km, provided only 30% energy is available for muscular work.The enthalpy of combustion of glucose is $3000 \mathrm{kJmol}^{-1}$
A. 75 g
B. 30 g
C. 180g
D. 150 g

Answer: d

- Watch Video Solution

44. The bond dissociation energies for $C l_{2}, I_{2}$ and $I C l$ are 242.3, 151.0 and 211.3 kJ / mole respectively. The enthalpy of sublimation of iodine is
$62.8 \mathrm{~kJ} /$ mole. What is the standard enthalpy of formation of $\operatorname{ICI}(\mathrm{g})$ nearly equal to
A. $-211.3 \mathrm{~kJ} / \mathrm{mole}$
B. $-14.6 \mathrm{~kJ} / \mathrm{mole}$
C. $16.8 \mathrm{~kJ} / \mathrm{mole}$
D. $33.5 \mathrm{~kJ} /$ mole

Answer: C

- Watch Video Solution

45. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below
$\frac{1}{2} C L_{2}(g) \xrightarrow{\frac{1}{2} \Delta_{\text {diss }} H^{\ominus}} C l(g) \xrightarrow{\Delta H_{E g}^{\Theta}}$
$\mathrm{Cl}^{-}(\mathrm{g}) \xrightarrow{\Delta_{\text {hyd }} H^{\ominus}} \mathrm{Cl}^{-}(a q)$
The energy involved in the conversion of $\frac{1}{2} C l_{2}(g)$ to

$$
C l^{-}(a q)
$$

(Using the data $\Delta_{\text {diss }} H_{C l_{2}}^{\Theta}=240 \mathrm{KJmol}^{-1}$)
$\Delta_{E g} H_{C l}^{\Theta}=-349$ KJmol $^{-1}$,
$\Delta_{E g} H_{C l}^{\Theta}=-381 \mathrm{~K}_{\mathrm{Jmol}}{ }^{-1}$) will be
A. $-850 \mathrm{kJmol}^{-1}$
B. $+120 \mathrm{kJmol}^{-1}$
C. $+152 \mathrm{kJmol}^{-1}$
D. $-610 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

46. Which of the ions in the table below would have the largest value of enthalpy of hydration?
lonic radius in nm Charge of ion
Ionic radius in $\mathrm{nm} \quad$ Charge of ion
A.
0.0065
$+2$
B. Ionic radius in nm
Charge of ion
0.095
$+1$
c.
Ionic radius in nm
Charge of ion
0.135
$+2$
D. $\begin{array}{ll}\text { Ionic radius in } \mathrm{nm} & \begin{array}{l}\text { Charge of ion } \\ 0.169\end{array} \\ +1\end{array}$

Answer: A

- Watch Video Solution

47. The enthalpies of solution for copper sulphate pentahydrate and anhydrous copper sulphate are respectively 11.7 and $-65.5 \mathrm{kJmol}^{-1}$. The hydration enthalpy of anhydrous copper sulphate is
A. $53.8 \mathrm{kJmol}^{-1}$
B. $-9.8 \mathrm{kJol}^{-1}$
C. $-77.2 \mathrm{kJmol}^{-1}$
D. $-53.8 \mathrm{kJmol}^{-1}$

Answer: c

- Watch Video Solution

48. On the basis of the following thermochemical data : $\left(\Delta_{f} G^{\circ} H_{(a q .)}^{+}=0\right)$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{(a q .)}^{+}+\mathrm{OH}_{(a q .)}^{-}, \Delta H=57.32 k J$
$H_{2(g)}+\frac{1}{2} O_{2(g)} \rightarrow H_{2} O_{(l)}, \Delta H=-286.20 k J$
The value of enthalpy of formation of OH^{-}ion at $25^{\circ} \mathrm{C}$ is :
A. $-22.88 k J$
B. 228.88 kJ
C. $+228.88 k J$
D. $-343.52 k J$

Answer: b

- Watch Video Solution

49. The enthalpy of neutralization of oxalic acid by strong acid is $-25.4 \mathrm{kcalmol}^{-1}$. The enthalpy of neutralization of strong acid and strong base is -13.7 kcalequil $^{-1}$. The enthalpy of dissociation of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ is
A. $1.0 \mathrm{kcalmol}^{-1}$
B. $2.0 \mathrm{kcalmol}^{-1}$
C. $18.55 \mathrm{kcalmol}^{-1}$
D. $11.7 \mathrm{kcalmol}^{-1}$

Answer: B

- Watch Video Solution

50. When 400 ml of 2.0 N solution of a weak acid is neutralized by a dilute aqueous solution of sodium hydroxide under standard conditions, 4.4 kJ amount of heat is liberated. Therefore, the standard enthalpy of neutralization of this weak acid in $\mathrm{kJ} e q^{-1}$ is
A. -11
B. -44
C. -55
D. -22

- Watch Video Solution

51. Which of the following will produce the highest risein temperature?
A. 67 mL of $1 \mathrm{M} \mathrm{NaOH}+33 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
B. 33 mL of $1 \mathrm{M} \mathrm{NaOH}+67 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
C. 40 mL of $1 \mathrm{M} \mathrm{NaOH}+60 \mathrm{~mL}$ of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
D. 50 mL of $1 \mathrm{M} \mathrm{NaOH}+50 \mathrm{mLof} 0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Answer: D

- Watch Video Solution

52. The following two reactionas are known
$\mathrm{FeO}_{3}(s)+3 \mathrm{CO}(g) \rightarrow 2 \mathrm{Fe}(s)+\mathrm{CO}_{2}(g):$
$\Delta H=-26.8 K J$
$\mathrm{FeO}(s)+\mathrm{CO}(g) \rightarrow \mathrm{Fe}(s)+\mathrm{CO}_{2}(g): \Delta H=-16.5 K J$
The value of ΔH for the following reaction

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \text { is }
$$

A. +10.3 kJ
B. $-43.3 k J$
C. $-10.3 k J$
D. +6.2 kJ

Answer: D

- Watch Video Solution

53. The standard enthalpies of combustion of $C_{6} H_{6}(l), \mathrm{C}$ (graphite) and $\mathrm{H}_{2}(\mathrm{~g})$ are respectively $-3270 \mathrm{kJmol}^{-1},-394 \mathrm{kJmol}^{-1}$ and $-286 \mathrm{kJmol}^{-1}$. What is the standard enthalpy of formation of $C_{6} H_{6}(l)$ in kJmol^{-1} ?

$$
\text { A. }-48
$$

B. +48
C. -480
D. +480

Answer: b

- View Text Solution

54. The heat of combustion of carbon to $C O_{2}$ is $-393.5 \mathrm{~kJ} / \mathrm{mol}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and oxygen gas is
A. $+315 k J$
B. -630 kJ
C. -3.15 kJ
D. $-315 k J$

Answer: D

55. The amount of heat evolved when $500 \mathrm{~cm}^{3} 0.1 \mathrm{MHCl}$ is mixed with $200 \mathrm{~cm}^{3}$ of 0.2 MNaOH is
A. 2.292 Kj
B. 1.292 kJ
C. $0.292 k J$
D. $3.292 k J$

Answer: A

- Watch Video Solution

56. $\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}), \quad \Delta H_{1}$
$N_{2}(g)+3 H_{2}(g) \rightarrow 2 N H_{3}(g), \quad \Delta H_{2}$
$\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{HCl}(g), \quad \Delta H_{3}$
The heat of formation of $\mathrm{NCl3}(\mathrm{~g})$ in the terms of $\Delta H_{1}, \Delta H_{2}$ and ΔH_{3} is
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
C. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. None of the above

Answer: A

- Watch Video Solution

57. The change of energy on freezing 1.00 kg of liquid water at $0^{\circ} \mathrm{C}$ and1 atmis
A. $236.7 \mathrm{kJkg}^{-1}$
B. $333.4 \mathrm{kJkg}^{-1}$
C. $-333.4 \mathrm{kJkg}^{-1}$
D. $-236.7 \mathrm{kJkg}^{-1}$

Answer: C

58. A boy after swimming comes out from a pool covered with a film of water weighing 80 g .How much heat must be supplied to evaporate this water ? $\left(\Delta_{v} H^{\circ}=40.79 \mathrm{kJmol}^{-1}\right)$
A. $1.61 \times 10^{2} \mathrm{~kJ}$
B. $1.71 \times 10^{2} k J$
C. $1.81 \times 10^{2} k J$
D. $1.91 \times 10^{2} \mathrm{~kJ}$

Answer: C

- Watch Video Solution

59. The enthalpy of solution of sodium chloride is $4 \mathrm{kJmol}^{-1}$ and its enthalpy of hydration of ion is $-784 \mathrm{kJmol}^{-1}$. Then the lattice enthalpy of $\mathrm{NaCl}\left(\right.$ in $\left.\mathrm{kJmol}{ }^{-1}\right)$ is
A. +788
B. +4
C. +398
D. +780

Answer: A

- Watch Video Solution

60. Enthalpy of $\mathrm{CH}_{4}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ is negative. If enthalpy of combustion of CH_{4} and $\mathrm{CH}_{3} \mathrm{OH}$ are x and y respectively, then which relation is correct?
A. $x>y$
B. $x<y$
C. $x=y$
D. $x \geq y$

Answer: B

- Watch Video Solution

61. The standard heats of formation of $\mathrm{NO}_{2}(g)$ and $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ are 8.0 and
$2.0 \mathrm{Kcal} \mathrm{mol}^{-1}$ respectively the heat of dimerization of NO_{2} in Kcal is
A. 10.0
B. -6.0
C. +14.0
D. -14.0

Answer: D

- Watch Video Solution

62. Consider the reaction,
$4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}(g), \Delta_{r} H=-111 k J . \quad$ If $\quad N_{2} O_{5}(s) \quad$ is
formed instead of $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g})$ in the above reaction, the $\Delta_{r} \mathrm{H}$ value will be (Given, ΔH of sublimation for $\mathrm{N}_{2} \mathrm{O}_{5}$ is $54 \mathrm{kJmol}^{-1}$)
A. $-165 k J$
B. $+54 k J$
C. $+219 k J$
D. $-219 k J$

Answer: A

- Watch Video Solution

63. Consider the following processes :-

	$\Delta H(\mathrm{~kJ} / \mathrm{mol})$
$\frac{1}{2} A \rightarrow B$	+150
$3 B \rightarrow 2 C+D$	-125
$E+A \rightarrow 2 D$	+350
For $B+D \rightarrow E+2 C$,	ΔH will be

A. $525 \mathrm{~kJ} / \mathrm{mol}$
B. $-175 \mathrm{~kJ} / \mathrm{mol}$
C. $-325 \mathrm{~kJ} / \mathrm{mol}$
D. $325 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

64. The standard enthalpies fo formation of $\mathrm{CO}_{2}(g), \mathrm{H}_{2} \mathrm{O}(1)$, and glucose (s) at $25^{\circ} \mathrm{C}$ are $-400 \mathrm{kJmol}^{-1},-300 \mathrm{kJmol}^{-}$, and $-1300 \mathrm{kJmol}^{-1}$, respectively. The standard enthalply of combustion per gram of glucose at $25^{\circ} \mathrm{C}$ is
A. +2900 kJ
B. -2900 kJ
C. $-16.11 k J$
D. $+16.11 k J$

Answer: C

65. The heats of combustion of carbon and carbon monoxide are -393.5 and $-283.5 \mathrm{kJmol}^{-1}$ respectively. The heat of formation (in kJ) of carbon monoxide per mole is:
A. 676.5
B. -676.5
C. -110.5
D. 110.5

Answer: C

- Watch Video Solution

66. Given $C_{(\text {graphite })}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{0}=-393.5 k J \quad \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})=+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)$,
$\Delta_{r} H^{0}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(1) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{0}=+890.3 k J ~ \mathrm{~mol}^{-1}$
Based on the above thermochemical equations, the value of $\Delta_{r} H^{0}$ at at 298 K for the reaction
$C_{(\text {graphite })}+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$ will be:
A. $-74.8 \mathrm{kJmol}^{-1}$
B. $-144.0 \mathrm{kJmol}^{-1}$
C. $+74.8 \mathrm{kJmol}^{-1}$
D. $+144.0 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

67. The bond energy of an $O-H$ bond is 109 K . cal mole ${ }^{-1}$. When a mole of water is formed
A. 109 kcal is released
B. 218 kcal is released
C. 109 kcal is absorbed
D. 218 kcal is absorbed

Answer: B

- Watch Video Solution

68. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio $1: 1: 0.5$ and $\Delta_{f} H$ of $X Y$ is $-200 \mathrm{kJmol}^{-1}$. The bond dissociation energy of X_{2} will be :
A. $100 \mathrm{kJmol}^{-1}$
B. $200 \mathrm{kJmol}^{-1}$
C. $400 \mathrm{kJmol}^{-1}$
D. $800 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

69. For the reaction:
$2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g), \Delta H=-571 k J$
bond enegry of $(H-H)=435 k J$ and of $(O=O)=498 k J$. Then, calculate the average bond enegry of $(O-H)$ bond using the above data.
A. 484
B. -484
C. 271
D. -271

Answer: A

70.

$O_{2}(g)+O(g) \rightarrow O_{3}(g), \Delta H^{\circ}=-107.2 k J$. Assuming $O=O$ bond energy as $498.8 \mathrm{kJmol}^{-1}$, the average bond energy of ozone is
A. $391.6 \mathrm{kJmol}^{-1}$
B. $606.0 \mathrm{kJmol}^{-1}$
C. $107.2 \mathrm{kJmol}^{-1}$
D. $302.6 \mathrm{kJmol}^{-1}$

Answer: D

- Watch Video Solution

71. Calculate the standard enthalpy change (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$, given that bond enthalpy of $\mathrm{H}-\mathrm{H}, \mathrm{O}=\mathrm{O}, \mathrm{O}-\mathrm{H}$ and $\mathrm{O}-\mathrm{O}$ (in kJ mol ${ }^{-1}$) are respectively 438, 498, 464 and 138.
A. -130
B. 65
C. +130
D. -334

Answer: A

- Watch Video Solution

72. Enthalpy change for the reaction, $4 H_{(g)} \rightarrow 2 H_{2(g)}$ is -869.6 kJ The dissociation energy of $\mathrm{H}-\mathrm{H}$ bond is :
A. $+217.4 k J$
B. $-434.8 k J$
C. -869.6 kJ
D. $+434.8 k J$

Answer: D

73. Using the data provided, calculate the multiple bond energy ($k \mathrm{Jmol}^{-1}$) of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond enrgy of a C-H bond as $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$):
$2 C(s)+H_{2}(g) \rightarrow C_{2} H_{2}(g), \Delta H=225 k \mathrm{Jmol}^{-1}$
$2 C(s) \rightarrow 2 C(g), \Delta H=1410 \mathrm{kJmol}^{-1}$
$H_{2}(g) \rightarrow 2 H(g), \Delta H=330 k J \mathrm{~mol}^{-1}$
A. 1165
B. 837
C. 875
D. 815

Answer: D

74. The bond dissociation energies of X_{2}, Y_{2} and $X Y$ are in the ratio of 1:0.5:1. ΔH for the formation of $X Y$ is $-200 \mathrm{kJmol}^{-1}$. The bond dissociation energy of X_{2} will be
A. $200 \mathrm{kJmol}^{-1}$
B. $100 \mathrm{kJmol}^{-1}$
C. $800 \mathrm{kJmol}^{-1}$
D. $400 \mathrm{kJmol}^{-1}$

Answer: C

- Watch Video Solution

75. For the reaction $2 H(g) \rightarrow H_{2}(g)$, the sign of ΔH and ΔS respectively are :
A.,$+ \quad-$
B.,++
C. - , -
D.,-+

Answer: C

- Watch Video Solution

76. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of $10 \mathrm{dm}^{3}$ to a volume of $100 \mathrm{dm}^{3}$ at $27^{\circ} \mathrm{C}$ is
A. $35.8 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
B. $32.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
C. $42.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
D. $38.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Answer: C

77. If water kept in an insultated vessel at $-10^{\circ} \mathrm{C}$ suddenly freezes, the entropy change of the system
A. decreases
B. increases
C. is zero
D. equals to that of the surroundings.

Answer: C

- Watch Video Solution

78. The direct conversion of A to B is difficult. Hence it is carried out by the following shown path:
$\Delta S(A \rightarrow C)=50 e . u ., \Delta S(C \rightarrow D)=30 e . u$,
$\Delta S(B \rightarrow D)=20 e . u$ where e.u is entropy unit.
Then $\Delta S(A \rightarrow B)$,
A. $+100 e . u$.
B. +60 e.u.
C. $-100 e . u$.
D. $-60 e . u$.

Answer: B

- Watch Video Solution

79. Given an idealgas is expanded adiabatically and irreversibley form volume V_{1} to V_{2}), then which one of the following is correct ?
A. ΔS (system) $=0 \& \Delta S$ (surroundings) $=+v e$
B. ΔS (system $)=+v e \& \Delta S$ (surroundings $)=0$
C. ΔS (system) $=0 \& \Delta S$ (surroundings) $=0$
D. $\Delta S($ system $)=+v e \& \Delta S$ (surroundings $)=-v e$
80. When you freeze water in your freezer to make ice cubes, the amount of order in the molecules ofwater increases. However, second law of thermodynamics says that the amount of order in the isolated system can only stay constant or decrease with time. How can thus making of ice violate second law?
A. because water expands during ice formation
B. because ice formation takes place at $0^{\circ} \mathrm{C}$
C. because ice issolid
D. because ice cubes do not constitute isolated system.

Answer: d

- Watch Video Solution

81. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ at $T=100^{\circ} \mathrm{C}$ and 1 atmosphere pressure, the correct choice is
A. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surroundings }}>0$
B. $\Delta S_{\text {system }}>0$ and $\Delta S_{\text {surroundings }}<0$
C. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surroundings }}>0$
D. $\Delta S_{\text {system }}<0$ and $\Delta S_{\text {surroundings }}<0$

Answer: B

- Watch Video Solution

82. one mole of an ideal gas at 300k in thermal contact with surroundings expands isothermally from 1.0 L to 2.0 L against a constant presses of 3.0 atm. In this process. The change in entropy of surrroundings (ΔS) in J^{-1} is
($1 \mathrm{Latm}=101.3 \mathrm{~J})$
A. 5.763
B. 1.013
C. -1.013
D. -5763

Answer: c

- Watch Video Solution

83. The correct thermodynamic conditions for the spontaneous reaction at all temperature is
A. $\Delta H<0$ and $\Delta S>0$
B. $\Delta H<0$ and $\Delta S<0$
C. $\Delta h<0$ and $\Delta S=0$
D. $\Delta H>0$ and $\Delta S<0$

Answer: a,c

84. For a sample of perfect gas when its pressure is changed isothermally from p_{i} to p_{f}, the entropy change is given by
A. $\Delta S=n R \ln \left(\frac{p_{f}}{p_{i}}\right)$
B. $\Delta S=n R \ln \left(\frac{p_{i}}{p_{f}}\right)$
C. $\Delta S=n R T \ln \left(\frac{p_{f}}{p_{i}}\right)$
D. $\Delta S=n R T \ln \left(\frac{p_{i}}{p_{f}}\right)$

Answer: b

- Watch Video Solution

85. Solutions A and B are both clear and colourles. When solution A is mixed with solution B, the temperature of the mixture increases and a yellow precipitate is observed. What can be concluded from these observations?
A. The reaction is thermodynamically favoured (spontaneous) at all temperatures
B. The reaction is thermodynamically favoured (spontaneous) only athigh temperature
C. The reaction is thermodynamically favoured (spontaneous) only at low temperature
D. The reaction is not thermodynamically favoured (spontaneous) at any temperature.

Answer: C

- Watch Video Solution

86. The factor of ΔG values is important in metallurgy. The ΔG values for the following reactions at $800^{\circ} \mathrm{C}$ are given as :
$S_{2}(s)+2 O_{2}(g) \rightarrow 2 S O_{2}(g), \Delta G=-544 k J$
$2 Z n(s)+S_{2}(s) \rightarrow 2 Z n S(s), \Delta G=-293 \mathrm{~kJ}$
$2 Z n(s)+O_{2}(g) \rightarrow 2 Z n O(s), \Delta G=-480 \mathrm{~kJ}$
Calculate the ΔG for the reaction:
$2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(g)$
A. -731 kJ
B. -787 kJ
C. $-534 k J$
D. $-554 k J$

Answer: a

- Watch Video Solution

87. The incorrect expression among the following is
A. $K=e^{-\Delta G^{\circ} / R T}$
B. $\frac{\Delta G_{\text {system }}}{\Delta S_{\text {total }}}=-T$
C. In isothermal process,

$$
W_{\text {reversible }}=-n R T \ln .\left(\frac{V_{f}}{V_{i}}\right)
$$

D. $\ln K=\frac{\Delta H^{\circ}-T \Delta S^{\circ}}{R T}$

Answer: D

- Watch Video Solution

88. In which of the following reactions,standard reaction entropy change $\left(\Delta S^{\circ}\right)$ is positive and standard Gibb,s energy change $\left(\Delta G^{\circ}\right)$ decreases sharply with increasing temperature?
A. $\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g 0$
B. $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}(g)$
C. $\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $M g(s)+\frac{1}{2} O_{2}(g) \rightarrow M g O(s)$
89. The following reaction is performed at 298 K ?
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
The standard free energy of formation of $\mathrm{NO}(\mathrm{g})$ is $86.6 \mathrm{~kJ} / \mathrm{mol}$ at 298 K .
What is the standard free energy of formation of $\mathrm{NO}_{2}(\mathrm{~g})$ at 298 K ?

$$
\left(K_{p}=1.6 \times 10^{12}\right)
$$

A. $R(298) \ln \left(6 \times 10^{12}\right)-86600$
B. $86600+R(298 K) \ln \left(1.6 \times 10^{12}\right)$
C. $86600-\frac{\ln \left(1.6 \times 10^{12}\right)}{R(298)}$
D. $0.5\left[2 \times 86,600-R(298) \ln \left(1.6 \times 10^{12}\right)\right]$

Answer: d

- Watch Video Solution

90. Which of the following thermodynamic relation is correct?
A. $d G=V d p-S d T$
B. $d E=P d V+T d S$
C. $d H=-V d P+T d S$
D. $D g=v D p+S d T$

Answer: a

- Watch Video Solution

91. The densities of graphite and diamond at $298 K$ are 2.25 and $3.31 \mathrm{gcm}^{-3}$, respectively. If the standard free energy difference $\left(\Delta G^{0}\right)$ is equal to $1895 \mathrm{Jmol}^{-1}$, the pressure at which graphite will be transformed into diamond at 298 K is
A. $9.92 \times 10^{8} P a$
B. $9.92 \times 10^{7} P a$
C. $9.92 \times 10^{6} \mathrm{~Pa}$
D. none of these

Answer: D

D Watch Video Solution

92. In view of the signs of $\Delta_{r} G^{0}$ for the following reactions
$\mathrm{PbO}_{2}+\mathrm{Pb} \rightarrow 2 \mathrm{PbO}, \Delta_{r} G^{0}<0$
$\mathrm{SnO}_{2}+\mathrm{Sn} \rightarrow 2 \mathrm{SnO}, \Delta_{r} G^{0}>0$
Which oxidation state are more characteristic for lead and tin?
A. For lead +4 , for tin +2
B. For lead +2 , for tin +2
C. For lead +4 for tin +4
D. For lead +2 , for tin +4

Answer: d

- Watch Video Solution

93. The values of ΔH and ΔS for the reaction,
$\mathrm{C}_{\text {graphite }}+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
are 170 KJ and $170 \mathrm{JJK}{ }^{-}$respectively. This reaction will be spontaneous
at
A. 910 K
B. 1110 K
C. 510 K
D. 710 K

Answer: B

- Watch Video Solution

94. For a given reaction, $\Delta H=35.5 \mathrm{kJmol}^{-1}$ and
$\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}(-1)$. The reaction is spontaneous at: (Assume that ΔH and ΔS do not vary with temperature)
A. $T<425 K$
B. $T>425 K$
C. All temperatures
D. $T>298 K$

Answer: B

- Watch Video Solution

95. As $O_{2}(\mathrm{I})$ is cooled at 1 atm pressure, it freezes to form solid I at 54.5 K. At a lower temperature, solid rearrange to solid II, which has a different crystal that for the phase transition solid to slid II , $\Delta H=-743.1 \mathrm{Jmol}^{-1}$ and $\Delta S=-17.0 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. At what temperature are solids I and II in equilibrium ?
A. 2.06 K
B. 31.5 K
C. 43.7 K
D. 53.4 K

Answer: C

- Watch Video Solution

96. At the sublimation temperature, for the process $\mathrm{CO}_{2}(\mathrm{~S}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
A. $\Delta H, \Delta S$ and ΔG are all positive
B. $\Delta H>0, \Delta S>0$ and $\Delta G<0$
C. $\Delta H<0, \Delta S>0$ and $\Delta G<0$
D. $\Delta H>0, \Delta S>0$ and $\Delta G=0$

Answer: D

- Watch Video Solution

97. For a particular reversible reaction at temperature $\mathrm{T}, \Delta H$ and ΔS were found to be both +ve . If T_{e} is the temperature at equilibrium, the reaction would be spontaneous when
A. T_{e} is 5 times T
B. $T=T_{e}$
C. $T_{e}>T$
D. $T>T_{e}$

Answer: D

- Watch Video Solution

98. A chemical reaction is spontancous at 298 K but non spontaneous at 350 K . Which one of the following is true for the reaction?

$\Delta G \quad \Delta H \quad \Delta S$

Answer: D

- Watch Video Solution

99. The value of $1 o g_{10} \mathrm{~K}$ for a reaction $A \Leftrightarrow B$ is:
(Given,
$\Delta_{r} H_{298 K}^{\circ}=-54.07 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{r} S_{298 K}^{\circ}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $R=$
A. 5
B. 10
C. 95
D. 100
100. ΔG° for a reaction is $46.06 \mathrm{kcalmol}^{-} . K_{P}$ for the reaction at 300 K is
A. 10^{-8}
B. $10^{22.22}$
C. $10^{-33.33}$
D. none of these

Answer: C

- Watch Video Solution

101. Reaction that have standard free energy changes less than zero always have equilibrium constant equal to
A. unity
B. greater than unity
C. less than unity
D. zero

Answer: B

- Watch Video Solution

102. Standard entropies of X_{2}, Y_{2} and $X Y_{3}$ are 60,30 are $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. For the reaction $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \Leftrightarrow X Y_{3}, \Delta H=-30 k J$ to be at equilibrium, the temperature should be :
A. 500 K
B. 750 K
C. 1000 K
D. 1250 K
103. For the reaction:
$\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$
$\Delta U=2.1 \mathrm{cal}, \Delta S=20 \mathrm{cal} \mathrm{K}^{-1} \mathrm{at} 300 \mathrm{~K}$
Hence ΔG is
A. 2.7 kcal
B. -2.7 kcal
C. 9.3 kcal
D. -9.3 kcal

Answer: b

- Watch Video Solution

104. Some subtances posses some residual entropy even at absolute zero.

This is because
A. they contain some impurities
B. they attain different orientations of moleculeseven at absolute zero
C. it is difficult to attain absolute zero of temperature
D. all the above factors are responsible

Answer: B

- Watch Video Solution

105. When one mole of a monoatomic ideal gas at initial temperature TK expands adiabatically from 1 litre to 2 litres, the final temperature in Kelvin would be
A. T
B. $\frac{T}{2^{2 / 3}}$
С. $T-\frac{2}{3 \times 0.0821}$
D. $T+\frac{2}{3 \times 0.0821}$

- Watch Video Solution

106. When 1 mol of $\mathrm{CO}_{2}(g)$ occupying a volumeof 10 L at 27° isallowed to expand under adiabatic conditions, temperature fallsto $-123^{\circ} \mathrm{C}$. Hence, final volume of the gas will be :
A. 20 L
B. 40 L
C. 60L
D. 80 L

Answer: d

107. 1 mol of $\mathrm{NH}_{3} \operatorname{gas}(\gamma=1.33)$ at $27^{\circ} \mathrm{C}$ is allowed to expand adiabatically so that the final volume becomes 8 times. Work done will be
A. 450 cal
B. 1800 cal
C. 900 cal
D. 300 cal

Answer: C

- Watch Video Solution

108. Temperature of1 mole of a gas is increased by 1° at constant pressure. Work done is
A. 2 cal
B. 3 cal
C. 4 cal
D. 5 cal

Answer: a

- Watch Video Solution

109. For the reaction $, H_{2}(g)+\frac{1}{2} O_{2}(g) \rightarrow H_{2}(l), \Delta C_{p}=32 J K^{-1}, \Delta H$
at $\quad 27^{\circ} C=-285.8 \mathrm{kJmol}^{-1}$. W \widehat{w} illbethevalueofDelta $\quad \mathrm{H} \quad$ at 127@degreeC' ?
A. $-289.0 \mathrm{kJmol}^{-1}$
B. $-282.6 \mathrm{kJmol}^{-1}$
C. $-317.0 \mathrm{kJmol}^{-1}$
D. $-253.8 \mathrm{kJmol}^{-1}$

Answer: b

- Watch Video Solution

110. Two separate experiments were carried out involving adiabatic reversible expansion, taking monoatomic gas in one case and a diatomic gas in the second case.In each case, the initialtemperature was T_{i} and expansion was from volume V_{1} to volume V_{2}. The final temperatures attained were T_{M} formonoatomic gas and $\left.T_{9} D\right)$ for diatomic gas. Then
A. $T_{M}=T_{D}<T_{i}$
B. $T_{M}<T_{D}<T_{i}$
C. $T_{D}>T_{M}>T_{i}$
D. $T_{D}<T_{M}<T_{i}$

Answer: b

- View Text Solution

111. Efficiency of Carnot engine is 100% if
A. sing is at $0^{\circ} C$
B. $\sin \mathrm{k}$ is at OK
C. source is at $273^{\circ} \mathrm{C}$
D. source is at $100^{\circ} \mathrm{C}$

Answer: b

- Watch Video Solution

112. An ideal gas is allowed to expand both reversibly and irreversibly in an isolated system. If T_{i} is the initial temperature and T_{f} is the final temperature, which of the following statement is correct ?
A. $\left(T_{f}\right)_{\text {rev }}=\left(T_{f}\right)_{\text {irrev }}$
B. $T_{f}=T_{i}$ for both reversible and irreversible processes
C. $\left(T_{f}\right)_{\text {irrev }}>\left(T_{f}\right)_{\text {rev }}$
D. $T_{f}>T_{i}$ for revrsible process but $T_{f}=T_{i}$ for irreversible processes.

Answer: b
113. The enthalpy of hydrogenation of cyclohexene is -119.5 KJ . If resonance energy of benzene is $-150.4 \mathrm{KJMol}^{-1}$, its enthalpy of hydrogenation of benzene would be
A. $-269.9 \mathrm{kJmol}^{-1}$
B. $-358.5 \mathrm{kJmol}^{-1}$
C. $-508.9 \mathrm{kJmol}^{-1}$
D. $-208.1 \mathrm{kJmol}^{-1}$

Answer: d

- Watch Video Solution

114. Water is supercooled to $-4^{\circ} \mathrm{C}$. The enthalpy (H) is
A. same as ice at $-4^{\circ} \mathrm{C}$
B. more than ice at $-4^{\circ} \mathrm{C}$
C. same as ice at $0^{\circ} C$
D. less than ice at $-4^{\circ} C$

Answer: d

- Watch Video Solution

115. Enthalpy is equal to
A. $T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{P}$
B. $-T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{P}$
c. $T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{V}$
D. $-T^{2}\left[\frac{\partial(G / T)}{\partial T}\right]_{V}$

Answer: b
116. Consider the following liquid-vapour equilibrium.

Liquid \Leftrightarrow Vapour

Which of the following relations is correct?
A. $\frac{d \ln P}{d T^{2}}=-\frac{\Delta H_{v}}{T^{2}}$
B. $\frac{d \ln P}{d T}=\frac{\Delta H_{v}}{R T^{2}}$
C. $\frac{d \ln S}{d T^{2}}=\frac{\Delta H_{v}}{R T^{2}}$
D. $\frac{d \ln S}{d T}=-\frac{\Delta H_{v}}{R T}$

Answer: b

- Watch Video Solution

117. The standard state Gibbs free energies of formation of) C (graphite and C (diamond) at $\mathrm{T}=298 \mathrm{~K}$ are
$\Delta_{f} G^{\circ}[\mathrm{C}($ graphite $)]=0 \mathrm{kJmol}^{-1}$
$\Delta_{f} G^{\circ}[\mathrm{C}($ diamond $)]=2.9 k \mathrm{Jmol}^{-1}$
The standard state means that the pressure should be 1 bar, and
substance should be pure at a given temperature. The conversion of graphite [) C(graphite] to diamond [C(diamond)] reduces its volume by $2 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. If) $\mathrm{C}($ graphite is converted to $\mathrm{C}($ diamond) isothermally at $\mathrm{T}=298 \mathrm{~K}$, the pressure at which) C(graphite is in equilibrium with C (diamond), is
[Useful information: $1 \mathrm{~J}=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}, 1 \mathrm{~Pa}=1 \mathrm{kgm}^{-1} \mathrm{~s}^{-2}, 1 \mathrm{bar}=10^{5} \mathrm{~Pa}$]
A. 58001 bar
B. 1450 bar
C. 14501 bar
D. 29001 bar

Answer: c

- Watch Video Solution

118. For the adiabatic expansion of an ideal gas:
A. $P V^{\gamma}=$ constant
B. $T V^{\gamma-1}=$ constant
C. $T P^{1-\gamma}=$ const.
D. $T P^{1 / \gamma}=$ constant

Answer: a,b

- Watch Video Solution

119. In which of the following entropy increases?
A. Rusting of iron
B. Melting of ice
C. Crystallization of sugar from solution
D. Vaporisation of camphor

Answer: a,b,d

120. The criteria for spontaneity of a process is/are
A. $(d G)_{T, P}<0$
B. $(d E)_{S, V}<0$
C. $(d H)_{S, P}<0$
D. $(d S)_{E, V}<0$

Answer: a,b,c,d

- Watch Video Solution

121. Which of the following statement are not correct ?
A. The standard value of absolute entropy of elementary substances is taken as zero.
B. Work done in isothermal expansion is greater than that in the adiabatic expansion for same increase in volume.
C. During adiabatic expansion of a real gas,there is no change in the enthalpy of the system.
D. Expansion against vaccum is very large and hence work done is also very large

Answer: a,d

- View Text Solution

122. Which of the following relationship are correct?
A. $\frac{\Delta H-\Delta E}{\Delta n \times T}=$ Constant
B. $\Delta G=-T \Delta S_{\text {Total }}$
C. $K=e^{-\Delta G^{\circ} / R T}$
D. $\left[\frac{\partial(\Delta H)}{\partial T}\right]_{P}=\Delta C_{p}$

Answer: a,b,c,d

123. Which of the following reactions is an endothermic reaction?
A. Combustion of methane
B. Decomposition of water
C. Dehydrogenation of ethaneto ethene
D. Conversion of graphite to diamond

Answer: b,c,d

- Watch Video Solution

124. Among the following, the state funcation (s) is (are)
A. Internal energy
B. Irreversible expansion work
C. Reversible expansion work
D. Molar enthalpy

Answer: a,d

- Watch Video Solution

125. For an ideal gas,consider only P-V work in going from an initial state X to the final state Z. The final state Z can be reached by either of the two paths shown in the figure.Which of the following choice (s) is (are)correct? [take ΔS as change in entropy andw as work done.]

A. $\Delta S_{x \rightarrow z}=\Delta S_{x \rightarrow y}+\Delta S_{y \rightarrow z}$
B. $w_{x \rightarrow z}=w_{x \rightarrow y}+w_{y \rightarrow z}$
C. $w_{x \rightarrow y \rightarrow z}=w_{x \rightarrow y}$
D. $\Delta S_{x \rightarrow y \rightarrow z}=\Delta S_{x \rightarrow y}$

Answer: A::C

- View Text Solution

126. The reversible expansion of an ideal gas under adiabatic and isothermal consition is shown in the figure. Which of the folloiwng statement(s) is (are) correct ?

A. $T_{1}=T_{2}$
B. $T_{3}>T_{1}$
C. $w_{\text {isothermal }}>w_{\text {adiabatic }}$
D. $\Delta U_{\text {isothermal }}>\Delta U_{\text {adiabatic }}$

Answer: a,c,d

- View Text Solution

127. An ideal gas in a thermally insulated vesselat internal pressure $=P_{1}$, volume $=V_{1}$ and absolute temperature $=T_{1}$ expands irreversibly against zero external pressure, as shoen in the diagram . The final internal pressure, volume and absolute temperature ofgas are P_{2}, V_{2} and T_{2} respectively. For this expansion.

A. $q=0$
B. $T_{2}=T_{1}$
C. $P_{2} V_{2}=P_{1} V_{1}$
D. $P_{2} V_{2}^{\gamma}=P_{1} V_{1}^{\gamma}$

Answer: A::B::C

- View Text Solution

128. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant Kin terms of change in entropy is described by
A. With increase in temperature, the value of K for endothermic reaction increase because unfavourable change in entropy of the surroundings decreases
B. With increase temperature, the value of K for exothermic reaction decreases because favourable change in entropy of the
surroundings decreases.
C. With increase in temperature, the value of K for endothermic reaction increases because the entropy change of the system is positive.
D. With increase in temperature, the value of K for exothermic reaction decreasesbecause the entropy change of the system is positive.

Answer: a,b

- Watch Video Solution

129. An ideal gas is expand from $\left(p_{1}, V_{1}, T_{1}\right)$ to $\left(p_{2}, V_{2}, T_{2}\right)$ under different conditions. The correct statement(s) among the following is (are):
A. The work done by the gas is less when it is expanded reversibly from V_{1} to V_{2} under adiabatic conditions as compared to that when
expanded reversibley from V_{1} to V_{2} under isothermal conditions.
B. The change in internal energy of the gas is (i) zero, if it isexpanded
reversibly with $T_{1}=T_{2}$, and (ii) positive, if it is expanded reversibly
under adaibatic conditions with $T_{1}-T_{2}$
C. If the expansion is carried out freely, it is simulataneously both isothermal as well as adiabatic
D. The work done on the gas is maximum irreveribly from $\left(p_{2}, V_{2}\right)$ to (p_{1}, V_{1}) against constant pressure p_{1}.

Answer: a,c,d

- Watch Video Solution

130. A reversible cyclic process for an ideal gas is shown below. Here P, V and T are pressure, volume and temperature respectively. The thermodynamic parameters of $\mathrm{q}, \mathrm{w}, \mathrm{H}$ and U are heat, work, enthalpy and internal energy respectively.

The correct option (s) is (are)
A. $q_{A C}=\Delta U_{B C}$ and $w_{A B}=P_{2}\left(V_{2}-V_{1}\right)$
B. $w_{B C}=P_{2}\left(V_{2}-V_{1}\right)$ and $q_{B C}=\Delta H_{A C}$
C. $\Delta H_{C A}<\Delta U_{C A}$ and $q_{A C}=\Delta H_{A C}$
D. $q_{B C}=\Delta U_{A C}$ and $\Delta H_{C A}>\Delta U_{C A}$

Answer: b,c,d
131. For a reaction $A \Leftrightarrow P$,the plots of $[\mathrm{A}]$ and $[\mathrm{P}]$ with time at temperature T_{1} and T_{2} are given below :

If $T_{2}>T_{1}$, the correct statement (s) is (are) (Assume ΔH° and ΔS° are independent of temperature andratio ofn K at T_{1} to $\operatorname{lnK} T_{2}$ is greater than T_{2} / T_{1}. Here, $\mathrm{H}, \mathrm{S}, \mathrm{G}$ andK are enthalpy, entropy, Gibbs energy and equilibrium constant respectively)
A. $\Delta H^{\circ}<0, \Delta S^{\circ}<0$
B. $\Delta G^{\circ}<0, \Delta H^{\circ}>0$
C. $\Delta G^{\circ}<0, \Delta S^{\circ}<0$
D. $\Delta G^{\circ}<0, \Delta S^{\circ}>0$

Answer: a,c

- View Text Solution

Comprehension 1

1. In a fuel celll, methanol is used as a fuel and O_{2} is used as oxidizer. The standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The standard free energies of formation of $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ are -166.3, -394.4 and $-237.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.

The standard free energy change of the reaction will be
A. $-597.8 \mathrm{kJmol}^{-1}$
B. $-298 \mathrm{kJmol}^{-1}$
C. $-465.2 \mathrm{kJmol}^{-1}$
D. $-702.3 \mathrm{kJmol}^{-1}$

Answer: d

D Watch Video Solution

Comprehension 2

1. In a fuel cell (device used for producing electricity directly from a chemical reaction)methanol is used as a fuel and oxygen gas is used asan oxidizer. The standard enthalpy of combustion of methanol is $-721 \mathrm{kJmol}^{-1}$. The standard free energiesof formation of $\mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{l}, \mathrm{CO}_{2}(\mathrm{~g})\right.$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are- $166.3,-394.4$ and $-237.1 \mathrm{kJmol}^{-1}$ respectively.

The efficiency of the fuel cell will be
A. 96.7%
B. 66.2%
C. 41.3%
D. 85.1%

Answer: a

- View Text Solution

2. A fixed mass ' m ' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure.

The succedding operations that enable the transformation of state are
A. Heating, cooling,heating, cooling
B. Cooling, heating, cooling, heating
C. Heating, cooling, cooling, heating
D.

Answer: c

1. In a fuel cell (device used for producing electricity directly from a chemical reaction)methanol is used as a fuel and oxygen gas is used asan oxidizer. The standard enthalpy of combustion of methanol is $-721 \mathrm{kJmol}^{-1}$. The standard free energiesof formation of $\mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{l}, \mathrm{CO}_{2}(\mathrm{~g})\right.$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are- 166.3 , -394.4 and $-237.1 \mathrm{kJmol}^{-1}$ respectively.

The standard internal energy change of the cell reaction will be
A. $-727.24 \mathrm{kJmol}^{-1}$
B. $-724.76 \mathrm{kJmol}^{-1}$
C. $-728.48 \mathrm{kJmol}^{-1}$
D. $-723.42 \mathrm{kJmol}^{-1}$

Answer: b

- View Text Solution

2. A fixed mass 'm' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure.

The pair of isochoric processes among the transformation of states is
A. K to L and L to M
B. L to M and N to K
C. L to M and M to N
D. M to N and N to K

Comprehension 4

1. In a fuel cell (device used for producing electricity directly from a chemical reaction)methanol is used as a fuel and oxygen gas is used asan oxidizer. The standard enthalpy of combustion of methanol is $-721 \mathrm{kJmol}^{-1}$. The standard free energiesof formation of $\mathrm{CH}_{3} \mathrm{OH}\left(\mathrm{l}, \mathrm{CO}_{2}(\mathrm{~g})\right.$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are- $166.3,-394.4$ and $-237.1 \mathrm{kJmol}^{-1}$ respectively.

The standard entropy change accopanying the cell reaction willbe
A. $+24.11 \mathrm{JK}^{-1}$
B. $-24.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $+19.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-10}$
D. $-19.1 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: d

INTEGER TYPE QUESTIONS

1. The number of intensive properties among the following is Temperature, Pressure, Volume , Heat capacity ,Density ,pH of a solution , EMF of a cell,Entropy, Free energy,Enthalpy , Surface tension, Viscosity , Boiling point

- Watch Video Solution

2. The number of properties which are state function among the following is Pressure, Volume , Temperature,Heat, Work , Entropy, Enthalpy
, Free energy, Internal energy, C_{p} and C_{v}.

- Watch Video Solution

3. A gas expands against a constant external pressure so that the work done is 607.8 J . The work done in litre atmosphere is

- Watch Video Solution

4. The number of moles of an ideal gas that should be taken in a closed vessel of 30 L capacity at a temperature of $27^{\circ} \mathrm{C}$ so that the pressure exerted by the gas on the walls of the container is 4.1 atmosphere is

- Watch Video Solution

5. If for a particular reaction, the difference in the heat evolved when the reaction is carried out at constant pressure and that at constant volume at $27^{\circ} \mathrm{C}$ is nearly $5 \mathrm{kJmol}^{-1}$, then the difference in the number of moles of gaseous eactants and products is

- Watch Video Solution

6. The ratio of C_{p} value of a triatomic gas to the C_{v} value of a monoatomic gas is

- View Text Solution

7. The enthalpy of neutralisation of $0.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ will be how many times the enthalpy of neutralisation of 0.1 M HCl ?

- Watch Video Solution

8. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from $298.0 \mathrm{~K} \rightarrow 298.45 \mathrm{~K}$ due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{kJK}^{-1}$, find the numerical value for the enthalpy of combustion of the gas in kJmol^{-1}

NUMBERICAL VALUE TYPE QUESTIONS (in Decimal Notation)

1. For the following question, enter the correct numerical value, (in decimal - notation, truncated /rounded - off to the second decimal place, e.g., 6.50, 7.00, $-0.33,30.27,-127.30$) using the mouse and the onscreen virtual numeric keypad in the place designated to enter the answer.

- View Text Solution

ASSERTION - REASON TYPE QUESTIONS (TYPE 1)

1. Statement -1 . Entropy of all elements is zero at OK.

Statement -2. Standard entropy of all elements is greater than zero.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is False

Answer: D

- Watch Video Solution

2. Statement-1. Entropy is not a state function because its value depends upon the conditions of temperature and pressure.

Statement -2 . A state function depends only on the initial and the final states of the system and is independent of the path.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement- 1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: d

- Watch Video Solution

3. Statement-1.During isothermal expansion of an ideal gas, there is no change in the internal energy.

Statement -2.During isothermal expansion of an ideal gas, as temperature remains constant, no heat enters or leaves the system.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: c

- Watch Video Solution

4. Statement -1. If free energy change of the system is negative, the process is spontaneous even if the total free energy change of the system and the surroundings is positive.

Statement -2. The spontaneity of a process depends only on the free enegy change of the system.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement- 1 is False, Statement- 2 is True

- View Text Solution

5. Statement -1. A compound is formed from its elements only if free energy of formation of the compound is positive.

Statement -2. Many photochemical reactions have positive value for the free energy change.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: d

- Watch Video Solution

6. Statement-1. Enthalpy change at constant pressure is always greater than enthalpy change at constant volume for any reaction.

Statement -2 . Work is done by the system at constant pressure for a given change in volume but no work is done by the system at constant volume.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: d

- Watch Video Solution

7. Statement -1: For every chmical reaction at equilibrium, standard Gidds energy of reaction is zero

Statement-2: At constant temperature and pressure, chemical reactions are spontaneious in the direction of decreasing gibbs energy.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True

Answer: d

- Watch Video Solution

8. Statement-1: There is a natural asymmetry between work to heat and converting heat to work .

Statement-2: No process is possible in which the sole result is the
absorption of heat from a reservoir and its complaete conversion into work.
A. Statement -1 is True, Statement-2 is True, Statement-2 is a correct explanation of Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement -1 .
C. Statement-1 is True, Statement-2 is False.
D. Statement- 1 is False, Statement-2 is True

Answer: a

- Watch Video Solution

ASSERTION - REASON TYPE QUESTIONS (TYPE 2)

1. Assertion. Heat energy is completely transformed into work during the isothermal expansion of an ideal gas.

Reason. During an isothermal process, the change in internal energy of a gas due to decrease in pressure is nullified by the change due to increase in volume.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: A

- View Text Solution

2. Assertion. The temperature of a gas does not change when it undergoes an adiabatic expansion.

Reason. During an adiabatic expansion of a real gas, the internal energy of the gas remains constant.
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: d

D Watch Video Solution

3. Assertion: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero.

Reason: The volume occupied by the molecules of an ideal gas is zero.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: c

4. Assertion. When a real gas expands adiabatically, the decrease in internal energy is equalto the adiabatic work done by the system.

Reason. During adiabatic expansion,no heat entersor leaves the system.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: a

- View Text Solution

5. (A) For reaction $2 \mathrm{NH}_{3}(g) \rightarrow N_{2}(g)+3 \mathrm{H}_{2}(g), \quad \Delta H>\Delta E$
(R) Enthalpy change is always greater than internal energy change.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: c

- Watch Video Solution

6. Assertion. ForCO 2 , the ratio of the molar heat capacities $\left(C_{p} / C_{v}\right)$ is 1.40 .

Reason. For $\mathrm{CO}_{2}, C_{v}=\frac{5}{2} R$ and $C_{p}=\frac{7}{2} R$
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

D Watch Video Solution

7. Assertion. The heat of combustion found by using bomb calorimeter gives the value of internal energy change ΔU and not enthalpy change ΔH.

Reason.In a closed vessl, $\Delta U=\Delta H$ only if pressure inside the calorimeter remains constant.
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: a

8. Statement - The water pouch of instant cold pack for treating athletic injuries breakes when squeezed and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolves lowering the temperature.

Explanation - Addition of non-volatile solute into solvent results into depression of freezing point of solvent.
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: b

- Watch Video Solution

9. Assertion: The enthalpy of formation of gaseous oxygen molecules at 298 K and under 1 atm is zero.

Reason: The entropy of formation of gaseous oxygen molecules under the same condition is zero.
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: C

- Watch Video Solution

10. Assertion (A): Heat of neutralisation for both HNO_{3} and HCI with NaOH is $53.7 \mathrm{kJpermol}^{-1}$.

Reason (R) : NaOH is a strong electrolyte/base.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: B

- Watch Video Solution

11. Assertion.The bond enthalpy of C-H bondin CH_{4} is nearly 416 kJ mol^{-1}

Reason. First, second, third and fourth C-H bonds in CH_{4} have same bond enthalpy.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: c

12. Assertion : Many endothermic reactions which are non- spontaneous on increasing the temperature.

Reason : Endothermic reactions become spontaneous at high temperature if ΔS is +ve and $T \Delta S>\Delta H$.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: a

- Watch Video Solution

13. Assertion (A): Enthalpy of graphite is lower than that of diamond.

Reason (R): Entropy of graphite is lower than that of diamond.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: b

D Watch Video Solution

14. Assertion :- Water in liquid state is more stable than ice at room temperature.

Reason :- Water in liquid from has higher entropy than ice.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: a

15. Assertion. Chlorine when solidifies doe not have zero entropy even at absolute zero.

Reason. Chlorine is a pungent smelling gas and it is difficult to solidify it.
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: b

- Watch Video Solution

16. Assertion: Molar entropy of vaporization of water is different from ethanol.

Reason: Water is more polar than ethanol.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: C

- Watch Video Solution

17. Assertion : A process for which $\Delta S_{s y s t}$ as well as $\Delta H>0$, passes from non spontaneous to spontaneous state as temperature is increased. Reason : At higher temperature, $T \delta S$ exceeds ΔH
A. If both A and R are true,and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: a

- Watch Video Solution

18. Assertion (A): Decrease in free energy causes spontaneous reaction Reason (R) : Spontaneous reactions are invariably exothermic.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: C

D Watch Video Solution

19. Assertion. At 298 K and 1 atm pressure, solids do not have any entropy but liquids and gases have definite values of entropy.

Reason. At 298 K and 1 atm pressure, particle in a solid are fixed and do not have translatory, rotatory or vibraory motion whereas in liquids and gases, molecules have all the three types of motion.
A. If both A and R are true, and R is the true explanation of A.
B. If both A and R are true,but R is not the true explanation of A.
C. If A is true, but R is false
D. If both A and R are false.

Answer: d

- Watch Video Solution

MULTIPLE CHOICE QUESTION (BASED ON PRACTICAL CHEMISTRY)

1. 50 mL of $0.10 \mathrm{~B} \mathrm{Ba}(\mathrm{OH})_{2}$ is added to $50 \mathrm{mLof} 0.10 \mathrm{MH}_{2} \mathrm{SO}_{4}$. The rise in temperature is ΔT_{1}. If experiment is replaced by taking 100 mL of each solution, the rise in temperature is ΔT_{92}). Then
A. $\Delta T_{1}=2 \Delta T_{1}$
B. $\Delta T_{2}=2 \Delta T_{1}$
C. $\Delta T_{2}=\Delta T_{1}$
D. $\Delta T_{2}=4 \Delta T_{1}$

Answer: C

- View Text Solution

2. Enthalpies of formation of $K^{+}(a q), C l^{-}(a q)$ and $K C l(s)$ are $-60.0,-40.0$ and $-104.0 \mathrm{kcalmol}^{-1}$. If one mole of $\mathrm{KCl}(\mathrm{s})$ is dissolved in large excess of water at $25^{\circ} \mathrm{C}$, the enthalpy of solution will be
A. $-4.0 \mathrm{kcalmol}^{-1}$
B. $+4.0 \mathrm{kcalmol}^{-1}$
C. $-20.0 \mathrm{kcalmol}^{-1}$
D. $-20.0 \mathrm{kcalmol}^{-1}$

- View Text Solution

3. 500 mL of0.1 $\mathrm{MH}_{2} \mathrm{SO}_{4}$ was added into 1 L of 0.1 M NaOH solution. The heat evolved was x calories. If further 500 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added into the solution, now heat evolved will be
A. $x c a l$
B. 2 xcal
C. zero
D. $x / 2 c a l$

Answer: c

