© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

CORDINATION COMPOUNDS

Sample Paper

1. The formula of the coordination compound

Tetraammineaquachloridocobalt (III) chloride is

- Watch Video Solution

2. Write the formulate of the following coordination compounds :
(i) sodium pentacyanonitrosylsulphidoferrate (III)
(ii) potassium tetrahydroxozincate (II)

Curiosity Questions

1. Green colour of leaves is due to presence of chlorophyll which is a complex compound. Which metal is present in it?

- Watch Video Solution

2. The metal present in chlorophyll is And the metal present in vitamin B_{12} is

- Watch Video Solution

3. Explain the consequences of deficiency of haemoglobin in our body (any three).
4. KCN is highly poisonous while $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is not. Why ?

- Watch Video Solution

5. White light consists of seven colours (VIBGYOR). If orange light is absorbed by a substance. What will be the colour of the substance and if blue is absorbed, what will be the colour and why ?

- Watch Video Solution

6. Name any three gemstones. Give their colours and name the metals present in each of them which is responsible for the colour.

- Watch Video Solution

7. Which one of the following is used to remove ink and rust stains on cloth?

Problems For Practice

1. Name the following coordination compounds using I.U.P.A.C. system
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(ii) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(iii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
(v) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ (vi) $\mathrm{Ca}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (vii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ (viii)
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$
(ix) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{NO}_{3}$
(xii) $K\left[P t\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{3}\right]$

- View Text Solution

2. Write I.U.P.A.C name of (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ (ii) $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}(\mathrm{ONO})\right]^{+}$
3. Write IUPAC names for : (i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ (ii) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

4. Write the IUPAC name of (i) $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{CNS})_{4}\right]$ (ii) $\mathrm{K}\left[\mathrm{Co}(\mathrm{CN})(\mathrm{CO})_{2}(\mathrm{NO})\right]$

- Watch Video Solution

5. Name the complexes (i) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3} \mathrm{Cl}_{2}\right] \mathrm{Br}\right.$

- Watch Video Solution

6. The IUPAC name of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is
7. Write IUPAC name of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$.

- Watch Video Solution

8. Give IUPAC name of : (i) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$ (ii) $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

9. Name the complexes: (i) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ (ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{Cl}$.

- Watch Video Solution

10. The compound $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ is called

- Watch Video Solution

11. Name the complex $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$.

- Watch Video Solution

12. IUPAC name of $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ is

- Watch Video Solution

13. Write the IUPAC name of
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ (ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{2+}$ (iii) $\left[\mathrm{CoCl}\left(\mathrm{NO}_{2}\right)(e n)_{2}\right]^{+}$

- Watch Video Solution

14. Write IUPAC names of the following
(i) $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right] \mathrm{SO}_{4}$ (ii) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ (iii) $K\left[\mathrm{PtCl}_{3}\left(\mathrm{NH}_{3}\right)\right]$ (iv) $\left[\mathrm{Cr}(\text { en })_{3}\right] \mathrm{Cl}_{3}$

- Watch Video Solution

15.

- Watch Video Solution

16. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is

- Watch Video Solution

17. Name the following compounds according to IUPAC system
i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{2}$
ii) $\left[\mathrm{CrCl}_{2}(e n)_{2}\right] \mathrm{Cl}$

- Watch Video Solution

18. Write IUPAC name of (i) $\mathrm{K}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]$ (ii) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \mathrm{SO}_{4}$
19. Using IUPAC nomenclature, write systematic names of the following :
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{3}$
(b) $\left[P t\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(c) $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$

Watch Video Solution

20. Write the IUPAC names of the following coordination compounds :
(i) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(ii) $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(iii) $\left[\mathrm{CoBr}_{2}(e n)_{2}\right]^{+},($en $=$ethylenediamine $)$

- Watch Video Solution

21. Write down the IUPAC name of the following complex:
$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2}(\right.$ en $\left.)\right] \mathrm{Cl}($ en $=$ ethylenediamine $)$
22. Write down the formulae of the following coordination compounds:
(i) hexaaquairon (II) sulphate (ii) potassium tetracyanonickelate (III)
(iii) chloronitrodiammineplatinum (II) (iv) potassium hexacyanoferrate (III)
(v) chlorodiammineplatinum (II) ion (vi) dichlorotetraamminecobalt (III) ion
(vii) potassium pentacyanonitrosylcobaltate (III) (viii) bis(acetylacetonato) oxovanadium (IV).

- Watch Video Solution

23. Write down the formulae of the following coordination compounds.
(i) hexaammineplatinum (IV) chloride
(ii) sodium ethylenediamminetetraacetato chromate (II)

- Watch Video Solution

24. Give the structural formulae of the following :
(i) potassium hexacyanoferrate (III)
(ii) chloro-bis(ethylenediamine)nitro cobalt (III) ion

- Watch Video Solution

25. Write down the formula of the complex : Pentaamminenitrito-O-cobalt
(III).

- Watch Video Solution

26. Using IUPAC norms write the formulae for the following :
(i) Sodium dicyanidourate
(ii) Tetraammine chloridonitrito-N-platinum (IV) sulphate
or (i) Tris(ethane-1, 2-diamine) chromium (III) chloride
(ii) Potassium tetrahydroxozincate (II)
or (i) Potassium trioxalatoaluminate (III)
(ii) Dichloridobis (ethane-1, 2-diamine) cobalt (III)

(D) Watch Video Solution

Advanced Problems

1. A complex has empirical formula, $\mathrm{PtCl}_{2} \cdot 2 \mathrm{NH}_{3}$. When mixed with AgNO_{3}, it gives $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]$ and an insoluble slid $\mathrm{Ag}_{2}\left[\mathrm{PtCl}_{4}\right]$ was also obtained. Name and mention the structure of the complex.

- Watch Video Solution

2. Explain the following about the complexes $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$:
(i) What type of shapes do they have ?
(ii) What type of hybridisation is involved in each case?
(iii) Which of them is outer orbital complex and which one is inner orbital complex ?
(iv) Which of them is low spin complex and which one is high spin
complex ?
(v) Compare their magnetic behaviour.
(vi) Why do they have different colours in dilute solution?
(vii) Write the electronic configuration of metal ion in each case in terms of $t_{2 g}$ and e_{g} orbitals.

- Watch Video Solution

3. Write equations to represent the following observations: When NaOH is added to aqueous CuSO_{4} solution, a pale blue precipitate is formed. On adding aqueous NH_{3} solution, When NaOH is added to give a deep blue solution. If the solution is made acidic with dilute HNO_{3}, the colour is converted back to pale blue solution.

- Watch Video Solution

4. A, B and C are three complexes of chromium(III) with the empirical formula $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{C}_{13} \mathrm{Cr}$. All the three complexes not react with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ whereas complexes B and C lose 6.75% and 13.5%
of their original mass respectively, on treatment on treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ Identify A, B and C.

- Watch Video Solution

5. 2.665 g of a complex with molecular formula $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ was dissolved in water. The solution was passed through a cation exchanger such that all ionizable Cl^{-}ions passed into the solution. The solution was collected and treated with AgNO_{3} solution. The precipitate of AgCl was filtered, dried and weighed. Its mass found to be 2.87 g . Find out the structural formula of the complex and name it on IUPAC system (Atomic mass: $\mathrm{Cr}=$ $52, \mathrm{Ag}=108, \mathrm{Cl}=35 \cdot 5, \mathrm{~N}=14)$.

- Watch Video Solution

6. Name a hexadentate ligand and draw its structure. Write the formula of the complex which it forms with $\operatorname{Co(III)}$. Also draw the structure of this complex.
7. Calculate : (i) Ratio of $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}^{+}\right]$in $0.1 \mathrm{M} \mathrm{NH}_{3}$ solution
(ii) Ratio of $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ and $\left[\mathrm{Ag}^{+}\right]$in $0.1 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ solution.

Given that the stability/formation constants $\left(\mathrm{K}_{f}\right)$ for $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{3-}$ are 1.7×10^{7} and 1.0×10^{13} respectively.

- Watch Video Solution

8. Calculate the crystal field stabilization energy and spin only magnetic moment for the following configuration of octahedral complexes.
(i) d^{3} (in weak as well as strong ligand field)
(ii) d^{5} (in weak as well as strong ligand field)
(iii) d^{7} (in weak ligand field)
(iv) d^{9} (in weak as well as strong ligand field)
9. When $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is treated with conc HCI , two compounds having the formula $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)(2) \mathrm{CI}_{2}$ are formed. A solution of I reacts with oxalic acid to form $\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$. II does not react with oxalic acid. Deduce the configuration of I and II and the geometry of Ni (II) complexes .

- Watch Video Solution

10. A mixture x containing 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and 0.02 mol of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ was prepared in 2 L of solution.

1 L of mixture $\mathrm{X}+$ excess $\mathrm{AgNO}_{3} \rightarrow Y$
$1 L$ of mixture $X+$ excess $\mathrm{BaCl}_{2} \rightarrow Z$
The number of moles of Y and Z are

- Watch Video Solution

11. 1.502 g sample of steel yields 0.259 g of nickel dimethylglyoximate $\mathrm{NiC}_{8} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ (molar mass $289 \mathrm{~g} \mathrm{~mol}^{-1}$). What is the percentage of nickel
in the steel? (Atomic mass of $\mathrm{Ni}=59$)

- Watch Video Solution

Test Your Grip

1. Which of the following is a tridentate ligand?
A. NO_{2}^{-}
B. oxalate ion
C. glycinate ion
D. dien

Answer: D

- Watch Video Solution

2. An example of ambidentate ligand is
A. Ammine
B. Aquo
C. Oxalato
D. Thiacyanato

Answer: D

D Watch Video Solution

3. The IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{CI})\left(\mathrm{NO}_{2}\right)\right] \mathrm{CI}$ is
A. Triamminechloridobromidonitroplatinum (IV) chloride
B. Triamminebromidonitrochloridoplatinum (IV) chloride
C. Triamminebromidochloridonitroplatinum (IV) chloride
D. Triamminenitrochloridobromidoplatinum (IV) chloride

Answer: A

4. The number of possible isomers for the complex $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\left(\mathrm{NH}_{3}\right)_{2}\right]$ is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

5. The complexes $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
are the examples of which type of isomerism ?
A. Geometrical isomerism
B. Linkage isomerism
C. Ionization isomerism
D. Coordination isomerism

Answer: C

- Watch Video Solution

6. Which kind of isomerism is exhibited by octahedral $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}$?
A. Geometrical and ionization
B. Geometrical and optical
C. Optical and ionization
D. Geometrical only

Answer: A

7. The ionisation isomer of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]\left(\mathrm{NO}_{2}\right)$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right] \mathrm{Cl}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right] \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

8. Which of the following has an optical isomer?
(en=ethylenediamine) ?
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(e n)\right]^{3+}$
(en = ethylenediamine)
B. $\left[\operatorname{Zn}(e n)_{2}\right]^{2+}$
C. $\left[\mathrm{Zn}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
D. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$

Answer: D

- Watch Video Solution

9. Which of the following has highest molar conductivity
A. Diamminedichloro platinum (II)
B. Tetraamminedichlorocobalt (III) chloride
C. Potassium hexacyanoferrate (II)
D. Hexaaquochromium (III) chloride

Answer: B

10. The primary and secondary valencies of chromium in the complex ion, dichlotodioxalatochromoium (III), are respectrively
A. 3, 4
B. 4,3
C. 3,6
D. 6, 3

Answer: C

- Watch Video Solution

11. The hybridisation of Fe in $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is
A. $d s p^{2}$
B. $s p^{3}$
C. $d^{2} s p^{3}$
D. $s p^{3} d^{2}$

- Watch Video Solution

12. Among the following ions which one has the highest paramagnetism?
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

D Watch Video Solution

13. Which of the following is an outer orbital complex ?
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

14. Which of the following compound has tetrahedral geometry?
A. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
B. $\left[\operatorname{Pd}(C N)_{4}\right]^{2-}$
C. $\left[\mathrm{PdCl}_{4}\right]^{2-}$
D. $\left[\mathrm{NiCl}_{4}\right]^{2-}$

Answer: D
15. Which of the following statement is correct ? (CFSE = Crystal Field Splitting Energy)
A. Lower CFSE favours formation of low spin complex
B. Higher CFSE favours formation of high spin complex
C.A particular metal ion in a particular oxidation state can form diamagnetic complexes only or paramagnetic complexes only
D. $t_{2 g}$ orbitals are three-fold degenerate while e_{g} orbitals are two-fold degenerate

Answer: D

- Watch Video Solution

16. The increasing order of the crystal field splitting power of some common ligands is

$$
\text { A. } \mathrm{H}_{2} \mathrm{O}<\mathrm{OH}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{CN}^{-}
$$

B. $\mathrm{CN}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{OH}^{-}<\mathrm{F}^{-}<\mathrm{Cl}^{-}$
C. $\mathrm{F}^{-}<\mathrm{CN}^{-}<\mathrm{OH}^{-}<\mathrm{Cl}^{-}<\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CN}^{-}$

Answer: D

- Watch Video Solution

17. Which of the following configuration of ions has zero CFSE in both strong and weak ligand fields ?
A. d^{10}
B. d^{8}
C. d^{6}
D. d^{4}

Answer: A

18. The most stable complex among the following is
A. $K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
B. $\left[\operatorname{Pt}(e n)_{2}\right] \mathrm{Cl}_{2}$
C. $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
D. $K_{2}[N i(E D T A)]$

Answer: D

D Watch Video Solution

19. $\mathrm{Ag}^{+}+\Leftrightarrow\left|\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right|^{+}, k_{1}=6.8 \times 10^{-3}$
$\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)\right]^{+}+\mathrm{NH}_{3} \Leftrightarrow\left|\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right|, k_{2}=1.6 \times 10^{-3}$
Then the formation constant or $\left|\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right|^{+}$is
A. 1.08×10^{-7}
B. 1.08×10^{-5}
C. 1.08×10^{-9}
D. none of these

Answer: B

- Watch Video Solution

20. The dark blue colour of the solution formed when excess of ammonia is added to a solution of copper (II) sulphate is due to the presence of the ion
A. $\left[\mathrm{Cu}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}$
B. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
D. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$

Answer: D

21. Prussian blue is obtained by mixing together aqueous solution of Fe^{3+} salt with
A. Ferricyanide
B. Ferocyanide
C. Hydrogen cyanide
D. Sodium cyanide

Answer: B

- Watch Video Solution

22. The correct formula of Zeise's salt is
A. $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]$
B. $\left[P b\left(C_{2} H_{5}\right)_{4}\right]$
C. $K\left[\operatorname{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$
D. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

Answer: C

- Watch Video Solution

23. Which of the following is a π-acid ligand?
A. NH_{3}
B. CO
C. F^{-}
D. ethylene diamine.

Answer: B

24. The correct structure of $\mathrm{Fe}(\mathrm{CO})_{5}$ is ?
A. octahedral
B. tetrahedral
C. square pyramidal
D. trigonal bipyramidal

Answer: D

- Watch Video Solution

25. The oxidation state of nickel in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is
A. 4
B. 0
C. 2
D. 3

D Watch Video Solution

26. The non -existant metal carbonyl among the following is `
A. $\mathrm{Cr}(\mathrm{CO})_{6}$
B. $\mathrm{Mn}(\mathrm{CO})_{5}$
C. $\mathrm{Ni}(\mathrm{CO})_{4}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: B

Watch Video Solution

27. The metal-carbon bond in metal carbonyls prossesses :
A. only σ-character
B. only π-character
C. both σ and π charater
D. ionic character

Answer: C

D Watch Video Solution

28. Which of the following is not considered as an organometallic compounds?.

(Watch Video Solution

29. The coordination compound of which one of the following compositions will produce two equivalents of AgCl on reaction with aqueous silver nitrate solution ?
A. $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$

Answer: D

- Watch Video Solution

Fill In The Blanks

1. The solution of the compound, $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ will not given the tests of and ions.

- Watch Video Solution

2. The number of coordinating or ligating groups present in a ligand is called its \qquad .
3. $[P t(\text { trien })]^{2+}$ is a Ligand on the basis of its denticity.

- Watch Video Solution

4. When a ligand forms a closed ring with the metal atom, the complex formed is called

- Watch Video Solution

5. Unidentate ligands containing more than one coordinating atoms are called Ligands.

- Watch Video Solution

6. The total number of Ligands attached to the central metal ion through coordinate bond is called-
7. The spatial arrangement of the ligands attached to the central metal atom is called

- Watch Video Solution

8. Complexes in which the metal atom or ion is linked to only one type of ligands are called whereas those in which metal atom is linked to more than one type of ligands are called \qquad

- Watch Video Solution

9. The ligands SCN linked to the metal atom through S is called whereas when linked through N, it is called

- Watch Video Solution

10. The formula of sodium hexanitrite cobalt is and its IUPAC name is

- Watch Video Solution

11. The formula of sodium nitroprusside is and its IUPAC name is

- Watch Video Solution

12. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O}$ are Isomers as well as

- Watch Video Solution

13. The cis form of the complex $\left[\mathrm{RhCl}_{3}(p y)_{3}\right]$ is called isomer whereas its trans form is called isomer.
14. Two compounds with the formula $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \mathrm{Cl}^{-}$exist. One of the has violet colour whereas the other has green colour. One of them is Isomer whereas the other is isomer.

- Watch Video Solution

15. Octahedral complexes involving $d^{2} s p^{3}$ hybridisation are called complexes whereas those involving $s p^{3} d^{2}$ hybridisation are called

- View Text Solution

16. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ complex has the shape and is In terms of magnetic nature whereas $\left[\mathrm{NiCl}_{4}\right]^{\wedge}(2-)^{\prime}$ has the shape and is

- Watch Video Solution

17. In an octahedral crystal field, d - orbitals split into Orbitals collectively called And Orbitals collectively called

- Watch Video Solution

18. The difference of energy between two sets of d-orbitals obtained due to splitting in a crystal field is called \qquad

- Watch Video Solution

19. The arrangement of ligands in order of their crystal field splitting energies is called \qquad .

- Watch Video Solution

20. The average energy level of the perturbed d-orbitals in the crystal field for which the energy is taken as zero is called
21. If Δ_{0} represents CFSE in an octahedral field, e_{g} orbitals lie The bari centre and $t_{2 g}$ orbitals lie the bari centre.

- Watch Video Solution

22. If $\operatorname{CFSE}\left(\Delta_{0}\right)$ is less than pairing energy (P), the ligand is a ligand and the complex formed is a complex.

- Watch Video Solution

23. In a tetrahedral crystal field, the d-orbitals split into orbitals collectively called and orbitals collectively called

- Watch Video Solution

24. If Δ_{t} represents CFSE in a tetrahedral crystal field t_{2} .The bari centre and e lies \qquad the bari centre.

D Watch Video Solution

25. The common name of $K\left[\mathrm{PtCl}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ is

- Watch Video Solution

26. The most common name of bis (cyclopentadienyl) iron is

- View Text Solution

27. The $\mathrm{C}-\mathrm{O}$ bond length in $\mathrm{C} \equiv \mathrm{O}$..... (decreases or increases or remains unchanged) when metal carbonyls are formed.

- Watch Video Solution

28. The metal present in chlorophyll is And the metal present in vitamin B_{12} is

- Watch Video Solution

29. The brown ring formed in the test of nitrates with FeSO_{4} solution and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ has the formula

- Watch Video Solution

Conceptual Questions

1. Which type of ligands form chelates ?

- Watch Video Solution

2. Which of the following is more stable complex and why? $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CO}(e n)_{3}\right]^{3+}$

- Watch Video Solution

3. Why only transition metals are known to form π complexes ?

- Watch Video Solution

4. Write the correct formulae for the following coordination compounds :
(a) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (violet, with 3 chloride ions/unit formula)
(b) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (light green colour with 2 chloride ions/unit formula)
(c) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (dark green colour with 1 chloride ion/unit formula)

- Watch Video Solution

5. Write the formulae of the following :
(i) bis (acetylacetonato) oxovanadium (IV)
(ii) dichloridoplatinum (IV) tetrachloridoplatinate (II)

- Watch Video Solution

6. Give the IUPAC names of the complexes (i) $K\left[B F_{4}\right]$ (ii) $\left[F e\left(C_{5} H_{5}\right)_{2}\right]$
(iii) $\left[M n_{3}(C O)_{12}\right]$

- Watch Video Solution

7. The formula $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3} \mathrm{Cl}$ could represent a carbonate and a chloride. Give IUPAC names for them.

- Watch Video Solution

8. Write the IUPAC name of

- View Text Solution

9. How many isomers are there for the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$? or Draw cis and trans isomers of $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$ion.

- Watch Video Solution

10. Write IUPAC name of the following complexes $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$. What type of isomerism does it exhibit ?

- Watch Video Solution

11. Write all isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SCN})\right] \mathrm{Cl}$.

- Watch Video Solution

12. Draw isomers of the complex ion $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$

- Watch Video Solution

13. How many isomers are possible for the neutral complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$?

- Watch Video Solution

14. How will you distinguish between the following isomer pairs ?
(a) (i) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and (ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O}$
(b) (i) cis $\left[P t\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ and (ii) trans $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(c) The two enantiomers of $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$

- Watch Video Solution

15. Draw the structures of (a) cis-dichloridotetracyanochromate (III)
(b) Mer-triamminetrichloridocobalt (III) (c) Fac-triaquatrinitro-N-cobalt (III)

- Watch Video Solution

16. Write the names and draw the structures of complex compounds $\operatorname{lt}(\mathrm{i})$
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{3}$
(ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ (iii) $\left[\mathrm{NiCl}_{4}\right]$

- Watch Video Solution

17. Write all the geometrical isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{Cl})(\mathrm{py})\right]$ and how many of these will exhibit optical isomers?

- Watch Video Solution

18. Square planar complexes with coordination number of four exhibit geometrical isomerism whereas tetrahedral complexes do not. Why ?

- Watch Video Solution

19. Write the name (IUPAC norms) and draw the possible optical isomers
of $\left[\mathrm{CrCl}_{2}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$.

D View Text Solution

20. A coordination compound has the formula, $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$. It does not liberate ammonia but precipitates chloride ions as silver chloride. Give the IUPAC name of the complex and write its structural formula.

- Watch Video Solution

21. On the basis of valence bond theory, explain geometry, nature of hybridisation, magnetic property and optical isomerism of $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$.

- Watch Video Solution

22. Arrange the following complexes in the increasing order of conductivity of their solution
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

23. The molar conductivity of the complex $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is found to be same as that of $3: 1$ electrolyte. What is the structural formula of the compelx ?

- Watch Video Solution

24. A coordination compound $\mathrm{CrCI}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCI when treated with AgNO_{3} The molar conductance of its solution corresponds to a total of two ions Write the structural formula of the compound and name it .

- Watch Video Solution

25. When a coordination compound $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is mixed with $\mathrm{AgNO}_{3}, 2$ moles of AgCl are precipitated per mole of the compound. Write
(i) Structural formula of the complex
(ii) IUPAC name of the complex.

- Watch Video Solution

26. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{CoF}_{6}\right]^{3-}$ both are octahedral complexes. Then what is the difference between the two ?
27. Account for the fact that $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ has tetrahedral geometry whereas $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ has square planar geometry.

- Watch Video Solution

28. Explain how two complexes of nickel, $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$ have different structures but do not differ in magnetic behaviour.

- Watch Video Solution

29. Some square planar complexes of $\mathrm{Ni}(\mathrm{II})$ are diamagnetic while some others are paramagnetic. Justify.

- Watch Video Solution

30. Account for different magnetic behaviour of hexacyanoferrate (III) and hexafluoroferrate (III).
31. Out of tetracarbonyl nickel (0) and tetraamminecopper (II) sulphate, which is magnetic and why ?

- Watch Video Solution

32. Describe for any two of the following complex ions, the type of hybridisation, shape and magnetic property.
(i) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(iii) $\left[\mathrm{NiCl}_{4}\right]^{2-}$

- Watch Video Solution

33. Define crystal field splitting energy. On the basis of crystal field theory, write the electronic configuration for d^{4} ion if $\Delta_{0}<P$.

- Watch Video Solution

34. On the basis of crystal field theory, write the electronic configuration for d^{4} ion if $\Delta_{0}>P$.

- Watch Video Solution

35. A metal ion M^{n+} HAVING D^{4} valence electronic configuration combines with three bidentate ligands to form a complex compound. Assuming $\Delta_{0}>P$:
(i) write the electronic configuration of d^{4} ion.
(ii) what type of hybridisation will M^{n+} ion has ?
(iii) Nmae the type of isomerism exhibited by this complex .

- Watch Video Solution

36. Draw a sketch to show the splitting of d-orbitals in an octahedral crystal field. State for a d^{6} configuration, how the actual configuration of the split d-orbitals in an octahedral crystal field is decided by the relative values of Δ_{0} and P ?
37. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is coloured while $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is colourless. Why?

- Watch Video Solution

38. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless Explain.

- Watch Video Solution

39. With the help of crystal field theory, predict the number of unpaired electrons in $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ complexes.

- Watch Video Solution

40. What happens to the colour of coordination compound $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ when heated gradually ?

- Watch Video Solution

41. The values of dissociation constants of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are 1.0×10^{-12} and 6.2×10^{-36} respectively. Which complex would be more stable and why ?

- Watch Video Solution

42. Which of the two compounds are more stable and why. $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\right.$?

- Watch Video Solution

43. A chloride of fourth group cation in qualitative analysis gives a green coloured complex [A] in acqueous solution which when treated with ethane-1, 2-diamine (en) gives pale yellow solution [B] which on subsequent addition of ethane-1, 2-diamine turns to blue/purple [C] and finally to violet [D]. Write the structures of complexes [A], [B], [C], and [D]

- Watch Video Solution

44. Write the correct formulae for the following coordination compounds
:
(a) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (violet, with 3 chloride ions/unit formula)
(b) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (light green colour with 2 chloride ions/unit formula)
(c) $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ (dark green colour with 1 chloride ion/unit formula)

- Watch Video Solution

45. Assertion: Metal carbonyls can be called organometallics

Reason: Metal carbonyls don't contain metal carbon bond .
46. In the formation of metal carbonyls, which orbitals are involved in the overlap ?

- Watch Video Solution

47. Draw the structures of the following :
(i) Pentaamminenitrito-N-cobalt (III) (ii) Hexamethyldialuminium.

- Watch Video Solution

48. How is nickel detected and estimated in a salt ? Give the reaction involved.
49. Why complexes are prefferred in the electrolytic bath for electroplating?

Watch Video Solution

50. Complete the equation :
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+\mathrm{NO} \rightarrow$

- Watch Video Solution

51. Explain the following cases giving appropriate reasons:
(i) Nickel does not form low spin octahedral complexes
(ii) Co^{2+} is easily oxidized to Co^{3+} in the presence of a strong ligand.
(iii) CO is a stronger ligand than NH_{3} for many metals.

- Watch Video Solution

1. On the basis of the following observations made with aqueous solutions, how many of them have 6 secondary valencies?

Formula Moles of AgCl precipitated per mole of the compounds with exct
(a) $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3} \quad 2$
(b) $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \quad 2$
(c) $\mathrm{PtCl}_{4} \cdot 2 \mathrm{HCl} \quad 0$
(d) $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3} \quad 1$
(e) $\mathrm{PtCl}_{2} \cdot 2 \mathrm{NH}_{3} \quad 0$

- Watch Video Solution

2. Write the formulas for the following coordination compounds:
(a) Tetraa mmineaqua chlorido cobalt (III) chloride
(b) Potassium tetrahydroxid ozincate (II)
(c) Potassium trioxalato aluminate (III)
(d) Dichloridobis (ethane-1,2-diamine) cobalt (III)
(e) Tetra carbonyl nickel (0)
3. Write the IUPAC names of the following coordination compounds:
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$
(b) $K_{3}\left[C r\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(c) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right] \mathrm{Cl}$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right] \mathrm{Cl}$
(e) $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$

(Watch Video Solution

4. Why is geometrical isomerism not possible in tetrahedral complexes having two different types of unidentate ligands coordinated with central metal ion ?.

- Watch Video Solution

5. Draw structures of geometrical isomers of $\left[\mathrm{Fe}(\mathrm{CN})_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]$.

(D) Watch Video Solution

6. Out of the following two coordination entities Which is chiral (optically active)
(a) cis - $\left[\mathrm{CrCI}_{2}(\mathrm{OX})_{2}\right]^{3-}$
(b) trans - $\left.\left[\mathrm{CrCI}_{2}(\mathrm{OX})_{2}\right)\right]^{3-}$.

- Watch Video Solution

7. The spin only magnetic moment of $\left[\mathrm{MnBr}_{4}\right]^{2-}$ is 5.9 BM . Predict the geometry of the complex ion.

- Watch Video Solution

8. Wrtie the formulas for the following coordination compounds:
(i). Tetraamminediaquacobalt(III) chloride.
(ii). Potassium tetracyanidonichelate(II).
(iii). Tris(ethane-1,2-diamine) chromium(III) chloride.
(iv) Amminebromidochloridonitrito-N-Platinate(II).
(v). Dichlororidobis (ethane-1,2-diamine) platinum(IV) nitrate.
(vi). Iron(III) hexacyanidoferrate(II).

- Watch Video Solution

9. Write the IUPAC names of the following coordiantion compounds:
(i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(iii) $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(iv) $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(v) $K_{2}\left[\mathrm{PdCl}_{4}\right]$
(vi) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl}$
10. Indicate the type of isomerism exhibited by the following complexes and draw the structures for these isomers:
(i) $K\left[\operatorname{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right.$
(ii) $\left[\mathrm{Co}(\text { en })_{3}\right] \mathrm{Cl}_{3}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$
(iv) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{2}\right]$

Watch Video Solution

11. Give evidence that $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Cl}$ are ionisation isomers.

- View Text Solution

12. Explain on the basis of valence bond theory that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion with square planar structure is diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

- Watch Video Solution

13. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral. Why?

- Watch Video Solution

14. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is strongly paramagnetic whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic. Explain.

- Watch Video Solution

15. Explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex whereas $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an outer orbital complex.

- Watch Video Solution

16. Predict the number of unpaired electrons in the square planar $\left[P t(C N)_{4}\right]^{2-}$ ion.

- Watch Video Solution

17. The hexaquo manganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using the crystal field theory.

- Watch Video Solution

18. Calculate the overall complex dissociation equilibrium constant for the $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ ion, given that β_{4} for this complex is 2.1×10^{13}

- Watch Video Solution

1. According to Werner's theory of coordination compounds,

- Watch Video Solution

2. FeSO_{4} solution mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution is $1: 1$ molar ratio gives the test of Fe^{2+} ion but CuSO_{4} solution mixed with aqueous ammonia in 1:4 molar ratio does not give the test of Cu^{2+} ion. Explain why?

- Watch Video Solution

3. Explain with two examples each of the following: coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic
4. What is meant by unidentate, didentate and ambidentate ligands ?

Give two examples for each.

- Watch Video Solution

5. Specify the oxidation numbers of metals in the following co-ordination entites :
(a) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CN})\left(e n_{2}\right)\right]^{2+}$
(b) $\left[\mathrm{PtCI}_{4}\right]^{2-}$
(c) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{CI}_{3}\right]$
(D) $\left[\mathrm{CoBr}_{2}(e n)_{2}\right]^{+}$
(e) $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$.

- Watch Video Solution

6. Using IUPAC norms write the fomulas for the following
(i). Tetrahydroxozincate(II).
(ii). Potassium tetrachloridopalladate(II).
(iii). Diamminedlchloridoplatinum(II).
(iv). Potassium tetracyanidonickelate(II).
(v). Pentaamminenitrito-O-Cobalt(III).
(vi). Hexaamminecobalt(III) sulphate
(vii). Potassium tri(oxalato)chromate(III).
(viii). Hexaammlneplatinum(IV)
(ix). Tetrabromidocuprate(II).
(x). Pentaamminenitrito-N-cobalt(III).

- Watch Video Solution

7. Using IUPAC norms write the systematic names of the following:
(i). $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(ii). $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NH}_{2} \mathrm{CH}_{3}\right)\right] \mathrm{Cl}$
(iii). $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(iv). $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
(v). $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(vi). $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(vii). $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
(viii). $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
(ix). $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$

- Watch Video Solution

8. List various types of isomerism possible for coordination compounds, giving an example of each.

- Watch Video Solution

9. How many geometrical isomers are possible in the following corrdination entities?
(i). $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(ii). $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

10. Draw the structures of optical isomers of:
(i). $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(ii). $\left[\mathrm{PtCl}_{2}(e n)_{2}\right]^{2+}$
(iii). $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(\text { en })\right]^{\oplus}$

- Watch Video Solution

11. Draw all the isomers (geometrical and optical) of:
(i) $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right]^{+}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(\text { en })_{2}\right]^{2+}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(\right.$ en $\left.)\right]+$

Watch Video Solution

12. Write all the geometrical isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Br})(\mathrm{Cl})(\mathrm{py})\right]$ and how many of these will exhibit optical isomers?
13. Aqueous copper sulphate solution (blue in colour) gives:
(i). A green precipitate with aqueous potassium fluoride and
(ii). A bright green solution with aqueous potassium chloride. Explain these experimental results.

- Watch Video Solution

14. What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution of copper sulphate? Why is it that no precipitate of copper sulphide is obtained when $H_{2} \mathrm{~S}(\mathrm{~g})$ is passed through this solution?

- Watch Video Solution

15. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory:
(i). $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(ii). $\left[F e F_{6}\right]^{3-}$
(iii). $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(iv). $\left[\mathrm{CoF}_{6}\right]^{3-}$

- Watch Video Solution

16. Draw figure to show the splitting of d orbitals in an octahedral crystal field.

- Watch Video Solution

17. What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.

- Watch Video Solution

18. What is crystal field splitting energy? How does the magnitude of \triangle_{0} decide the actual configuration of d orbitals in a coordination entity?

(D) Watch Video Solution

19. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic. Explain why?

- Watch Video Solution

20. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless Explain.

- Watch Video Solution

21. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ are of different colours in dilute solutions why?

- Watch Video Solution

22. Discuss the nature of bonding in metal carbonyis.

- Watch Video Solution

23. Give the oxidation state, d-orbital occupation and coordination number iof the central metal ion in the following complexes :
(a) $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(b) $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{CoF}_{4}\right]$
(c) Cis $-\left[\mathrm{CrCl}_{2}(\text { en })_{2}\right] \mathrm{Cl}$
$\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$

- Watch Video Solution

24. Write down the IUPAC name for each of the following complexes and indicate the oxidation state, electronic configuration and coordination number. Also give stererochemistry and magnetic moment of the complex :
(i) $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{CrCl}_{3}(p y)_{3}$
(iii) $K_{4}\left[M n(C N)_{6}\right]$
(iv) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(v) $\mathrm{Cs}\left[\mathrm{FeCl}_{4}\right]$.

- Watch Video Solution

25. What is meant by stability of a coordination compound in solution ? State the factors which govern stability of complexes.

- Watch Video Solution

26. What is meant by the chelate effect? Give and example.

- Watch Video Solution

27. Discuss briefly giving an example in each case the role of coordination compounds in: (i) biological systems (ii) medicinal chemistry (iii) analytical chemistry and (iv) extraction/metallurgy of metals
28. How many ions are produced from the complex, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{CI}_{2}$ in solution?
A. 6
B. 4
C. 3
D. 2

Answer:

29. Amongst the following ions which one has the highest magnetic moment value?
(i). $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(ii). $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(iii). $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$

- Watch Video Solution

30. The oxidation number of cobalt in $K\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ is:
A. +1
B. +3
C. -1
D. -3

Answer:

- Watch Video Solution

31. Amongst the following, the most stable complex is
A. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{FeCl}_{6}\right]^{3-}$

Answer: C

- Watch Video Solution

32. What will be the correct order for the wavelengths of absorption in the visible region for the following:
$\left[\mathrm{Ni}\left(\mathrm{NO}_{2}\right)_{6}\right]^{4-},\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$?

- Watch Video Solution

1. Which of the following complexes formed by Cu^{2+} ions is most stable ?
A. $\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}, \log \mathrm{K}=11.6$
B. $\mathrm{Cu}^{2+}+4 \mathrm{CN}^{-} \Leftrightarrow\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-} \log \mathrm{K}=27.3$
C. $\mathrm{Cu}^{2+}+2 e n \Leftrightarrow\left[\mathrm{Cu}(e n)_{2}\right]^{2+}, \log K=15.4$
D. $\mathrm{Cu}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \Leftrightarrow\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}, \log \mathrm{K}=8.9$

Answer: B

- Watch Video Solution

2. The colour of the coordination compounds depends on the crystal field splitting. What will be the correct order of absorption of wavelength of light of the visible region, for the complexes, $\left[\mathrm{Co}\left(\mathrm{NH}_{3-}-(6)\right]^{3+} \cdot\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+} \cdot\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\right.$
A. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

3. When $0.1 \mathrm{~mol} \mathrm{CoCl} 3\left(\mathrm{NH}_{3}\right)_{5}$ is treated with excess of $\mathrm{AgNO}_{3}, 0.2$ mole of AgCl are obtained. The conductivity of solution will correspond to
A. $1: 3$ electrolyte
B. 1: 2 electrolyte
C. 1: 1 electrolyte
D. 3: 1 electrolyte

Answer: B

4. When $1 \mathrm{~mol} \mathrm{CrCl} 3.6 \mathrm{H}_{2} \mathrm{O}$ is treated with excess of $\mathrm{AgNO}_{3}, 3 \mathrm{~mol}$ of AgCl are obtained. The formula of the coplex is
A. $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
c. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

- Watch Video Solution

5. The correct IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is
A. Diamminedichloridoplatinum (II)
B. Diamminedichloridoplatinum (IV)
C. Diamminedichloridoplatinum (0)
D. Dichloridodiammineplatinum (IV)

Answer: A

- Watch Video Solution

6. The stabilization of coordination compound due to chelation is called the chelate effect. Which of the following is the most stable complex species?
A. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

7. Indicate the complex ion which shows geometrical isomerism :
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]+$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]$
c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}(\mathrm{CN})_{5}(\mathrm{NC})\right]^{3-}$

Answer: A

- Watch Video Solution

8. The CFSE for octahedral $\left[\mathrm{CoCl}_{6}\right]^{4-}$ is $18,000 \mathrm{~cm}^{-1}$. The CFSE for tetrahedral $\left[\mathrm{CoCl}_{4}\right]^{2-}$ will be
A. $18,000 \mathrm{~cm}^{-1}$
B. $16,000 \mathrm{~cm}^{-1}$
C. $8,000 \mathrm{~cm}^{-1}$
D. $20,000 \mathrm{~cm}^{-1}$

Answer: C

- View Text Solution

9. Due to the presence of ambidenate ligands coordination compounds
show isomerism. Palladium complexes of the type $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{SCN})_{2}\right]$ \& $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}(\mathrm{NCS})_{2}\right]$ are
A. linkage isomers
B. coordination isomers
C. ionisation isomers
D. geometrical isomers

Answer: A

10. The two compounds $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{SO}_{4}\right)\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}$ represent:
A. linkage isomerism
B. ionisation isomerism
C. Coordination isomerism
D. no isomerism

Answer: D

- Watch Video Solution

11. A chelating agent has two or more than two donor atoms to bind to a single metal ion. Which of the following is not a chelating agent?
A. thiosulphato
B. oxalato
C. gycinato
D. ethane-1, 2-diamine

Answer: A

- Watch Video Solution

12. Which of the following species is not expected to be a ligand?
A. NO
B. NH_{4}^{+}
C. $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$
D. CO

Answer: B

- Watch Video Solution

13. What kind of isomerism exists between $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (violet) and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ (greyish-green)?
A. linkage isomerism
B. solvate isomerism
C. ionisation isomerism
D. coordination isomerism

Answer: B

D Watch Video Solution

14. IUPAC name of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ is
A. Platinum diaminechloronitrite
B. Chloronitrito- N -ammineplatinum (II)
C. Diamminechloridonitrito-N-platinum (II)
D. Diamminechloronitrito-N platinate (II)

Answer: C

- Watch Video Solution

15. Atomic number of Mn . Fe and Co are 25,26 and 27 respectively. Which of the following inner orbital octahedral complex ions are diamagnetic?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$

Answer: A:C

- Watch Video Solution

16. Atomic number of Mn, Fe, Co and Ni are 25, 26, 27 and 28 respectively. Which of the following outer orbital octahedral complexes have same number of unpaired electrons?
A. $\left[\mathrm{MnCl}_{6}\right]^{3-}$
B. $\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{CoF}_{6}\right]^{3-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: A:C

- Watch Video Solution

17. Which of the following options are correct for $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ complex ?
A. $d^{2} s p^{3}$ hybridisation
B. $s p^{3} d^{2}$ hybridisation
C. paramagnetic
D. diamagnetic

Answer: A::C

- Watch Video Solution

18. An aqueous pink solution of cobalt (II) chloride changes to deep blue on addition of excess of HCl . This is because \qquad .
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is transformed into $\left[\mathrm{CoCl}_{6}\right]^{4-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is transformed into $\left[\mathrm{CoCl}_{4}\right]^{2-}$
C.tetrahedral complexes have smaller crystal field splitting than octahedral complexes
D.tetrahedral complexes have larger crystal field splitting than octahedral complex.

Answer: B::C

19. Which of the following complexes are homoleptic ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+$
C. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: A:C

- Watch Video Solution

20. Which of the following complexes are heteroleptic ?
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+$
C. $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: B::D

Watch Video Solution

21. Identify the optically active compounds from the following :
A. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
B. $\operatorname{tans}-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. cis $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]$

Answer: A: C

- Watch Video Solution

22. Identify the correct statements for the behaviour of ethane-1, 2diamine as a ligand.
A. It is a neutral ligand
B. It is a didentate ligand
C. It is a chelating ligand
D. It is a unidentate ligand

Answer: A::B::C

- Watch Video Solution

23. Which of the following complexes show linkage isomerism ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CO}\right]^{3+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SCN}\right]^{2+}$
D. $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

Answer: A::C

- Watch Video Solution

24.2 : 4 Dinitrophenyl hydrazine is an example for
A. Tridentate ligand
B. Monodentate ligand
C. Polydentate ligand
D. Didentate ligand

Answer: B

- Watch Video Solution

25. The correct structure of ethylenediamineteraacetic acid (EDTA) is .
A.
B.
c.
D.

Answer: C

- Watch Video Solution

26. In Tollen's reagent, the oxidation number, coordination number and effective atomic number of central metal ion are respectively [atomic number of Ag - 47] :
A. 1, 1
B. 2, 1
C. 2, 2
D. 1, 2

Answer: D

- Watch Video Solution

27. The sum of coordination number and oxidation number of the metal M in the complex $\left[\mathrm{M}(\mathrm{en})_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)\right] \mathrm{Cl}$ (where en is ethylenediamine) is :
A. 7
B. 8
C. 9
D. 6

Answer: C

D Watch Video Solution

28. The ligand $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}$ is
A. tridentate
B. pentadentate
C. tetradentate
D. bidentate

Answer: C

- Watch Video Solution

29. Oxidation number of Cr in the following complex is

$$
\left(\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cr}<\mathrm{O}_{2}>\mathrm{O}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right)
$$

A. 2
B. 3
C. 4
D. 5

Answer: B

- Watch Video Solution

30. Which among the following is a homoleptic complex?
A. tris(ethane-1, 2 - diamine) cobalt (III) chloride
B. triamminetriaquachromium (III) chloride
C. diamminechloridonitro-N-platinum (II)
D. dichlorido bis(ethane-1, 2-diamine) cobalt (III) chloride

Answer: A

- Watch Video Solution

31. The formula of dichlorobis (urea) copper (II) is
A. $\left[\mathrm{Cu}\left\{\mathrm{O}=\mathrm{C}\left(\mathrm{NH}_{2}\right)\right\}_{2}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{CuCl}_{2}\left\{\mathrm{O}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}\right\}\right]$
c. $\left[\mathrm{Cu}\left\{\mathrm{O}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}\right\} \mathrm{Cl}\right] \mathrm{Cl}$
D. $\left[\mathrm{CuCl}_{2}\left\{\mathrm{O}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}\right\}_{2}\right]$

Answer: B

- Watch Video Solution

32. IUPAC name of sodium cobaltinitrite is
A. Sodium cobaltinitrite
B. Sodium hexanitritocobaltate (III)
C. Sodium hexanitrocobalt (III)
D. Sodium hexanitritocobaltate (II)

Answer: B

33. According to IUPAC nomenclature sodium nitroprusside is named as
A. Sodium nitroferricyanide
B. Sodium nitroferrocyanide
C. Sodium pentacyanonitrosylferrate (II)
D. Sodium pentacyano nitrosylferrate (III)

Answer: D

- Watch Video Solution

34. The name of the complex ion, $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is \qquad .
A. tricyanoferrate (III) ion
B. hexacyanidoferrate (III) ion
C. hexacyano iron (III) ion
D. hexacyanitroferrate (III) ion

- Watch Video Solution

35. Which one of the following has largest number of isomers?
A. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+$
B. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
C. $\left[\operatorname{Ir}\left(P R_{3}\right)_{2} H(C O)\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$

Answer: B

- Watch Video Solution

36. Which one of the following complex is not expected to exhibit isomerism
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
c. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
D. $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}$

Answer: C

- Watch Video Solution

37. The existence of two different coloured complexes with the composition of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is due to
A. Ionization isomerism
B. Linkage isomerism
C. Geometrical isomerism
D. Coordination isomerism

Answer: C

- Watch Video Solution

38. For the given complex $\left[\mathrm{CoCl}_{2}(e n)\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$, the number of geometrical isomers, the number of optical isomers and total number of isomers of all type possible respectively are
A. 2, 2 and 4
B. 2,2 and 3
C. 2,0 and 2
D. 0,2 and 2

Answer: B

- Watch Video Solution

39. Square planar complexes of the type MABXL (where A, B, X and L are unidentates) show
A. two cis and one trans isomer
B. two trans and one cis isomer
C. two cis and two trans isomers
D. one cis and one trans isomer

Answer: A

- Watch Video Solution

40. The number of geometric isomers that can exist for square planar $\left[\operatorname{Pt}(\mathrm{C} 1)(p y)\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)^{+}\right]$is (py = pyridine).
A. 4
B. 6
C. 2
D. 3

Answer: D

- Watch Video Solution

41. Which one of the following complexes will have four isomers?
(en = ethylenediamine)
A. $\left[\mathrm{Co}(\right.$ en $\left.)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Br}$.

Answer: D

42. The total number possible isomers for the complex compound $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{Pt}^{I I} \mathrm{CI}_{4}\right]\right.$ are
A. 3
B. 6
C. 5
D. 4

Answer: D

Watch Video Solution

43. Number of possible isomer for the complex $\left[\mathrm{Co}(e n)_{2} C I_{2}\right] C I$ will be: (em = ethylenediamine)
A. 3
B. 4
C. 2
D. 1

Answer: A

- Watch Video Solution

44. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{CI}$ exhibits
A. ionization isomerism, geometrical isomerism and optical isomerism
B. linkage isomerism, geometrical isomerism and optical isomerism
C. linkage isomerism, ionization isomerism and optical isomerism
D. linkage isomerism, ionization isomerism and geometrical isomerism

Answer: D

45. Facial-meridional isomers is associated with which one of the following complex ($M=$ central metal).
A. $\left[M(A A)_{2}\right]$
B. $\left[M A_{3} B_{3}\right]$
C. $\left[M(A A)_{3}\right]$
D. [MABCD]

Answer: B

- Watch Video Solution

46. Which of the following can exhibit geometrical isomerism
A. $\left[\mathrm{MnBr}_{4}\right]^{2-}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right]+$
C. $\left[\operatorname{PtCl}_{2} P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right]_{2}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$

Answer: C

Watch Video Solution

47. Which of the following complex ions has geometrical isomers?
A. $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
B. $\left.\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right]^{+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(\mathrm{en})_{2}\right]^{3+}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}(e n)\right]^{3+}$

Answer: C

- Watch Video Solution

48. Which of the following complex species is not expected to exhibit optical isomerism ?
A. $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]+$
B. $\left[\mathrm{Co}(e n)_{3}\right]^{3+}$
C. $\left[\mathrm{Co}(\text { en })_{2} \mathrm{Cl}_{2}\right]^{+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

Answer: D

- Watch Video Solution

49. Which one of the following complexes shows optical isomerism ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{en}_{2}\right) \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. trans $\left[\mathrm{Co}\left(\mathrm{en}_{2}\right) \mathrm{Cl}_{2}\right] \mathrm{Cl}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}(\mathrm{en}=$ ethylenediamine $)$

Answer: B

- Watch Video Solution

50. Cobalt (III) chloride forms several octahedral complexes with amonia.

Which of the following will not give test for chloride ions with silver nitrate at $25^{\circ} \mathrm{C}$?
A. $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$

Answer: C

51. When 0.01 mole of a cobalt complex is treated with excess of silver nitrate solution 4.035 g of silver chloride is precipitated. The formula of the complex is:
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
c. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{3}$

Answer: C

- Watch Video Solution

52. On treatment of 100 mL of 0.1 M solution of $\mathrm{COCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with excess of $\mathrm{AgNO}_{3}, 1.2 \times 10^{22}$ ions are precipitated. The complex is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
c. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

53. An excess of AgNO_{3} is added to 100 mL of a 0.01 M solution of dichlorotetraaquachromium(III) chloride The number of moles of AgCI precipitated would be .
A. 0.001
B. 0.002
C. 0.003
D. 0.01

Answer: A

54. The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes: $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is:
A. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
B. $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
C. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
D. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$

Answer: C

- Watch Video Solution

55. A solution containing 0.319 g of complex $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was passed through cation exchanger and the solution given out was neutralised by 28.5 ml of 0.125 m NaOH . The correct formula of the complex will be: [molecular weight of complex $=266.5$]
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{H}_{2} \mathrm{O} . \mathrm{Cl}_{2}$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

56. Both Co^{3+} and Pt^{4+} have a coordination number of six. Which of the following pair of complexes will show approximately the same electrical conductance for their 0.001 M aqueous solution ?
A. $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} .3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$

D Watch Video Solution

57. The two isomers X and Y with the formula $\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{ClBr}$ were taken for experiment on depression in freezing point. It was found that one mole of X gave depression corresponding to 2 moles of particles and one mole of Y gave depression to 3 moles of particles. The structural formulae of X and Y raspectively are
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}\right] \mathrm{BrCl},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{ClBr}\right] \mathrm{Br} . \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{ClBr}\right] \mathrm{Br} . \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2}$

Answer: D

- Watch Video Solution

58. The correct statement with respect to the complexes $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right)^{2-}$ is :
A. nickel is in the same oxidation state in both
B. both have tetrahedral geometry
C. both have square planar geometry
D. have tetrahedral and square planar geometry respectively

Answer:

- Watch Video Solution

59. The complex which has the highest magnetic moment among the following is
A. $\left[\mathrm{CoF}_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: A

Watch Video Solution

60. Amongst $\mathrm{Ni}(\mathrm{CO})_{4},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$
A. $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is paramagnetic
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic and $\mathrm{Ni}(\mathrm{CO})_{4}$ is paramagnetic
C. $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic
D. $\mathrm{Ni}(\mathrm{CO})_{4}$ is diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ are paramagnetic

- Watch Video Solution

61. Among $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-},\left[\mathrm{NiCl}_{4}\right]^{2-}$ species, the hybridization states at the Ni atom are, respectively (At. no.of $\mathrm{Ni}=28$)
A. $s p^{3}, d s p^{2}, d s p^{2}$
B. $s p^{3}, d s p^{2}, s p^{3}$
C. $s p^{3}, s p^{3}, d s p^{2}$
D. $d s p^{2}, s p^{3}, s p^{3}$

Answer: B

- Watch Video Solution

62. The hybridization involved in complex $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is $(\mathrm{At} . \mathrm{No} . \mathrm{Ni}=28)$
A. $d^{2} s p^{2}$
B. $d^{2} s p^{3}$
C. $d s p^{2}$
D. $s p^{3}$

Answer: C

- Watch Video Solution

63. Which of the following complexes are not correctly matched with the hybridisation of their central metal ion ?
(a) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right], \mathrm{sp}^{3}$ (b) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}, s p^{3}$
(c) $\left[\mathrm{CoF}_{6}\right]^{3-}, d^{2} s p^{3}$ (d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}, s p^{3} d^{2}$

Select the correct option :
A. (i) and (ii)
B. (i) and (iii)
C. (ii) and (iv)
D. (ii), (iii) and (iv)

Answer:

- Watch Video Solution

64. Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$:
A. It is $s p^{3} d^{2}$-hybridized and octahedral
B. It is $s p^{3} d^{2}$-hybridized and tetrahedral
C. It is $d^{2} s p^{3}$-hybridized and octahedral
D. It is $d s p^{2}$-hybridized and square planar

Answer: C

- Watch Video Solution

65. Which of the following complexes exhibits the highest paramagnetic behaviour?
where gly=glycine, en=ethylenediamine and bipy =bipyridyl
(At. no. $T i=22, V=23, F e=26, C o=27$)
A. $\left[V(\mathrm{gly})_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]+$
B. $\left[\mathrm{Fe}(e n)(b p y)\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
C. $\left[\mathrm{Co}(\mathrm{OX})_{2}(\mathrm{OH})_{2}\right]^{2-}$
D. $\left[T i\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

66. The pair having the same magnetic moment is
[at. $\mathrm{No} . \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26$ and $\mathrm{Co}=27]$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

67. Among $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{NiCl}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}, \mathrm{Na}_{3}\left[\mathrm{CoF}_{6}\right], \mathrm{Na}_{2} \mathrm{O}_{2}$ and CsO_{2}, the total number of paramagnetic compounds is
A. 2
B. 3
C. 4
D. 5

Answer: B

68. Hybridization shape and magnetic moment of $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CO})_{6}\right]$ is
A. $d^{2} s p^{3}$, octahedral, 4.9 B.M.
B. $s p^{3} d^{2}$, octahedral, 4.9 B. M.
C. $d s p^{2}$, square planar, 4.9 B.M.
D. $s p^{3}$, tetrahedral, 4.9 B.M.

Answer: B

- Watch Video Solution

69. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour ?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

Answer: A

- Watch Video Solution

70. Consider the follwing complexes ion P, Q and R
$P=\left[\mathrm{FeF}_{6}\right]^{3-}, Q=\left[V\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $R=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin only magnetic moment values (inBM) is .
A. $R<Q<P$
B. $Q<R<P$
C. $R<P<Q$
D. $Q<P<R$
71. The spin only magnetic moment value of $\mathrm{Cr}(\mathrm{CO})_{6}$ is
A. 0
B. 2.84
C. 4.90
D. 5.92

Answer: A

- Watch Video Solution

72. A magnetic moment of 1.73 B.M. will be shown by one among the following:
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. TiCl_{4}
D. $\left[\mathrm{CoCl}_{6}\right]^{4-}$

Answer: A

- Watch Video Solution

73. Which one of the following is wrongly matched ?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ - square planar
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - neutral ligand
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}-s p^{3} d^{2}$
D. $\left[\mathrm{Cr}(e n)_{3}\right]^{3+}$-follows EAN rule

Answer: C

- Watch Video Solution

74. Geometrical shapes of the complex formed by the reaction of Ni^{2+} with $\mathrm{Cl}^{\Theta}, \mathrm{CN}^{\Theta}$ and $\mathrm{H}_{2} \mathrm{O}$ are :
A. Octahedral, tetrahedral and square planar
B. Tetrahedral, square planar and octahedral
C. Square planar, tetrahedral and octahedral
D. Octahedral, square planar and octahedral

Answer: B

- Watch Video Solution

75. Among the following complexes : $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$, $\mathrm{Na}_{3}\left[\mathrm{Co}(\mathrm{ox})_{3}\right],\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}, \mathrm{~K}_{2}\left[\mathrm{Pt}(\mathrm{CN})_{4}\right]$ and $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}\right]$ The diamagnetic are .
A. K, L, M, N
B. $\mathrm{K}, \mathrm{M}, \mathrm{O}, \mathrm{P}$
C. L, M, O, P
D. L, M, N, O

Answer: C

- Watch Video Solution

76. Which of the following facts about the complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is wrong?
A. The complex is paramagnetic
B. The complex is an outer orbital complex
C. The complex gives white precipitate with silver nitrate solution
D. The complex involves $d^{2} s p^{3}$ hybridization and is octahedral in shape

Answer: B

77. Which of these statements about $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ is true?
A. $\left[C o(C N)_{6}\right]^{3-}$ has four unpaired electrons and will be in a high-spin configuration
B. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a high-spin configuration
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has no unpaired electrons and will be in a low-spin configuration
D. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$ has four unpaired electrons and will be in a low-spin configuration

Answer: C

- Watch Video Solution

78. Which of the following complex has minimum magnitude of Δ^{0} ?
A. $\left[\operatorname{Cr}(\mathrm{CN})_{6}\right]^{3-}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
c. $\left[\mathrm{CoCl}_{6}\right]^{3-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: C

- Watch Video Solution

79. Crystal field stabilization energy for high spin d^{4} octahedral complex is
A. $-0.6 \Delta_{0}$
B. $-1.8 \Delta_{0}$
C. $-1.6 \Delta_{0}+P$
D. $-1.2 \Delta_{0}$

Answer: A

80. Low spin complex of d^{6}-cation in an octahedral field will have the following energy:
A. $-\frac{2}{5} \Delta_{0}+2 P$
B. $-\frac{2}{5} \Delta_{0}+P$
C. $-\frac{12}{5} \Delta_{0}+P$
D. $-\frac{12}{5} \Delta_{0}+3 P$

Answer: D

- Watch Video Solution

81. Which of the following is diamagnetic in nature ?
A. Co^{3+}, octahedral complex with weak field ligands
B. Co^{3+}, octahedral complex with strong field ligand
C. Co^{2+} in tetrahedral complex
D. Co^{2+} in square planar complex

Answer: B

- Watch Video Solution

82. In Spectrochemical series, chorine is above than water . I e $\mathrm{Cl}>\mathrm{H}_{2} \mathrm{O}$ this is due to
A. Good π-acceptor properties of Cl
B. Strong σ-donor and good π - acceptor properties of Cl
C. Good π-donor properties of Cl
D. Larger size of Cl than $\mathrm{H}_{2} \mathrm{O}$

Answer: C

83. The magnitude of crystal field stabilisation energy (CFSE of Δ_{1}) in tetrahedral complexes is considerably less than that in the octahderal field. Because
A. There are only four ligands instead of six so the ligand field is only $2 / 3$ the size hence the Δ_{t} is only $2 / 3$ the size
B. The direction of the orbitals does not coincide with the direction of the ligands. This reduces the crystal field stabilization energy $\left(\Delta_{t}\right)$ by further $2 / 3$
C. Both points (a) and (b) are correct
D. Both points (a) and (b) are wrong

Answer: C

- Watch Video Solution

84. Which of the following complexions is expected to absorb visible light ? (Al. No. $\mathrm{Zn}=30, \mathrm{SC}=21, \mathrm{Ti}=22, \mathrm{Cr}=24$)
A. $\left[\operatorname{Ti}(e n)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{3+}$

Answer: B

- Watch Video Solution

85. Correct increasing order for the wavelength of absorption in the visible region for the complexes of Co^{3+} is:
A. $\left[\mathrm{Co}(\text { en })_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
c. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

- Watch Video Solution

86. Which of the following compounds is not yellow coloured?
A. $\left(\mathrm{NH}_{4}\right)_{3}\left[\right.$ As $\left.\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right]$
B. BaCrO_{4}
C. $\mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
D. $\mathrm{K}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$

Answer: C

- Watch Video Solution

87. Which of the following is high spin complex ?
A. $\left[\mathrm{CoCl}_{6}\right]^{3-}$
B. $\left[\mathrm{FeF}_{6}\right]^{3-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. All of these

Answer: D

- Watch Video Solution

88. Which one of the following ligand is capable of forming a low spin as well as a high spin complex ?
A. CO
B. F^{-}
C. NH_{3}
D. CN^{-}

Answer: C

89. Which of the following shell from an octahedral complex
A. d^{4} (low spin)
B. d^{8} (high spin)
C. d^{6} (low spin)
D. All of these

Answer: C

- Watch Video Solution

90. $\left[\operatorname{NiCl}_{2}\left\{P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right]$ exhibits temperature dependent magnetic behaviour. The coordination geometries of Ni^{2+} in the paramagnetic and diamagnetic states are:
A. tetrahedral and tetrahedral
B. square planar and square planar
C. tetrahedral and square planar
D. square planar and tetrahedral

Answer: C

- Watch Video Solution

91. Coordination number of Cr is three. A comlex ion of Cr with $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ end and superoxide ion, O_{2}^{-}has the fomula, $\left[\mathrm{Cr}\left(\mathrm{CO}_{2} \mathrm{O}_{4}\right)_{x}(e n)_{y}\left(\mathrm{O}_{2}\right)_{z}\right]^{-}$The ratio $x: y: z$ will be
A. 1:1:1
B. 1:1:2
C. 1:2:2
D. 2:1:1

Answer: B

Watch Video Solution

92. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of 3.83B. M
.The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{x z}^{1}$
B. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z^{2}}^{1}$
C. $3 d_{\left(x^{2}-y^{2}\right)}^{1}, 3 d_{z^{2}}^{1}, 3 d_{x z}^{1}$
D. $3 d_{x y}^{1}, 3 d^{1}\left(x^{2}-y^{2}\right), 3 d_{y z}^{1}$

Answer: A

- Watch Video Solution

93. What is the ratio of uncomplexed to complexed to complexed Zn^{2+} ion in a solution that is $10 \mathrm{MinNH}_{3}$. If the stability constant of $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is $3 \times 10^{9} ?$
A. 3.3×10^{-9}
B. 3.3×10^{-11}
C. 3.3×10^{-13}
D. 3.3×10^{-14}

Answer: D

- Watch Video Solution

94. Which of the following reactions are kinetically favourable?
I. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{NH}_{3} \rightarrow\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
II. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+4 \mathrm{H}_{2} \mathrm{O}$
III. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+6 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CoCl}_{6}\right]^{3-}+6 \mathrm{H}_{2} \mathrm{O}$
A. I and II
B. II and III
C. I and III

D. I, II and III

Answer: A

- Watch Video Solution

95. CuCl is insoluble in water but it dissolves in KCl solution. This is due to the formation of the complex.
A. $\mathrm{K}_{2}\left[\mathrm{CuCl}_{3}\right]$
B. $K_{3}\left[\mathrm{CuCl}_{4}\right]$
C. $K\left[\mathrm{CuCl}_{2}\right]$
D. All of these

Answer: D
96. The octahedral complex of a metal ion M^{3+} with four monodentate ligands L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red,green, yellow and bule, respectively The increasing order of ligand strengh of the four ligands is
A. $L_{1}<L_{2}<L_{4}<L_{3}$
B. $L_{4}<L_{3}<L_{2}<L_{1}$
C. $L_{1}<L_{3}<L_{2}<L_{4}$
D. $L_{3}<L_{2}<L_{4}<L_{1}$

Answer: C

- Watch Video Solution

97. Among the following complexes, the one which shows zero crystal field stabilization energy (CFSE) is
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer: B

- Watch Video Solution

98. Consider the following complexes:
99. $\mathrm{Fe}(\mathrm{CO})_{5} \mathrm{2}. \mathrm{Ni}^{\mathrm{Ni}} \mathrm{CO}_{4}$
100. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ 4. $\mathrm{Na}_{3}\left[\mathrm{Cu}(\mathrm{SCN})_{4}\right]$

Which of the above complexes obey EAN rule ?
A. 1, and 2 only
B. 2, 3 and 4 only
C. 1, 2, 3 and 4
D. none of the above

Answer: C

- Watch Video Solution

99. EAN of cobalt is 36 in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{O}_{2}(\mathrm{en}) \mathrm{Cl}\right]$ thus, O_{2} is
A. peroxide ion
B. dioxide ion
C. superoxide ion
D. oxide ion

Answer: A

Watch Video Solution

100. An example of a sigma bonded organometallic compound is:
A. ruthenocene
B. Grignard's reagent
C. ferrocene
D. cobaltocene

Answer: B

D Watch Video Solution

101. $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ is diamagnetic. Which of the following reasons is correct?
A. One CO is present as bridge group
B. CO is a π-acceptor ligand
C. CO can form π-bond with Fe by back bonding
D. Metal-metal (Fe-Fe) bonding takes place.

Answer: D

102. The value of n in the carbonyl is
$(C O)_{n}-\mathrm{Co}-\mathrm{Co}(\mathrm{CO})_{n}$
A. 4
B. 5
C. 6
D. 8

Answer: A

Watch Video Solution
103. Among the following metal carbonyls the C - O bond order is lowest in.
A. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
B. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
C. $\left[\operatorname{Cr}(\mathrm{CO})_{6}\right]$
D. $\left[V(\mathrm{CO})_{6}\right]-$

Answer: D

- Watch Video Solution

104. In $\mathrm{Fe}(\mathrm{CO})_{5}$, the $\mathrm{Fe} \leftarrow \mathrm{CO} \mathrm{\sigma}$ bond results by the overlap between filled sp hybrid orbital of C atom of CO molecule and vacant
A. $d^{2} s p^{3}$
B. $s p^{3}$
C. $d s p^{3}$
D. $d s p^{2}$ hybrid orbital of Fe

Answer: C

- Watch Video Solution

105. Which of the following carbonyls will have the strongest C-O bond
A. $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
B. $\mathrm{Cr}(\mathrm{CO})_{6}$
C. $V(C O)_{6}^{-}$
D. $\mathrm{Fe}(\mathrm{CO})_{5}$

Answer: A

- Watch Video Solution

106. If the bond length of CO bond in carbon monoxide is $1.128 \AA$, then what is the value of CO bond length in $\mathrm{Fe}(\mathrm{CO})_{5}$?
A. $1.15 \AA$
B. $1.128 \AA$
C. $1.72 \AA$
D. $1.118 \AA$

D Watch Video Solution

107. Which of the following has longest $C-O$ bond length? (Free C-O bond length in $C O$ is $1.128 \AA$).
A. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
B. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
C. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
D. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$

Answer: A

- Watch Video Solution

108. How many EDTA molecules are required to make an octahedral complex with a Ca^{2+} ion?
A. One
B. Two
C. Six
D. Three

Answer: A

- Watch Video Solution

109. When EDTA solution is added to Mg^{2+} ion solution then the incorect statement regarding the reaction will be
A. Four coordinate sites of Mg^{2+} are occupied by EDTA and remaining two sites are occupied by water molecules
B. All six coordinate sites of Mg^{2+} are occupied
C. pH of the solution is decreased
D. Colourless $[\mathrm{Mg}-E D T A]^{2-}$ chelate is formed

D Watch Video Solution

110. Cold ferrous sulphate solution on absorption of NO develops brown colour due to the formation of
A. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{NO})\right] \mathrm{SO}_{4}$
B. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{~N}_{3}\right)\right] \mathrm{SO}_{4}$
C. paramagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{SO}_{4}\right)_{2}$
D. diamagnetic $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{SO}_{4}\right)\right] \mathrm{NO}_{3}$

Answer: A

- Watch Video Solution

111. The oxidation state of Fe in brown complex $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is
112. Dipole moment will be zero in the complexes
I. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
II. Cis-Pt $\left[\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
trans- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
A. I and II
B. I and III
C. II and III
D. I, II and III

Answer: B

- Watch Video Solution

113. Which of the following complexes is used as an anti-cancer agent ?
A. mer- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. cis - $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
C. cis $-\mathrm{K}_{2}\left[\mathrm{PtCl}_{2} \mathrm{Br}_{2}\right]$
D. $\mathrm{Na}_{2} \mathrm{CoCl}_{4}$

Answer: B

Watch Video Solution

114. Platinum dissolves in aqua regia to form
A. PtCl_{4}
B. $\mathrm{H}_{2} \mathrm{PtCl}_{6}$
C. $\mathrm{Pt}\left(\mathrm{NO}_{3}\right)_{4}$
D. $\left[\mathrm{PtCl}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$

Answer: B

115. Copper sulphate dissolved in excess of KCN to give:-
A. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{2-}$
B. $\mathrm{Cu}(\mathrm{CN})_{2}$
C. CuCN
D. $\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]^{3-}$

Answer: D

- Watch Video Solution

116. When excess ammonnia is added to CuSO_{4} solution the deep blue complex obtained is
A. tetrahedral and paramagnetic
B. tetrahedral and diamagnetic
C. square planar and diamagnetic
D. square planar and paramagnetic

Answer: D

- Watch Video Solution

117. Sodium nitroprusside reacts with sulphide ion to give a purple colour due to the formation of
A. $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]^{3-}$
B. $\left[\mathrm{Fe}(\mathrm{NO})_{5} \mathrm{CN}\right]^{-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{3-}$

Answer: C

118. In nitroprusside ion, the iron and NO exist as $\mathrm{Fe}(\mathrm{II})$ and NO^{+}rather than $F e^{I I I}$ and $N O$. These forms can be differentiated by
A. estimating the concentration of iron
B. measuring the concentration of CN^{-}
C. measuring the solid state magnetic moment
D. thermally decomposing the compound

Answer: C

- Watch Video Solution

119. Specify the coordination geometry around and the hybridisation of N and B atoms in 1:1 complex of BF_{3} and NH_{3}.
A. $\mathrm{N}:$ tetrahedral, $s p^{3}, \mathrm{~B}:$ tetrahedral, $s p^{3}$
B. N : pyramidal, $s p^{3}$, B : pyramidal, $s p^{3}$
C. N : pyramidal, $s p^{3}, \mathrm{~B}:$ planar, $s p^{2}$
D. $\mathrm{N}:$ pyramidal, $s p^{3}, \mathrm{~B}:$ tetrahedral, $s p^{3}$

Answer: A

- Watch Video Solution

120. The equation which is balanced and represents the correct product(s) is .
A. $\mathrm{CuSO}_{4}+4 \mathrm{KCN} \rightarrow \mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]+\mathrm{K}_{2} \mathrm{SO}_{4}$
B. $\mathrm{Li}_{2} \mathrm{O}+2 \mathrm{KCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{K}_{2} \mathrm{O}$
C. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{+}+5 \mathrm{H}^{+} \rightarrow \mathrm{Co}^{2+}+5 \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$
D. $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+(E D T A)^{4-} \mathrm{Mg}(E D T A){ }^{\text {excess } \mathrm{NaOH} 2+}+6 \mathrm{H}_{2} \mathrm{O}$

Answer: C

121. The complex $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is called :
A. sodium nitroprusside
B. sodium pentacyanonitrosonium ferrate (II)
C. sodium pentacyanonitrosylferrate (III)
D. sodium nitrosoferrocyanide

Answer: A: B

- Watch Video Solution

122. The compound $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{ONO})_{6}\right]$ is called
A. potassium cobaltinitrite
B. Fischer's salt
C. potassium hexanitritocobaltate (III)
D. potassium cobalt nitrate

- Watch Video Solution

123. Which of the followng isomerism is /are shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Br}$?
A. Ionization
B. Linkage
C. Geometrical
D. Optical

Answer: A::C::D

D Watch Video Solution

124. Which of the following statement is true about $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$
A. It is a square planar complex
B. It is paramagnetic with one unpaired electron in the d - subshell
C. It gives white precipitate with BaCl_{2} solution
D. Its aqueous solution does not conduct electricity.

Answer: A::C

- Watch Video Solution

125. Which of the following statements are not correct ?
A. If $\Delta_{0}<P$, low spin state is more stable
B. $C O$ is a very weak ligand
C. The colour of a complex depends only on the nature of metal ion
D. Tetrahedral complexes have nearly 50\% CFSE value than octahedral complexes
126. Which of the following are outer orbital complexes ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{FeF}_{6}\right]^{3-}$

Answer: C::D

- Watch Video Solution

127. Which of the following are π-bonded organometallic compounds ?
A. Zeise's salt
B. Furacene
C. Dibenzene chromium
D. Grignard reagent

Answer: A::C

- Watch Video Solution

128. Which of the following complexes have tetrahedral shape?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
B. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
C. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Answer: B::C::D

129. Identify the complexes which are expected to be coloured.
a. $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$, b. $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right]{ }^{\oplus} \mathrm{BF}_{4}{ }^{\ominus}$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{\ominus}$, d. $\mathrm{K}_{3}\left[V F_{6}\right]$
A. $\left[\mathrm{Ti}\left(\mathrm{NO}_{3}\right)_{4}\right]$
B. $\left[\mathrm{Cu}\left(\mathrm{NCCH}_{3}\right)_{4}\right]+{ }^{+} \mathrm{BF}_{4}^{-}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} 3 \mathrm{Cl}^{-}$
D. $K_{3}\left[V F_{6}\right]$

Answer: C::D

- Watch Video Solution

130. The pair of coordination complex exhibiting the same kind of isomerism is .
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]-$
C. $\left[\mathrm{CoBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$ and $\left[\mathrm{PtBr}_{2} \mathrm{Cl}_{2}\right]^{2-}$
D. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}\right] \mathrm{Br}$

Answer: B::D

- Watch Video Solution

131. Optical isomerism is exhibited by (ox = oxalate anion, en = ethylene diamine)
A. cis $-\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$
B. $\left[C o(e n)_{3}\right]^{3+}$
C. trans- $\left[\mathrm{CrCl}_{2}(\mathrm{ox})_{2}\right]^{3-}$
D. $\left[\operatorname{Co}(o x)(e n)_{2}\right]^{+}$

Answer: A::B::D

132. A coordiantion complex compound of cobalt has the molecular formula containing four ammonia molecules, one nitro group and two chlorine atoms. A solution of this complex was prepared by dissolving 2.44 g of it in water and making the volume to 200 mL . Excess of AgNO_{3} solution was then added to it and the precipitate of AgCl formed was filtered and dried. The weight of AgCl thus obtained was found to be 1.435 g (Atomic mass of $\mathrm{Co}=59, \mathrm{Ag}=108$)

The formula of the complex would be
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right]$

Answer: B

133. A coordiantion complex compound of cobalt has the molecular formula containing four ammonia molecules, one nitro group and two chlorine atoms. A solution of this complex was prepared by dissolving 2.44 g of it in water and making the volume to 200 mL . Excess of AgNO_{3} solution was then added to it and the precipitate of AgCl formed was filtered and dried. The weight of AgCl thus obtained was found to be 1.435 g (Atomic mass of $\mathrm{Co}=59, \mathrm{Ag}=108$)

The name of the complex would be
A. tetraamminedichloridocobalt (III) nitrite
B. tetraamminenitrocobalt (III) chloride
C. tetraamminechloridonitrocobalt (III) chloride
D. tetraamminedichloridonitrocobalt (III)

Answer: C

- Watch Video Solution

134. A coordiantion complex compound of cobalt has the molecular formula containing four ammonia molecules, one nitro group and two chlorine atoms. A solution of this complex was prepared by dissolving 2.44 g of it in water and making the volume to 200 mL . Excess of AgNO_{3} solution was then added to it and the precipitate of AgCl formed was filtered and dried. The weight of AgCl thus obtained was found to be 1.435 g (Atomic mass of $\mathrm{Co}=59, \mathrm{Ag}=108$)

The type of isomerism shown by the complex will be
A. linkage isomerism
B. Geometrical isomerism
C. Ionization isomerism
D. All the three

Answer: D

- Watch Video Solution

135. A, B and C are three complexes of chromium (III) with the empirical formula $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{Cl}_{3} \mathrm{Cr}$. All the three complexes have water and chloride ion as ligands. Complex A does not react with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, whereas complexes B and C lose 6.75% and 13.5% of their original weight, respectively, on treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$.

According to the Werner theory, the structure of complex A is represented by :
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{H}_{4}(\mathrm{O})_{2}\right] \mathrm{Cl}_{3}\right.$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{5}\right)_{5}(\mathrm{H})_{2}(\mathrm{O})\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Answer: C

- Watch Video Solution

136. A, B and C are three complexes of chromium(III) with the empirical formula $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{C}_{13} \mathrm{Cr}$ All the three complexes not react with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ whereas complexes B and C lose 6.75% and 13.5% of their original mass respectively, on treatment on treatment with conectrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ Identify A, B and C.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} .2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: C

- Watch Video Solution

137. A, B and C are three complexes of chromium(III) with the empirical formula $\mathrm{H}_{12} \mathrm{O}_{6} \mathrm{C}_{13} \mathrm{Cr}$ All the three complexes not react with concentrated
$\mathrm{H}_{2} \mathrm{SO}_{4}$ whereas complexes B and C lose 6.75% and 13.5% of their original mass respectively, on treatment on treatment with conectrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ Identify A, B and C.
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
c. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

138. A metal complex having the composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{Br}$ has been isolated in two forms A and B . The form A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia.

The formula of the complex A is
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}^{2}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{BrCl}\right] \mathrm{Cl}$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}$
D. Both (a) and (b) are possible

Answer: B

- Watch Video Solution

139. A metal complex having the composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{Br}$ has been isolated in two forms A and B . The form A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia.

The formula of the complex B is
A. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}^{2}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right] \mathrm{Cl}$
c. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}$
D. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{BrCl}_{2}$

Answer: C

- Watch Video Solution

140. A metal complex having the composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{Br}$ has been isolated in two forms A and B . The form A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia.

The hybridisation of Cr in the complexes A and B respectively is
A. $d^{2} s p^{3}$ and $s p^{3} d^{2}$
B. $s p^{3} d^{2}$ and $d^{2} s p^{3}$
C. $s p^{3} d$ and $d s p^{3}$
D. $d^{2} s p^{3}$ and $d^{2} s p^{3}$

Answer: D

D Watch Video Solution

141. A metal complex having the composition $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2} \mathrm{Br}$ has been isolated in two forms A and B . The form A reacts with AgNO_{3} to give a white precipitate readily soluble in dilute aqueous ammonia whereas B gives a pale yellow precipitate soluble in concentrated ammonia.

The spin only value of the magnetic moment of the complex is
A. $\sqrt{3}$ B.M.
B. $\sqrt{8}$ B.M.
C. $\sqrt{15}$ B.M.
D. Zero

Answer: C

142. The coordination number of Ni^{2+} is 4 .
$\mathrm{NiCl}_{2}+K C N($ excess $) \rightarrow A$ (cyano comples)
$\mathrm{NiCl}_{2}+$ conc. $\mathrm{HCl}($ excess $) \rightarrow B$ (chloro complex)
The hybridisation of A and B are
A. Potassium
tetracyanonickeltate(II),
potassium
tetrachloronickeltate(II)
B. Tetracyanopotassium nickelate(II),
tetrachloro- potassiumnickelate(II)
C. Tetracyanonickel(II), tetrachloronickel(II)
D. Potassium tetracyanonickel(II), potassium tetrachloronickel(II)

Answer: A

- Watch Video Solution

143. The coordination number of Ni^{2+} is 4 .
$\mathrm{NiCl}_{2}+K C N($ excess $) \rightarrow A$ (cyano comples)
$\mathrm{NiCl}_{2}+$ conc. $\mathrm{HCl}($ excess $) \rightarrow B$ (chloro complex)
Predict the magnetic nature of A and B.
A. Both are diamagnetic
B. A is diamagnetic and B is paramagnetic with one unpaired electron
C. A is diamagnetic and B is paramagnetic with two unpaired electrons
D. Both are paramagnetic

Answer: C

- Watch Video Solution

144. The coordination number of Ni^{2+} is 4 .
$\mathrm{NiCl}_{2}+\mathrm{KCN}($ excess $) \rightarrow A$ (cyano comples)
$\mathrm{NiCl}_{2}+$ conc. $\mathrm{HCl}($ excess $) \rightarrow B$ (chloro complex)
The hybridisation of A and B are
A. $d s p^{2}, s p^{3}$
B. $s p^{3}, s p^{3}$
C. $d s p^{2}, d s p^{2}$
D. $s p^{3} d^{2}, d^{2} s p^{3}$

Answer: A

- Watch Video Solution

145. Match the entries of column I with appropriate entries of column II and choose the correct option out of the four option (a), (b), (c), (d) given at the end of each question.
Column I
Column II
(Metal ion configuration in strong ligand field)
(CFSE, Δ_{0} value)
(A) d^{4}
(p) -1.6
(B) d^{5}
(q) -1.8
(C) d^{6}
(r) -2.0
(D) d^{7}
(s) - 2.4
A. A-p, B-s, C-r, D-q
B. A-q, B-r, C-p, D-s
C. A-p, B-r, C-s, D-q
```
D. A-r, B-s, C-p, D-q
```


Answer: C

- Watch Video Solution

146.

Column I
(Metal ion configuration in weak ligand field)

Column II
(CFSE, Δ_{0} value)
(A) d^{4}
(p) 0.0
(B) d^{5}
(q) -0.4
(C) d^{6}
(r) -0.6
(D) d^{7}
(s) -0.8
A. $A-r, B-s, C-p, D-q$
B. $A-r, B-p, C-q, D-s$
C. $A-p, B-r, C-q, D-s$
D. $A-q, B-r, C-s, D-p$

Answer: B

147.

Column I (Complex) Column II (Magnetic moment)
(A) $\mathrm{K}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (p) 1.73 BM
(B) $K_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
(q) 5.92 BM
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(r) 3.87 BM
(D) $\mathrm{Cs}\left[\mathrm{FeCl}_{4}\right]$
(s) Zero
A. A-r, B-p, C-s, D-q
B. A-p, B-r, C-q, D-s
C. A-q, B-r, C-p, D-s
D. A-s, B-r, C-q, D-p

Answer: A

- Watch Video Solution

148. Match each coordination compound in List-I with an appropriate pair of characteristics from List - II and select the correct answer using the code given below the lists .
[en $=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$, At $\mathrm{Nos}: \mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27, \mathrm{Pt}=78$]
List- I
(P) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(Q) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]\left(\mathrm{NO}_{3}\right)_{2}$
149. Diamagnetic and exhibits cis- trans isomerism
(R) $\left[\mathrm{Pt}(\mathrm{en})\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right] \mathrm{NO}_{3}$
(S) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]_{\mathrm{NO}_{3}} \quad$ 4. Diamagnetic and exhibits ionisation isomerisn

P Q R S
A. $\begin{array}{llll}4 & 2 & 3 & 1\end{array}$

P Q R S
B.
$\begin{array}{llll}3 & 1 & 4 & 2\end{array}$
P Q R S
C.

2134
P Q R S
D. $14 \begin{array}{lll}1 & 4 & 2\end{array}$

Answer: B

Column I Column II
(A) : CN:-
(p) Unidentate ligand
149. (B) glycinate
(q) Didentate ligand
(C) ethylenediamine
(r) Ambidentate ligand
(D) carbonate ion
(s) Chelating ligand

(Watch Video Solution

150.

Column I Column II
(A) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+} \quad(p)$ Shows geometrical isomerism only
(B) $\left[\operatorname{Cr}(\mathrm{ox})_{3}\right]^{3-} \quad$ (q) Shows optical isomerism only
(C) $\left[\mathrm{RhCl}_{3}(p y)_{3}\right]$ (r) Shows geometrical as well as optical isomerism
(D) $\left[\mathrm{ZnCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ (s) Shows no isomerism

- Watch Video Solution

(A) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(p) Square planar
(B) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(q) Tetrahedral
(C) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(r) Paramagnetic
(D) $\left[\mathrm{FeCl}_{4}\right]^{2-}$
(s) Diamagnetic

- Watch Video Solution

152.

Column I
(A) $\mathrm{O}_{2}^{-} \rightarrow \mathrm{O}_{2}+\mathrm{O}_{2}^{2-}$
(B) $\mathrm{CrO}_{4}^{2-}+\mathrm{H}^{+} \rightarrow$
(C) $\mathrm{MnO}_{4}^{-}+\mathrm{NO}_{2}^{-}+\mathrm{H}^{+} \rightarrow$
(D) $\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Fe}^{2+} \rightarrow$
(s) disproportionation
153. The number of CO bridges present in $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ is
154. The number of chelate rings present in the complex $K_{2}[\mathrm{Ni}($ EDTA $)]$ is

- Watch Video Solution

155. Number of isomers formed by the coordination compound with the formula MABCD is

- Watch Video Solution

156. Number of CO groups that can be attached to chromium is

- Watch Video Solution

157. Taking CFSE value of octahedral complex $\left(\Delta_{0}\right)$ as 10 Dq , the e_{g} orbitals are Dq above the bari centre
158. The number of rings present in the structure of chlorophyll is

- Watch Video Solution

159. Total number of geometrical isomers for the complex $\left[\operatorname{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]$ is

- Watch Video Solution

160. The volume (in mL) of $0.1 \mathrm{MAgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to:

- Watch Video Solution

161. $E D T A^{4-}$ i9s ethylenediamine tetraacetate ion The total number of $N-C O-O$ bond angles in $[\operatorname{Co}(E D T A)]^{-1}$ complex ion is .

- Watch Video Solution

162. For the octahedral complexes of Fe^{3+} is SCN^{-}(thiocyanato-S) and in $C N^{-}$ligand environments, the difference between the spin only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is [atomic number of $\mathrm{Fe}=26$]

- Watch Video Solution

163. In dilute aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ the complete diaquadioxalatoferrate (II) is oxidised by MnO_{4}^{-}. For the reaction, the ratio of the rate of change of $\left[\mathrm{H}^{+}\right]$to the rate of change of $\left[\mathrm{MnO}_{4}^{-}\right]$is

- Watch Video Solution

164. In the complex acetylbromidodicarbonylbis (triethylphosphine) iron (II), the number of $\mathrm{Fe}-\mathrm{C}$ bond (s) is

- Watch Video Solution

165. Among the complex ions,
$\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+},\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2}\right.$
and $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+}\right]$, the number of complex ion (s) that show(s) cis-trans isomerism is

- Watch Video Solution

166. The number of geometric isomers possible for the complex $\left[\mathrm{CoL}_{2} \mathrm{Cl}_{2}\right]^{-}\left(\mathrm{L}=\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}\right)$is
167. The questions given below consist of Assertion (A) and Reason (R). Use the following key to select the correct answer.

Assertion : Tetrahedral complexes donot show geometrical isomerism
Reason : The relative positions of the ligands in the tetrahedral complexes are the same with respect to each other .
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: A

- Watch Video Solution

168. These questions consist of two statements each, printed as Assertion and Reason. While answering these questions you are required to choose any one of the following four responses:

Assertion: The number of unpaired electrons present in $\left[\mathrm{CuCl}_{2}\right]^{-}$ complex is zero.

Reason: The complex is linear in the solid state with sp-hybridization.
A. Statement-1 is True, Statement-2 is True , Statement-2 is a correct explanation for Statement-2
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-2
C. Statement- 1 is True, Statement- 2 is False
D. Statement-1 is False, Statement-2 is True

Answer: C

- Watch Video Solution

169. The question consist of two statements each, printed as Assertion and Reason. While answering these questions you are required to choose any one of the following four responses:

Assertion: Coordination entities with d^{4} to d^{7} ions are stable for high spin state.

Reason: If $\Delta_{o}>P$, high state is more stable.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-3
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-3
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: D

- Watch Video Solution

170. Assertion : $K_{2}[N i(E D T A)]$ is more stable than $K_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$.

Reason : Ni is a transition element while Al is a non-transition element.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-4
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-4
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: B

- Watch Video Solution

171. The question consist of two statements each, printed as Assertion and Reason. While answering these questions you are required to choose any one of the following four responses:

Assertion: Ambidentate ligands lead to linkage isomerism.
Reason: The ionization sphere is different in different linkage isomers.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-5
B. Statement-1 is True, Statement is 2 is True, Statement- 2 is NOT a correct explanation for Statement-5
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: C

- Watch Video Solution

172. Statement I $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ is paramagnetic

Statement II The Fe in $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$ has three unpaired electrons.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-6
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-6
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: A

D Watch Video Solution

173. Statement-1: The geometrical isomers of the complex $\left[M\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ are optically inactive.

Statement-2: Both geometrical isomers of the complex $\left[M\left[\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ possess axis of symmetry.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-7
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-7
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: A

- Watch Video Solution

174. STATEMENT-1: $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ does not give white ppt . with AgNO_{3} solution.
and

STATEMENT-2: Chlorine is not present in the ionisable part of the given complex.
A. Statement-1 is True, Statement-2 is True , Statement-2 is a correct explanation for Statement-8
B. Statement-1 is True, Statement is 2 is True, Statement-2 is NOT a correct explanation for Statement-8
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer: C

D Watch Video Solution

175. Assertion. EDTA is a hexadentate ligand.

Reason. Denticity of a ligand is given by number of lone pairs donated to central atom by a ligand.
A. If both assertion and reason are true, but reason is not the true
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

176. Assertion. Glycine forms a chelate with Cu^{2+} ion.

Reason. Glycine is a bidentate ligand and thus forms a closed ring structure with the metal ion.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

177. Assertion : The name of the complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ is hexamminecobalt (III) chloride.

Reason. When a prefix like hexa ends in 'a' and the ligand like 'ammonia' starts with 'a', only one 'a' is retained.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

D Watch Video Solution

178. Assertion. Trans $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$is optically inactive.

Reason. It is an octahedral complex.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: B

- Watch Video Solution

179. Assertion: $\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$ does not show optical isomerism. Reason: It has a plane of symmetry.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

180. The question consist of two statements each, printed as Assertion and Reason. While answering these questions you are required to choose any one of the following four responses:

Assertion: The complex $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ does not give precipitate with

AgNO_{3}.

Reason: The given complex does not contain counter ions.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

181. Assertion. Both $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ have same shape and same magnetic behaviour.

Reason. Both are square planar and diamagnetic.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

182. Assertion NF_{3} is weaker ligands than $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$

Reason $N F_{3}$ ionises to give F^{Θ} ions in aqueous solution.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: C

- Watch Video Solution

183. Assertion: $\left[\mathrm{Ni}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ has lower stability than $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$ Reason: In $\left[\mathrm{Ni}(e n)_{3}\right] \mathrm{CI}_{2}$ the geometry of Ni is trigonal bipyramidal .
A. If both assertion and reason are true, but reason is not the true
explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

184. Assertion : Potassium ferrocyanide is diamagnetic whereas potassium ferricyanide is paramagnetic.

Reason : Crystal field splitting in ferrocyanide ion is greater than that of ferricyanide ion.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

D Watch Video Solution

185. These questions consist of two statements each, printed as Assertion and Reason. While answering these questions you are required to choose any one of the following four responses:

Assertion: $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is a stronger acid than $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. Reason: Size of $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is smaller than $\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and posseses more effective nuclear charge.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

- Watch Video Solution

186. Assertion : If β_{4} for $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is 2.1×10^{13} its instability constant is 4.76×10^{-14}.

Reason :Overall dissociation equilibrium constant varies inversely with formation constant.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

187. Assertion : $\left[\mathrm{Ni}(\mathrm{Co})_{4}\right]$ is a diamagnetic complex.

Reason : All the electrons in the complex are paired
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: A

- Watch Video Solution

188. Assertion. The oxidation number of platinum in Zeise's salt is +4 .

Reason. Zeise's salt is non-ionic complex.
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: D

- Watch Video Solution

189. STATEMENT-1: Oxidation state of Fe in $\mathrm{Fe}(\mathrm{CO})_{5}$ is zero and

STATEMENT-2: EAN of Fe in this complex is 36.
A. If both assertion and reason are true, but reason is not the true
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: B

- Watch Video Solution

190. Assertion. When NO reacts with FeSO_{4}, a brown coloured complex is formed.

Reason. In the complex, the coordination number of Fe is +6 .
A. If both assertion and reason are true, but reason is not the true explanation of the assertion
B. If both assertion and reason are true, but reason is not the true explanation of the assertion
C. If assertion is true, but reason is false
D. If both assertion and reason are false

Answer: B

- Watch Video Solution

Short Answer Questions

1. Arrange the following complexes in the increasing order of conductivity of their solution
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$

- Watch Video Solution

2. A coordination compound $\mathrm{CrCI}_{3} .4 \mathrm{H}_{2} \mathrm{O}$ precipitates AgCI when treated with AgNO_{3} The molar conductance of its solution corresponds to a total of two ions Write the structural formula of the compound and name it .
3. A complex of the type $\left[M(A A)_{2} X_{2}\right]$ is known to the optically active. What does this indicate about the structure of the complex? Give one example of such complex.

- Watch Video Solution

4. Magnetic moment of $\left[\mathrm{MnCl}_{4}\right]^{2-}$ is 5.92 BM . Explain giving reason present.

- Watch Video Solution

5. On the basis of crystal field theory explain why $\mathrm{Co}(\mathrm{III})$ Forms paramagnetic octahedral complex with weak field ligands whereas it forms diamagnetic octahedral complex with strong field ligands.
6. Why are low spin tetrahedral complexes not formed ?

- Watch Video Solution

7. Give the electronic configuration of the following complexes on the basis of crystal field splitting theory. $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$.

- Watch Video Solution

8. Explain why $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ has magnetic moment value of 5.92 BM whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ has a value of only 1.74 BM ?

- Watch Video Solution

9. Arrange following complex ions in increasing order of crystal field splitting energy $\left(\Delta_{0}\right)$:
$\left[\mathrm{Cr}(\mathrm{Cl})_{6}\right]^{3-},\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$

- Watch Video Solution

10. Why do compounds having similar geometry have different magnetic moment ?

- Watch Video Solution

11. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour while CuSO_{4} is colourless. Why ?

- Watch Video Solution

12. Name the type of isomerism when ambidentate ligands are attched to central metal ion. Give two examples of ambidentate ligands.

- Watch Video Solution

13. Double Salt and Coordination Compound

- Watch Video Solution

14. Explain with examples the following :
(i) coordination number (ii) oxidation state (iii) ligand (iv) coordination sphere (v) chelate.

- Watch Video Solution

15. What is meant by unidentate, bidentate and ambidentate ligands ? Illustrate with examples.

- Watch Video Solution

16. Determine the oxidation states of central metal ions in the following complex compounds :
(i) (a) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(ii) (a) $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (b) $\left[\mathrm{PtCl}_{4}\right]^{2-}$ (c) $\left[\mathrm{CoBr}_{2}(\mathrm{CN})_{2}\right]^{+}$
(iii) (a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ ion (b) $\mathrm{Na}_{4}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ (c) $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}\right]+$

- Watch Video Solution

17. Write IUPAC name of the following coordination compounds :
(a) (i) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ (ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
(iii) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ (iv) $\mathrm{K}_{2}\left[\mathrm{HgI}_{4}\right]$
(b) (i) $K_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (ii) $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]+$
(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$(iv) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$.

- Watch Video Solution

18. (a) Write the IUPAC of the isomer of the following complex:

$$
\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]
$$

(b) Write the formula of the following :

Tetraammineaquachloridocobalt (III) nitrate.
19. (a) Write the IUPAC name of the isomer of the following complex:
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$
(b) Write the formula for the following :

Diamminechloridonitrito-N-platinum (II)

- Watch Video Solution

20. (a) Write the IUPAC name of the following complex :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
(b) Write the formula for the following :

Dichloridobis (ethane-1, 2-diamine) cobalt (III) chloride.

- Watch Video Solution

21. What are chelates ? Giving one example write the importance of chelate.

Watch Video Solution

22. List various types of isomerism possible for coordination compounds, giving an example of each.

- Watch Video Solution

23. Define cis and trans isomerism. Draw the cis and trans isomers of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$ion.

- Watch Video Solution

24. Draw all the possible isomers (structural and stereoisomeric) having the composition $\mathrm{CrBr}_{2}\left(\mathrm{NH}_{3}\right)_{4}$.

Watch Video Solution

25. The aqueous solution of a complex compound having the formula coBrCl $2 \cdot 4 \mathrm{NH}_{3}$ conducts electricity and also gives white precipitate with AgNO_{3}. Write the IUPAC notation and IUPAC name of the compound.

- Watch Video Solution

26. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ possess tetrahedral geometry while $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ has square planar geometry. Explain.

- Watch Video Solution

27. Using the valence bond theory, predict the geometry and magnetic character of
(i) $\left[\mathrm{NiCl}_{4}\right]^{2-}$
(ii) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(iii) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(iv) $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(v)
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
(At No. of $\mathrm{Ni}=28$)

- Watch Video Solution

28. Consider the coordination compound, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$
(i) Write IUPAC name of the above coordination compound
(ii) What is the primary valence and secondary valence of the central metal, cobalt, in the above coordination compound?
(iii) Which type of structural isomerism is exhibited by the above coordination compound?

- Watch Video Solution

29. Using the valence bond approach, deduce the shape and magnetic character of
(i) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right][$ At. No. of $\mathrm{Cr}=24]$ (ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ (At. No. of $\mathrm{Fe}=26$)
30. On the basis of valence bond theory, account for the hybridisation, shape and magnetic property of cuprammonium ion.

- Watch Video Solution

31. Write the name, stereochemistry and magnetic behaviour of the following :
(At.nos. $\mathrm{Mn}=25, \mathrm{Co}=27, \mathrm{Ni}=28$)
(i) $K_{4}\left[\operatorname{Mn}(C N)_{6}\right]$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(iii) $k_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$

- Watch Video Solution

32. Give an example of each of the following :
(i) Outer orbital octahedral complex (ii) Tetrahedral complex (iii) Inner
orbital octahedral complex

- Watch Video Solution

33. Compare the magnetic behaviour of the complex entities $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}(\mathrm{Fe}=26)$.

- Watch Video Solution

34. Explain how two complexes of nickel, $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\mathrm{Ni}(\mathrm{CO})_{4}$ have different structures but do not differ in magnetic behaviour.

- Watch Video Solution

35. Using valence bond theory, explain the geometry and magnetic behaviour of pentacarbonyl iron (0).
36. With the help of VBT, explain the hybridisation in tetracarbonyl nickel (0) and sketch the shape of the complex.

- Watch Video Solution

37. Discuss the formation, structure and magnetic behaviour of hexafluorocobaltate (II).

- Watch Video Solution

38. Write the name, the state of hybridization, the shape and the magnetic behaviour of the following complexes :
$\left[\mathrm{CoCl}_{4}\right]^{2-},\left[\mathrm{Ni}\left(\mathrm{CN}_{4}\right]^{2-},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]-\right.$
(At.No.: Co =27, $\mathrm{Ni}=28, \mathrm{Cr}=24$)

- Watch Video Solution

39. (a) For the complex $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$, write the hybridisation type, magnetic character and spin nature of the complex.(At. Number : $\mathrm{Fe}=26$)
(b) Draw one of the geometrical isomers of the complex $\left[\mathrm{Pt}(e n)_{2} \mathrm{Cl}_{2}\right]^{2+}$ which is optically active .

- Watch Video Solution

40. Explain on the basis of valence bond theory that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion with square planar structure is diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

- Watch Video Solution

41. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory.

$$
\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} \text { (ii) }\left[\mathrm{CoF}_{6}\right]^{3-}
$$

42. Discuss the geometry of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ ion by using V.B.T. and suggest whether this complex is inner orbital or outer orbital complex.

- Watch Video Solution

43. How does crystal field theory explain.
(i) High spin and low spin states of complexes (ii) Magnetism of complexes
(iii) Colour of the complexes ?

- Watch Video Solution

44. The magnitude of crystal field stabilisation energy in octaheral field depends on:
(I) the nature of the ligand
(II) the charge on the metal ion.
(III) whether the metal is in the first, second or third row of the transition elements

- Watch Video Solution

45. (a) What is the basic of formation of the spectrochemical series?
(b) Draw the structures of geometrical isomers of the following coordination complexes : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ and $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right]^{+}$ (en= ethylenediamine and atomic number of $C o$ is 27)

- Watch Video Solution

46. a) Give the electronic configuration of the d-orbitals of Ti in $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion and explain why the complex is coloured? [At. No. Of $\mathrm{Ti}=22$]
b) Write IUPAC name of $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Cl}_{3}$
47. What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.

- Watch Video Solution

48. Explain how the nature of ligand affects the stability of complex ion.

- Watch Video Solution

49. Name two properties of the central metal ion which enable it to form stable complex entities.

- Watch Video Solution

50. Write the structure of each of the following :
(i) trimethyl aluminium (ii) ferrocene (iii) dibenzene chromium (iv) Zeise's test.
51. What are Zeise's salt and Ferrocene ? Explain with structure.

- Watch Video Solution

52. Describe the nature of bonding : (i) in metal carbonyls and (ii) in π complexes.

- Watch Video Solution

53. What are π complexes ? Explain with suitable examples.

- Watch Video Solution

54. Giving a suitable example, describe the importance of the formation of complex compounds in
(i) the estimation of hardness of water
(ii) the extraction of a particular metal from its natural source.

- Watch Video Solution

55. The formation of complex compounds finds application in the extraction of some metals. Furnish one example to support this statement.

- Watch Video Solution

56. Define organometallic compound. Mention the application of such compounds in homogeneous catalysis.

- Watch Video Solution

57. For the complex $\left[\mathrm{Fe}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ (en = ethylene diamine) , identify
(i) the oxidation number of iron,
(ii) the hybrid orbitals and the shape of the complex,
(iii) the magnetic behaviour of the complex ,
(iv) the number of geometrical isomers,
(v) whether there is an optical isomer also, and
(vi) name of the complex. (At. no. of $\mathrm{Fe}=26$)

Watch Video Solution

58. a) State the hybridisation \& magnetic behaviour of $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
b) What are the various factors affecting crystal field splitting energy?
c) Which of the two is more stable and why?
$K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ or $\left[\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]\right.$

- Watch Video Solution

59. Explain the following terms giving suitable examples in each case
(i) Ambidentate ligand
(ii) Denticity of a ligand
(iii) Crystal field splitting in an octahedral field.

- Watch Video Solution

60. (a) Give reason : $\left[\mathrm{CoF}_{6}\right]^{3-}$ is a high spin complex ion.
(b) Draw the two geometrical isomers of the complex compound, $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$.

- Watch Video Solution

61. (i) Draw the geometrical isomers of the complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$.
(ii) On the basis of crystal field theory, write the electronic configuration of d^{4} ion if $\Delta_{o}<P$.
(iii) Write the hybridisation and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ (At. no. of $\mathrm{Ni}=28$).
62. (i) What type of isomerism is shown by the complex $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\operatorname{Cr}(\mathrm{CN})_{6}\right)\right]$?
(ii) Why a solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is colored while a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ colourless ? (At. No. of $\mathrm{Ni}=28$)
(iii) Write the IUPAC name of the following complex : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{CO})\right] \mathrm{Cl}_{3}$

- Watch Video Solution

63. (i) What type of isomerism is shown by complex $\left[\mathrm{Co}(\text { en })_{3}\right] \mathrm{Cl}_{3}$?
(ii) Write the hybridisation and magnetic character of $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$. (At.no. of $\mathrm{Co}=27$)
(iii) Write IUPAC name of the following Complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

64. (a) What type of isomerism is shown by the complex
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{SCN})\right]^{2+}$?
(b) Why is $\left[\mathrm{NiCl}_{4}\right]^{2-}$ paramagnetic while $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is diamagnetic ?
(Atomic number of $\mathrm{Ni}=28$)
(c) Why are low spin tetrahedral complexes rarely observed?

- Watch Video Solution

Matching Type Question

1. Match the complex ions given in Column I with the colours given the Column II and assign the correct code :
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \quad$ 1. Violet
B. $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
2. Green
C. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
3. Pale blue
D. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\text { en })\right]^{2+}(a q)$ 4. Yellowish organge
4. Blue
A. A (1) B (2) C (4) D (5)
B. A (4) B (3) C (2) D (1)
C. A (3) B (2) C (4) D (1)
D. A (4) B (1) C (2) D (3)

Answer: b

- Watch Video Solution

2. Match the coordination compounds given in column I with the central metal atoms given in column II and assign the correct code.

Column I
(Coordination compound)
B. Blood pigment
C. Wilkinson catalyst
D. Vitamin B_{12}
 \section*{\section*{Column II
 \section*{\section*{Column II

 (Central metal atom)

 (Central metal atom)

 (Centralmetal}} Shotum
A. A (5) B (4) C (1) D (2)
B. A (3) B (4) C (5) D (1)
C. A (4) B (3) C (2) D (1)
D. $\mathrm{A}(3) \quad \mathrm{B}(4) \quad \mathrm{C}(1) \quad \mathrm{D}(2)$

Answer: a

- Watch Video Solution

3. Match the complex ions given in column I with the hybridisation and number of unpaired electrons given in column II and assign the correct
code

Column I
(Complex ion)

Column II

(Hybridisation, number of unpaired electrons)

1. $d s p^{2}, 1$
2. $s p^{3} d^{2}, 5$
3. $d^{2} s p^{3}, 3$
4. $s p^{3} d^{2}, 2$
A. A (3) B (1) C (5) D (2)
B. A (4) B (3) C (2) D (1)
C. A (3) B (2) C (4) D (1)
D. $\mathrm{A}(4) \quad \mathrm{B}(1) \quad \mathrm{C}(2) \quad \mathrm{D}(3)$

Answer: a

- Watch Video Solution

4. Match the complex species given in Column I with the possible isomerism given in Column II and assign the correct code :
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]+\quad$ 1. optical
B. cis $-\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
5. ionisation
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}_{2}$
6. coordination
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$
7. geometrical
8. linkage
A. A (1) B (2) C (4) D (5)
B. A (4) B (3) C (2) D (1)
C. A (4) B (1) C (5) D (3)
D. A (4) B (1) C (2) D (3)

Answer: d

Watch Video Solution

5. Match the compounds given in Column I with the oxidation state of cobalt present in it (given in Column II) and assign the correct code.
A. $\left[\mathrm{Co}(\mathrm{NCS})\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{SO}_{3}\right) \quad 1 .+4$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{SO}_{4}$
6. 0
C. $\mathrm{Na}_{4}\left[\mathrm{Co}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{3}\right]$
7. +1
D. $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$
8. +2
9. +3
A. A (1) B (2) C (4) D (5)
B. A (4) B (3) C (2) D (1)
C. A (5) B (1) C (4) D (2)
D. A (4) B (1) C (2) D (3)

Answer: c

Watch Video Solution

1. Assertion (A) Toxic metal ions are removed by the chelating ligands.

Reason (R) Chelate complexes tend to be more stable.
A. Assertion and reason both are true, reason both are true, reason is correct explanation of assertion.
B. Assertion and reason both are true but reason is not the correct explanation of assertion
C. Assertion is true, reason is false
D. Assertion is false, reason is true

Answer: a

- Watch Video Solution

2. Assertion (A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ are reducing in nature.

Reason (R) Unpaired electrons are present in their d-orbitals.
3. Assertion (A) Linkage isomerism arises in coordination compounds containing ambidnetate ligand.

Reason (R) Ambidentate ligand has two different donor atoms.

Watch Video Solution

4. Assertion (A) Complexes of $M X_{6}$ and $M X_{5} L$ type (X and L are unidentate) do not show geometrical isomerism.

Reason (R) Geometrical isomerism is not shown by complexes of coordination number 6.

- Watch Video Solution

5. Assertion (A) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ ion shows magnetic moment corresponding to two unpaired electrons.

Reason (R) Because it has $d^{2} s p^{3}$ type hybridisation.

(D) Watch Video Solution

Long Answer Questions

1. Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following
(a) $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(b) $\mathrm{FeF}_{6}^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

- Watch Video Solution

2. Using valence bond theory, explain the following in relation to the complexes given below
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{FeCl}_{6}\right]^{4-}$
(a) Type of hybridisation.
(b) Inner or outer orbital complex.
(c) Magnetic behaviour.
(d) Spin only magnetic moment value.

- Watch Video Solution

3. $\mathrm{CoSO}_{4} \mathrm{Cl}^{2} 5 \mathrm{NH}_{3}$ exists in two isomeric forms ' A ' and ' B '. Isomer ' A ' reacts with AgNO_{3} to give white precipitate, but does not react with BaCl_{2}. Isomer 'B' gives white precipitate with BaCl_{2} but does not react with AgNO_{3}. Answer the following questions.
(a) Identify ' A ' and ' B ' and write their structural formulae.
(b) Name the type of isomerism involved.
(c) Give the IUPAC name of ' A ' and ' B '.

- Watch Video Solution

4. what is the relationsphip between observed colour of the complex and the wavelength of light absorbed by the complex?
5. Why are different colours observed in octahedral and tetrahedral complexes for the same metal and same ligands ?

- Watch Video Solution

6. List various types of isomerism possible for coordination compounds, giving an example of each.

- Watch Video Solution

7. LIMITATIONS OF VALENCE BOND THEORY

- Watch Video Solution

Very Short Answer Questions

1. Define
coordination number. Draw optical isomers $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{2+}$

- Watch Video Solution

2. What is te coordination number of Fe in $[\mathrm{Fe}(E D T A)]^{\theta}$?

- Watch Video Solution

3. What is oxidation state and coordination number of central metal ion in
(a) $\left(\mathrm{NH}_{4}\right)\left[\mathrm{CoF}_{4}\right]$?
(b) $\left[\mathrm{Pt}\left(\mathrm{O}_{2}\right)(e n)_{2} \mathrm{Br}\right]+$

- Watch Video Solution

4. What aer ambidentate ligands? Give an example.
5. Give one example of a bidentate ligand.

- Watch Video Solution

6. What is the name of the bidentate ligand 'dmg' ?

- Watch Video Solution

7. Give an example of a hexadentate ligand.

- Watch Video Solution

8. Give one example of chelate complex.
9. Give one example of each :
(a) Neutral ligand of carbon (b) Positive ligand of nitrogen.

- Watch Video Solution

10. Write the formula for dichlorotetraammine platinum (IV) ion

- Watch Video Solution

11. Write the chemical formula of nitropentaamminecobalt (III) chloride.

- Watch Video Solution

12. Write the formula of (i) hexaaquairon (II) sulphate
(ii) potassium hexacyanoferrate (III)
(iii) hexaammine platinum (IV) chloride
(iv) potassium trioxalatoaluminate (III).
13. Write IUPAC name for $\mathrm{K}_{3}\left[\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{6}\right]\right.$

Watch Video Solution

14. Write the IUPAC name of (i) $\mathrm{Zn}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(ii) $\mathrm{Pt}\left[\mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$

- Watch Video Solution

15. Write IUPAC name of (i) $\mathrm{Na}_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]$ (ii) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$

- Watch Video Solution

16. Write the IUPAC names of the complexes (i) $\mathrm{Na}_{3}\left[\mathrm{CrF}_{4}(\mathrm{OH})_{2}\right]$ ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$.
17. As per IUPAC name, the name of the complex $\left[\mathrm{Co}(\mathrm{en})_{2}(\mathrm{ONO}) \mathrm{Cl}\right] \mathrm{Cl}$ is

- Watch Video Solution

18. Write the structrue and the name of the co-oridnate isomer of $\left.\left[\mathrm{Co}(\mathrm{en})_{3}\right] \operatorname{Cr}(\mathrm{CN})_{6}\right]$

- Watch Video Solution

19. Name the ionization isomer of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Br}^{2}\right] \mathrm{SO}_{4}$

- Watch Video Solution

20. Write IUPAC name of the linkage isomer of (i) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ (ii) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{SCN}\right]^{2+}$

- Watch Video Solution

21. What type of isomerism is shown by the following complexes ?
(i) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right]^{3+}$ (ii) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\right]\left[\mathrm{PtCl}_{4}\right]$

- Watch Video Solution

22. Draw the structure of isomes of $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$

- Watch Video Solution

23. Define hydrate isomerism or ionization isomerism or optical isomerism or geometrical isomerism or linkage isomerism with suitable

example.

- Watch Video Solution

24. Give an example of linkage isomerism.

- Watch Video Solution

25. An example of coordination isomerism is

- Watch Video Solution

26. Give an example of ionization isomerism.

- Watch Video Solution

27. Name the isomerism shown by the following pair of coordination compounds :

(D) Watch Video Solution

28. Illustrate the geometrical isomers of $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{2+}$

- Watch Video Solution

29. Which isomer of $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$does not show optical isomerism ?

- Watch Video Solution

30. Draw the structure and write the hybridisation in
(i) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$ (ii) trans- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+} \quad$ (iii) $\quad \mathrm{No}(\mathrm{CO})_{4} \quad$ (iv)
cis - $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}(\mathrm{v})\left[\mathrm{NiCl}_{4}\right]^{2-}$

- Watch Video Solution

31. What is the difference between inner and outer orbital complexes?

- Watch Video Solution

32. What are $t_{2 g}$ and e_{g} orbitals?

- Watch Video Solution

33. Define crystal field splitting energy ?

- Watch Video Solution

34. Among the octahedral and tetrahedral crystal fields, In which case the magnitude of crystal field splitting is larger?

- Watch Video Solution

35. For the complexion $\left[\mathrm{CoF}_{6}\right]^{3-}$ write the hybridization type, magnetic character and spin nature. [Atomic number: $\mathrm{Co}=27$].

- Watch Video Solution

36. What happens when potassium ferrocyanide solution is added to a ferric salt solution?

- Watch Video Solution

37. Name the different types of organometallic compounds.

- Watch Video Solution

38. Draw structures of (i) Zeise's salt anion, $\left[\operatorname{PtCl}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{-}$
39. Write the structure of ferrocene.

- Watch Video Solution

40. In the formula $\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, what does the prefix η^{5} denote?

- Watch Video Solution

41. The oxidation state of Ni in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is

- Watch Video Solution

42. How is tetrabutyl tin prepared?

- Watch Video Solution

43. Name the central atom present in haemoglobin, chlorophyll and vitamin B_{12}.

- Watch Video Solution

44. What is the solution in which photographic film is washed? What reaction takes place?

- Watch Video Solution

45. Give names of two complexes which are used in medicines.

- Watch Video Solution

46. Write the name of an organometallic compounds which is used as a homogeneous catalyst
47. Write down the heteroheneous catalyst involved in the polymerisation of ethylene.

- Watch Video Solution

Hots Questions

1. A complex is prepared by mixing CoCl_{3} and NH_{3} in the molar ratio of 1:4. 0.1 M solution of this complex was found to freeze at $-0.372^{\circ} \mathrm{C}$. What is the formula of the complex ? Given that molal depression constant of water $\left(K_{f}\right)=1.86^{\circ} \mathrm{C} / \mathrm{m}$

- Watch Video Solution

2. How are octahedral complexes with high spin and low spin states formed ? What is the condition of their formation?
3. In the sequence of reactions
$\mathrm{Fe}^{3+}(\mathrm{aq}) \xrightarrow{\text { Excess of }}$ Excess of SCN^{-}Blood red colour(A) $\xrightarrow{\rightarrow} F^{-}$Colourless (B) Identify A and B. Write their IUPAC names. Explain the hybridisation involved in B and calculate spin only magnetic moment of B.

(Watch Video Solution

4. Write the IUPAC nomenclature of the given complex along with its hybridisation and structure

$$
K_{2}\left[\mathrm{Cr}(\mathrm{NO})\left(\mathrm{NH}_{3}\right)(\mathrm{CN})_{4}\right], \mu=1.73 . B M
$$

D Watch Video Solution

5. Nickel chloride, when treated with dimethyl gyloxime in presence of ammonium hydroxide, a bright red precipitate is obtained Answer the following
(a) Draw the structure of the complex showing H-bonds
(b) Give oxidation state of nickel and its hybridization
(c) Predict the magnetic behaviour of the complex

- Watch Video Solution

6. A metal ion M^{n+} having d^{4} valence electronic configuration combines
with three didentate ligands to form a complex compound. Assuming
Δ 。 $>P$:
(i) Draw the diagram showing d-orbital splitting during this complexes formation.
(ii) What type of hybridisation will M^{n+} have?
(iii) Name the type of isomerism exhibited by this complex.
(iv) Write the electronic configuration of metal M^{n+}

- Watch Video Solution

7. Arrange the following compounds in order of increasing molar conductivity
(a) $K\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
(b) $\left[\operatorname{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(c) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
(d) $\mathrm{Mg}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{5}\right]$

- Watch Video Solution

8. Draw the structures of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$.

Write shapes of the complexes and hybridisation of atomic orbitals of the transition metal in each case.

- Watch Video Solution

9. FeSO_{4} solution mixed with $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ solution is $1: 1$ molar ratio gives the test of Fe^{2+} ion but CuSO_{4} solution mixed with aqueous ammonia in 1:4 molar ratio does not give the test of Cu^{2+} ion. Explain why?

Value Based Questions

1. In Villages, people often wash their clothes with well water. They have to rub a lot of soap before lather is formed. This is because well water is hard water. Thus, a lot of soap is wasted. However, if they use detergent powder in place of soap, lather is formed easily and wastage is less.

Now, answer the following questions:
(i) What values are expressed in the above paragraph?
(ii) Why soap does not form lather with hard water?

- View Text Solution

2. During war, arsenic containing poisonous gas called Lewisite is sometimes used. The soldiers may get affected due to poisoning by arsenic or it may affect the people living in the nearby areas. Similarly, we use a number of articles containing lead. If somehow it enters into our
body, e.g., along with water if lead pipes are used for transport of water, there may be lead poisoning. The person inflicted with arsenic or lead poisoning has to be given an antidote.

Now, answer the following questions:
(i) What values are expressed in the above paragraph?
(ii) Which antidote is given for arsenic poisoning and which one for lead poisoning?

- View Text Solution

Important Questions

1. What aer ambidentate ligands? Give an example.

- Watch Video Solution

2. What is oxidation number and coordination number of central metal ion in $\left[P t\left(O_{2}\right)(e n)_{2} B r\right]+$
3. Which of the following is more stable complex and why? $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{CO}(\text { en })_{3}\right]^{3+}$

- Watch Video Solution

4. Write the IUPAC names of the following coordination compounds:
(a) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$
(b) $K_{3}\left[\operatorname{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
(c) $\left[\mathrm{CoCl}_{2}(\text { en })_{2}\right] \mathrm{Cl}$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right] \mathrm{Cl}$
(e) $\mathrm{Hg}\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$

- Watch Video Solution

5. Write the formulas for the following coordination compounds:
(a) Tetraa mmineaqua chlorido cobalt (III) chloride
(b) Potassium tetrahydroxid ozincate (II)
(c) Potassium trioxalato aluminate (III)
(d) Dichloridobis (ethane-1,2-diamine) cobalt (III)
(e) Tetra carbonyl nickel (0)

- Watch Video Solution

6. Draw isomers of the complex ion $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

- Watch Video Solution

7. Why is geometrical isomerism not possible in tetrahedral complexes having two different types of unidentate ligands coordinated with central metal ion?.
8. Draw all the isomers (geometrical and optical) of:
(i) $\left[\mathrm{CoCl}_{2}(e n)_{2}\right]^{+}$
(ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}(\mathrm{en})_{2}\right]^{2+}$
(iii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}(\right.$ en $\left.)\right]+$

- Watch Video Solution

9. A complex has empirical formula, $\mathrm{PtCl}_{2} .2 \mathrm{NH}_{3}$. When mixed with AgNO_{3}, it gives $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]$ and an insoluble slid $\mathrm{Ag}_{2}\left[\mathrm{PtCl}_{4}\right]$ was also obtained. Name and mention the structure of the complex.

- Watch Video Solution

10. The molar conductivity of the complex $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is found to be same as that of 3:1 electrolyte. What is the structural formula. Name and number of geometrical isomer of the complex.
11. Account for different magnetic behaviour of hexacyanoferrate (III) and hexafluoroferrate (III).

- Watch Video Solution

12. Explain on the basis of valence bond theory that $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ ion with square planar structure is diamagnetic and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ ion with tetrahedral geometry is paramagnetic.

- Watch Video Solution

13. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is paramagnetic while $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is diamagnetic though both are tetrahedral. Why?

- Watch Video Solution

14. Explain $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex whereas $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an outer orbital complex.

- Watch Video Solution

15. The spin only magnetic moment of $\left[\mathrm{MnBr}_{4}\right]^{2-}$ is 5.9 B.M. Geometry of the complex ion is

(Watch Video Solution

16. A solution of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is green but a solution of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ is colourless Explain.

- Watch Video Solution

17. Amongst the following ions, which one has the highest magnetic moment
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

- Watch Video Solution

18. For the complex $\left[\mathrm{Fe}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ (en = ethylene diamine) , identify
(i) the oxidation number of iron,
(ii) the hybrid orbitals and the shape of the complex,
(iii) the magnetic behaviour of the complex,
(iv) the number of geometrical isomers,
(v) whether there is an optical isomer also, and
(vi) name of the complex. (At. no. of $\mathrm{Fe}=26$)
19. (a) What happens to the colour of coordination compound $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ when heated gradually?
(b) The values of dissociation constants of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ are 1.0×10 and 6.2×10^{-36} respectively. Which complex would be more stable and why ?

- Watch Video Solution

20. Explain the following cases giving appropriate reasons:
(i) $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is blue in colour while CuSO_{4} is colourless. (ii) Low spin tetrahedral complexes are not formed.

- Watch Video Solution

21. Aqueous copper sulphate solution (blue in colour) gives (i) a green precipitate with aqueous potassium fluoride, and (ii) a bright green
solution with aqueous potassium chloride. Explain these experimental results.

- Watch Video Solution

22. (a) Draw a figure to show splitting of degenerate d- orbitals in an octahedral crystal field. How does the magnitude of Δ_{0} decide the actual configuration of d-orbitals in a complex entity ?
(b) How is the magnitude of Δ_{0} affected by (i) nature of the ligand (ii) oxidation state of the metal ion?

- Watch Video Solution

23. Why do compounds having similar geometry have different magnetic moment?
24. Using crystal field theory, draw energy level diagram, write electronic configuration of the central metal atom/ion and determine the magnetic moment value in the following :
(i) $\left[\mathrm{CoF}_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$

- Watch Video Solution

25. (a) Calculate the overall complex dissociation equilibrium constant for the $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ ion, given that β_{4} for this complex is 2.1×10^{13}
(b) Draw the structures of the following :
(i) Pentaamminenitrito-N-cobalt (III) (ii) Hexamethyldialuminium.

- Watch Video Solution

26. Draw the structures of (i) Zeise's salt (ii) Ferrocene

- Watch Video Solution

27. Name the central atom present in haemoglobin, chlorophyll and vitamin- B_{12}.

- Watch Video Solution

28. Discuss briefly giving an example in each case the role of coordination compounds in: (i) biological systems (ii) medicinal chemistry (iii) analytical chemistry and (iv) extraction/metallurgy of metals

- Watch Video Solution

