©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS (HINGLISH)

THERMODYNAMICS

Sample Problems

1. A sample of gas $(\gamma=1.5)$ is taken through an
adiabatic process in which the volume is
compressed from $1600 \mathrm{~cm}^{3}$ to $400 \mathrm{~cm}^{3}$. If the
initial pressure is $150 k P a$, (a) what is the final pressure and (b) how much work is done by the gas in the process?

D Watch Video Solution

2. A gram molecule of gas at $27^{\circ} \mathrm{C}$ expands isothermally untill its volume is doubled. Find the amount of work done and heat absorbed.

$$
\text { Take } R=8.31 \mathrm{Jmole}^{-1} K^{-1}
$$

3. 200 J of work is done to compress an ideal gas isothermally. How much heat flows from the gas during the compression process?

D Watch Video Solution

4. Suppose 300 J of work done on a system and

70 cal of heat is extracted from the system. What
are the values of $d W, d Q$ and $d U$ with proper signs?
5. A sample of ideal gas $(\gamma=1.4)$ is heated at constant pressure. If an amount $140 J$ of heat is supplied to the gas, find (a) the changes in internal energy of the gas, (b) the work done by the gas.

D Watch Video Solution

6. At $0^{\circ} C$ and normal atmospheric pressure, the
volume of 1 gram of water increases from
1c. cto1.091c. c on freezing. What will be the change in its internal energy? Normal
atmospheric pressure is $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and latent heat of melting of ice $=80 \mathrm{cal} / \mathrm{gram}$.

D Watch Video Solution

Curiosity Question

1. The search of a perpetual motion machine has
kept inventors occupied for centuries comment on this statement.
2. Which chemical compounds are used in refrigerators and air conditioners? What are their merits and demerits?

D Watch Video Solution

Solved Examples

1. Three moles of an ideal gas kept at a constant
temperature of $300 K$ are compressed from a
volume of 4 litre to 1 litre. Calculate work done in the process. $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.

- Watch Video Solution

2. Air in the cyclinder of a diesel engine is
compressed to $\frac{1}{15}$ of its initial volume. If initial temperature is $300 K$ and initial pressure is
$10^{5} P a$, find the final temperature and final pressure. Take $\gamma=1.4$.

D Watch Video Solution

3. A gas is suddenly compressed to $\frac{1}{4} t h$ of its original volume. Caculate the rise in
temperature when original temperature is $27^{\circ} C . \gamma=1.5$.

D Watch Video Solution

4. A sample of hydrogen of mass $6 g$ is allowed to expand isothermally at $27^{\circ} \mathrm{C}$ till its volume is doubled.
(a) How may moles of hydrogen are there?
(b) What is final temperature of H_{2} ?
(c) Caculate work done during expansion.
5. Calculate the fall in temperature of helium initially at $15^{\circ} C$, when it is suddenly expanded to $8 \times$ its original volume $(\gamma=5 / 3)$.

- Watch Video Solution

6. A gram molecule of a gas at $127^{\circ} \mathrm{C}$ expands isothermally until its volume is doubled. Find the amount of work done and heat absorbed.

- Watch Video Solution

7. A cylinder containing one gram molecule of the gas was compressed adiabaticaly untill its tempertaure rose from $27^{\circ} \mathrm{C}$ to $97^{\circ} \mathrm{C}$. Calculate the work done and heat produced in the gas $(\gamma=1.5)$.

D Watch Video Solution

8. The $P-V$ diagram for a cyclic process is a triangle $A B C$ drawn in order (figure). The coordinates of A, B, C are $(4,1),(2,4)$ and $(2,1)$ respectively. The co-ordinates are in the order
(P, V) Pressure is in $N m^{-2}$ and volume is in
liter. Calculate work done during the process
from A to B, B to C and C to A. Also, calculate work done in the complete cycle.

- Watch Video Solution

9. Three moles of an ideal gas kept at a constant temperature of $300 K$ are compressed from a volume of 4 litre to 1 litre. Calculate work done in the process. $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.
10. A quantity of an ideal gas at $17^{\circ} C$ is compressed adiabatically to ${ }^{`} 1 / 8$ th of its initial
volume. Calculate the final temp. if the gas in monoatomic.

D Watch Video Solution
11. When one mole of monoatomic gas is mixed
with 3 moles of diatomic gas, then find
C_{p}, C_{v}, f and γ for this mixture. Here, f stands
for degrees of freedom.
12. 5 mole of oxygen are heated at constant volume from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$. What will be the change in internal energy of the gas? Gram molar specific heat of gas at constant pressure

$$
=8 \text { cal. } \text { Mole }{ }^{-1} .{ }^{\circ} C^{-1} \quad \text { and }
$$

$R=8.36 \mathrm{Jmole}^{-1} .^{\circ} C^{-1}$.

D Watch Video Solution

13. A metal of mass 1 kg at constant atmospheric pressure and at initial temperature $20^{\circ} \mathrm{C}$ is
given a heat of 20000J. Find the following
(a) change in temperature,
(b) work done and
(c) change in internal energy.
(Given, specific heat $=400 \mathrm{~J} / \mathrm{kg}-{ }^{\circ} \mathrm{C}$, cofficient of cubical expansion,
$\gamma=9 \times 10^{-5} /{ }^{\circ} C$, density $\rho=9000 \mathrm{~kg} / \mathrm{m}^{3}$,
atmospheric pressure $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$)

- Watch Video Solution

14. Calculate the change in internal energy of a block of copper of mass $200 g$ when it is heated
from $25^{\circ} \mathrm{Cto} 75^{\circ} \mathrm{C}$. Given specific heat of copper $=0.1 \mathrm{cal} . g^{-1} .^{\circ} C^{-1}$ and assume that change in volume is negligible.

D Watch Video Solution

15. A system is taken from state a to state c along the path $a d c$ (figure). The amount of heat absorbed is 10 cals and work done on the gas is

138 J . Calculate the work done on//by the gas
when 20 cals of heat are absorbed in taking the system from state a to state c along the path
$a b c$

D Watch Video Solution

16. The volume of steam produced by $1 g$ of water at $100^{\circ} \mathrm{C}$ is $1650 \mathrm{~cm}^{3}$. Calculate the change in internal energy during the change of state. Given $J=4.2 \times 10^{7} \mathrm{erg}$.
cal. ${ }^{-1}, d=981 \mathrm{~cm}^{s-2}$. Latent heat of stream
$=540 \mathrm{cal} . G^{-1}$

D Watch Video Solution

17. Calculate the change in internal energy when $5 g$ of air is heated from internal energy when $5 g$ of air is heated from $0^{\circ} \mathrm{Cto} 2^{\circ} \mathrm{C}$. Specific heat of air at constant volume is $0.172 \mathrm{cal} / \mathrm{g} /{ }^{\circ} \mathrm{C}$.
18. A cyclinder contains 0.5 mole of an ideal gas
at $310 K$. As the gas expands isothermally from
an initial volume $0.31 m^{3}$ to a final volume of
$0.45 \mathrm{~m}^{3}$, find the amount of heat that must be added to the gas in order to maintain a constant temperature.

- Watch Video Solution

19. A carnot engine absorbs $1000 J$ of heat energy from a reservoir at $127^{\circ} \mathrm{C}$ and rejecs $600 J$ of heat energy during each cycle. Calculate
(i) efficiency of the engine, (ii) temperature of sink, (iii) amount of useful work done per cycle.

D Watch Video Solution

20. A carnot engine whose heat sink is at $27^{\circ} C$
has an efficiency of 40%. By how many degrees
should the temperature of source be changed to increase the efficiency by 10% of the original efficiency?

D Watch Video Solution

21. One of the most efficient engines ever developed operated between 2100 K and 700 K . Its actual efficiency is 40%. What percentage of its maximum possible efficiency is this?

D Watch Video Solution

22. A carnot engine absorbs 500 J of heat from a reservoir at $227^{\circ} \mathrm{C}$ and rejects of seek (ii) efficiency of engine (iii) amount of useful work done per cycle.
23. A carnot engine whose heat sink is at $27^{\circ} C$
has an efficiency of 40%. By how many degrees
should the temperature of source be changed
to increase the efficiency by 10% of the original
efficiency?

D Watch Video Solution

24. A Carnot engine takes in heat from a reservoir of heat at $427^{\circ} \mathrm{C}$. How many calories of heat must it take from the reservoir in order
to procuce useful mechanical work at the rate of $357 w a$?

D Watch Video Solution

25. The temperatures T_{1} and $T(2)$ of two heat reservoirs in an ideal carnot engine are $1500^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$. Which of these (a) increasing $T_{1} b y 100^{\circ} C$ or (b) decreasing $T_{2} b y 100^{\circ} C$ would result in greater improvement of the efficiency of the engine?
26. A refrigerator has to transfer an average of

263J of heat per second from temperature
$-10^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Calculate the average power consumed, assuming no enegy losses in the process.

- Watch Video Solution

27. Refrigerator A works between $-10^{\circ} \mathrm{C}$ and
$27^{\circ} \mathrm{C}$, while refrigerator B works between
$-27^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$, both removing heat equal to

2000J from the freezer. Which of the two is the better refrigerator?

D Watch Video Solution

28. A refrigerator has to transfer an average of $506 J$ of heat per second from. Temp.
$-20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. Caculate the average power consumed, assuming no energy losses in the process.

- Watch Video Solution

29. How much energy in watt hour may be required to convert 2 kg of water into ice at $0^{\circ} \mathrm{C}$, assuming that the refrigerator is ideal? Take room temp. $=25^{\circ} C$, which is also the initial temp. of water and temp. of freezer is $-15^{\circ} C$.

D Watch Video Solution

30. How many kg of water at $0^{\circ} C$ can a freezer with a coefficient of performance 5 make into ice cubes at $0^{\circ} C$ with a work input of $3.6 M J ?$
31. A Carnot engine, having an efficiency of $\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is 10J, the amount of energy absorbed from the reservoir at lower temperature is

D Watch Video Solution

32. A refrigerator is driven by $1000 W$ electric motor having an efficiency of 60%. The refrigerator is considerd as a reversible heat
engine operating between $273 K$ and $303 K$.

Calculate the time required by it to freeze 32.5 kg of water at $0^{\circ} \mathrm{C}$. Heat losses may be rejected. Latent heat of fusion of ice $=336 \times 10^{3} \mathrm{Jkg}^{-1}$.

D Watch Video Solution

33. A carnot cycle is performed by

1moleofair $(\gamma=1.4)$ initially at $327^{\circ} C$. Each
stage represents a compression or expansion in
the ratio 1:6. Calcultate (a) the lowest temperature (b) net work done during each
cycle and (C) efficiency of the engine.
Take $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

34. A carnot engine having a perfect gas aas the working substance is driven backwards and is
used for freezing water already at $0^{\circ} C$. If the engine is driven by 500 W electric motor with an efficiency of 60% how long will it take to freeze

15 kg of water? The working temps of the engine are $15^{\circ} \mathrm{C}$ and $0^{\circ} \mathrm{C}$. The system involves no
energy losses. Given latent heat of ice

$$
=333 \times 10^{3} \mathrm{Jkg}^{-1}
$$

D Watch Video Solution

Conceptual Problems

1. The volume of an ideal gas is V at pressure P.

On increasing the pressure by ΔP, change in
volume of gas is ΔV_{1}, under isothermal conditions and ΔV_{2} under adiabatic conditions.

Which is more and why?
2. Identify isothermal and adiabatic process in the following diagram

3. Figure shows the volume versus temperature graph for the same mass of a gas (assumed ideal) corresponding to two different pressure P_{1} and P_{2}. Then

4. Can water be boiled without heating?

D Watch Video Solution

5. Can we increase the temperature of a gas without supplying heat to it?

D Watch Video Solution

6. Is the heat supplied to a system always equal to the increase in its internal energy?
7. Is the internal energy of a gas a function of the pressure? Explain.

D Watch Video Solution

8. Why is conversion of heat into work not possible without a sink at lower temperature?
9. First law of thermodynamics does not forbid flow of heat from lower teperature to higher temperature. Comment.

- Watch Video Solution

10. If on giving $40 j 0 \underline{e}$ of heat to a system, work done on the system is 10joul e', what will be the change in internal energy of the system?

D Watch Video Solution

11. How does internal energy of a gas change in
(i) isothermal expansion
(ii) adiabatic expansion?

D Watch Video Solution

12. A system goes from A and B via two processes. I and II as shown in figure. If ΔU_{1} and ΔU_{2} are the changes in internal energies in the processes I and II respectively,
then
p

D Watch Video Solution
13. Give two examples of reversible processes.

Discuss their reversibility?

D Watch Video Solution
14. A refrigerator transfers heat from the cold coling coils to the warm surroundings. Is it against the second law of thermodynamics? Justify your answer?

D Watch Video Solution

15. Can the Carnot engine be realised in practice?
16. No real engine can have an efficiency greater than that of a carnot engine working between the same two temperatures, why?

- Watch Video Solution

17. A heat engine coverts disordered mechanical motion into ordered mechanical motion.

Comment.

18. What is meant by reversible process? Explain why the efficiency of a reversible engine is maximum?

- Watch Video Solution

19. Why can a ship not use the internal energy of sea water to operate its engine?
20. What is the significance of area of closed
curve on P-V diagrams?

- Watch Video Solution

21. Can the work done during a cyclic process be
zero?

(D) Watch Video Solution

22. Heat equivalent to $30 J$ is supplied to a thermodynamic system and $10 J$ of work is done
on the system. What is change in its internal energy?

D Watch Video Solution

Very Short Answer Questions

1. What is an isobaric process?

D Watch Video Solution
2. What is an isochoric process?

- Watch Video Solution

3. Can the temperature of an isolated system remain constant?

- Watch Video Solution

4. Which kind of process is superheating of steam.
5. To an expanding gas, no external energy is suppiled. Will the gas do any work? If yes, what will be the source of energy?

D Watch Video Solution

6. Does the internal energy of an ideal gas
change in an isothermal process? In an adiabatic process?

D Watch Video Solution

7. A sample of an ideal gas in a cyclinder is
compressed adiabatically to $\frac{1}{3} r d$ of its volume.
Will final pressure be more or less than $3 \times$ the initial pressure?

- Watch Video Solution

8. Can two isothermal curves intersect each other?
9. In summer, when the valve of a bicycle tube is removed, the escaping air appears cold. Why?

D Watch Video Solution

10. When air of the atmosphere rises up, it cools.

Why?

- Watch Video Solution

11. Can heat be added to a substance without
causing the temperature of the body of rise? If
so does this contradict the concept of heat as energy in the process of transfer because of temperature differece?

(D) Watch Video Solution

12. What thermodynamics variable is defined by
(a) Zeroth law (b) First law?

- Watch Video Solution

13. Is it possible to convert internal energy into works?

D Watch Video Solution

14. An ideal gas is compressed at a constant temperature, will its internal energy increase or decrease?

(
15. Which type of motion of the molecules is responsible for internal energy of a monoatomic gas?

D Watch Video Solution

16. A piece of leads is hammered. Does its internal energy increase? Does the heat enter the lead from outside?
17. In a thermodynamics process, 300 joule of heat is supplied to a gas and 200 joule of work is done by the gas. What is the change in internal energy of the system?

D Watch Video Solution

18. Why does a gas get heated on compression?

- Watch Video Solution

19. Can we decide whether change in internal
energy of a system is due to heating or performance of work?

D Watch Video Solution

20. Can whole of work be converted into heat?

D Watch Video Solution

21. Can whole of heat be converted into work?
22. Which molecules, ice at $10^{\circ} \mathrm{C}$ or water at $0^{\circ} C$ have greater potential energy and why?

D Watch Video Solution

23. What is specific heat of gas in isothermal changes?

D Watch Video Solution

24. What is the nature of $P-V$ diagram for isobaric and isochoric processes?

- Watch Video Solution

25. Give one example of a heat pump.

D Watch Video Solution

26. Is it possible to construct a heat engine, which is free from thermal pollution?
27. How is efficiency of carnot engine affected by the nature of working substance?

Watch Video Solution
28. Is rusting of iron a reversible process?

D Watch Video Solution

29. Can we increase the coefficient of performance of a refrigerator by increasing the amount of working substance?

D Watch Video Solution

30. A refrigerator transfers heat from the cold coling coils to the warm surroundings. Is it against the second law of thermodynamics? Justify your answer?
31. Is cofficient of performance of refrigerator always constant?

- Watch Video Solution

Short Answer Questions

1. Ice at $0^{\circ} \mathrm{C}$ is converted into steam at $100^{\circ} \mathrm{C}$.

State the isothermal changes in this process?

- Watch Video Solution

2. If a drop of water falls on a very hot irion, it takes long time to evaporate. Explain why?

D Watch Video Solution

3. During adiabatic changes, $V \propto 1 / T^{2}$. How will pressure of the gas vary with temperature?

D Watch Video Solution

4. Is the equation $P V=R T$ valid for both, isothermal and adiabatic changes?

- Watch Video Solution

5. A gas expands in such a way that $P V^{2}=$ cons $\tan t$. Will the gas cool get heated on expansion?

D Watch Video Solution

6. The temperature of the surface of sun is about 6000 K . Can we produced a temp. of $7000 K$ by converging sun's rays using a large convex lens?

- Watch Video Solution

7. If an electric fan be switched on in a closed room, will the air of the room be cooled? If not, why do we feel cold?

D Watch Video Solution

8. Which one among a solid, liquid and gas of same mass and at the same temp. has the greatest internal energy? Which one least? Why?
9. A thermos flask contains coffee. It is shaken
vigorously. (i) Has any heat been added to it.
(ii) Has any work been done on it.
(iii) Does it internal energy change?
(iv) Does its temp. rise?

- Watch Video Solution

10. By what method can the internal energy of an ideal gas be changed?

- Watch Video Solution

11. Internal energy of a compressed gas is less than that of a rarefield gas, at the same temperature.

- Watch Video Solution

12. On a hot summer day we want to cool our room by opening the refrigerator door annd closing all the windows and doors. Will the process work ?

- Watch Video Solution

13. Discuss whether the following phenomena are reversible?
(i) Water fall (ii) Rusting of iron
(iii) Electrolysis.

D Watch Video Solution

14. Is the efficiency of a heat engine more in hilly areas than in plains?
15. To increase the efficiency of a carnot engine,
will you prefer to (i) increase the temp. of source by $10 K$ or (ii) decrease the temp. of sink by $10 K$?

D Watch Video Solution

16. Give briefly the concept of internal energy.

- Watch Video Solution

17. Define the four thermodynamic processes.

What is meant by indicator diagram?

D Watch Video Solution

18. State the sign conventions used in all thermodynamic processes?

(D) Watch Video Solution

19. What do you learn by applying first law of thermodynamics to isothermal and adiabatic

processes?

- Watch Video Solution

20. Show that the slope of $p-V$ diagram is greater for an adiabatic process as compared to an isothermal process.

- Watch Video Solution

21. Discuss work done in an isothermal/adiabatic
process in terms of indicator diagram.
22. Briefly discuss the limitations of first law of thermodynamics.

D Watch Video Solution

23. State second law of thermodynamics.

D Watch Video Solution

1. Explain what is meant by isothermal operations. Give some examples.

D Watch Video Solution

2. What are adiabatic operations? Enumerate some examples. State equations representing these operations.

D Watch Video Solution

3. Obtain an expression for work done by a gas in an isothermal expansion.

- Watch Video Solution

4. Derive an expression for work done in an adiabatic process.

D Watch Video Solution

5. State Zeroth law of thermodynamics. How does it lead to the concept of temperature?

- Watch Video Solution

6. State and explain first law of thermodynamics.

Establish the relation between two principle specific heats of a gas on the basis of this law.

- Watch Video Solution

7. Discuss briefly any three applications of first law of thermodynamics.
8. Establish relation between two principle specific heats of a gas.

D Watch Video Solution

9. What are cyclic and non cyclic processes?

Calculate work done in such processes.

D Watch Video Solution

10. What are reversible and irreversible processes? Give some examples of each.

(D) Watch Video Solution

11. What is a heat engine? Obain an expression
for its efficiency. Mention different types of heat engines.

- Watch Video Solution

Advanced Problems For Competitions

1. An ideal gas expands isothermally along $A B$ and does 700 J of work. How much heat does
the gas exchange along $A B$? The gas then expands adiabarically along BC and does $400 J$ of work. When the gas returns to A along CA, it exhausts $100 J$ of heat to the surroundings. How much work is done on the gas along this path?

$\longrightarrow V$
2. An ideal gas having initial pressure P, volume V and temperature T is allowed to expands adiabatically until its volume becomes 5.66 V while its temperature falls to $\mathrm{T} / 2$.
(i) How many degrees of freedom do the gas molecules have?

Obtain the work done by the gas during the expansion as a function of the initial pressure P and volume V .

- Watch Video Solution

3. What is a polytropic process, Obtain expressions for work done in a polytropic process and specific heat of gas in such a process.

D Watch Video Solution

4. Two Carnot engines are operated in
succession. The first engine receives heat from a
source at $T=800 K$ and rejects to sink at $T_{2} K$.
The second engine receives heat rejected by the
first engine and rejects to another sink at
$T_{3}=300 K$. If work outputs of the two engines are equal, then find the value of T_{2}.

- Watch Video Solution

5. One mole of a monoatomic gas is mixed with three moles of a diatomic gas. What is the molecular specific heat of mixture at constant volume? $R=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$.
6. At $27^{\circ} C$ two moles of an ideal monoatomic gas occupy a volume V. The gas expands adiabatically to a volume 2 V . Calculate (i) the final temperature of the gas, (ii) change in its internal energy, and (iii) the work done by the gas during this process.

- Watch Video Solution

7. The pressure of one gram mole of a monoatomic gas increases linearly from $4 \times 10^{5} \mathrm{~N} / \mathrm{M}^{2}$ to $8 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. Calculate
(i) Work done by the gas,
(ii) increase in internal energy, (iii) amount of heat supplied,
(iv) molar heat capacity of the gas.

Take $R=8.31 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$.

D Watch Video Solution

8. (Figure) shows that two $P-V$ curves AB and

BC for a gas: one is for isothermal process and other is for adiabatic process.
(i) Which curve denotes which change and why?
(ii) How much work will be done by the gas in
change $A B$? Will the internal energy of gas increase or decrease? How much heat will the gas give or take?
(iii) Discuss all the above things in change $B C$.

D Watch Video Solution

9. Gas with in a chamber, passes through the
cycle shown in (figure). Determine the net heat added to the system during process $A B$ is
$Q_{A B}=20 J$. No heat is transferred during process $B C$ and net work done during the cycle
is 15 J

D Watch Video Solution

10. One mole of an ideal gas is taken through the cyclic process ABCDA, as shown in (figure). Using the graph, calculate
(i) Work done in the processes
$A \rightarrow B, B \rightarrow C, C \rightarrow D$ and $D \rightarrow A$
(ii) Work done in complete cycle ABCDA
(iii) Heat rejected by the gas in one complete cycle.

- Watch Video Solution

1. Can a system be heated and its temperature remains constant?

D Watch Video Solution

2. A system goes from P to Q by two different paths in the $P-V$ diagram as shown in
(figure). Heat given to the system in path 1 is
1000 J . The work done by the system along path
1 is more than path 2 by $100 J$. What is the
exchange by the system in path 2 ?

- Watch Video Solution

3. On a hot summer day we want to cool our room by opening the refrigerator door annd
closing all the windows and doors. Will the process work ?

D Watch Video Solution

4. Can we increase the temperature of a gas
without supplying heat to it?

D Watch Video Solution
5. Air pressure in a car tyre increases during driving. Explain.

Short Answer Questions Ncert

1. Consider a Carnot's cycle operating between
$T_{1}=500 K$ and $T_{2}=300 K$ producing $1 K J$ of mechanical work per cycle. Find the heat transferred to the engine by the reservoirs.
2. A person of mass $60 K g$ wants to lose $5 k g$ by going up and down a 10 m high stairs. Assume he burns twice as much fat while going up than coming down. If 1 kg of fat is burnt on expending 7000kilo calories, how many times must be go up and down to reduce his weight by $5 k g$?

D Watch Video Solution

3. Consider a cycle tyre being filled with air by a pump. Let V be the volume of the tyre (fixed)
and at each stroke of the pump $\Delta V(\ll V)$
of air is transferred to the tube adiabatically .
What is the work done when the pressure in the
tube is increased from $P_{1} \rightarrow P_{2}$?

D Watch Video Solution

4. In a refrigerator, one removes heat from a lower temperature and deposites to the surrounding at a higher temperature. In this process, machanical work has to be done, which is provided by an elecrtic motor. If the motor is of $1 K V$ power, and heat is transferred from
$-3^{\circ} \mathrm{Cto} 27^{\circ} \mathrm{C}$, find the heat taken out of the refrigerator per second assuming its efficiency is
50% of a perfect engine.

D Watch Video Solution

5. If the co-efficient of performance of a refrigerator is 5 and operates at the room temperature $\left(27^{\circ} C\right)$, find the temperature indide the refrigerator.

- Watch Video Solution

6. The initial state of certain gas is $\left(P_{i}, V_{i}, T_{i}\right)$. It undergoes expansion till its volume become V_{f}. Consider the following two cases :
(a) the expansion takes place at constant temperature.
(b) the expension takes place at constant pressure.

Plot the $P-V$ diagram for each case. In which of the two cases, is the work done by the gas more?

Long Answer Questions Ncert

1. Consider a $P-V$ diagram in which the path
followed by one mole of perfect gas in a cyclinderical container is shown in (figure)
(a) Find the work done when the gas is taken
from state 1 to state 2.
(b) What is the ratio of temperatures
$T_{1} / T_{2}, \quad$ if $\quad V_{2}=2 V_{1} ?$
(c) Given the internal energy for one mole of gas at temperature $\operatorname{Tis}(3 / 2) R T$, find the heat
supplied to the gas when it is taken from state 1
to 2 , with $V_{2}=2 V_{1}$.

(Watch Video Solution

2. A cycle followed by an engine (made of one mole of perfect gas in a cyclinder with a piston) is shown in (figure)

A to B: volume constant B to C : adiabatic

C to D: volume constant D to A : adiabatic
$V_{c}=V_{D}=2 V_{A}=2 V_{B}$
(a) In which part of the cycle heat is supplied to
the engine fron outside?
(b) In which part of the cycle heat is being given to the surrounding by the engine?
(c) What is the work done by the engine in one cycle? Write your answer in term of P_{A}, P_{B}, V_{A}.
(d) What is the efficiency of the engine?
($\gamma=5 / 3$ for the gas $),$
$\left(C_{v}=\frac{3}{2} R\right.$ for one mole $)$

- Watch Video Solution

3. A cycle followed by an engine (made of one mole of an ideal gas in a cyclinder with a piston)
is shown in (figure). Find heat exchanged by the engine, with the surrounding for each section of
the cycle. $\left[C_{V}=(3 / 2) R\right]$
$A B$: constant volume $B C$: constant pressure

CD : adiabatic DA: constant pressure.

4. Consider that an ideal gas (nmoles) is expanding in a process given by $P=f(V)$, which passes through a point $\left(P_{0}, V_{0}\right)$. Show that the gas is absorbing heat at $\left(P_{0}, V_{0}\right)$ if the slope of the curve $P=f(V)$ is larger than the slope of the adiabat passing through $\left(p_{0}, V_{0}\right)$.

D Watch Video Solution

5. Consider one mole of a perfect gas in a cyclinder of unit cross section with a piston attached, (figure) A spring (spring constant K) is attached (unstretched length L) to the piston
and the bottom of the cylinder. Initially, the spring is unstretched and the gas is in equilibrium. A certain amount of heat Q is supplied to the gas causing an increase of volume from $V_{0} \mathrm{to} V$.
(a) What is the initial pressure of the system?
(b) What is the final pressure of the system?
(c) Using the first law of thermodynamics, write
down a relation between Q, P_{a}, V, V_{0} and K.

Atmospheric
 Pressure Pa_{a}

Higher Order Thinking Skills

1. (Figure) Shows three isothermal curves at temp T_{1}, T_{2} and T_{3}
$T_{3}>T_{2}>T_{1}$. A system changes its state by four paths a, b, c, and d, .Identify the path in
which changes in internal energy of the system
is maximum.

D Watch Video Solution

2. A sample of $2 k g$ of monoatomic helium (assumed ideal) is taken through the process

ABC and another sample of $2 k g$ of the same gas
is taken through the process ACD as shown in (figure). Given molecular mass of He $=4$ and $R=8.3 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$
(i) What is the temperature of He in each of the states $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ?
(ii) How much is the heat involves in process, $A B C$ and $A D C$?

- Watch Video Solution

3. Figure. Shows an ideal gas changing its state
A to state C by two different path $A B C$ and $A C$.
a. Find the path along which the work done is the least.
b. The internal energy of the gas at A is 10 J and the amount of heat supplied to change its state to C through the path $A C$ is 200 J . Find the internal energy at C.
c. The internal energy of the gas at state B is

20 J . Find the amount of heat supplied to the gas to go from state A to state B.

- Watch Video Solution

4. Two moles of helium gas undergo a cyclic process as shown in Fig. Assuming the gas to be ideal, calculate the following quantities in this

process

(a) The net change in the heat energy
(b) The net work done
(c) The net change in internal energy
5. A thermos flask contains coffee. It is shaken vigorously. (i) Has any heat been added to it.
(ii) Has any work been done on it.
(iii) Does it internal energy change?
(iv) Does its temp. rise?

D Watch Video Solution

6. At $27^{\circ} \mathrm{C}$ two moles of an ideal monatomic gas occupy a volume V. The gas expands adiabatically to a volume $2 V$. Calculate
(a) final temperature of the gas
(b) change in its internal energy and
(c) the work done by the gas during the process.
[$R=8.31 J / m o l-K]$

D Watch Video Solution

7. A sample of an ideal gas is taken through the
cyclic process $a b c a$. It absorbs $50 J$ of heat during the part $a b$, no heat during $b c$ and rejects

70 J of heat during ca .40 J of work is done on the gas during the part $b c$.
(a) Find the internal energy of the gas at b and c if it is 1500 J at a.
(b) Calculate the work done by the gas during the part $c a$.

D Watch Video Solution

8. The initial volume of an ideal gas is V_{1} and the initial pressure is $P_{1}=6$ atmosphere. It expands isothermally to a volume V_{2} and pressure $P_{2}=3 \mathrm{~atm}$, and then adiabatically to a
volume V_{3} and pressure $P_{3}=2 a t m$. Draw a rough sketch of these changes. Calculate the value of V_{2} / V_{1} and V_{3} / V_{2}.

Take $\gamma=1.4$.

D Watch Video Solution

9. About 0.014 kg nitrogen is enclosed in a vessel at temperature of $27^{\circ} \mathrm{C}$ How much heat has to be transferred to the gas to double the rms speed of its molecules ? $(R=2 \mathrm{cal} / \mathrm{molK})$

Value Based Questions

1. A change in pressure and volume of a gas
without any change in its temperature is called
an isothermal change. In such a change there is
free exchange of heat between the gas and its
surroundings. Two essential conditions for a perfect isothermal change are :
(i) Walls of the container must be perfectly conducting
(ii)The process of compression or expansion must be slow.

Read the above passege and answer the
following questions:
(i) A gas atmospheric pressure is compressed isthermally to one third of its volume. What is the final pressure?
(ii) What values of life do you learn from this study?

D Watch Video Solution

2. A change in pressure and volume of a gas
when no heat is allowed to enter into a escape
from the gas is called an adiabatic change.
Obviously, temperature of gas will change in
adiabatic changes.
Two essential conditions for a perfect adiabatic chage are:
(a) the wall of the container must be perfectly non conducting.
(b) the process of compression or expansion must be sudden.

Read the above passage and answer the following questions:
(i) Pressure on a certain volume of air is doubled adiabatically. Will its volume become half, more than half or less than half? Justify.
(ii) What value of life do you learn from this study?

- Watch Video Solution

3. First law of thermodynamics is the general
law of conservation of energy as applied to heat
energy. According to this law, whenever heat is
added to a system, it transforms to an equal
amount of some other forms of energy. If $d Q=$
a small amount of heat supplied to the system,
$d W=$ small amount of work done by the
system and $d U=$ small change in internal
energy of the system, then $d Q=d U+d W$.

Read the above passage and answer the following questions:
(i) The amount of heat obsorbed by a gas is 10 cals and work done on the gas in $58 J$.

Calculate increase in internal energy of the gas.
(ii) What values of life do you learn fro this law?

- Watch Video Solution

4. A refrigerator is a device used for cooling things. Working substance would absorb a
certain quantity of heat Q_{2} from the sink at lower temperature T_{2} and reject a larger amount of heat Q_{1} to the source (surrounding air) at higher temperature T_{1} (= room temperature) with the help of an external agency supplying energy W to the system.

Clearly, $w=Q_{1}-Q_{2}$

Cofficient of performance of refrigerator,
$\beta \frac{T_{2}}{T_{1}-T_{2}}=\frac{1-\eta}{\eta}$
Read the above passage and answer the following questions:
(i) What is the cofficient of performance of a refrigerator working between $-10^{\circ} C$ and
$25^{\circ} C ?$
(ii) 'Refrigerator is an efficient room heater'. Do
you agree with the statement? Justify.

D Watch Video Solution

Ncert Questions

1. A geyser heats water flowing at the rate of 3.0
litre per minute from $27^{\circ} C$ to $77^{\circ} C$. If the geyser operates on a gas burner and its heat of combustion is $4.0 \times 10^{4} \mathrm{~J} / \mathrm{g}$, then what is the rate of combusion of fuel (approx.)?

- Watch Video Solution

2. What amount of heat must be supplied to
$2 \times 10^{-2} \mathrm{Kg}$ of nitrogen at room temperature to rise its temperature by $45^{\circ} \mathrm{C}$ at constant pressure? Given molecular mass of nitrogen is 28 and $R=8.3 \mathrm{Jmole}^{-1} \mathrm{~K}^{-1}$

- Watch Video Solution

3. Explain why
(a) Two bodies at different temperature
T_{1} and T_{2} if brought in thermal contact do not necessarily settle to the mean temperature $\left(T_{1}+T_{2}\right) / 2 ?$
(b) The coolant in a chemical or nuclear plant
(i.e., the liquid used to prevent different parts of a plant from getting too hot)should have high specific heat. Comment.
(c) Air pressure in a car tyre increases during driving . Why?
(d) The climate of a harbour town is more temperature (i.e., without extremes of heat and cold) than that of a town in a desert at the same latitude. Why?

- Watch Video Solution

4. A cyclinder with a movable piston contains

3 mols of hydrogen at standard temperature and pressure. The walls of the cyclinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increases, if the gas is compressed to half its original volume? Given $\gamma=1.4$.
5. In changing the state of a gas adiabatically
from an equilibrium state A to another equilibrium state B, an amount of work equal to
$22.3 J$ is done on the system. If the gas is taken
from State A to B via a process in which the net heat absorbed by the system is 9.35 cal ., How much is the net work done by the system in the later case? (Take 1 cal. $=4.9 \mathrm{~J})$

- Watch Video Solution

6. Two cyclinder A and B of equal capacity are connected to eachother via a stopcock. The cyclinder A contains an ideal gas at standard temperature and pressure, while the cyclindr B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:
(a) What is the final pressure of the gas in A and B?
(b) What is the change in internal energy of the gas?
(c) What is the change in temperature of a gas?
(d) Do the intermidiate states of the system
(before settling to the final equilibrium state)lie on its $P-V-T$ surface?

D Watch Video Solution

7. A steam engine delivers $5.4 \times 10^{8} \mathrm{~J}$ of work per minute and absorbs $3.6 \times 10^{9} J$ of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?
8. An electric heater supplies heat to a system at a rate of 100 W . If sustem performs work at a rate 74 Joes per second, at what rate is the internal energy increasing?

D Watch Video Solution

9. A thermodynamic system is taken from an
original state D to an intermediate state E by
the linear process shown in (figure)

Its volume is then reduced to the original value from E to D via F by an isobaric process.

Calculate the total work done by the gas from D to E to F to D .

- Watch Video Solution

10. A refrigerator is to maintain eatables kept inside at $9^{\circ} C$, if room temperature is $36^{\circ} C$.

Calculate the cofficient of performance.

D Watch Video Solution

Multiple Choice Questions

1. The physical quantity that determins whether
or not a given system A is in thermal equilibrium
with another system B is called

A. Pressure

B. Volume

C. temperature
D. none of these

Answer: C

2. The physical quantity that determins whether or not a given system A is in thermal equilibrium

A. Pressure

B. Volume

C. temperature

D. none of these

Answer: C

D Watch Video Solution

3. Specific heat of a gas during an isothermal change is
A. Zero

B. Positive

C. negative

D. infinity

Answer: D

D Watch Video Solution

4. During an adiabatic change, specific heat of a gas is
A. Zero

B. Positive

C. negative
D. infinity

Answer: A

D Watch Video Solution

5. In case of compression, isothermal curve
lies.....the adiabatic curve. Fill in the blanks

A. above

B. below
C. sometimes above and other time below
D. cannot say

Answer: B

D Watch Video Solution

6. The adiabatic relation between P and T is
A. $P^{1-\gamma} \cdot T^{\gamma}=$ constant
B. $P T^{\gamma}=$ constant
C. $P^{\gamma} T^{1-\gamma}=$ constant
D. $P^{\gamma} T^{\gamma-1}=$ constant

Answer: A

D Watch Video Solution
7. Internal energy of an ideal gas depends upon
A. Volume only
B. temperature only
C. both, volume and temperature

D. neither volume nor temperature

Answer: B

D Watch Video Solution

8. In the relation $d Q=d U+d W$, the quantity which remains the same for all process is
A. $d Q$
B. $a W$
C. $d U$

D. all of the above

Answer: C

D Watch Video Solution

9. Efficiency of carnot engine working between ice point and steam point is
A. 0.732
B. 1
C. 0.268

D. none of these

Answer: C

D Watch Video Solution

10. A gas absorbs $100 C a l$ or $i e$ of heat and performs 150 J of work. Increase energy of the gas in the process is
A. 420 J
B. 570 J
C. 270 J

D. none of these

Answer: C

D Watch Video Solution

11. The coefficient of performance of a refrigerator, which extracts 100 cal or ie of heat// cycle from the sink and releases

140 cal or $i e$ of heat//cycle to the source is
A. 2.5
B. 5
C. 3.5
D. 4

Answer: A

- Watch Video Solution

12. The specific heat of a substance depends on
A. mass of the substance
B. temperature of the substance
C. nature of material of the substance

D. both (a) and (b)

Answer: D

D Watch Video Solution

13. Specific heat of water:
A. $4.2 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
B. $420 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$
C. 1 calkg $^{-1} K^{-1}$

D. $4200 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$

Answer: D

D Watch Video Solution

14. Which law of cooling holds for really larege temperature differences?
A. Newton's law of cooling
B. Wien's law
C. Stefan's law

D. Stefan Boltzmann law

Answer: D

D Watch Video Solution

15. Newton's law of cooling is valid when differences in temperature of liquid and surronding is of the order of
A. $30^{\circ} C$
B. $300^{\circ} \mathrm{C}$
C. $3000^{\circ} \mathrm{C}$

D. $0.3^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

16. The variation of temperature of a liquid with
time is represented correctly by (figure)

A.
(2)

Answer: D

- Watch Video Solution

17. The water equivalent of a calorimeter is $0 g$. Its thermal capacity is
A. $10 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
B. $100 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
C. $1 \mathrm{cal} /{ }^{\circ} \mathrm{C}$
D. $10 \mathrm{cal} /{ }^{\circ} \mathrm{F}$

Answer: A

D Watch Video Solution
18. Equal masses of two liquid- one at $20^{\circ} \mathrm{C}$ and other at $40^{\circ} \mathrm{C}$ are mixed together.The temperature of the mixture is $32^{\circ} \mathrm{C}$. The ratio of their specific heats is
A. $3: 2$
B. 1: 1
C. 2:3
D. $1: 3$

Answer: C

Problems For Practice

1. A cylinder containing one gram molecule of the gas was compressed adiabaticaly untill its tempertaure rose from $27^{\circ} \mathrm{C}$ to $97^{\circ} \mathrm{C}$. Calculate the work done and heat produced in the gas $(\gamma=1.5)$.
2. A sample of gas $(\gamma=1.5)$ is taken through an adiabatic process in which the volume is compressed from $1600 \mathrm{~cm}^{3}$ to $400 \mathrm{~cm}^{3}$. If the initial pressure is 150 kPa , (a) what is the final pressure and (b) how much work is done by the gas in the process?

- Watch Video Solution

3. $200 \mathrm{~cm}^{3}$ of a gas is compressed to $100 \mathrm{~cm}^{3}$ at atmospheric pressure $\left(10^{6}\right.$ dyne $\left./ \mathrm{cm}^{2}\right)$. Find the
resultant pressure if the change is (i) slow (ii) sudden Take $\gamma=1.4$.

D Watch Video Solution

4. An ideal monoatomic gas is taken around the
cycle $A B C D A$, wher co-ordinates of A, B, C and D
on and D on $P-V$ diagram are A
$(p, V), B(2 p, V), C(2 p, 2 V)$ and $D(p, 2 V)$.

Calculate work done during the cycle.

- Watch Video Solution

5. A quantity of air at $27^{\circ} \mathrm{C}$ and atmospheric pressure is suddenly compressed to half its original volume. Find the final (i) pressure and
(ii) temperature.

Given γf or air $=1.42$.

D Watch Video Solution

6. A cyclinder containing one gram mole of a gas was put on boiling water bath and compressed adibatically till its temperature rose by $70^{\circ} \mathrm{C}$.

Calculate the work done and heat developed in
the gas, $\gamma=1.5, R=2$ cal. mole ${ }^{-1} K^{-1}$

- Watch Video Solution

7. One gram mole of an ideal gas at N.T.P is first expanded isothermally to twice the origional volume. It is then compressed at constant volume, till its pressure is raised to the original value. Calculate the total amount of work done. Given $R=8.3$ mole $^{-1} K^{-1}$.
8. A tyre pumped to a pressure of 6atmosphere
bursts suddenly. Calculate the temperature of escaping air. Given initial room temperature is
$15^{\circ} C$ and gamma for air is 1.4^{\prime}.

D Watch Video Solution

9. Find the final value of a gram molecule of a
gas after an isothermal expansion at $127^{\circ} \mathrm{C}$, if
the original volume is $400 c . c$ Given amount of
work done by a gram molecule of a gas during
expansion
2302.6 joule, $R=8.3$ joule mole $^{-1} K^{-1}$

- Watch Video Solution

10. A quantity of air at normal temperature is
compressed (a) slowly (b) suddenly to one third of its volume. Find the rise in temperature, if any in each case, $\gamma=1.4$.
11. Two different adiabatic curves for the same gas intersect two isothermals at T_{1}, and T_{2} as shown in $P-V$ diagram, (figure). How does the ratio $\left(V_{a} / V_{d}\right)$ compare with the ratio $\left(V_{b} / V_{c}\right)$?

12. If at $50^{\circ} \mathrm{C}$ and 75 cm of mercury pressure, a definite mass of gas is compressed (i) slowly (ii)
suddenly, than what will be the final pressure and temp. of the gas in each case, if the final volume is one fourth of the initial volume? $\gamma=1.5$.

D Watch Video Solution

13. An ideal monoatomic gas is taken around the
cycle $A B C D A$, wher co-ordinates of A, B, C and D on and D on $P-V$ diagram are A
$(p, V), B(2 p, V), C(2 p, 2 V)$ and $D(p, 2 V)$.

Calculate work done during the cycle.

- Watch Video Solution

14. Calculate net work done by the gas whose thermodynamical behaviour is represented by right angled triangle ABC on $P-V$ diagram.

The $P-V$ diagram co-ordinates are :
$A(20,6), B(10,12)$ and $C(10,6)$ where P is in
Nm^{-2} and V is in m^{3}
15. One mole of an ideal gas is heated from 273 K to 546 K at constant pressure of 1 atmosphere.

Calculate the work done by the gas in the process.

D Watch Video Solution

16. Three moles of an ideal gas at $127^{\circ} C$ expands isothermally untill the volume is doubled. Calculate the amount of work done and heat absorbed.
17. A volume of $10 m^{3}$ of a liquid is supplied with

100kal of heat and expands at a constant pressure of 10 atm to a final volume of $10.2 \mathrm{~m}^{3}$.

Calculate the work done and change in internal energy.

D Watch Video Solution

18. At $0^{\circ} C$ and normal atmospheric pressure,
the volume of 1 gram of water increases from
1c.cto1.091c. c on freezing. What will be the
change in its internal energy? Normal atmospheric pressure is $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and latent heat of melting of ice $=80 \mathrm{cal} / \mathrm{gram}$.

- Watch Video Solution

19. A sample of ideal gas $(\gamma=1.4)$ is heated at
constant pressure. If an amount $140 J$ of heat is
supplied to the gas, find (a) the changes in internal energy of the gas, (b) the work done by the gas.
20. One kg of water at 373 K is converted into steam at the same temperature. The volume $1 \mathrm{~cm}^{3}$ of water becomes $1671 \mathrm{~cm}^{3}$ on boiling.

Calculate the change in internal energy of the system, if heat of vaporisation is $540 \mathrm{calg}^{-1}$.

Given standard atmospheric pressure $=1.013 \times 10^{5} \mathrm{Nm}^{-2}$.

- Watch Video Solution

21. When a gas is taken from one state a to another state b via one path, it absorbs

25 cal or ies of heat while doing 70 J of work. How much heat much heat has to be supplied in taking the same gas from state a to state b via another path when it performs 200 J of work?

- Watch Video Solution

22. $1 g$ mole of an ideal gas at STP is subjected to
a reversible adiabatic expansion to double its
volume. Find the change in internal energy
$(\gamma=1.4)$
23. If 1 gram of oxygen at 760 mm pressure and
$0^{\circ} C$ has its volume double in an adiabatic change, calculate the change in internal energy.

Take
$R=2 c a l$. Mole $^{-1} K^{-1}=4.2 \mathrm{Jcal}^{-1}$ and $\gamma=1.4$

- Watch Video Solution

24. Ten mole of hydrogen at $N . T . P$ is compressed adiabatically so that it temperature becomes $400^{\circ} C$. How much work is done on the
gas? Also, Calculate the increase in internal
energy of the gas.
$R=8.4$ Jmole $^{-1} K^{-1}$ and $\gamma=1.4$.

- Watch Video Solution

25. Calculate the increase in internal energy of

1 kg of water at $100^{\circ} \mathrm{C}$ when it is converted into
steam at the same temperature and at 1 atm (
$100 k P a)$. The density of water and steam are $1000 \mathrm{kgm}^{-3}$ and $0.6 \mathrm{kgm}^{-3}$ respectively. The
latent heat of vaporization of water $=2.25 \times 10^{6} \mathrm{Jkg}^{1}$.

- Watch Video Solution

26. The internal energy of a monatomic ideal gas is $1.5 n R T$. One mole of helium is kept in a cylinder of cross section $8.5 \mathrm{~cm}^{2}$. The cylinder is closed by a light frictionless piston. The gas is heated slowly in a process during which a total of $42 J$ heat is given to the gas. If the temperature rise through $2^{\circ} \mathrm{C}$, find the distance moved by the piston. atmospheric pressure $=100 \mathrm{kPa}$.
27. A carnot engine has the same efficiency
(i) between $100 K$ and $500 K$ and
(ii) between $T K$ and $900 K$. Caculate the temperature T of the sink.

D Watch Video Solution

28. A heat engine operates between a cold reservoir at tempreture $T_{2}=300 K$ and a hot reservior at tempreture T_{1}. It takes 200 J of heat from the hot reservior and delivers $120 J$ of heat
to the cold reservior in a cycle. What sould be the minimum temperature of the hot reservior ?

D Watch Video Solution

29. A carnot engine takes in 1000 Kcal of heat
from a reservoir at $627^{\circ} \mathrm{C}$ and exhausts heat to
sink at $27^{\circ} C$. What is its efficiency? What is
useful work done//cycle by the engine.
(D) Watch Video Solution
30. A Carnot engine, whose temperature of the source is 400 K receives 200 cal or ies of heat
at this temperature and rejects 150 calaroies of heat to the sink. What is the temperature of the sink? Also, calculate the efficiency of the engine

D Watch Video Solution

31. The efficiency of a Carnot cycle is $1 / 6$. By lowering the temperature of sink by $65 K$, it increases to $1 / 3$. The initial and final temperature of the sink are

- Watch Video Solution

32. In a Carnot engine, the temperature of the source and sink are 500 K and 375 K respectively. If the engine consumes 600×10^{3} cals./cycle, find
(i) the efficiency of engine (ii) work done/cycle
(iii) heat rejected per cycle.

- Watch Video Solution

33. A reversible engine takes in heat from a reservoir of heat at $527^{\circ} \mathrm{C}$, and gives out to the
sink at $127^{\circ} \mathrm{C}$ How many calories per second must it take from the reservoir in order to produce useful mechanical work at the rate of 750 watt ? 1cal. $=4.2 \mathrm{~J}$.

D Watch Video Solution

34. A reversible engine converts one fifth of heat
which it absorbs from source into work. When
the temp. of sink is reduced by $70^{\circ} \mathrm{C}$, its
efficiency is doubled. Calculate the temperature of the source and sink.

- Watch Video Solution

35. Efficiency of a carnot engine is 0.4 , when temp. of sink is $300 K$. What is temp. of source?

If temp. of source is kept same and that of sink is lowered by $50^{\circ} C$, what would be the efficiency?

D Watch Video Solution

36. A perfect carnot engine has source temp.
$227^{\circ} \mathrm{C}$ and sink temp. $127^{\circ} \mathrm{C}$. Find the efficiency of the engine, If 10000 J of external work is to be done, find heat received from source and heat released to the sink.

- Watch Video Solution

37. An ideal engine operates by taking in steam from a boiler at $327^{\circ} \mathrm{C}$ and rejecting heat to a sink at $27^{\circ} \mathrm{C}$. The engine runs at $500 \mathrm{r} \pm$ and heat taken is 600 kcal in each revolution.

Calculate(i) efficiency of engine (ii) work done in
each cycle (iii) heat rejected in each revolution and (iv) power output of engine.

D Watch Video Solution

38. Two carnot engines A and B are operated in series. The first one A receives heat at 900 K and rejects it to a reservoir at $T K$. The second engine B receives the heat rejected by the first engine and rejects it to a heat reservoir at $400 K$
. Calculate the value of T, when the efficiency ot two engines is the same.
39. A carnot engine is designed to operate between $480 K$ and $300 K$. Assuming that the engine actually produces, 1.2 KJ of mechanical energy per Kcal of heat absorbed. Compare the actual efficiency with the theoretiacal maximum efficiency.

D Watch Video Solution

40. A carnot engine absorbs 2000 J of heat from
the source of heat engine at $227^{\circ} \mathrm{C}$ and rejects
$1200 J$ of heat to the sink during each cycle.

Calculate
(i) Temp.of sink (ii) efficiency of engine
(iii) amount of work done during each cycle.

D Watch Video Solution

41. In a refrigerator, heat from inside at $270 K$ is
transferred to a room at $300 K$. How many
calories of heat will be delivered to the room for each joule of electrical energy consumed ideally?
42. Assuming that a domestic refrigerator can be regarded as a reversivle engine working between the temperature of melting ice and that of the atmosphere $\left(170^{\circ} \mathrm{C}\right)$, calculate the energy which muct be supplied to freeze one kilogram of water already at $0^{\circ} C$.

D Watch Video Solution

43. In a cold storage, ice melts at the rate of
$2 \mathrm{~kg} / \mathrm{h}$ when the external temperature is $20^{\circ} \mathrm{C}$.

Find the minimum power output of the motor used to drive the refrigerator which just prevents the ice from melting. Latent heat of fusion of $i c e=80 \mathrm{cal} / g$

Watch Video Solution

44. A refrigerator, whose coefficient performance β is 5 , extracts heat from the collingcompartment at the rate of 250 J per cycle.
(a) How much work per cycle is required to operate the refrigerator?
(b) How much heat per cycle is discharges the room which acts as the high temperature reservoir?

D Watch Video Solution

45. A refrigerator freezes 5 kg of water at $0^{\circ} \mathrm{C}$ into ice at $0^{\circ} C$ in a time internal of 20 minutes.

Assume that the room temperature is $20^{\circ} \mathrm{C}$.

Calculate the minimum power needed to accomplish it.
46. Calculate the least amount of work that must be done to freeze one gram of wate at $0^{\circ} C$ by means of a refrigerator. Temperature of surroundings is $27^{\circ} \mathrm{C}$. How much heat is passed on the surroundings in this process? Latent heat of fusion $L=80 \mathrm{cal} / \mathrm{g}$.

D Watch Video Solution

47. Refrigerator A works between-
$10^{\circ} C$ and $27^{\circ} C$ while refrigerator B works between $-20^{\circ} \mathrm{C}$ and $17^{\circ} \mathrm{C}$, both removing
$2000 J$ from the freezer. Which of the two is better refrigerator?

D Watch Video Solution

48. In a refrigerator, heat from inside at $277 K$ is
transferred to a room at $300 K$. What is the
cofficient of performance of the refrigerator.

How many joule of heat will be deliverd to the room for each joule of electric energy consumed ideally?
49. One mole of an ideal gas undergoes a cyclic change $A B C D$ where the (P, V) co-ordinates are A
$(5,1), B(5,3), C(2,3)$ and $D(2,1) . P$ is atmosphere and V is in litre. Calculate work done along $A B$, $B C, C D$ and $D A$ and also net work done in the process.

Given
1atmosphere $=1.01 \times 10^{5} \mathrm{Nm}^{-2}$.

D Watch Video Solution

50. Calculate the heat absorbed by a system in
going through the cyclic process shown in
figure,

D Watch Video Solution

51. A diatomic gas $(\gamma=1.4)$ does $200 J$ of work when it is expanded isobarically. Find the heat given to the gas in the process.
52. Two Carnot engines are operated in
succession. The first engine receives heat from a
source at $T=800 K$ and rejects to sink at $T_{2} K$.
The second engine receives heat rejected by the
first engine and rejects to another sink at
$T_{3}=300 K$. If work outputs of the two engines are equal, then find the value of T_{2}.

D Watch Video Solution

53. The adiabatic compression ratio in a carnot reversible cycle is 9 , when the temperature iof
the source is $227^{\circ} \mathrm{C}$. Calculate the temperature of the sink. Given $\gamma=1.5$

D Watch Video Solution

54. Five moles of an ideal gas are taken in a

Carnot engine working between $100^{\circ} \mathrm{C}$ and $30^{\circ} C$. The useful work done in one cycle is 420
joule. Calculate the ratio the volume of the gas
at the end beginning of the isothermal expansion. $R=8.4 J M o \leq^{-1} K^{-1}$.

Multiple Choice Questions Ncert

1. An ideal gas undergoes four different processes from the same initial state (figure).

Four process are adiabatic, isothermal, isobaric and isochloric. Out of $1,2,3$, and 4 which one is idabatic.

A. 4
B. 3
C. 2
D. 1

Answer: C

D Watch Video Solution

2. If an avarage person jogs, he produces
$14.5 \times 10^{4} \mathrm{cal} / \mathrm{min}$. This is removed by the evaporation of sweat. The amount of sweat
evaporated per minute (assuming $1 k g$ requites 580×10^{3} cal for evaporation) is

A. 0.25 kg

B. 2.25 kg
C. 0.05 kg
D. 0.20 kg

Answer: A

D Watch Video Solution
3. Consider $P-V$ diagram for an ideal gas shown in figure.

Out of following diagrams(figure). Which represents the $T-P$ diagram?

(iii)

A. (iv)
B. (ii)
C. (iii)
D. (iv)

Answer: C

D Watch Video Solution

4. An ideal gas underoges cyclic process of

ABCDA as shown in Given $P-V$ diagram
(figure)

The amount of work done by the gas is
A. $6 P_{0} V_{0}$
B. $-2 P_{0} V_{0}$
C. $+2 P_{0} V_{0}$
D. $+4 P_{0} V_{0}$

Answer: B

D Watch Video Solution

5. Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original volume isothermally while the gas in container B is compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is
A. $2^{\gamma-1}$
B. $\left(\frac{1}{2}\right)^{\gamma-1}$
C. $\left(\frac{1}{1-\gamma}\right)^{2}$
D. $\left(\frac{1}{\gamma-1}\right)^{2}$

Answer: A

D Watch Video Solution

6. Three copper blocks of masses
M_{1}, M_{2} and $M_{3} k g$ respectively are brought into thermal contact till they reach equlibrium.
$\left.T_{1}, T_{2}, T\right)(3),\left(T_{1}>T_{2}>T_{3}\right)$. Assuming there is no heat loss to the surroundings, the equilibrium temperature T is
(sisspec if icheatofcopper)

$$
\begin{aligned}
& \text { А. } T=\frac{T_{1}+T_{2}+T_{3}}{3} \\
& \text { В. } T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{3\left(M_{1}+M_{2}+M_{3}\right)} \\
& \text { С. } T=\frac{M_{1} T_{1}+M_{2} T_{2}+M_{3} T_{3}}{M_{1}+M_{2}+M_{3}} \\
& \text { D. } T=\frac{M_{1} T_{1} s+M_{2} T_{2} s+M_{3} T_{3} s}{M_{1}+M_{2}+M_{3}}
\end{aligned}
$$

Answer: B
7. Which of the process described below are irrevesible?
A. The increase in temperature of an iron rod by hammering it.
B. A gas in small container at a temperature
T_{1} is brought in contact with a big reservoir at a higher temperature of the gas.
C. A quasi- static isothermal expansion of an ideal gas in cyclinder fitted with a

frictionless piston.

D. An ideal gas is enclosed in a piston cyclinder arrangement with adiabatic walls. A weight W is added to the piston, resulting in compression of gas.

Answer: A::B::D

D Watch Video Solution

8. An ideal gas undergoes isothermal process
from some initial state i to final state f. Choose
the correct alternatives.

$$
\begin{aligned}
& \text { A. } d U=0 \\
& \text { B. } d Q=0 \\
& \text { C. } d Q-d U \\
& \text { D. } d Q=d W
\end{aligned}
$$

Answer: A::D

D Watch Video Solution

9. (figure). Shows the $P-V$ diagram of an ideal gas undergoing a change of state from A to B.

Four different process I, II, III, IV, as shown in
(figure) may lead to the same change of state.

A. Change in internal energy is same in IV and III cases, bit not in I and II.
B. Change in internal energy is same in all the four cases.

C. Work done is maximum in case I

D. Work done in minimum in case II.

Answer: B::C

D Watch Video Solution

10. Consider a cycle followed by an engine,
(figure)

1 to 2 is isothermal 2 to 3 is adiabatic 3 to 1 is adiabatic
such a process does not exist because
A. heat is completely converted to mechanical energy in such a process, which is not possible.
B. mechanical energy is completely
converted to heat in this process, which is
not possible.
C. curves representing two adiabatic
processes don't intersect.
D. curves representing an adiabatic process
and an isothermal process don't intersect.

Answer: A::C

D
 Watch Video Solution

Multiple Choice Questions

1. Consider a heat engine as shown in (figure).
Q_{1} and Q_{2} are heat added to heat bath T_{1} and
heat taken from T_{2} one cycle of engine. W is the mechanical work done on the engine.

If $W>0$, then possibillities are:
A. $Q_{1}>Q_{2}>0$
B. $Q_{2}>Q_{1}>0$
C. $Q_{2}<Q_{1}<0$

$$
\text { D. } Q_{1}<0, Q_{2}>0
$$

Answer: A::C

D Watch Video Solution

2. Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original volume isothermally while the gas in container B is
compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is
A. $2^{\gamma-1}$
B. $\left(\frac{1}{2}\right)^{\gamma-1}$
C. $\left(\frac{1}{1-\gamma}\right)^{2}$
D. $\left(\frac{1}{\gamma-1}\right)^{2}$

Answer: A

D Watch Video Solution
3. Consider a spherical shell of radius R at temperature T. The black body radiation inside it
can be considered as an ideal gas of photons
with internal energy per unit volume
$u=\frac{U}{V} \propto T^{4}$ and pressure $P=\frac{1}{3}\left(\frac{U}{V}\right)$. If
the shell now undergoes an adiabatic expansion
the relation between T and R is :
A. $T \propto e^{-R}$
B. $T \propto e^{-3 R}$
C. $T \propto \frac{1}{R}$
D. $T \propto \frac{1}{R^{3}}$

Answer: C

D Watch Video Solution

4. Which of the following $P-V$ diagrams best represents an isothermal process?

B.

C.

Answer: B

D Watch Video Solution

5. The pressure of a gas is increased by 50% at constant temperature. The decrease in volume will be nearest to
A. 66%
B. 33%
C. 17%
D. 8%

Answer: B

D Watch Video Solution

6. A thermodynamic system undergoes cyclic process $A B C D A$ as shown in figure. The work
done by the system is

A. $P_{0} V_{0}$
B. $2 P_{0} V_{0}$
C. $\frac{P_{0} V_{0}}{2}$
D. Zero

Answer: D

D Watch Video Solution

7. One mole of an ideal diatomic gas undergoes
a transition from A to B along a path $A B$ as
shown in (figure). The change in internal energy
of the gas during the transition is $(\gamma=3 / 5)$

A. $-20 K J$
B. $20 K J$
C. $-12 K J$
D. $20 K J$

Answer: A

D Watch Video Solution

8. At $27^{\circ} C$ two moles of an ideal monoatomic gas occupy a volume V. The gas expands adiabatically to a volume 2 V . Calculate (i) the final temperature of the gas, (ii) change in its internal energy, and (iii) the work done by the gas during this process.
A. 179 K
B. $189 K$

C. 213 K

D. $219 K$

Answer: B

D Watch Video Solution

9. In the above question, change in internal
energy of gas is
A. $-2660.23 J$

B. $-2777.23 J$

C. $-2767.23 J$

D. $-2600 J$

Answer: C

D Watch Video Solution

10. $400 c c$ volume of gas having $\gamma=\frac{5}{2}$ is
suddenly compressed to $100 c c$. If the initial pressure is P, the final pressure will be
A. $P / 32$

B. $8 P$

C. $32 P$
D. $16 P$

Answer: C

- Watch Video Solution

11. One mole of a diatomic ideal gas undergoes a
cyclic process $A B C$ as shown in figure. The process $B C$ is adiabatic. The temperature at A, B and C are $400 \mathrm{~K}, 800 \mathrm{~K}$ and 600 K respectively.

Choose the correct statement:

A. change in internal energy in the process
$\mathrm{AB}=350 R$
B. change in internal energy in the process
$B C$ is $-500 R$
C. change in internal energy in the whole
cyclic process is $250 R$

D. change in internal energy in the process

CA is $700 R$

Answer: B

D Watch Video Solution

12. A thermodynamic system is taken from an initial state I with internal energy $U_{i}=-100 J$
to the final state f along two different paths iaf and ibf, as schematically shown in the figure.

The work done by the system along the pat af, ib
$W_{a f}=200 J, W_{i b}=50 J$ and $W_{b f}=100 J$
respectively. The heat supplied to the system
along the path iaf, ib and bf are $Q_{i a f}, Q_{i b}, Q_{b f}$ respectively. If the internal energy of the system in the state b is $U_{b}=200 \mathrm{~J}$ and $Q_{i a f}=500 \mathrm{~J}$,

The ratio $\frac{Q_{b f}}{Q_{i b}}$ is

A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

13. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{5}{3}$
is $W_{-} 1$ if the process is purely isothermal, W_{2} if purely isobaric and W_{3} if purely adiabatic. Then

A. $W_{2}>W_{1}>W_{3}$
B. $W_{2}>W_{3}>W_{1}$
C. $W_{1}>W_{2}>W_{3}$
D. $W_{1}=W_{2}=W_{3}$

Answer: A

D Watch Video Solution

15. P-V plots for two gases during adiabatic processes are shown in the figure. Plots 1 and 2 should corresponds respectively to

A. He and O_{2}
B. O_{2} and He
C. $H e$ and $A r$
D. O_{2} and N_{2}

Answer: B

D Watch Video Solution

16. The work of 142 kJ is performed in order to
compress one kilo mole of gas adiabatically and in this process the temperature of the gas
increases by $7^{\circ} C$. The gas is

$$
\left(R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)
$$

A. triatomic
B. monoatomic
C. diatomic

D. mixture of monoatomic and diatomic

Answer: C

D Watch Video Solution
17. One mole of an ideal gas at an initial temperature true of $T K$ does $6 R$ joule of work adiabatically. If the ratio of specific heats of this gas at constant pressure and at constant volume is $5 / 3$, the final temperature of the gas will be
A. $(T+4) K$
B. $(T-4) K$
C. $(T+2.4) K$
D. $(T-2.4)$

Answer: B

D Watch Video Solution

18. In the given (V-T) diagram, what is the relation between pressure P_{1} and P_{2} ?

A. $P_{2}=P_{1}$
B. $P_{2}>P_{1}$
C. $P_{2}<P_{1}$
D. cannot say

Answer: C

(D) Watch Video Solution

19. The $P-V$ diagram of a gas undergoing a
cyclic process ABCDA is shown in (figure). Where P is in N / m^{2} and V is in cm^{3}. Identify the
incorrect statement

A. $0.4 J$ of work is done by the gas from A to

B
B. $0.2 J$ of work is done on the gas from C to

D
C. No work is done by the gas in going from

B to C

D. Work done by the gas in going from B to C

and on the gas from D to A

Answer: D

D Watch Video Solution

20. Two moles of helium gas are taken over the
cycle ABCDA, as shown in the P-T diagram

Assuming the gas to be ideal the work done on the gas in taking it form A to B is :
A. $300 R$
B. $400 R$
C. $500 R$
D. $200 R$

Answer: B

D Watch Video Solution

21. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram

The work done on the gas in taking it from D to
A is :
A. $+414 R$
B. $-690 R$
C. $+690 R$
D. $-414 R$

Answer: A

D Watch Video Solution

22. Two moles of helium gas are taken over the
cycle ABCDA, as shown in the P-T diagram

$2 \times 10^{5} \uparrow \underset{\sim}{\text { P }}$

The net work done on the gas in the cycle ABCDA is :
A. $277 R$
B. $1076 R$
C. $1904 R$
D. Zero

Answer: A

D Watch Video Solution

23. A monoatomic gas at pressure P_{1} and volume V_{1} is compressed adiabatically to $\frac{1}{8} t h$ of its original volume. What is the final pressure of gas.
A. $64 P_{1}$
B. P_{1}
C. $16 P_{1}$

D. $32 P_{1}$

Answer: D

- Watch Video Solution

24. An ideal gas is made go to through a cyclic thermodynamics process in four steps. The
$Q_{2}=300 J, Q_{3}=-400 J, Q_{4}=-100 J$
respectively. The corresponding works involved
are
$W_{1}=300 J, W_{2}=-100 J, W_{3}=100 J$ and W_{4}
. What is the value of W_{4} ?
A. 100 J
B. 500 J
C. $-700 J$
D. -400 J

Answer: D

D Watch Video Solution

25. A thermally insulated vessel contains an ideal gas of molecular mass M and ratio of specific heats γ. It is moving with speed v and
it's suddenly brought to rest. Assuming no heat
is lost to the surroundings, Its temperature increases by:

$$
\begin{aligned}
& \text { A. } \frac{(\gamma-1)}{r \gamma R} M v^{2} K \\
& \text { B. } \frac{\gamma M v^{2}}{2 R} K \\
& \text { C. } \frac{(\gamma-1)}{2 R} m v^{2} K \\
& \text { D. } \frac{(\gamma-1)}{2(\gamma+1) R} M v^{2} K
\end{aligned}
$$

Answer: C

26. During an isothermal expansion, a confined ideal gas does $-150 J$ of work aginst its surroundings. This implies that
A. $150 J$ of heat has been removed from the gas
B. 300 J of heat has been added to the gas
C. no heat is transferred because the process
is isothermal
D. 150 J of heat been added to the gas

- Watch Video Solution

27. When 1 kg of ice at $0^{\circ} \mathrm{C}$ melts to water at $0^{\circ} \mathrm{C}$, the resulting change in its entropy, taking latent heat of ice to be $80 \mathrm{cal} / \mathrm{g}$ is
A. $273 \mathrm{cal} / \mathrm{K}$
B. $8 \times 10^{4} \mathrm{cal} / \mathrm{K}$
C. $80 \mathrm{cal} / \mathrm{K}$
D. $293 \mathrm{cal} / \mathrm{K}$

- Watch Video Solution

28. A mass of diatomic $\operatorname{gas}(\gamma=1.4)$ at a pressure of 2 atomphere is compressed adiabitically so that its temperature rises from
$27^{\circ} \mathrm{C}$ to $927^{\circ} \mathrm{C}$. The pressure of the gas in the final state is
A. 28 atm
B. 68.7 atm
C. 256 atm
D. $8 a t m$

Answer: C

D Watch Video Solution

29. 5.6 liter of helium gas at STP is adiabatically
compressed to 0.7 liter. Taking the initial temperature to be T_{1}, the work done in the process is
A. $-\frac{9}{8} R T_{1}$
B. $\frac{3}{2} R T_{1}$
C. $\frac{15}{8} R T_{1}$

$$
\text { D. } \frac{9}{2} R T_{1}
$$

Answer: A

D Watch Video Solution

30. Two moles of ideal helium gas are in a rubber balloon at $30^{\circ} \mathrm{C}$. The balloon is fully expandable and can be assumed to require no energy in its expansion. The temperature of the gas in the balloon is slowly changed to $35^{\circ} C$.

The amount of heat required in raising the
temperature is nearly (take R

$$
=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})
$$

A. $62 J$
B. 104 J
C. 124 J
D. 208 J

Answer: D
(D) Watch Video Solution
31. Helium gas goes through a cycle ABCDA (consisting of two isochoric and isobaric lines) as shown in figure Efficiency of this cycle is nearly: (Assume the gas to be close to ideal gas)

A. 15.4%
B. 9.1%
C. 10.5%

D. 12.5%

Answer: A

D Watch Video Solution

32. One mole of an ideal gas goes from an initial
state A to final state B via two processs : It first undergoes isothermal expansion from volume V to $3 V$ and then its volume is reduced from $3 V$ to V at constant pressure. The correct $P-V$ diagram representing the two process in (figure)

A. (a)

B.
(b)

C.

Answer: D

D Watch Video Solution

33. An ideal gas goes from State A to state B via three different process as indicate in the $P-V$ diagram.

If Q_{2}, Q_{3} indicates the heat absorbed by the gas along the three processes and $\Delta U_{1}, \Delta U_{2}, \Delta U_{3}$ indicates the change in internal energy along the three processes respectively, then

$$
\begin{aligned}
& \text { A. } Q_{1}>Q_{2}>Q_{3} \text { and } \Delta U_{1}=\delta U_{2}=\Delta U_{3} \\
& \text { B. } Q_{3}>Q_{2}>Q_{1} \text { and } \Delta U_{1}=\Delta U_{2}=\Delta U_{3} \\
& \text { C. } Q_{1}=Q_{2}=Q_{1} \text { and } \Delta U_{1}>\Delta U_{2}>\Delta U_{3} \\
& \text { D. } Q_{3}>Q_{2} Q_{1} \text { and } \Delta U_{1}>\Delta U_{2}>\Delta U_{3}
\end{aligned}
$$

Answer: A

- Watch Video Solution

34. During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its absolute temperature. The ratio C_{P} / C_{V} for the gas is
A. $\frac{3}{2}$
B. $\frac{4}{3}$
C. 2
D. $\frac{5}{3}$

Answer: A
35. The amount of heat energy required to raise
the temperature of $1 g$ of Helium at $N T P$, from
$T_{1} K$ to $T_{2} K$ is

$$
\begin{aligned}
& \text { A. } \frac{3}{4} N_{a} k_{B}\left(\frac{T_{2}}{T_{1}}\right) \\
& \text { B. } \frac{3}{8} N_{a} K_{B}\left(T_{2}-T_{1}\right. \\
& \text { C. } \frac{3}{2} N_{a} K_{B}\left(T_{2}-T_{1}\right. \\
& \text { D. } \frac{3}{4} N_{a} K_{B}\left(T_{2}-T_{1}\right.
\end{aligned}
$$

Answer: B

36. A gas is taken through the cycle
$A \rightarrow B \rightarrow C \rightarrow A$, as shown in figure, what is the net work done by the gas?

A. $-2000 J$
B. 2000 J
C. 1000 J

D. Zero

Answer: C

D Watch Video Solution

37. Steam at $100^{\circ} C$ is passed into $20 g$ of water at $10^{\circ} \mathrm{C}$ when water acquire a temperature of $80^{\circ} C$, the mass of water present will be
[Take specific heat of water $=1 \mathrm{calg}{ }^{-1}{ }^{\circ} C^{-1}$ and latent heat of steam $=540 \mathrm{calg}^{-1}$]
A. $24 g$
B. $31.5 g$
C. $42.5 g$
D. $22.5 g$

Answer: D

D Watch Video Solution

38. A body at a temperature of $727^{\circ} \mathrm{C}$ and having surface area $5 \mathrm{~cm}^{2}$, radiations 300 J of energy each minute. The emissivity is(Given

$$
=5.67 \times 10^{-8} W m^{-2} K^{-4}
$$

$$
\text { A. } e=0.18
$$

B. $e=0.02$
C. $e=0.2$
D. $e=0.15$

Answer: A

- Watch Video Solution

39. A black body emit heat at the rate of 20 W , when its tempertaure is $227^{\circ} \mathrm{C}$ Another black body emits heat at the rate of $15 W$, when its temperature is $227^{\circ} \mathrm{C}$. Compare the area of the surface of the two bodies, if the surrounding is at $N T P$
A. $16: 1$
B. 1: 4
C. 12: 1
D. $1: 12$

Answer: D

D Watch Video Solution

40. According to Wien's law
A. $\lambda_{m} T=$ constant
B. $\frac{\lambda_{m}}{T}=$ constant
C. $\lambda_{m} \sqrt{T}=$ constant
D. $\frac{\lambda_{m}}{\sqrt{T}}=$ constant

Answer: A

Watch Video Solution

41. On observing light from three different stars
P, Q and R, it was found that intensity of violet
colour is maximum in the spectrum of P, the intensity of green colour is maximum in the spectrum of R and the intensity of red colour is maximum in the spectrum of Q. if T_{P}, T_{Q} and
T_{R} are respective absolute temperature of P, Q
and R. then it can be concluded from the above observation that

$$
\text { A. } T_{p}>T_{R}>T_{Q}
$$

B. $T_{P}<T_{R}<T_{Q}$
C. $T_{P}<T_{Q}<T_{R}$
D. $T_{P}<T_{Q}>T_{R}$

Answer: A

- Watch Video Solution

42. In (figure). shows two path that may be taken by a gas to go from a state A to state C

In the process $\mathrm{AB}, 400 \mathrm{~J}$ of heat is added to the system and in process $\mathrm{Bc}, 100 \mathrm{~J}$ of heat is added to the system. The heat absorbed by the system in the process $A C$ will be
A. 500 J
B. 460 J
C. 300 J

D. 380 J

Answer: B

D Watch Video Solution

43. The two ends of a metal rod are maintained at temperature $100^{\circ} \mathrm{C}$ and $110^{\circ} \mathrm{C}$. The rate of heat flow in the rod is found to be $4.0 \mathrm{~J} / \mathrm{s}$. If the ends are maintained at temperature s $200^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$. The rate of heat flow will be A. $16.8 \mathrm{~J} / \mathrm{s}$
B. $8.0 \mathrm{~J} / \mathrm{s}$
C. $4.0 \mathrm{~J} / \mathrm{s}$
D. $44.0 \mathrm{~J} / \mathrm{s}$

Answer: C

D Watch Video Solution

44. An ideal gas is compressed to half its initial volume by means of several peocesses. Which of the process results in the maximum work done on the gas ?
A. Isothermal
B. Adiabatic
C. Isobaric
D. Isochoric

Answer: B

D Watch Video Solution

45. The value of coefficient of volume expansion of glycerin is $5 \times 10^{-4} K^{-1}$. The fractional
change in the density of glycerin for a rise of

$40^{\circ} \mathrm{C}$ in its temperature is

A. 0.010

B. 0.015
C. 0.020
D. 0.025

Answer: C

D Watch Video Solution
46. The balck body specturm of an object O_{1} is
such that its radiant intensity (i.e., intensity per unit wavelength interval) is maximum at a wavelength of 200 nm . Another object Q_{2} has the maximum radiant intensity at 600 nm . The ratio of power emitted per unit area by source Q_{1} to that of souce O_{2} is
A. 1: 81
B. 1:9
C. 9:1
D. $81: 1$

Answer: D

D Watch Video Solution

47. Three rods of Copper, Brass and Steel are welded together to from a Y shaped structure.

Area of cross-section of each rod $=4 \mathrm{~cm}^{2}$. End of copper rod is maintained at $100^{\circ} C$ where as ends of brass and steel are kept at $0^{\circ} C$.

Lengths of the copper, brass and steel rods are

46, 13 and 12 cm respectively. The rods are thermally insulated from surroundings excepts
at ends. Thermal conductivities of copper, brass and steel are $0.92,0.26$ and 0.12 CGS units respectively. Rate of heat flow through copper rod is :
A. $4.8 \mathrm{cal} / \mathrm{s}$
B. $6.0 \mathrm{cal} / \mathrm{s}$
C. $1.2 \mathrm{cal} / \mathrm{s}$
D. $2.4 \mathrm{cal} / \mathrm{s}$

Answer: A
48. A solid body of constant heat capacity $1 J /{ }^{\circ} C$ is being heated by keeping it contact with reservoirs in two ways:
(i) Sequentially keeping in contact with 2 reservoirs such that each reservoir supplies same amount of heat.
(ii) Sequentially keeping in contact with 8 reservoir such that each reservoir supplies same amount of heat.

In both the cases body is brought from initial temperature 100^{C} to final temperature $200^{\circ} C$.

Entropy change of the body in the tow cases respectively is :
A. In 2,4, in 2
B. $\ln 2, \ln 2$
C. $\ln 2,2 \ln 2$
D. $2 \ln 2,8 \ln 2$

Answer: B

- Watch Video Solution

49. A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process untill its volume is again reduced to half. Then
A. Compressing the gas through adiabatic process will require more work to be done
B. Compressing the gas isothermally or adiabatically will required the same amount of work
C. Which of the case(Whehter compression
through isothermal of through adiabatic
process) requires more work will depends
upon the atomicity of the gas
D. Compressing the gas isothermally will
require more work to be done

Answer: A

- Watch Video Solution

50. n ' moles of an ideal gas undergoes a process
$A \rightarrow B$ as shown in the figure. The maximum temperature of the gas during the process will be:

> A. $\frac{9 P_{0} V_{0}}{4 n R}$
> B. $\frac{3 P_{0} V_{0}}{2 n R}$
> C. $\frac{9 P_{0} V_{0}}{2 n R}$

D. $\frac{9 P_{0} V_{0}}{n R}$

Answer: A

D Watch Video Solution

51. In a given process on an ideal gas, $d W=0$ and $d Q<0$. Then for the gas
A. temperature will decrease
B. volume will increase
C. pressure will remain constant

D. temperature will increase

Answer: A

D Watch Video Solution

52. When a system is taken from state i to state
f along the path iaf, it is found that
$Q=50 \mathrm{cal}$ and $W=20 \mathrm{cal}$. Along the path ibf
$Q=36 \mathrm{cal} . \mathrm{W}$ along the path ibf is

A. $14 c a l$.
B. 6 cal .
C. 16 cal .
D. 66 cal .

Answer: B
53. In (figure). shows two path that may be taken by a gas to go from a state A to state C

In the process $\mathrm{AB}, 400 \mathrm{~J}$ of heat is added to the system and in process $\mathrm{Bc}, 100 \mathrm{~J}$ of heat is added to the system. The heat absorbed by the system in the process $A C$ will be
A. 500 J
B. 460 J
C. 300 J
D. 380 J

Answer: B

D Watch Video Solution

54. How much heat energy should be added to a mixture of $10 g$ of hydrogen and $40 g$ of helium to
change the temp. by $50^{\circ} \mathrm{C}$ kept in a closed vessel? Given $R=2 \mathrm{cal} /$ mole K
A. 2000 cal
B. 2500 cal
C. 2750 cal
D. 3000 cal

Answer: C

- Watch Video Solution

55. If C_{p} and C_{v} denote the specific heats (per unit mass of an ideal gas of molecular weight M
), then
where R is the molar gas constant.

$$
\begin{aligned}
& \text { A. } C_{p}-C_{v}=R / M^{2} \\
& \text { B. } C_{p}-C_{v}=R \\
& \text { C. } C_{p}-C_{v}=R M \\
& \text { D. } C_{p}-C_{v}=M R
\end{aligned}
$$

Answer: C
56. An ideal gas under goes a quasi static, reversible process in which its molar heat capacity C remains constant. If during this process the relation of pressure P and volume V is given by $P V^{n}=c o n s \tan t$, then n is given by
(Here C_{P} and C_{V} are molar specific heat at constant pressure and constant volume, respectively):

$$
\begin{aligned}
& \text { A. } n=\frac{C_{P}}{C_{V}} \\
& \text { B. } n=\frac{C-C_{P}}{C-C_{V}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } n=\frac{C_{P}-C}{C-C_{V}} \\
& \text { D. } n=\frac{C-C_{V}}{C-C_{P}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

57. A Carnot engine, having an efficiency of $\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is 10J, the amount of energy absorbed from the reservoir at lower temperature is
A. 99 J

B. 90 J

C. 1 J
D. 100 J

Answer: B

(D) Watch Video Solution

58. The temperature T_{1} and T_{2} of heat reservoirs in the ideal carnot engine are $15000^{\circ} \mathrm{C}$ and $500^{\circ} \mathrm{C}$ respectivley. If T_{1} increases
by $100^{\circ} C$, what will be the efficiency of the engine?
A. 62%
B. 59%
C. 95%
D. 100%

Answer: B

D Watch Video Solution
59. A Carnot engine, having an efficiency of
$\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is

10 , the amount of energy absorbed from the reservoir at lower temperature is
A. $1 J$
B. 90 J
C. 99 J
D. 100 J

Answer: B

- Watch Video Solution

60. Certain quantity of water cools from $70^{\circ} \mathrm{C}$
to $60^{\circ} \mathrm{C}$ in the first 5 minutes and to $54^{\circ} \mathrm{C}$ in
the next 5 minutes. The temperature of the surrounding is
A. $45^{\circ} \mathrm{C}$
B. $20^{\circ} \mathrm{C}$
C. $42^{\circ} \mathrm{C}$
D. $10^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

61. The cofficient of performance of a refrigerator is 5 . If the temperature inside freezer is $-20^{\circ} C$, the temperature of the surroundings to which it rejects heat is :
A. $21^{\circ} \mathrm{C}$
B. $31^{\circ} \mathrm{C}$
C. $41^{\circ} \mathrm{C}$

D. $11^{\circ} \mathrm{C}$

Answer: B

D Watch Video Solution

62. A refrigerator works between $4^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$
. It is required to remove 600 cal or ies of heat every second in order to keep the temperature of the refrigerator space constant. The power required is (Take 1 cal or $i e=4.2 J$)
A. $23.65 W$

B. $236.5 W$

C. $2365 W$

D. 2.365 W

Answer: B

- Watch Video Solution

63. A carnot engine working between $300 K$ and $600 K$ has work output of $800 J$ per cycle. What is amount of heat energy supplied to the engine from source per cycle?
A. 800 J
B. 1600 J
C. 3200 J
D. 6400 J

Answer: B

D Watch Video Solution

64. A Carnot engine takes $3 \times 10^{6} \mathrm{cal}$. of heat
from a reservoir at $62^{\circ} C$, and gives it to a sink at $27^{\circ} \mathrm{C}$. The work done by the engine is
A. $4.2 \times 10^{6} J$
B. $8.4 \times 10^{6} \mathrm{~J}$
C. $16.8 \times 10^{6} \mathrm{~J}$
D. Zero

Answer: B

D Watch Video Solution

65. The door of a running refrigerator inside a room is left open. The correct statement out of the following ones is
A. The room will be cooled slightlt
B. The room will be warmed up gradually
C. The room will be cooled to the
temperature inside the refrigerator

D. The temperature of the room will remain

uneffected.

Answer: B

D Watch Video Solution
66. A cannot engine has efficiency $\frac{1}{6}$. If temperature of sink is decreased by $62^{\circ} \mathrm{C}$ then its efficiency becomes $\frac{1}{3}$ then the temperature of source and sink:
A. $956^{\circ} C, 37^{\circ} C$
B. $80^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
C. $99^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$
D. $90^{\circ} \mathrm{C}, 37^{\circ} \mathrm{C}$

Answer: C
67. An ideal gas heat engine operates in Carnot
cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It absorbs $6 x 10^{4}$ cals of heat at higher temperature.

Amount of heat converted to work is
A. $4.8 \times 10^{4} \mathrm{cals}$
B. $2.4 \times 10^{4} \mathrm{cals}$
C. $1.2 \times 10^{4} \mathrm{cals}$
D. $6 \times 10^{4} \mathrm{cals}$
68. A Carnot engine whose sinl is at 300 K has
an efficiency of 40%. By how much should the temperature of source be increased so as to increase its efficiency by 50% of original efficiency.
A. 380 K
B. 275 K
C. 325 K
D. 250 K

Answer: D

D Watch Video Solution

69. A cannot engine has efficiency $\frac{1}{6}$. If temperature of sink is decreased by $62^{\circ} \mathrm{C}$ then its efficiency becomes $\frac{1}{3}$ then the temperature of source and sink:
A. $37^{\circ} C$
B. $62^{\circ} \mathrm{C}$
C. $99^{\circ} C$

D. $12^{\circ} \mathrm{C}$

Answer: C

D Watch Video Solution

70. A Carnot engine, having an efficiency of $\eta=1 / 10$ as heat engine, is used as a refrigerator. If the work done on the system is 10J, the amount of energy absorbed from the reservoir at lower temperature is
A. 100 J

B. 99 J

C. 90 J
D. 1 J

Answer: C

D Watch Video Solution

71. A refrigerator with $C O P=1 / 3$ release 200 J at heat to a reservoir. Then the work done on the working substance is

$$
\text { A. } \frac{100}{3} J
$$

B. 100 J

$$
\text { C. } \frac{200}{3} J
$$

D. 150 J of heat been added to the gas

Answer: D

D Watch Video Solution

72. A Carnot engine operating between temperature T_{1} and T_{2} has efficiency $1 / 6$. When
T_{2} is lowered by 62 K its efficiency increase to $1 / 3$. Then T_{1} and T_{2} are, respectively:
A. $372 K$ and $330 K$

B. $330 K$ and $268 K$

C. $310 K$ and $248 K$
D. $372 K$ and $310 K$

Answer: D

- Watch Video Solution

73. An ideal gas heat engine operates in a Carnot cycle between $227^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$. It
absorbs 6 Kcal . of heat at higher temperature.

The amount of heat in $k c a l$ rejected to sink is
A. 4.8
B. 2.4
C. ' 1.2
D. 6.0

Answer: A

- Watch Video Solution

74. A Carnot engine, whose efficiency is 40%, takes in heat from a source maintained at a temperature of 500 K . It is desired to have an engine of efficiency 60%. Then, the intake temperature for the same exhaust (sink) temperature must be:
A. efficiency of carnot engine cannot be made larger than 50%
B. 1200 K
C. 750 K
D. 600 K

Answer: C

D Watch Video Solution

75.

The above $p-v$ diagram represents the thermodynamic cycle of an engine, operating with an ideal monoatomic gas. The amount of
heat, extracted from the source in a single cycle
is

> A. $P_{0} V_{0}$
> B. $\left(\frac{13}{2}\right) P_{0} V_{0}$
> C. $\left(\frac{11}{2}\right) P_{0} V_{0}$
> D. $4 P_{0} V_{0}$

Answer: B

D Watch Video Solution

76. If a piece of metal is heated to temperature θ and the allowed to cool in a room which is at temperature θ_{0}, the graph between the temperature T of the metal and time t will be closet to

Answer: C

D Watch Video Solution

77. The work done in which of the following processes is zero
A. Cyclic

B. Free expansion

C. Isochoric
D. Adiabatic

Answer: B::C

D Watch Video Solution

78. In which of the following process (es), there is no change in the internal energy of the system?
A. Isothermal
B. Adiabatic
C. Free expansion
D. Cyclic

Answer: A::C::D

- Watch Video Solution

79. In a process on a system, the initial pressure and volume are equal to the final pressure and volume.
A. The initial energy must be equal to the final internal energy
B. The net heat given to the system in the process must be zero
C. The net work done by the system in the
process must be zero
D. The initial temperature must be equal to
the final temperature

Answer: A::D
80. The pressure p and volume V of an ideal gas both increase in a process.
A. The temperature of the system must increase
B. The work done by the system is positive
C. Heat supplied to the gas equal to change
in internal energy
D. such a process is not possible
81. Let Q and W denote the amount of heat given to an ideal gas and the work done by it in an adiabatic process.
A. $Q=W$
B. $Q \neq W$
C. $Q=0$
D. $W=0$

- Watch Video Solution

82. A gas kept in a container of finite conductivity is suddenly compressed . The process
A. may be very nearly adiabatic
B. may be nearly isothermal
C. must be very nearly adiabatic
D. must be very nearly isothermal

- Watch Video Solution

83. Refer to figure ΔU_{1} and ΔU_{2} be the changes
in internal energy in the system in process
$A+B$ and ΔW be the net work done by the system in the process $A+B$,

A. $\Delta Q-\Delta W=0$
B. $\Delta Q+\Delta W=0$
C. $\Delta U_{1}-\Delta U_{2}=0$
D. $\Delta U_{1}+\Delta U_{2}=0$

Answer: A::D

D Watch Video Solution
84. One mole of an ideal gas in initial state A
undergoes a cyclic process ABCA, as shown in the figure. Its pressure at A is P_{0}. Choose the
correct option (s) from the following

A. Internal energies at A and B are the same
B. Work done by the gas process AB is $P_{0} V_{0}$
in 4
C. Pressure at C is $\frac{P_{0}}{4}$
D. Temperature at C is $\frac{T_{0}}{4}$

Answer: A::B

- Watch Video Solution

85. A system goes from A and B via two processes. I and II as shown in figure. If
ΔU_{1} and ΔU_{2} are the changes in internal energies in the processes I and II respectively,
then
p

A. $\Delta U_{2}<\Delta U_{1}$
B. $\Delta U_{2}>\Delta U_{1}$
C. relation between ΔU_{1} and ΔU_{2} cannot be determined
D. $\Delta U_{1}=\Delta U_{2}$

Answer: D

D Watch Video Solution

86. The temperature -entropy diagram of a reversible engine cycle is given in the figure. Its efficiency is

A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

87. The internal enegy of an ideal gas decreases
by the same amount as the work done by the
system.
A. The temperature of the system must deccrease
B. The process must be adiabatic
C. The process must be isothermal
D. The process must be isobaric.

Answer: A::B

D Watch Video Solution

88. Which of the following graphs correctly
represents the variation of $\beta=-\frac{d V / d P}{V}$
with P for an ideal gas at constant temperature?

B.

C.

D.
©

Answer: A

D Watch Video Solution

89. A gas is copmressed isothermally to half its
volume. BY what factor does the pressure of the
gas increase ? Given $\gamma=1.4$
A. 2
B. <2
C. >2
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution

90. A gas is compressed adiabatically to half its
volume. By what factor does the pressure of the
gas increase?
A. 2
B. 2.64
C. 1.4
D. 2.4

Answer: B

D Watch Video Solution

91. A gas is suddenly compressed to $\frac{1}{4} t h$ of its original volume. Caculate the rise in temperature when original temperature is
$27^{\circ} C . \gamma=1.5$.
A. $300^{\circ} \mathrm{C}$
B. $327^{\circ} \mathrm{C}$
C. $327 K$

D. $600 K$

Answer: A

D Watch Video Solution

92. A Carnot engine absorbs $6 \times 10^{5} \mathrm{cal}$. At
$227^{\circ} \mathrm{C}$. Heat rejected to the sink at $127^{\circ} \mathrm{C}$ is
A. $6 \times 10^{5} \mathrm{cal}$
B. $4.8 \times 10^{5} \mathrm{cal}$
C. $4 \times 10^{5} \mathrm{cal}$
```
D. \(5 \times 10^{5} \mathrm{cal}\)
```


Answer: B

D Watch Video Solution

93. Work done //cycle by the engine in the above questions is
A. $5.04 \times 10^{5} J$
B. $5.04 \times 10^{5} \mathrm{cal}$
C. $4.8 \times 10^{5} \mathrm{cal}$

Answer: A

D Watch Video Solution

94. Efficiency of the engine in the above questions is
A. 30%
B. 10%
C. 20%

Answer: C

- Watch Video Solution

95. At what temperature should the sink be maintained to increase the efficiency by 10% ?
A. $77 K$
B. 300 K
C. $300^{\circ} \mathrm{C}$

D. $77^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

96. What should be the temperature of the source to increases the efficiency to 30%
A. $298.4^{\circ} C$
B. $298.4 K$
C. $400 K$

D. $600 K$

Answer: A

(D) Watch Video Solution

Interger Type Questions

1. Find the change in internal energy (in joule) of
a gas when it absorbs 40 cal or ies of heat and performs work equal to 16 J .
2. Calculate the pressure (in atm) required to compress a gas adiabatically at atmospheric pressure to one third of ite volume. Given $\gamma=1.47$

D Watch Video Solution
3. One mole of an ideal gas undergoes a cyclic change ABCDA as shown in (figure). What is the net work done (in joule) in the process? Take
$1 a t m=10^{5} \mathrm{~Pa}$.

(D) Watch Video Solution

4. A carnote engine absorbs $8 K J$ of energy at $400 K$. If sink is maintained at $300 K$, Calculate
useful work done per cyclic (in joule) by the engine.

D Watch Video Solution

5. Two carnot engine A and B operate respectively between $500 K$ and $400 K$, and
$400 K$ and $300 K$. What is the percentage difference in their efficiencies ?
6. In a refrigerator, heat from inside at $270 K$ is transferred to a room at 300 K . How many joule of heat energy is drawn from the sink for each joule of electrical energy consumed ideally?

D Watch Video Solution

7. A refrigerator whose coefficient of performance is 12.5 extracts heat from the cooling compartment at the rate of $100 \mathrm{~J} /$ cycle. How much electric energy (in joule) is
consumed/cycle. How much electric energy (in
joule) is consumed/cycle is by the refrigerator?

D Watch Video Solution

8. Calculate heat (in joule) absorbed by a system going once through the cyclic process shoen in
(figure)

D Watch Video Solution

9. During adiabatic expension of 10 moles of a gas , internal energy decrease, by 700 J . Work
done during the process is $\times x 10^{2} J$. What is x ?

D Watch Video Solution

10. A thermodynamic system is taken from an initial state I with internal energy $U_{i}=-100 J$
to the final state f along two different paths iaf and ibf, as schematically shown in the figure.

The work done by the system along the pat af, ib and bf are
$W_{a f}=200 J, W_{i b}=50 J$ and $W_{b f}=100 J$
respectively. The heat supplied to the system
along the path iaf, ib and bf are $Q_{i a f}, Q_{i b}, Q_{b f}$
respectively. If the internal energy of the system in the state b is $U_{b}=200 \mathrm{~J}$ and $Q_{i a f}=500 \mathrm{~J}$, The ratio $\frac{Q_{b f}}{Q_{i b}}$ is

D Watch Video Solution

11. Two spherical starts A and B emit black body radiation. The radius of A is 400 times that of B
and A emits 10^{4} times the power emitted from B. The ratio $\left(\lambda_{A} / \lambda_{B}\right)$ of their wavelengths λ_{A} and λ_{B} at which the peaks oc cur in their respective radiation curves is:

D Watch Video Solution

Assertion Reason Type Questions

1. Assertion : Internal energy of an ideal gas does not depend upon volume of the gas.

Reason : This is because internal energy of ideal
gas depends only on temperature of gas.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: B
2. Assertion: In an isothermal proces, whole of heat energy supplied to the body id converted into work.

Reason: According to first law of
thermodynamics $\Delta Q=\Delta U+P \Delta V$
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.

C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: B

D Watch Video Solution

3. Assertion: The efficiency of a carnot engine
cannot be 100%.

Reason: This is because sink of heat engine cannot be maintained at $0 K$.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A
4. Assertion : Water kept in an open vessel will quickly evaporate on the surface of the moon.

Reason : The temperature at the surface of the moon is much higher than boiling point of the water.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.

C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: C

D Watch Video Solution

5. Assertion: The efficiency of a carnot engine cannot be 100%.

Reason: This is because sink of heat engine cannot be maintained at $0 K$.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A
6. Asssertion: It is not possible for a system, unaided by an external agency to transfer heat from a body at lower temp. to another at a higher temp.

Reason: It is not possible to violate the second law of thermodynamics.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution

7. Assertion: Two systems, which are in thermal equilibrium with a third system, are in thermal
equilibrium with each other.
Reason: The heat flows spontaneously from a system at a higher temp. to a system at a lower temp.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.

D. If both, Assertion and Reason are false.

Answer: A

- Watch Video Solution

8. Assertion: The internal energy of an ideal gas does not change during an isothermal process.

Reason: The decrease in volume of a gas is
compensated by a corresponding increase in perssure, when its temp. is held constant.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: B
9. Assertion: Specific heat of a body is always greater than its thermal capacity.

Reason: Thermal capacity is the heat required
for raising temperature of unit mass of the body
through unit degree
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.

C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: D

D Watch Video Solution

10. Assertion : A hollow metallic closed container maintained at a uniform temperature cab act as a source of black body radiation. Reason : All metals act as a black body.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: C
11. Aseertion: Thermodynamics process in nature are irreversible.

Reason: Dissipactive effects cannot be eliminated.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.

D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution

12. Assertion : For higher temperature, the peak emission wavelength of a black body shifts to lower wavelengths.

Reason : Peak emission wavelength of a black
body is proportional to the fourth power of temperature.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: C

D Watch Video Solution

13. Statement-1: In an adiabatic process, change in internal energy of a gas is equal to work done on/by the gas in the process.

Statement-2 : This is because temp.of gas remains constant in an adiabatic process.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.

D. If both, Assertion and Reason are false.

Answer: C

14. Statement-1 : Change in internal energy in the melting process is due to change in internal potential energy.

Statement-2 : This is because in melting, distance between molecules increases but temperature remains constant.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.

C. If Assertion is true but the Reason is false.

D. If both, Assertion and Reason are false.

Answer: A

D Watch Video Solution

15. Statement-1 : As temperature of a black body
is raised, wavelenght corresponding to which energy emitted is maximum, reduces.

Statement-2 : Higher temperature would mean higher energy and hence higher wavelength.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: C

D Watch Video Solution

16. Statement-1 : When temperature of a black body is doubled, energy radiated/sec/area becomes 16 times.

Statement-2 : This is per Stefan's law.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A

- Watch Video Solution

17. Statement-1 : When temperature of a black body is halved, wavelength corresponding to
which energy radiate is maximum become twice.

Statement-2 : This is as per Wien's Law.
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

D Watch Video Solution

18. Statement-1: Heat from the sun reaches the earth by convection.

Statement-2 : Air can be heated only by convection
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: D

D Watch Video Solution

19. Statement-1 : A Carnot engine working between $100 K$ and $400 K$ has an efficiency of
75%
Statement-2 : It follows from $\eta=1-\frac{T_{2}}{T_{1}}$
A. If both, Assertion and Reason are true and

Reason is the correct explanation of the

Asserrion.
B. If both,Assertion and Reason are true but

Reason is not a correct explanation of the

Assertion.
C. If Assertion is true but the Reason is false.
D. If both, Assertion and Reason are false.

Answer: A

- Watch Video Solution

