© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS

(HINGLISH)

SYSTEMS OF PARTICLES AND
 ROTATIONAL MOTION

Sample problem

1. In a carbon monoxide molecule, the carbon
and the oxygen atoms are separated by a distance $1.2 \times 10^{-10} \mathrm{~m}$. The distance of the centre of mass from the carbon atom is

$$
\begin{aligned}
& \text { A. } \frac{4}{7} \mathrm{~d} \\
& \text { B. } \frac{7}{4} \mathrm{~d} \\
& \text { C. } \frac{8}{7} \mathrm{~d} \\
& \text { D. } \frac{7}{8} \mathrm{~d}
\end{aligned}
$$

Answer: A

2. Three particles of masses $0.2 k g, 0.3 k g$ and
$0.4 k g$ are situated at the vertices A, B and C of a right angled traingle $A B C$ with
$\angle A=90^{\circ}, A B=2 \mathrm{~cm} \quad$ along $\quad \mathrm{X}$-axis and
$B C=2.5 \mathrm{~cm}$. Find the distance of centre of mass from A.

- Watch Video Solution

3. Fig. shown a uniform square plate from identical squares at the corners can be removed. (a) Where is the centre of mass of the plate originally ? (b) Where is it after square 1 is removed ?
(c) where is it after squares 1 and 2 are removed ? (d) Where is $c . m$ after squares $1,2,3$, are removed ?
(f) Where is $c . m$ after all the four squares are removed ? Answer in terms of quadrants and
axes.

4. The speed of a motor increase from 600 rpm to 1200 rpm in 20 seconds. What is its angular acceleration, and how many revolutions does it make during this time ?

D Watch Video Solution

5. Find the torque of a force $(5 \hat{i}-2 \hat{j}+7 \hat{k})$ about the origin, which acts on a particle whose position vector is $(2 \hat{i}-\hat{j}+\hat{k})$.
6. To mainntain a rotor at a uniform angular speed of $200 s^{-1}$, an engine needs to transmit
a torque of $180 N-m$. What is the power of the engine required?

D Watch Video Solution

7. An electron of mass $9 \times 10^{-31} \mathrm{~kg}$ revolues in
a circle of radius $0.53 A$ around the nucles of hydrogen with a velocity of $2.2 \times 10^{6} \mathrm{~ms}^{-1}$.

Show that angular momentum of electron is $h / 2 \pi$, where h is plack's constant.

D Watch Video Solution

8. The motor of an engine is erotating about its axis with an angular velocity of 100 rev/minute. It comes to rest in 15 s , after being switched off. Assumgn cnstant angular decelertion, calculate the number of revolutions made by it before coming to rest.
9. A wheel of mass 10 kg and radius of gyration

25 cm is rotating at 600 rpm . What is its moment of inerta?

D Watch Video Solution

10. A body of moment of inertia $0.5 \mathrm{kgm}^{2}$ is rotating about a given axis at the rate $1 r p s$.

What is kinetic energy of rotation of the body about that axis ?
11. Calculate the angular acceleration produced in a grind stone of moment of inertia $3 \mathrm{kgm}^{2}$ under the action of a torque of $3 \pi N-m$.

D Watch Video Solution

12. Calculate angular momentum of earth rotating about its axis. Take $I=\frac{2}{5} M R^{2}$, where $M=6 \times 10^{24} \mathrm{~kg}$ and $R=6400 \mathrm{Km}$.

- Watch Video Solution

13. A wheel of moment of inertia
$0.500 \mathrm{~kg}-\mathrm{m}^{2}$ and radius 20.0 cm is rotating
about its axis at an angular speed of 20.0 $\mathrm{rad} / \mathrm{s}$. It picks up a stationary particle of mass 200 g at its edge. Find the new angular speed of the wheel.

- Watch Video Solution

14. Calculate moment of inertia of a uniform circular ring of mass 1.5 kg and diameter 50 cm about a diameter of the ring.

- Watch Video Solution

15. Calculate moment of inertia of a uniform circular disc of mass 10 kg and diameter 0.5 m about a tangent perpendicular to the plane of the disc.
16. Show that the radii of gyration of a circular ring and circular disc of the same radius about an axis passing through their centres and perpendicular to their plane are in the ratio $\sqrt{2}: 1$.

- Watch Video Solution

17. A thin hollow cylinder, open at both ends and weighing 5 kg (a) slides with a speed of $10 \mathrm{~m} / \mathrm{s}$ without rotating (b) rolls with the
same speed without slipping. Compare the kinetic energies of the cylinder in the two cases.

D Watch Video Solution

18. A cylinder of mass 10 kg is rolling perfectly on a plane of inclination 30°. Find the force of
friction between the cylinder and the surface of inclined plane.
19. Two identical uniform rods of length l are joined to from L shaped frame, as shown is

Fig. Locate the centre of mass of the frame.

- Watch Video Solution

2. Calculate the $K E$ of rotation of a circular disc of mass 1 kg and radius 0.2 m rotating about an axis passing through its centre and perpendicular to its plane. The disc is making $30 / \pi$ rotations per minute.
3. Find the centre of mass of a uniform triangula lamina.

- Watch Video Solution

2. Find the centre of mass of three particle at the vertices of an equilateral triangle. The masses of the particle are $100 g, 150 g$, and $200 g$ respectively. Each side of the equilateral triangle is 0.5 m along.

- Watch Video Solution

3. Find the centre of mass of a uniform L shaped lamina (a thin flat plate) with
dimension as shown in Fig. The mass of the
lamina is 3 kg .

4. Find the position of centre of mass of the Tshaped plate from O, in Fig.

5. From a uniform circular disc of radius R, a circular disc of radius $R / 6$ and having centre at a distance $R / 2$ from the centre of the disc is removed. Determine the centre of mass of remaining portion of the disc.

D Watch Video Solution

6. A circular plate of uniform thickness has a diameter fo 56 cm . A circular portion of
diameter 42 cm is removed from one edge of
the plate as shown in figure. Find the position of the centre of mass of the remaining portion.

D Watch Video Solution
7. Determine the coordinates of the centre of mass of a right circular soild cone of base radius R and height h.

- Watch Video Solution

8. A uniform thin rod of length $3 L$ is bent at right angles at a distance L from one end as
shown in Fig. If length of rod is $1.8 m$, find the co-ordinates and position vector of the mass
of the system.

D Watch Video Solution
9. A man of mass m_{1} is standing on a platform
of mass m_{2} kept on a smooth horizontal surface. If the man moves a distance d w.r.t., the platform, find the displacement of the platform w.r.t., ground.

- Watch Video Solution

10. A torque of $10^{3} N-m$ acting on a rigid body, turns it throughr 30° in 0.2 second.

Calculate work done by the body and power of torque.

- Watch Video Solution

11. A constant torque is acting on a wheel. If starting from rest, the wheel makes n rotations in t seconds, show that the angular acceleration is given by $\alpha=\frac{4 \pi n}{t^{2}} \mathrm{rads}^{-2}$.

- Watch Video Solution

12. A torque of $20 N-m$ is applied on a wheel initially at rest. Calculate the angular
momentum of the wheel after 3 sec .

- Watch Video Solution

13. Show that angular momentum of a satellite of mass M_{s} revolving around earth of mass
M_{e} in an orbit of radius r is $\sqrt{G M_{s}^{2} M_{e} r}$.

D Watch Video Solution

14. Calculate angular momentum to Neptune
about the sun. Given, mass of neptune
$=10^{12} \mathrm{~m}$ and period of revolution around the sun $=5 \times 10^{9} s$.

D Watch Video Solution

15. At any instant, $\vec{F}=(4.0 \hat{j}) N$ acts on a
0.25 kg object that has position vector
$\vec{r}=(2.0 \hat{i}-2.0 \hat{k}) m \quad$ and \quad velocity
$\vec{v}=(-5.0 \hat{i}+5.0 \hat{k}) m / s . \quad$ About the
origin, what are angular momentum and torque acting on the object ?
16. A small particle of mass m is projected at an angle θ with x -axis with initial velocity v_{0} in
$x-y$ plane as shown in Fig. Calculate the momentum of the particle
at $t<\frac{v_{0} \sin \theta}{g}$.

17. A car of mass 2500 kg is moving in a circular track of diameter 100 m with a speed of
$72 \mathrm{~km} / \mathrm{h}$. What is the angular momentum of the car ?

D Watch Video Solution

18. The radius of a wheel of car is 0.4 m . The car
is accelerated from rest by an angular acceleration of $1.5 \mathrm{rad} / \mathrm{s}^{2}$ for 20 s . How much
distance will the wheel cover in this time and what will be its linear velaocity?
19. A flywheel rotating at a speed of 600 rpm about its axis is brough to rest by applying a constant torque for 10 seconds. Find the angular deceleration and angular velocity 5 second after the application of the torque.

- Watch Video Solution

20. Obtain the equation $\omega=\omega_{0} \alpha t$ from first principles.

D Watch Video Solution

21. A flywheel of mass 1 metric ton and radius
$1 m$ is rotating at the rate of 420 rpm . Find the constant retarding torque required to stop
the wheel in 14 rotations, assuming mass to be concentrated at the rim of the wheel.
22. A dics rotates about the central axis starting from rest and accelerates with constant angular accelertion. At one time, it is rotating at $10 \mathrm{rps}, 60$ revoluting later, its angular speed is $15 r p s$. Calculate (i) angular acceleration (ii) time required to complate 60 revols (iii) the time required to reach $10 \mathrm{rev} / \mathrm{sec}$ angular speed and (iv) number of revoluting from rest until the time the disc reaches $10 r p s$ angular speed.
23. A disc of radius $0.5 m$ is rotating about an axis passing through its centre and perpendicular to its plane. A tangential force of $2000 N$ is applied to bring the disc to rest $2 s$. Calculate its abgular momentum.

D Watch Video Solution

24. A moton car is travelling at $30 \mathrm{~m} / \mathrm{s}$ on a circular road of radius 500 m . It is increasing in
speed at the rate of $2 m s^{-2}$. What is its acceleration ?

D Watch Video Solution

25. An energy of $484 J$ is spent in increasing
the speed of a flywheel from 60 rpm to 360 rpm. Calculate moment of inertia of flywheel.

D Watch Video Solution

26. A soild sphere is rolling on a frictionless
plane surface about the axis of symmetry. Find
the rotational energy of the sphere. Also, find the ratio of rotational $K . E$. to total energy.

D Watch Video Solution

27. The moment of inertia of a body about a given axis is $1.2 \mathrm{kgm}^{2}$. Initially, the body is at rest. In order to produce a rotational $K E$ of
$1500 j$, for how much duration, an acceleration of $25 \mathrm{rads}^{-2}$ must be applied about that axis ?

D Watch Video Solution

28. A thin hollow cylinder open at both ends and weight $5 k g$ (i) slides with a speed of
$5 \mathrm{~m} / \mathrm{s}$ without rotating and (ii) rolls with the
same speed without slipping. Compare the
$K E$ of the cylinder in the two cases.

D Watch Video Solution

29. A spherical ball of radius r and mass m is rolling without slipping on a horizontal table.

Calculate the percentage of $K E$, which is translational.

D Watch Video Solution

30. A disc of radius $0.5 m$ is rotating about an
axis passing through its centre and perpendicular to its plane. A tangential force of $2000 N$ is applied to bring the dics to rest $2 s$. Calculate its abgular momentum.

- Watch Video Solution

31. A flywheel of mass 25 kg has a radius of 0.2 m . It is making 240 rpm . What is the torque necessary to bring it to rest in $20 s$? If the torque is due to a force applies tangentially on the rim of the wheel, what is the magnitude of the force ? Assume that mass of flywheel is concentrated at its rim.

- Watch Video Solution

32. Show that the angular momentum about any point of a single particle moving with constant velocity remains constant throughout the motion.

- Watch Video Solution

33. Show that moment of a couples does not depend on the point about which you take the moments.
34. A metal bar 70 cm long and 4.00 kg in mass
is supported on two knife edges placed 10 cm
from each end. A 6.00 kg weight is suspended
at 30 cm from one end. Find the reactions at
the knife edges. Assume the bar to be of uniform cross-section and homogeneous.

- Watch Video Solution

35. A car moves on a road with a speed of
$54 \mathrm{kmh}^{-1}$. The radius of its wheels is 0.35 m .
What is the average negative torque
transmitted by its brakes to the wheels if the car is brought to rest in $15 s$? Moment of inertia of the wheels about the axis of rotation is $3 \mathrm{kgm}^{2}$.

D Watch Video Solution

36. A grindstone has moment of inertia of $6 \mathrm{kgm}^{2}$. A constant torque is applied and the grindstone is found to have a speed of 150 rpm, 10 second after satrting from rest.

Calculate the torque.

Watch Video Solution

37. A body whose moment of intertia is $3 \mathrm{kgm}^{2}$ is at rest. It is rotated for $20 s$ with a moment of force $6 N-m$. Find angular displacement of the body. What is work done?

- Watch Video Solution

38. A wheel, initially at rest, rotates for $2 s$ under angular acceleration of $3 \mathrm{rads}^{-2}$. Find
(i) angular velocity acquired in $2 s$.
(ii) angular displacement in $2 s$.
(ii) torque acting on the wheel if its moment of inertia is $12 \mathrm{kgm}^{2}$.

D Watch Video Solution

39. A cylinder of mass 5 kg and radius 30 cm
and free to rotate about its axis receives an
angular impulse of $3 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$ initially,
followed by a similar impulse after every 4 second. What is the angular speed of the
cylinder $30 s$ after the initial impulse ? The cylinder is at rest initially.

D Watch Video Solution

40. To speed up a flywheel from 60rpm to 120 rpm, energy equal to $9000 J$ is requires.

Calculate the moment of inertia of flywheel.

Also calculate change in angular momentum of flywheel.
41. What will be the duration of the day, if the earth suddenly shrinks to $1 / 64$ th of its original volume, mass remaining unchanged ?

- Watch Video Solution

42. The maximum and minimum distances of a
comet from the sun $1.4 \times 10^{12} m$ and
$7 \times 10^{10} \mathrm{~m}$. If its velocity nearest of the sun is
$6 \times 10^{4} m s^{-1}$. What is its velocity at the farthest position ? Assume that path of
commet in both the instantaneous position is

circular.

D Watch Video Solution

43. A horizontal disc ratating about a vertical axis passing through its centre makes 180 rpm. A small piece of wax of mass $10 g$ falls vertically on the disc and stricks to it at a distance reduced to $150 r \pm$, calculate moment of inertia of the disc.
44. A ball tied to a string takes $4 s$ to complete one revoluting along a horizontal circule. If by pulling the cord, the radius of the circle is reduced to half, how much time will the ball take to complete one revolution?

D Watch Video Solution

45. A preson is standing on the centre of a rotating table with his arms outstretched. The table is rotating freely with an angular his
hands towards his chest. The moment of inertia reduces to $\frac{3}{5}$ time the original moment of inertia. Calculate angular speed of the man when he withdraws his hands.

D Watch Video Solution

46. If the earth suddenly contracts to one third of its present size, calculate by how much would the day be shortened?

D Watch Video Solution

47. A disc of moment of inertia I_{1} is rotating
freely with angular speed ω_{1} when another non-rotating disc of moment of inertia I_{2} is dropped on it. The two discs then rotate as one unit. Find the final angular speed.

- Watch Video Solution

48. Calculate the moment of inertia of a uniform rod of mass M and length l about an axis passing through an end and perpendicular to the rod. The rod can be
divided into a number of mass elements along
the length of the rod.

- Watch Video Solution

49. Find the out the moment of inertia of a ring having uniform mass distribution of mass
M and radius R about an axis which is tangent ot the ring and (a) in the plane of the ring (b). perpendicular to the plane of the ring.

- Watch Video Solution

50. Four spheres, each of diameter
$2 a$ and mass M are placed with their centres
on the four corners of a square of side b.
Calculate one side of the square taken as the axis.

D Watch Video Solution

51. Find the moment of inertia of a rectangular bar magent about an axis passing through its centre and parallel to its thickness. Mass of
magent is 100 g , its length is 12 cm , breadth is 3 cm and thickness is 2 cm .

D Watch Video Solution

52. Calculate the moment of inertia of a cylinder of length 1.5 m , radius 0.05 m and density $8 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$ about the axis of the cylinder.

D Watch Video Solution

53. Three balls of masses $1 k g, 2 k g$ and $3 k g$ are arranged at the corners of an equilateral triangle of side $1 m$. What will be the moment of inertia of the system and perpendicular to the plane of the triangle.

D Watch Video Solution

54. A circular ring of radius 10 cm is made of a wire of mass $0.02 \mathrm{~g} / \mathrm{cm}$. Calculate its radius of gyration and moment of inertia about an axis
passing perpendicular to its plane through the centre of the ring.

D Watch Video Solution

55. A soild cylinder rolls down an inclined plane. Its mass is $2 k g$ and radius 0.1 m . It the height of the inclined plane is $4 m$, what is its rotational $K . E$. when it reaches foot of the plane ? Assume that the surfaces are smooth.

Take M.I. of soild cylinder about its axis = $m r^{2} / 2$.
56. A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius $3 m$ rotating about its verticle axis. The coefficient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?
57. A 3 m along ladder weighing 20 kg leans on
a frictionless wall. Its feet rest on the floor $1 m$
from the wall. Find the rection forces of the wall and the floor.

- Watch Video Solution

58. The angular speed of a moton wheel is increased from 1200 rpm to 3120 rpm in 16 seconds. (i) What is the angular acceleration, assuming the acceleration to be uniform ?

How many revolutions does the engine make during this time?

D Watch Video Solution

59. A cord of negligible mass is wound round the rim of a flywheel of mass 20 kg and radius 20 cm . A steady pull of 25 N is applied on the cord as shown in Fig. The flywheel is mounted on a horizontal axle with frictionless bearings.

(a) Compute the angular acceleration of the wheel.
(b) Find the work done by the pull, when $2 m$ of the cord is unwound.
(c) Find also the kinetic energy of the wheel at this point. Assume that the wheel stars from
rest.
(d) Compare answers to parts (b)and (c).

D Watch Video Solution

60. Three bodies, a ring, a soild cylinder and a soild sphere roll down the same inclined plane without slipping. They start from rest. The
radii of the bodies are identical. Which of the bodies reaches the ground with maximum velocity?
61. A body of mass 5 kg is attached to a weightless string wound round a cylinder of mass 8 kg and radius 0.3 m . The body is allowed to fall. Calculate (i) tension in the string, (ii) acceleration with which the body falls and (iii) angular acceleration of the cylinder.

D Watch Video Solution
62. The moment of inertia of a body about a given axis is $1.2 \mathrm{kgm}^{2}$. Initially, the body is at rest. In order to produce a rotational $K E$ of 1500 J , for how much duration, an acceleration of $25 \mathrm{rads}^{-2}$ must be applied about that axis ?

D Watch Video Solution

SOLVED EXAMPLES TYPE B

1. Find the torque of a force $(5 \hat{i}-2 \hat{j}+3 \hat{k})$ about the origin, which acts on a particle whose position vector is $(\hat{i}-\hat{j}+\hat{k})$.

- Watch Video Solution

2. What constant torque should be appiled to
a disc of mass 10 kg and diameter 50 cm so
that it acquires an angular velocity of $2 \pi \mathrm{rad} / \mathrm{s}$ in $4 s$? The disc is initially at rest and rotates
about an axis through the centre of the disc and in a plane perpendicular to the disc.

D Watch Video Solution

SOLVED EXAMPLES TYPE C

1. On application of a constant torque, a wheel
is turned from rest through an angle of 200
radius in $8 s$. What is its angular acceleration ?

If the same torque continues to act, what will
be the angular velocity of the wheel $16 s$ from the start?

D Watch Video Solution

2. A star of mass equal to two solar masses and radius $10^{6} \mathrm{~km}$ rotates about its axis with an angular speed of $10^{-6} \mathrm{rads}^{-1}$. What is the angular speed of the star, when it collapses
(due to inward gravitational forces) to a radius of $10^{4} \mathrm{~km}$?

SOLVED EXAMPLES TYPE D

1. The motor of an engine is rotating about its
axis with an angular velocity of 100 rpm . It comes to rest in $15 s$, after being switched off.

If angular deceleration is constant, what is the number to revolutions made by it before coming to rest ?
2. What is the moment of intertia of a circular disc about one of its diameters?

- Watch Video Solution

CONCEPTUAL PROBLEMS I.

1. Is centre of mass of reality ?

- Watch Video Solution

2. Why is moment of inertia called rotational inertia?

- Watch Video Solution

CONCEPTUAL PROBLEMS

1. What is the advantage of concept of centre of mass?

- Watch Video Solution

2. Prove that the centre of mass of two particle divides the line joining the particles in the inverse ratio of their masses.

- Watch Video Solution

3. In a stationary railway compartment, there are several passengers. If they start moving in
the compartment, will $C M$ of the compartment change ? Will the $C M$ of the system of compartment and passengers change ?

- Watch Video Solution

4. A body A of mass M while falling wertically downwards under gravity brakes into two parts, a body B of mass $\frac{1}{3} M$ and a body C of mass $\frac{2}{3} M$. The center of mass of bodies B and

C taken together shifts compared to that of body A towards
5. Can centre of mass of a body coincide with
the geometrical centre of the body?

D Watch Video Solution

6. An insulated particle of mass m is moving in
a horizontal plane $(x-y)$ along X-axis. At a certain height above the ground, it suddenly explodes into two fragments of masses $m / 4$ and $3 m / 4$. An instant later, the smaller
fragment is at $Y=+15$. The larger fragment at this instant is at :

D Watch Video Solution

7. Which physical quantities are expressed by the following :
(i) rate of change of angular momentum
(ii) moment of linear momentum ?

D Watch Video Solution
8. Torque and work are both equal to force time distance. How do they differ?

D Watch Video Solution

9. If a body is rotating, is it necessarily being acted upon by an external torque ?

D Watch Video Solution

10. Why is the handle of a screw made wide?

- Watch Video Solution

11. A particle is moving along a stright line parallel to x-axis with constant velocity. Does its angular momentum about the origin decrease with time or increase with time or remain constant?

- Watch Video Solution

12. A particle performing uniform circular motion has angular frequency is doubled \& its
kinetic energy halved, then the new angular momentum is

- Watch Video Solution

13. Does the moment of inertia of abody change with the speed of rotation?

D Watch Video Solution

14. What is the advantage of a flywheel ?

D Watch Video Solution

15. Why spokes are provided in a bicycle wheel
?

- Watch Video Solution

16. The moment of inertia of a soild sphere
about a tangent is $\frac{5}{3} m r^{2}$. What would be its
moment of inertia about its diameter.

D Watch Video Solution

17. Find radius of gyration of a rod of length l and mass m about an axis perpendicular its length through one end.

D Watch Video Solution

18. For a given mass and size, moment of inertia of a soild disc is smaller than that of a
ring. Why ?

- Watch Video Solution

19. In a fly wheel, most of the mass is concentrated at the rim ? Explain why.

D Watch Video Solution

20. Two satellites of equal masses, which can
be considered as particles are orbiting the
earth at different heights. Will their moment of inertia be same or different?

D Watch Video Solution

21. How will you distinguish between a hard boiled egg and a raw egg by spinning each on a table top?

- Watch Video Solution

22. If earth were to shrink suddenly, what would happen to the length of the day?

D Watch Video Solution

23. If two circular disks of the weight and thickness are made from metals having different densities. Which disk, if either will have the larger moment of inertia about its central axis.
24. The moments of inertia of two rotating bodies A and B are I_{A} and $I_{B} .\left(I_{A}>I_{B}\right)$ and their angular momenta are equal. Which one has greater $K . E$. ?

- Watch Video Solution

25. If polar ice caps melt, then the time duration of one day
26. If no external torque acts on a body, will its angular velocity remain conserved?

D Watch Video Solution

27. How does an ice-skater, a ballet dancer or an acrobat take advantage of the principle of conservation of angular momentum ?

D Watch Video Solution

28. Explain why the speed of a whirl wind in a tornado is alarmingly high ?

D Watch Video Solution

29. Explain how is a cat able to land on its feet
after a fall taking advantage of the principle of conservation of angular momentum ?

D Watch Video Solution
30. If angular momentum is conserved in a system whose moment of inertia is decreased, will its rotational kinetic energy be also conserved ? Explain.

D Watch Video Solution

31. When there is no external torque acting on
a rotating body, which of the following quantities can change ? (i) Angular
acceleration (ii) Angular momentum

Angular speed.

D Watch Video Solution

32. Equal torques are applied on a cylinder and a hollow sphere. Both have same mass and radius. The cylinder rotates about its axis and the sphere rotates about one of its diameters. Which will acquire greater speed ? Explain.

- Watch Video Solution

33. A soild sphere is made to roll down from
the same height on two inclined planes having different angles of inclination. In which case will it take less time to reach the bottom ?

- Watch Video Solution

34. A thin wheel can stay upright on its rim for
a considerable length of time when rolled with
a considerable velocity, while it falls from its
upright position at the slightest disturbance,
when stationary. Explain.

- Watch Video Solution

35. Two identical cylinders 'runa race' starting
from rest at the top of an inclined plane, one slides without rolling and other rolls without slipping. Assuming that no mechanical energy is dissipated in heat, which one will win?

- Watch Video Solution

36. A one kg rolling on a smooth horizontal surface at $20 \mathrm{~ms}^{-1}$ comes to the bottom of an inclined plane making an angle of 30° with the horizontal. Calculate K. E. of the ball when it is at the bottom of incline. How far up the incline will the ball roll ? Neglect friction.

- Watch Video Solution

37. A very small particle rests on the top of a hemisphere of radius 20 cm . Calculate the
smallest horizontal velocity to be given to it if it is to leave the hemisphere without sliding down its surface, take $g=9.8 m / s^{2}$.

D Watch Video Solution

38. The angular velocity of earth around the sun increases when it comes closer to the sun. Why?
39. A particle performing uniform circular motion gas angular momentum L. If its angular frequency is double and its kinetic energy halved, then the new angular momentum is :

D Watch Video Solution

CONCEPTUAL PROBLEMS II.

1. Can the couple acting on a rigid body produce translatory motion ?

D Watch Video Solution

2. A planet revolves round a massive star in a
highly elliptical orbit. Is its angular momentum constant over the entire orbit?

D Watch Video Solution

1. What is the position vector of centre of mass of two particles of equal masses ?

- Watch Video Solution

2. Is moment of inertia a scalar or a vector ?

D Watch Video Solution

VERY SHORT ANSWER QUESTIONS

1. If one of the particles is heavier than mass other, to which side will their centre of mass shift?

D Watch Video Solution

2. Does centre of mass of a system of two particles lie on the line joining the particles?
3. Can centre of mass of a body lie where there is absolutely no mass?

D Watch Video Solution

4. Can centre of mass of a body coincide with geometrical centre of the body?

D Watch Video Solution

5. Does centre of mass of a rigid body lie always on the body?

D Watch Video Solution
6. On what factors does the position of cm of a rigid body depend ?

D Watch Video Solution
7. Find the centre of mass of a uniform triangula lamina.

D Watch Video Solution
8. Determine the coordinates of the centre of mass of a right circular solid cone of base radius R and height h.

D Watch Video Solution
9. What is nature of motion of cm of an
isolated system?

D Watch Video Solution
10. Find the centre of mass of a uniform triangula lamina.

- Watch Video Solution

11. What is an isolated system?

- Watch Video Solution

12. Name the rotational analouge of force.

What ar its units?

- Watch Video Solution

13. Write an expression for torque. Which rule is used for finding its direction?
14. Write the dimensional formula of angular momentum. Is it scalar or vector?

- Watch Video Solution

15. Name the physical quantity whose dimensions are same as that of angular momentum ?

- Watch Video Solution

16. Which physical quantity is conserved when
a planet revolves around the sun ?

D Watch Video Solution
17. What is angular velocity of earth spinning around its own axis ?

D Watch Video Solution
18. Moment of inertia of a hollow cylinder of mass M and radius R, about the axis of cylinder is

D Watch Video Solution

19. What is moment of inertia of a solid
cylinder of mass m, length I and radius r about the axis of the cylinder?

20. What is radius of gyration of a soild sphere

 of mass m and radius r about its diameter?
D Watch Video Solution

21. On what factors does the radius of gyration of a body depend?

D Watch Video Solution

22. A ring and a circular disc of different materials have equal masses and equal radii.

Which one will have a larger moment of inertia about an axis passing through its centre of mass perpendicular to its plane?

- Watch Video Solution

23. A disc of metal is melted and recast in the
from of a soild sphere. What will happen to
the moment of inertia anout a vertical axis passing through the centre?

D Watch Video Solution

24. What are the units and dimensions of moment of inertia? Is it a vector ?

D Watch Video Solution

25. What is rotational analogure of mass of a body?
26. State the two theorems of moment of inertia.

- Watch Video Solution

27. What is moment of inertia of a solid sphere about its diameter ?
28. What is the moment of inertia of a hollow sphere about an axis passing through its centre?

- Watch Video Solution

29. What are the factors on which moment of inertia of a body depend?
30. Is radius of gyration of a body constant quantity?

D Watch Video Solution
31. There are two spheres of same mass and same radius, one is solid and other is hollow. Which of them has a larger moment of inertia about its dimeter ?
32. Two solid spheres of the same are made of metals of different densities. Which of them
has a larger moment of inertia about a diameter ?

D Watch Video Solution

33. Name the rotational analogue of force.

What are its units ?
34. A cannot ball and a marble ball roll from rest down an incline. Which goes to the buttom first?

D Watch Video Solution
35. Can a body in translatory motion have angular momentum ? Explain.
(D) Watch Video Solution
36. Why spin angular velocity of a star is greatly enhanced when it collapses under gravitational pull and becomes a neutron star ?

- Watch Video Solution

37. Fill in the blanks :
(i) $\vec{\tau}=\vec{r} \times \ldots$ (ii) $\vec{L}=\vec{r} \times \ldots$

D Watch Video Solution
38. How are torque and angular momentum related?

D Watch Video Solution

39. Complete the statement : Angular momentum of a particle is equal to twice... .

D Watch Video Solution

40. Rolling motion can be treated as a combination of Fill in the blanks.

D Watch Video Solution

41. Write an expression for kinetic energy of rolling body.
(Watch Video Solution
42. A solid cylinder is rolling down on an inclined plane of angle θ. The minimum value of the coefficient of friction between the plane and the cylinder to allow pure rolling

- Watch Video Solution

43. Angle traced by a rotating body in nth
seconds is $\theta_{\text {nth }}=\ldots w h e r e ~ s y m b o l s ~ h a v e ~$ their usual meaning.
44. the centre of gravity of a body on the earth coincides with its centre of mass for a small object whereas for an extended object it may not ,what is the qualitaitve meaning of small and extended in this regard ?
for which of the following two coincides ? A building, a pond, a lake ,a mountain?

D Watch Video Solution

45. Why does a solid sphere have smaller moment of inertia than a hollow cylinder of same mass and radius, about an axis passing through their axes of symmentry?

D Watch Video Solution

46. The variation of angular position θ, of a point on a rotating rigid body, with time t is shown in Fig. Is the body rotating clock wise or
anti-clockwise?

- Watch Video Solution

47. A unifrom cube of mass m and side a is
placed on a frictionless horizontal surface. A
vertical force F is applied to the edge as
shown in Fig. Match the following (most appropriate choice) :
(a) $m g / 4<F<m g / 2$ (i) Cube will move up.
(b) $F>m g / 2$ (ii) Cube will not exhibit motion.
(c) $F>m g$ (iii) Cube will begin to rotate and slip at A.
(d) $F=m g / 4$ (iv) Normal reaction effectively
at $a / 3$ from A, no motion.

D Watch Video Solution

48. A uniform sphere of mass m and radius R is placed on a rough horizontal surface [Fig.]

The sphere is struck horizontally at a hight h from the floor. Match the following :
(a) $h=R / 2$ (i) Sphere rolls without slipping with a constant velocity and no loss of energy. (b) $h=R$ (ii) Sphere spins clockwise, loses energy by friction.
(c) $h=3 R / 2$ (iii) Sphere spins anti-clockwise,
loses energy by friction.
(d) $h=7 R / 5$ (iv) Sphere has only a translational motion, looses energy by friction.

VERY SHORT ANSWER QUESTIONS II.

1. Which physical quantity is represented by the product of the moment of inertia and the angular velocity ?

- Watch Video Solution

2. A ballet-dancer stretches her hands out for slowing down. This is based on principle of

conservation of

D Watch Video Solution

SHORT ANSWER QUESTIONS I.

1. Find the centre of mass of a uniform triangula lamina.
2. About which axis would the moment of inertia of a body be minimum?

- Watch Video Solution

SHORT ANSWER QUESTIONS

1. Two particles of masses m_{1} and m_{2} move with velocities v_{1} and v_{2} towards eachother on a smooth horizontal surface. What is the velocity of their centre of mass ?
2. Two balls of mass m each are placed at the two vertices of an equilateral triangle. Another ball of mass $2 m$ is placed at the third vertex of the triangle. Locate the centre of mass of the system.

D Watch Video Solution

3. the length of seconds hand of a clock is

10 cm . The speed of the tip of the hand is
4. Is torque a scalar or vector ? If it is a vector, what rule is used to determine its direction ?

- Watch Video Solution

5. Why do we perfect to use a when with a long arm?

- Watch Video Solution

6. What is the dimensional formula of angular momentum and what are its units ? Is it a scalar?

- Watch Video Solution

7. Is the angular speed of rotation of hour hand of a watch greater or smaller than the angular speed of earth's rotation about its axis?
8. A body is in rotational motion. Is it necessary that a torque be acting on it ?

D Watch Video Solution

9. Why are doors provided with handles near the outer edges, far away from the hinges ?

D Watch Video Solution

10. It is difficult to open or close the door by pushing/pulling it at the hinges. Why ?

D Watch Video Solution

11. To open or close a heavy door, why force is applied at right angles to the door.

D Watch Video Solution

12. Why is it easier to open a tap with two fingers than with onw finger?

D Watch Video Solution

13. What is angular impulse?

- Watch Video Solution

14. Which component of linear momentum
does not contribute to angular momentum ?

- Watch Video Solution

15. Is a body in circular motion in equillibrium
?

- Watch Video Solution

16. A particle moves in a circular path with decreasing speed. What happens to its angular momentum ?
17. Explain that torque is only due to transverse component of force. Radial component as nothing to do with torque.

D Watch Video Solution

18. Show that centre of mass of an isolated
system moves with a uniform velocity along a straight line path.
19. Locate the centre of mass of uniform triangular lamina and a uniform cone.

D Watch Video Solution
20. Explain the concepts of torque and angular momentum.

D Watch Video Solution

21. Explain what is meant by centre of gravity.

- Watch Video Solution

22. About what axis would a uniform cube have its minimum moment of inertia?

- Watch Video Solution

23. Is radius of gyration of a body constant quantity?
24. Speed of rotation of a body affects the radius of gyration of the body. Comment.

- Watch Video Solution

25. A solid disc is recast into a thin walled cylinder of same radus. Which will have larger moment of inertia?
26. Two satellites of equal masses, which can be considered as particles are orbiting the earth at different heights. Will their moment of inertia be same or different?

- Watch Video Solution

27. In which of the following cases shown Fig.
it is most difficult to rotate the rod ? Explain
why?

©

\odot

- Watch Video Solution

28. In first figure a meter stick, half of which is
wood and the other half steel is pivoted at the wooden end at A and a force is applied at the
steel and at O. On second figure the stick is
pivoted at the steel end at O and the same
force is applied at the wooden end at A. The angular acceleration.

- Watch Video Solution

29. Two circular discs A and B of equal masses
and thicknesses. But are made of metals with densities $\quad d_{A}$ and $d_{B}\left(d_{A}>d_{B}\right)$. If their
moments of inertia about an axis passing through the centre and normal to the circular faces be I_{A} and I_{B}, then.

D Watch Video Solution

30. The radius of gyration of an uniform rod of
length L about an axis passing through its centre of mass and perpendicular to its length is.

D Watch Video Solution

31. Why there two propellers in a helicopter?

- Watch Video Solution

32. A solid wooden sphere rolls down two different inclined planes of the same height but of different inclinations. (a) Will it reach the bottom with same speed in each case?
(b) Will it take longer to roll down one inclined plane than other ? Explain.
33. Using expressisions for power and kinetic energy of rotational motion, derive the relation $\tau=I \alpha$, where letters have their usual meaning.

- Watch Video Solution

34. A thin uniform circular disc of mass M and
radius R is rotating in a horizontal plane about an axis passing through its centre and perpendicular to its plane with an angular
velocity ω. Another disc of the same dimensions but of mass $M / 4$ is placed gently on the first disc co-axially. show that angular velocity o fthe system is $4 \omega / 5$.

- Watch Video Solution

35. Is angular momentum of a system always conserved ?

D Watch Video Solution

36. A flywheel is revolving with a constant angular velocity. A chip of its rim breaks and flies away. How is its angular velocity affected ?

D Watch Video Solution

37. Why are not able to rotate a wheel by pulling or pushing along its radius?

D Watch Video Solution

38. Explain why the speed of a whirl wind in a tornado is alarmingly high ?

D Watch Video Solution
39. State the two theorems of moment of inertia.

- Watch Video Solution

40. Explain the physical significance of moment of inertia and radius of gyration.

D Watch Video Solution
41. Obtain expression for $K . E$. of rolling motion.

D Watch Video Solution
42. State the laws of rotational motion.

- Watch Video Solution

43. The vector sum of a system of non-collinear forces acting on a rigid body is given to be non-zero. If the vector sum of all torques due to the system of forces about a centain point is found to be zero, does this mean that it is necessarily zero about any arbitrary point ?

D Watch Video Solution

44. A wheel in uniform motion about an axis
passing through its centre and perpendicular
plus is considered to be in mechanical
(translational plus rotational) equilibrium because no net external force or torqure is reqired to sustain its motion However, the particles than constitute the wheel do experience a centripeteal the acceleration wheel being in equilibrium ?
how would you set a half wheel into unifrom motion about an axis passing throgh the centre of mass of the wheel and perpendicular
to its plane ? will ypu require external forces to sustain the motion ?

D Watch Video Solution

45. A door is hinged at one and is free to rotate about a vertical axis [Fig.] Does its weight cause any torque the axis ? Given
reason for you answer.

- Watch Video Solution

46. $(n-1)$ equal point masses each of mass
m are placed at the vertices of a angular n-
polygon. The vacent vertex has a position vector a with respect to the centre of the polygon. Find the position vector of centre of mass.

(D) Watch Video Solution

SHORT ANSWER QUESTIONS II.

1. Can a body in translatory motion have angular momentum ? Explain.
2. (i) A person sits near the edge of a circular platform revolving with a uniform angualr speed. What will be the change in the motion of the platform?
(ii) What if the person stars moving from the edge towards the centre of the platform ?

- Watch Video Solution

1. Obtain an expression for the position vector of centre of mass of a two particle system.

D Watch Video Solution

2. Obtain an expression for the position vector of centre of mass of a system of n particles.

- Watch Video Solution

3. Show that centre of mass of an isolated system moves with a uniform velocity along a
straight line path.

D Watch Video Solution

4. Discuss atleast three examples of the motion of centre of mass.

- Watch Video Solution

5. Briefly discuss the concept of torque or moment of a force.

D Watch Video Solution
6. Derive an expression for torque in cartesian co-ordinates.

- Watch Video Solution

7. Obtain a expression for torque in polar coordinates.
8. Explain the concept of angular momentum and obtain an expression for it in cartesion coordinates.

D Watch Video Solution

9. Discuss the physical meaning of angular momentum.

D Watch Video Solution
10. Briefly explain equilibrium of a rigid body.

When is a body said to be in partial equilibrium ?

D Watch Video Solution

11. Obtain an expression for kinetic energy of rotation of a body. Hence define moment of inertia of the body. Explain its physical significance.
12. Establish a relation between torque and moment of inertia of a rigid body.

- Watch Video Solution

13. Establish a relation between angular momentum and moment of inertia of a rigid body.
14. State and explain the principle of conservation of angular momentum. Give atleast two examples.

D Watch Video Solution

15. State and prove theorem of parallel axes.

D Watch Video Solution

16. State and prove theorem of perpendicular axes.
17. Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.

- Watch Video Solution

18. Obtain an expression for moment of inertia of a uniform circular disc about a diameter of
the disc.

- Watch Video Solution

19. Discuss rolling without slipping of a cylinder down a rough inclined plane and obtain an expression for the coefffcient of friction necessary for the same.

D Watch Video Solution
20. Draw analogy between rotational motion and translational motion.

D Watch Video Solution

21. Find the centre of mass of a unifrom (a)
half-disc,(b) quarter-disc.

- Watch Video Solution

22. Two discs of moments of inertia I_{1} and I_{2}
about their respective axes (normal to the disc
and passing through the centre) and rotating
with angular speeds ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident.
(a) Does the law of conservation of angular momentum apply to the situation ? Why ?
(b) Find the angular speed of the two-disc system.
(c) Calculate the loss in kinetic energy of the
system in the process.
(d) Account for this loss.

D Watch Video Solution

23. A disc of radius R is rotating with an angular speed ω_{0} about a horizontal axis. It is placed on a horizontal table. The coefficient of kinetic friction is μ_{k}.
(a) What was the velocity of its centre of mass
before being brought in contact with the table
(b) What happens to the linear velocity of a point on its rim when placed in contact with the table?
(c) What happens to the linear speed of the centre of mass when disc is placed in contact with the table?
(d) Which force i sresponsible for the effects in
(b) and (c).
(e) What condition should be satisfied for rolling to begin ?
(f) Calculate the time taken for the rolling to begin.
24. Two cylindrical hollow drums of radii
R and $2 R$, and of a commom height h , are rotating with angular velocities ω (anticlockwise) and ω (clockwise), respectively. Their axes, fixed are parallel and in a horizontal plane separated by $(3 R+\delta)$. They are now brought in contact ($\delta \rightarrow 0$).
(a) Show the frictional forces just after contact.
(b) Identify forces and torque external to the system just after contact.
(c) What would be the ratio of final angular velocities when friction ceases ?

D Watch Video Solution

25. A unifrom square plate $S(s i d e c)$ and a unifrom rectangular plate $R(s i d e b, a)$ have identical areas and mass [Fig.]

Show that
(i) $\quad I_{x R} / I_{x S}<1$,
(ii) $\quad I_{y R} / I_{y S}>1$,
$I_{z R} / I_{z S}>1$.

- Watch Video Solution

26. A unifrom disc of radius R, is resting on a table on its rim. The coefficient of friction between disc and table is μ Fig. Now the disc is spulled with a force F as shown in the Fig.

What is the maximum value of F for which the disc rolls without slipping ?

- Watch Video Solution

SOLVED EXAMPLES TYPE E

1. A cylinder of mass 5 kg and radius 30 cm and
free to rotate about its axis receives an
angular impulse of $3 \mathrm{kgm}^{2} \mathrm{~s}^{-1}$ initially,
followed by a similar impulse after every 4 second. What is the angular speed of the cylinder $30 s$ after the initial impulse ? The cylinder is at rest initially.

D Watch Video Solution

1. A 70 kg man stands in contact against the inner wall of a hollow cylindrical drum of radius $3 m$ rotating about its verticle axis. The coefficient of friction between the wall and his clothing is 0.15 . What is the minimum rotational speed of the cylinder to enable the man to remain stuck to the wall (without falling) when the floor is suddenly removed?

D Watch Video Solution

2. A solid cylinder at rest at top of an inclined
plane of height 2.7 m rolls down without
slipping. If the same cylinder has to slide down
a frictionaly inclined plane and acquires the same velocity as that acquired by centre of mass of rolling cylinder at the bottom of the incline, what should be the height of inclined plane?

- Watch Video Solution

3. Find the maximum speed at which a car can turn round a curve of 30 m radius on a level road if coefficient of friction between the tyress and road is 0.4. Takeg $=10 \mathrm{~m} / \mathrm{s}^{2}$.

- Watch Video Solution

4. A tube of length L is filled completely with
an incomeressible liquid of mass M and closed
at both the ends. The tube is then rotated in a
horizontal plane about one of its ends with a
uniform angular velocity ω. The force exerted by the liquid at the other end is

D Watch Video Solution

5. A particle describes a horizontal circule on the smooth inner surface of a coincal funnel as shown in Fig. If the height of the plane of the circle above the vertex is 9.8 cm , find the speed of the particle.

- Watch Video Solution

6. A uniform square plate and a disc having
same mass per unit area are kept in contact as
shown in Fig. The side of square and diameter of circle are both equal to L. Locate the position of centre of mass of the system w.r.t. the centre of the square.

D Watch Video Solution

7. Find the centre of mass of a uniform
semicircular ring of radius R and mass M.

- Watch Video Solution

8. A uniform bar of length $6 a$ and mass $8 m$ lies
on a smooth horizontal table. Two point masses m and $2 m$ moving in the same horizontal plane with speed $2 v$ and v, respectively, strike the bar [as shown in the fig.] and stick to the bar after collision. Denoting angular velocity (about the centre of
mass), total energy and centre of mass velocity
by ω, E and v_{c} respecitvely, we have after collison

D Watch Video Solution

9. Half of the recrtangular plate shown in
figure is made of a material of density ρ_{1} and
the other half of density ρ_{2}. The length of the
plate is L. Locate the centre of mass of the plate.

D Watch Video Solution

10. Find the location of centre of mass of a uniform semicirular plate of radius R and mass M.
11. The density of a linear rod of length L varies
as $\rho=A+B x$ where x is the distance from the left end. Locate the centre of mass.

- Watch Video Solution

12. A cubical block of ice of maas m and edge L is placed in a large tray of maas M. If the ie melts, how far does the centre of maas of the system "ice plus tray" come down?

- Watch Video Solution

13. A string is wrapped around the rim of a wheel of moment of inertia $0.20 \mathrm{~kg}-\mathrm{m}^{2} \mathrm{nd}$ radius 20 cm . The wheel is free to rotate about it axis. Initially, thewheel is t rest. The string is now pulled by a force of 20 N . Find the angular velocity of the wheel after 5.0 seconds.
14. A wheel of rdius r and moment of inertia I
about its axis is fixed at top of an inclined plane of inclination θ as shownin figure. A string is wrapped round the wheel and its free end supports a block of mass M which can
slide on the plane. INitialy, tehwheel is rotating at a speed ω in direction such that the block slides pu the plane. How far wil the
block move before stopping?

- Watch Video Solution

15. A solid sphere of mass 3 kg and radius 2 m is free to rotate about an axis passing through
its centre. Find a constant tangential force F required to rotate the sphere with a velocity of $10 \mathrm{rad} / \mathrm{s}$ in 2 sec . Starting from rest. Also,
find the number of rotations made by the sphere in that time interval.

D Watch Video Solution

16. Two discs of radii R and $2 R$ are pressed against eachother. Initially, disc wit radius R is rotating with angular velocity ω and other disc
is stationary. Both discs are hinged at their respective centres and are free to rotate about them. Moment of inertiaof smaller disc is I and of bigger disc is $2 I$ about their
respective axis of rotation. Find the angular velocity of bigger disc after long time.

D Watch Video Solution

17.

A solid ball rolls down a parabolic path ABC
from a height h as shown in figure. Portion $A B$ of the path is rough while $B C$ is smooth. How high will the ball climb in $B C$?

- Watch Video Solution

18. A cylinder of mass 2 kg and radius 10 cm is
held between two planks as shown in Fig.
Calculate $K E$ of the cylinder when there is no
slipping at any point.

19. A rod of mass m and length l is himged about one of its ends. The rod is released from
horizontal position. When the rod becomes
vertical, calculate (i) angular speed of the rod
(ii) Hinge reaction.

D Watch Video Solution

20.

A billiard ball, initially at rest, is given a sharp impulse by a cue. The cue is held horizontally a distance h above the centre line as shown in
figure. The ball leaves the cue with a speed v_{0} and because of its backward slipping eventually acquires a final
speed $\frac{9}{7} v_{0}$ show that $h=\frac{4}{5} R$
Where R is the radius of the ball.

- Watch Video Solution

NCERT

1. Given the location of the centre of mass of a
(i) sphere, (ii) cylinder, (iii) ring, and (iv) cube, each of uniform mass density. Does the centre of mass of a body necessarily lie on the body?
2. In the HCI molecule, the separation between the nuclei of the two atoms is about $1.27 \AA\left(1 \AA=10^{-10} m\right)$. Find the approximate location of the c.m of the molecule, given that a chorine atom ia about 35.5 times as massive as a hydrogen atom and nearly all the mass of an atom is cocentrated in its uncleus ?

- Watch Video Solution

3. A child is sitting at one end of a long trolley
moving with a uniform speed v on a smooth
horizontal track. If the child starts running towards the other end of the trolley with a speed u (w.r.t. trolley), the speed of the centre of mass of the system will.

- Watch Video Solution

4. Show that the area of the triangle contained between the vector \vec{r} and \vec{b} is
one half of the magnitude of $\vec{a} \times \vec{b}$

- Watch Video Solution

5. Show that $\vec{a} \cdot(\vec{b} \times \vec{c})$ is equal in magnitude to the volume of the parallelopiped formed on the three vectiors, \vec{a}, \vec{b} and \vec{c}.

D Watch Video Solution

6. Find the components along the x, y, z axes of the angular momentum \vec{L} of a particle, whose position vector is \vec{r} with components x, y, z and momentum is \vec{p} with components p_{x}, p_{y} and p_{z}. Show that if the particle moves only in the $x-y$ plane, the angular momentum has only a z-component.

D Watch Video Solution

7. Two particles each of mass m and speed v, travel in opposite direction along parallel lines
separated by a distance d. Show that the vector angular momentum of this system of particles is the same about any point taken as origin.

- Watch Video Solution

8. A non-uniform bar of weight W is suspended at rest by two strings of negligible
weight as shown in Fig. The angles made by the strings with the vertical are 36.9° and 53.1° respectively. The bar is $2 m$ long. Calculate the distance d of the centre of gravity of the bar from its left end.

9. A car weighs 1800 kg . The distance between
its front and back axles is 1.8 m . Its centre of gravity is $1.05 m$ behind the front axle. Determine the force exerted by the level ground on each front wheel and each back wheel.

- Watch Video Solution

10. (a) Find the moment of inertia of a sphere about a tangent to the sphere, given the
moment of inertia of the sphere about any of
its diameters to be $2 M R^{2} / 5$, where M is the mass of the sphere and R is the radius of the sphere.
(b) Given the moment of inertia of a disc of mass M and radius R about any of its diameters to be $\frac{1}{4} M R^{2}$, find the moment of inertia about an axis normal to the disc passing through a point on its edge.
11. Torques of equal magnitude are applied to
hollow cylinder and a solid sphere, both
having the same mass and same radius. The cylinder is free to rotate aabout its standard axis of symmetry, and the sphere is free to rotate about an axis passing through its centre. which of the two will aquire a greater angular speed after a given time ?

D Watch Video Solution

12. A solid cylinder of mass 20 kg rotates about
its axis with angular speed $100 s^{-1}$. The radius
of the cylinder is 0.25 m . What is the kinetic energy associated with the rotation of the cylinder ? What is the magnitude of angular momentum of the cylinder about its axis ?

- Watch Video Solution

13. A child stands at the centre of a turn table
with his two arms outstretched. The turn table
is set rotating with an angular speed of 40
rpm. How much is the angular speed of the child, if he folds his hands back reducing the moment of inertia to $(2 / 5)$ time the initial value ? Assume that the turn table rotates without friction.
(b) Show that the child's new $K . E$. of rotation is more than the initial $K . E$. of rotation. How do you account for this increase in $K . E$. ?

- Watch Video Solution

14. A rope of negligible mass is wound around
a hollow cylinder of mass 3 kg and radius 40 cm
. What is the angular acceleration of the cylinder, if the rope is pulled with a force of $30 N$? What is the linear acceleration of the rope ? Assume that there is no slipping.

- Watch Video Solution

15. To maintain a rotor at a uniform angular speed of $200 s^{-1}$, an engine needs to transmit
a torque of $180 N-m$. What is the power of the engine required ?

D Watch Video Solution

16. From a uniform disc of radius R, a circular section of radius $R / 2$ is cut out. The centre of
the hole is at $R / 2$ from the centre of the original disc. Locate the centre of mass of the resulating flat body.

D Watch Video Solution

17. A metre stick is balanced on a knife edge at its centre. When two coins, each of mass $5 g$ are put one on of the other at the 12 cm mark, the stick is found to balanced at 45 cm . The mass of the metre stick is.

- Watch Video Solution

18. A solid wooden sphere rolls down two different inclined planes of the same height but of different inclinations. (a) Will it reach the bottom with same speed in each case?
(b) Will it take longer to roll down one inclined plane than other ? Explain.

- Watch Video Solution

19. A hoop of radius $2 m$ weight 100 kg .lt rolls
along a horizontal floor so that its centre of mass has a speed of $20 \mathrm{cms}^{-1}$. How much work has to be done to stop it ?
20. The oxygen molecule has a mass of
$5.30 \times 10^{-26} \mathrm{~kg}$ and a moment of inertia of
$1.94 \times 10^{-46} \mathrm{kgm}^{2}$ about an axis through its
centre perpendicular to the line joining the two atoms. Suppose the mean speed of such a molecule in a gas is $500 \mathrm{~m} / \mathrm{s}$ and that its kinetic energy of rotation is two thirds of its kinetic energy of translation. Find the average angular velocity of the molecule.
21. A sphere rolls up an inclined plane whose inclination is 30°. At the bottom of the inclined plane, the center of mass of the sphere has a translational speed of $5 \mathrm{~ms}^{-1}$ (a) How far does the sphere travel up the plane?
(b) How long does it take to return to the bottom?

- Watch Video Solution

1. As shown in Fig. the two sides of a step ladder $B A$ and $C A$ are 1.6 m long and hinged at A. A rope $D E, 0.5 m$ is tied half way up. A weight 40 kg is suspended from a point
$F, 1.2 m$ from B along the ladder $B A$.

Assuming the floor to be fricionless and neglecting the weight of the ladder, find the tension in the rope and forces exerted by the floor on the ladder. (Take $g=9.8 m / s^{2}$)
(Hint. Consider the eqilibrium of each side of
the ladder separately.)

Floor

- Watch Video Solution

2. A man stands on a rotating platform, with his arms stretched horizontal holding a 5 kg
weight in each hand. The angular speed of the
platform is 30 revolutions per minute. The man then brings his arms close to his body with the distance of each weight from the axis
changing from 90 cm to 20 cm . moment of inertia of the man together with the platform may be taken to be constant and equal t
$7.6 \mathrm{kgm}^{2}$. (a) What is the his new angular speed ? (Neglect friction.)
(b) Is kinetic energy conserved in the process ?

If not, from where does the change come about?
3. A bullet of mass $10 g$ and speed $500 \mathrm{~m} / \mathrm{s}$ is
fired into a door and gets embedded exactly at
the centre of the door. The door is 1.0 m wide and weight 12 kg . It is hinged at one end and rotates about a vertical axis practically without friction. Find the angular speed of the door just after the bullet embeds into it.(Hint.

The moment of inertia of the door about the vertical axis at one end is $M L^{2} / 3$)
4. Two discs of moments of inertia I_{1} and I_{2} about their respective axes (normal to the disc and passing through the centre) and rotating with angular speeds ω_{1} and ω_{2} are brought into contact face to face with their axes of rotation coincident.
(a) Does the law of conservation of angular momentum apply to the situation ? Why ?
(b) Find the angular speed of the two-disc system.
(c) Calculate the loss in kinetic energy of the
system in the process.
(d) Account for this loss.

D Watch Video Solution

5. (a) Prove the theorem of perpendicular axes.
(Hint : Square of the distance of a point (x, y)
in the $x-y$ plane from an axis through the origin and perpendicular to the plane is
$\left(x^{2}+y^{2}\right)$.
(b) Prove the theorem of parallel axes.
(Hint : If the centre of mass of a system of n
particles is chosen to be the origin
$\left.\sum m_{i} r_{i}=0\right)$.

D Watch Video Solution

6. Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclied plane of a hight h is given by $v^{2}=\frac{2 g h}{\left(1+k^{2} / R^{2}\right)} \quad$ using dynamical
consideration (i.e. by consideration of forces
and torque). Note $\mathrm{k} i$ sthe radius of gyration of
the body about its symmentry axis, and R is the radius of the body. The body starts from rest at the top of the plane.

D Watch Video Solution

7. A disc roating about its axis with angular speed ω_{0} is placed lightly (without any translational pull) on a perfectly frictionless table. The radius of the disc is R. What are the linear velocities of the points A, B and C on the disc shown in Fig. Will the disc roll in the
direction indicated?

- Watch Video Solution

8. (i) Explain why friction is necessary to make
the disc to roll in the direction indicated. (ii)

Give the direction of frictional force at B, and
the sense of frictional torque, before perfect
rolling begins. (iii) What is the force of friction after perfect rolling begins?

D Watch Video Solution

9. A solid disc and a ring, both of radius 10 cm are placed on a horizontal table
simultaneously, with initial angular speed equal to $10 \pi \mathrm{rad} / \mathrm{s}$. Which of the two will start to roll earlier ? The coefficient of kinetic friction is $\mu_{k}=0.2$.

- Watch Video Solution

10. A cylinder of mass 10 kg and radius 15 cm is rolling perfectly on a plane of inclination 30°.

The coefficient of static friction is $\mu_{s}=0.25$.
(a) How much is the force of friction acting on
the cylinder?
(b) What is the work done against friction during rolling ?
(c) If the inclination θ of plane is increased, at what value of θ does the cylinder begin to skid and not roll perfectly ?

- Watch Video Solution

11. Read each statement below carefully and state with reasons, if it is true ot false. (a)

During rolling the force of friction acts in the same direction as the direction of motion of
c.m of the body. (b) The instantaneous speed of the point of contact during rolling is zero.
(c) The instantaneous acceleration of the point of contact during rolling is zero. (d) For perfect rolling motion, work done against friction is zero. (e) A wheel moving down a perfectly frictionless inclined plane will undergo slipping (not rolling motion).

1. Two forces 50 N and 100 N are acting on a rod capable of rotating it about O as shown in

Fig. What is the net torque acting on the rod ?

(Watch Video Solution
2. A small object of uniform density rolls up a curved surface with an initial velocity v . it reaches up to a maximum height of $`\left(3 v^{\wedge} 2\right) /(4 g)$

with respect to the initial position. The object is

D Watch Video Solution
3. A circular plate of unifrom thickness has a diameter of 56 cm . A circular portion of diameter 42 cm is removed from the edge of the plate as shown in Fig. Find the position of centre of mass of the remaining portion.

- Watch Video Solution

4. A stone of mass m tied to the end of a string is whirled around in a horizontal circle (neglect force du eto grvaity). The length of the string is reduced gradually keeping the angular momentum of the stone about the centre of the circle constant. Then the tension
in the given by $T=A r^{n}$, where A is a constant and r is instantaneous radius of the circle. Show that $n=-3$.
5. A threaded rod with 12 turns $/ \mathrm{cm}$ and diameter 1.18 cm is mounted horizontal. A bar with a threaded hole to match the rod is screwed onto the rod. The bar spins at

216 rev / min. How long will it take for the bar to move 1.50 cm along the rod?

D Watch Video Solution

6. Find the centre of mass of a unifrom disc of
radius a from which a circulr section of radius
b has been removed. The centre of hole is at a distance c from the centre of the disc.

- Watch Video Solution

7. A solid cylinder of mass 20 kg and radius
$0.12 m$ rotating wit initial angula speed of
$125 \mathrm{rad} / \mathrm{s}$ is placed lightly (i.e. without any translational push) on a horizontal table with
coefficient of kinetic friction $\mu_{k}=0.15$ between the cylinder and the table.
(a) After how long does the cylinder start rolling ?
(b) What is the initial translational energy, rotational energy and total energy of the cylinder?
(c) What is the final (i.e. after rolling begins)
translational energy, rotational energy and total energy of the cylinder ? (d) Is the finl total enrgy equal to the initial total energy of motion of the cylinder ? If not, where does the difference of energy disappear ?
(e) Account for the loss of total energy of motion in the following way: find the work done by friction on the body its translational motion. Show that net work done by friction on the body is negative, equal in magnitude to the loss of total energy calculated in (d) above.

- Watch Video Solution

8. Point masses m_{1} and m_{2} are placed at the opposite ends of a rigid rod of length L, and negligible mass. The rod is to be set rotating
about an axis perpendicualr to it. The position of point P on this rod through which the axis
should pass so that the work required to set the rod rotating with angular velocity ω_{0} is minimum, is given by :

D Watch Video Solution

9. A ball of mass $10^{-2} \mathrm{~kg}$ and having charge $+3 \times 10^{-6} C$ is tied at one end of a 1 m along thread. The other end of the thread is fixed and a charge $-3 \times 10^{-6} C$ is placed at this end. The ball can move in the circulr orbit of
radius $1 m$ in the vertical plane. Initially, the ball is at the bottom. Find the monimum initial horizontal velocity of the ball, so that it will be able to complete the full circle.
10. Three particles, each of the mass m are situated at the vertices of an equilateral triangle of side a. The only forces acting on
the particles are their mutual gravitational
forces. It is desired that each particle moves in
a circle while maintaining the original mutual
separation a. Find the initial velocity that should be given to each particle and also the time period of the circular motion.
$\left(F=\frac{G m_{1} m_{2}}{r^{2}}\right)$

D Watch Video Solution
11. From a uniform circular disc of diameter d, a circular disc of diameter $d / 6$ and having centre at a distance $d / 4$ from the centre of the disc is scooped out. Determine the centre of mass of remaining portion.

- Watch Video Solution

12. A spot light S rotates in a horizontal plane with a constant angular velocity of $0.1 \mathrm{rad} / \mathrm{s}$.

The spot of light P move along the wall at a
disatnce 3 m . What is the velocity of the spot
P when $\theta=45^{\circ}$?

D Watch Video Solution

13. A nail is located at a certain distance vertically below the point of suspension of a simple pendulum. The pendulum bob is released from a position where the string makes an angle of 60° with the vertical.

Calculate the distance of nail from the point of
suspension such that the bob will just perform
revolutions with the nail as centre. Assume the
length of the pendulum to be one meter.

D Watch Video Solution

14. A uniform sphere of mass m and radius R is placed on a rough horizontal surface. The spher is struck horizontally at a height h from
the floor. Show that the sphere rolls without slipping with a constant velocity, when $h=7 R / 5$.
15. A carpet of mass M is rolled along its length so as to from a cylinder of radius R and is kept on a rough floor. When a negligibly small push is given to the cylindrical carpet, it stars unrolling itself without sliding on the floor. Calculate horizontal velocity of cylindrical part of the carpet when its radius reduces to $R / 2$.

VALUE BASED QUESTIONS

1. The mechanical energy (E) of a body is the sum of kinetic energy (K) and potential energy (V) of the body i.e., $E=K+V$. Whereas K is always positive, V can be positive or negative. For a system to axis,
$K=(E-V) \geq 0$
Negative value of E indicates a bound state.
For example, all planets revolving around the sum have negative mechanical energy.

Read the above passage and answer the
following questions :
(i) When mechanical energy $E=0$, does it mean $K=0$ and $V=0$?
(ii) What is the implication of this study in day to day life?

D Watch Video Solution

2. The torque (τ) due to a force gives us the turning effect of the force about a fixed point/axis. It is measured by the product of magnitude of force (F) and perpendicular
distance (r) of the line of action of force form the axis of rotation.
$\vec{\tau}=\vec{r} \times \vec{F}=r F \sin \theta \widehat{n}$
where thete is smaller angle between \vec{r} and
\widehat{n} is unit vector along $\vec{\tau}$.

Read the above passage and answer the following questions :
(i) What is the significance of torque?
(ii) How do you determine the direction of torque?
(ii) What is the implication of this concept in day to day life?
3. A rigid body is said to be in translational equilibrium, if it remains at rest or moving with a constant velocity in a particular direction. For this, the net external force or vector sum of all the external forces acting on the body must be zero, i.e., $\vec{F}=0$ or $\vec{F}=\sum \overrightarrow{F_{i}}=0$

If U is potential energy of the body, then
$F=-\frac{d U}{d r}=0$ or $U=$ constant (max. or min.)

When $U=$ minimum, equilibrium of body is stable,

When U tends to increase, equilibrium is unstable,

When U remains constant, equilibrium is neutral.

Read the above passage and answer the following questions :
(i) When can a body moving uniformly along a straight line be in equilibrium ? What is this equlilbrium called?
(ii) What is the significance of $U=$ minimum in day to day life?

- Watch Video Solution

4. When a compass needle is held arbitrarily in
any direction in earth's magnetic field, a couple acts on the needle. The force on north pole of needle is towards the north and force on south pole of the needle is towards south.

These forces are equal in magnitude and opposite in direction. They from a couple, which rotates the compass needle and aligns it along north south direction. Once the alignment is complete, net force and net
torque on the compass needle reduce to zero.

Read the above passage and answer the following :
(i) What is the origin of force and torque on the compass needle?
(ii) What values of life do you learn from this study?

- Watch Video Solution

5. The concept of centre of mass proves that
laws of mechanics which are true for a point
mass, are equally valid for all macroscopic bodies of any shape, size, mass, etc. For example, when vector sum of external forces acting on a system of particles is zero, the velocity of centre of mass of the system will remain constant.

Read the above passage and answer the following questions :
(i) Is centre of mass of a body a real point?
(ii) Does centre of mass lie within the body always ?
(iii) How do you justify that $\overrightarrow{v_{c m}}=$ constant ?

CURIOSITY QUESTIONS

1. How do you account for the motion of your arms and legs ?

D View Text Solution

2. What do you know artificial joints ?

- Watch Video Solution

3. The plane of the orbit of a planet can never change on its own. Why?

- Watch Video Solution

4. When no external torque acts on a system, its angular momentum remains constant. Is the statement true ? Should kinetic energ of rotation of the system remain constant ? If yes, why, and if no, why not?

MULTIPLE CHOICE QUESTIONS

1. The centre of mass of a body is moving with
a uniform velocity of $10 \mathrm{~cm} / \mathrm{s}$. Three forces are applied on the body, which are in equilibrium.

The velocity of centre of mass would become
A. Zero
B. $>10 \mathrm{~cm} / \mathrm{s}$
C. $<10 \mathrm{~cm} / \mathrm{s}$
D. $10 \mathrm{~cm} / \mathrm{s}$

Answer: D

- Watch Video Solution

2. A fire cracker following a parabolic path explodes in mid air. The centre of mass of all the fragments will follow a path
A. along horizontal
B. along vertical
C. along same parabola
D. along circulae

Answer: C

- Watch Video Solution

3. The correct relation between linear velocity
\vec{v} and angular velocity $\vec{\omega}$ of a particle is
A. $\vec{v}=\vec{\omega} \times \vec{r}$
B. $\vec{\omega}=\vec{v} \times \vec{r}$
C. $\vec{\omega}=\vec{r} \times \vec{v}$
D. $\vec{v}=\vec{r} \times \vec{\omega}$

Answer: A

D Watch Video Solution

4. Obtain a expression for torque in polar coordinates.
A. $\tau=r F \sin \phi$
B. $\tau=r F \cos \phi$
C. $\tau=r F \tan \phi$
D. $\tau=\frac{F \sin \phi}{r}$

D Watch Video Solution

5. The moment of linear momentum is called

A. torque
B. couple
C. angular momentum
D. none of the above

Answer: C
6. To maintain a rotor at a uniform angular speed of $100 s^{-1}$, an engine needs to transmit a torque of $90 N-m$. The power of engine must be
A. $9 k W$
B. 90 kW
C. $9 M W$
D. $90 M W$

- Watch Video Solution

7. The correct relation between torwue τ and

 angular momentum L is> А. $\tau=\frac{d L}{d t}$
> В. $L=\frac{d \tau}{d t}$
> С. $\tau=L \times t$
D. $L=\tau \times t$

D Watch Video Solution

8. A rigid body is said to be in translational equilibrium, when its velocity \vec{v} is
A. Zero
B. constant
C. constant or zero
D. neither constant nor zero

- Watch Video Solution

9. A rigid body is said to be in partial equilibrium, when it is in
A. translational equilibrium only
B. rotational equilibrium only
C. either (a) or (b)
D. neither (a)nor(b)

Answer: C

D Watch Video Solution

10. Calculate the angular velcity of the minute`s hand of a clock.
A. $\pi / 30$
B. $\pi / 1800$
C. $2 \pi / 30$
D. $\frac{2 \pi}{1800}$

- Watch Video Solution

11. Moment of inertia of a body depends upon
A. mass of body
B. shape and size of body
C. position and orientation of axis of rotation
D. all the above

Answer: D

- Watch Video Solution

12. Formation of a neutron star is explained on
the basis of
A. conservation of linear momentum
B. conservation of energy
C. conservation of angular momentum
D. none of these

Answer: C

D Watch Video Solution

13. Moment of inertia of a uniform circular ring
of mass $2 k g$ and diameter $1 m$ about its diameter is
A. $0.25 \mathrm{kgm}^{2}$
B. $0.5 \mathrm{kgm}^{2}$
C. $1 \mathrm{kgm}^{2}$
D. $2 \mathrm{kgm}^{2}$

Answer: A

D Watch Video Solution

14. The radius of gyration of a uniform circular disc of radius R, about any diameter of the disc is
A. $K=R$
B. $K=R / 2$
C. $K=2 R$
D. none of these

Answer: B

D Watch Video Solution

15. Moment of inertia of a hollow cylinder of
mass M and radius R, about the axis of cylinder is
A. $\frac{1}{2} M R^{2}$
B. $M R^{2}$
C. $\frac{2}{3} M R^{2}$
D. $\frac{2}{5} M R^{2}$

Answer: B

D Watch Video Solution

16. Kinetic energy of a body rolling without slipping is

$$
\begin{aligned}
& \text { A. } K=\frac{1}{2} m v^{2} \\
& \text { B. } K=\frac{1}{2} I \omega^{2} \\
& \text { C. } K=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2} \\
& \text { D. } K=\frac{1}{2} m v^{2}-\frac{1}{2} I \omega^{2}
\end{aligned}
$$

Answer: C

- Watch Video Solution

17. Acceleration of a solid cylinder rolling
without slipping down an incline of inclination
θ is
A. $\frac{2}{3} g \sin \theta$
B. $\frac{2}{3} g \cos \theta$
C. $\frac{2}{3} g$
D. $\frac{2}{3} g \tan \theta$

- Watch Video Solution

18. The rotational analgue of force is
A. momentum
B. angular momentum
C. torque
D. none of these

Answer: C
19. A grindstone of moment of inertia $6 \mathrm{kgm}^{2}$
is found to have a speed of $150 \mathrm{rpm}, 10 \mathrm{sec}$.

After starting from rest. Torque applied is
A. $6 \pi N s$
B. $3 \pi N s$
C. $9 \pi N s$
D. $12 \pi N s$
20. What would be the length of the day, if earth were to shrink suddenly to $1 / 64$ th of its original volume?
A. $24 h$
B. $12 h$
C. $6 h$
D. $1.5 h$

- Watch Video Solution

21. Which of the following points is the likely position of the centre of mass of the system shown in Fig.

Hollow Sphere

A. A
B. B
C. C
D. D

Answer: C

D Watch Video Solution

22. A particle of mass m is moving in yz-plane with a unifrom velocity v with its trajectory
running parallel to +ve y-axis and intersecting
z-axis at $z=a$ Fig. The change in its angular momentum about the origin as it bounces elastically from a wall at $y=$ constant is :
A. $m v a \hat{e}_{x}$
B. $2 m v a \hat{e}_{x}$
C. $y m v a \hat{e}_{x}$
D. $2 y m v a \hat{e}_{x}$

Answer: B
23. When a disc rotates with uniform angular velocity, which of the following is not true?
A. The sense of rotation remains same.
B. The orientation of the axis of rotation
remains same.
C. The speed of rotation is non-zero and
remains same.
D. The angular acceleration is non-zero and
remains same.

Answer: D

- Watch Video Solution

24. A unifrom square plate has a small piece Q
of an irregular shape removed and glued to
the centre of the plate leaving a hole behind
[Fig.] The moment of inertia about the z-axis is
than

A. increased
B. decreased
C. the same
D. changed in unpredicted manner.

Answer: B

D Watch Video Solution
25. In problem 5 , the $C M$ of the plate is now in
the following quadrant of $x-y$ plane.
A. I
B. II
C. III
D. IV

Answer: C

D Watch Video Solution

26. The density of a non-uniform rod of length
$1 m$ is given by $\rho(x)=a\left(1+b x^{2}\right)$
where a and b are constants and $0 \leq x \leq 1$.

The centre of mass of the rod will be at
A. $\frac{3(2+b)}{4(3+b)}$
B. $\frac{4(2+b)}{3(3+b)}$
C. $\frac{3(3+b)}{4(2+b)}$
D. $\frac{4(3+b)}{3(2+b)}$

Answer: A

- Watch Video Solution

27. A Meery -go-round, made of a ring-like plarfrom of radius R and mass M, is
revolving with angular speed ω. A person of mass M is standing on it. At one instant, the person jumps off the round, radially awaay
from the centre of the round (as see from the round). The speed of the round after wards is
A. 2ω
B. ω
C. $\omega / 2$
D. 0

Answer: A

- Watch Video Solution

28. Figure shows two identical particles 1 and

2 , each of mass m, moving in opposite directions with same speed \vec{V} along parallel lines. At a particular instant, \vec{r}_{1} and \vec{r}_{2} are
their respective position vectors drawn from point A which is in the plane of the parallel
lines. Which of the following is the correct statement?

A. Angular momentum $\overrightarrow{L_{1}}$ of particle 1 about A is $\overrightarrow{L_{1}}=m v\left(d_{1}\right) \odot$
B. Angular momentum $\overrightarrow{L_{2}}$ of particle 2
about A is $\overrightarrow{L_{1}}=\operatorname{mvr}_{2} \odot$
C. Total angular momentum of the system
about A is $\vec{L}=m v\left(r_{1}+r_{2}\right) \odot$
D. Total angular momentum of the system about A is $\vec{L}=m v\left(d_{2}-d_{1}\right) \otimes$
\odot respresents a unit vector coming out of the page.
ox represents a unit vector going into
the page.

Answer: A::D

29. The net external torque on a system of particles about an axis is zero. Which of the following are compatible with it ?
A. The forces may be acting radially from a point on the axis.
B. The forces amay be acting on the axis of rotation.
C. the forces may be acting parallel to the axis of rotation.
D. The torque caused by some forces may
be equal and opposite to that caused by other forces.

Answer: A::B::C::D

D Watch Video Solution

30. Figure shows a lamina in $x-y$ plane. Two axes z and z^{\prime} pass perpendicular to its plane.

A force F acts in the plane of lamina at point
P as shown. Which of the following
statements is incorrect?
(The point P is closer to $z^{\prime}-a \xi s$ than the z^{-} axis).

A. Torque τ caused by F about z -axis is
along $-\hat{k}$
B. Torque τ^{\prime} caused by F about z^{\prime} axis is
along $-\hat{k}$.
C. Torque τ caused by F about z-axis is
greater in magnitude than that about z-
axis.
D. Total torque is given be $\tau=\tau+\tau^{\prime}$.

Answer: B::C
31. With reference to Fig. of a cube of edge a and mass m , state whether the following are true or false. (O is the centre of the cube.)

A. The moment of inertia of cube about x axis is,

$$
I_{z}=I_{x}+I_{y}
$$

B. The moment of inertia of cube about z '

$$
\begin{aligned}
& \text { is, } I_{z} \\
& =I_{z}+\frac{m a^{2}}{2}
\end{aligned}
$$

C. The moment of inertia of the about $z^{\prime \prime}$ is

$$
=I_{z}+\frac{m a^{2}}{2}
$$

D. $I_{x}=I_{y}$

Answer: B::D

32. A rod of weight w is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at distance x from A. The normal reaction on A is.. And on B is.

> A. $\frac{W d}{x}$
> B. $\frac{W(d-x)}{x}$
> C. $\frac{W(d-x)}{d}$
D. $\frac{W x}{d}$

Answer: C

- Watch Video Solution

33. Three identicle particle each of mass 1 kg are placed with their centres on a straight line.

Their centres are marked A, B and C respectively. The distance of centre of mass of the system from A is.
A. $\frac{P Q+P R+Q R}{3}$
B. $\frac{P Q+P R}{3}$

$$
\begin{aligned}
& \text { c. } \frac{P Q+Q R}{3} \\
& \text { D. } \frac{P Q+Q R+P R}{3}
\end{aligned}
$$

Answer: B

D Watch Video Solution

34. A circular disc of radius R is removed from
a bigger circular disc of radius 2 R such that the cirucmferences of the discs coincide. The centre of mass of the new disc is $\frac{\alpha}{R}$ from the center of the bigger disc. The value of α is
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{6}$

Answer: B

D Watch Video Solution

35. A thin rod of length ' L ' is lying along the x axis with its ends at $x=0$ and $x=L$ its linear (mass/length) varies with x as $k\left(\frac{x}{L}\right)^{n}$,
where n can be zero of any positive number. If to position $x_{C M}$ of the centre of mass of the rod is plotted against ' n ', which of the following graphs best apporximates the dependence of $x_{C M}$ on n ?

Answer: A

D Watch Video Solution

36. A thin uniform rod of length I and mass m is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω. Its cenre of mass rises to a maximum height of :
A. $\frac{I \omega}{6 g}$
B. $\frac{l^{2} \omega^{2}}{2 g}$
C. $\frac{l^{2} \omega^{2}}{6 g}$
D. $\frac{l^{2} \omega^{2}}{3 g}$

Answer: C

D Watch Video Solution

37. From a circular disc of radius R and mass 9
M, a small disc of radius $R / 3$ is removed from
the disc. The moment of inertia of the
remaining disc about an axis perpendicular to
the plane of the disc and passing through O is

A. $\frac{40}{9} M R^{2}$
B. $M R^{2}$
C. $4 M R^{2}$
D. $\frac{4}{9} M R^{2}$

Answer: A

D Watch Video Solution

38. (1) Centre of gravity (C.G.) of a body is the point at which the weight of the body acts,
(2) Centre of mass coincides with the centre of gravity if the earth is assumed to have infinitely large radius,
(3) To evaluate the gravitational field intensity due to any body at an external point, the entire mass of the body can be cosidered to
be concentrated at its C.G..,
(4) The radius of gyration of any body rotating about $a b$ axis is the length of the perpendicular dropped from thr C.G. the body to the axis. which one of the following paires of statements is correct?
A. (4) and (1)
B. (1) and (2)
C. (2) and (3)
D. (3) and (4)

- Watch Video Solution

39. Consider a two particle system with particles having masses m_{1} and m_{2} if the first particle is pushed towards the centre of mass through a distance d, by what distance should the second particle is moved, so as to keep the center of mass at the same position?
A. d
B. $\left(m_{2} / m_{1}\right) d$
C. $\left[m_{1} /\left(m_{1}+m_{2}\right)\right] d$

D. $\left(m_{1} / m_{2}\right) d$

Answer: D

D Watch Video Solution

40. From a disc of radius R and mass M, a circular hole of diameter R, whose rim passes through the centre is cut. What is the moment of inertia of remaining part of the disc about a perependicular axis, passing through the centre?
A. $\frac{13}{32} M R^{2}$
B. $\frac{11}{32} M R^{2}$
C. $\frac{9}{32} M R^{2}$
D. $\frac{15}{32} M R^{2}$

Answer: A

D Watch Video Solution

41. A disc and a solid sphere of same radius but different masses roll off on two inclined planes of the same altitude and length. Which
one of the two objects gets to the bottom of the plane first ?
A. solid sphere
B. both reach at the same time
C. depends on their masses
D. disc

Answer: A
(Watch Video Solution
42. From a disc of radius R and mass M, a circular hole of diameter R, whose rim passes through the centre is cut. What is the moment of inertia of remaining part of the disc about a perependicular axis, passing through the centre?
A. $\frac{13}{32} M R^{2}$
B. $\frac{11}{32} M R^{2}$
C. $\frac{9}{32} M R^{2}$
D. $\frac{15}{32} M R^{2}$

Answer: A

- Watch Video Solution

43. The densities of two solid spheres A and B
of the same radii R very with radial distance
$\operatorname{rasp}_{A}(r)=k\left(\frac{r}{R}\right)$ and $p_{B}(r)=k\left(\frac{r}{(R)^{5}}\right.$,
respectively, where k is a constant . The moments of inertia of the inividual spheres about axes passing throgh their centres are I_{A} and I_{B} respectively. if $\frac{I_{B}}{I_{A}}=\frac{n}{10}$, the value of n is
A. 6
B. 10
C. 16
D. 7

Answer: A

D Watch Video Solution
44. From a solid sphere of M and radius R a
cube of maximum possible volume is cut.

Moment of inertia of cube about an axis
passing through its centre and perpendiular to one of its faces is:

$$
\begin{aligned}
& \text { A. } \frac{M R^{2}}{32 \sqrt{2} \pi} \\
& \text { B. } \frac{M R^{2}}{16 \sqrt{2} \pi} \\
& \text { C. } \frac{4 M R^{2}}{9 \sqrt{3} \pi} \\
& \text { D. } \frac{4 M R^{2}}{3 \sqrt{3} \pi}
\end{aligned}
$$

Answer: C

D Watch Video Solution

45. Three idential spherical shells each of mass
m and radius r are placed as shown in Fig.

Consider an axis XX' which is touching the two
shells and passing through diameter of third
shell. Moment of Inertia of the system
consisting of these three spherical shells
about XX ' as axis is :

A. $3 m r^{2}$
B. $\frac{16}{5} m r^{2}$
C. $4 m r^{2}$
D. $\frac{11}{5} m r^{2}$

Answer: C

D Watch Video Solution

46. Point masses m_{1} and m_{2} are placed at the opposite ends of a rigid rod of length L, and negligible mass. The rod is to be set rotating about an axis perpendicualr to it. The position of point P on this rod through which the axis should pass so that the work required
to set the rod rotating with angular velocity
ω_{0} is minimum, is given by :

$$
\begin{aligned}
& \text { A. } x=\frac{m_{2} L}{m_{1}+m_{2}} \\
& \text { В. } x=\frac{m_{1} L}{m_{1}+m_{2}} \\
& \text { C. } x=\frac{m_{1}}{m_{2}} L \\
& \text { D. } x=\frac{m_{2}}{m_{1}} L
\end{aligned}
$$

- Watch Video Solution

47. If l_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing thorugh its centre of mass and l_{2} the moment of inertia of the ring formed by the same rod about an axis passing through the centre of mass of the ring and perpendicular to the plane of the ring. then find the ratio $\frac{l_{1}}{l_{2}}$.
A. $\frac{\pi^{2}}{3}$
B. $\frac{3}{\pi^{2}}$

> C. $\frac{2}{\pi^{2}}$
> D. $\frac{\pi^{2}}{2}$

Answer: A

- Watch Video Solution

48. A raw egg and a hard boiled egg are made
to spin on a table with the same angular speed about the same axis. The ration of the time taken by the two to stop is
A. $=1$
B. <1
C. >1
D. none of the above

Answer: B

D Watch Video Solution
49. Three particles, each of mass m are situated at the vertices of an equilateral triangle $A B C$ of side L figure. Find thee
moment of inertia of the system about the
line $A X$ perpendicular to $A B$ in the plane of

ABC

A. $\frac{5}{4} m l^{2}$
B. $\frac{3}{2} m l^{2}$
C. $\frac{3}{4} m l^{2}$
D. $2 m l^{2}$

Answer: A

D Watch Video Solution

50. The ratio of the radii of gyration of a circular disc about a tangential axis in the plane of the disc and a circular ring of the same radius about a tengential axis in the plane of the ring is
A. $\sqrt{5}: \sqrt{6}$
B. $1: \sqrt{2}$
C. 2:3
D. $2: 1$

Answer: A

- Watch Video Solution

51. Three identical rods, each of length L, are joined to from a rigid equilateral triangle. Its radius of gyration about an axis passing
through a corner and perpendicular to plane of triangle is

$$
\begin{aligned}
& \text { A. } \frac{L}{\sqrt{2}} \\
& \text { B. } \frac{L}{\sqrt{3}} \\
& \text { C. } \frac{L}{2} \\
& \text { D. } \frac{L}{3}
\end{aligned}
$$

Answer: A

D Watch Video Solution

52. Consider a uniform square plate of side 'a'

 and mass ' m ' The moment of inertia of this plate about an axis perpendicular to its plane and passing through one of its corners is$$
\begin{aligned}
& \text { A. } \frac{5}{6} m a^{2} \\
& \text { B. } \frac{m a^{2}}{12} \\
& \text { C. } \frac{7 m a^{2}}{12} \\
& \text { D. } \frac{2}{3} m a^{2}
\end{aligned}
$$

Answer: D

53. Four identical thin rods each of mass M
and length l, from a square frame. Moment of inertia of this frame about an axis through the centre of the square and perpendicular to its plane is
A. $\frac{1}{3} M l^{2}$
B. $\frac{4}{3} M l^{2}$
C. $\frac{2}{3} M l^{2}$
D. $\frac{13}{3} M l^{2}$

Answer: B

D Watch Video Solution

54. A circular disc of moment of inertia I_{t} is
rotating in a horizontal plane about its
symmetry axis with a constant angular velocity
ω_{i}. Another disc of moment of inertia I_{b} is dropped co-axially onto the rotating disc. Initially, the second disc has zero angular speed. Eventually, both the discs rotate with a constant angular speed ω_{f}. Calculate the
energy lost by the initially rotating disc due to

friction.

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{I_{t} I_{b}}{\left(I_{t}+I_{b}\right)}(i)_{i}^{2} \\
& \text { B. } \frac{1}{2} \frac{I_{t}^{2}}{\left(I_{t}+I_{b}\right)}(i)_{i}^{2} \\
& \text { C. } \frac{I_{b}-I_{t}}{\left(I_{t}+I_{b}\right)}(i)_{i}^{2} \\
& \text { D. } \frac{1}{2} \frac{I_{b}-I_{t}}{\left(I_{t}+I_{b}\right)}(i)_{i}^{2}
\end{aligned}
$$

Answer: A

D Watch Video Solution

55. Four solid spheres each of diameter sqart5
cm and mass 0.5 kg are placed with their centers at the corners of a square of side 4 cm .

The moment is $N \times 10^{-4} k g-m^{2}$, then N is .
A. 7
B. 8
C. 9
D. 6

Answer: C

56. A pulley has radius 2 m is rotated about its
axis by a force $F=\left(20 t-5 t^{2}\right)$ newton
(where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is $10 \mathrm{kgm}^{2}$ the number of rotations made by the pulley before its direction of motion is reversed, is:
A. more than 3 but less than 6
B. more than 6 but less than 9

C. more than 9

D. less than 3

Answer: A

D Watch Video Solution

57. A small object of uniform density rolls up a
curved surface with an initial velocity v. it reaches up to a maximum height of $\frac{3 v^{2}}{4 g}$ with
respect to the initial position. The object is

A. Circular Disc
B. Ring
C. Solid sphere
D. Hollow sphere

Answer: A

- Watch Video Solution

58. A small mass attached to a string rotates
on a frictionless table top as shown in Fig. If
the tension in the string is increased by pulling the string causing the radius of the circular motion to decrease by a factor of 2 ,
the kinetic energy of the mass will

A. $\frac{1}{4} m v_{0}^{2}$
B. $2 m v_{0}^{2}$
C. $\frac{1}{2} m v_{0}^{2}$
D. $m v_{0}^{2}$

Answer: B

D Watch Video Solution

59. An autmobile moves on road with a speed of $54 \mathrm{~km} / \mathrm{h}$. The radius of its wheel is 0.45 m and the moment of inertia of the wheel about
its axis of rotation is $3 \mathrm{kgm}^{2}$. If the vehicle is
brought to rest in 15 s , the magnitude of average torque tansmitted by its brakes to the wheel is :
A. $2.86 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$
B. $6.66 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$
C. $8.58 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$
D. $10.86 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$

Answer: B
60. The moment of inertia of a uniform
cylinder of length l and radius R about its
perpendicular bisector is I. What is the ratio
l / R such that the moment of inertia is minimum?
A. 1
B. $\frac{3}{\sqrt{2}}$
C. $\sqrt{\frac{3}{2}}$
D. $\frac{\sqrt{3}}{2}$

Answer: C

- Watch Video Solution

61. When a celling fan is switched off, its angualr velocity falls to half while it makes 36 rotations. How many more rotations will it make before coming to rest ?
A. 24
B. 36
C. 18

D. 12

Answer: D

D Watch Video Solution

62. A point P moves in counter - clockwise direction on a circular path as shown in the figure. The movement of P is such that it sweeps out a length $s=t^{3}+5$, where s is in metres and t is in seconds. The radius of the path is 20 m . The acceleration of P when
$t=2 s$ is nearly.

A. $14 m / s^{2}$
B. $13 m / s^{2}$
C. $12 m / s^{2}$
D. $7.2 m / s^{2}$

Watch Video Solution

63. A ball of mass (m) 0.5 g is attached to the end of a string having length (L) 0.5 m . The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 N . The maximum possible
value of anguar velocity of ball(in radian/s) is

A. 9
B. 18
C. 27

D. 36

Answer: D

D Watch Video Solution

64. A wheel is subjected to uniform angular acceleration about its axis. Initially, its angular
velocity is zero. In the first 2 sec , it rotates
through an angle θ_{1}, in the next 2 sec , it rotates through an angle θ_{2}. The ratio of θ_{2} / θ_{1} is
A. 1
B. 2
C. 3
D. 5

Answer: C

D Watch Video Solution

65. A slender uniform rod of mass M and
length l is pivoted at one ens so that it can
rotate in a vertical plane, Fig. There is
negligible friction at the pivot. The free end is
held vertically above the pivot and then
released. The angular acceleration of the rod
when it makes an angle θ with the vertical is
$\xrightarrow{\text { Cl }}$
A. $\frac{3 g}{2 l} \cos \theta$
B. $\frac{2 g}{3 l} \cos \theta$
C. $\frac{3 g}{2 l} \sin \theta$
D. $\frac{2 g}{3 l} \sin \theta$

Answer: C

D Watch Video Solution

66. The ratio of the accelerations for a solid sphere (mass m, and radius R) rolling down
an incline of angle θ without slipping, and slipping down the incline without rolling is
A. $5: 7$
B. 2:3
C. $2: 5$
D. 7:5

Answer: A

D Watch Video Solution

67. A rod of length L is hinged from one end. It
is brought to a horizontal position and
released. The angular velocity of the rod, When it is in verticle position is
A. $\sqrt{\frac{2 g}{L}}$
B. $\sqrt{\frac{3 g}{L}}$
C. $\sqrt{\frac{g}{2 L}}$
D. $\sqrt{\frac{g}{L}}$

Answer: B
68. A force $\vec{F}=\alpha \hat{i}+3 \hat{j}+6 \hat{k}$ is acting at a point $\vec{r}=2 \hat{i}-6 \hat{j}-12 \hat{k}$. The value of α for which angular momentum about origin is conserved is
A. 1
B. -1
C. 2
D. zero

Answer: B
69. Two stone of masses m and $2 m$ are whirled in horizontal circles, the heavier one in
a radius $r / 2$ and the lighter one in radius r.
The tangential speed of lighter stone is n
times that of the value of heavier stone when
thy experience same centripetal forces. the value of n is
A. 1
B. 2

C. 3

D. 4

Answer: B

D Watch Video Solution

70. A uniform metallic rod rotates about its perpendicular bisector with constant angualr speed. If it is heated uniformly to raise its temperature slightly, then
A. its speed of rotation increases
B. its speed of rotation decreases
C. its speed of rotation remains same
D. its speed increases because its moment of inertia increases

Answer: B

- Watch Video Solution

71. A unifrom disc is acted by two equal forces
of magnitude F. One of them, acts tangentially to the disc, while other one is acting at the central point of the disc. The friction between disc surface and ground surface in $n F$. If r be the radius of the disc, then the value of n would be (in N)
A. 0
B. 1.2
C. 2.0

D. 3.2

Answer: A

D Watch Video Solution

72. A massless rod S having length $2 l$ has equal point masses attached to its two ends
as shown in figure. The rod is rotating about an axis passing through its centre and making angle α with the axis. The magnitude of
change of momentum of rod i.e., $\left.\frac{d L}{d t} \right\rvert\,$ equals

A. $2 m l^{3} \omega^{2} \sin \alpha \cdot \cos \alpha$
B. $m l^{2} \omega^{2} \sin 2 \alpha$
C. $m l^{2} \sin 2 \alpha$
D. $m^{1 / 2} l^{1 / 2} \omega \sin \alpha \cdot \cos \alpha$

Answer: B

D Watch Video Solution

73. A hemispherical bowl of radius R si set rotating abouv its axis of symmetry whichis kept vertical. A small blcok kept in the bowl
rotates with the bowl without slippingn on its
surface. If the surfaces of the bowl is mooth, and the abgel made by the radius through the block with the vertical is θ, find the angular speed at which the bowl is rotating.

$$
\begin{aligned}
& \text { A. } \omega=\sqrt{r g \sin \theta} \\
& \text { B. } \omega=\sqrt{g / r \cos \theta} \\
& \text { C. } \omega=\sqrt{\frac{g r}{\cos \theta}} \\
& \text { D. } \omega=\sqrt{\frac{g r}{\tan \theta}}
\end{aligned}
$$

Answer: B
74. A uniform circular disc of radius 50 cm at rest is free to turn about an axis, which is perpendicular to the plane and passes through its centre. It is subjected to a torque which produces a constant angular acceleration of $2.0 \mathrm{rad} / \mathrm{s}^{2}$. Its net acceleration in m / s^{2} at the end of $2.0 s$ is approximately A. 7.0
B. 6.0
C. 3.0
D. 8.0

Answer: D

D Watch Video Solution

75. A uniform sphere of mass $500 g$ rolls without slipping on a plane surface so that its centre moves at a speed of $0.02 \mathrm{~m} / \mathrm{s}$.

The total kinetic energy of rolling sphere would be (in J)
A. $1.4 \times 10^{-4} J$
B. $0.75 \times 10^{-3} \mathrm{~J}$
C. $5.75 \times 10^{-3} J$
D. $4.9 \times 10^{-5} J$

Answer: A

D Watch Video Solution

76. A bob of mass m attached to an inextensible string of length I is suspended from a vertical support. The bob rotates in a
horizontal circle with an angular speed $\omega \mathrm{red} / \mathrm{s}$ about the vertical. About the point of suspension:
A. angular momentum changes in direction but not in magnitude,
B. angular momentum changes both in magnitude and direction,
C. angular momenrum is conserved,
D. angular momentum chang
magnitude, but not in direction.

Answer: A

- Watch Video Solution

77. A mass ' m ' is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what
acceleration will the mass fall or release?

A. $5 g / 6$
B. g
C. $2 g / 3$

D. $g / 2$

Answer: D

- Watch Video Solution

78. A wire, which passes through the hole in a small bead, is bent in the form of quarter of a circle. The wire is fixed vertically on ground as shown in the figure. The bead is released from near the top of the wire and it slides along the wire without friction. As the bead moves from

A to B, the force it applies on the wire is

A. always radially outwards
B. always radially inwards
C. radially outwards initially and radially inwards later
D. radially inwards initially and radially outwards later.

Answer: D

D Watch Video Solution

79. A ring of mass M and radius R is rotating with angular speed ω about a fixed vertical axis passing through its centre O with two
point masses each of mass $\frac{M}{8}$ at rest at O .
These masses can move radially outwards along two massless rods fixed on the ring as shown in the figure. At some instant the angular speed of the system is $\frac{8}{9} \omega$ and one fo the masses is at a distance of $\frac{3}{5} R$ from O. At this instant the distance of the other mass from O is

A. $\frac{2}{3} R$
B. $\frac{1}{3} R$
C. $\frac{3}{5} R$
D. $\frac{4}{5} R$

Answer: D

D Watch Video Solution

80. A unifrom circular disc of radius 50 cm at rest is free to turn about an axis, which is perependicular to the plane and passes
through its centre. It is subjected to a torque which produces a constant angualr acceleration of $2.0 \mathrm{rad} / \mathrm{s}^{2}$. Its net acceleration in m / s^{2} at the end of $2.0 s$ is approximately
A. 7.0
B. 6.0
C. 3.0
D. 8.0

Answer: D

81. A paritcal of mass $10 g$ moves along a circle of radius 6.4 cm with a constant tangennitial acceleration. What is the magnitude of this acceleration. What is the magnitude of this acceleration if the kinetic energy of the partical becomes equal to $8 \times 10^{-4} J$ by the end of the second revolution after the beginning of the motion?
A. $0.15 m / s^{2}$
B. $0.18 m / s^{2}$
C. $0.20 \mathrm{~m} / \mathrm{s}^{2}$
D. $0.10 \mathrm{~m} / \mathrm{s}^{2}$

Answer: D

D Watch Video Solution

82. A particle of mass m is moving along the side of a square of side a, with a unifrom
speed v in $X Y$ palne as shown in Fig. Which of
the followig statements is false for the
angualr momentum L about the origin?

A. $\vec{L}=-\frac{m v}{\sqrt{2}} R \hat{k}$, when particle is
moving from $A \rightarrow B$
B. $\vec{L}=-(m v)\left(\frac{R}{\sqrt{2}}-a\right) \hat{k}, \quad$ when particle is moving from $C \rightarrow D$
c. $\vec{L}=-(m v)\left(\frac{R}{\sqrt{2}}+a\right) \hat{k}, \quad$ when
particle is moving from $B \rightarrow C$
D. $\vec{L}=-\frac{m v}{\sqrt{2}} R \hat{k}, \quad$ when particle is
moving from $D \rightarrow A$

Answer: B::D

D Watch Video Solution

83. A roller is made by joining together two cones at their vertices O , ti is kept on two rails
$A B$ and $C D$, which are placed asymmetrically with its axis perpendiuclar to CD and its center O at the centre of line joining $A B$ and $C d$ it is given a light push so that it starts rolling with its centre O moving parallel to $C D$ in the direction shown As it moves, the roller wail tan to:

A. turn left
B. turn right
C. go straight
D. turn left and right alternately

Answer: A

D Watch Video Solution

84. A satellite is revolving in a circular orbit at a height ' h ' from the earth's surface (radius of earth R, h It|tR). The minimum increase in its orbital velocity required, So that the satellite
could escape from the erth's gravitational
field, is close to :(Neglect the effect of atomsphere.)

> A. $\sqrt{2 g R}$
> B. $\sqrt{g R}$
> C. $\sqrt{g R / 2}$
> D. $\sqrt{g R}(\sqrt{2}-1)$

Answer: D

D Watch Video Solution
85. A particle of mass $2 k g$ located at the
position $\quad(\hat{i}+\hat{j}) m$ has velocity
$2(\hat{i}-\hat{j}+\hat{k}) m / s$. Its angualr momentum
about Z-axis in $\mathrm{kgm}^{2} / \mathrm{s}$ is
A. +4
B. -8
C. +8
D. -4

Answer: B

D Watch Video Solution
86. A wheel of radius R rolls on the ground
with a unifrom velocity v. The velocity of topmost point releative to bottom must point is
A. zero
B. $2 v$
C. v
D. $v / 2$
87. The centre of a wheel rolling on a plaen
surface moves with a speed v_{0}. A particle on
the rim of the wheel at the same level as the centre will be moving at speed
A. $\sqrt{2} v_{0}$
B. $2 v_{0}$
C. v_{0}
D. zero

Answer: A

- Watch Video Solution

88. A disc and a solid sphere of same radius
but different masses roll off on two inclined
planes of the same altitude and length. Which
one of the two objects gets to the bottom of
the plane first ?
A. solid sphere
B. both reach at the same time
C. depends on their masses
D. disc

Answer: A

D Watch Video Solution

89. A particle moves so that its position vertor is given by $\vec{r}=\cos \omega t \widehat{x}+\sin \omega t \hat{y}$, where ω is a constant. Which of the following is true?
A. velocity and acceleration both are perpendicular to \vec{r}
B. velocity and acceleration both are parallel to \vec{r}
C. velocity is perpendicular to \vec{r} and acceleeration is directed towards the origin
D. velocity is perpendicular to \vec{r} and acceleeration is directed away from the origin

Answer: C

- Watch Video Solution

90. A solid sphere is rolling on a frictionless
surface, shown in figure with a translational
velocity vm / s. If it is to climb the inclined surface then v should be :

A. $\geq \sqrt{\frac{10}{7} g h}$

B. $\geq \sqrt{2 g h}$
 C. $2 g h$
 D. $\frac{10}{7} g h$

Answer: A

D Watch Video Solution

91. A particle of mass $m=5$ unit is moving with a uniform speed $v=3 \sqrt{2}$ unit $X Y$ plane aong the line $Y=X+4$. The magnitude of the angular momentum about origin is
A. $40 \sqrt{2} u n i t$
B. 7.5unit
C. zero
D. $60 u n i t$

Answer: D

D Watch Video Solution

92. A table fan rotating at a speed of 2400 rpm is switched off and the resulating variation of
the revolution/minute time is shown in Fig.

The total number of revolutions of the fan before it comes to rest is

A. 280
B. 380
C. 420

D. 160

Answer: A

D Watch Video Solution

93. A unifrom rod of length l and mass m is
free to rotate in a vertical plane about A as
shown in Fig. The rod initially in horizontal
position is released. The initial angular
acceleration of the rod is

A. $\frac{3 g}{2 l}$
B. $\frac{3 g}{l}$
C. $\frac{g}{2 l}$
D. $\frac{2 g}{l}$

Answer: A
(Watch Video Solution
94. A wheel is subjected to uniform angualr acceleration about its axis. Initially, its angualr velocity is zero. In the first 2 sec , it rotates
through an angle θ_{1}, in the next 2 sec , it rotates through an angle θ_{2}. The ratio of θ_{2} / θ_{1} is
A. 1
B. 2
C. 3
D. 5

Answer: C

D Watch Video Solution

95. A sphere can roll on a surface inclined at
an angle θ if the friction coefficient is more than $\frac{2}{7} g \sin \theta$. Suppose the friction coefficient is $\frac{1}{7} g \sin \theta$, and a sphere is released from rest on the incline,
A. it will stay at rest
B.it will translate and rotate about the
centre
C. it will make pure translational motion
D. the angular momentum of the sphere about its centre will remian constant.

Answer: B

- Watch Video Solution

96. Angular momentum L is given by $L=P r$

The variation of $\log L$ and $\log P$ is correctly
shown in Fig.

Answer: D

- Watch Video Solution

97. O is the centre of an equilateral triangle
$A B C . F_{1}, F_{2}$ and F_{3} are the three forces acting along the sides $A B, B C$ and $A C$ respectively. What should be the value of F_{3}
so that the total torque about O is zero?

$$
\begin{aligned}
& \text { A. } \frac{F_{1}+F_{2}}{2} \\
& \text { B. } 2\left(F_{1}+F_{2}\right) \\
& \text { C. }\left(F_{1}+F_{2}\right) \\
& \text { D. }\left(F_{1}-F_{2}\right)
\end{aligned}
$$

- Watch Video Solution

98. A solid cylinder and a hollow cylinder, both
of the same mass and same external fiameter
are released from the same height at the same
time on an inclined plane. Both roll down without slipping. Which one will reach the bottom first?
A. Solid cylinder
B. Both together
C. One with higher density

D. Hollow cylinder

Answer: A

D Watch Video Solution

99. A wheel has moment of inertia $5 \times 10^{-3} \mathrm{kgm}^{2}$ and is making 20revs ${ }^{-1}$. The torque needed to stop it in $10 s$ is.....
$\times 10^{-2} N-m$
A. 2π
B. 2.5π
C. 4π
D. 4.5π

Answer: A

D Watch Video Solution

100. A wheel having moment of inertia $2 \mathrm{kgm}^{2}$
about its vertical axis, rotates at the rate of 60 rom about this axis. The torque which can
stop the wheel's rotation in one minuted woould be

$$
\begin{aligned}
& \text { A. } \frac{-\pi}{15} N-m \\
& \text { B. } \frac{\pi}{18} N-m \\
& \text { C. } \frac{2 \pi}{15} N-m \\
& \text { D. } \frac{\pi}{12} N-m
\end{aligned}
$$

Answer: A

D Watch Video Solution

101. A unifrom rod of length l and mass m is
free to rotate in a vertical plane about A, Fig.
The rod initially in horizontal position is released. The initial angular acceleration of the rod is (MIof rod about A is $\frac{m l^{2}}{3}$)

A. $m g l / 2$
B. $3 g / 2 l$
C. $2 l / 3 g$

D. $3 g / 2 l^{2}$

Answer: B

D Watch Video Solution

102. A given shaped glass tube having uniform
cross-section is filled with water and is
mounted on a rotatable shaft as shown in
figure. If the tube is rotated with a constant
angular velocity ω then :

A. water levels in both sections A and B go
up
B. water level in section A goes up and
that in sectioon B comes down
C. water level in section A comes dowm andthat in B goes up

D. water level remains the same in both the

sections

Answer: A

D Watch Video Solution
103. A rod of length l whose lower end is fixed on a horizontal plane, starts toppling from the
vertical position. The velocity of the upper end when it hits the ground is.
A. $\sqrt{3 g l}$
B. $\sqrt{2 g l}$
C. $2 \sqrt{g l}$
D. $\sqrt{g l}$

Answer: A
(Watch Video Solution
104. A cylinder of radius R and mass M rolls
without slipping down a plane inclined at an
angle θ. Coeff. of friction between the cylinder
and the plane is μ. For what maximum inclination θ, the cylinder rolls without slipping?
A. $\tan ^{-1} \mu$
B. $\tan ^{-1}(3 \mu)$
C. $\tan ^{-1} 2 \mu$
D. $\tan ^{-1} \cdot \frac{3}{2} \mu$

Answer: B

D Watch Video Solution

105. A rigid body is made of three indentical
thin rods, each of length L, fastened together in the form of letter H, Fig. The body is free to rotate about a horizontal axis that tuns along
the length of one of legs of H. The body is
allowed to fall from rest from a position in
which plane of H is horizontal. the angular
speed of body when plane of H is vertical is

A. $\sqrt{g / L}$
B. $\frac{1}{2} \sqrt{g / L}$
C. $2 \sqrt{g / L}$
D. $\frac{2}{3} \sqrt{g / L} \mathrm{~s}$

Answer: D
106. A force of $-F \hat{k}$ acts on 0 , the origin of the coodinate system. The torque about the point $(1,-1)$ is

A. $-F(\hat{i}+\hat{j})$
B. $F(\hat{i}+\hat{j})$

$$
\begin{aligned}
& \text { C. }-F(\hat{i}-\hat{j}) \\
& \text { D. } F(\hat{i}-\hat{j})
\end{aligned}
$$

Answer: B

D Watch Video Solution

107. If a solid sphere of mass 1 kg and radius
$0.1 m$ rolls without slipping at a unifrom
velocity of $1 m s^{-1}$ along a stright line on a horizontal floor, the kinetic energy of the sphere is
A. $\frac{2}{5} J$
B. $1 J$
C. $\frac{7}{10} \mathrm{~J}$
D. $\frac{7}{5} \mathrm{~J}$

Answer: C

D Watch Video Solution

108. A body of mass 0.1 kg is suspended at a height of $1 m$ about the ground by a weightless string which passes over a
frictionless pulled, Fig. The velocity with which
the body strikes the ground is

Ground

A. $\frac{11}{20} m s^{-1}$
B. $\frac{20}{11} m / s$
C. $\frac{10}{11} m s^{-1}$
D. $\frac{11}{10} m s^{-1}$

Answer: B

D Watch Video Solution

109. A small particle of mass m is projected at an angle θ with x-axis with initial velocity v_{0} in
$x-y$ plane as shown in Fig. Calculate the angular momentum of the particle
at $t<\frac{v_{0} \sin \theta}{g}$.

A. $m g v_{0} t \cos \theta \hat{k}$
B. $-\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{k}$
C. $\frac{1}{2} m g v_{0} t^{2} \cos \theta \hat{i}$
D. $-m g v_{0} t^{2} \cos \theta \hat{j}$

Answer: B
110. A flywheel of moment of inertia
$3 \times 10^{2} \mathrm{kgm}^{2}$ is rotating with uniform angular
speed of $4.6 \mathrm{rads}^{-1}$. If a torque of
$6.9 \times 10^{2} \mathrm{Nm}$ retards the wheel, then the time
in which the wheel comes to rest is
A. $1.5 s$
B. $2 s$
C. 0.5 s
D. $1 s$

Answer: B

D Watch Video Solution

111. A boy is pushng a ring of mass 2 kg and radius 0.5 m with a stick as shwon in figure.

The stick applies a force of 2 N on the ring and rolls it without slipping with an accelertaion of $0.3 \frac{\mathrm{~m}}{s^{2}}$. The coefficinet of friction between the ground and the ring is large enough that rolling always occurs and the coefficient of friction between the stick and the ring of
$(P / 10)$. The value of P is
Stick

Ground
A. 3
B. 4
C. 5
D. 6

Answer: B

- Watch Video Solution

112. A thin horizontal circular disc is roating about a vertical axis passing through its centre. An insect is at rest at a point near the rim of the disc. The insect now moves along a diameter of the disc to reach its other end. During the journey of the insect, the angular speed of the disc.
A. continuously decreases
B. continuously increases
C. first increases and then decreases
D. remain unchanged

Answer: C

D Watch Video Solution

113. A particle of mass ' m ' is projected with a velocity v making an angle of 30° with the horizontal. The magnitude of angular moment of the projectile about the point of projection
when the particle is at its maximum height ' h '
is
A. $\frac{\sqrt{3}}{2} \frac{m v^{2}}{g}$
B. zero
C. $\frac{m v^{3}}{\sqrt{2} g}$
D. $\frac{\sqrt{3}}{2} \frac{m v^{2}}{g}$

Answer: D

D Watch Video Solution
114. The instantaneous angular position of a point on a rotating wheel is given by the equation
$\theta(t)=2 t^{3}-6 t^{2}$
The torque on the wheel becomes zero at
A. $t=1 s$
B. $t=0.5 s$
C. $t=0.25 s$
D. $t=2 s$

Answer: A

- Watch Video Solution

115. A small mass attached to a string rotates
on a frictionless table top as shown in Fig. If the tension in the string is increased by pulling the string causing the radius of the circular motion to decrease by a factor of 2 , the kinetic energy of the mass will

A. remain constant
B. increase by a factor of 2
C. increase by a factor of 4
D. decrease by a foctor of 2

Answer: C

D Watch Video Solution

116. A solid cylinder of mass 50 kg and radius
$0.5 m$ is free to rotate about the horizontal axis. A massless string is wound round the
cylinder with one end attached to it and other
end hanging freely. Tension in the string
required to produce an angular acceleration of 2 revolution s^{-2} is
A. $25 N$
B. 50 N
C. 78.5 N
D. 157 N

Answer: D

117. The ratio of the accelerations for a solid sphere (mass m, and radius R) rolling down an incline of angle θ without slipping, and slipping down the incline without rolling is
A. 5:7
B. 2:3
C. 2:5
D. 7:5

Watch Video Solution

118. A bob of mass m attached to an inextensible string of length I is suspended
from a vertical support. The bob rotates in a horizontal circle with an angular speed ω red/s about the vertical. About the point of suspension:
A. angualr momentum changes in direction but not in magnitude,
B. angular momentum changes both in magnitude and direction,
C. angular momentum is conserved,

D. angular
 momentum changes
 in

magnitude, but not in direction.

Answer: A

D Watch Video Solution

119. A mass ' m ' is supported by a massless string wound around a uniform hollow cylinder of mass m and radius R. If the string does not slip on the cylinder, with what acceleration will the mass fall or release?

A. $5 g / 6$
B. g
C. $2 g / 3$
D. $g / 2$

Answer: D

D Watch Video Solution

120. A uniform circular disc of mass 1.5 kg and
raius 0.5 m is initially ar rest on a horiozntal
frictonless surface. Three forces of equal
matgnitude $\mathrm{F}=0.5 \mathrm{~N}$ are applied simultaneously along the three sides of an equilateral triangle XYZ with its vertices on the perimeter of the disc (see figure). One second after applying the forces the angular speed of the disc in rads ${ }^{-1}$ is

A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

121. A horizontal circular platform of radius 0.5
m and mass axis. Two massless spring toy-
guns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance
0.25 m from the centre on its either sides
along its diameter (see figure). Each gun
simultaneously fires the balls horizontally and
perpendicular to the diameter in opposite directions. After leaving the platform, the balls have horizontal speed of $9 m s^{-1}$ with respect to the ground. The rotational speed of the platform in rads ${ }^{-1}$ after the balls leace the
platform is

A. 4
B. 3
C. 2
D. 1

Answer: A

- Watch Video Solution

122. A thin uniform rod, pivoted at O, is rotating in the horizontal plane with constatn angular speed ω, as shown in the figure. At time $\mathrm{t}=0$, a small insect starts from O and moves with constant sped v , with respect to the rod towards the other end. It reaches the end of the rod at $t=T$ and stops. The angular speed of the system remains ω throughout. The magnitude of the torque $(|\vec{\pi}|)$ about O , as a function of time is best represented by
which plot?

Answer: B

- Watch Video Solution

123. A small mass m is attached to a massless
string whose other end is fixed at P as shown
in the figure. The mass is undergoing circular motion in the $x-y$ plane with centre at O and constant angular speed ω. If the angular
momentum of the system. calculated about O and P are denoted. by \vec{L}_{O} and \vec{L}_{P} respectively, then.

A. $\overrightarrow{L_{0}}$ and $\overrightarrow{L_{P}}$ do not vary wit time
B. $\overrightarrow{L_{0}}$ varies wit time while $\overrightarrow{L_{P}}$ remains
constant
C. $\overrightarrow{L_{0}}$ remains consatnt, while $\overrightarrow{L_{P}}$ varies

with time

D. $\overrightarrow{L_{0}}$ and $\overrightarrow{L_{P}}$ both vary with time

Answer: C

D Watch Video Solution

124. Two identical discs of same radius R are rotating about their axes in opposite directions with the same constant angular speed ω. The discs are in the same horizontal
plane. At time $t=0$, the points P and Q are facing each other as shown in the figure. The relative speed between the two points P and
Q is v_{r}. In one time period (T) of rotation of the discs, v_{r} as a function of time is best represented by

B.
C.

D.

Answer: A

D Watch Video Solution

125. A circular platform is mounted on a frictionless vertical axle. Its radius $R=2 m$ and its moment of inertia about the axle is
$200 \mathrm{kgm}^{2}$. It is initially at rest. A 50 kg man stands on the edge at the platform and begins to walk along the edge at the speed of $1 \mathrm{~ms}^{-1}$ relative to the ground. Time taken by the man to complete one revolution is :
A. πs
B. $\frac{3 \pi}{2} s$
C. $2 \pi s$
D. $\frac{\pi}{2} s$

Answer: C
126. A rod $P Q$ of mass M and length L is hinged at end P. The rod is kept horizontal by a masseless string tied to point Q as shown in

Fig. When string is cut, the initial angular acceleration of the rod is :

127. An explosion blows a rock into three parts.

Two parts go off at right angles to each other .

These two are $1 k g$ first part moving with a velocity of $12 m s^{-1}$ and $2 k g$ second part moving with a velocity of $8 \mathrm{~ms}^{-1}$. If the third part flies off with a velocity of $4 m s^{-1}$. Its mass would be
A. 17 kg
B. 3 kg
C. 5 kg
D. 7 kg

Answer: C

D Watch Video Solution

128. A hoop of radius r and mass m rotating with an angular velocity ω_{0} is placed on a rough horizontal surface. The initial velocity of the centre of the hoop is zero. What will be the velocity of the centre of the hoop when it ceases ot slip?
A. $\frac{r \omega_{0}}{4}$
B. $\frac{r \omega_{0}}{3}$
C. $\frac{r \omega_{0}}{2}$
D. $r \omega_{0}$

Answer: C

D Watch Video Solution

129. In circular motion, which of the following relations are valid?

$$
\text { A. } \vec{v}=\vec{\omega} \times \vec{r}
$$

B. $\overrightarrow{a_{t}}=\vec{\alpha} \times \vec{r}$
C. $\overrightarrow{a_{t}}=\vec{\omega} \times \vec{r}$
D. $\vec{a}=\vec{\omega} \times \overrightarrow{a_{t}}$

Answer: A::B::C

D Watch Video Solution

130. For a particle of a rotating rigid body, $v=r \omega$, which of the following are correct ?

$$
\text { A. } \omega \propto \frac{1}{r}
$$

B. $\omega \propto v$
C. $v \propto r$
D. ω is indepenedent of r

Answer: C::D

D Watch Video Solution

131. A uniform bar of length $6 a$ and mass $8 m$
lies on a smooth horizontal table. Two point masses m and $2 m$ moving in the same horizontal plane with speed $2 v$ and v,
respectively, strike the bar [as shown in the fig.] and stick to the bar after collision. Denoting angular velocity (about the centre of mass), total energy and centre of mass velocity by ω, E and v_{c} respecitvely, we have after collison

A. $v_{0}=0$

$$
\text { B. } \omega=(3 v / 5 a)
$$

C. $\omega=(v / 5 a)$
D. $E=\left(3 m v^{2} / 5\right)$

Answer: A::C::D

D Watch Video Solution

132. One quarter sector is cut from a uniform circular disc of radius R. This sector has mass
M. it is made to rotate about a line perpendicular to its plane and passing
through the center of the original disc. Its moment of inertia about the axis of rotation is

A. $\frac{1}{2} M R^{2}$
B. $\frac{1}{4} M R^{2}$
C. $\frac{1}{8} M R^{2}$
D. $\sqrt{2} M R^{2}$

Answer: C

- Watch Video Solution

133. If a_{r} and a_{t} respresent radial and tangential acceleration, the motion of a particle will be circualr is
A. $a_{r}=0$ and $a_{t}=0$
B. $a_{r}=0$ but $a_{t} \neq 0$
C. $a_{r} \neq 0$ and $a_{t}=0$
D. $a_{r} \neq 0$ and $a_{t} \neq 0$

Answer: C::D

D Watch Video Solution

134. A simple pendulum of length L and mass
(bob) M is oscillating in a plane about a
vertical line between angular limit $-\phi$ and $+\phi$
. For an angular displacement $\theta(|\theta|<\phi)$, the
tension in the string and the velocity of the
bob are T and V respectively. The following
relations hold good under the above conditions:
A. $T \cos \theta=M g$
B. $T-M g \cos \theta=\frac{M v^{2}}{L}$
C. Tangential acceleration $=g \sin \theta$
D. $T=M g \cos \theta$

Answer: B::C

D Watch Video Solution

135. $A B C D$ is a square plate with centre O.

The moments of inertia of the plate about the perpendicular axis through O is I and about
the axes $1,2,3, \& 4$ are $I_{1}, I_{2}, I_{3} \& I_{4}$ respectively. It follows that :

A. $I_{1}+I_{2}$
B. $I_{3}+I_{4}$
C. $I_{1}+I_{3}$

D. $I_{1}+I_{2}+I_{3}+I_{4}$

Answer: A::B::C

D Watch Video Solution

136. A circular disc X of radius R is made from an iron plate of thickness t, and another plate
Y of radius $4 R$ is made from an iron plate of thickness $t / 4$. The ratio between moment of inertia I_{Y} / I_{X} is
A. 32
B. 16
C. 1
D. 64

Answer: D

D Watch Video Solution

137. Two spherical bodies of mass M and $5 M$ \&
radii $R \& 2 R$ respectively are released in free space with initial separation between their centres equal to $12 R$. If they attract each other
due to gravitational force only, then the distance covered by the smallar body just before collision is
A. $2.5 R$
B. $4.5 R$
C. $7.5 R$
D. $1.5 R$

Answer: C

D Watch Video Solution
138. A particle moves on a straight line with a uniform velocity. The angular momentum of the particles is
A. Always zero
B. zero about a point on the stright line
C. zero about a point away from the straight line
D. constant always about a given point not on the line

- Watch Video Solution

139. A particle of mass m is projected with a velocity v making an angle of 45° with the horizontal. The magnitude of the angular momentum of the projectile abut the point of projection when the particle is at its maximum height h is.
A. zero
B. $m v^{3} /(4 \sqrt{2}) g$
C. $m v^{3} /(\sqrt{2}) g$

D. $m \sqrt{2 g h^{3}}$

Answer: B::D

- Watch Video Solution

140. A nonzero external force on a system of
particles. The velocity and the acceleration of
the cente of mass are found to be v_{0} and a_{0} at an instant t. It is possible that

$$
\text { A. } v(0)=0, a_{0}=0
$$

$$
\begin{aligned}
& \text { B. } v(0) \neq 0, a_{0}=0 \\
& \text { C. } v(0)=0, a_{0} \neq 0 \\
& \text { D. } v(0) \neq 0, a_{0} \neq 0
\end{aligned}
$$

Answer: C::D

D Watch Video Solution

141. A body A of mass M while falling wertically downwards under gravity brakes into two parts, a body B of mass $\frac{1}{3} M$ and a body C of 2 mass $\frac{2}{3} M$. The center of mass of bodies B and

C taken together shifts compared to that of body A towards
A. body B
B. body C
C. does not shift
D. depends on height of breaking

Answer: C

D Watch Video Solution

142. A sphere is rolled on a rough horizontal surface. It gradually slows down and stops.

The force of friction tries to
A. increase the angualr velocity
B. decrease the angualr velocity
C. increase the linear momentum
D. decrease the linear velocity

Answer: A:D

- Watch Video Solution

143. From a circular disc of radius R and mass 9
M, a small disc of radius $R / 3$ is removed from
the disc. The moment of inertia of the remaining disc about an axis perpendicular to
the plane of the disc and passing through O is

A. $4 M R^{2}$
B. $\frac{40}{9} M R^{2}$
C. $10 M R^{2}$
D. $\frac{37}{9} M R^{2}$

Answer: A

- Watch Video Solution

144. If there is no external force acting on a nonrigid body, which of the followhng quantities must remain constant?
A. linear momentum
B. moment of inertia
C. angular momentum
D. kinetic energy

Answer: A::C

D Watch Video Solution

145. Two solid cylinders P and Q of same mass and same radius start rolling down a fixed inclined plane from the same height at the same time. Cylinder P has most of its mass
concentrated near its surface, while Q has most its mass concentrated near the axis. Which statement(s) is (are) correct?
A. Both cylinders P and Q reach the ground at the same tome
B. Cylinder P has larger linear acceleration
than cylinder Q
C. Both cylinders reach the ground with
same translational kinetic energy

D. Cylinder Q reaches the ground with

larger angualr speed.

Answer: D

D Watch Video Solution

146. The centre of mass of a body is a point at which the entire mass of the body is supposed to be concentrated. The position vector \vec{r} of c.m of the system of tow particles of masses m_{1} and m_{2} with position vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ is
given by
$\vec{r}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}}$
For an isolated system, where no external
force is acting, $\overrightarrow{v_{c m}}=$ constant

Under no circumstances, the velocity of centre of mass of an isolated system can undergo a change

With the help of the comprehension given above, choose the most appropriate alternative for each of the following questions

Two bocls of masses $5 k g$ and $2 k g$ are placed on a frictionless surface and connected by a
spring. an external kick gives a velocity of $14 m / s$ to heavier block in the direction of lengter one. the velocity gained by the centre of mass is
A. $14 m / s$
B. $7 m / s$
C. $12 m / s$
D. $10 \mathrm{~m} / \mathrm{s}$

Answer: D

147. The centre of mass of a body is a point at which the entire mass of the body is supposed to be concentrated. The position vector \vec{r} of c.m of the system of tow particles of masses m_{1} and m_{2} with position vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ is given by
$\vec{r}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}}$
For an isolated system, where no external
force is acting, $\overrightarrow{v_{c m}}=$ constant
Under no circumstances, the velocity of centre of mass of an isolated system can undergo a
change

With the help of the comprehension given above, choose the most appropriate alternative for each of the following questions

An electron and a proton move towards eachother with velocities v_{1} and v_{2} respectively. the velocity of their centre of mass is
A. zero
B. v_{1}
C. v_{2}
D. $\frac{v_{1}+v_{2}}{2}$

Answer: A

- Watch Video Solution

148. The centre of mass of a body is a point at which the entire mass of the body is supposed to be concentrated. The position vector \vec{r} of c.m of the system of tow particles of masses m_{1} and m_{2} with position vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ is given by
$\vec{r}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}}$
For an isolated system, where no external
force is acting, $\overrightarrow{v_{c m}}=$ constant

Under no circumstances, the velocity of centre of mass of an isolated system can undergo a change

With the help of the comprehension given
above, choose the most appropriate alternative for each of the following questions

A bomb dropped from an aeroplane in level
flight explodes in the middle. the centre of mass of the fragments
A. is a rest
B. moves vertically downwards
C. moves vertically upwards
D. continues to follow the same parabolic path which it would have followed if there was no exposion.

Answer: D

D Watch Video Solution

149. Moment of inertia of a body about a given
axis is the rotational inertia of the body about
that axis. It is respresented by $I=M K^{2}$,
where M is mass of body and K is radius of gyration of the body about that axis. It is a scalar quantity, which is measured in kgm^{2}. when a body rotates about a given axis, and teh axis of rotates also moves, then total
K.E. of body =K.E. of translation
$+K . E$. of rotation
$E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
Which the help of the compreshension given
above, choose the most apporpriate altermative for each of the following questions:

A circular disc and a circular ring of same mass
and same diameter have, about a given axis,
A. same moment of inertia
B. unequal moments of inertia
C. cannot say
D. sometimes equal sometimes not

Answer: B
150. Moment of inertia of a body about a given
axis is the rotational inertia of the body about
that axis. It is respresented by $I=M K^{2}$,
where M is mass of body and K is radius of
gyration of the body about that axis. It is a
scalar quantity, which is measured in kgm^{2}.
when a body rotates about a given axis, and
teh axis of rotates also moves, then total
$K . E$. of body $=K . E$. of translation $+K . E$. of rotation
$E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
Which the help of the compreshension given above, choose the most apporpriate altermative for each of the following questions:

A 40 kg flywheel in the from of a unifrom circular disc of diameter $1 m$ is making $120 r \pm$
. Its moment of inertia about a transverse axis
through its centre is
A. $40 \mathrm{kgm}^{2}$
B. $5 \mathrm{kgm}^{2}$
C. $10 \mathrm{kgm}^{2}$

D. $20 \mathrm{kgm}^{2}$

Answer: B

D Watch Video Solution

151. Moment of inertia of a body about a given
axis is the rotational inertia of the body about
that axis. It is respresented by $I=M K^{2}$,
where M is mass of body and K is radius of
gyration of the body about that axis. It is a
scalar quantity, which is measured in kgm^{2}.
when a body rotates about a given axis, and teh axis of rotates also moves, then total
$K . E$. of body $=K . E$. of translation
$+K . E$. of rotation
$E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$
Which the help of the compreshension given above, choose the most apporpriate altermative for each of the following questions:

Kinetic energy of rotation of the flywheel in the above case is
A. 20 J
B. 20 J
C. 395 J
D. 80 J

Answer: C

D Watch Video Solution

FILL IN THE BLANKS

1. Centre of mass of a body is at which............is............ .
2. In certain cases, there may...........at the.

- Watch Video Solution

3. Total linear momentum of a system of particles is equal toof the system and velocity of

- Watch Video Solution

4. The vector product of two vectors
\vec{A} and \vec{B} is another..........whose magnitude is

equal to..............and.............between them.

D Watch Video Solution

5. By convention, anticlockwise moments areand............are taken as............. .
(Watch Video Solution
6. Torque due to a force is the product of.............and................of line of action............. .

- Watch Video Solution

7. Torque due to a force is the product of.............and................of line of action
(Watch Video Solution

8. Angular momentum of a

 particle............is................of the particle.
D Watch Video Solution

9. Angular momentum of a particle about a given axis isofand.............of position vector of the particle.

D Watch Video Solution
10. The centre of gravity of a body is a point where...........and...........on the body is

D Watch Video Solution
11. Mass of a body is.........of.................of the body.

D Watch Video Solution

12. A quantity that measures..........of the body is

called...........of the body.

D Watch Video Solution

13. Radius ofof a body about a given axis is equal to...........of the constituent particles of the body.

D Watch Video Solution

14. When..............acts on a system of particles,
then............of the system remains

D Watch Video Solution

15. When..............is conserved, may............... .

D Watch Video Solution
16. Moment of inertia of a uniform circular ring of mass M and radius R about a diameter of ring is.

D Watch Video Solution

17. Moment of inertia of a circular ring about a given axis is..............moment of inertia of. of............and.................about the same axis.
18. The rate ofof a body about a given axis is...............to................applied on the body.

- Watch Video Solution

19. Rotational analogue of.is.

D Watch Video Solution

20. Angle traced by a rotating body in nth seconds is $\theta_{\text {nth }}=$............where symbols have
their usual meaning.

- Watch Video Solution

PROBLEMS FOR PRACTICE TYPE A

1. Three blocks of uniform thickness and masses m, m and $2 m$ are placed at the corners of a triangle having co-ordinates
$(2.5,1.5),(3.5,1.5)$ and $(3,3)$ respectively.

Find the co-ordinates of the centre of mass of the system.

- Watch Video Solution

2. A wheel is rotating at a speed of 1000 rpm and its $K E i s 10^{6} \mathrm{~J}$. What is moment of inertia of the wheel about its axis of rotation?

- Watch Video Solution

PROBLEMS FOR PRACTICE

1. The centre of mass of three particles of masses $1 k g, 2 k g$ and $3 k g$ lies at the point
($3 m, 3 m, 3 m$) where should a fourth particles of mass $4 k g$ be positioned so that centre of mass of the four particle system at $(1 m, 1 m, 1 m) ?$

D Watch Video Solution

2. Three point masses of $1 \mathrm{~kg}, 2 k g$ and $3 k g$ lie at $(1,2),(0,-1)$ and $(2,-3)$ respectively.

Calculate the co-ordinates of the centre of mass of the system.

D Watch Video Solution

3. Two particle of mass $2 k g$ and $1 k g$ are moving along the same straight line with speeds $2 m / s$ and $5 m / s$ respectively. What is
the speed of the centre of mass of the system
if both the particles are moving (a) in same direction (b) in opposite direction ?
4. Four particles A, B, C and D of masses $m, 2 m, 3 m$ and $4 m$ respectively are placed at corners of a square of side x as shown in Fig.

Locate the centre of mass.
5. If a man of mass M jumps to the ground
from a height h and centre of mass moves a distance x in time taken by him to hit the ground, show that the average force acting on him is $M g h / x$.

- Watch Video Solution

6. Four particles of masses
$m_{1}=1 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}, m_{3}=3 \mathrm{~kg}$ and $m_{4}=4 \mathrm{~kg}$
are located at the corners of a rectangle as
shown in Fig. Locate the position of centre of mass.

D View Text Solution

7. Two bodies of masses 10 kg and 2 kg are moving
with velocities
$(2 \hat{i}-7 \hat{j}+3 \hat{k})$ and $(-10 \hat{i}+35 \hat{j}-3 \hat{k}) \mathrm{m} / \mathrm{s}$
respectively. Calculate the velocity of their centre of mass.

D Watch Video Solution

8. A square of side $4 m$ having uniform
thickness is divided into four equal squares as
shown in Fig. If one of the squares is cut off,
find

the position of centre of mass of the remaining portion from the centre O.

D
 Watch Video Solution

9. From a uniform circular disc of diameter d, a circular disc of diameter $d / 6$ and having centre at a distance $d / 4$ from the centre of the disc is scooped out. Determine the centre of mass of remaining portion.

D Watch Video Solution

10. A rectangular plate of dimensions $l \times b$ is
in $x-y$ plane as shown in Fig. If the portion of this plate lying in quadrant I is removed,
find the position of centre of mass of remaining part of plate.

D Watch Video Solution
11. Fig. shown a three particle system with
masses $\quad m_{1}=3.0 \mathrm{~kg}, m_{2}=4.0 \mathrm{~kg} \quad$ and
$m_{3}=8.0 \mathrm{~kg}$. The scales on the axes are set by
$x_{s}=2.0 \mathrm{~m}$ and $y_{s}=2.0 \mathrm{~m}$. What are the co-
ordinates of centre if mass ? If m_{3} is gradually increased, does the centre of mass of the
system shift towards or away from that
particle or does it remain stationary?

D Watch Video Solution

12. A flywheel of mass 25 kg has a radius of
0.2 m . It is making 240 rpm . What is the torque necessary to bring it to rest in $20 s$? If the
torque is due to a force applies tangentially
on the rim of the wheel, what is the magnitude of the force? Assume that mass of flywheel is concentrated at its rim.

D Watch Video Solution

13. A rope is wound round a hollow cylinder of mass 3 kg and radius 40 cm . If the rope is pulled with a force of $30 N$, what is the angualr acceleration of the cylinder?
14. A particle of mass m is released from rest
from point P at $x=x_{0}$ on X -axis from origin
O and falls vertically along y-axis as shown in

Fig. What is the magnitude of the torque acting on the particle at time t, when it is at
the point $Q w . r . t . O$?

- Watch Video Solution

15. A unifrom circular disc of mass $200 g$ and radius 4 cm is rotated about one of its diameters at an angular speed of $10 \mathrm{rad} / \mathrm{s}$.

Find its abgular momentum about the axis of rotation?

D Watch Video Solution

16. Determine the angular momentum of a car of mass 200 kg moving in a circular track of diameter 100 m with a speed of $40 \mathrm{~m} / \mathrm{s}$.
17. An electron revolves around the nucleus of an atom in a circular orbit of radius $4 \AA$ with a speed of $6.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. If mass of electron is $9.0 \times 10^{-31} \mathrm{~kg}$, what is its angular momentum ?

D Watch Video Solution

18. Suppose earth is a point mass of
$6 \times 10^{24} \mathrm{~kg}$ revolving around the sun in a
circular orbit of diameter $3 \times 10^{8} \mathrm{~km}$ in time $3.14 \times 10^{7} s$. What is the angular momentum of the eart around the sun?

D Watch Video Solution

19. The body shown in Fig. is pivoted at point
O. Three forces act on it $F_{a}=10 N$ at point
$A, 8.0 \mathrm{~m}$ from $O, F_{b}=16 N$ at $B, 4.0 \mathrm{~m}$ from O, and $F_{c}=19 N$ at $C, 3.0 \mathrm{~m}$ from O. What is the
net torque about O.

- Watch Video Solution

20. The speed of a wheel increases from 600 rpm to 1200 rpm in 20 s . What is its angular acceleration ? How many revolutions will it make during this time ?

- Watch Video Solution

21. A flywheel rotating at 420 rpm slows sown at a constant rate 2 rads $^{-2}$. What time is required to stop the flywheel ?

- Watch Video Solution

22. The spin drier of a washing machine revolving at 15 rps slows down to 5 rps , while
making 50 revolutions. Find (a) angular acceleration and (b) time taken.

D Watch Video Solution

23. On applying a consatnt torque, a wheel at rest, turns through 400 radian in 10 s . Find angular acceleration. If same torque continues
to act, what will be angular veclocity of the wheel after $20 s$ from stars ?

D Watch Video Solution

24. A cord is wound around the circumference of a bicycle wheel (without tyre) of diameter
$1 m$. A mass of $2 k g$ is tied at the end of the cord and it is allowed to fall from rest. The weight falls $2 m$ in $4 s$. The axle of the wheel is horizontal and the wheel rotates which its plane vertical. if $g=10 \mathrm{~ms}^{-2}$, what is the angular acceleration of the wheel ?

- Watch Video Solution

25. A car is moving at a speed of $72 \mathrm{~km} / \mathrm{h}$. The
diamter of its whells is 0.5 m . If the wheels are
stopped in 20 rotations by applying brakes, calcualte the angular retardation produced by the brakes.

D Watch Video Solution

26. An autmobile travelling at $80 \mathrm{~km} / \mathrm{h}$ has
tyres of 75.0 cm diameter. What is the angualr speed of the tyres about their axles? If the car
is brought to stop uniformly in 30 complete turns of the tyres without skidding, what is the magnitude of angular acceleration of the wheels ? How far does the car move during the braking ?

D Watch Video Solution

27. A wheel rotating at an angular speed of 20
rad/s ils brought to rest by a constant trouque in 4.0 secons. If the moiment of inertia of the wheel about the axis of rotation
is $0.20 \mathrm{~kg}-m^{2}$ find the work done by the torque in the first two seconds.

D Watch Video Solution

28. The centre of gravity of a loaded texi is
$1.5 m$ above the ground, and the distance between the wheels is $2 m$. What is the maximum speed with which it can go round an unbanked curve of radius 100 m without being turned upside down. What minimum value of coefficient of friction is needed at this speed ?
29. Calculate rotational K. E. of earth about its own axis, taking it to be a sphere of mass $6 \times 10^{24} \mathrm{~kg}$ and radius 6400 km .

- Watch Video Solution

30. A wheel of mass 5 kg and radius 0.40 m is
rolling on a road without sliding with angular
velocity $10 \mathrm{rads}^{-1}$. The moment of ineria of
the wheel about the axis of rotation is
$0.65 \mathrm{kgm}^{2}$. The percentage of kinetic energy of rotate in the total kinetic energy of the wheel is.

- Watch Video Solution

31. A thin metal hoop of radius 0.25 m and mass 2 kg stars from rest and rolls down an inclined plane. If its linear velocity on reaching the foot of the plane is $2 \mathrm{~m} / \mathrm{s}$, what is its rotational $K E$ at that instant ?
32. A circular disc of mass M and radius r is set rolling on a table. If ω be its angular velocity, show that its total $K . E$. is given by $(3 / 4) M v^{2}$, wherev is its linear velocity $M . I$. of circular disc $=(1 / 2)$ mass $\times(\text { radius })^{2}$.

D Watch Video Solution

33. A spherical ball rolls on a table without
slipping. Determine the percentage of its
K. E. which is rotational. Moment of inertia of sphere $=(2 / 5) \times$ mass $\times(\text { radius })^{2}$.

- Watch Video Solution

34. A solid cylinder rolls down an inclined plane. Its mass is $2 k g$ and radius 0.1 m . It the height of the inclined plane is $4 m$, what is its rotational K. E. when it reaches foot of the plane ? Assume that the surfaces are smooth.

Take M. I. of solid cylinder about its axis = $m r^{2} / 2$.
35. The earth has a mass of $6 \times 10^{24} \mathrm{~kg}$ and a radius of $6.4 \times 10^{6} \mathrm{~m}$. Calculate the amount of work that must be done to slow down its rotation so that duration of day becomes 30 hrs instead of 24 hours.

Moment of inertia of earth $=\frac{2}{5} M R^{2}$.

- Watch Video Solution

36. A bucket of mass 8 kg is supported by a
light rope wound around a solid wooden cylinder of mass 12 kg and radius 20 cm , free to rotate about its axis. A man holding the free end of the rope with the bucket and the cylinder at rest initially, lets go the bucket freely downward in a well $50 m$ deep. Neglecting friction, obtain the speed of bucket and angualr speed of the cylinder just before the bucket enters water. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
37. A hoop of radius $2 m$ weight 100 kg .lt rolls along a horizontal floor so that its centre of mass has a speed of $20 \mathrm{cms}^{-1}$. How much work has to be done to stop it ?

D Watch Video Solution

38. If a constant torque of $500 N-m$ turns a wheel of moment of inertia $100 \mathrm{kgm}^{2}$ about an axis passing through its centre, find the gain in angular velocity in $2 s$.
39. A ring of diameter 0.4 m and of mass 10 kg
is rotating about its axis at the rate of 2100
rpm. Calculate moment of inertia, angular momentum and rotational $K E$ of the ring.

D Watch Video Solution

40. A cylinder of length 20 cm and radius 10 cm
is rotating about its central axis at an angular speed of $100 \mathrm{rad} / \mathrm{s}$. What tangential force will
stop the cylinder at a unifrom rate is $10 s$?

Given moment of inertia of the cylinder about its axis of rotation is $8.0 \mathrm{kgm}^{2}$.

D Watch Video Solution

41. A 40 kg flywheel in the from of a unifrom
circular disc 200 cm . in diameter is making 120

revolutions/minute.

Calculate
angular
momentum. Moment of inertia of disc

$$
=(1 / 2) m a s s \times(\text { radius })^{2}
$$

42. A circular ring of diameter 40 cm and mass

1 kg is rotating about an axis normal to its
plane and passing through the centre with a
frequency of $10 r p s$. Calculate the angular momentum about the axis of rotation.

- Watch Video Solution

43. A wheel of radius 10 cm can rotate freely
about its centre as shown in figure. A stirng is
wrapped over its rim and is ulle dby a force of
5.0 N. It is found that the torque roduces an angular acceleration $2.0 \mathrm{ra} \frac{d}{s^{2}}$ in the wheel.

Calculate the moment of inertia of the wheel.

- Watch Video Solution

44. A force of $36 N$ is applied to a particle
located at $0.15 m$ from the axis of rotation.

What is the magnitude of the torque about this axis, if the angle between the direction of the applied force and radius vector is
$120^{\circ}(b) 45^{\circ} ?$

- Watch Video Solution

45. A circular ring of diameter 40 cm and mass

1 kg is rotating about an axis normal to its
plane and passing through the centre with a frequency of 10 rps . Calculate the angular momentum about the axis of rotation.

Watch Video Solution

46. A torque of 10^{8} dyne - cm is applied to a fly wheel of mass 10 kg and radius of gyration 50 cm . What is the resultant angular acceleration ?

- Watch Video Solution

47. A sphere of mass 2 kg and radius 5 cm is rotating at the rate of 300 revolutions per minute. Calculate the torque required to stop
it in 6.28 revolutions. [Moment of inertia of sphere about diameter
$\left.=2 / 5 m a s s \times(\text { radius })^{2}\right]$.

D Watch Video Solution

48. A flywheel of moment of inertia 5.0
$k g-m^{2}$ is rotated at a speed of $60 \mathrm{rad} / \mathrm{s}$.

Because of the friction at the axle, it comes to
rest in 5.0 minutes. Find a. The average torque
of the friction. B. the total work done by the
friction and c. the angular momentum of the wheel 1 minute before it stops rotating.

D Watch Video Solution

49. How much tangential force will be needed to stop the earth in one year, if it is rotating with an angular velocity of $7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}$?

Given moment of inertia of earth
$=9.3 \times 10^{37} \mathrm{kgm}^{2} \quad$ and \quad radius of earth $=6.4 \times 10^{6} \mathrm{~m}$.
50. A boy is seated in a revolving chair revolving at an angular speed of 120 rpm. By some arrangement, the boy decrease the moment of inertia of the system from $6 \mathrm{kgm}^{2}$ to $2 \mathrm{kgm}^{2}$. What will be the new angular speed ?

D Watch Video Solution

51. If the earth expands suddenly to twice its diamteter, what would be the length of the

- Watch Video Solution

52. Prove that for an earth satellite, the ratio
of its velocity at apogee (when farthest from
earth) to its velocity at perigee (when closer to
earth) is in the inverse ratio of its distance at apogee and perigee.
53. A uniform disc rotating freely about a vertical axis makes 90 rpm . A small piece of wax of mass m gram falls vertically on the disc and sticks to it at a distance rcm from the axis. If number of rotations per minute reduces to 60 , find the moment of inertia of the disc.

- Watch Video Solution

54. A circular disc of moment of inertia I_{t} is rotating in a horizontal plane about its
symmetry axis with a constant angular velocity
ω_{i}. Another disc of moment of inertia I_{b} is dropped co-axially onto the rotating disc.

Initially, the second disc has zero angular speed. Eventually, both the discs rotate with a constant angular speed ω_{f}. Calculate the energy lost by the initially rotating disc due to friction.
55. A disc of mass M and radius r is rotating
with an angular velocity ω. If gently, two
masses m each are placed at a distance $r / 2$ on either side of the axis of rotation, what will be the new angular velocity?

D Watch Video Solution

56. Calculate moment of inertia of a uniform circular disc of mass 700 g and diameter 20 cm about
(i) an axis through the centre of disc and perpendicular to its plane, (ii) a diameter of disc, (iii) a tangent in the plane of the disc, (iv) a tangent perpendicular to the plane of the disc.

- Watch Video Solution

57. What is the moment of inertia of a ring of mass $2 k g$ and diameter $1 m$ about a transverse axis passing through its centre. How is moment of inertia affected if axis passes
through edge of the ring parallel to given axis
?

D Watch Video Solution

58. Three particles, each of mass m are situated at the vertices of an equilateral triangle $A B C$ of side L figure. Find thee moment of inertia of the system about the line $A X$ perpendicular to $A B$ in the plane of

ABC

D Watch Video Solution
59. Find the radius of gyrational and moment of inertia of a rod of mass 100 g and length 1 m
about an axis passing through its centre and perpendicular to its length.

D Watch Video Solution

60. Four particles of masses
$4 k g, 2 k g, 3 k g$ and $5 k g$ are respectively
located at the four corners A, B, C, D of a
square of side $1 m$. Calculate the moment of inertia of the system about
(i) the axis passing through point of intersection of the diagonals and
perpendicualr to the plane of the square. (ii) side $A B$ (ii) diagonal $B D$.

D Watch Video Solution

61. Calculate the moment of inertia of a circular disc of radius 10 cm , thickness 5 mm and uniform density $8 \mathrm{gcm}^{-3}$, about a transverse axis through the centre of the disc.

- Watch Video Solution

62. The earth has a mass of $6 \times 10^{24} \mathrm{~kg}$ and a radius of $6.4 \times 10^{6} \mathrm{~m}$. Calcualte the amount of work that must be done to slow down its rotation so that duration of day becomes 30 hrs instead of 24 hours.

Moment of inertia of earth $=\frac{2}{5} M R^{2}$.

D Watch Video Solution

63. A uniform rod of length 1 metre has a mass
of 500 gram . What is moment of inertia of the
rod about an axis passing through the centre of the rod perpendicular to its length. How is moment of inertia changed when the same axis passes through one end of the rod?

D Watch Video Solution

64. The wheel of a motor, accelerated uniformly from rest, rotates through 2.5 radian during the first second. Find the angle rotated during the next second.
65. A rod of length l whose lower end is fixed along the horizontal plane starts from the vertical position. The velocity of the upper end of the rod when it hits the ground is

D Watch Video Solution

66. A uniform rod of length $1 m$ having mass

1 kg rests against a smooth wall at an angle of 30° with the ground. Calculate the force
exerted by the ground on the rod. Take $g=10 m s^{-2}$.

D Watch Video Solution

67. Two small balls A and B each of mass m, are attched erighdly to the ends of a light rod of length d. The structure rotates about the perpendicular bisector of the rod at an angular speed ω. Calculate the angular momentum of the individual balls and of the system about the axis of rotation.
68. A cylinder of mass 5 kg and radius 30 cm is
rolling down an inclined plane at an angle of
45° with the horizontal. Calculate (i) force of
friction (ii) acceleration of cylinder
minimum value of coeff. of static friction so
that cylinder does not slip while rolling down the plane.
69. A wheel of radius 6 cm is mounted so as to
rotate about a horizontal axis through its
centre. A string of negligibe mass wrapped
round its circumference carries a mass of
$0.2 k g$ attrached to its free end. When let fall, the mass descends through $1 m$ in $5 s$.

Calculate the angular acceleration of the wheel, its moment of inertia and tension in the cord.

1. Find the torque of a force $(7 \hat{i}+3 \hat{j}-5 \hat{k})$ about the origin. The force acts on a particle whose position vector is $(\hat{i}-\hat{j}+\hat{k})$.

- Watch Video Solution

2. A 40 kg flywheel in the from of a uniform circular disc of 1 m radius is making 120 rpm .

Calculate the angular momentum.

PROBLEMS FOR PRACTICE TYPE C

1. A constant torque is acting on a wheel. If starting from rest, the wheel makes n rotations in t seconds, show that the angular acceleration is given by $\alpha=\frac{4 \pi n}{t^{2}} \mathrm{rads}^{-2}$.
2. The sun rotates around itself once in 27 days. If it were to expand to twice its present diameter, what would be its new period of revolution ?

- Watch Video Solution

PROBLEMS FOR PRACTICE TYPE D

1. Three identical spheres each of mass m and
radius R are placed touching each other so
that their centres A, B and C lie on a straight
line. The position of their centre of mass from centre of A is

D Watch Video Solution

2. Calculate moment of inertia of a circular disc about a transverse axis through the centre of the disc. Given, diameter of disc is

40 cm , thickness $=7 \mathrm{~cm}$ and density of material of disc $=9 \mathrm{gcm}^{-3}$.

PROBLEMS FOR PRACTICE TYPE E

1. A flywheel rotating at the rate of 120 rpm
slows down at a constant rate of 2 rads $^{-2}$.
What time is required to stop the flywheel and
how many rations does it make in the process
?

- Watch Video Solution

MULTIPLE CHOICE QUESTIONS-I

1. For which of the following does the centre of mass lie outside the body?
A. A pencil
B. A shotput
C. A dice
D. A bangle

Answer: D
(Watch Video Solution

MULTIPLE CHOICE QUESTIONS-II

1. Choose the correct alternatives :
A. For a general rotational motion, angular momentum L and angular velocity ω need not be parallel.
B. For a rotational motion about a fixed
axis, angular momentum L and angualr
velocity ω are always parallel.
C. For a general translational motion, mometum p and velocity v are always parallel.
D. For a general translational motion, acceleration a and velocity v are always parallel.

Answer: A,C

D Watch Video Solution

1. Distance of the centre of mass of a solid
uniform cone from its vertex is z_{0}. If the radius
of its base is R and its height is h then z_{0} is
equal to:
A. $\frac{h^{2}}{4 R}$
B. $\frac{3 h}{4}$
C. $\frac{5 h}{8}$
D. $\frac{3 h^{2}}{8 R}$

Answer: B

- Watch Video Solution

Multiple Choice Questions II.

1. In a unifrom circular motion, which of the
following remain constant
A. speed and ω
B. acceleration and angualr acc.
C. time period and ω

D. velocity and position vector

Answer: A::B::C

D Watch Video Solution

Multiple Choice Questions III. Comprehension 1

1. The centre of mass of a body is a point at
which the entire mass of the body is supposed
to be concentrated. The position vector \vec{r} of
c.m of the system of tow particles of masses
m_{1} and m_{2} with position vectors $\overrightarrow{r_{1}}$ and $\overrightarrow{r_{2}}$ is
given by
$\vec{r}=\frac{m_{1} \overrightarrow{r_{1}}+m_{2} \overrightarrow{r_{2}}}{m_{1}+m_{2}}$
For an isolated system, where no external
force is acting, $\overrightarrow{v_{c m}}=$ constant

Under no circumstances, the velocity of centre of mass of an isolated system can undergo a change

With the help of the comprehension given above, choose the most appropriate alternative for each of the following questions

Two bodies of masses 1 kg and 2 kg are located
at $(1,2)$ and $(-1,3)$ respectively. the coordinates of the cetre of mass are :
A. $(-1,3)$
B. $(1,2)$
C. $\left(-\frac{1}{3}, \frac{8}{3}\right)$
D. $\left(\frac{1}{3}, \frac{8}{3}\right)$

Answer: C

- Watch Video Solution

1. Moment of inertia of a body about a given
axis is the rotational inertia of the body about
that axis. It is respresented by $I=M K^{2}$,
where M is mass of body and K is radius of
gyration of the body about that axis. It is a scalar quantity, which is measured in kgm^{2}. when a body rotates about a given axis, and teh axis of rotates also moves, then total
K.E. of body =K.E. of translation
$+K . E$. of rotation
$E=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}$

Which the help of the compreshension given above, choose the most apporpriate altermative for each of the following questions:

Moment of inertia of a body depends on (i)
mass of body (ii) size and shape of body (iii) axis of rotation of body (iv) all the above
A. (i) and (ii)
B. (i) and (iii)
C. (ii) and (iii)
D. (iv)

Answer: D

- Watch Video Solution

Integer Type Questions

1. Two homogeneous spheres A and B of masses m and $2 m$ having radii $2 a$ and a respectively are placed in contact. The ratio of distance of c.m from first sphere to the distance of c.m from second sphere is :
2. A non-uniform thin rod of length L is palced along X-axis so that one of its ends is at the origin. The linear mass density of rod is
$\lambda=\lambda_{0} x$. The centre of mass of rod divides
the length of the rod in the ratio:

- Watch Video Solution

3. A sphere of mass 5 kg and diameter 2 m rotates about a tangent. What is its moment
of inertia in kgm^{2} ?

D Watch Video Solution

4. A uniform rod of length 1 m and mass 0.5 kg
rotates at angular speed of $6 \mathrm{rad} / \mathrm{sec}$ about one of its ends. What is the $K E$ (in joule) of
the rod?

D Watch Video Solution
5. A particle performing uniform circular motion has angular momentum L. When its angular velocity is doubled and $K . E$ is also doubled, the new angualr momentum becomes x times. What is x ?

- Watch Video Solution

6. A constant torque of 200 Nm turns a wheel of moment of inertia $50 \mathrm{kgm}^{2}$ about an axis
through its centre. The angualr velocity 2 sec after staring form rest (in rad/sec) would be :

D Watch Video Solution

7. If k_{1} is radius of gyration of a circular disc about a tangent perpendicular to plane of disc and k_{2} is radius of gyration of a circular ring of same size as disc about any diameter, what is the value of K_{1}^{2} / K_{2}^{2} ?

- Watch Video Solution

8. If earth were to shrink to $\frac{1}{8}$ th of its present volume, what would be the new length of the day in hour?

- Watch Video Solution

9. An angular ring wth inner and outer radii
$R_{1}=1.2 \mathrm{~cm}$ and $R_{2}=4.8 \mathrm{~cm}$ is rolling without slipping with a unifrom angular speed. What is the ratio of the forces experienced by the two particles of same mass
situted on the outher and inner parts of the annular ring ?

D Watch Video Solution

10. A circular disc of radius r is rolling without slipping on a horizontal surface. What is the ratio of the translational $K E$ and rotational $K E$ of disc ?
11. A uniform circular disc of mass 1.5 kg and
raius 0.5 m is initially ar rest on a horiozntal
frictonless surface. Three forces of equal matgnitude $\mathrm{F}=0.5 \mathrm{~N}$ are applied simultaneously along the three sides of an equilateral triangle XYZ with its vertices on the perimeter of the disc (see figure). One second after applying the forces the angular speed of
the disc in rads ${ }^{-1}$ is

- Watch Video Solution

12. A horizontal circular platform of radius 0.5
m and mass axis. Two massless spring toyguns, each carrying a steel ball of mass 0.05 kg are attached to the platform at a distance
0.25 m from the centre on its either sides
along its diameter (see figure). Each gun
simultaneously fires the balls horizontally and
perpendicular to the diameter in opposite directions. After leaving the platform, the balls have horizontal speed of $9 m s^{-1}$ with respect to the ground. The rotational speed of the platform in rads ${ }^{-1}$ after the balls leace the

D Watch Video Solution

13. Two identical uniform discs roll without slipping on tow different sufaces $A B$ and $C D$
(see figure) starting at A and C with linear
speeds v_{1} and v_{2} respectively, and always

$$
v_{1}=3 m / \text { sthenv } v_{2} \in m / \operatorname{sis}\left(g=10 m / s^{2}\right)
$$

Assertion- Reason Type questions

1. Assertion : In rolling, all points of a rigid body have the same linear velocity.

Reason : The rotational motion does not affect
the linear velocity.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: D

- Watch Video Solution

2. Assertion : The speed of a whirl wind in a tornado is alarmigly high.

Reason : If no external torque acts on a body, its angualr velocity remains constant.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is false.

D. If both, Assertion and Reason are false.

Answer: C

D Watch Video Solution

3. Assertion : The velovity of a body at the bottom of an inclined plane of given height is more when it slides down the plane compared to when it is rolling down the same oplane.

Reason : In rolling down, a body acruires both kinetic energy of translation and rotation.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.

D. If both, Assertion and Reason are false.

Answer: B

D Watch Video Solution

4. Assertion : The moment of inertia of a rigid
body reduces to its minimum value, when the axis of rotation passes through its centre of gravity.

Reason : The weight of a rigid body always acts through its centre of gravity.
A. If both, Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.
5. Assertion : The centre of mass of an electron
and proton, when released moves faster towards proton.

Reason : This is because proton is lighter than electron.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: D

- Watch Video Solution

6. Assertion : At the centre of earth, a body has
centre of mass , but no centre of gravity.
Reason : This is because $g=0$ at the centre of earth.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution

7. Assertion : Torque is due to transverse componet is not perpendicular to radial component.
A. If both, Assertion and Reason are true and the Reason is the correct explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

- Watch Video Solution

8. Assertion : power associated with torque is
product of torque and angualr speed of the body about the axis of rotation.

Reason : It is rotational analogue of power in translatory motion.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution
9. Assertion : Torque is time rate of change of
a parameter, called angualr momentum.
Reason : This is because in linear motion, force
respresents time rate of change of linear momentum.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution
10. Assertion : If earth were to shrink length of the day would increase.

Reason : Smaller object would take more time to complete one rotation around its axis.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.

D. If both, Assertion and Reason are false.

Answer: D

D Watch Video Solution

11. Assertion : There are two propellers in a
helicopter.

Reason : Angular momentum is conserved.
A. If both, Assertion and Reason are true
and the Reason is the correct
explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: B

D Watch Video Solution

12. Assertion : If there is no external torque on
a body about its centre of mass, then the velocity of the centre of mass remains constant.

Reason : The linear momentum of an isolated
system remains constant.
A. If both, Assertion and Reason are true
and the Reason is the correct explanation of the Assertion.
B. If both, Assertion and Reason are true
but Reason is not a correct explanation
of the Assertion.
C. If Assertion is true but the Reason is
false.
D. If both, Assertion and Reason are false.

Answer: D

- Watch Video Solution

13. Statement -1 : In the formation of a neutron star, spin angular velocity increases tremendously.

Statement-2 : Conservation of rotational kinetic energy
A. Statement- 1 is true, Statement- 2 is true ,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.
D. Statement-1 is false, but statement-2 is
true.

Answer: C
(Watch Video Solution
14. Statement-1 : A wheel moving down a perfectly frictionless inclined plane shall undergo slipping (not rolling).

Statement-2 : For rolling, torque is required, which is provided by tangential froce.
A. Statement- 1 is true, Statement-2 is true,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.
D. Statement-1 is false, but statement-2 is
true.

Answer: A

- Watch Video Solution

15. Statement-1 : Torque is a vector whose direction is along the applied froce.

Statement-2 : $\vec{\tau}=\vec{r} \times \vec{F}$
A. Statement- 1 is true, Statement- 2 is true,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.

C. Statement-1 is true, but statement-2 is

false.
D. Statement-1 is false, but statement-2 is
true.

Answer: D

D Watch Video Solution
16. Statement-1 : The centre of mass of a body may lie where there is no mass.

Statement-2 : The centre of mass has nothing to do with the mass.
A. Statement- 1 is true, Statement-2 is true,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.

D. Statement-1 is false, but statement-2 is

 true.
Answer: C

D Watch Video Solution

17. Statement-1 : Moment of inertia of a body is
same, whatever be the axis of rotation.

Statement-2 : Moment of inertia depends on mass and size of rotation of the body.
A. Statement- 1 is true, Statement- 2 is true ,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.
D. Statement-1 is false, but statement-2 is
true.

Answer: D

D Watch Video Solution

18. Statement-1 : When ice on polar caps of earth melts, duration of the day increases.

Statement-2
$L=I \omega=I\left(\frac{2 \pi}{T}\right)=$ cons $\tan t$.
A. Statement- 1 is true, Statement- 2 is true,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.
D. Statement-1 is false, but statement-2 is
true.

Answer: A

D Watch Video Solution

19. Statement-1 : A hollow cylinder of diameter
0.5 m has a mass of 10 kg . Its moment of inertia about its axis of symmetry is $0.625 \mathrm{kgm}^{2}$.

Statement-2: $I=M R^{2}$
A. Statement-1 is true, Statement-2 is true ,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.
C. Statement-1 is true, but statement-2 is
false.
D. Statement-1 is false, but statement-2 is
true.

Answer: A

- Watch Video Solution

20. Statement-1 : To unscrew a rusted nut, we need a wrench with longer arm.

Statement-2: $\vec{\tau}=\vec{r} \times \vec{F}$.
A. Statement- 1 is true, Statement-2 is true ,

Statement-2 is correct explanation of

Statement-1.
B. Statement-1 is true, Statement-2 is true
but Statement-2 is not correct
explanation of Statement-1.

C. Statement-1 is true, but statement-2 is

false.
D. Statement-1 is false, but statement-2 is
true.

Answer: A

D Watch Video Solution

