© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - PRADEEP CHEMISTRY (HINGLISH)

SOME BASIC CONCEPTS OF CHEMISTRY

Sample Problem

1. Convert the following temperatures into degrees Fahrengeit :
(i) $25^{\circ} \mathrm{C}$, the room temperature (ii) $37^{\circ} \mathrm{C}$, the human body (physiological) temperature.

- Watch Video Solution

2. On a particular day, the temperature recorded in New York was $60^{\circ} \mathrm{F}$.

What would be the equivalent temperature in.${ }^{\circ} C$?
3. At what temperature will both the Celsius and Fahrenheit scales read the same value?

- Watch Video Solution

4. Calculate
$(i)\left(5.7 \times 10^{6}\right) \times\left(4.2 \times 10^{5}\right) \quad(i i)\left(5.7 \times 10^{6}\right) \times\left(4.2 \times 10^{-3}\right) \quad(i i i)(5 . i$

- Watch Video Solution

5. Calculate
$\left(5.7 \times 10^{6}\right) \div\left(4.2 \times 10^{3}\right) \quad(i i)\left(5.7 \times 10^{6}\right) \div\left(4.2 \times 10^{-3}\right) \quad(i i i)(5.7 \times$

- Watch Video Solution

6. Calculate (i) $4.56 \times 10^{3}+2.62 \times 10^{2} \quad$ (ii) $4.5 \times 10^{-3}-2.6 \times 10^{-4}$.

- Watch Video Solution

7. What is the difference between 5.0 g and 5.00 g ?

Watch Video Solution

8. How many significant figure are there in each of the following numbers?
(i) 6.005
(ii) 6.022×10^{23}
(iii) 8000
(iv) 0.0025
(v) π
(vi) the sum $18.5+0.4235$
(vii) the product 14×6.345.
9. Express the following to four significant figures:
(i)6.45372
(ii) 48.38250
(iii) 70000
$(i v) 2.65986 \times 10^{3}$

Watch Video Solution

10. A sample of nickel weight 6.5425 g and has a density of $8.8 \mathrm{~g} / \mathrm{cm}^{3}$.

What is the volume ? Report the answer to correct decimal place.

- Watch Video Solution

11. Express the result of the given calculation to the appropriate number of significant figures :
3.24×0.08666
5.006

- Watch Video Solution

12. A man weighs 175 lb . Express his weight in kg . Given that $1 \mathrm{~kg}=2.205$ 1 b .

- Watch Video Solution

13. How many inches are there in 3.00 km ? Given that $1 \mathrm{~km}=1000 \mathrm{~m}, 1 \mathrm{~m}=$ $1.094 \mathrm{yd}, 1 \mathrm{yd}=36 \mathrm{in}$.

- Watch Video Solution

14. Express the following in S.I. base units using power of 10 notation (example $2.54 \mathrm{~mm}=2.43 \times 10^{-3} \mathrm{~m}$)
(a) $1.35 \mathrm{~mm}(b) 1$ day $(c) 6.45 \mathrm{~mL}$ (d) $48 \mu g(e) 0.0426$ in

- Watch Video Solution

15. What is the mass (in grams) of an aluminium block whose dimensions are $2.0 \mathrm{in} . \times 3.0 \mathrm{in} . \times 4.0 \mathrm{in}$. and whose density is $2.7 \mathrm{~g} / \mathrm{cm}^{3}$? Given that $1 \mathrm{in} .=2.54 \mathrm{~cm}$.

- Watch Video Solution

16. The mass of precious stones is expressed in terms of 'carat'. Given that 1 carat $=3.168$ grains and 1 gram $=15.4$ grains, calculate the total mass of a ring in grams and kilograms which contains 0.500 carat diamond and 7.00 gram gold.

- Watch Video Solution

17. 4.90 g of KClO_{3} when heated produced 1.92 g of oxygen and the residue (KCl) left behind weighs 2.96 g . Show that these results illustrate the law of conservation of mass.
18. 6.488 g of lead combine directly with 1.002 g of oxygen to form lead peroxide $\left(\mathrm{PbO}_{2}\right)$. Lead peroxide is also produced by heating lead nitrate and it was found that the percentage of oxygen present in lead peroxides 13.38 percent. Use these data to illustrate the law of constant composition.

- Watch Video Solution

19. Copper oxide was prepared by the following methods :
(a) In one case, 1.75 g of the metal were dissolved in nitric acid and igniting the residual copper nitrate yielded 2.19 g of copper oxide.
(b) In the second case, 1.14 g of metal dissolved in nitric acid were precipitated as copper hydroxide by adding caustic alkali solution. The precipitated copper hydroxide after washing, drying and heating yielded 1.43 g of copper oxide.
(c) In the third case, 1.45 g of copper when strongely heated in a current of air yielded 1.83 g of copper oxide. Show that the given data illustrate the law of constant composition.
20. Carbon is found to form two oxides, which contain 42.9% and 27.3 \% if carbon respectively. Show that these figures illustrate the law of multiple proportions.

- Watch Video Solution

21. Two oxides of a certain metal were separately heated in a current of hydrogen until constant weights were obtained. The water produced in each case was carefully collected and weighed. 2 grams of each oxide gave respectively 0.2517 grams and 0.4526 grams of water. Show that these results established the Law of Multiple Proportions.

- Watch Video Solution

22. Two oxides of a metal contain 27.6% and 30.0% of Oxygen, respecttively. If the formula of the first be $M_{3} O_{4}$. Find that of the second.

(D) Watch Video Solution

23. Ammonia contains 82.35% of nitrogen and 17.65% of hydrogen. Water contains 88.90% of oxygen and 11.10% of hydrogen. Nitrogen trioxide contains 63.15% of oxygen and 36.85% of nitrogen. Show that these data illustrate the law of receprocal proportions.

- Watch Video Solution

24. Chlorine has two isotopes of atomic mass units $34.97 u$ and $36.97 u$.

The relative abundances of these two isotopes are 0.735 and 0.245 respectively. Find out the average atomic mass of chlorine.

- Watch Video Solution

25. Naturally occurring boron consists of two isotopes whese atomic weights are 10.01 and 11.01. The atomic weight of natural boron is 10.81 .

Calculate the percentage of each isotope in natural boron.

Watch Video Solution

26. Calculate the percentage composition of the various elements in MgSO_{4}.

- Watch Video Solution

27. Calculate the percentage of water of crystallisation in the sample of blue vitriol $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)$.

- Watch Video Solution

28. Calcualte the percentage of cation in ammonium dichromate.

- Watch Video Solution

29. On analysing an impure sample of sodium chloride, the percentage of chlorine was found to be 45.5 . What is the percentage of pure sodium chloride in the sample?

- Watch Video Solution

30. An inorganic salt gave the following percentage composition :
$N a=29.11, S=40.51$ and $O=30.38$
Calculate the empirical formula of the salt.

- Watch Video Solution

31. 2.38 g of uranium was heated strongly in a current of air. The resulting oxide weighed 2.806 g . Determine the empirical formula of the oxide. (At. Mass U $=238, \mathrm{O}=16$)

- Watch Video Solution

32. 2.746 g of a compound gave on analysis 1.94 g of silver, 0.268 g of sulphur and 0.538 g of oxygen. Calculate the empirical formula of the compound (At. Masses: $\mathrm{Ag}=108, \mathrm{~S}=32, \mathrm{O}=16$)

- Watch Video Solution

33. A crystalline hydrated sa,t on being rendered anhydrous, loses 45.6% of its weight. The precentage composition of anhydrous salt is : $A l=10.5 \%, K=15.1 \%, S=24.8 \%$ and $I=49.6 \%$. Find the empirical formula of the anhydrous and crystalline salt :

- Watch Video Solution

34. The percentage composition of ferrous ammonium sulphate is $14.32 \% \mathrm{Fe}^{2+}, 9.20 \% \mathrm{NH}_{4}^{+}, 49.0 \% \mathrm{SO}_{4}^{2-}$ and $27.57 \% \mathrm{H}_{2} \mathrm{O}$. What is the empirical formula of the compound?
35. A compound contains 4.07% hydrogen, 24.27% carbon and 71.65% chlorine. Its molar mass is 98.96 g . What are its empirical and molecular formulas?

- Watch Video Solution

36. A compound on analysis was found to contain the following composition :

$$
N a=14.31 \%, S=9.97 \%, O=69.50 \% \text { and } H=6.22 \%
$$

Calculate the molecular formula of the compound assuming that the whole of hydrogen in the compound is present as water of crystallisation.

Molecular mass of the compound is 322 .

- Watch Video Solution

37. 1.615 g of anhydrous ZnSO_{4} was left in moist air. After a few days its weight was found to be 2.875 g . What is the molecular formula of hydrated salt ? (At. Mass: $\mathrm{Zn}=65.5, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=1$)

- Watch Video Solution

38. All the oxygen in 0.5434 g sample of pure oxide of iron is removed by reduction in a stream of H_{2}. The loss in weight is 0.1210 g . What is the formula of the oxide of iron ? (At. Mass of $\mathrm{Fe}=56$)

- Watch Video Solution

39. Magnetic oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ when when heated with hydrogen is reduced to iron and water is also produced. Write balanced equation for the reaction.

- Watch Video Solution

40. Acetylene burns in oxygen to form carbon dioxide and water. Write the skeleton equation for the reaction and balance it.
41. Balance the following skeleton equation :
$\mathrm{Mg}_{3} \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{NH}_{3}$.

- Watch Video Solution

42. By using partial equation method, balance the equation :
$\mathrm{NaOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}+\mathrm{NaClO}_{3}+\mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

43. Balance the following skeleton equation by the method of Partial Equations:
$\mathrm{P}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$.

- View Text Solution

44. Balance the following skeleton equation by the method of Partial Equations :

$$
\mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+(\mathrm{COOH})_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} .
$$

- Watch Video Solution

45. Calculate the volume of hydrogen librated at N.T.P. when $500 \mathrm{~cm}^{3}$ of 0.5 N sulphuric acid react with excess of zinc.

- Watch Video Solution

46. How many millilitres of $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to dissolve 0.5 g of copper (II) Carbonate ?

- Watch Video Solution

47. 50.0 kg of $N_{2}(g)$ and 10.0 kg of $H_{2}(g)$ are mixed to produce $\mathrm{NH}_{3}(g)$. Calculate the $\mathrm{NH}_{3}(g)$ formed. Identify the limiting reagent in the production of NH_{3} in this situation.

- Watch Video Solution

48. 3.0 g of H_{2} react with 29.0 g of O_{2} yield $\mathrm{H}_{2} \mathrm{O}$.
(i) Which is the limiting reagent.
(ii) Calculate the maximum amount of $\mathrm{H}_{2} \mathrm{O}$ that can be formed
(iii) Calculate the amount of reactant left unreacted

- Watch Video Solution

49. One litre of oxygen at STP is made to react with three litres of carbon monoxide at STP. Calculate the mass of each substance found after the reaction. Which one is the limiting reactant?
50. What is the mass of the precipitate formed when 50 mL of 17.0% solution of AgNO_{3} is mixed with 50 mL of $11.6 \% \mathrm{NaCl}$ solution?

- Watch Video Solution

51. What volume of hydrogen at N.T.P would be liberated by the action of 50 mL of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ of 40% purity and having a specific gravity of $1.3 \mathrm{gmL}^{-1}$ on 65 g of zinc ? (Atomic mass of $\mathrm{Zn}=65$).

- Watch Video Solution

Problem

1. Calculate the molecular mass of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ molecule in amu.

- Watch Video Solution

2. Calculate the mass of (i) an atom of silver (ii) a molecule of carbon dioxide.

- Watch Video Solution

3. How many atoms and molecules of sulphur are present in 64.0 g of sulphur $\left(S_{8}\right)$?

- Watch Video Solution

4. Calculate the number of molecules present (i) in 34.20 grams of cane $\operatorname{sugar}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
(ii) in one litre of water assuming that the density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}$.
(iii) in one drop of water having mass 0.05 g .

- Watch Video Solution

5. Calculate the number of atoms of the constituent elements in 53 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.

- Watch Video Solution

6. Calculate the number of molecules present in $350 \mathrm{~cm}^{3}$ of NH_{3} gas at

273 K ans 2 atmosphere pressure.

- Watch Video Solution

7. (i) Assuming the density of water to be $1 \mathrm{~g} / \mathrm{cm}^{3}$, calculate the volume occupied by one molecule of water.
(ii) Assuming the water molecule to be spherical, calculate the diameter of the water molecule.
(iii) Assuming the oxygen atom occupied half of the volume occupied by the water molecule, calculate approximately the diameter of the oxygen atom.
8. Calculate the number of moles in : (i) 392 grams of sulphuric acid (ii) 44.8 litres of carbon dioxide at STP (iii) 6.022×10^{23} molecules of oxygen (iv) 9.0 grams of aluminium (v) 1 metric ton of iron (1 metric ton $=10^{3} \mathrm{~kg}$) (vi) 7.9 mg of Ca (vii) 65μ of carbon.

Watch Video Solution

9. Calculate the mass of (i) 0.1 mole of KNO_{3} (ii) 1×10^{23} molecules of methane and (iii) $112 \mathrm{~cm}^{3}$ of hydrogen at STP.

- Watch Video Solution

10. The following substances are present in different containers
(i) One gram atom of nitrogen
(ii) One mole of calcium
(iii) One atom of silver
(iv) One mole of oxygen molecules
(v) 1023 atoms of carbon and
(vi) One gram of iron.

The correct order of increasing masses (in grams) is/are

- Watch Video Solution

11. Calculate the volume at N.T.P occupied by
(i) 14 g of nitrogen
(ii) 1.5 gram moles of carbon dioxide
(iii) 10^{21} molecules of oxygen.

- Watch Video Solution

12. Suppose the elements X and Y combine to form two compounds of $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , what are tha atomic masses of X and Y ?
13. A solution is prepared by adding 2 g of a substance A to 18 g of water.

Calculate the mass per cent of the solute.

- Watch Video Solution

14. Calculate the molarity of NaOH in the solution prepared by dissolving its 4 g in enough water to form 250 mL of the solution.

- Watch Video Solution

15. A solution of oxalic acid, $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is prepared by dissolving 0.63 g of the acid in $250 \mathrm{~cm}^{3}$ of the solution. Calculate molarity

- Watch Video Solution

16. Commercially availiable concentrated hydrochloric acid contains $38 \% \mathrm{HCl}$ by mass. (a) What is the molarity of this solution? The density
is $1.19 g m L^{-1}$?
(b) What volume of concentrated HCl is required to make 1.00litre of 0.10MHCl?

- Watch Video Solution

17. How many grams of NaOH should be dissolved to make $100 \mathrm{~cm}^{3}$ of 0.15 M NaOH solution?

Watch Video Solution

18. Calculate the molarityes and normalities of the solution obtained on mixing
(i) 100 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 50 mL of 0.1 M HCl
(ii) 100 mL of $0.2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 50 mL of 0.1 N HCl
(iii) 100 mL of $0.1 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 50 mL of 0.1 M NaOH
(iv) 50 mL of $0.1 \mathrm{~N} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ with 100 mL of 0.1 N NaOH .
19. Calculate the number of oxalic acid molecules in 100 mL of 0.02 N oxalic acid

- Watch Video Solution

20. Calculate the molarity of water if its density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.

- Watch Video Solution

21. The density of 3 M solution of NaCl is $1.25 \mathrm{~g} \mathrm{~mL}^{-1}$. Calculate molality of the solution.

- Watch Video Solution

22. Calculate the mole fraction of ethylene glycol $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}\right)$ and water in a solution containing 20% of $C_{2} H_{6} O_{2}$ by mass.
23. Find the molaity and molatity of a 15% solution w / w of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (density of $\left.\mathrm{H}_{2} \mathrm{SO}_{4}=1.02 \mathrm{gcm}^{-3}\right)$.

- Watch Video Solution

24. The mole fraction fo benzene in a solution with toluene is 0.50 .

Calculate the mass present of benzene in the solution.

- Watch Video Solution

25. Calculate the molality of a sulphuric acid solution in which the mole fraction of water is 0.85 .

- Watch Video Solution

26. What is the mole fraction of the solute in 2.5 m aqueous solution?
27. Calculate the amount of water (g) produced by the combustion of 16 g of methane

D Watch Video Solution

28. How many moles of methane are required to produce $22 g \mathrm{CO}_{2}$ (g) after combustion?

- Watch Video Solution

29. Calculate the mass of iron which will be converted into its oxide $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ by the action of 18 g of steam on it.

- Watch Video Solution

30. What mass of slaked lime would be required to decompose completely 4 grams of ammonium chloride and what would be the mass of each product?

- Watch Video Solution

31. 1.5 g of an impure sample of sodium sulphate dissolved in water was treated with excess of barium chloride solution when 1.74 g of BaSO_{4} were obtained as dry precipitate. Calculate the percentage purity of the sample.

- View Text Solution

32. Current market prices of Al, Zn and Fe scraps per kg are Rs. 20, Rs. 16 and Rs. 3 respectively. If H_{2} is to be prepared by the reaction of one of these metals with $\mathrm{H}_{2} \mathrm{SO}_{4}$, which would be the cheapest metal to use ?

Which would be most expensive ?
33. In order to find the strength of a sample of sulphuric acid, 10 g were dilluted with water and a piece of marble weighing 7 g placed in it. When all action had ceased, the marble was removed, washed, dried and was found to weight 2.2 g . What was the percentage strength of sulphuric acid ?

- View Text Solution

34. A mixture of CaCO_{3} and MgCO_{3} weighing $1.84 g$ on heating left a residue weighing 0.96 g . Calculate the percentage of each in the mixture.

- Watch Video Solution

35. [A] A solid mixture weighing 5.00 g containing lead nitrate and sodium nitrate was heated below $600^{\circ} \mathrm{C}$ until the mass of the residue was
constant. If the loss of mass is 28% find the mass of lead nitrate and sodium nitrate in the mixture.

- Watch Video Solution

36. Calculate the amount of limen, $\mathrm{Ca}(\mathrm{OH})_{2}$, required to remove hardness of 50,000 litres of well water which has been found to contain 1.62 g of calcium bicarbonate per 10 litre.

- View Text Solution

37. What volume of carbon dioxide measured at $27^{\circ} \mathrm{C}$ and 746.7 mm pressure will be obtained by treating 10.0 g of pure marble with dilute hydrochloric acid? (Aqueous tension at $27^{\circ} \mathrm{C}$ is 26.7 mm)

- Watch Video Solution

38. 1 gm of a mixture of calcium carbonate and magnesium carbonate gave on ignition 240 mL of carbon dioxide at S.T.P. What is the percentage composition of the mixture?

- Watch Video Solution

39. What volume of oxygen at N.T.P is needed to cause the complete combustion of 200 mL of acetylene ? Also calculate the volume of carbon dioxide formed.

- Watch Video Solution

40. A gas mixture of 3.0 L of propane and butane on complete combustion at $27^{\circ} \mathrm{C}$ produced 10.0 L of CO_{2}. Find out the composition of the gas mixture.

- Watch Video Solution

41. A 5.0 g sample of a natural gas consisting of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$ was burnt in excess of oxygen yielding $14.5 g \mathrm{CO}_{2}$ and some $\mathrm{H}_{2} \mathrm{O}$ as product. What is weight percentage of CH_{4} and $\mathrm{C}_{2} \mathrm{H}_{4}$ in mixture?

- Watch Video Solution

Example

1. 20 cc of a hydrocarbon mixed with 66 cc of oxygen were exploded in a eudiometer tube. The residual gases after cooling occupied 56 cc . On treatment with KOH solution, the volume decreased to 16 cc . Find the formula of the hydrocarbon.

- View Text Solution

2. 5.2 cc of a gaseous hydrocarbon was exploded with excess of oxygen and product cooled. A contraction of 7.8 cc was observed. A further
contraction of 10.4 cc was noted on treatment with aqueous potash. Find the formula of the hydrocarbon and give I.U.P.A.C. name to it.

- View Text Solution

Curiosity Question

1. Name two discoverles of chemistry which have helped mankind and the same discoveries have harmed the mankind and how?

- Watch Video Solution

2. Many countries Including USA express the temperature of atmosphere in degrees fahrenhelt, if you land in USA and temperature in $59^{\circ} F$, what do you expect cold or hot. Compare with corresponding temperature in India.
3. A lady purchases a necklace from a jeweller with diamonds embedded in it. The jeweller tells that total diamond used in the necklace is five carat. How much weight the should subtract from the weight of the ring to get the weight of gold?

- Watch Video Solution

4. Gold biscults are available in the market which look exactiy similar to gold but actually they are not of pure gold (but of gold called fool's gold). How will check it by some simple physical property? Density of pure gold is well known to be $19.3 \mathrm{~g} \mathrm{~cm}^{-3}$.

- Watch Video Solution

5. Gold is heavier than aluminium. If we put a 100 g biscult of gold in water taken in a measuring cylinder or we put a 100 g aluminium bar in the measuring cylinder, will the rise in level of water be same or different in the two cases? Give reason.

(Watch Video Solution

6. A person is declared as a diabetic if his/her blood sugar/blood glucose level exceeds $160 \mathrm{mg} / \mathrm{dL}$ when tested 2 hours after meals. In some countries, it is reported in the units of m molL ${ }^{-1}$. If a person has blood sugar of $10 \mathrm{~m} \mathrm{~mol} L^{-1}$, is he/she diabetic or not? Explain.

- Watch Video Solution

Problems For Practice

1. How many significant figures are there in each of the following numbers?
(i)6.200
(ii) 0.052
(iii) 7.5×10^{4}
(iv)0.00050
$(v) 67.32-6.3$
$(v i i)(5.56)^{2}(8.24) /(3.6) \quad(v i i i) 18.567 /(8.1 \times 2)$

- Watch Video Solution

2. What is the number of significant figures in Avogadro's number $\left(6.0 \times 10^{23}\right)$ and Planck's constant $\left(6.62 \times 10^{-34} \mathrm{Js}\right)$.

- Watch Video Solution

3. Express the number of 45000 in exponential notation to show
(i) tow significant figures
(ii) four significant figures.

- Watch Video Solution

4. Convert 16.1 km to miles using the following units equivalents:
$1 \mathrm{~km}=1000 \mathrm{~m}, 1 \mathrm{ft}=12$ inches, $1 \mathrm{~m}=100 \mathrm{~cm}$, 1 mile $=1760 \mathrm{yd}, 1$ inch $=2.54$ $\mathrm{cm}, 1 \mathrm{yd}=3 \mathrm{ft}$

- Watch Video Solution

5. What is the weight in pounds of a gold bar 12.0 inches long, 6.00 inches wide and 3.00 inches thick? The density of gold is $19.3 \mathrm{gcm}^{-3}$. Given 1 inch $=2.54 \mathrm{~cm}, 1 \mathrm{lb}=453.6 \mathrm{~g}$.

- Watch Video Solution

6. Express the following in SI units : (i) $5^{\prime} 6^{\prime \prime}$, the average height of an Indian man. (ii) 80 miles per hour, the average speed of a roadways bus.
(iii) 100 pounds, the average weight of an Indian girl. (Take $1 \mathrm{lb}=454 \mathrm{~g}$) (iv) $-10^{\circ} \mathrm{C}$, the lowest temperature in Simla. (v) 2 litres of milk, the average consumption of a family of 4 persons. (vi) 14 pounds per square inch (atmospheric pressure)

- Watch Video Solution

7. Convert the following into kilograms :
(i) 500 Mg (mass of loaded jumbo jet)
(ii) 1 fg (mass of human DNA molecule)

- Watch Video Solution

8. Convert the following into metre
(i) 40 Em (thickness of Milky way galaxy)
(ii) 1.4 Gm (diameter of Sun)
(iii) 41 Pm (distance of nearest star)

Watch Video Solution

9. Using the unit conversion factors, express
(i) $1.54 \mathrm{~mm} s^{-1}$ in $\mathrm{pm} \mu s^{-1}$
(ii) $2.66 \mathrm{~g} \mathrm{~cm}^{-3}$ in μm^{-3}

D Watch Video Solution

10. Vanadium metal is added to steel to impart strength. The density of vanadium is $5.96 \mathrm{~g} / \mathrm{cm}^{3}$. Express this in S.I units $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$.
11. A piece of metal is 3 inch (represented by in) long. What is its length in cm ?

- Watch Video Solution

12. A jug contains 2 L of milk. Calcualte the volume of the milk in m^{3}

- Watch Video Solution

13. How many seconds are there in 2 days?

- Watch Video Solution

14. What mass of silver nitrate will react with 5.85 g of sodium chloride to produce 14.35 g of silver chloride and 8.5 g of sodium nitrate if the law of conservation of mass is true?

(D) Watch Video Solution

15. When 4.2 gNaHCO is added to a solution of $\mathrm{CH}_{3} \mathrm{COOH}$ (acetic acid) weighing $10 g$, it is observed that $2.2 g$ of CO_{2} is released to the atmosphere. The residue is found to weigh 12.0 g . Show that these observations are in agreement with the law of conservation of mass.

Watch Video Solution

16. If 6.3 g of NaHCO_{3} are added to $15.0 \mathrm{~g} \mathrm{CH} \mathrm{H}_{3} \mathrm{COOH}$ solution, the residue is found of weight 18.0 g . What is the mass of CO_{2} released in the reaction?

- Watch Video Solution

17. 2.16 of copper metal when treated with nitric acid followed by ignition of the nitrate gave 2.70 g of copper oxide. In another experiment 1.15 g of
copper oxide upon reduction with hydrogen gave 0.92 g of copper. Show that the above data illustrate the Law of Definite Proportions.

- Watch Video Solution

18. Silver chloride is prepared by
(i) dissolving 0.5 g of silver wire in nitric acid and adding excess of hydrochloric acid to silver nitrate formed. The silver chloride precipitated is separated, washed and dried. The weight of silver chloride is 0.66 g .
(ii) heating 1 g of silver metal in a current of dry chlorine gas till the metal is completely converted into its chloride. It is found to weight 1.32 g .

Illustrate the law of constant composition by the above data.

- Watch Video Solution

19. Two oxide samples of lead were heated in the current of hydrogen and were reduced to the metallic lead. The following data were obtained
(i) Weight of yellow oxide taken $=3.45 \mathrm{gm}$, Loss in weight in reduction $=$
(ii) Weight of brown oxide taken $=1.227 \mathrm{gm}$, Loss in weight in reduction $=$ 0.16 gm.

Show that the data illustrates the law of multiple proportion.

- Watch Video Solution

20. Copper gives two oxides. On heating 1.0 g of each in hydrogen gas, 0.888 g and 0.799 g of the metal are produced. Show that the results agree with the Law of Multiple Proportions.

(Watch Video Solution

21. Two oxides of nitrogen contain the following percentage compositions
: (i) Oxide A contains 63.64% nitrogen and 36.36% oxygen. (ii) Oxide B contains 46.67% nitrogen and 53.33% oxygen.

Establish the Law of Multiple Proportions.

D View Text Solution

22. A metal forms two oxides. One contains 46.67% of the metal and another, 63.94% of the metal. Show that these results are in accordance with the law of multiple proportions.

- View Text Solution

23. Nitrogen forms five compounds with oxygen in which 1.0 g of nitrogen combines with $0.572,1.14,1.73,2.28$ and 2.85 g of oxygen respectively. Show that these figures agree with law of multiple proportions.

- View Text Solution

24. Element X and Y form two different compounds. In the first compound, $0.324 g X$ is combined with $0.471 g Y$. In the second compound, $0.117 g X$ is combined with $0.509 g Y$. Show that these data illusttate the law of multiple proportions.
25. If a certain oxide of nitrogen weighing 0.11 g gives 56 mL of nitrogen and another oxide of nitrogen weighing 0.15 g gives the same volume of nitrogen (both at sTP), show that these results support the law of multiple proportions.

- View Text Solution

26. Carbon dioxide contains 27.27% of carbon, carbon disulphide contains 15.79% of carbon and sulphur dioxide contains 50% of sulphur. Are these figures in agreements with the law of reciprocal proportions?

- View Text Solution

27.61 .8 g of A combine with 80 g of B. 30.9 g of A combine with 106.5 g of C. B and C combine to form compound $C B_{2}$. Atomic weights of C and B are respectively 35.5 and 6.6. Show that the law of reciprocal proportions is obeyed.

(D) Watch Video Solution

28. To account for atomic mass of nitrogen as 14.0067 , what should be the ratio of.$^{15} N$ and.$^{14} N$ atoms in natural nitrogen? (atomic mass of $.{ }^{14} N=14.00307 u$ and $\left..{ }^{15} N=15.001 u\right)$

- Watch Video Solution

29. What is the mass of (i) 1 mole of water (ii) 0.5 mole of CO_{2} (iii) 2.5 moles of Cl_{2} ?

- Watch Video Solution

30. Calculate the number of moles in each of the following amounts of materials :
(i) 10.0 g of CaCO_{3}
(ii) 1×10^{23} molecules of CO_{2}
31. What is the mass in grams of : (i) 6.022×10^{23} atoms of oxygen? (ii) 1.0×10^{23} molecules of $H_{2} S$?
(iii) 6.022×10^{23} molecules of oxygen? (iv) 1.5 moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

- Watch Video Solution

32. Which of the following weighs most
(i) 50 g of iron (ii) 5 g atoms of nitrogen (iii) 0.1 g atom of silver (iv)
1×10^{23} atoms of carbon

- Watch Video Solution

33. Calculate the number of molecules present in 22.0 g of CO_{2}.

- Watch Video Solution

34. What is the mass of carbon dioxide which contains the same number of molecules as are contained in 40 g of oxygen?

Watch Video Solution

35. Calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ which will have the same number of molecules as contained in 12.3 g of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

36. Calculate the volume occupied by 10^{22} molecules of a gas at 300 K and 760 mm pressure.

- Watch Video Solution

37. Calculate the number of atoms of each type that are present in $3.42 g$ of sucrose $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$.
38. Calculate the mass of 1 molecule of (i) oxygen (ii) ammonia

- Watch Video Solution

39. (a) Calculate the volume occupied at STP by
(i) 16.0 g of oxygen (ii) 1.5 moles of oxygen and (iii) 6.022×10^{23} molecules of carbon dioxide

- Watch Video Solution

40. (i) How many grams of $\mathrm{H}_{2} \mathrm{~S}$ are contained in 0.40 mole of $\mathrm{H}_{2} \mathrm{~S}$?
(ii) How many gram atoms of H and S are contained in 0.40 mole of $\mathrm{H}_{2} \mathrm{~S}$?
(iii) How many molecules of $H_{2} S$ are contained in 0.40 mole of $H_{2} S$?
(iv) How many atoms of H and S are contained in 0.40 mole of $\mathrm{H}_{2} \mathrm{~S}$?
41. You are supplied with a gas containing 0.32 g of oxygen. Calculate the number of moles and number of molecules present in it.

- Watch Video Solution

42. The mass of a litre of oxygen at standard conditions of temperature and presssure is 1.43 g and the mass of one litre of SO_{2} is 2.857 g .
(i) How many molecules of each gas are there in this volume?
(ii) What is the mass in grams of a single molecules of each gas?
(iii) What are the molecular masses of SO_{2} and O_{2} respectively?

- Watch Video Solution

43. The mass aof $350 \mathrm{~cm}^{3}$ of a diatomic gas at 273 K at 2 atmospheres pressure is one gram. Calculate the mass of one atom of the gas.

- Watch Video Solution

44. How many atoms and molecules are present in 124 g of phosphorus (P_{4})?

- Watch Video Solution

45. What is the mass of a water molecule in gram ? How many molecules are present in one drop of pure water which weight 0.05 g ? If the same drop of water evaporates in one hour, calculate the number of molecules leaving the liquid surface per second.

- Watch Video Solution

46. The mass of carbon present in 0.5 mole of $K_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is -

- Watch Video Solution

47. The cost of table salt (NaCl) and table sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ are Rs 2 per kg and Rs. 6 per kg respectively. Calculate their cost per mole.
48. Chlorophyll, the green colouring matter of plants responsible for photosynthesis, contains 2.68% of magnesium by mass. Calculate the number of magnesium atoms in 2.00 g of chlorophyll.

- Watch Video Solution

49. How many years it would take to spend Avogadro's number of rupees at the rate of 10 lakh rupees per second?

- Watch Video Solution

50. Calculate the total number of electrons presents in $1.4 g$ of nitrogen gas.

- Watch Video Solution

51. What is the mass in grams of one molecule of caffeine $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$?

- Watch Video Solution

52. How many molecules approximately do you expect to be present in (i) a small sugar crystal which weighs 10 mg (ii) one drop of water with 0.05 cc volume?

- Watch Video Solution

53.9.7 $\times 10^{17}$ atoms of iron weigh as much as 1 cc of H_{2} at S.T.P. What is the atomic mass of iron?

- Watch Video Solution

54. What is the mass percent of the solute in the solution obtained by dissolving 5 g of the solute in 50 g of water ?
55. A sample of NaOH weighing 0.40 is dissolved in water and the solution is made to $50.0 \mathrm{~cm}^{3}$ in volumetric flask. What is the molarity of the resulting solution?

- Watch Video Solution

56. How many moles and how many grams of sodium chloride are present in 250 mL of a 0.50 M NaCl solution ?

- Watch Video Solution

57. Concentrated aqueous sulphuric acid is $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.84 \mathrm{~g} \mathrm{~cm}^{3}$. What volume of the concentrated acid is required to make 5.0 litre of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

- Watch Video Solution

58. How many grams of barium chloride $\left(\mathrm{BaCl}_{2}\right)$ are needed to prepare $100 \mathrm{~cm}^{3}$ of 0.250 mL of a $0.50 \mathrm{M} \mathrm{BaCl}_{2}$ solution?

- Watch Video Solution

59. How many moles and how many grams of sodium chloride are present in 250 mL of a 0.50 M NaCl solution ?

- Watch Video Solution

60. A sample of NaNO_{3} weighing 0.38 g is placed in a 50.0 mL volumetric flask. The flask is then filled with water to the mark on the neck. What is the molarity of the solution?

- Watch Video Solution

61. In a reaction vessel $0.184 g$ of NaOH is required to be added for completing the reaction. How many millilitre of 0.150 MNaOH solution
should be added for this requirements?

- Watch Video Solution

62. Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.8 M and its density is $1.06 \mathrm{gcm}^{-3}$. What will be concentration of the solution in terms of molality and mole fraction?

- Watch Video Solution

63. The concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in a botal labelled "conc. Sulphuric acid" is 18 M . The solution has a density of $1.84 \mathrm{~g} \mathrm{~cm}^{-3}$. What is the mole fraction and weight percentage of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in this solution?

- Watch Video Solution

64. Calculate the molality of 1 litre solution of 93% $\mathrm{H}_{2} \mathrm{SO}_{4}$ (weight / volume). The density of solution is 1.84 g mL . .
65. What is the mole fraction of ethanol and water respectively in a sample of rectified spirit which contains 95% of ehtanol by weight ?

- Watch Video Solution

66. The density of $3 M$ sodium of thiosulphate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ is $1.25 \mathrm{gmL}^{-1}$. Calculate
a. The precentage by weight of sodium thiosulphate.
b. The mole fraction of sodium thiosulphate.
c. The molalities of Na^{\oplus} and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ ions.

- Watch Video Solution

67. An aqueous solution of sodium chloride is marked $10 \%(w / w)$ on the bottle. The density of the solution is $1.071 \mathrm{gm} L^{-1}$. What is the molity and molarity? Also, what is the mole fraction of each components in the solution?

- Watch Video Solution

68. $\mathrm{H}_{2} \mathrm{SO}_{4}$ used in lead storage cell is 38% by mass and has a density of $1.30 \mathrm{~g} \mathrm{~cm}^{-3}$. Calculate its molarity.

- Watch Video Solution

69. Find the percentage composition of potassium chlorate $\left(\mathrm{KClO}_{3}\right)$

- Watch Video Solution

70. Calculate the percentage of (i) $\mathrm{SO}_{4}^{2-}(i i) \mathrm{H}_{2} \mathrm{O}$ in pure crystals of Molar salt, viz., $\mathrm{FeSO}_{4} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

71. Calculate the percentage of water of crystallisation in the sample of washing soda, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$.

- Watch Video Solution

72. A sample of clay is found to have the formula $\mathrm{Al}_{2} \mathrm{O}_{3} . \mathrm{K}_{2} \mathrm{O}_{2} 6 \mathrm{SiO}_{2}$.

Calculate the percentage of alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$ and silica $\left(\mathrm{SiO}_{2}\right)$ in the sample.

- Watch Video Solution

73. $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}$ is empirical formula of a crystalline compound to iron. It is used in water and sewage treatment to aid in the removal of suspended impurities. Calculate the mass percentage of iron, sulphur and oxygen in this compound.

- Watch Video Solution

74. Calculate the percent of carbon, hydrogen and oxygen in ethanol ($\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$)

- Watch Video Solution

75. An inorganic salt on analysis gave the following percentage composition :
$P b=62.6, N=8.4, O=29$
What is empirical formula of the compound ? Also name the compound,
(At. Mass $\mathrm{Pb}=207, \mathrm{~N}=14, \mathrm{O}=16$).

- Watch Video Solution

76. A sample of a salt has the percentage composition : $\mathrm{Fe}=36.76, \mathrm{~S}=$
21.11 and $\mathrm{O}=42.14$

Calculate the empirical formula of the compound. (At. Mass $\mathrm{Fe}=56, \mathrm{~S}=32$ and $\mathrm{O}=16$)
77. A sample of a salt has the percentage composition : $\mathrm{Fe}=36.76, \mathrm{~S}=$ 21.11 and $O=42.14$

Calculate the empirical formula of the compound. (At. Mass $\mathrm{Fe}=56, \mathrm{~S}=32$ and $\mathrm{O}=16$)

- Watch Video Solution

78. A salt containing water of crystallization gave the following percentage composition :
$\mathrm{Mg}=9.76, \mathrm{~S}=13.01, \mathrm{O}=26.01$ and $\mathrm{H}_{2} \mathrm{O}=51.22$
Calculate the simplest formula. (At. Mass of $\mathrm{Mg}=24$)

- Watch Video Solution

79. Calculate the empirical formula of gold chloride which contains
35.1% of chlorine. At mass of $\mathrm{Au}=197$.
80. Calculate the empirical formula of a mineral having the following composition :
$C a O=48.0 \%, P_{2} O_{2}=41 \%, C a C l_{2}=10.7 \%$

- Watch Video Solution

81. A crystalline compound when heated became anhydrous by losing 51.2 \% of the mass. On analysis, the anhydrous compound gave the following percentage composition: $\mathrm{Mg}=20.0 \%, \mathrm{~S}=26.66 \%$ and $\mathrm{O}=53.33 \%$, Calculate the molecular formula of the anhydrous compound and crystalline compound. The molecular mass of anhydrous compound is 120
u.

- Watch Video Solution

82. A compound containing carbon, hydrogen and oxygen gave the following analytical data :
$C=40.0 \%$ and $H=6.67 \%$
Calculate the molecular formula of the compound if its molecular mass is 180.

- Watch Video Solution

83. On analysis, a substance was found to have the following percentage composition:

$$
K=31.84, C l=28.98 \text { and } O=39.18
$$

Calculate its molecular formula if its molecular mass is 122.5 .

- Watch Video Solution

84. An organic liquid having carbon, hydrogen, nitrogen and oxygen was found to contain $C=41.37 \%, H=5.75 \%, N=16.09 \%$ and the rest oxygen. Calculate the molecular formula of the liquid if its V.D. is 43.3 .

- Watch Video Solution

85. A chemical compound is found to have the following composition :
$C=19.57 \%, F e=15.2 \%, N=22.83 \%, K=42.39 \%$
Calculate the empirical formula of the compound. What will be its molecular formula if the molecular mass of the compound is 368 ? Name the compound.

- Watch Video Solution

86. Butyric acid contains only C, H and O. A 4.24 mg sample of butyric acid is completely burned. It gives 8.45 mg of CO_{2} and 3.46 mg og $\mathrm{H}_{2} \mathrm{O}$. The molecular mass of butyric acid was determined by experiment to be 88 amu. What is molecular formula?

- Watch Video Solution

87. Balance the following equations by Hit and Trial Method :
(i) $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}$
(ii) $\mathrm{Al}_{4} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+\mathrm{CH}_{4}$
(iii) $\mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{MnCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}$
(iv) $\mathrm{KMnO}_{4}+\mathrm{KOH} \rightarrow \mathrm{K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(v) $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}$
(vi) $\mathrm{Zm}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2}$
(vii) $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+\mathrm{NaI}$
(viii) $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(ix) $\mathrm{Ca}_{2} \mathrm{P}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{PH}_{3}$

- View Text Solution

88. Balance the following equation by partial Equation method:
(i) $\mathrm{PbS}+\mathrm{O}_{3} \rightarrow \mathrm{PbSO}_{4}+\mathrm{O}_{2}$
(ii) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{SO}_{2} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{CO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
(iii)
$\mathrm{KMnO}_{4}+\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{MnSO}_{4}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Fe}_{2}(\mathrm{~S}$
(iv) $\mathrm{Mg}+\mathrm{HNO}_{3} \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{O}$
(v) $\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(vi) $\mathrm{C}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(vii) $\mathrm{P}_{4}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(viii) $\mathrm{CuSO}_{4}+\mathrm{KI} \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cu}_{2} \mathrm{I}_{2}+I_{2}$
(ix) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(x) $\mathrm{I}_{2}+\mathrm{HNO}_{3} \rightarrow \mathrm{HIO}_{3}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}$

- View Text Solution

89. In the commercial manufacture of nitric acid, how many moles of NO_{2}
produce 7.33 mol of HNO_{3} in the reaction :
$3 \mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g}) ?$

- Watch Video Solution

90. How much iron can be theoretically obatined by the reduction of 1.0 kg of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?(At.wt.of $\left.\mathrm{Fe}=56\right)^{\text {' }}$
91. Calculate the weight of $60 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ required decomposing 50 g of chalk (Calcium carbonate) .

- Watch Video Solution

92. Which is cheaper : 40% hydrochloric acid at the rate of 50 paise per kilogram or $80 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ at the rate of 25 paise per kilogram to completely neutralize 7 kg of caustic potash?

- Watch Video Solution

93. Excess of AgNO_{3} solution was added to 2.2 g of commercial sample of common salt dissolved in water. The mass of dried precipitate of silver chloride was 2.11 g . Calculate the percent purity of common salt.
94. A sample of dolomite contained 45% of $\mathrm{CaCO}_{3}, 40 \%$ of MgCO_{3} and 15% clay. Calculate the mass of sulphuric acid of 30% strength required to react completely with 10 g of the sample.

- View Text Solution

95. Calculate the mass of graphite that must be burnt to produce 13.2 g of CO_{2}.

- Watch Video Solution

96. One gram of a mixture of potassium and sodium chlorides on treatment with excess of silver nitrate gave 2 g AgCl . What was the composition of the two salts in the original mixture?

- View Text Solution

97. What volume of oxygen at $18^{\circ} \mathrm{C}$ and 750 mm pressure can be obtained from 10 g of potassium chlorate?

- Watch Video Solution

98. What mass of iodine is liberated from a solution of potassium iodide when 1 litre of chlorine gas at $10^{\circ} \mathrm{C}$ and 750 mm pressure is passed through it?

- Watch Video Solution

99. 1.4 g of a sample of chalk $\left(\mathrm{CaCO}_{3}\right)$ containing clay as impurity were treated with excess of dilute hydrochloric acid. Volume of CO_{2} evolved when measured at $15^{\circ} \mathrm{C}$ and 768 mm pressure was $282 \mathrm{~cm}^{3}$. Calculate the percentage purity of the sample.

- View Text Solution

100. How much marble of 96.5% purity would be required to prepare 10 litres of carbon dioxide at STP when the marble is acted upon by dilute hydrochloric acid?

- Watch Video Solution

101. Calculate the volume of S_{2} at STP obtained by burning 500 g of S containing 4% sand by weight.

- Watch Video Solution

102. 2.5 g of an impure sample of sodium bicarbonate when heated strongly gave 300 ml of carbon dioxide measured at $27^{\circ} \mathrm{C}$ and 760 mm pressure. Calculate the percentage purity of the sample

- Watch Video Solution

103. 10 mL of liquid carbon disulphide (specific gravity 2.63) is burnt is oxygen. Find the volume of the resulting gases measured at STP.

- Watch Video Solution

104. The drain cleaner, Drainex contains small bits of aluminium which react with caustic soda to produce dihydrogen. What volume of dihydrogen at $20^{\circ} \mathrm{C}$ and one bar will be released when 0.15 g of aluminium reacts?

- Watch Video Solution

105. 5.6 litres of methane gas $\left(\mathrm{CH}_{4}\right)$ is ignited in oxygen gas. Calculate the number of moles of CO_{2} formed.

- Watch Video Solution

106. Calculate the volume of air containing 21% by volume of oxygen at NTP required to convert 294 mL of SO_{2} into $S O_{3}$ under the same conditions.

- Watch Video Solution

107. What volume of a solution of hydrochloric acid containing 73 g acid per litre would sufficient for the exact neutralisation of sodium hydroxide obtained by allowing 0.46 g of metallic sodium to act upon water.

- Watch Video Solution

108. Find out the volume of $C l_{2}$ at STP produced by the action of $100 \mathrm{~cm}^{3}$ of 0.2 N HCl on excess of MnO_{2}.

- Watch Video Solution

109. A mixture of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ occupies 40 L at 1.00 atm and at 400 K . The mixture reacts completely with 130 g of O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $C_{2} H_{4}$ and $C_{2} H_{6}$ in the mixture.

- Watch Video Solution

110. 5.0 g of marble was added to 7.5 g dilute hydrochloric acid. After the reaction was over, it was found that 0.5 g of marble was left unused.

Calculate the percentage strength of hydrochloric acid. What volume of CO_{2} measured at STP will be evolved in the above reaction?

- Watch Video Solution

111. Calculate the volume of $1.00 \mathrm{molL}^{-1}$ aqueous sodium hydroxide that is neutralized by 200 mL of $2.00 \mathrm{molL}^{-1}$ aqueous hydrochloric acid and the mass of sodium chloride produced. Neutralization reaction is,
$\mathrm{NaOH}_{(a q .)}+\mathrm{HCl}_{(a q .)} \rightarrow \mathrm{NaCl}_{(a q .)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

- Watch Video Solution

112. Bromine is prepared commercially by the reaction :
$2 B r^{-}(a q)+C l_{2}(a q) \rightarrow 2 C l^{-}(a q)+B r_{2}(a q)$
Suppose we have 50.0 mL of 0.060 M solution of NaBr . What volume of 0.050 M solution of $C l_{2}$ is needed to react completely the $B r^{-}$?

(Watch Video Solution

113. If 20.0 g of CaCO_{3} is treated with 20.0 g of HCl , how many grams of CO_{2} will be produced?

(Watch Video Solution

114. Zinc and hydrochloric acid react according to the reaction:
$Z n_{(s)}+2 H C l_{(a q .)} \rightarrow Z n C l_{2(a q .)}+H_{2(g)}$
If 0.30 mole of $Z n$ are added to hydrochloric acid containing 0.52 mole HCl , how many moles of H_{2} are produced?

(D) Watch Video Solution

115. 500 mL of $0.25 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution is added to an aquesous solution is 15 g of BaCl_{2} resulting in the formation of a white precipatate of insoluble BaSO_{4}. How many moles and how many grams of BaSO_{4} are formed.

- Watch Video Solution

Advanced Problems For Competitions

1. What volume at $S T P$ of ammonia gas will be required to be passed into 30 mL of $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ solution to bring down the acid normality to $0.2 N$?

- Watch Video Solution

2. Two acids $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$ are neutralized seqarately by the same amount of an alkali when sulphate and dihydrogen orthophosphate are formed respectively. Find the ratio of the masses of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$? ($\mathrm{P}=31$)

- Watch Video Solution

3. A mixture of ethane $\left(C_{2} H_{6}\right)$ and ethene $\left(C_{2} H_{4}\right)$ occupies $40 L$ at 1.00 atm and at 400 K . The mixture reacts completely with 130 g of O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $\mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ in the mixture.

- Watch Video Solution

4. A plant virus is found to consist of uniform cylindrical particle of $150 \AA$ in diameter $5000 \AA$ long. The specific volume of the virus is $0.75 \mathrm{mLg}^{-1}$. If the virus is considered to be a single particle, find its molar mass.
5. A analysis of a pyrex glass showed $12.9 \% \mathrm{~B}_{2} \mathrm{O}_{3}, 2.2 \% \mathrm{Al}_{2} \mathrm{O}_{3}, 3.8 \% \mathrm{Na}_{2} \mathrm{O}, 0.4 \% \mathrm{~K}_{2} \mathrm{O}$ and remaining is SiO_{2}. What is the ratio of Si to B atoms in the glass? (At. Masses : $\mathrm{Si}=28$, $\mathrm{B}=11, \mathrm{Al}=27, \mathrm{Na}=23, \mathrm{~K}=39$)

- Watch Video Solution

6. 1 M NaOH solution was slowly added to 1 L of 210 g impure $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution and the following plot was otained. Calculate the percentage purity of $\mathrm{H}_{2} \mathrm{SO}_{4}$ sample.

- Watch Video Solution

7. Mole fraction of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a mixture of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and KHCO_{3} is 0.5 .

What will be the volume of 0.1 N HCl required to neutralize 1.252 g of the mixture?
8. The mass of one litre sample of ozonised oxygen at $N T P$ was found to be 1.5 g . When 100 mL of this mixture at $N T P$ were treated with terpentine oil, the volume was reduced to $90 m L$. Hence calculate the molecular mass of ozone.
(Terpentine oil absorbs ozone)

- Watch Video Solution

9. 1.6 g of pyrolusite ore was treted with 50 mL of " 1.0 N oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to 250 mL in a flask. 25 mL of " this solution, when titrated with $0.1 \mathrm{~N} \mathrm{KMnO}_{4}$ required 32 " mL of " this solution. Find out the percentage of pure MnO_{2} and also the percentage of available oxygen from MnO_{2}.

- Watch Video Solution

10. Igniting MnO_{2} in air converts it quantitatively to $\mathrm{Mn}_{3} \mathrm{O}_{4}$. A sample of pyrolusite is of the following composition: $\mathrm{MnO}_{2}=80 \%, \mathrm{SiO}_{2}$ and other inert constituents $=15 \%$, and rest bearing $\mathrm{H}_{2} \mathrm{O}$. The sample is ignited to constant weight. What is the percent of $M n$ in the ingnited sample?

- Watch Video Solution

11. One gram of an alloy of aluminium and magnesium when heated with excess of dil. $H C I$ forms magnesium chloride, aluminium chloride and hydrogen. The evolved hydrogen collected over mercury at $0^{0} C$ has a volume of 1.2 litre at 0.92 atm pressure. Calculate the composition of the alloy.

- Watch Video Solution

12. A 2.0 g sample of a mixture containing sodium carbonate, sodium bicarbonate and sodium sulphate is gently heated till the evolution of
CO_{2} ceases. The volume of CO_{2} at 750 mmHg pressure and at 298 K is measured to be 123.9 mL . A 1.5 g of the same sample requires 150 mL of $(M / 10) \mathrm{HCl}$ for complete neutralisation. Calculate the percentage composition of the components of the mixture.

- Watch Video Solution

13. Upon mixing 45.0 ml of 0.25 M lead nitrate solution with 25.0 ml of 0.10 M chromic sulphate solution, precipitation of lead sulphate takes place. How many moles of lead sulphate are formed ? Also calculate the molar concentration of the species left behind in the final solution. Assume that lead sulphate is completely insoluble (At.wt. of $\mathrm{Pb}=207.2$).

- View Text Solution

14. A mixture of 20 mL of $\mathrm{CO}, \mathrm{CH}_{4}$ and N_{2} was burnt in excess of O_{2} resulting in reduction of $13 m L$ of volume. The residual gas was then treated with KOH solution to show a contraction of $14 m L$ in volume.

Calculate volume of $\mathrm{Co}, \mathrm{CH}_{4}$ and N_{2} in mixture. All measurements are made at constant pressure and temperature.

- Watch Video Solution

15. A sample of $M g$ was burnt in air to give a mixure of $M g O$ and $M g_{3} N_{2}$. The ash was dissolved in 60 Meq . of HCl and the resulting solution was back titrated with NaOH . 12 Meq . Of NaOH was then added and the solution distrilled. The ammonia released was then trapped in 10 Meq . of second acid solution. Back titration of this solution required $6 M e q$. of the base Calculate the percentage of $M g$ burnt to the nitride.

- Watch Video Solution

16. A precipitate of $A g C l$ and AgBr weighs $0.4066 g$. On heating in a current of chlorine, the AgBr is converted to AgCl and the mixutre loses $0.0725 g$ in weight. Find the $\%$ of $C l$ in original mixture.
17. A piece of aluminium weighing 2.7 g is heated with 75 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ which has a density of $1.18 \mathrm{~g} \mathrm{~mL}^{-1}$ and contains 24.7% by mass. When whole of the metal had dissolved, the solution was diluted to 400 mL .

Calculate the molarity of free $\mathrm{H}_{2} \mathrm{SO}_{4}$ in the resulting solution.
Hence, molarity $=\frac{7.17}{98} \times \frac{1}{400} \times 1000=0.183 M$

- Watch Video Solution

Test Your Grip Multiple Choice Questions

1. The highest temperature among the following is
A. $203^{\circ} \mathrm{F}$
B. 278 K
C. $105^{\circ} \mathrm{C}$
D. All are equal

Answer: C

D Watch Video Solution

2. Which one of the following represents smallest quantity?
A. 1850 mg
B. $1.85 \times 10^{-4} g$
C. $1.85 \times 10^{3} \mu g$
D. $1.85 \times 10^{-6} \mathrm{~kg}$

Answer: B

- Watch Video Solution

3. Given the number: $161 \mathrm{~cm}, 0.161 \mathrm{~cm}, 0.0161 \mathrm{~cm}$. The number of significant
figures for the three numbers are
A. 3, 4 and 5 respectively
B. 3, 3 and 3 respectively
C. 3, 3 and 4 respectively
D. 3, 4 and 4 respectively

Answer: C

- Watch Video Solution

4. 100 g of ethylene polymerizes to polythene according to the equation :m

The mass of polythene produced will be
A. 100 ng
B. $100 / \mathrm{ng}$
C. $100 \mathrm{n} / 2 \mathrm{~g}$
D. 100 g

Answer: C

- View Text Solution

5. The numbr of atoms in 0.1 mole of a triatomic gas is \qquad . $\left(N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)$
A. 1.800×10^{22}
B. 6.026×10^{22}
C. 1.806×10^{23}
D. 3.600×10^{23}

Answer: A

- Watch Video Solution

6. One mole of CO_{2} contains
A. 6.02×10^{23} atoms of C
B. 6.02×10^{23} atoms of O
C. 18.1×10^{23} molecules of CO_{2}
D. 3 g atoms of CO_{2}

Answer: C

- Watch Video Solution

7. If molecular mass of O_{2} and $S O_{2}$ are 32 and 64 respectively. If one litre of O_{2} at $15^{\circ} \mathrm{C}$ and 759 mm pressure contains N molecules, the number of molecuels in two litre of SO_{2} under the same conditions of temperature and pressure will be:
A. $\mathrm{N} / 2$
B. N
C. 2 N
D. 4 N

Answer: C

D Watch Video Solution

8. Which of the following has the smallest number of molecules?
A. 11.2 L of O_{2} at NTP
B. 8.0 g of O_{2}
C. 0.1 mole of O_{2}
D. $2.24 \times 10^{4} \mathrm{~mL}$ of O_{2}

Answer: C

Watch Video Solution

9. How much of NaOH is required to neutralise $1500 \mathrm{~cm}^{3}$ of 0.1 M HCl ?
A. 40 g
B. 4 g
C. 6 g
D. 60 g

Answer: C

- Watch Video Solution

10. The volume of water to be added to $100 \mathrm{~cm}^{3}$ of $0.5 \mathrm{NH}_{2} \mathrm{SO}_{4}$ to get decinormal concentration is
A. $100 \mathrm{~cm}^{3}$
B. $450 \mathrm{~cm}^{3}$
C. $500 \mathrm{~cm}^{3}$
D. $400 \mathrm{~cm}^{3}$

Answer: D

11. Haemoglobin contain 0.33% or iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms. (At wt of $\mathrm{Fe}=56$) present in one molecule of haemoglobin is
A. 6
B. 1
C. 4
D. 2

Answer: C

- Watch Video Solution

12. Two elemets X (atomic weight $=75$) and Y (atomic weight $=16$) combine to give a compound having 75.8% X.' The formula of the compound is
A. $X Y$
B. $X_{2} Y$
C. $X Y_{2}$
D. $X_{2} Y_{3}$.

Answer: A

- Watch Video Solution

13. 100 mL of phosphine $\left(\mathrm{PH}_{3}\right)$ on hearing forms phosphorous (P) and hydrogen $\left(H_{2}\right)$. The volume change in the reaction is
A. an increase of 50 ml
B. an increase of 100 ml
C. an increase of 150 ml
D. a decrease of 50 ml
14. If $1 \frac{1}{2}$ moles of oxygen combine with Al to form $\mathrm{Al}_{2} \mathrm{O}_{3}$ the weight of Al used in the reaction is ($\mathrm{Al}=27$)
A. 2.7
B. 54
C. 40.5
D. 81

Answer: B

- Watch Video Solution

15. When $2.76 g$ of silver carbonate is strongly heated, it yields a residue weighing

$$
\text { A. } 2.16 \mathrm{~g}
$$

B. 2.48 g
C. 2.32 g
D. 2.26 g

Answer: C

- Watch Video Solution

16. One mole of calcium phosphide on reaction with excess of water gives
A. one mole of phosphine
B. two moles of phosphoric acid
C. two moles of phosphine
D. one mole of phosphorus pentoxide.

Answer: C

17. If 0.5 mol of BaCl_{2} is mixed with 0.2 mol of $\mathrm{Na}_{3} \mathrm{PO}_{4}$, the maximum number of moles of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ that can be formed is
A. 0.7
B. 0.5
C. 0.3
D. 0.1

Answer: D

Watch Video Solution

18. If 30 ml of H_{2} and 20 ml of O_{2} react to form water, what is left at the end of the reaction?
A. 10 ml of H_{2}
B. 5 ml of H_{2}
C. 10 ml of O_{2}
D. 5 ml of O_{2}

Answer: D

- Watch Video Solution

19. The specific heat of a metal os 0.16 its approximate atomic weight would be
A. 32
B. 16
C. 40
D. 64

Answer: C

20. A, E, M and n represent atomic weight, equivalent weight, molecular weight and valency of an element. The correct relation is
A. $A=E \times n$
B. $A=M / E$
C. $A=M / n$
D. $M=A \times n$

Answer: A

- Watch Video Solution

Test Your Grip Fill In The Blanks

1. Two basic units of which all substances are made up are .and
2. $A Z T$ (azidothymindine) is used for helpingvictims.

- Watch Video Solution

3. Medicines used to reduce tension are called \qquad

Watch Video Solution

4. If a system consists of a number of phases, it is said to be

- Watch Video Solution

5. Elements which possess characters of both inetals and non-metals are called \qquad .

- Watch Video Solution

6. $\mathrm{Kg} \mathrm{m}^{-1} s^{-2}$ is the unit of. \qquad

- Watch Video Solution

7.1 yoctometer is \qquad m whereas 1 yottametre is \qquad m.

- Watch Video Solution

8. The number of significant figures present in 0.0200 is whereas number of significant figures in a dozen (12) is \qquad

- Watch Video Solution

9. The law which does not follow Dalton's atomic theory is \qquad

- Watch Video Solution

10. Equal volumes of all gases under similar conditions of temperataure and pressure contain equal number of molecules. This statement is called

- Watch Video Solution

$11.1 \mathrm{u}(\mathrm{amu})$ is equal to

- Watch Video Solution

12. The number of molecules in 1 kg mole is \qquad

- Watch Video Solution

13. The number of atoms present in a molecule of a substance is called its \qquad
14. The normality of 500 mL of 0.2 M sulphuric acid is \qquad

- Watch Video Solution

15. The number of molecules present in $1 \mathrm{~cm}^{3}$ of an ideal gas at STP is calledand its value is.

- Watch Video Solution

16. The empirical formula of hydrogen peroxide is \qquad

Watch Video Solution

17. Amount of oxalic acid $(\mathrm{COOH})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in grams required to prepare 200 mL of 0.5 M oxalic acid solution is \qquad
18. On mixing two reactants, the substance that reacts completely is called \qquad whereas the other is called \qquad .

- Watch Video Solution

Conceptual Questions

1. What is the difference between analgesics and anaesthetics?

- Watch Video Solution

2. Classify the following substances into elements, compounds and mixtures : (i) Milk (ii) 22-carat gold (iii) lodized table salt (iv) Diamond (v) Smoke (vi) Steel (vii) Dry ice (ix) Mercury (x) Air (xi) Aerated drinks (xii) Glucose (xiiii) Petrol/Diesel/Kerosene oil (xiv) Steam (xv) Cloud.
3. What physical quantities are represented by the following units and what are their common names?
(i) $k g m^{2} s^{-2}$
(ii) kgms^{-2}
(iii) $d m^{3}$

- Watch Video Solution

4. Given that density of water is $1 \mathrm{~g} \mathrm{~mL}^{-1}$. What is its density in $\mathrm{kg}^{m^{-3}}$?

- Watch Video Solution

5. What is the difference between the following ?
(i) $2.5 \times 10^{3} g$ and $2.50 \times 10^{3} g(i i) 160 \mathrm{~cm}$ and 160.0 cm .

- Watch Video Solution

6. Why Law of conservation of mass should better be called as Law of concervation of mass and energy?

D Watch Video Solution

7. 1 L of a gas at S.T.P.weighs 1.97 g . What is the vapour density of the gas?

- Watch Video Solution

8. Why atomic masses are the average values?

- Watch Video Solution

9. Why are atomic masses of most of the elements fractional and not whole numbers?

- Watch Video Solution

10. What is the difference between the mass of a molecule and gram molecular mass ?

- Watch Video Solution

11. Which of the following has largest number of oxygen atoms?

$$
1.0 \mathrm{~g} \text { of } \mathrm{O} \text { atoms, } 1.0 \mathrm{~g} \text { of } O_{2}, \quad 1.0 \mathrm{~g} \text { of ozone }\left(O_{3}\right) . \quad \text { Justify your }
$$ answer.

- Watch Video Solution

12. Calculate the percentage of the naturally occurring isotopes
${ }^{35} \mathrm{Cl}$ and $\cdot{ }^{37} \mathrm{Cl}$ that accounts for the atomic mass of chlorine taken as 35.45 .

- Watch Video Solution

13. Write the formulae and names of three compounds containing same percentage composition of C, H and O .

- Watch Video Solution

14. A compound made up of two elements A and B has $A=70 \%, B=30 \%$. Their relative number of moles in the compound is 1.25 and 1.88 , calculate :

Atomic masses of the elements A and B

- Watch Video Solution

15. Potassium bromide $K B r$ contains 32.9% potassium by mass. If $6.40 g$ of bromine reacts with 3.60 g of potassium, calculate the number of moles of potassium which combine with bromide to form KBr .

- Watch Video Solution

16. A sample of hard water contains 20 mg of Ca^{2+} ions per litre. How many milliequivalents of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ would be required to soften 1 litre of sample ?

D Watch Video Solution

Ncert Questions And Exercises With Answers

1. Calculate the molecular mass of the following :
(i) $\mathrm{H}_{2} \mathrm{O}$
(ii) CO_{2}
(iii) CH_{4}

- Watch Video Solution

2. Calculate the mass precent of different elements present in sodium sulphate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$.
3. Determine the empirical formula of an oxide of iron which has 69.9% iron and 30.1% oxygen by mass. (Atomic mass : $\mathrm{Fe}=55.85 \mathrm{amu}, \mathrm{O}=16.00$ amu).

- Watch Video Solution

4. Calculate the amount of carbon dioxide that could be produced when
a. 1 mol of carbon is burnt in air
b. 1 moles of carbon is brunt in $16 g$ of dioxygen.

2 moles of carbon are burnt in $16 g$ of dioxygen.

- Watch Video Solution

5. Calculate the mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to make 500 mL of 0.375 molar aqueous solution. Molar mass of sodium of acetate is $82.0245 \mathrm{gmol}^{-1}$.
6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density $1.41 \mathrm{~g} / \mathrm{mL}$ and the mass percent of nitric acid in it being 69%.

- Watch Video Solution

7. How much copper can be obtained from 100 g of copper sulphate $\left(\mathrm{CuSO}_{4}\right)$?

- Watch Video Solution

8. Determine the molecular formula of an oxide of iron in which the mass percent of iron oxygen are 69.9 and 30.1 respectively. Given that the molar mass of the oxide is $159.8 \mathrm{gmol}^{-1}$ (Atomic mass: $\mathrm{Fe}=55.85, \mathrm{O}=16.00$ amu)
9. Calculate the atomic mass (average) of chlorine using the following data:

	\% natural abundance	Molar mass
.${ }^{35} \mathrm{Cl}$	75.77	34.9689
.${ }^{37} \mathrm{Cl}$	24.23	36.9659

- Watch Video Solution

10. In three moles of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, calculate the following:
(i) Number of moles of carbon atoms.
(ii) Number of moles of hydrogen atoms.'
(iii) Number of molecules of ethane.

Watch Video Solution

11. What is the concentration of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ in molL^{-1} if its 20 g are dissolved in enough water to make a final volume up to $2 L$?
12. If the density of methanol is $0.793 \mathrm{kgL}^{-1}$ what ia its volume needed for making 2.5 L of its $0.25 M$ solution?

Watch Video Solution

13. Pressure is determined as force per unit area of the surface. The $S I$ unit of pressure, pascal is as shown below:
$1 P a=N m^{-2}$
If the mass of air at sea level is $1034 \mathrm{gcm}^{-2}$, calculate the pressure in pascal.

- Watch Video Solution

14. What is the S.I. unit of mass ? How is it defined?

- Watch Video Solution

15. Match the following prefixes with their multiples:

	Prefixes	Mult
(i)	micro	10^{6}
(ii)	deca	10^{9}
(iii)	mega	10^{-6}
(iv)	giga	10^{-15}
(v)	femto	10

- Watch Video Solution

16. What do you mean by significant figures?

- Watch Video Solution

17. A sample of drinking water was found to be severely contaminated with chloroform, CHCl_{3}, supposed to be carcinogen. The level of contamination was 15 ppm (by mass).
(i) Express this in per cent by mass.
(ii) Determine the molality of chloroform in the water sample.
18. Express the following in the scientific notation:
(i) 0.0048 , (ii) 234,000
(iii) 8008 , (iv) 500.0
(v) 6.0012

- Watch Video Solution

19. How many significant figures are present in the following?
(i) 0.0048 (ii) 208 (iii)5005 (iv) 126,000 (v) 500.0 (vi) 2.0034

- Watch Video Solution

20. Round up the following upto three significant figures:
a. 34.216
b. 10.4107
c. 0.04597
d. 2808
21. The following data are obtained when dinitrogen and dioxygen react to gether to form different compounds:

	Mass of dinitrogen	Mass of dioxygen
i.	$14 g$	$16 g$
ii.	$14 g$	$32 g$
iii.	$28 g$	$32 g$
iv.	$28 g$	$80 g$

a. Which law of chemical combination is obeyed by the above experimental data? Give its statement.
d. Fill in the blanks in the following conversions:
I. $1 \mathrm{~km}=$ \qquad $\mathrm{mm}=$pm
II. $1 m g=$ \qquad $k g=$ \qquad ng
III. $1 m L=$ \qquad L= \qquad $d m^{3}$

- Watch Video Solution

22. If the speed of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$, calculate the distance covered by mass light in 2.00 micros.
23. In the reaction, $A+B_{2} \rightarrow A B_{2}$, identify the limiting reagent, if any, in the following mixtures
(i) 300 atoms of $\mathrm{A}+200$ molecules of B
(ii) 2 mole $\mathrm{A}+3 \mathrm{~mol} \mathrm{~B}$
(iii) 100 atoms of $\mathrm{A}+100$ molecules of B (iv) $5 \mathrm{~mol} \mathrm{~A}+2.5 \mathrm{~mol} \mathrm{~B}$

- Watch Video Solution

24. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
a. Calculate the mass of ammonia produced if $2.00 \times 10^{3} g$ dinitrogen reacts with $1.00 \times 10^{3} g$ of dihydrogen.
b. Will any of the two reactants remain unreacted?
c. If yes, which one and what would be its mass?
25. How are $0.50 \mathrm{molNa} \mathrm{Na}_{2} \mathrm{CO}_{3}$ and $0.50 \mathrm{MNa}_{2} \mathrm{CO}_{3}$ different?

- Watch Video Solution

26. If ten volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?

- Watch Video Solution

27. Convert the following into basic units :
(i) 28.7 pm
(ii) $15.15 \mu \mathrm{~s}$
(iii) 25365 mg

- Watch Video Solution

28. Which one of the following will have the largest number of atoms?
(i) $1 \mathrm{~g} \mathrm{Au}(\mathrm{s})$
(ii) 1 g Na (s)
(iii) $1 \mathrm{~g} \mathrm{Li}(\mathrm{s})$
(iv) 1 g of $\mathrm{Cl} 2(\mathrm{~g})$

- Watch Video Solution

29. Calculate the molarity of a solution of ethanol in water in which the mole fraction of ethanol is 0.020 .

- Watch Video Solution

30. What will be the mass of one ${ }^{12} C$ atom in g ?

- Watch Video Solution

31. How many significant figures should be present in the answer of the following calculations?
a. $\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$
b. 5×5.364
c. $0.0125+0.7864+0.0215$

- Watch Video Solution

32. Use data given in the following table to calculate the molar mass of naturaly occuring argon isotopes:

Isotope	Isotopic molar mass	Abundance
.${ }^{36} \mathrm{Ar}$	$35.96755 \mathrm{gmol}^{-1}$	0.337%
.${ }^{38} \mathrm{Ar}$	$37.96272 \mathrm{gmol}^{-1}$	0.063%
.${ }^{40} \mathrm{Ar}$	$39.9624 \mathrm{gmol}^{-1}$	99.600%

- Watch Video Solution

33. Calculate the number of atoms in each of the following
a. 52 mol of He
b. $52 u$ of He
c. $52 g$ of He

- Watch Video Solution

34. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of it in oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. A volume of 10.0 L (measured at S.T.P.) of this welding gas is found to weigh 11.6 g . Calculate (i) empirical fomula (ii) molar mass of the gas, and (iii) molecular formula.

- Watch Video Solution

35. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction:
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
What mass of CaCO_{3} is required to react completely with 25 mL of 0.75 MHCl ?
36. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO_{2}) with aqueous hydrochloric acid according to the reaction,
$4 \mathrm{HCl}_{(a q)}+\mathrm{MnO}_{2(s)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{l}+\mathrm{MnCl}_{2(a q)}+\mathrm{Cl}_{2(g)}$
How many gram of HCl react with 5.0 g of manganese water to make 250.0 mL solution.

- Watch Video Solution

Abstract

Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar Problems Chapter 1 Some Basic Concepts Of Chemistry Multiple Choice Questions I

1. Two students performed the same experiment separately and each one of them recovered two readings of mass which are given below. Correct reading of mass is 3.0 g . On the basis of given data, mark the correct
optioin out of the following statements.

A. Results of both the students are neither accurate nor precise.
B. Results of student A are both precise and accuate.
C. Resulte of student B are neither precise nor accurate.
D. Results of student B are both precise and accurate.

Answer: B

- Watch Video Solution

2. A measured temperature on Fahrenheit scale is $200^{\circ} \mathrm{F}$. What will this reading be on clesius scale?
A. $40^{\circ} \mathrm{C}$
B. $94^{\circ} \mathrm{C}$
C. $93.3^{\circ} \mathrm{C}$
D. $30^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

3. What will be the molarity of a solution, which contains 5.85 g of $\mathrm{NaCl}(\mathrm{s})$ per 500 mL ?
A. $4 \mathrm{~mol}^{-1}$
B. $20 \mathrm{~mol}^{-1}$
C. $0.2 \mathrm{~mol}^{-1}$
D. $2 \mathrm{molL}^{-1}$

Answer: C

4. If 500 mL of a 5 M solution is diluted to 1500 mL , what will be molarity of the solution obtained?
A. 1.5 M
B. $1.66 M$
C. $0.017 M$
D. 1.59 M

Answer: B

- Watch Video Solution

5. The number of atoms present in one mole of an element is equal to Avogadro number. Which of the following element contains the greatest number of atom?
A. 4 g He
B. 46 g Na
C. 0.40 g Ca
D. 12 g He

Answer: D

- Watch Video Solution

6. If the concentration of glucose $\left(C_{6} H_{12} O_{6}\right)$ in blood is $0.9 \mathrm{~g} \mathrm{~L}^{-1}$, what will be the molarity of glucose in blood?
A. 5 M
B. 50 M
C. 0.005 M
D. 0.5 M

Answer: C

7. What will be the molality of the solution containing 18.25 g of HCl gas in 500 g of water ?
A. 0.1 m
B. 1 M
C. 0.5 m
D. 1 m

Answer: D

- Watch Video Solution

8. One mole of any substance contains 6.022×10^{23} atoms/molecules. Number of molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$ present in 100 mL of $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is :
A. 12.044×10^{20} molecules
B. 6.022×10^{23} molecules
C. 1×10^{23} molecules
D. 12.044×10^{23} molecules.

Answer: A

- Watch Video Solution

9. What is the mass percent of carbon in carbon dioxide?
A. 0.034%
B. 27.27%
C. 3.4%
D. 28.7%

Answer: B

10. The empirical formula and molecular mass of a compound are $\mathrm{CH}_{2} \mathrm{O}$ and 180 g respectively. What will be the molecular formula of the compound?
A. $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}$
B. $\mathrm{CH}_{2} \mathrm{O}$
C. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$

Answer: C

- Watch Video Solution

11. If the density of a solution is $3.12 \mathrm{~g} \mathrm{~mL}^{-1}$, the mass of 1.5 mL solution in significant figures is
A. 4.7 g
B. $4680 \times 10^{-3} g$
C. $4.680 g$
D. $46.80 g$

Answer: A

- Watch Video Solution

12. Which of the following statements about a compound is incorrect?
A. A molecule of a compound has atoms of different elements.
B. A compound cannot be separated into its constituent elements by physical methods of separation.
C.A compound retains the physical properties of its constituent elements.
D. The ratio of atoms of different elements in a compound is fixed.

Answer: C

13. Which of the following statements is correct about the reaction given below:-

$$
4 \mathrm{Fe}(s)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~g})
$$

A. Total mass of iron and oxygen in reactants = total mass of iron and oxygen in product therefore it follows law of conservation of mass.
B. Total mass of reactants = total mass of product , therefore, law of multiple proportions is followed
C. Amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be increased by taking one of the reactants (iron or oxygen) in excess.
D. Amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ produced will decrease if the amount of any one of the reactants (iron or oxygen) is taken in excess.

Answer: A

14. Which of the following reactions is not correct according to the law of conservation of mass?
A. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s)$
B. $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $P_{4}(s)+5 O_{2}(g) \rightarrow P_{4} O_{10}(s)$
D. $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

Answer: B

- Watch Video Solution

15. Which of the following statements indicates that law of multiple proportion is being followed?
A. Sample of carbon dioxide taken from any source will always have carbon and oxygen in the ratio 1:2
B. Carbon forms two oxides namely CO_{2} and CO , where masses of
oxygen which combine with fixed mass of carbon are in the simple
ratio 2: 1
C. When magnesium burns in oxygen, the amount of magnesium
taken for the reaction is equal to the amount of magnesium in magneisum oxide formed.
D. At constant temperature and pressure, 200 mL of hydrogen will combine with 100 mL oxygen to produce 200 mL of water vapour.

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar } \\
& \text { Problems Chapter } 1 \text { Some Basic Concepts Of Chemistry Multiple Choice } \\
& \text { Questions li }
\end{aligned}
$$

1. One mole of oxygen has at STP is equal to :
A. 6.022×10^{23} molecules of oxygen
B. 6.022×10^{23} atoms of oxygen
C. 16 g of oxygen
D. 32 g of oxygen

Answer: A::D

- Watch Video Solution

2. Sulphuric acid reacts with sodium hydroxide as follows
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
when 1 L of 0.1 M sulphuric acid solution is allowed to react with 1 L of 0.1 M sodium hydroxide solution, the amount of sodium solphate formed and its molarity in the solution obtained is
A. $0.1 \mathrm{~mol} \mathrm{~L}^{-1}$
B. 7.10 g
C. $0.025 \mathrm{~mol} \mathrm{~L}^{-1}$
D. 3.55 g

Answer: B::C

- Watch Video Solution

3. Which of the following pairs have the same number of atoms?
A. 16 g of $O_{2}(\mathrm{~g})$ and 4 g of $H_{2}(g)$
B. 16 g of O_{2} and 44 g of CO_{2}
C. 28 g of N_{2} and 32 g of O_{2}
D. 12 g of $\mathrm{C}(\mathrm{s})$ and 23 g of $\mathrm{Na}(\mathrm{s})$

Answer: C::D

- Watch Video Solution

4. Which of the following solutions have the same molar concentration ?
A. 20 g of NaOH in 200 mL of solution
B. 0.5 mol of KCl in 200 mL of solution
C. 40 g of NaOH in 100 mL of solution
D. 20 g of KOH in 200 mL of solution

Answer: A::B

- Watch Video Solution

5. 16 g of oxygen has same number of molecules as in
A. 16 g of CO
B. 28 g of N_{2}
C. 14 g of N_{2}
D. 1.0 g of H_{2}

Answer: C::D

6. Which of the following terms is/are unitless ?
A. Molality
B. Molarity
C. Mole fraction
D. Mass percent

Answer: C::D

- Watch Video Solution

7. One of the statements of Dalton's atomic theory is given below "Compound are formed when atoms of different element combine in a fixed ratio "

Which of the following laws is not related to this statement?
A. Law of conservation of mass
B. Law of definite proportions
C. Law of multiple proportions
D. Avogadro law

Answer: A: D

- Watch Video Solution

Abstract

Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar Problems Chapter 1 Some Basic Concepts Of Chemistry Short Answer Questions

1. What will be the mass of one $\cdot{ }^{12} C$ atom in g ?

- Watch Video Solution

2. How many significant figures should b e present in the answer of the following calculations?

- Watch Video Solution

3. What is the symbol for SI unit of mole? How is the mole defined?

- Watch Video Solution

4. What is the difference between Molarity and Molality.

- Watch Video Solution

5. Calculate the mass per cent of calcium, phosphorus and oxygen in calcium phosphate $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

- Watch Video Solution

6. 45.4 L of dinitrogen reacted with 22.7 L of dioxygen and 45.4 L of nitrous oxide was formed the reaction is given below
$2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}(g)$
Which law is being obeyed in this experiment? Write the statement of the law?

- Watch Video Solution

7. If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in whole number ratio.
(a) Is this statement true?
(b) It yes, according to which law?
(c) Give one example related to this law.

- Watch Video Solution

8. Calculate the average atomic mass of hydrogen using the following data :

Isotope	$\%$ Natural abudance mass	Atomic mass (amu)
.${ }^{1} \mathrm{H}$	99.985	1
.${ }^{2} \mathrm{H}$	0.015	2

- Watch Video Solution

9. Hydrogen gas is prepared in the laboratory by reacting dilute HCl with granulated zinc, Following reaction takes place
$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
Calculate the voluem of hydrogen gas liberated at STP when 32.65 g of zinc reacts with HCl .1 mol of a gas occupies 22.7 L volume at STP, atomic mass of $\mathrm{Zn}=65.3 \mathrm{u}$

- Watch Video Solution

10. 3.0 molal NaOH solution has a density of $1.110 \mathrm{~g} / \mathrm{mL}$. The molarity of the solution is:

- Watch Video Solution

11. Volume of a solution chagnes with chagne in temperature, then what will the molality of the solution be affected by temperature? Give reason for your answer.

- Watch Video Solution

12. If 4 g of NaOH dissovles in 36 g of $\mathrm{H}_{2} \mathrm{O}$, calculate the mole fraction of each component in the solution. (specific gravity of solution is $1 g m L^{-1}$).

- Watch Video Solution

13. The reactant which is entirely consumed in reaction is known as limiting reagent. In the reaction $2 A+4 B \rightarrow 3 C+4 D$, when 5 moles of A react with 6 moles of B, then
(a) which is the limiting reagent?
(b) calculate the amount of C formed?

(D) Watch Video Solution

Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar Problems Chapter 1 Some Basic Concepts Of Chemistry Matching Type Questions

1. Match the following
(i) 88 g of CO_{2}
(a) 0.25 mol
(ii) 6.022×10^{23} molecules of $\mathrm{H}_{2} \mathrm{O}$
(b) 2 mol
(iii) 5.6 litres of O_{2} at STP
(c) 1 mol
(iv) 96 g of O_{2}
(d) 6.022×10^{23} molecules
(v) 1 mole of any gas
(e) 3 mol

- Watch Video Solution

2. Match the following physical quantities with units

	Phyrical quantity		Unit
(i)	Molarity	(a) $\mathrm{g} \mathrm{mL}^{-1}$	
(ii)	Mole fraction	(b) mol	
(iii)	Mole	(c)	Pascal
(iv)	Molality	(d)	Unitless
(v)	Pressure	(e)	$\mathrm{mol} \mathrm{L}^{-1}$
(vi)	Luminous intensity	(f)	Candela
(vi)	Surface Tension	(g) $\mathrm{mol} \mathrm{kg}^{-1}$	
(vii)	Density	(h) Nm^{-1}	
(viii)	Mass	(i) $\mathrm{kg}^{\text {(vas }}$	

- Watch Video Solution

Abstract

Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar Problems Chapter 1 Some Basic Concepts Of Chemistry Assertion And Reason Type Questions

1. Assertion (A) : The empirical mass of ethene is half of its molecular mass

Reason (R) : The empirical formula represents the simplest whole number ratio of various atoms present in a compound.
A. Both A and R true and R is the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true.
D. Both A and R are false.

Answer: A

- Watch Video Solution

2. Assertion(A) One atomic mass unit is defined as one twelth of the mass of one carbon-12 atom.

Reason(R) Carbon-12 isotope is the most abundant isotope of carbon and has been chosen as standard.
A. Both A and R are true and R is the correct explanation of a.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: B

- Watch Video Solution

3. Assertion(A) Significant figures for 0.200 is 3 where as for 200 it is 1 .

Reason(R) Zero at the end or right of a number are significatn provided they are not on the right side of the decimal point.
A. Both A and R are true and R is the correct explanation of a.
B. Both A and R are true but R is not the correct explanation of A.
C. A is true but R is false.
D. Both A and R are false.

Answer: C

- Watch Video Solution

4. Assertion (A) : Combustion of 16 g of methane gives 18 g of water

Reason (R): In the combustion of methane, water is one of the products.
A. Both A and are true but R is not the correct explanation of A.
B. A is true but R is false.
C. A is false but R is true.
D. Both A and R are false.

Answer: C

- Watch Video Solution

Abstract

Ncert Exemplar Problems With Answers Hints And Solutions Ncert Exemplar Problems Chapter 1 Some Basic Concepts Of Chemistry Long Answer Questions

1. A vessel contains 1.6 g of dioxygen at $\operatorname{STP}(273.15 \mathrm{k}, 1 \mathrm{~atm}$ pressure). The gas
is now trasnferred to another vessel at constnat temperature. Whre
pressure becomes half of the original pressure. Calculate
(a) Volume of the new vessel.
(b) number of molecuels of dioxygen.

- Watch Video Solution

2. Calcium carbonate reacts with aqueous HCl to give CaCl_{2} and CO_{2} according to the reaction given below
$\mathrm{CaCO}_{3}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{CaCl}_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$
What mass of CaCl_{2} will be formed when 250 mL of 0.76 M HCl reac ts with 1000 g of CaCO_{3} ? Name the limiting reagent. Calculate the number of moles of CaCl_{2} formed in the reaction.

- Watch Video Solution

3. Define the law of multiple proportions, Explain it with two examples. How des this law point to the existence of atoms?
4. A b ox contains some identical red coloured balls. Labelleda as A, each weighing 2g. Another box contains identicla blue coloured balls. Labelled as B , each weighing 5 g . Consider combination $\mathrm{AB}, A B_{2}, A_{2} B$ and $A_{2} B_{3}$ and show that law of multiple proportions is applicable.

- Watch Video Solution

Additional Questions Very Short Answer Questions

1. What is AZT ? To which use is it being put?

- Watch Video Solution

2. Name two chemical compounds used in treatment of cancer.
3. What is generally added for sterilization of water to make it fit for drinking purposes?

- Watch Video Solution

4. What is the atomicity of propane molecule?

- Watch Video Solution

5. What is the S.I. unit of density ?

- Watch Video Solution

6. If temperature is $10^{\circ} \mathrm{C}$, what is temperature in Fahrenheit?

- Watch Video Solution

7. What is the number of significant figures in 1.050×10^{4} ?

- Watch Video Solution

8. Iron and oxygen combine to form three oxides, $\mathrm{FeO}, \mathrm{Fe}_{2} \mathrm{O}_{3}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4}$. Which law does it prove?

- View Text Solution

9. How does the formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ violate Dalton's atomic theory?

- Watch Video Solution

10. What is one a.m.u. or one ' u '?

- Watch Video Solution

11. Which isotope of carbon is used for getting relative atomic masses?

- Watch Video Solution

12. How many molecules are present in 1 kg mole of a substance?

- Watch Video Solution

13. What is the S.I. unit of molarity?

- Watch Video Solution

14. The emperical formula of Acetic acid is

- Watch Video Solution

15. Write the balanced equation for the reaction of aluminium carbide with water.

- Watch Video Solution

16. What is limiting reactant in a reaction ?

- Watch Video Solution

Additional Questions Short Answer Questions

1. Chemistry can prove to be a blessing or a curse depends upon the uses to which it is put. Comment.
2. Give examples of homogeneous mixture in different physical states (two each).

- Watch Video Solution

3. Define element compound and mixture

- Watch Video Solution

4. Classify the following as pure substances or mixtures. Separate the pure substances into elements, compounds and divide the mixtures into homogenous and heterogenous:
(i) Air (ii) Milk (iii) Graphite (iv) Gasoline (v) Diamond (vi) Tap water (vii) Distilled water (viii) Oxygen (ix) Brass (x) 22 Carat gold (xi) Steel (xii) Iron (xiii) Sodium chloride (xiv) lodised table salt.

- Watch Video Solution

5. Give three main points of difference between a compound and a mixture.

- Watch Video Solution

6. What does symbol SI signify ? Name the seven basic SI units ?

D Watch Video Solution

7. Define precision and accuracy.

- Watch Video Solution

8. What do you mean by significant figures?

- Watch Video Solution

9. Under what conditions the zeros in a number are significant ?

- Watch Video Solution

10. What do you understand by unit conversion factor? How does it help to convert height in feet to height in metres ?

- Watch Video Solution

11. After rounding off 1.235 and 1.225 , we will have their answer respectively as

- Watch Video Solution

12. Give one experiment involving a chemical reaction to prove that the law of conservation of mass is true. Or State and explain law of conservation of mass.
13. Copper oxide obtained by heating copper carbonate or copper nitrate contains copper and oxygen in the same ratio by mass. Which law is illustrated by this observation ? State the law.

- Watch Video Solution

14. N and O combine with H to form NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ and they combine with each other to form NO_{2}. Which law is illustrated? Explain briefly.

- Watch Video Solution

15. Define Gay Lussac's law of gaseous volume. Explain with one suitable example.

- Watch Video Solution

16. What are the postulates of Modern Atomic Theory?

- Watch Video Solution

17. Which isotope is used as a reference on the atomic scale ? What is one amu or one 'u'?

- Watch Video Solution

18. Why atomic mass is an average value ? Explain with suitable example.

- Watch Video Solution

19. How is mole related to
(i) mass, (ii) volume and (iii) number of molecules of a substance?

- Watch Video Solution

20. What is the SI definition of mole?

- Watch Video Solution

21. Comment on the statement : '1 mole of hydrogen'

- Watch Video Solution

22. What is the difference between (i)Normality and Molarity ? (ii) Molarity and Molality?

- Watch Video Solution

23. Define Empirical formula and Molecular formula. What is the relationship between them ?

- Watch Video Solution

24. Write the empirical formulae of the following :
(i) $\mathrm{N}_{2} \mathrm{O}_{4}(i i) \mathrm{C}_{6} \mathrm{H}_{6}(i i i) \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(i v) \mathrm{H}_{2} \mathrm{O}_{2}(v) \mathrm{H}_{2} \mathrm{O}(v i) \mathrm{Na}_{2} \mathrm{CO}_{3}(v i i) \mathrm{CH}_{3} \mathrm{CO}$

- Watch Video Solution

25. What is a limiting reagent ? Explain with a suitable example.

- Watch Video Solution

Additional Questions Long Answer Questions

1. Briefly explain the importance of chemistry in our daily life.

- Watch Video Solution

2. Define 'matter'. Briefly describe the physical as well as chemical classification of matter.
3. List the main pionts of difference between a compound and a mixture.

- Watch Video Solution

4. What do you understand by 'significant figures' ? What are the rules for dtermining the number of significant figures ? Illustrate with suitable examples.

- Watch Video Solution

5. What do you understand by Dimensional Analysis? Explain with a suitable example.

- Watch Video Solution

6. State and explain the 'Law of Conservation of Mass'.
7. Defind 'Law of Constant Composition or Definite Proportions'. Explain with a suitable example.

- Watch Video Solution

8. State the Law of Multiple Proportions. Explain with two suitable examples.

- Watch Video Solution

9. State law of reciprocal proportions.

- Watch Video Solution

10. What is Gay Lussac's Law of Gaseous Volumes ? Explain with two suitable examples.

Watch Video Solution

11. What are the main postulates of Dalton's atomic theory ? What were its limitations? How has the theory been modified ?

- Watch Video Solution

12. Define : (i) Atom (ii) Molecule (iii) Atomic mass (iv) Gram atomic mass
(v) Molecular mass (vi) Gram molecular mass.

Give suitable examples in each case.

- Watch Video Solution

13. Define Avogadro's law. Taking a suitable example, prove that it is not in constradiction with Dalton's Atomic Theory.

- Watch Video Solution

14. Define Avogadro number and mole. What is their importance?

- Watch Video Solution

15. What are Empirical and Molecular Formullae ? How are they related to each other?

- Watch Video Solution

Analytical Questions And Problems With Answers Solutions Questions

1. Explain why is air sometime considered as a heterogeneous mixture.
2. Rewrite the following after necessary corrections :
(i) The length of a rod is 10 cms .
(ii) The work done by a system is 10 joules (small letter is unsed in place of capital).

- Watch Video Solution

3. Is the law of constant composition true for all types of compounds? Explain why or why not?

- Watch Video Solution

4. Two bulbs A and B of equal capacity contain 10 g of oxygen $\left(\mathrm{O}_{2}\right)$ and ozone $\left(\mathrm{O}_{3}\right)$ respectively. Which bulb will have
(i) larger number of molecules?
(ii) larger number of oxygen atoms?
5. Why molality is preferred over molarity in expressing the concentration of solution?

- Watch Video Solution

6. In the combustion of methane, what is the limiting reactant and why?

- Watch Video Solution

7. Taking N_{2} and O_{2} as main compounts of air ($79 \% N_{2}, 21 \% O_{2}$ by volume) what is the molecular mass of air? How has it been arrived at ?

- Watch Video Solution

8. What is the equivalent weight of $\mathrm{KH}\left(\mathrm{IO}_{3}\right)_{2}$ as an oxidant in presence of $4.0(\mathrm{~N}) \mathrm{HCl}$ when Icl becomes the reduced form ? $(K=39.0, I=127.0)$.

- Watch Video Solution

9. What is kg-mole ? Find out the total number of electrons in a kg-mole of O_{2}.

- Watch Video Solution

Analytical Questions And Problems With Answers Solutions Problems

1. The average molar mass of a mixture of methane $\left(\mathrm{CH}_{4}\right)$ and ethene $\left(C_{2} H_{4}\right)$ present in the ratio of $a: b$ is found to be $20.0 \mathrm{gmol}^{-1}$. If the ratio were reversed, what would be the molar mass of the mixture?
2. $25 \mathrm{~cm}^{3}$ of 0.2 M solution of metal chloride $\left(M C l_{x}\right)$ reacted with $150 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ solution completely to form the precipitate of AgCl . What is the formula of metal chloride ?

- Watch Video Solution

3. A black dot used as a full stop at the end of a sentence has a mass of about one attogram. Assuming that the dot is made up of carbon, calculate the approximate number of carbon atoms present in the dot.

- Watch Video Solution

4. 20.0 mL of a mixture of oxygen $\left(O_{2}\right)$ and ozone $\left(O_{3}\right)$ was heated till ozone was completely decomposed. The mixture of cooling was found to have a volume of 21 mL . Calculate the percentage of ozone by volume in the mixture.
5. Calculate the atomicity of mercury molecules from the following data :
(a) 10.0 g of mercury combine with 0.8 g of oxygen to form an oxide.
(b) 500 mL of mercury vapour at S.T.P. weigh $=4.465 \mathrm{~g}$
(c) Specific heat of mercury is 0.033 .

- Watch Video Solution

6. 4 g carbon were heated with 8 g of sulphur. How much carbon disulphide $\left(C S_{2}\right)$ will be formed when that reaction is complete ? What will be its percentage purity?

- Watch Video Solution

7. Gastric juice contains 3 g HCl per liter. If a person produces 2.5 L of gastric juice per day, how many antacid tables each containing 400 mg of $\mathrm{Al}(\mathrm{OH})_{3}$ are needed to neutralize all the HCl produced in one day ?
8. The vapour density of mixture consisting of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at $26.7^{\circ} \mathrm{C}$. Calculate the number of moles of $\mathrm{NO}_{2} \mathrm{I} 100 \mathrm{~g}$ of the mixture.

- Watch Video Solution

9. A metal weighing 0.43 g was dissolved in 50 mL of $1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The unreacted $\mathrm{H}_{2} \mathrm{SO}_{4}$ required 14.2 mL of 1 N NaOH for neutralisation.

Calculate the equivalent weight of the metal?

- View Text Solution

10. 10 mL of an HCl solution gave 0.1435 g of AgCl when treated with excess of AgNO_{3}. The normality of the resulting solution is

- Watch Video Solution

11. A mixture of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ and HCOOH is heated with conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treatment with KOH solution, the volume of the gas decreases by $\frac{1}{6}$ calculate the molar ratio of the two acids in the original mixture.

- Watch Video Solution

12. 1.2 g mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ was dissolved in water to form $100 \mathrm{~cm}^{3}$ of a solution. $20 \mathrm{~cm}^{3}$ of this solution required $40 \mathrm{~cm}^{3}$ of 0.1 N HCl for neutralisaiton. Calculate the weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the mixture.

- View Text Solution

13. A mixture of FeO and $\mathrm{Fe}_{3} \mathrm{O}_{4}$ when heated in air to a constant weight, gains 5% of its weight. Find the composition of the intial mixutre.
14. (i) 10 g of lead on heating gave 10.78 g of litharge, PbO . (ii) 9.775 g of red lead $\left(\mathrm{Pb}_{3} \mathrm{O}_{4}\right)$ yielded on strong heating 9.545 g of litharge. (iii) 4.87 g of lead peroxide $\left(\mathrm{PbO}_{2}\right)$ gave on heating 4.545 g of litharge.

Show that these results illustrate the law of multiple proportions.

- Watch Video Solution

15. What is the mass of a mole of water containing 50% of heavy water $\left(\mathrm{D}_{2} \mathrm{O}\right) ?$

- Watch Video Solution

16. Insulin contains 3.4% sulphur. Calculate minimum mol.wt. of insulin.

- Watch Video Solution

17. The formula weight of an acid is $82.0 .100 \mathrm{~cm}^{3}$ of a solution of this acid containing 39.0 g of the acid per litre were completely neutralised by $95.0 \mathrm{~cm}^{3}$ of aqueous NaOH containing 40.0 g of NaOH per litre. What is the basicity of the acid?

- Watch Video Solution

18. $50 \mathrm{~cm}^{3}$ of 0.2 N HCl is titrated against 0.1 N NaOH solution. The titration is discontinued after adding $50 \mathrm{~cm}^{3}$ of NaOH solution. The remaining titration is completed by adding 0.5 N KOH solution. What is the volume of KOH required for completing the titration ?

- Watch Video Solution

19. An alloy of metals X and Y weighs 12 g and contains atoms X and Y in the ratio of $2: 5$. The percentage by mass of X in the sample is 20 . If atomic mass of X is 40 , what is the atomic mass of metal Y ?
20. An L.P.G. cylinder weight 14.8 kg when empty. When full, it weighs 29 kg and shows a pressure of 2.5 atm . In the course of use at $27^{\circ} \mathrm{C}$, the weight of the full cylinder reduced to 23.2 kg . Find out the volume of n - butane in cubic metres used up at $27^{\circ} \mathrm{C}$ and 1 atm . [Mol. mass of butane $=58$]

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Special I Multiple Choice Question

1. Which of the following is a chemical fertilizer?
A. Urea
B. Sodium
C. Ammonium sulphate
D. All of these

Answer: D

- Watch Video Solution

2. Which one of the following is not a mixture?
A. Brass
B. Air
C. 22 carat gold
D. Water

Answer: D

Watch Video Solution
3. 1 mm Hg represents a pressure of
A. $101.3 \mathrm{~N} \mathrm{~m}^{-2}$
B. $1013 \mathrm{~N} \mathrm{~m}^{-2}$
C. $133.3 \mathrm{~N} \mathrm{~m}^{-2}$
D. $1333 \mathrm{~N} \mathrm{~m}^{-2}$

Answer: C

- Watch Video Solution

4. The number of significant figures in π are
A. 1
B. 2
C. 3
D. infinite

Answer: D

5. Two oxides of a metal contain 36.4% and 53.4% of oxygen by mass respectively. If the formula of the first oxide is $\mathrm{M}_{2} \mathrm{O}$, then that of the second is
A. $\mathrm{M}_{2} \mathrm{O}_{3}$
B. $M O$
C. MO_{2}
D. $\mathrm{M}_{2} \mathrm{O}_{5}$

Answer: B

- Watch Video Solution

6. Which one of the following sets of compounds correctly illustrate the law of reciprocal proportions?
A. $\mathrm{P}_{2} \mathrm{O}_{3}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$

Answer: A

- Watch Video Solution

7. 116 mg of a compound on vaporisation in a victor Meyer's apparatus displaces 44.8 mL of air measured at S.T.P The molecular mass of the compound is
A. 116
B. 232
C. 58
D. 44.8

Answer: C

8. An element X has the following isotopic composition :
. ${ }^{200} X: 90 \%, \quad .{ }^{199} X: 8.0 \%, \quad .{ }^{202} X: 2.0 \%$
The weighted average atomic mass of the naturally occurring element X is closest to :
A. 199 amu
B. 200 amu
C. 201 amu
D. 202 amu

Answer: B

- Watch Video Solution

9. 1 L of a gas is at a pressure of $10^{-6} \mathrm{~mm}$ of Hg at $25^{\circ} \mathrm{C}$. How many molecules are present in the vessel.
A. 3.2×10^{6}
B. 3.2×10^{13}
C. 3.2×10^{10}
D. 3×10^{4}

Answer: B

- Watch Video Solution

10. If 10^{21} molecules are removed from 200 mg of CO_{2}, the number of moles of CO_{2} left will be ?
A. 2.88×10^{-3}
B. 1.66×10^{-3}
C. 4.54×10^{-3}
D. 1.66×10^{-2}

Answer: A

11. The weight of a molecule of the compound $C_{60} H_{122}$ is
A. $1.4 \times 10^{-21} g$
B. $1.09 \times 10^{-21} g$
C. $5.025 \times 10^{23} g$
D. $16.023 \times 10^{23} g$

Answer: A

Watch Video Solution

12. $10 \mathrm{dm}^{3}$ of N_{2} gas and $10 \mathrm{dm}^{3}$ of gas X at the same temperature contain the same number of molecules The gas X is
A. CO
B. CO_{2}
C. H_{2}
D. NO

Answer: A

- Watch Video Solution

13. How many moles of electrons weigh one kilogram?
A. 6.023×10^{23}
B. $\frac{1}{9.108} \times 10^{31}$
C. $\frac{6.023}{9.108} \times 10^{54}$
D. $\frac{1}{9.108 \times 9.023} \times 10^{8}$

Answer: D

- Watch Video Solution

14. The total number of electrons in 18 mL of water $\left(\right.$ density $\left.=1 \mathrm{~g} m L^{-} 1\right)$ is
A. 6.02×10^{23}
B. 6.02×10^{25}
C. 6.02×10^{24}
D. $6.02 \times 18 \times 10^{23}$

Answer: C

- Watch Video Solution

15. A gas mixture contains 50% helium and 50% methane by volume.

What is the percent by weight of methane in the mixture.
A. 19.97%
B. 20.05%
C. 50%
D. 80.03%

Answer: D

- Watch Video Solution

16. If $1 / 6$, in place of $1 / 12$, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one one of a substance will:
A. increase two fold
B. decrease twice
C. be a function of molecular mass of the substance
D. remain unchanged.

Answer: D

- Watch Video Solution

17. A person has as many notes as number of oxygen atoms in 24.8 g $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ (mol. Wt. = 248). A note counting machine counts 48 million notes per day. How many days it would take to count these notes?
A. 10^{12}
B. 10^{14}
C. 10^{16}
D. 10^{18}

Answer: C

- Watch Video Solution

18. Number of mole of $1 m^{3}$ gas at $N T P$ are:
A. 4.46
B. 44.6
C. 446
D. 4460

Answer: B

- Watch Video Solution

19. Volume occupied by one molecule of water (density $=1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$)
A. $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
B. $6.023 \times 10^{-23} \mathrm{~cm}^{3}$
C. $3 . \times 10^{-23} \mathrm{~cm}^{3}$
D. $5.5 \times 10^{-23} \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

20. The mass of $2.24 \times 10^{-3} \mathrm{~m}^{3}$ of a gas is 4.4 g at 273.15 K and 101.325

Kpa pressure. The gas may be
A. NO
B. NO_{2}
C. $C_{3} H_{8}$
D. NH_{3}

Answer: C

- Watch Video Solution

21. The total number of atoms of all elements present in mole of ammonium dichromate is
A. 19
B. 6.023×10^{23}
C. 114.473×10^{23}
D. 84.322×10^{23}

Answer: C

- Watch Video Solution

22. If 1 ml of water contains 20 drops. Then no. of molecules in a drop of water is
A. 6.023×10^{23}
B. 1.376×10^{26}
C. 1.6673×10^{21}
D. 4.346×10^{20}

Answer: C

23. Which has the maximum number of molecules among the following ?
A. 44 g of CO_{2}
B. $48 \mathrm{~g} \mathrm{O}_{2}$
C. $8 \mathrm{~g} H_{2}$
D. 64 g SO

Answer: C

- Watch Video Solution

24. The number of water molecules is maximum in
A. 18 gram of water
B. 18 moles of water
C. 18 molecules of water
D. 1.8 gram of water

Answer: B

- Watch Video Solution

25. In which case is the number of molecules of water maximum?
A. 18 mL of water
B. 0.18 g of water
C. 0.00224 L of water vapour at 1 atm and 273 K
D. $10^{-3} \mathrm{~mol}$ of water

Answer: A

- Watch Video Solution

26. Which one of the following is the lighest?
A. 0.2 mole of hydrogen gas
B. 6.023×10^{22} molecules of nitrogen
C. 0.1 g of silver
D. 0.1 mole of oxygen gas

Answer: C

- Watch Video Solution

27. 50 mL of $10 \mathrm{NH}_{2} \mathrm{SO}_{4}, 25 \mathrm{~mL}$ of 12 NHCI and 40 mL of $5 \mathrm{NHNO}_{3}$ are mixed and the volume of the mixture is made 1000 mL by adding water. The normality of resulting solution will be
A. 1 N
B. 2 N
C. 3 N
D. 4 N
28. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ions, Na^{+}and carbonate ions, CO_{3}^{2-} are respectively (Molar mass of $\mathrm{NaCO}_{3}=106 \mathrm{gmol}^{-1}$)
A. $0.125 M$
B. 0.25 M
C. $0.4 M$
D. 0.5 M

Answer: A

- Watch Video Solution

29. 0.3 g of an acid is neutralized by $40 \mathrm{~cm}^{3}$ of 0.125 N NaOH . Equivalent mass of the acid is
A. 60
B. 45
C. 30
D. 63

Answer: A

- Watch Video Solution

30. 25.3 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is dissolved in enough water to make 250 mL of solution. If sodium carbonate dissociates completely, molar concentration of sodium ions, Na^{+}and carbonate ions, CO_{3}^{2-} are respectively (Molar mass of $\mathrm{NaCO}_{3}=106 \mathrm{gmol}^{-1}$)
A. 0.477 M and 0.477 M
B. 0.955 M and 1.910 M
C. 1.910 M and 0.955 M
D. 1.90 M and 1.910 M

Answer: C

D Watch Video Solution

31. The number of molecules in 100 mL of $0.02 \mathrm{~N}_{2} \mathrm{SO}_{4}$ is:
A. 6.02×10^{22}
B. 6.0×10^{21}
C. 6.02×10^{20}
D. 6.02×10^{18}

Answer: C

Watch Video Solution

32. A 100 ml solution of $0.1 \mathrm{~N}-\mathrm{HCl}$ was titrated with $0.2 \mathrm{~N}-\mathrm{NaOH}$ solution.

The titration was discontinued after adding 30 ml of NaOH solution. The
remaining titration was completed by adding $0.25 \mathrm{~N}-\mathrm{KOH}$ solution. The volume of KOH required for completing the titration is
A. 70 ml
B. 32 ml
C. 35 ml
D. 16 ml

Answer: D

- Watch Video Solution

33. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture 1: 4 . The ratio of number of their molecule is :
A. 3: 16
B. 1: 4
C. 7: 32
D. $1: 8$

Answer: C

- Watch Video Solution

34. A mixture of gases contains H_{2} and O_{2} gases in the ratio of $1: 4(w / w)$. What is the molar ratio of the two gases in the mixture?
A. $16: 1$
B. 2:1
C. 1: 4
D. $4: 1$

Answer: D

- Watch Video Solution

35. Suppose the elements X and Y combine to form two compounds of
$X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , what are tha atomic masses of X and Y ?
A. 40,30
B. 60,40
C. 20, 30
D. 30,20

Answer: A

- Watch Video Solution

36. An organic compound made of C, H and N contains 20% of nitrogen.

Its molecular weight is
A. 70
B. 140
C. 100
D. 65

Answer: A

- Watch Video Solution

37. Percentage of Se in peroxidase anhydrase enzyme is 0.5% by weight (at. Wt. $=78.4$), then minimum molecular weight of peroxidase anhydrase enzyme is:
A. 1.568×10^{4}
B. 1.568×10^{3}
C. 15.68
D. 3.136×10^{4}

Answer: A

38. An alkaloid contains 17.28% of nitrogen and it's molecular mass is 162 .

The number of nitrogen atoms present in one molecular of alkaloid is
A. five
B. four
C. three
D. two

Answer: D

- Watch Video Solution

39. The crystalline salt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$ on heating loses 55.9% of its weight. The formula of the crystalline salt is
A. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

40. 0.1 mol of a carbonhydrate with empirical formula $\mathrm{CH}_{2} \mathrm{O}$ contains 1 g of hydrogen. What is its molecular formula?
A. $C_{5} H_{10} O_{5}$
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
D. $C_{3} H_{6} O_{3}$

Answer: A

41. The most abundant elements by mass in the body of a healthy human adult are: Oxygen (61.4\%), Carbon (22.9\%), Hydrogen (10.0\%), and Nitrogen (2.6\%). The weight which a 75 kg person would gain if all . ${ }^{1} H$ atoms are replaced by . ${ }^{2} H$ atoms is:
A. 7.5 kg
B. 10 kg
C. 15 kg
D. 37.5 kg

Answer: A

- Watch Video Solution

42. The ration of mass per cent of C and H of an organic compound $\left(C_{x} H_{y} O_{z}\right)$ is6:1. If one molecule of the above compound $\left(C_{x} H_{Y} O_{z}\right)$ contains half as much oxygen as required to burn one molecule of
compound $C_{x} H_{Y}$ compleltely to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. The empirial formula of compound $C_{x} H_{y} O_{z}$ is:
A. $C_{3} H_{6} O_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}$
D. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$

Answer: D

- Watch Video Solution

43. In Haber process 30 litre of dihydrogen and 30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end ?
A. 20 litres $\mathrm{NH}_{3}, 25$ litres N_{2}, 20 litres H_{2}
B. 10 litres $\mathrm{NH}_{3}, 25$ litres N_{2}, 15 litres H_{2}
C. 20 litres $N H_{3}, 10$ litres $N_{2}, 30$ litres H_{2}
D. 20 litres $\mathrm{NH}_{3}, 25$ litres N_{2}, 15 lites H_{2}

Answer: B

- Watch Video Solution

44. For the formation of 3.65 g of hydrogen chloride gas, what volumes of hydrogen gas and chlorine gas are required at NTP conditions?
A. 1.12 lit, 1.12 lit
B. 1.12 lit, 2.24 lit
C. 3.65 lit, 1.83 lit.
D. 1 lit., 1 lit.

Answer: A

45. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is
A. 90 kg
B. 540 kg
C. 180 kg
D. 270 kg

Answer: A

- Watch Video Solution

46. The dehydration yield of cyclohexanol to cyclohexene is 75%. What would be the yield if 100 g of cyclohexanol is dehydrated?
A. 82.35 g
B. 61.76 g
C. 38.34 g
D. 17.65 g

Answer: B

- Watch Video Solution

47. A mixture of CO_{2} and CO is passed over red hot graphite when 1 mole of mixture changes to 33.6 L (converted to STP). Hence, mole fraction of CO_{2} in the mixture is
A. 0.25
B. 0.33
C. 0.5
D. 0.66

Answer: C

48. 3.28 g of a sample of pure copper when heated in presence of oxygen of some time forms black copper oxide (CuO) which weighs 3.92 g . What approximate percent of copper remains unoxidized?
A. 4.6%
B. 5.6%
C. 6.6%
D. 7.6%

Answer: A

- Watch Video Solution

49. An ore contains 1.24% of the mineral argentite, $A g_{2} S$ by mass. How many grams of this ore would have to be processed in order to obtain 1.0 g of pure solid silver?
A. 46.3 g
B. 92.6 g
C. 69.45 g
D. 23.15 g

Answer: B

D Watch Video Solution

50. The decomposition of cetian mass of CaCO_{3} gave $11.2 \mathrm{dm}^{3}$ of CO_{2} gas at STP. The mass of KOH required to completely neutralise the gas is:
A. 56 g
B. 28 g
C. 42 g
D. 20 g

Answer: A

51. 20.0 g of magnesium carbonate sample decomposes on heating to give carbon dioxide and 8.0 g of magnesium oxide. What will be the percentage purity of magnesium carbonate in the sample?
A. 60
B. 84
C. 75
D. 96

Answer: B

- Watch Video Solution

52. A mixture of CaCl_{2} and NaCl weighing 4.44 is treated with sodium carbonate solution to precipitate all the Ca^{2+} ions as calcium carbonate. The calcium carbonate so obtained is heated strongly to get 0.56 g of CaO . The percentage of NaCl in the mixture of (atomic mass of $\mathrm{Ca}=40$) is
A. 75
B. 30.6
C. 25
D. 69.4

Answer: A

- Watch Video Solution

53. A mixture of ethane and ethene occupies 41 L at atm and 500 K . The mixture reacts compeletly with $10 / 3$ mole of oxygen to produce CO_{2} and water. The mole fraction of ethane and ethene in the mixture are ($\mathrm{R}=0.0821 \mathrm{Latm} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$ respectively
A. $0.50,0.50$
B. $0.75,0.25$
C. $0.67,0.33$
D. $0.25,0.75$

Answer: C

- Watch Video Solution

54. Express of CO_{2} is passed through 50 mL of 0.5 M calcium hydroxide solution. After the completion of the reaction, the solution was evaporated to dryness. The solid calcium carbonated was completely neutralized with 0.1 N hydrochloric acid. The volume of hydrochloric acid required is (At mass of carbon $=40$)
A. 200 mL
B. 500 mL
C. 400 mL
D. 300 mL

Answer: B

- Watch Video Solution

55. In the reaction, $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, when 1 mole of ammonia and 1 mole of O_{2} are made to react to completion
A. 1.0 mole of $\mathrm{H}_{2} \mathrm{O}$ is produced
B. 1.0 mole of NO will be produced
C. all the oxygen will be consumed
D. all the ammonia will be consumed

Answer: C

- Watch Video Solution

56. 20 mL of methane is completely burnt using 50 mL of oxygen. The volume of the gas left after cooling to room temperature is
A. 80 mL
B. 40 mL
C. 60 mL
D. 30 mL

Answer: D

- Watch Video Solution

57. The number of Cl^{-}ions in 100 mL of 0.001 M HCl solution is
A. $6.022 \times 10 \%(23)$
B. 6.022×10^{20}
C. 6.022×10^{19}
D. 6.022×10^{24}

Answer: C

- Watch Video Solution

58. 50 mL solution of $\mathrm{BaCl}_{2}(20.8 \% \mathrm{w} / / \mathrm{v})$ and 100 mL solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(9.8 \% \mathrm{w} / / \mathrm{v})$ are mixed ($\mathrm{Ba}=137, \mathrm{Cl}=35.5, \mathrm{~S}=32$)
$\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4} \downarrow 2 \mathrm{HCl}$
Weight of BaSO_{4} formed is:
A. 11.65 g
B. 23.3 g
C. 29.8 g
D. 46.6 g

Answer: A

Watch Video Solution

59. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO_{3} is mixed with 50 mL of $5.8 \% \mathrm{NaCl}$ solution?
A. 7 g
B. 14 g
C. 28 g
D. 3.5 g

Answer: A

- Watch Video Solution

60. How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g of HCl ?
A. 0.044
B. 0.333
C. 0.011
D. 0.029

Answer: D

61. 1 gram of carbonate ($\mathrm{M}_{2} \mathrm{CO}_{3}$) on treatment with excess HCl produces 0.1186 mole of CO_{2}. The molar mass of $\mathrm{M}_{2} \mathrm{CO}_{3}$ in $\mathrm{g} \mathrm{mol}^{-1}$
A. 118.6
B. 11.86
C. 1186
D. 84.3

Answer: D

- Watch Video Solution

62. For reaction $A+2 B \rightarrow C$. The amount of C formed by starting the reaction with 5 mole of A and 8 mole of B is :
A. 5 moles
B. 8 moles
C. 16 moles
D. 4 moles

Answer: D

- Watch Video Solution

63. In an experiment, 4 g of $\mathrm{M}_{2} O_{x}$ oxide was reduced to 2.8 g of the metal. If the atomic mass of the metal is $56 \mathrm{gmol}^{-1}$, the number of oxygen atoms in the oxide is:
A. 1
B. 2
C. 3
D. 4

Answer: C

64. When $22.4 L$ of $H_{2}(g)$ is mixed with 11.2 of $C l_{2}(g)$, each at STP, the moles of $\mathrm{HCl}(\mathrm{g})$ formed is equal to
A. 1 mol of HCl (g)
B. 2 mol of $\mathrm{HCl}(\mathrm{g})$
C. 0.5 mol of HCl (g)
D. 1.5 mol of $\mathrm{HCl}(\mathrm{g})$

Answer: A

- Watch Video Solution

65. 1.0 g of magnesium is burnt with $0.56 \mathrm{~g} O_{2}$ in a closed vessel. Which reactant is left in excess and how much?
A. $\mathrm{Mg}, 0.16 \mathrm{~g}$
B. $O_{2}, 0.16 g$
C. $M g, 0.44 g$
D. $O_{2}, 0.28 g$

Answer: A

- Watch Video Solution

66. The molecular formula of a commercial resin used for exchanging ions in water softening is $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{SO}_{3} \mathrm{Na}(\mathrm{mol}$. Wt . 206) . What would be the maximum uptake of Ca^{2+} ions by the resin when expressed in mole per gram resin?
A. $\frac{1}{103}$
B. $\frac{1}{206}$
C. $\frac{2}{309}$
D. $\frac{1}{412}$

Answer: D

67. 10 g hydrogen is reacted with 64 g of oxygen. The amount of water formed will be (in moles)
A. 3
B. 4
C. 1
D. 2

Answer: B

- Watch Video Solution

68. A 100% pure sample of a divalent metal carbonate weighing 2 g on complete thermal decomposition releases 448 cc of carbon dioxide at STP. The equivalent mass of the metal is
B. 20
C. 28
D. 12

Answer: B

- Watch Video Solution

69. When a metal is burnt, its weight is increased by 24%. The equivalent weight of the metal wil be:
A. 120
B. 80
C. 60
D. 40

Answer: D

70. The percentage of element M is 53 in its oxide of molecular formula $\mathrm{M}_{2} \mathrm{O}_{3}$. Its atomic mass is about
A. 45
B. 9
C. 18
D. 27

Answer: D

- Watch Video Solution

71. A metal M of equivalent mass E forms an oxide of molecular formula $M_{x} O_{y}$. The atomic mass of the metal is given by the correct equation.
A. $2 E(y / x)$
B. $x y / E$
C. E / y
D. y / E

Answer: A

- Watch Video Solution

72. A bivalent metal has an equivalent mass of 32 . The molecular mass of the metal nitrate is
A. 168
B. 192
C. 188
D. 182

Answer: C

73. 0.32 g of metal gave on treatment with an acid 112 mL of hydrogen at NTP. Calculate the equivalent weight of the metal
A. 58
B. 32
C. 11.2
D. 24

Answer: B

- Watch Video Solution

74. Sucross solution which is 40% by mass is heated till it becomes 50% by mass. Water lost form 100 g of the solution is
A. 10 g
B. 15 g
C. 20 g
D. 25 g

Answer: C

- Watch Video Solution

75. One gram of a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} consumes y gram equivalent of HCl for complete neutralization. One gram of the mixture is strongly heated, then cooled and the residue treated with HCl . The gram equivalent of HCl now required for complete neutralization will be
A. 2 y
B. 3 y
C. y
D. $y / 2$

Answer: C

76. The total ionic strength (total molarity of all the ions) containing 0.2 $\mathrm{M} \mathrm{CuSO}_{4}$ and $0.1 \mathrm{MAl}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is
A. 0.5 M
B. 0.7 M
C. 0.9 M
D. 1.2 M

Answer: C

- Watch Video Solution

77. If Avogadro number N_{A} is changed form $6.022 \times 10^{23} \mathrm{~mol}^{-1}$ to $6.022 \times 10^{20} \mathrm{~mol}^{-1}$, this would change
A. the ratio of the chemical species to each other in a balanced equation
B. the ratio of the elements to each other in a compound
C. the definition of the mass in units of gram
D. the mass of one mole of carbon

Answer: D

D Watch Video Solution

78. 3750 mg of an alcohool reacts with required amount of methyl magnesium bromide and release 140 mL of methane gas at STP. The alcohol is :
A. ethanol
B. n-butanol
C. methanol
D. n-propanol

Answer: D

Competition Focus Jee Main And Advanced Medical Entrance Special li Multiple Choice Question
1.8 g of O_{2} has the same number of molecules as in :
A. 7 g CO
B. $14 g N_{2}$
C. $11 g \mathrm{CO}_{2}$
D. $16 g \mathrm{SO}_{2}$

Answer: A::C::D

- Watch Video Solution

2. A vessel contains 4.4 g of CO_{2}. It means that it contains
A. 0.1 mol of CO_{2}
B. 6.02×10^{22} molecules of CO_{2}
C. 8.8 g atoms of oxygen
D. 1120 mL of CO_{2} at S.T.P.

Answer: A: B

- Watch Video Solution

3.1 g Mg was burnt in a closed vessel containing 2 g oxygen. Which of the following are not correct?
A. 0.25 g of Mg will be left unburnt
B. 1.33 of O_{2} will be left unreacted
C. 2.5 g of MgO will be formed
D. The mixture at the end will weigh 3 g .

Answer: A::C

4. Which of the following methods of expressing concentration varies with temperature?
A. Molarity
B. Molality
C. Normality
D. Mole fraction

Answer: B::D

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Special lii Multiple Choice Question

1. Earlier the concept of equivalent weight was very common and the concentrations of the solutions were expressed in terms of normolities.

The convenience was that the substances reacted in the ratio of their gram equivalents. So there was no need for writing the balanced
equations to determine the amounts of the substances reacted. However, determination of equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in teh acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, molarity, mole fractions etc. are also used The equivalent mass of Cu
A. will be same in CuO and $\mathrm{Cu}_{2} \mathrm{O}$
B. will be double in $\mathrm{Cu}_{2} \mathrm{O}$ than in CuO
C. will be double in CuO than in $\mathrm{Cu}_{2} \mathrm{O}$
D. depends upon whether copper is pure or impure.

Answer: B

- Watch Video Solution

2. Earlier the concept of equivalent weight was very common and the concentrations of the solutions were expressed in terms of normolities. The convenience was that the substances reacted in the ratio of their gram equivalents. So there was no need for writing the balanced equations to determine the amounts of the substances reacted. However, determination of equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in teh acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, molarity, mole fractions etc. are also used

The chloride of an element is found to contain 52.8% chlorine. The equivalent mass of the element is
A. 63.4
B. 31.7
C. 47.2

Answer: B

- Watch Video Solution

3. Earlier the concept of equivalent weight was very common and the concentrations of the solutions were expressed in terms of normolities. The convenience was that the substances reacted in the ratio of their gram equivalents. So there was no need for writing the balanced equations to determine the amounts of the substances reacted. However, determination of equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in teh acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, molarity, mole fractions etc. are also used

A 40% hydrochloric acid is found to have a density of $1.20 \mathrm{~g} m L^{-1}$. The molarity of the solution is nearly
A. 11 M
B. 12 M
C. 13 M
D. 14 M

Answer: C

- Watch Video Solution

4. Earlier the concept of equivalent weight was very common and the concentrations of the solutions were expressed in terms of normolities. The convenience was that the substances reacted in the ratio of their gram equivalents. So there was no need for writing the balanced equations to determine the amounts of the substances reacted. However, determination of equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in
different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in teh acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, molarity, mole fractions etc. are also used The molality of the above solution will be nearly
A. 15.3 m
B. 16.3 m
C. 17.3 m
D. 18.3 m

Answer: D

- Watch Video Solution

5. Earlier the concept of equivalent weight was very common and the concentrations of the solutions were expressed in terms of normolities. The convenience was that the substances reacted in the ratio of their
gram equivalents. So there was no need for writing the balanced equations to determine the amounts of the substances reacted. However, determination of equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in different reactions. For example, KMnO_{4} has different equivalent weight in the basic medium than in teh acidic medium. Hence, now-a-days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality, molarity, mole fractions etc. are also used The mole fraction of hydrochloric acid in the solution will be
A. 0.25
B. 0.3
C. 0.35
D. 0.4

Answer: A

6. Earlier the concept of equivalent weights was very common and the concentrations of the solutions were expressed in terms of normalities. The convenience was that the substances reacted in the ratio of their gram equivalents. So there was no need to write balanced equation to determine the amounts of the substraces reacted. However, determination or equivalent weights posed difficulty in certain cases. Moreover, the equivalent weight of the same substance is not same in different reactions, For example, KMnO_{4} has different equivalent weight in the basic medium than inthe acidic medium. Hence, now a days, mole concept is more common and the concentrations of the solutions are generally expressed in terms of molarities, though some other methods like molality. mole fraction etc. are also used.

The volume of the above solution required to make 1.0 L of 0.10 M HCl will be
A. 5.6 mL
B. 6.6 mL
C. 7.6 mL

Answer: C

- View Text Solution

Competition Focus Jee Main And Advanced Medical Entrance Special Iv Matching Type Questions

1. Match the entries of column I with appropriate entries of column II and choose the correct option out of the four option (a), (b), (c), (d) given at the end of each question.

Column I
(A) German silver and gold jewellery
(p) Elements
(B) Antimony and Bismuth
(q) Isomorphs
(C) $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
(r) Polymorphs
(D) Zinc blende and Wurtzite
(s) Mixtures
(E) Graphite and Diamond
(t) Metalloids
A. A-p, B-r, C-t, D-q, E-s
B. A-s, B-t, C-q, D-r, E-p
C. A-q, B-r, C-p, D-t, E-s
D. A-t, B-s, C-r, D-q, E-p

Answer: B

- Watch Video Solution

2. Match the entries of column I with appropriate entries of column II and choose the correct option out of the four option (a), (b), (c), (d) given at the end of each question.

Column I Column II
(A) femto (p) 10^{9}
(B) yotta (q) 10^{-15}
(C) giga (r) 10^{-18}
(D) atto (s) 10^{24}
A. A-q, B-p, C-r, D-s
B. A-s, B-q, C-p, D-r
C. A-q, B-s, C-p, D-r
D. A-r, B-s, C-p, D-q

Answer: C

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Special V Matrix Match Type Questions

Column I (No. of significant figures) Column II (Numbers)
(A) 1
(p) 6.022×10^{23}

1. (B) 2
(q) 0.0085
(C) 3
(r) 2.850
(D) 5
(s) 0.0200

- Watch Video Solution

Column I (No. of moles) Column II (Amount)
(A) 0.1 mole
(p) 4480 mL of CO_{2} at STP
2.
(B) 0.2 mole
(q) 0.1 g atom of iron
(B) 0.25 mole
(r) 1.5×10^{23} molecules of oxygen gas
(C) 0.25 mole
(s) 9 mL of water
(D) 0.5 mole
(t) 200 mg of hydrogen gas

Competition Focus Jee Main And Advanced Medical Entrance Special Vi Integer Type Questions

1. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

5

The number of metalloids present in the following elements is tin, lead, arsenic, palladium, anitmony, tungsten, bismuth, osmium, lanthanum

- Watch Video Solution

2. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of
bubbles should be as shown on the side:

Δ
 13

000
(1) (1) 1
(2) 2 2 2
(3) 3 (3)
(4) 4 4 4
(5) 5 5 5
(6) (6) (6) 6)
(7) (7) 7
(8) 8) 8
(9) (9) (9) 9

A termerature of $41^{\circ} F$ when expressed in terms of degrees centigrade will be

- Watch Video Solution

3. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:
$A \quad B \quad D$
(1)

 (2) (3)

(4) a a a

(5) (6) (6)

The prefix 'giga' represents 10^{x} where x is

- Watch Video Solution

4. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of
bubbles should be as shown on the side:

(9) (9) (9)
 (9)

The number of significant figures in the value 0.000524000 is

- Watch Video Solution

5. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0, 9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

 (2) (2) (2) (2)

Copper react with nitric acid to form copper (II) nitric oxide and water.
The number of nitric acid molecules in the balanced equation is
6. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:
A

D

(4) (4) (4) (4) (5) (5) (5) (5)

Silver (atomic weight $=108 \mathrm{~g} \mathrm{~mol}^{-1}$) has a density of $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of silver atoms on a surface of area $10^{-12} \mathrm{~m}^{2}$ can be expressed in scientific notation as $y \times 10^{x}$. The value of x is

- View Text Solution

7. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of
bubbles should be as shown on the side:

A

(3) (3) (3) (3)
(4) (4) (4) (4)
(5) (5) (5) (5)
(6) (6) (6) (6) (7) (7) (7) 7 ค) 0 ค

(9)
 (9)
 (9)
 (9)

Among the following, the number of elements showing only one non-zero oxidation state is
$\mathrm{O}, \mathrm{Cl}, \mathrm{F}, \mathrm{N}, \mathrm{P}, \mathrm{Sn}, \mathrm{Tl}, \mathrm{Na}, \mathrm{Ti}$

- Watch Video Solution

8. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0,9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

(2) 2 2 2

Silver (atomic weight $=108 \mathrm{~g} \mathrm{~mol}^{-1}$) has a density of $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of silver atoms on a surface of area $10^{-12} \mathrm{~m}^{2}$ can be expressed in scientific notation as $y \times 10^{x}$. The value of x is
9. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0, 9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

6 (7) (8) (9)

(9)

(9)

 (9)A student performs a titration with different burettes and finds titre values of $25.2 \mathrm{~mL}, 25.25 \mathrm{~mL}$, and 25.0 mL . The number of significant figures in the average titre value is

- View Text Solution

10. The answer to each of the following questions is a single digit integer, ranging from 0 to 9 . If correct answers to the question number A, B, C and D (say) are $4,0,9$ and 2 respectively, then correct darkening of bubbles should be as shown on the side.
(C) Reaction of Br_{2} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aqueous solution gives sodium bromide and sodium bromate with evolution of CO_{2} gas. The number of sodium bromide molecules involved in the balanced chemical equation is
\qquad

- Watch Video Solution

11. If the value of Avogadro numberis $6.023 \times 10^{23} \mathrm{~mol}^{-1}$ and the vaueof Boltzmann constant is $1.380 \times 10^{-23} J K^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is

- Watch Video Solution

12. The answer to each of the following question is a single digit integer, ranging from 0 to 9 . If the correct answers to the question numbers A, B, C and D (say) are 4, 0, 9 and 2 respectively, then the correct darkening of bubbles should be as shown on the side:

0000
(1) (1) 1
(2) 2 2 2
(3) 3 3 3
(4) 4 4 4
(5) 5 5 5
(6) (6) (6) (6)
(7) 7 (7) 7
(8) (8) (8) (8)
(9) (9) (9) (9)

Three moles of $B_{2} H_{6}$ are completely reacted with methanol. The number of moles of boron containing product formed is

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Special Vii

 Numerical Value Type Questions1. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952 g of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ are used in the preparation, the combined weight (in grams) of gypsum and the nickel- ammonia coordination compound thus produced is \qquad .
(Atomic weights in $\mathrm{gmol}^{-1}: \mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16, \mathrm{~S}=32, \mathrm{Cl}=35.5, \mathrm{Ca}=40$, $\mathrm{Ni}=59$)

- Watch Video Solution

 Assertion Reason Type Questions Type I1. Assertion (A) : A single. ${ }^{12} C$ atom has mass exactly 12 amu and a mole of these atoms has a mass of exactly 12 gram.

Reason (R) : A mole of atoms of any element has a mass in gram equal to the atomic mass of the element.
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: A

2. Assertion :The ratio of volume of gaseous reactants and products is in agreement with their molar ratio.

Reason : Volume of a gas is inversely proportional to the number of mole of a gas
A. Statement-1 is True, Statement-2 is True , Statement-2 is the correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: C

- Watch Video Solution

3. Assertion (A): The standard unit of expressing the mass of atom is amu.

Reason (R): amu is also called as avogram.
A. Statement-1 is True, Statement-2 is True, Statement-2 is the correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True , Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: B

- Watch Video Solution

4. Statement-1. Under identical conditions, 1 L of O_{2} gas an 1 L of O_{3} gas contain the same number of oxygen atoms.

Statement-2. 1 L of O_{2} and 1 L of O_{3} contain the same number of moles under identical conditions.
A. Statement-1 is True, Statement-2 is True, Statement-2 is the correct explanation for Statement-1.
B. Statement-1 is True, Statement-2 is True , Statement-2 is not a correct explanation for Statement-1.
C. Statement-1 is True, Statement-2 is False.
D. Statement-1 is False, Statement-2 is True.

Answer: D

- Watch Video Solution

Competition Focus Jee Main And Advanced Medical Entrance Special Viii Assertion Reason Type Questions Type li

1. Assertion. Phenol is a disinfectant.

Reason. Disinfectants are used to stop infection of the wounds.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

2. Assertion. Cinnabar is a chemical compound whereas brass is a mixture.

Reason. Cinnabar always contains 6.25 times as much mercury as sulphur by weight. Brass can be made with widely different ratios of copper and zinc.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

3. Assertion (A): pure water obtained from different states of india always contains hydrogen and oxygen in the ration of 1:8 by mass.

Reason (R): Total mass of reactants and products during chemical change is always the same.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

4. Assertion. The size of a degree on Fahrenheit scale is smaller than that on celsius scale.

Reason. When temperature on celsius scale reads 0°, it reads 32° on Fahrenheit scale.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: B

5. Assertion. The number 14.56 ± 0.01 has three significant figures.

Reason. Number of significant figures is total number of digits except the last digit whose value is uncertain.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

6. Assertion. Gay Lussac's law does not follow from Dalton's atomic theory.

Reason. Dalton's atomic theory explains law of chemical combination by mass only.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

7. Assertion. Average atomic mass of an element depends mainly on the heavier isotope.

Reason. Average atomic mass is obtained by multiplying the atomic mass of the heavier isotops with its fractional abundance.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

8. Statement-1 : Atomic mass of sodium is 23 u

Statement-2 : An atom of sodium is 23 times heavier than atom of C-12 isotope
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

9. Assertion. Both 106 g of sodium carbonate and 12 g of carbon have same number of carbon atoms.

Reason. Both contain 1 g atom of carbon which contains 6.023×10^{23} carbon atoms.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

10. Assertion : Equivalent weight of a base $=\frac{\text { Molecular weight }}{\text { Acidity }}$ Reason : Acidity is the number of replaceable hydrogen atoms in one molecule of the base.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

11. Assertion: Equal moles of different substnaces contains same number of constituent particles.

Reason: Equal weights of different substances contain the samme number of contituent particles.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

12. Assertion: Empirical and molecular formula of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is same. Reason: $\mathrm{Na}_{2} \mathrm{CO}_{3}$ does not form hydrate.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

13. Assertion. In a combustion reaction in the air, oxygen is the limiting reactant.

Reason. Oxygen is present in limited amount (only 21%) in the air.
A. If both assertion and reason are true, and reason is the true explanation of the assertion.
B. If both assertion and reason are true, but reason is not the true explanation of the assetion.
C. If assertion is true, but reason if false
D. If both assertion and reason are false.

Answer: D

- Watch Video Solution

