# ©゙doubtnut 

India's Number 1 Education App

## PHYSICS

## BOOKS - PRADEEP PHYSICS (HINGLISH)

## ELECTROSTATICS

## SOLVED EXAMPLES

1. What are some other applications of electrostatics?

- Watch Video Solution

2. Is a charge of $\left(5.8 \times 10^{-18}\right)$ C possible?
A. yes
B. No
C. May be
D. Cannot be determined

## Answer: B

## - Watch Video Solution

3. What is the charge on a body from which one million electrons are removed?

## - Watch Video Solution

4. How is force between two charges affected when each charge is doubled and distance between them is also doubled?
5. Two equal like charges in air repel eachother with a force $F$. By what percentage should each charge be reduced so that the force between them in medium of dielectric constant 2 reduces by $28 \%$ ?

## - Watch Video Solution

6. Calculate the number of electrons which should be removed from a conductor so that it acquires a positive charge of $3.5 n C$ ?

## - Watch Video Solution

7. An object has an excess charge of $\left(-1.92 \times 10^{10-7}\right)$ C. How many excess electrons does it have?
8. Which is bigger, a coulomb or charge on an electron ? How many electronic charges from one coulomb of charge?

## - Watch Video Solution

9. How much positive and negative charge is there in a cup of water?

- Watch Video Solution

10. If a body gives out $10^{9}$ electrons every second, how much time required to get a total charge of 1 C from it ?

## D Watch Video Solution

11. A metal sphere has a charge of $-6.5 \mu C$. When $5 \times 10^{13}$ electrons are removed from the sphere, what would be the net charge on it?

## - Watch Video Solution

12. Two bodies $A$ and $B$ carry charges $-3.00 \mu C$ and $-0.44 \mu C$. How many that they acquire equal charges?

## - Watch Video Solution

13. A free pith ball $p$ of 10 g carries of $5 \times 10^{-8} \mathrm{C}$. What must be the nature and maganitude fo charge that should be given to another pith ball Q fixed 7 cm below the former ball, so that upper ball is statinary?

## - Watch Video Solution

14. Force of attraction between two point charges placed at a distance ' d ' is F . What distance apart should they be kept in the same medium, so that the force between them is 2 F ?

## - Watch Video Solution

15. Two charged particles having charge $2.0 \times 10^{-8} \mathrm{C}$ each are joined by an insulating string of length 1 m and the system is kept on a smooth horizontal table. Find the tension in the string.

## - Watch Video Solution

16. A particle carrying charge $+q$ is held at the center of a square of each side arranged on the square as shown in Fig. If $q=2 \mathrm{muC}$,
what is the net force on the particle?

A. $36 \times 14 \times 4 \times 10^{-3} N$
B. $16 \times 14 \times 4 \times 10^{-3} N$
C. $26 \times 14 \times 4 \times 10^{-3} N$
D. $6 \times 14 \times 4 \times 10^{-3} N$
17. Coulomb's law for electrostatic force between two point charges and Newton's law for gravitational force between two stationary point masses, both have inverse square dependence on the distance between the charges/masses (a) compare the strength of these forces by determining the ratio of their magnitudes (i) for an electron and as proton (ii) for two protons (b) estimate the accelerations for election and proton due to electrical force of their mutal attraction when they are 1 A apart.

## - Watch Video Solution

18. A charged metallic sphere A is suspended by a nylon thread.

Another charged metallic sphere $B$ held by an insulating handle is brought close to A such that the distance between their centres is

10 cm , as shown in Fig. 1.7(a). The resulting repulsion of $A$ is noted
(for example, by shining a beam of light and measuring the deflection of its shadow on a screen). Spheres $A$ and $B$ are touched by uncharged spheres C and D respectively, as shown in Fig. 1.7(b).
$C$ and $D$ are then removed and $B$ is brought closer to $A$ to $a$ distance of 5.0 cm between their centres, as shown in Fig. 1.7(c). What is the expected repulsion of A on the basis of Coulomb's law? Spheres A and C and spheres B and D have identical sizes. Ignore the sizes of $A$ and $B$ in comparison to the separation between
their centres.

(b)


Watch Video Solution
19. Two electrons and a positive charge $q$ are hold along a straight line. At what position and for what value of $q$ will the system be in equilibrium.

## - Watch Video Solution

20. The two point charges $4 \mu C$ and $1 \mu C$ are separated by a distance of 2 m in air. Find the point on the line joining the charges at which net electric field of the system is zero.
A. $\frac{4}{3} m$ from $1 \mu C$
B. $\frac{2}{3} m$ from $1 \mu C$
C. $\frac{4}{3} m$ from $4 \mu C$
D. $\frac{2}{3} m$ from $4 \mu C$

## D Watch Video Solution

21. Ten positively charged particles are kept fixed on the $x$-axis at points $x=10 \mathrm{~cm}, 20 \mathrm{~cm}, 30 \mathrm{~cm}, \ldots, 100 \mathrm{~cm}$. The first particle has a charge $1.0 \times 10^{-8} \mathrm{C}$, the second $8 \times 10^{-8} \mathrm{C}$, the third $27 \times 10(-8) \mathrm{C}$ and so on. The tenth particle has a charge $1000 \times 10^{-8} \mathrm{C}$. find the magnitude of the electric force acting on a 1 C charge placed at the origin.

## - Watch Video Solution

22. Three point charges are placed at the following points on $x$ -
axis : $3 \mu \mathrm{C}$ at $x=0,-4 \mu C$ at $x=50 \mathrm{~cm}$ and $-5 \mu C$ at $x=50 \mathrm{~cm}$ and
$-5 \mu C$ at $x=120 \mathrm{~cm}$, Calculate the force on $-4 \mu C$ charge.


## D Watch Video Solution

23. Two equal positive charges, each of $2 \mu C$ interact with a third positive charge of $3 \mu C$ situated as shown in Fig. Calculate the magnitude and direction of the force on the $3 \mu C$ charge.


## - Watch Video Solution

24. Find the magnitude of the resultant force on a charge of $1 \mu C$
held at P due to two charges of $+2 \times 10^{-8} \mathrm{C}$ at A and B respectively.

Given $A P=10 \mathrm{~cm}$ and $B P=5 \mathrm{~cm}$.
$\angle A P B=90^{\circ}$, Fig.


## - Watch Video Solution

25. Consider three charges $q_{1}, q_{2}$ and $q_{3}$ each equal to $q$, at the vertices of an equilateral triangle of side I. What is the force on a charge $Q$ placed at the centroid of the triangle?

## - Watch Video Solution

26. Consider the charges $\mathrm{q}, \mathrm{q}$ and -q placed at the vertices of an equilateral triangle of each side I . What is the force on each charge?

## - Watch Video Solution

27. A particle of mass $m$ and carrying charge $-q_{1}$ is moving around a charge $+q_{2}$ along a circular path of radius $r$ period of revolution of the charge $-q_{1}$ about $+q_{2}$ is

## - Watch Video Solution

28. Two identical conducting spheres, fixed in space, attract each other with an electrostatic force of $0.108 N$ when separated by 50.0 cm , centre-to-centre. A thin conducting wire then connects the spheres. When the wire is removed, the spheres repel each other
with an electrostatic force of 0.0360 N . What were the initial charges on the spheres?

## - Watch Video Solution

29. Two fixed point charges $+4 e$ and $+e$ units are separated by a distance 'a'. Where should a third point charge be placed for it to be in equilibrium?

## - Watch Video Solution

30. A copper atom consists of copper nucleus surrounded by 29 electrons. The atomic weight of copper is $63.5 \mathrm{~mole}^{-1}$. Let us now
take two pieces of copper each weighing 10 g . Let us trandfer one elcetron from one piece to another for every 100 atoms in that piece. What will be the Coulomb force between the two pieces after the trandfer of electrons, if they are 1 cm apart? Avogadro
number $=6 \times 10^{23}$ mole $^{-1}$, charge on an electron $=-1.6 \times 10^{-19} \mathrm{C}$

## (D) Watch Video Solution

31. An infinite number of charges each equal to $4 \mu C$ are placed along $X$-axis at $x=1 m, x=2 m, x=4 m, x=8 m$ and so on. Find the total force on a charge of 1C plaaced at the origin.

## - Watch Video Solution

32. Three point charges $+q$ each are kept at the vertices of an equilateral triangle of side $I$. Determine the magnitude and sign of charge to be kept at the centroid so that charges at the vertices remain in equillibrium.

$$
\text { A. } Q=\frac{2 q}{\sqrt{3}}
$$

B. $Q=\frac{q}{\sqrt{2}}$
C. $Q=\frac{3 q}{\sqrt{3}}$
D. $Q=\frac{q}{\sqrt{3}}$

## Answer: D

## - Watch Video Solution

33. The electric charge of macroscopic bodies is actually a surplus or deficiency of electrons. Why not protons?

## - Watch Video Solution

34. Two free protons and two free electrons are separted by the same distance. Compare Coulomb's forces of repulision between the pair of protons and pair of electrons.
35. A charge $Q$ is kept in the inner cavity and a charge $2 Q$ is given to the inner shel. A charge 3 Q is given to the outermost shell, as shown in Fig. 1 (a). 22 Find the charges at the surfaces $A, B$ and $C$.


## - Watch Video Solution

36. A negatively charged ebonite rod attracts a suspended ball of straw. Can we infer that the ball is positively charged ?

## Watch Video Solution

37. Can two similarly charged bodies attract each other?

## - Watch Video Solution

38. A body A repels another body B, A attracts body C, C repels body D. It is given that body D is positively charged. What is the charge on body B.

## - Watch Video Solution

39. Explain why a neutral object can be attracted to a charged objec. Why can this neutal object not be repelled by a charged object?
40. When a hand apporaches a charged weight suspended with a silk thread, the weight is attracted towards the hand. Why does this occur?

## - Watch Video Solution

41. How can you charge a metal sphere negatively without touching it?

## - Watch Video Solution

42. An insulating rod carries some net charge, and a copper sphere is neutral. The rod and the sphere do not touch. Can there be force of attration/repulsion between the two?
43. Neutral metal objects, especially in industry, are are often coated with electrically charged paint or powder particles. How do these particles stick on the metal objects ?

## ( Watch Video Solution

44. Figure 1(a). 24 shows two protons (symbol P) and one electron (symbol e) on a straight line AB. What is the direction of net electrostatic force on the central proton?

45. Give some points of dissimilarity similarity between electrostatic forces and gravititaonal forces.

## - Watch Video Solution

46. The electrostatic force between two charges is a central force. Why?

## - Watch Video Solution

47. How is coulomb force between two charges affected by the presence of third charge.

## - Watch Video Solution

48. If two objects repel one another, you know both carry either positive charge or negative charge. How would you determine whether these charges are positive or negative ?

## - Watch Video Solution

49. Is coulomb's law in electrostatics valld in all situations ?

## - Watch Video Solution

50. What is the cause of charging ?

## - Watch Video Solution

51. An isolated conducting sphere id given s positive charge. Does its mass increase, decrease or remain the same?

## - Watch Video Solution

52. An ebonite rod is rubbed with fur or wool. What type of charges do they acquire ?

## - Watch Video Solution

53. What is meant by quantisation of charge ?

## - Watch Video Solution

54. What do you mean by additivity of electric charge?

## - Watch Video Solution

55. what do mean by conservation of electric charge ?

## - Watch Video Solution

56. Is the total charge of the universe conserved?

## - Watch Video Solution

57. Why does an ebonite rod get negatively charged on rubbing with fur?

## - Watch Video Solution

58. A glass rod rubbed with silk acquires a charge $+1.6 \times 10^{-12} C$.

What is tha charge on the silk?
59. Name any two basic properties of electric charge.

## - Watch Video Solution

60. what is the value of charge on an electron ? Is a charge less than this value possible?

## - Watch Video Solution

61. Does motion of a body affect its charge ?

## - Watch Video Solution

62. Give two points of distinction between charge and mass.

## - Watch Video Solution

63. What is the basic cause of quantization of charge ?

## - Watch Video Solution

64. Can ever photons can have a charge? If not why?

## - Watch Video Solution

65. Which of the following quantities depends on state of rest or motion of a body : (a) mass (b) length (c ) time (d) charge density and (f) phase ?
66. Is the force acting between two point charges $q_{1}$ and $q_{2}$ kept at some distance in air, attractive or repulsive when:
(i) $q_{1} q_{2}>0$
(ii) $q_{1} q_{2}<0$

## - Watch Video Solution

67. A positively charged glass rod is brought near an uncharged pith ball penduium. What happens to the pith ball ?

## - Watch Video Solution

68. Why is it not possible to charge just one end of a metal rod ?

## - Watch Video Solution

69. Why is it easier to charge a ballon on a dry day than on a humid day?

## - Watch Video Solution

70. Does Coulomb's law of electric force obey Newton's third law of motion?

## - Watch Video Solution

71. Is the electric force between two electrons greater than the gravitaonal force between them ? If so, by what factor?

## - Watch Video Solution

72. Eletrostatic forces are much stronger than gravitatinal forces. Give one example.

## - Watch Video Solution

73. Let $\left[\epsilon_{0}\right]$ denote the dimensional formula of the permittivity of vacuum.
$M=$ mass, $L=\leq n>h, T=$ time and $A=$ elctriccurrent, then :

## - Watch Video Solution

74. Write down the value of obsolute permittivity of free space.

## - Watch Video Solution

75. What is the force of repulsion between two charges of $1 C$ each, kept $1 m$ apart in vacumm ?

## - Watch Video Solution

76. Define dielectric constant of a medium in terms of force between electric charges.

## - Watch Video Solution

77. What is the relevance of large value of $K(=81)$ for water ?

## - Watch Video Solution

78. Force of attraction between two point electric charges placed at a distance $d$ in a medium is $F$. What distance apart should these
be kept in the same medium, so that force between them becomes F/3?

## - Watch Video Solution

79. In coulomb's law, on what factors does the value of electrostatic force constant K depend ?

## - Watch Video Solution

80. When two charges $q_{1}$ and $q_{2}$ are kept at some distance apart, force acting between these charges is $F$. If a third change $q_{3}$ is placed quite close to $q_{3}$ is placed quite close to $q_{2}$ what will happen to the force between $q_{1}$ and $q_{2}$ ?
81. Consider three charged bodies $P, Q$ and $R$. If $P$ and $Q$ repel each other and $P$ attracts $R$, what is the nature of force between $Q$ and R ?

## - Watch Video Solution

82. Does the coulomb force that one charge exerts on another, charge if other charges are brought near by?

## - Watch Video Solution

83. A copper sphere of mass $2 g$ contains nearly $2 \times 10^{22}$ atoms. The charge on the nucleus of each atom is $29 e$. What fraction of the electrons must be removed from the sphere to give it a charge fo $+2 \mu C$ ?
84. Give four properties of electric charges.

## - Watch Video Solution

85. Dielectric constant of a medium is unity. What will be its permittively?

## - Watch Video Solution

86. Two small balls having equal poistive charges $Q$ ( coulomb) on each are suspended by two insulating strings of equal length L (metre) from a hook fixed to a stand. The whole set up is taken in a satellite into space where there is no gravity (state of weightlessness). The angle between the two strings is...............and the tenison in each string is $\qquad$ newtons.
87. An attractive force of $5 N$ is acting between two charges of $+2 \mu C$ and $-2 \mu C$ placed at some distance. If the charges are mutually touched and placed again at the same distance, what will be the new force, between them ?

## (D) Watch Video Solution

88. Two point charges of $+2 \mu C$ and $+6 \mu C$ repel each other with a force of $12 N$. If each is given an additional charge of $-4 \mu \mathrm{C}$, what will be the new force?

## - Watch Video Solution

89. Determine the force between two free electrons spaced 1 angstrom $\left(10^{-10} \mathrm{~m}\right)$ apart.

## Watch Video Solution

90. What is the Importance of expressing coulomb's law in vector from?

## - Watch Video Solution

91. State superposition for electrostatic force on a charge due to a number of charges.

## - Watch Video Solution

92. Two indentical metallic spheres $A$ and $B$, each carrying a charge
q repel each other with a force F. A third metallic uncharged sphere $C$ of the same size is made to touch the spheres $A$ and $B$
alternately and then removed away. What is the force of repulsion between A and B ?

## - Watch Video Solution

93. Calculate force on an electron in a unifrom field of $5 \times 10^{4} \mathrm{~N} / \mathrm{C}$ due north.

## - Watch Video Solution

94. What is a shark POD ?

## - Watch Video Solution

95. Charges $\pm 20 \mathrm{nC}$ are separated by 5 mm . Calculate the magnitude and direction of dipole moment.
96. Two charges of $\pm 1000 \mu \mathrm{C}$ are separated by 2 mm . This dipole so formed is held at an angle of $30^{\circ}$ with a uniform electric field of $15 \times 10^{4} N / C$. Calculate the torque acting on the dipole.

## - Watch Video Solution

97. A dipole consists of an electron and a proton separated by a distance of $5 \times 10^{-9} \mathrm{~m}$. The dipole is aligned in a uniform electric field of $1.44 \times 10^{4} \mathrm{~N} / \mathrm{C}$. Calculate potential energy of dipole to hold it at $60^{\circ}$ with the direction of electric field.

## - Watch Video Solution

98. Calculate the electric field strength which is required to just support a water drop of mass $10^{-3} \mathrm{~kg}$ and having a charge $1.6 \times 10^{-19} C$.

## - Watch Video Solution

99. A particle of mass $10^{-4} \mathrm{~kg}$ and charge $5 \mu \mathrm{C}$ id thrown at a speed of $20 \mathrm{~m} / \mathrm{s}$ against a uniform electric field of strength $2 \times 10^{5} \mathrm{NC}^{-1}$. How much distance will it travel before coming to rest momentarily?

## - Watch Video Solution

100. A free pith ball of mass 6 g carries a positive charge of $(1 / 3) \times 10^{-7} C$. What is the nature and magnitude of charge that
should be given to a second pith ball fixed 5 cm vertically below the former pith ball so that the upper pith ball is stationary.

## - Watch Video Solution

101. A small sphere of mass $1 g$ carries a charge of $+6 \mu C$. The sphere is suspended by a string in an electric field of $400 \mathrm{NC}^{-1}$ acting downwards. Calculate tension in the string. What will be the tension if charge on the sphere were $-6 \mu C$ ?

## - Watch Video Solution

102. An electron falls through a distance of 1.5 cm in a uniform electric field of value $2 \times 10^{4} N / C$, opposite to direction of fall.

Compare the time of fall with 'free fall under gravity'.
103. A charged particle of charge $2 \mu C$ and mass 10 milligram, moving with a velocity of $1000 \mathrm{~m} / \mathrm{s}$ enters a uniform electric field of strength $10^{3} \mathrm{~N} / \mathrm{C}$ directed perpendicular to its direction of motion.

Find the velocity and displacement of the particle after 10 s.

## - Watch Video Solution

104. Two point charges $+6 q$ and $-8 q$ are placed at the vertices $B$ and $C$ of an equilateral triangle $A B C$ of side $a$. Obtain an expression for magnitude and direction of resultant electric field at the vertex $A$ due to these two charges.

## - Watch Video Solution

105. Two charges each of $1 \mu \mathrm{C}$ but opposite in sign are 1 cm apart.

Calculate electric field at a point distant 10 cm from the mid point
on axial line of the dipole.

## - Watch Video Solution

106. Two charges $+20 \mu \mathrm{C}$ and $-20 \mu \mathrm{C}$ are held 1 cm apart. Calculate the electric field at a point on the equatorial line at a distance of 50 cm from the center of the dipole.

## - Watch Video Solution

107. What is the magnitude of electric intensity due to a dipole of moment $2 \times 10^{-8} C-m$ at a point distant 1 m from the centre of dipole, when line joining the point to the center of dipole makes an angle of $60^{\circ}$ with diople exis ?
A. $191 \cdot 1 N / C$
B. $238 \cdot 1 N / C$
C. $400 \mathrm{~N} / \mathrm{C}$
D. $840 \mathrm{~N} / \mathrm{C}$

## Answer: B

## - Watch Video Solution

108. Two charges $\pm 10 \mu \mathrm{C}$ are placed $5 \cdot 0 \mathrm{~mm}$ apart. Determine the electric field at (a) point $P$ on the axis of dipole 15 cm away from its center on the side of the positive charge. As shown in Figure and at (b) a point Q .15 cm away form O on a line passing through O and a line passing through O and

normal to the axis of the dipole as shown in Fig.

## - Watch Video Solution

109. The electric field due to a short dipole at a distance $r$, on the axial line, from its mid point is the same as electric field at a distance $r^{\prime}$ on the equatorail line, from its mid point. Determine
the ratio $r / r^{\prime}$ oon the equatorial line, from its mid point. Determine the ratio $r / r^{\prime}$.

## - Watch Video Solution

110. Two charges $\pm 10 \mu \mathrm{C}$ are placed $5 \times 10^{-3} \mathrm{~m}$ apart. Determine the electric field at a point $Q, 0 \cdot 15 m$ away from O , on a line passing through O and normal to the axis of the diople.

## - Watch Video Solution

111. An electric dipole consists of two charges of $0.1 \mu C$ separated by a distance of 2.0 cm . The dipole is placed in an external field of $10^{5} \mathrm{NC}^{-1}$. What maximum torque does the field exert on the dipole?
112. An electric dipole of moment $5 \times 10^{-8} \mathrm{C}-\mathrm{m}$ is aligned in a uniform electric field of $1.44 \times 10^{4} N / C$. Calculate potenitial energy of the diople at $60^{\circ}$ with the direction of electric field.

## - Watch Video Solution

113. A diople consisting of an electron and a proton separated by a distance of $4 \times 10^{-10} \mathrm{~m}$ is situated in an electric field of intensity $3 \times 10^{5} \mathrm{NC}^{-1}$ at an angle of $30^{\circ}$ with the field. Calculate the diople moment and the torque acting on it. Charge e on an electron $=1 \cdot 6 \times 10^{-19} C$.

## - Watch Video Solution

114. An electric dipole of dipole moment $4 \times 10^{-5} \mathrm{Cm}$ is placed in a uniform electric field of $10^{-3} \mathrm{~N} / \mathrm{C}$ making an angle of $30^{\circ}$ with the
direction of the field. Determine the torque exerted by the electric field on the dipole.

## - Watch Video Solution

115. Three charges, each equal to $q$, are placed at the three. corners of a square of side a. Find the electric field at. the fourth corner.

## - Watch Video Solution

116. A pendulum bob of mass 80 mg and carrying a charge of $2 \times 10^{-8} \mathrm{C}$ is at rest in a uniform, horizontal electric field of 20 k $\mathrm{Vm}^{-1}$. Find the tension in the thread.

## - Watch Video Solution

117. An inclinded plane making an angle of $30^{\circ}$ with the horizontal electric field of $100 \mathrm{Vm}^{-1}$ as shown in Figure. A particle of mass 1 kg and charge $0 \cdot 01 C$ is allowed to slide down from rest from a height of 1 m . If the coefficient of friction is $0 * 2$, find time taken by the particle to reach the bottom.


## - Watch Video Solution

118. A point charge $+Q$ is placed in the vicinity of a conducting surface. Draw the electric field lines between the surface and the charge.

## (- Watch Video Solution

119. Figure shows the electirc field lines for two point charges separated by a distance. What are the signs of $q_{1}$ and $q_{2}$ ? Can you determine the ratio $q_{1} \mid q_{2}$ ?


## - Watch Video Solution

120. (a) An electrostaic field line is a continous curve. That is a field line cannot have sudden breaks. Why not ?
(b) explain why two filed lines never cross each other at any point.

## - Watch Video Solution

121. When does a charged circular loop behave as a point charge.

## - Watch Video Solution

122. Why is direction of an electric field taken outward for a possitive charge and inward for a negative charge.

## - Watch Video Solution

123. Can electric field lines of force form closed loops? Give reason for your answer.

## - Watch Video Solution

124. Two protons $A$ and $B$ are placed in between the two plates of a parallel plate capacitor charged to a potential difference V as shown in the figure. The forces on the two protons are identical.

125. A point charge placed at any point on the axis of an electric dipole at some large distance experiences a force $F$. What will be the force acting on the point charge when its distance from the dipole is doubled.

## - Watch Video Solution

126. What is electric field intensity at a point at a distance $r$ meter from q coulomb of a charge in free space?

## - Watch Video Solution

127. A point charge $q$ is placed at the origin. How does the electric field due to the charge very with distance $r$ from the origin ?

## - Watch Video Solution

128. Is electric field inensity a scalar or vector quantity? Give its
S. I. unit.

## - Watch Video Solution

129. Write the dimensional formula of electric field.S

## - Watch Video Solution

130. A proton is placed in a unifrom electric field directed along the positive $x$-axis. In which direction will it tend to move?

## - Watch Video Solution

131. Name any four vector fields.
132. How does a free electrons at rest move in an electric filed.

## - Watch Video Solution

133. Four charges of same magnitude and same sign are placed at the corners of a square, of each side $0 \cdot 1 m$. What is electric field intensity at the center of the square?

## - Watch Video Solution

134. Force experienced by an electron in an electric field $\vec{E}$ is $F$ newton. What will be the force experiended by a proton in the same field ?

Take mass of proton 1836 times the mass of an electron.
135. What is the use of the concept of electric field intensity ?

## (D) Watch Video Solution

136. Name the physical quanity whose SI unit is $N C^{-1}$ ?

## - Watch Video Solution

137. Why is electric field intensity inside a charged conductor zero
?

## - Watch Video Solution

138. Draw electric lines of forces due to an electic dipole.

## - Watch Video Solution

139. Two point charges of $+3 \mu C$ each are 100 cm apart. At what point on the line joining the charges will the electric intensity be zero?

## ( Watch Video Solution

140. What is nature of sysmmetry of field due to a point charge ?

## - Watch Video Solution

141. When is an electric line of force straight ?
( Watch Video Solution
142. When is an electric line of force straight ?

## - Watch Video Solution

143. Define electric dipole moment. Write its SI unit ?

## - Watch Video Solution

144. What is an ideal dipole?

## ( Watch Video Solution

145. In which orientation, a diole placed, in a uniform field is in (i) stable (ii) unstable equilibrioum?
146. what is the net force on a dipole in a uniform electric field ?

## - Watch Video Solution

147. How does a torque affect the dipole in an electric field ?

## - Watch Video Solution

148. Which rule gives you the direction of torque?

## - Watch Video Solution

149. What happens when an electirc dipole is held in a non uniform electric field ?
150. At what points, dipole field intensity is parallel to the line joining the charges?

## - Watch Video Solution

151. How much is the diople moment of non-polar molecule?

## - Watch Video Solution

152. When does an electric dipole placed in a non-uniform electirc field experience a zero torque but non-zero force.

## - Watch Video Solution

153. When is the torque on a dipole in a field maximum ?
154. Will an electric dipole have translational motion when placed in a non -uniform electric field? Give reason for your answer.

## - Watch Video Solution

155. Why no two electric lines of force can interscet each other ?

## - Watch Video Solution

156. Why do we obtain a neutral point in the space between two
like charges ?

- Watch Video Solution

157. Define electric field intensity at a point.

## - Watch Video Solution

158. Give two properties of electric field lines.

## - Watch Video Solution

159. A charged particale is free to move in an electric field. Will it always move along an electric line of force ?

## - Watch Video Solution

160. What does $\left(q_{1}+q_{2}\right)=0$ signify ?
161. An electric dipole is placed at rest in a uniform electric field, and released. How will it move?

## - Watch Video Solution

162. Define the term electrons diople moment. Is it scalar or vector ?

## - Watch Video Solution

163. what is the direction of field intensity at a point (i) on axail line of dipole and (ii) equatorial line of diople?

## - Watch Video Solution

164. what is the nature of sysmmetery of the electric field due to (i) point charge and (ii) electric dipole ?

## - Watch Video Solution

165. when an electric dipole is suspended in a uniform electric field, then under what conditions the dipole is in (i) stable equilibrium and (ii) unstable equaliibrium.

## - Watch Video Solution

166. Show that when an electric dipole is placed in a uniform electric field $\vec{E}$, petential energy $U$ is given by $U=-\vec{P}, \vec{E}$
167. An electric dipole is held at an angle $\theta$ in a uniform electric field E. Will there be any (i) net translating force (ii) torque acting on in ? Explain.

## - Watch Video Solution

168. A Uniform electric field of $10 N C^{-1}$ exists in the vertically downward direction. Find the increase in the electric potential as one goes up through a height of 50 cm .

## - Watch Video Solution

169. The electric potential $V$ at any point $x, y, z$ (all in metre) in space is given by $V=4 x^{2}$ volt. The electric field at the point $(1 m, 0,2 m)$ is
$\qquad$
170. What do you understand by ECG and EEG ? What is their basis ?

## - Watch Video Solution

171. Three charges $+q, 2 q$ and $-4 q$ are placed on the three vertices of an equale-laterail triangle of each side0 $\cdot 1 m$. Calculate electrostatic potential energy of the system, take $q=10^{-7} C$

## - Watch Video Solution

172. The total electric flux emanating from a closed surface enclosing an alpha particale ( $e=$ electronic chage) is

## - Watch Video Solution

173. A surface element $\overrightarrow{d S}=5 \hat{i}$ is placed in an electric field $\vec{E}=4 \hat{i}+4 \hat{j}+4 \hat{k}$. What is the electric flux emanating from the surface?
A. 20units
B. 25 units
C. 10units
D. 15units

## Answer: A

## - Watch Video Solution

174. $S_{1}$ and $S_{2}$ are two bellow concentric spheres enclosing $Q$ and $3 Q$ respectively as shown in Figure. What is the ration of electric flux through $S_{1}$ and $S_{2}$ ? What would be electric flux
through $S_{1}$ ? If air inside $S_{1}$ is replaced by a medium of dielectric constant 3 ?

## - Watch Video Solution

175. A uniform electric field exists in space. Find the electric flux of the filed thourgh curved surface area of the cyclinder with its axis paralel to the field.

## - Watch Video Solution

176. A charge of $17 \cdot 7 \times 10^{-4} C$ is distributed over a large sheet of area $400 m^{2}$. Calculate the electric field intensity at a distance of 10 cm from it.

## - Watch Video Solution

177. The potential difference between a cloud and the Earth is $10^{7} \mathrm{~V}$. Calculate the amount of energy dissipated when the charge of 100 C is transferred from the cloud to the ground due to lighting bolt.
A. zero
B. $10^{7} \mathrm{~J}$
C. $10^{9} \mathrm{~J}$
D. $10^{5} \mathrm{~J}$

## Answer: C

## - Watch Video Solution

178. If 20 J of work has to be done to move an electric charge of 4 C from a point, where potential is 10 V to another point, where potential is V volt, find the value of v .

## - Watch Video Solution

179. If a point charge $+q$ is taken first from $A$ to $C$, and then from $C$ to $B$ of a circle drawn with another point charge $+q$ at the center
(Fig) then along which path more work will be done ?


## D Watch Video Solution

180. Two metallic spheres of radii $R$ and $2 R$ are charged so that both of these have same surface charge density, $\sigma$. If they are connected to each other with a conducting wire, in which direction will the charge flow and why?

## - Watch Video Solution

181. Electric field intensity at a point $B$ due to a point charge $Q$ kept at a point charge $Q$ kept at point A is $24 N C^{-1}$, and electric potential at B due to the same charge is $12 \mathrm{JC}^{-1}$. Calculate the distance $A B$ and magnitude of charge.
182. Calculate the electric potential at the center of a square of side $\sqrt{2} m$, having charges $100 \mu c,-50 \mu C, 20 \mu c$ and $-60 \mu C$ at the four corners of the square.

## - Watch Video Solution

183. Determine the electric potential at the surface of a gold nucleus. The radius is $6.6 \times 10^{-15} \mathrm{~m}$ and the atomic number $Z=79$.

Given charge on proton $1.6 \times 10^{-19} \mathrm{C}$.

## - Watch Video Solution

184. A metal wire is bent in a circle of radius 10 cm . It is given a charge $200 \mu \mathrm{C}$ which is spread on it uniformly. Calculate the electric potential at its center.
185. The electric potential at 0.9 m from a point charge is +50 V .

What is the magnitude and sign of the charge ?

## - Watch Video Solution

186. (a) Calculate the potential at a point $P$ due to a charge of $4 \times 10^{-7} \mathrm{C}$ located 9 cm away.
(b) Hence obtain the work done in bringing a charge of $2 \times 10^{-9} \mathrm{C}$ from infinity to the point P. Does the answer depend on the path along which the charge is brought ?

## - Watch Video Solution

187. An infinite number of charges each numerically equal to $q$ and of the same sign are placed along the $x$-axis at
$x=1, x=2, x=4, x=8$ and so on. Find electric potential at $x=0$.

## - Watch Video Solution

188. Two charges $3 \times 10^{-8} \mathrm{C}$ and $-2 \times 10^{-8} \mathrm{C}$ are located 15 cm apart. At what point on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.

## - Watch Video Solution

189. A charge $q=+1 \mu C$ is held at 0 between two points $A$ and $B$ such that $A O=2 \mathrm{~m}$ and $B O=1 \mathrm{~m}$ Calculate the value of potential differences $\left(V_{A}-V_{B}\right)$. What will be the value of potential
differences $\left(V_{A}-V_{B}\right)$ if position of B is charged as shown in Fig ?


## - Watch Video Solution

190. Four point charges $+1 \mu C,+1 \mu C,-1 \mu C$ and $-1 \mu C$ are placed at the corners $A, B, C$ and $D$ of a square of each side 0.1 m (i) Calculate electric potential at the center $O$ of the square (ii) If $E$ is middle point of BC , what is work done in carrying an electron from O to E ?
191. An ammonia molecule has permanent electric dipole moment $=1.47 \mathrm{D}$, where $1 \mathrm{D}=1$ debye unit $=3.34 \times 10^{-30} \mathrm{Cm}$. Calculate electric potential due to this molecule at a point 52.0 nm away along with axis of the dipole. Assume $\mathrm{V}=0$ at infinity.

## - Watch Video Solution

192. To what potential, must we charge an insulated sphere of radius 14 cm so that its surface charge density of $1 \mu \mathrm{Cm}^{-2}$ ?

## - Watch Video Solution

193. Calculate the voltage needed to balance on all drop carrying

10 electrons when located between the plates of a capacitor which are 5 mm apart. Mass of oil drop is $3 \times 10^{-16} \mathrm{~kg}\left(\right.$ take $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

## (D) Watch Video Solution

194. A small particale carying a negative charge of $1.6 \times 10^{-19} \mathrm{C}$ ia suspended in equilibrium between the horizontal metal plates 5 cm apart, having a potential difference of 3000 V across them.

Find the mass of the particle.

## - Watch Video Solution

195. Two identical plane metallic surfaces $A$ and $B$ are kept parallel to each other in air separated by a distance of 1.0 cm as shown in
fig. Surface $A$ is given a positive potential of 10 V and the outer surface of $B$ is earthed. (i) What is the magnitude and direction of uniform electric field between points $Y$ and $Z$ ?
(ii) What is work done in moving a charge of $20 \mu c$ from point X to

Y , where X is situated on surface A ?


## - Watch Video Solution

196. Three points $A, B, C$ lie in a uniform electric field $E$ of $5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ as shown in Fig. Find the potential difference between

## $A$ and $C$.



## - Watch Video Solution

197. Two positive point charges of $0.2 \mu C$ and $0.01 \mu C$ are placed 10 cm apart. Calculate the work done in reducing the distance to 5 cm.

## - Watch Video Solution

198. Two point charges $20 \times 10^{-6} \mathrm{C}$ and $-4 \times 10^{-6} \mathrm{C}$ are separated by a distance of 50 cm in air, Find (i) the point on line joining the charges, where the electrostatic potential is zero (ii) Also, Calculate the electrostatic potential energy of the system.

## - Watch Video Solution

199. The kinetic energy of a charged particle decreased by 10 J as it moves from a point at potential 100 V to a point at potential 200 V . Find the charge on the particle.

## - Watch Video Solution

200. Two particles have equal masses of 5.0 g each and opposite charges of $+4.0 \times 10^{-5} \mathrm{C}$. They are released from rest with a
separation of 1.0 m between them. Find the speeds of the particles when the separation is reducced to 50 cm .

## - Watch Video Solution

201. Four charges are arranged at the corners of a square $A B C D$ pf side d, as shown in Fig. Find the work required to put together this arrangement (b) A charge $q_{0}$ brought to the center E of the square, the four charges being held fixed at the corners. How
much extra work in needed to do this ?


## - Watch Video Solution

202. (a) Determine the electrostatic potential energy of a system consisting of two charge $7 \mu C$ and $-2 \mu C$ (and with no external filed) placed at ( $-9 \mathrm{~cm}, 0,0$ ) and $(9 \mathrm{~cm}, 0,0)$ respectively.
(b) How much work is required to separate the two charges
infinitely away from each other?
(c) Suppose that the same system of charges is now placed in an external electric field $E=A \times 1 / r^{2}$, where $A=9 \times 10^{5} \mathrm{Cm}^{-2}$.

What would the electrostatic energy of the configuration be ?

## - Watch Video Solution

203. Three point charges $+Q,+2 Q$ and $-3 Q$ are placed at the vertices of an equilateral triangle $A B C$ of side I. If these charges are displaced at the find points $A_{1}, B_{1}$ and $C_{1}$ respectively, find the amount of work done in shifting the charges to their new positions.

## - Watch Video Solution

204. $S_{1}$ and $S_{2}$ are two concentric spheres enclosing charges $Q$ and $2 Q$ respectively as shown in Fig.

(i) What is the ratio of electric flux through $S_{1}$ and $S_{2}$ ?
(ii) How will the electric flux through the sphere $S_{1}$ charge, If a medium of dielectric constant $K$ is introduced in the space inside $S_{1}$ in place of air?
(iii) How wil the electric flux through sphere $S_{1}$ change, if a medium of dielectric constant K is introduced in the space Inside $S_{2}$ in place of air?

## - Watch Video Solution

205. Consider a uniform electric field $E=3 \times 10^{3} \hat{i} N / C$. (a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane ? (b) What is the flux through the same square if the normal to its plane makes a $60^{\circ}$ angle with the $x$-axis ?

## - Watch Video Solution

206. The electric field componets due to a charge inside the cube of side 0.1 m are $E_{x}=\alpha x$, where $\alpha=500(N / C) m^{-1}$,
$E_{y}=0, E_{z}=0$. Calculate the flux through the cube and the charge inside the cube.

## - Watch Video Solution

207. Consider a unifrom electric field $\vec{E}=4 \times 10^{3} \hat{i} N C^{-1}$ (i) What is the flux of this field thorough a square of side 10 cm on a side whose plane is parallel to $Y$-Z plane? (ii) What is the flux through the same square if normal to this plane makes an angle of $60^{\circ}$ with the $X$-axis ?

## - Watch Video Solution

208. Careful measurements of the electric field at the surface of a box inidcates that the net outward flux through the surface of box is $60 \times 10^{3} \mathrm{Nm}^{2} \mathrm{C}^{-1}$. Find (i) the net charge inside the box ? (ii) If the net outward flux through the surface of box were zero, could you conclude that there were no charges inside the box ? Explain your answer.
209. A uniformly charged conducting sphere of 2.4 m diameter has a surface charge density of $180.0 \mu C / M^{2}$ (ii) Find the charge on the sphere. (ii) what is the total flux leaving the surface of the sphere ?

## - Watch Video Solution

210. A charge $Q$ is placed at a distance $\frac{\alpha}{2}$ above the centre of a horizontal, square surface of edge a as shown in figure (30-E1). Find the flux of the electric field through the square surface.

## - Watch Video Solution

211. The electric field componenets in Fig are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0$ in which $\alpha=800 N / C-m^{1 / 2}$. Consider the cube shown in Fig. Calculate (a) the flux $\phi_{E}$ through the cube, and
(b) the charge within the cube. Assume that $a=0.1 \mathrm{~m}$.


## D View Text Solution

212. An electric field is uniform, and in the positive $x$-direction for positive x , and uniform with the same magnitude, but in the negative $x$-direction for negative $x$. It is given that
$\vec{E}=200 \hat{i} N / C f$ or $x>0$ and $\vec{E}=-200 \hat{i} N / C$ for $x$ gt 0 . A right circular cylinder of length 20 cm and raidus 5 cm has its center at the origin and its axis along the $x$-axis so that one face is at $x=+10 \mathrm{~cm}$ and the other is at $x=-10 \mathrm{~cm}$.
(a) What is the net outward flux through the side of the cylinder ?
(b) What is the net outward flux through the cyclinder? (c) what is net charge inside the cylinder ?

## - Watch Video Solution

213. According to early model of an atom,the atom is considered it to have a positively charged point nucleus of charge $Z e$ surrounded by a uniform density of negative charge up to a radius $R$. The atom as a whole is neutral. The electric field at a distancer
from the nucleus is $(r<R)$


## - Watch Video Solution

214. A hollow cylindrical box of length $1 m$ and area of cross section $25 \mathrm{~cm}^{2}$ is placed in a three dimensional co-ordinate system as shown in Fig, The electric field in the
region is given by $\vec{E}=50 x \hat{\dot{i}}$, where E is in $N C^{-1}$ and x is in meter.

Find
(i) Net flux through the cylinder
(ii) Charge enclosed by the cylinder.

A. (i) $0.625 \mathrm{Nm}^{2} / \mathrm{C}$, (ii) $3.506 \times 10^{-12} \mathrm{C}$
B. (i) $0.125 \mathrm{Nm}^{2} / \mathrm{C}$, (ii) $1.106 \times 10^{-12} \mathrm{C}$
C. (i) $0.330 \mathrm{Nm}^{2} / \mathrm{C}$, (ii) $2.550 \times 10^{-12} \mathrm{C}$
D. (i) $2.125 \mathrm{Nm}^{2} / \mathrm{C}$, (ii) $6.106 \times 10^{-12} \mathrm{C}$

Answer: B
215. An infinite line charge produces a field of $19 \times 10^{4} N C^{-1}$ at a distance of 5 cm . Calculate the linear charge density.
A. $1.5 \mu \mathrm{C} / \mathrm{m}$
B. $1.0 \mu \mathrm{C} / \mathrm{m}$
C. 0
D. $0.5 \mu \mathrm{C} / \mathrm{m}$

## Answer: D

## - Watch Video Solution

216. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $19 \times 10^{-22} \mathrm{Cm}^{-2}$.

What is $E(a)$ to the left of the plates (b) to the right of the plates
(c) between the plates?

Here, $\sigma=19 \times 10^{-22} \mathrm{Cm}^{-2}$

## - Watch Video Solution

217. A plastic rod of length 2.2 m and radius 3.6 mm carries a negative charge of $3.8 \times 10^{-7} \mathrm{C}$ spread uniformly over its surface. What is the electric field near the mid-point of the rod, at a point on its surface?
A. $8.6 \times 10^{5} \mathrm{~N} / \mathrm{C}$
B. $-8.6 \times 10^{-5} \mathrm{~N} / \mathrm{C}$
C. $8.6 \times 10^{-5} N / C$
D. $-8.6 \times 10^{5} \mathrm{~N} / \mathrm{C}$

## Answer: D

218. A large plane sheet of charge having surface charge density $5 \times 10^{-16} \mathrm{Cm}^{-2}$ lies in XY plane. Find electric flux through a circular area of radius 1 cm Given normal to the circular area makes an angle of $60^{\circ}$ with Z-axis.
A. $5.26 \times 10^{-9} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
B. zero
C. $4.44 \times 10^{-9} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
D. None of these

## Answer: C

219. Two large metal plates each of area $1 \mathrm{~m}^{2}$ are placed facing each other at a distance of 5 cm and carry equal and opposite charges on their faces. If the electric filed between the plates is $1000 N C^{-1}$, find the charge on each plate.

## - Watch Video Solution

220. IN fig, calculate the total flux of the electrostatic field through the spheres $S_{1}$ and $S_{2}$. The wire AB shown here has a linear charge density $\lambda$. Given by $\lambda=k x$, where x is the distance measured along
the wire from end $A$.


## - Watch Video Solution

221. An indinitely long positively charged wire has a linear charge density $\lambda \mathrm{cm}^{-1}$. An electron is revolving around the wire as its center with a constant velocity in a circular plane perpendicular to the wire. Deduce the expression for KE of electron. Plot a graph of K.E as a function of charge density $\lambda$.

## - Watch Video Solution

222. Fig shows a closed surface surrounding some electric charges
(a) what is the net electric flux through the surface? (b) Is the electric flux directed inward or outward from the surface?

- $-3.2 \mu \mathrm{C}$ $-+6.7 \mu \mathrm{C}$


## D Watch Video Solution

223. Two charges $4 \mu C$ and $-4 \mu C$ are placed at $(-3,0,0)$ and $(3,0,0) \mathrm{cm}$ respectively in an external field given by
$E=\frac{9 \times 10^{6}}{r^{2}} \mathrm{Cm}^{-2}$, Find the energy of the system in this external field.
A. $-2.4 J$
B. 2.4 J
C. 0
D. -1.4 J

## Answer: A

## - Watch Video Solution

224. An electric is fired directly towards the center of a large metal
plate that has excess negative charge with surface charge density $=2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. If the initial kinetic energy of electron of electron is 100 eV and if it is to stop due to repulsion just as it reaches the plate, how far from the plate must it be fired ?

## (D) Watch Video Solution

225. Three charges 0.1 coulomb each are placed on the corners of an equilateral triangle of side 1 m . If the energy is supplied to this system at the rate of 1 kW how much time would be required to move one to the charges on to the midpoint of the line joining the two ?

## - Watch Video Solution

226. $A$ wire $A B$ of length $L$ has linear charge density $\lambda=K x$, where $x$
is measured from the end $A$ of the wire. This wire is enclosed by a
Gaussian hollow surface. Find the expression for electric flux
through the surface'.
A. $\frac{K L^{2}}{2 \varepsilon_{0}}$
B. $\frac{K L}{2 \varepsilon_{0}}$
C. $\frac{K L^{2}}{\varepsilon_{0}}$
D. $\frac{K L}{\varepsilon_{0}}$

## Answer: A

## - Watch Video Solution

227. Express the unit of electric potential in terms of the basic units of S.I.

## - Watch Video Solution

228. Is the electrostatic potential necessarily zero at a point where the electric field strength is zero? Give an example to illustrate your answer,
229. Can there be a potential difference between two adjacent conductors that carry same amount of positive charge ?

## - Watch Video Solution

230. A point charge $Q$ is placed at the point $O$ as shown in Fig. Is the potential difference $\left.(V)_{A}-V_{B}\right)$ positive, negative or zero if $Q$ is
(i) possible (ii) negative?

231. Two large parallel thin plates having uniform charge densities $+\sigma$ and $-\sigma$ are kept in X-Z plane at a distance d apart. Sketch an equipotential surface due to electric field between the plates. If a particle of mass $m$ and charge $-q$ remains stationary between the plates, what is the magnitude and direction of the filed ?

## - Watch Video Solution

232. Can we produce high voltage on the human body without getting a shock?

## - Watch Video Solution

233. The electrostatic field due to a point charge depends on the distance $r$ as $\left(l / r^{2}\right)$. Similarly, indicates how each of the following quantities depends on $r$ : (a) Intensity of light from a point source
(b) Electrostatic potential due to a point source (c) Electrostatic potential due to a distance $r$ from the center of a charged metallic sphere of radius $\mathrm{R}(r<R)$.

## ( Watch Video Solution

234. A metal sphere A of radius a is charged to potential V . What will be its potential if it is enclosed by a spherical conducting shell B of radius b and the two are connected by a wire ?
A. $\frac{b}{a} V$
B. $\frac{a}{b} V$
C. $\frac{a^{2}}{b} V$
D. $\frac{a}{b^{2}} V$

Answer: B
235. Fig. 1 shows the variation of electric potential V with $1 / r$, where $r$ is the distance from the two charges $Q_{1}$ and $Q_{2}$. Determine

(i) signs of two charges $Q_{1}$ and $Q_{2}$
(ii) Which of the two charges has a larger magnitude ? Justify.
236. State whether the electric potential at the center of the squares shown in Fig. (i) and (ii) is same or different.

## - Watch Video Solution

237. $n$ charged drops, each of radius $r$ and charge $q$, coalesce to from a big drop of radius $R$ and charge $Q$. If $V$ is the electric potential and $E$ is the electric field at the surface of a drop, then.

## - Watch Video Solution

238. Suggest a configuration of three point charges separated by finite distances that has zero electric potential energy.

## - Watch Video Solution

239. If a point charge is taken throgh some distance in a circle around a charge q , what will be the the work done?

## - Watch Video Solution

240. Two charges of magnirude $-2 Q$ and $+Q$ are located at points $(a, 0)$ and $(4 a, 0)$ respectively .

What is the electric flux due to charges through a sphere of radius
' 3 a' with its center at the origin.

## - Watch Video Solution

241. A sphere $S_{1}$ of radius $r_{1}$ encloses a total charge Q . If there is another concentric sphere $S_{2}$ of radius $r_{2}\left(>r_{1}\right)$ and there be no additional charges between $S_{1}$ and $S_{2}$ find the ration of electric flux through $S_{1}$ and $S_{2}$,

## - Watch Video Solution

242. A spherical rubber ballon carries some charge distributed uniformly over its surface. The balloon is blown up to increase in its size. How does the total electric flux coming out of the surface change?

## - Watch Video Solution

243. A charge $q$ is moved from a point $A$ above a dipole moment $p$ to a point $B$ below the dipole on equatorial plane without
acceleration. Find the work done in the process.


## - Watch Video Solution

244. Define the unit of electric potential.

## - Watch Video Solution

245. $I N$ a conductor, a point $P$ is at higher potential than another point Q. In which direction do the electrons move?
246. How much is the electric potential of a charge at a point at Infinity?

## ( Watch Video Solution

247. What are the points at which electric potential of a dipole has
(i) maximum value (ii) minimum value ?

## - Watch Video Solution

248. Can you say that earth is an equipotential surface ?

- Watch Video Solution

249. How much work is doen in moving a $500 \mu \mathrm{C}$ charge between two points on an equipotential surface?

## - Watch Video Solution

250. Name the physical quanity which has its unit joule coomb ${ }^{-1}$. Is it a scalar or vector?

## - Watch Video Solution

251. In a certain $0.1 m^{3}$ of space, electric potential is found to be 5 V throughout. What is the electric field in this region?
A. $50 \mathrm{~V} / \mathrm{m}$
B. zero
C. $0.5 \mathrm{~V} / \mathrm{m}$
D. None of these

## Answer: B

## - Watch Video Solution

252. Will there be any effect on potential at a point if the medium around this point is changed ?

## - Watch Video Solution

253. Electric potential at any point in equatorial plane of a dipole is $\qquad$
254. The middle point fo a conductor is earthed and its ends are maintained at a potential at the two ends at the middle point?

## - Watch Video Solution

255. Do electrons tend to go to regions of high potential ?

## - Watch Video Solution

256. Suppose that the earth has a net charge that is not zero. Is it still possible to adapt the earth as a standard reference point if potential and assign the potental $\bigvee=0$ to it?

## - Watch Video Solution

257. The dimensional formula for electric potential is

## - Watch Video Solution

258. A hollow metal sphere of radius 5 cm is charged such that the potential on its surface is 10 V . The potential at the center of the sphere is -

## - Watch Video Solution

259. Electric field due to an electric dipole is cylindrically symmetric. Comment.

## - Watch Video Solution

260. Write an expression for potential at a point $\mathrm{P}(r)$ due to two
point charges $q_{1}$ and $q_{2}$ at $r_{1}$ and $r_{2}$ respectivley.
261. Draw an equipotential surface for a uniform electric field.

## - Watch Video Solution

262. Can two equipotential surfaces cut each other?

## - Watch Video Solution

263. what is the SI unit of line interfral of electric field?

## - Watch Video Solution

264. What work must be done in carrying an $\alpha$ - pariclae across a

## - Watch Video Solution

265. Define the term potential energy of charge $q$ at a distance $r$ in an external electric field.

## - Watch Video Solution

266. What will be the electrostatic potential energy of the dipole, when placed at right angle to the field ?

## - Watch Video Solution

267. Give expression for 'potential energy' of charge ' $q$ ' at a distance ' $r$ ' in an external electric filed?
268. How many electron- volt make one joule?

## - Watch Video Solution

269. What is the potential energy of two equal negative point charges $2 \mu C$ each held $1 m$ apart in air ?
A. 0.018 J
B. 0.036 J
C. zero
D. None of these

## Answer: B

270. No work is done in moving a test charge over an equipotential surface, why?

## - Watch Video Solution

271. 5 J of work is done in moving a positive charge of 0.5 C between two points. What is the potential difference between these points ?

## - Watch Video Solution

272. A charge of $+1 C$ is placed at the centre of a spherical shell of radius 10 cm . What will be the work done in moving a charge of $+1 \mu C$ on its surface through a distance of 5 cm ?
273. When a $2 \mu C$ charge is carried from point $A$ to point $B$, the amount of work done by the electric field is $50 \mu \mathrm{~J}$. What is the potential difference and which point is at a higher potential ?

## - Watch Video Solution

274. What is the work done in moving a test charge $q$ through a distance of 1 cm along the equatorial axis of an electric dipole ?

## - Watch Video Solution

275. Define the term potential energy of charge $q$ at a distance $r$ in an external electric dipole?

## D Watch Video Solution

276. Name the principle which is mathematical equivlanet fo coulomb's law and superposition principle.

## - Watch Video Solution

277. If the radius of the Gaussion surface enclosing a charge $q$ is halved, how does the electric flux through the Gaussion surface change?

## - Watch Video Solution

278. A charge $q$ is placed at the centre of a cube of side I what is the electric flux passing through two opposite faces of the cube ?

## - Watch Video Solution

279. Two concentric spherical shells of radii $R$ and $2 R$ are given charges $Q_{1}$ and $Q_{2}$ respectively.

The surfaces charge densities of the outer surfaces are equal. Determine the ratio $Q_{1}: Q_{2}$.
A. 1:2
B. $4: 1$
C. 1:4
D. $2: 1$

## Answer: C

## - Watch Video Solution

280. Can Gauss's law in electrostatics tell us exactly where the charge is located within the Gaussian surface?
281. Fig shows three point charges $+2 q,-q$ and $+3 q$, What is the electric flux due to this configuration thorugh the surface $S$ ?


## - Watch Video Solution

282. What is the relation between electric intensity and electric flux?
283. What is the number of electric lines lines of force that radiate outwards from one coulomb of charge in vacumm?

## - Watch Video Solution

284. What is the SI unit of surface intergal of electric field ?

## - Watch Video Solution

285. An electric dipole of diople moment $20 \times 10^{-6} \mathrm{Cm}$ is enclosed by a closed surface. What is the net electric flux coming out of the surface?

## - Watch Video Solution

286. Two plane sheets of charge densities $+\sigma$ and $-\sigma$ are kept in air as shown in Fig. What are electric field intensities at points $A$ and $B$ ?

## - A

## $+\sigma$

## - B

A. $\frac{\sigma}{\varepsilon_{0}}, 0$
B. 0,0
C. $\frac{\sigma}{\varepsilon_{0}}, \frac{\sigma}{\varepsilon_{0}}$
D. $0, \frac{\sigma}{\varepsilon_{0}}$

## Answer: D

287. Justify that electrostatic potential is constant throughout the volume of charged conductor and has same value on its surface as inside it.

## - Watch Video Solution

288. A test charge $q$ is moved without acceleration from A to $C$ along the path from $A$ to $B$ and then from $B$ to $C$ in electric field $E$ as shown in Fig. (i) Calculate the potential difference between $A$ and $C$ (ii) At what point [of $A$ and $C$ ] is the electric potential more and why?

289. Fig shows the variation of electrostatic potential $V$ with distance x for a given charge distribution.


From the points marked $A, B$ and $C$, indentify the point at which electric field is (i) zero
(ii) maximum.

Explain your answer in each case.
290. The electric potential $V$ at any point $x, y, z$ (all in meters) in space is given by $V=4 x^{2}$ volts. The electric field at the point ( 1 m , $0,2 m)$ is...............V/m.
A. -8
B. -4
C. -2
D. zero

## Answer: A

## - Watch Video Solution

291. A metallic solid sphere is placed in a uniform electric field, Fig.

Which path is followed by the lines of force?


## (D) Watch Video Solution

292. Can we create an electric field in which all the lines of force are parallel but their density increases continusously in a direction
per-pendicular to the lines of force, fig.


## - Watch Video Solution

293. Fig. shows lines of constant potential in an electric field. Out of the three given points $P, Q, R$ where is electric field intensity
maximum and where is it minimum ?

A. maximum at Q and minimum at P
B. maximum at P and minimum at Q
C. maximum at Q and minimum at R
D. maximum at $P$ and minimum at $R$

Answer: D
294. Electric charge is distributed uniformly on the surface of a spherical rubber ballon. Show how the value of electric intensity and potential vary (i) on the surface (ii), inside and (iii) outside ?

## - Watch Video Solution

295. Draw 3 equipotential surfaces corresponding to a field that uniformly increases in magnitude but remains constant along positive Z-direction. How are these surfaces different from that of a constant electric field along Z-direction ?
296. A test charge $q_{0}$ is moved without acceleration from A to C over the path ABC as shown in Fig.

Calcualate potential difference beetween A and C .


## - Watch Video Solution

297. Electric potential at a point 0 due to a number of a point charges equidistant from 0 si $V_{1}$ when charges are uniformly distributed and it is $V_{2}$ when charges are non uniformly
distributed , Fig. Is $\mathrm{V}_{-}(1)=\mathrm{V}_{-}(2)$ ? Justify.


## - Watch Video Solution

298. Two protons $A$ and $B$ are placed in between the two plates of a parallel plate capacitor charged to a potential difference V as
shown in the figure. The forces on the two protons are identical.


## ( Watch Video Solution

299. Define surface density of charge and potential of a charged and potential of a charged spherical conductor. Establish a relation between them.

## - Watch Video Solution

300. A charge $+Q$ is lying at the center of a circle. What is work done in carrying charge $q$ from $A$ to $B$, where $A$ and $B$, both lie on the circle.

## - Watch Video Solution

301. Around a point charge of $1 n C$, what is the distance of an equipotential surface of 0.9 V ?
A. 10 m
B. 0.1 m
C. 20 m
D. 9 m

## Answer: A

302. A proton is released from rest in a unifrom electric field. Does the proton's electric potential energy increase or decrease? Does the proton move towards a location with a higher or a lower electric potential.

## - Watch Video Solution

303. When a proton approaches another fixed proton, what happens to :
(a) the kinetic energy of the approaching proton
(b) the electric potential energy potential energy of the system and
(c ) the total energy of the system?
304. Write an expression for potential energy of two charges $q_{1}$ and $q_{2} a t r_{1}$ and $r_{2}$ in a uniform electric field $\vec{E}$.

## D Watch Video Solution

305. Equipotential surfaces are perpendicular to field lines. Why?

## ( Watch Video Solution

306. A uniform electric field $E$ axis between two charged plates as shown in Fig. What would be work done in moving a charge q
along the closed recetangualr path ABCDA ?


## - Watch Video Solution

307. The same Gaussain surface is used to surround two charged objects. The net number of field lines penetracting the surface is same in both the cases, but the lines are oppositely directed. What can you say about the net charge on the two objects?
308. Charge $q_{1}$ is inside the Gaussain surface, charge $q_{2}$ just outside the surface. Does the electric flux through the surface.Does the electric flux through the surface depend on $q_{1}$ ? Does it depend on $q_{2}$ ? Explain.

## - Watch Video Solution

309. Using Gauss's law, derive an expression for the electric field intensity at any point near a uniformly charged thin wire of charge $/$ length $=\lambda C / m$.

## - Watch Video Solution

310. Define electric flux. Write its SI unit. A charge q is enclosed by a spherical surface of radius $R$. If the radius is reduced to half, how would the electric flux through the surface change?

## - Watch Video Solution

311. A hemispherical body of radius $R$ is placed in a uniform electric field $E$. What is the flux linked with the curved surface if, the field is
(a) parallel to the base, (b) perpendicular to the base.

## - Watch Video Solution

312. Explain what is meant by an electric line of force? Give its two important properties?

## - Watch Video Solution

313. Give two properties of electric lines of force. Sketch them for an isolated positive point charge and an electric dipole.
314. Derive genral expression for rectangular components of electric intensity due to point charge in space.

## - Watch Video Solution

315. Derive an expression for force and torque acting on an electric field. In which situation, torque on the dipole is (i) maximum and
(ii) minimum

## - Watch Video Solution

316. Derive an expression for potential energy of an electric dipole in a uniform electric field. In which situation, the potential energy
fo dipole is (i) maximum and (ii) minimum.
317. Explain the physical meaning of potential and potential difference. Find a relation for electrostic potential at a point due to a point charge.

## - Watch Video Solution

318. What do you understand by potential gradiednt ?

Establish a relation between electric field and potential gradient.

## - Watch Video Solution

319. Establishthat electrostatic forces are conservative. Give two example of conservative forces.
320. What do you understand by electrostatic potential energy ?

Find an expression for electrostatic potential energy of a system of two point charges.

## - Watch Video Solution

321. State and prove Gauss's law in electrostatics.

## ( Watch Video Solution

322. State Gauss's Theorem in electrostatics and deduce coulomb's law from Gauss's theorem.

## - Watch Video Solution

323. Explain the conept of electric potential energy.

Derive an expression for potential energy of a system of two point charges. Generalise the expression fo N discrete charges.

## - Watch Video Solution

324. Derive an expression for the electric potential at any point $P$ at a distance $r$ from the center of an electric dipole, making angle $\alpha$ with its axis.

## - Watch Video Solution

325. Using Gauss's law, derive an expression for the electric field intensity at any point near a uniformly charged thin wire of charge $/$ length $=\lambda C / m$.
326. A potential difference of 250 Volt is applied across the plate of a capacitor of 10 pF . Calculate the charge on the plates of the capacitor.

## - Watch Video Solution

327. Diameter of a spherical conductor is 1 meter. What is its capacity?

## - Watch Video Solution

328. Calculate the capacitance of a parallel plate condenser of two plates $100 \mathrm{~cm} \times 100 \mathrm{~cm}$ each separated by 2 mm thick glass sheet of $K=4$.
329. The capacity of a capacitor becomes $10 \mu \mathrm{~F}$ when air between the plates is replaced by a dielectric slab of $K=2$. What is the capacity of the condenser with air in between the plates ?

## - Watch Video Solution

330. Three capacitors of $1 \mu F, 2 \mu F$ and $3 \mu F$ are joined in series. How many times will the capacity become when they are joined in parallel ?

## - Watch Video Solution

331. In fig potential difference between the points $X$ and $Y$, when
$C_{1}=2 \mu F, C_{2}=3 \mu F, C_{3}=4 \mu F, C_{4}=5 \mu F$ and e.m.f of battery is 5 V.


## - Watch Video Solution

332. Calculate energy stored in a capacitor stored in a capacitor of $5 \mu \mathrm{~F}$ when it is charged to a potential of 250 volt.

## - Watch Video Solution

333. What capacitance is required to store an energy of 100 kWh at a potential difference of $10^{4} \mathrm{~V}$ ?
334. A $600 p F$ capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged $600 p F$ capacitor. What is the common potential in $V$ and energy lost in $J$ after reconnection?

## - Watch Video Solution

335. A 400 pF capacitor, charged by a 100 volt d.c supply is disconnected from the supply and connected to another uncharged 400 pF capacitor. Calculate the loss of energy.

## - Watch Video Solution

336. Find the capacitance of a system of three parallel plates, each of area A metre ${ }^{2}$ separated by distances $d_{1}$ and $d_{2}$ metre respectively. The space between them is filled with dielectrics fo
relatives dielectric constants $K_{1}$ and $K_{2}$. The dielectric constant of free space is $\epsilon_{0}$.

## - Watch Video Solution

337. Why are lighting stroms so dangerous?

## - Watch Video Solution

338. Eight identical spherical drops, each carrying charge 1 nC are at a potential of 900 V each. All these drops combine together to from a single large drop. Assume no wastage of any kind. Take capacitance of a sphere of radius $r$ as proportional to $r$.

## - Watch Video Solution

339. As isolated sphere has a capacitance $60 p F$. (i) Calculate its radius. (ii) How much charge should be placed on it to raise its potential to $10^{4} \mathrm{~V}$ ?

## - Watch Video Solution

340. If the capacitance of a conductor carrying a charge of 58 C is 0.05 F , calculate its potential.

## - Watch Video Solution

341. When $1.0 \times 10^{12}$ electrons are transferred from one conductor to another, a potential difference of 10 V find the capacitance of the two -conductor system .
342. Calculate the capacity of unknown capacitance is connected across a battery of V volts. The charge stored in it is $360 \mu C$. When potential across the capacitor is reduced by 120 V , the charge stored in it becomes $120 \mu C$.

Calculate (i) the potential V and unknown capacitance C. (ii) What will be the charge stored in the capacitor. If the voltage applied had increased by 120 V

## - Watch Video Solution

343. A charge of $+2.0 \times 10^{-8} \mathrm{C}$ is placed on the positive place and a charge of $-1.0 \times 10^{-8} \mathrm{C}$ on the negative plate of a parallel- plate capacitor of capacitance $1.2 \times 10^{-3} \mu \mathrm{~F}$. Calculate the potential difference developed between the plates.
344. Two parallel plate air capacitors have their plate areas 100 and $500 \mathrm{~cm}^{2}$ respectively. If they have the same charge and potential and the distance between the plates of the first capacitor of 0.5 mm , what is the distance between the plates of second capacitor?

## . Watch Video Solution

345. What is the area of the plates of a 2 farad parallel plate air capacitor, given that the separation between the plates is 0.5 cm ?

## - Watch Video Solution

346. A parallel -plate capacitor having plate area $25.0 \mathrm{~cm}^{2}$ and a separation 2.00 mm between the plates .the capacitor is connected to a battery of 12.0 V .(a)find the charge on the capacitor
.(b) the plate separation is decreased to 1.00 mm . Find the extra charge given by the battery to the positive plate.

## - Watch Video Solution

347. The thickness of air layer between two coating of a spherical capacitor is 2 cm . The capacitor has same capacitor as the sphere of 1.2 m diameter. Find the radii of its surfaces.

## - Watch Video Solution

348. Calculate the capacitance of a spherical capacitor consisting of two concentric spheres of radius $0.50 \mathrm{~m}, 0.60 \mathrm{~m}$. The material filled in the space between the two spheres has a dielectric constant of 6.
349. what is the capacitance of a 1 m long hifi cable where the central conductor is 1 mm in diameter and the shield is 5 mm in diameter ?

## - Watch Video Solution

350. The outer cylinder of a cylindrical capacitor of length 0.15 m and radial 1.61 cm and 1.5 cm is earthed while inner cylinder of this capacitor is given a charge of $8 \mu C$. Find the capacitance and potential of inner part of the capacitor.

## - Watch Video Solution

351. Seven capacitors each of capacitance $2 \mu \mathrm{~F}$ are to be connected
in a configuration to obtain an effective capacitance of $\left(\frac{10}{11}\right) \mu F$.

Which of the combination (s) shown in figure will achieve the desired result?

## - Watch Video Solution

352. Two capacitors of capacitance of $6 \mu F$ and $12 \mu F$ are connected in series with a battery. The voltage across the $6 \mu \mathrm{~F}$ capacitor is 2 V . Compute the total battery voltage.

## - Watch Video Solution

353. Two capacitors of capacitances $3 \mu F$ and $6 \mu F$, are charged to potentials 2 V and 5 V respectively. These two charged capacitors are connected in series. Find the potential across each of the two capacitors now.
354. In fig. $C_{1}=20 \mu \mathrm{~F}, C_{2}=30 \mu \mathrm{~F}$ and $C_{3}=15 \mu \mathrm{~F}$ and the insulated plate of $C_{1}$ is at a potential of 90 V , one plate of $C_{3}$ being earthed. What is the potential difference between the plates of $C_{2}$ three capacitors being connected in series ?

## - Watch Video Solution

355. Find the charge appearing on each of the three capacitors shown in Fig.

356. Find charge supplied by the battery in the arrangement shown in figure.


- Watch Video Solution

357. Find the capacitance of the combination shown in Fig.


## - Watch Video Solution

358. It is required to construct a $10 \mu \mathrm{~F}$ capacitor which can be connected across a $200 V$ battery. Capacitance $10 \mu F$ are available but they can withstand only 50V ,Design a combination which can yield the desired result.
359. In fig, the values of capacitances are as follow
$C_{1}=C_{2}=C_{3}=C_{4}=4 \mu F, C_{5}=5 \mu F \quad$ Calculate the equivalent capacitance between the points P and Q . If a battery of 10 volt is connected between these points, what will be the charge on each capacitor ?


## - Watch Video Solution

360. A network of four $10 \mu F$ capacitors is connected to a 500 V supply as shown in Fig. Determine the (a) equivalent capacitance
of the network and (b) charge on each capacitor.


## - Watch Video Solution

361. Five identical capacitor plates, each of area A, are arranged such that adjacent plates are at a distance d apart, the plates are connected to a source of emf V as shown in the figure


The charge on plate 1 is $\qquad$ and on plate 4 is $\qquad$

## - Watch Video Solution

362. Find equivalent capacitance between A \& B, Fig.

363. In Fig., find equivalent capacity between A and B .


## - Watch Video Solution

364. A $12 p F$ capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor ? If another capacitor of $6 p F$ is connected across the combination, find the charge stored and potential difference across each capacitor.
365. Find the ratio of potential differences that must be applied across the parallel and series combination of two capacitors $C_{1}$ and $C_{2}$ with their capacitance in the ratio 1:2 so that energy stored in the two cases becomes the same.

## - Watch Video Solution

366. A capacitor is charged to potential $V_{1}$. The power supply id disconnected and capacitor is connected in parallel to another uncharged capacitor. Calculate common potential of the combination of capacitors. Show that total energy of the combination is less than sum of energies stored in them before they are connected.
367. Two capacitors of unknown capacitance $C_{1}$ and $C_{2}$ are connected first in series and then in parallel, across a battery of 100 V . If the energy stored in the two combinations is 0.045 J and 0.25 J respectively determine the values of $C_{1}$ and $C_{2}$. Also calculate the charge on each capacitor in parallel combination.

## - Watch Video Solution

368. Find the ratio of potential difference that must be applied across the parallel and series combination of two capacitors $C_{1}$ and $C_{2}$ with their capacitance in the ratio $1: 3$ so that energy stored in the two cases becomes the same.

## - Watch Video Solution

369. A capacitor charged from a 50 V d.c. supply is found to have charge of $10 \mu C$. What is the capacitance of the capacitor and how much energy is stored in it?

## - Watch Video Solution

370. A capacitor of capacitance $6 \mu \mathrm{~F}$ is charged to a potential of 150 V . Its potential falls to 90 V , when another uncharged capacitor is connected to it. Find the capacitance of the second capacitor and the amount of energy lost due to the connection.

## - Watch Video Solution

371. In the circuit shown in Fig. the key K was initally in contact with the teminal $A$. What amount of heat will be generated in $500 \Omega$ resitance, when the key k is brought in contact with terminal

B ?


## ( Watch Video Solution

372. A 900 pF capacitor is charged by 100 V battery.
(a) How much electrostatic energy is strored by the capacitor ?

The capacitor is disconnected from the battery and connected to
another 900 pF capacitor. How much is the electrostatic energy stored in the system ?

## (D) Watch Video Solution

373. Keeping the voltage of the charging source constant, what would be the percentage change in the energy stored in a parallel plate capacitor, if the separation between in plates were to be decreased by $10 \%$ ?

## - Watch Video Solution

374. A parallel plate capacitor with air in between the plates has a capacitance of $8 p F$. The separation between the plates is now reduced to half and the space between them is filled with a medium of dielectric constant 5 .

Calculate the value of capacitance in the second case.

## (D) Watch Video Solution

375. Fig, shows two indentical capacitors $C_{1}$ and $C_{2}$ each of $1 \mu F$ capacitance connected to a battery of 6 V . Inditally, swich S is closed. After some time, the swich S is left open and dielectric slabs of $\mathrm{K}=3$ are inserted to fill completely the space between the plates of two capacitors. How will (i) the charge and (ii) potential difference between the plates of the capacitors be affected after the slabs are inserted ?

376. An ebomiote rod ( $K=3$ ), 6 mm thick is introduced between the plates of a parallel plate capacitor of plate area $4 \times 10^{-2} \mathrm{~m}^{2}$ and plate separation 0.01 m . Find the capacitance.

## - Watch Video Solution

377. A dielectric slab of thickness 1.0 cm and dielectric constant 5 is placed between the plates of a parallel plate capacitor of plate area $0.01 \mathrm{~m}^{2}$ and separation 2.0 cm . Calculate the change in capacity on introduction of dielectric. What would be on the change, if the dielectric slab were conducting?

## - Watch Video Solution

378. A slab of material of dielectric constant $K$ has the same area as the plates of a parallel capacitor, but has a thickness $\left(\frac{3}{4} d\right)$,
where $d$ is the separation of the plates. How is the capacitance changed when the slab is inserted between the plates

## D Watch Video Solution

379. A parallel plate capacitor is maintained at a certain potential difference. When a 3 mm thick slab is introduced between the plates, in a order to maintain the same potential difference, the distance between the plates is increased by 2.4 mm . Find the dielectric constant of the slab.

## - Watch Video Solution

380. Assuming $a b$ expression for the potential of an isolated conductor, show that the capacitance of such a sphere will be increased by a factor $n$, if it is enclosed within an earthed concentric sphere, the ration of the spheres being $n(n-1)$.

## ( Watch Video Solution

381. The figure shows two identical parallel plate capacitors connected to a battery with the switch S closed. The switch is now opened and the free space between the plates of the capacitors is filled with a dielectric of dielectric constant(or relative permittivity) 3. Find the ratio of the total electrostatic energy stored in both capacitors before and after the introduction of the dielectric.

382. A parallel plate capacitor contanins a mica sheet (thickness $0.5+\times 10^{-3} \mathrm{~m}$ ) . And a sheet of fiber (thickness $0.5 \times 10^{-3} \mathrm{~m}$ ) . The dielectric constant of mica is 8 and that of thye fiber is 2.5 Assuming that the fiber breaks down when subjected to an electric field of $6.4 \times 10^{6} \mathrm{Vm}^{-1}$., find the maximum safe voltage that can be applied to the capacitor.

## - Watch Video Solution

383. In the circuit shown in Fig. each capacitor has a capacity of
$3 \mu F$. Calculate the quantity of charge on each capacitor.


## - Watch Video Solution

384. The area of each plate of parallel plate air capacitor is $150 \mathrm{~cm}^{2}$.

The distance between its plates is 0.8 mm . It is charged to a pot.
Diff of 1200 volt. What will be its energy ? What wil be the energy
when it is filled with a medium of $\mathrm{K}=3$ and then charged. If it is charged. If it is charged first as an air capacitor and then filled with this dielectric, what will happen to energy ?

## - Watch Video Solution

385. An air -filled parallel-plate capacitor is to be constructed which can store $12 \mu C$ of charge when operated at $1200 V$. What can be the minimum plate area of the capacitor?The dielectric strength air is $3 \times 10^{6} \mathrm{Vm}^{-1}$.

## - Watch Video Solution

386. Two identical metal plates are given poistive charges $Q_{1}$ and $Q_{2}\left(<Q_{1}\right)$ respectively. If they are now brought close together to form a parallel plate capacitor with capacitance C, the potencial difference between them is
387. A capaitor of capacitance $C_{1}=1.0 \mu F$ withstands teh maximum voltage $V_{1}=6.0 \mathrm{kV}$ while a capacitor of capacitance $C_{s}=2.0 \mu F$, the maximum voltage $V_{s}=4.0 \mathrm{kV}$. What voltage will the system of these two capacitors withsatand if they are connected in sereis ?

## ( Watch Video Solution

388. A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C} \mathrm{m}$. A mole of this substance is polarized at low temperature by appling a strong elecrostatic field of magnitude $10^{6} \mathrm{Vm}^{-1}$. The direction of the field is suddenly changed by an angle of $60^{\circ}$. Estimate the heat released by the substance in aligning its dipole along the new direction of the field. For simplicity, assume $100 \%$ polarisation of sample.
389. A,B,C,D are four 'thin', similar metatllic parallel plates, equally separated by distanace d, and connected to a cell of p.d. (V), as shown in Fig.

(i) write the potentials of $A, B, C$ and $D$.
(ii) If $B$ and $C$ be connected by a wire, then what will $b$ e the
potentials of the paltes? (iii) How will the electric fields ? (iv) Will the charges on the plates A and D change ?

## - Watch Video Solution

390. A student requires a capacitor of $3 \mu F$ in a circuit across a potential of 1000 V . A large number of $2 \mu \mathrm{~F}$ capacitors are available to him, each of which can withstand a potential difference of not more than 300 V . How should the student arrange these capacitors so that he may use minimum number of condensers ?

## - Watch Video Solution

391. A capacitor is filled with two dielectrics of same dimensions, but of dielectric constants 2 and 3 respectively. Find the ratio of
capacitances in the two arrangements shown in Fig.


## D Watch Video Solution

392. A parallel plate capacitor of plate area $(1 \times 3) m^{2}$ and plate separation 5.0 mm is charged to 10 kV in air. Find charge density and field displacement.

## - Watch Video Solution

393. Two infinitely large sheets having charge densities $\sigma_{1}$ and $\sigma_{2}$ respectively $\left(\sigma_{1}>\sigma_{2}\right)$ are placed inbetween two plates such that
there is no effect on charge distribution on plates. This charge is moved at an angle of $45^{\circ}$ with horizontal towards plate having charge density $\sigma_{2}$, through a distance a lt d. Find work done by electric force.

## - Watch Video Solution

394. Two copper spheres of same radill, one hollow and other solid are charged to same potential. Which if any of the two will have more charge ?

## - Watch Video Solution

395. Two identical metal plates are given poistive charges $Q_{1}$ and $Q_{2}\left(<Q_{1}\right)$ respectively. If they are now brought close together to form a parallel plate capacitor with capacitance C, the potencial difference between them is

## - Watch Video Solution

396. Why is earth considered as zero of potential in practice ? Justify.

## - Watch Video Solution

397. What is the physical signifance fo capacitance ?

## ( Watch Video Solution

398. Can you place a parallel plate capacitor of one farad capacity
in your house?

- Watch Video Solution

399. An air capacitor is given a charge of $2 \mu C$ raising its potential falls to 50 V , what is the dielectric constant of the medium ?

## - Watch Video Solution

400. By what factor does the capacity of a metal sphere increase if its volume is tripied?

## - Watch Video Solution

401. What is the effect of presence of a dielectric medium on
(i) capacitance of a parallel plate capacitor
(ii) electrostatic force between two charges ?
402. A parallel plate capcitor of capacitance $C$ is charged to a potential V by a battery. Without disconencting the battery $=$ distance between the plates of capacitor is triple and a dielectric medium of $K=10$ is introduced between the plates of capacitor. Explain giving reasons how will the following be affected?
(a) Capacitance of capacitor
(b) Charge on capacitor
(c ) Energy density of capacitor.

## D Watch Video Solution

403. As shown in Fig, a dielectric material of dielectric constant $K$
is inserted in half portion between plates of parallel plate capacitor. If its initial capacitance is $C$, what is the new capacitance


## - Watch Video Solution

404. A technican has only two capacitors. By using them singly, in series kor in parallel, he is able to obtain th capacitane of 4,5,20 and 25 micro farad. What are the capacitance of the two capacitors ?
405. Two isolated metallic solid spheres of radii $R$ and $2 R$ are charged such that both of these have same charge density $\sigma$. The spheres are located far away from each other and connected by a thin conducting wire. Find the new charge density on the bigger sphere.

## - Watch Video Solution

406. An uncharged capacitor is connected to a battery. Show that half the energy supplied by the battery is lost as heat while charging the capacitor.

## - Watch Video Solution

407. A spherical shell of radius $R_{1}$ with uniform charge q is expanded to a radius $R_{2}$. Find the work performed by the electric forces in this process.

## - Watch Video Solution

408. Two chareged sperical conductors of radill $R_{1}$ and $R_{2}$ when connected by a connecting wire acquire charges $q_{1}$ and $q_{2}$ respectively. Find the ratio of their charge densities in terms of their radil ?

## - Watch Video Solution

409. A capacitor is charged through a potential difference of 200 V ,
when 0.1 C charge is stored in it. How much energy will it release, when it is discharge?

## - Watch Video Solution

410. What is the dielectric constant of metal ?

## Watch Video Solution

411. Is there any kind of material which when placed between the plates of capacitor reduces its capacitance?

## - Watch Video Solution

412. The inroduction fo dielectric slab between the capacitor plates increases the capacitance. Why ?

## - Watch Video Solution

413. Where is the knowledge of dielectric strength helpful ?

- Watch Video Solution

414. During lightning, you are safer inside a house than under a tree. Why?

## - Watch Video Solution

415. The safest way to protect yourself from lighting is to be inside a car. Comment.

## - Watch Video Solution

416. A sensitive instrument is to be shifted from the strong electrostaic field in its environment. Suggest a possible way.

## - Watch Video Solution

417. Faraday entered a big metallic cage supported on insulating pillars and then charged the cage by a powerful electric machine. He remained quite safe inside the cage. Do you believe on this happening ?

## - Watch Video Solution

418. Can ever the whole charge of a body be transferred to the other? If yes, how and if not, why not?

## - Watch Video Solution

419. Define capacitance of a consutor.

## - Watch Video Solution

420. The Capacitance of a conductor is 1 Farad. What do you mean by this statement?

## - Watch Video Solution

421. Write the physical quantity that has its unit coulomb volt ${ }^{-1}$. Is it a vector or a scalar quantity?

## - Watch Video Solution

422. Write two applications fo capacitors in electrical circuits ?

## - Watch Video Solution

423. In what form is the energy stored in a charged capacitance?
424. What is the basic purpose of using a capacitor?

## - Watch Video Solution

425. Write down the expression for the capacitance of a spherical capacitor.

## - Watch Video Solution

426. Sketch a graph to show how charge $Q$ given to a capacitor of capacity C varies with the potential difference V .

## - Watch Video Solution

427. For a given potential difference, does a capacitor store more or less charge with a dielectric than it does without a dielectric.

## - Watch Video Solution

428. Is there any condutor which can be given almost unlimited charge?

## - Watch Video Solution

429. Two spheres of silver of same radill, one soild and the other hollow are charged to the same potential, which one has greater charge?

## - Watch Video Solution

430. The distance between the plates fo a parallel plate capacitor is d. A metal plate of thickness $d / 2$ is placed between the plates, what will be the new capacity ?

## - Watch Video Solution

431. Can there be a potential difference between two adjacent conductors that carry same amount of positive charge ?

## - Watch Video Solution

432. Find the dimensions of capacitance.

## - Watch Video Solution

433. On which factors does the capacitance of a capacitor depend /

## - Watch Video Solution

434. A parallel plate capacitor has capacitor has a capacity of $6 \mu F$ when dielectric medium separting the plates.

## - Watch Video Solution

435. Can we give as much charge to a capacitor as we wish?

## - Watch Video Solution

436. You are with two capacitors of capacities $C_{1}$ and $C_{2}$. How will you combine them in the circuit so as to lower the capacitance of
the circuit ? Write an expression for the total capacitance.

## - Watch Video Solution

437. If two isolated spherical conductor each having a define capacity are far apart and are connected to eachother by a fine wire, how do you calculate the capacity of the combination ? In joining them with wire, have connected them in parallel or in series?

## - Watch Video Solution

438. A parallel plate capacitor with air inbetween the paltes has a capacitance of 8 pF . The separation between the plates is now reduced by half and the space between them is filled with a medium of dielectric constant 5 .

Calculate the new value of capacitance.

## ( Watch Video Solution

439. Write different expression for the energy stored in a capacitor.

## - Watch Video Solution

440. A uniform electric field E exists between two oppositely charged plates (Fig. 3.38). What will be the work done in moving a charge $q$ along a closed rectangular path ?

## - Watch Video Solution

441. Where does the energy of a capacitor reside?
442. What is the basic difference between a charged capacitor and an electric cell ?

## - Watch Video Solution

443. Why is a space ship entering the ionosphere not sufficiently heatedd, though temperrataure at the top of ionosphere is nearly 700 K ?

## - Watch Video Solution

444. Define polarization density.

- Watch Video Solution

445. Define dielectric strength of a medium. What is its value for vacuum.

## - Watch Video Solution

446. What is the relation between dielectric constant and electric suseptibillity?

## - Watch Video Solution

447. Why does the electric conductivity of earth's atmosphere increase with altitude ?
448. Why does the electric field inside a dielectric decrease when it is placed in an external field?

## - Watch Video Solution

449. Show that the SI unit of $\varepsilon_{0}$ may be written as farad meter ${ }^{-1}$.

## - Watch Video Solution

450. What is a capacitor ?

## - Watch Video Solution

451. The difference between the radill of the two spheres of a spherical capacitor is increased. Will the capacitance increase or decrease?

## Watch Video Solution

452. The given graph in Fig. shows the variation of charge $q$ versus potential difference for two capacitors $C_{1}$ and $C_{2}$. The two capacitors have same plate sepration, but the plate area of $C_{2}$ is double that of $C_{1}$.


Which of the lines in the graph correspond to $C_{1}$ and $C_{2}$ and why ?
453. The space between the plates of a parallel plate capacitor is filled conseutively with two dielectric layers fo thickness $d_{1}$ and $d_{2}$ having relative permittvities $\epsilon_{1}$ and $\epsilon_{2}$ respectively. If $A$ is area of each plate, what is the capacity of the capacitor?

## - Watch Video Solution

454. An uncharged insulated conductor $A$ is brought near a charged insulated condutor $B$. what happens to charge and potential of $B$ ?

## - Watch Video Solution

455. $n$ small drops of same size are charged to $V$ volts each .If they coalesce to from a single large drop, then its potential will be -
456. Shows the variation of voltage $V$ across the plates of two capacitors $A$ and $B$ versus incease in charge $Q$ stored in them. Which of the capacitors has higher capacitance? Give reason for your answer.

457. Two circular metal plates each of radius 10 cm are kept parallel to each other at a distance of 1 mm . What kind of capacitor do they make ? Mention one application of this capacitor. If the radius of each of the plates is increased by a factor of $\sqrt{2}$ and thier distance of seperation is decreased to half of its inital value, calculate the ratio of capacitance in the two cases. Suggest a possible method by which the capacitance in second case is increased to n times.

## ( Watch Video Solution

458. A slab of material of dielectric constant $K$ has the same area as the plates of a parallel plate capacitor, but has a thickness 3d/4.

Find the ratio of the capacitance with dielectric inside it to its capacitance without the dielectric.
459. Two capacitors of capaciatance $3 \mu F$ and $5 \mu F$ respectively are joined in parallel and the combination is connected in series with a third capacitor of capacitance $2 \mu F$. What is the resultant capacitane.

## (D) Watch Video Solution

460. Given a battery, how would you connect two capaitors, it series or in parallel for them to store the greater (a) total charge
(b) total energy ?

## - Watch Video Solution

461. A metal foll of negative thickness is intorduced between two plates of a capacitor at the center. What will be the new capacitance of the capacitance ?

## - Watch Video Solution

462. Two capacitors of capacitance of $6 \mu F$ and $12 \mu F$ are connected in series with a battery. The voltage across the $6 \mu \mathrm{~F}$ capacitor is 2 V .

Compute the total battery voltage.

## - Watch Video Solution

463. If the potentail difference across a capacitor is doubled, what happens to: (a) the charge on the capacitore and (b) the energy stored in the capacitor
464. On charging a parallel - plate capacitor to a potentia $V$, the spacing between the plates is halved and a dielectric medium of $\in_{r}=10$ is introcded between the paltes, without disconnecting the dc source. Explain using suitable expression how the (a) capacitance (b) electric field (c ) energy density of the capacitor change.

## - Watch Video Solution

465. The plates of a plane capacitor are drawn apart keeping them connected to a bettery. Next, the same plates are drawn apart from the same initial condition keeping the battery disconnected, In which case is more work done?
466. The battary remains connected to a parallel plate capacitor and a dielectric slab is inserted between the plates. What will be the effect on its (i) capacity (ii) charge , (iil) potential difference (iv) electric field, (v) energy stored ? Justify your answer.

## - Watch Video Solution

467. In the above question, if battery is removed after charging the condenser \& dielectric slab inteoduced, how are all the fice parameters affected ?

## - Watch Video Solution

468. Where does the loss of energy in the above question go ?
469. The graph in Fig, shows variation of total energy $U$ stored in the capacitor against the value of the capacitance C itself. Which of the two - the charge on capacitor or potential used to charge is kept constant for this graph ?


## - Watch Video Solution

470. Derive an expression for energy stored in a parallel plate capacitor fo capacitance $C$ with air as medium between the plates having charges $Q$ and $-Q$. Show that this energy can be
expressed in terms of electric field as $\frac{1}{2} \in_{0} E^{2}$ Ad, where $A$ is area of each plate and $d$ is the separation between the plates. How will the energy stored in a fully charged capacitor chanege when the separation between the plates is doubled and the dielectric medium of constant 4 is introduced between the plates ?

## - Watch Video Solution

471. An air capacitor is given a charge of $2 \mu C$ raising its potential to 200 V . If on inserting a dielectric medium, its potential falls to 50 V , what is the dielectric constant of the medium?

## - Watch Video Solution

472. What is the effect of temperature on dielectric constant ?
473. What are dielectric substances ? Which of the following is a dielectric: Sillicon, mica,carbon?

## - Watch Video Solution

474. Why does a charged glass rod attract a piece of paper ?

## - Watch Video Solution

475. If dielectric strength of air (minimum field required for ionisation of a medium) is $3 \mathrm{MV} / \mathrm{m}$, can a metal sphere of radius 1 cm hold a charge of 1 coulomb ?

## - Watch Video Solution

476. Explain the term electric field intensity. Establish that electric field inside a charged conductor is zero.

## - Watch Video Solution

477. What is a capacitor ? Define its capacitance. Explain the units of capacitance.

## - Watch Video Solution

478. Define capacitance of a conductor. Obtain an expression for capacity of an isolated spherical conductor.

## - Watch Video Solution

479. Derive an expression for equivalent capacitance of three capacitors $C_{1}, C_{2}$ and $C_{3}$ when connected (i) in series (ii) in parallel.

## - Watch Video Solution

480. Three capacitors f capacitanes $C_{1}, C_{2}$ and $C_{3}$ are connected
(i) in series, (ii) in parallel. Show that the energy stored in the series combination is the same as that in parallel combination.

## - Watch Video Solution

481. When two charged conductors having different capacities and different potentials are joined together, show that there is always a loss of energy.
482. A few electric field lines for a system of two charges $Q_{1}$ and $Q_{2}$ fixed at two different points on the X -axis are shown in Fig.

(i) what is the nature of charges ?
(ii) which one of the two is bigger?
(iii) What is the ratio of magnitude of two charges?
(iv) Where can the electric field due to two charges be zero ?

## - Watch Video Solution

483. A charge $Q$ is enclosed by a spherical Gaussian surface of radius $R$. If the radius of the sphere is double, how will the outward electric flux charge ? If a charge $-Q$ is brought outside the Gaussian surface, will the electric flux reduce to zero ?

## - Watch Video Solution

484. Three point charges of $+2 \mu C,-3 \mu C$, and $-3 \mu C$ are kept at the vertices $A, B$, and $C$, respectively of an equilateral triangle of side 20 cm . what should be the sign and magnitude of the charge (q) to be placed at the midpoint ( $M$ ) of side $B C$ so that the charge at $A$
remains in equilibrium?


## - Watch Video Solution

485. An electric dipole consists of charges $\pm 2.0 \times 10^{8} \mathrm{C}$ separated by a distance of $2.0 \times 10^{-3} \mathrm{~m}$. It is placed near a long line charge of linear charge density $4.0 \times 10^{-4} \mathrm{Cm}^{-1}$ as shown in figure (30-W4), Such that the negative charge is at a distance of ${ }^{\prime} 2.0 \mathrm{~cm}$ from the
line charge. Find the force acting on the dipole.


## D Watch Video Solution

486. When an electron moves from $A$ to $B$ along and electric field line as shown in Fig. the electric field does $3.94 \times 10^{-19} \mathrm{~J}$ of work on it. What are the electric potential differences

$$
\left(V_{B}-V_{A}\right),\left(V_{C}-V_{A}\right),\left(V_{C}-V_{B}\right) ?
$$



## Electric field lines

## - Watch Video Solution

487. The smilling face of Fig, consists of three parts,
(i) a thin rod of charge $-3.0 \mu C$ that forms a full circle of radius 6.0 cm.
(ii) a thin rod of charge $2.0 \mu \mathrm{C}$ that forms a circular are of radius 4.0 cm , subtending an angle of $90^{\circ}$ about the centre of full circle, and
(iii) and electric diipole with dipole moment $=1.28 \times 10^{-21}$
perpendicular to a radial line as shown in Fig. What is the net electric potentail as the centre ?


## D Watch Video Solution

488. At time $t=0$, a battery of 10 V is connected across points A and
$B$ in the given circuit. If the capacitors have no charge initially, at what time (in seconds) does the voltage across them beocme 4 V ?
[Take: In5 = 1.6, In3 = 1.1].


## - Watch Video Solution

489. 

In
the
circuit
shown,
$C_{1}=C_{5}=C_{6}=6.0 \mu F$ and $C_{2}=C_{3}=C_{4}=4.0 \mu F$. What is the net
charge stored on the capacitors and charge on $C_{4}$ only?


## - Watch Video Solution

490. In a parallel plate capacitor shown in Fig, the potential difference of 100 V is maintained between the plates. If distances between the plaes is 5 mm , what will be the electric field at points
$A$ and $B$ ?


- Watch Video Solution

491. The electrostatic potential inside a charged spherical ball is given by $\phi=a r^{2}+b$, where $r$ is distance from the center of the
ball, a and b are constants. Calculate the charge density inside the ball.

## - Watch Video Solution

492. Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a 6 V battery, as shown in Fig. Find the charges on the three capcitors.


## - Watch Video Solution

493. Fig. shows a network of capacitors where the numbers inidicate the capacitance in microfarel. Find the value of capacitance $C$ if the equivalent capacitance between $A$ and $B$ is to be $2 \mu F$.

## - Watch Video Solution

494. Plate A of parallel plate air filled capacitor is connected to a spring having force constant $k$ and plate $B$ is fixed. They are held on a frictionless table top as shown in Fig. If charge $+q$ is placed on plate A and a charge $-q$ on plate A and a charge $-q$ on plate B , by how much does the spring expand?

$$
\left\lvert\, \begin{array}{|c|c|}
\hline 0000000000000 & +1 \mid \\
\hline+\mid- \\
\hline
\end{array}\right.
$$

495. A parallel plate capacitor having plates of area $S$ and plate separation d , has capacitance $C_{1}$ in air. When two dielectrics of different relative primitivities ( $\varepsilon_{1}=2$ and $\varepsilon_{2}=4$ ) are introduced between the two plates as shown in the figure, the capacitance becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is

496. Plot 1 in Fig gives the charge $q$ that can be stored on capacitor $C_{1}$ versus electric potential $V$ set up across it. Plots 2 and 3 are simillar plots for capacitor $C_{2}$ and $C_{3}$ respectively. The three capacitors are connected to 6.0 V battery as shown here.

Calculate charge stored in capacitor $C_{2}$.

b
497. Two charges $+q$ and $-q$, each of mass $m$, are revoloving in a circle of radius R, under mutal electrostatic force, Find (i) speed of each charge (ii) kinitic energy of the system (iii) potental energy of the system and (iv) total energy of the system.

## - Watch Video Solution

498. Two long wires are placed on a smooth horizontal table. The linear charge densities of these wires are $\pm \lambda C / m$. For unit length of the wires, calculate the work requrired to increase the separation between the wires from a to 3a.

## - Watch Video Solution

499. In the circuit shown in figure, find the steady state charges on both the capacitors.


## - Watch Video Solution

500. A capacitor has two square plates each of sidel making an angle $\theta$ between them as shown in Fig. Calculate capacitor of the
arrangement for small values of $\theta$


## - Watch Video Solution

501. What is the force between two small charged spheres having charges of $2 \times 10^{-7} \mathrm{C}$ and $3 \times 10^{-7} \mathrm{C}$ placed 30 cm apart in air ?

## (D) Watch Video Solution

502. When a glass rod is rubbled with a silk cloth, charges appear on both. A similar phenomenon is observed with many other pairs
of bodies. Explain how this observation is consistent with the law of conservation of charge.

## - Watch Video Solution

503. 

Four
point
charges
$q_{A}=2 \mu C, q_{B}=-5 \mu C, q_{C}=-2 \mu C$ and $q_{D}=-5 \mu C$ are located at the corners of a square $A B C D$ of side 10 cm . What is the force on a charge of $1 \mu C$ placed at the center of the square?

## - Watch Video Solution

504. (a) An electrostaic field line is a continous courve. That is a field line cannot have sudden breaks. Why not ?
(b) explain why two filed lines never cross each other at any point.
505. Two point charges $q_{A}=3 \mu C$ and $q_{B}=-3 \mu C$ are located 20 cm apart in vaccum (a) what is the electric field at the mid point O of the line $A B$ joining the two charges ? (b) If a negative test charge of magnitude $1.5 \times 10^{-9} \mathrm{C}$ is placed at the point, what is the force experienced by the test charge?

## - Watch Video Solution

506. A system has two charges
$q_{A}=+2.5 \times 10^{-7} C$ and $q_{B}=-2.5 \times 10^{-7} C$ located at point A:
$(0,0,-15 \mathrm{~cm})$ and $\mathrm{B}:(0,0,+15 \mathrm{~cm})^{\prime}$, respectively. What are the total
charge and electric dipole moment of the system?


## - Watch Video Solution

507. An electrtic dipole with dipole moment $4 \times 10^{-9} \mathrm{Cm}$ is aligned at $30^{\circ}$ with the direction of a uniform electric field of magnitude $5 \times 10^{4} N C^{-1}$. Calculate the magnitude of the torque acting on the dipole.
508. A polythene piece rubbed will wool is found to have a negative charge of $3.0 \times 10^{-7} \mathrm{C}$.
(a) Estimate the number of electrons transferred (from which to which )?
(b) Is there a transfer of mass from wool to polythene?

## - Watch Video Solution

509. (a) Two insulated charged copper spheres $A$ and $B$ have their centers speparated by a distance of 50 cm . What is the mutal force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7} \mathrm{C}$ ? The radill of $A$ and $B$ are negalible compared to the distance of separation.
(b) What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?
510. Two insulated identically sized charged copper spheres $A$ and $B$ have their centers separated by a distance of 50 cm . Charges on each sphere is
$q=6.5 \times 10^{-7} C$
. A third sphere of the same size but uncharged is brought in contact with the first, then in contact with the second and finally removed from both. What is the new force of repulsion between $A$ and $B$ ?

## - Watch Video Solution

511. Figure shows the tracks of three charged particles in a uniform electrostatic field projected parallel to a plate with the same velocity. Give the signs of the three charges. Which of the three charges. Which of the three particles has the highest
charge-to-mass ratio?


## - Watch Video Solution

512. Consider a uniform electric field $E=3 \times 10^{3} \hat{i} N / C$. (a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the dz plane ? (b) What is the flux through the same square if the normal to its plane makes a $60^{\circ}$ angle with the $x$-axis ?
513. Careful measurement of the electric field at the surface of a black box inidicates that the net outward flux through the surface of the box is $8.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$ (a) what is the net charge inside the box ? (b) If the net outward flux through the surface of the box were zero, could you conclude that there were no charges inside the box ? Why or why not?

## (D) Watch Video Solution

514. A point charge $+10 \mu C$ is at distance of 5 cm directly above the center of a square of side 10 cm as shown in Fig. What is the magnitude of the electric flux through the square? (Hint. Think of
the square of the square as one face of a cube with edge 10 cm )


## - Watch Video Solution

515. A point charge of $2.0 \mu \mathrm{C}$ is at the centre of a cubic Gaussian surface 9.0 cm on edge. What is the net electric flux through the surface?
516. A point charge causes an electric flux of $-1.0 \times 10^{3} \mathrm{Nm}^{2} / \mathrm{C}$ to pass through a spherical Gaussian surface of 10.0 cm radius centred on the charge. (a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface ? (b) What is the is the value of the point charge?

## - Watch Video Solution

517. A conducting sphere fo radius 10 cm has an unknown charge.

If the electric field 20 cm from the center of the sphere is
$1.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ and points radilly inwards, what is the net charge on the sphere?

## - Watch Video Solution

518. A uniformly charged conducting sphere of 2.4 m diameter has a surface density of $80.0 \mu \mathrm{C} / \mathrm{m}^{2}$. (a) Find the charge on the sphere
(b) What is the total electric flux leaving the surface of the sphere ?

## - Watch Video Solution

519. An infinite line charge produces a field of $9 \times 10^{4} N C$ at a distance of 2 cm . Calculate the linear charge density.

## - Watch Video Solution

520. Two large this metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and magnitude $17.0 \times 10^{-22} \mathrm{C} / \mathrm{m}^{2}$.

What is $\vec{E}$ : in the outer region of the first plate. (b) in the outer
region of the secound plate, and (c) between the plates ? See Fig.


## - Watch Video Solution

521. An oil drop of 12 excess electrons is held stationaty under a constant electric field of $2.55 \times 10^{4} N C^{-1}$ in Millikan's oil drop experi,ment. The density of the oil is $1.26 \mathrm{gcm}^{-3}$. Estimate the radius of the drop. $\left(g=9.81 \mathrm{~ms}^{-2}, e=1.60 \times 10^{19} \mathrm{C}\right)$

## - Watch Video Solution

522. Which of the following curves shown below cannot possibly represent electrostatic field lines?

## - Watch Video Solution

523. In a certain region of space, electric field is along the $z$ direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive $z$ direction. At the rate of $10^{5} \mathrm{NC}^{-1} \mathrm{~m}^{-1}$. What are the force and torque experienced by system having a total dipole moment equal to $10^{-7} \mathrm{Cm}$ in the negative z -direction?

## - Watch Video Solution

524. (a) A conductor A with a cavity as shown in Fig, is given a charge Q . Show that the entire charge must appear on the outer
surface of the conductor.
(b) Another condutor B with charge q is inserted into the cavity keeping $B$ insulated from $A$. Show that the total charge on the outside surface of A si $(Q+q)$ fig.
(c) A sensitive instument is to be shielded from the strong electrostatic field in its enviroment. Suggest a possibe way.


## - Watch Video Solution

525. A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the holes is $\left(\sigma / 2 \in_{0()} \hat{n}\right.$, where $\hat{n}$ is the unit vector in the outward normal direction, and $\sigma$ is the surface charge density near ther hole.

## ( Watch Video Solution

526. Obtain the formula for the electric field due to a long thin wire of uniform linear charge density $\lambda$ without using Gauss's law. [Hint. use Coulomb's law directly and evaluate the necessary integral].

## - Watch Video Solution

527. It is now believed that protons and neutrons (which consitude nuclel of ordinary matter) are themselves built out of more elementary units called quarks. A proton and a neutron consits os three quarks each. Two types of quarks, the so called 'up' quark, (denoted by U ) of charge $+(2 / 3)$ e and the 'down' quark (denoted by d) of charge ( $-1 / 3$ ) e together with electrons build up ordinary matter. (Quarks of each other types have also been found which
give rise to different unsual varieties of matter). Suggest a possible quark composition of a proton and neutron.

## - Watch Video Solution

528. (a) Consider an arbitary electrostatic field configuration. A small test charge is placed at a null point (i.e, where $\vec{E}=0$ ) of the configuration. Show that the equillibrium of the test charge is necessarlly unsutable.
(b) Verify this result for the simple configuration of two charges of the same magnitude and sign placed a certain distance apart.

## - Watch Video Solution

529. Two charges $\mathrm{n} 5 \times 10^{-8} \mathrm{C}$ and $-3 \times 10^{-8} \mathrm{C}$ are located 16 cm apaart. At what points on the line joining the two charges is the electric potential zero ? Take the potential at infinity to be zero.

## - Watch Video Solution

530. A regular hexagon of side 10 cm has a charge $5 \mu \mathrm{C}$ at each of its vertices. Calculate the potential at the center of the hexagon.

## - Watch Video Solution

531. Two charges $2 \mu \mathrm{C}$ and $-2 \mu \mathrm{C}$ are placed at points A and B 6 cm apart.
(a) Identify an equipotenital surface of the system.
(b) What is the direction of the electric field at every point on this surface?
(b) Watch Video Solution
532. A spherical conductor of radius 12 cm has a charge of $1.6 \times 10^{-7} \mathrm{C}$ distributed uniformly on its surface. What is the electric field (a) inside the sphere (b) just outside the sphere (c ) at a point 18 cm from the center of the sphere ?

## - Watch Video Solution

533. A parallel plate capacitor with air between the plates has a capacitance of $8 \mathrm{pF} .\left(1 p F=10^{-12} \mathrm{~F}\right)$ What will be the capacitance if the distance between the plates is reduced by half and the space between them is filled with a substance of dielectric constant 6 ?

## - Watch Video Solution

534. Three capacitors each of capacitane 9 pF are connected in series. (a) What is the total capacitance of the combination ? (b)

What is the potential difference across each capacitor if the combination is connected to a 120 V supply.

## - Watch Video Solution

535. Three capacitors of capacitance $2 p F, 3 p F$ and $4 p F$ are connected in parallel. (a) what is the total capacitance of the combination ? (b) Determine the charge on each capacitor, If the combination is connected to 100 V supply.

## - Watch Video Solution

536. In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3} \mathrm{~m}^{2}$ and distance between the plates is 3 mm . Calculate the capacitance. If this capacitance is connected to
a 100 V supply, what is the charge on each plate of the capacitor ?
537. Explain what would happen if in the capacitor in $Q .8, a 3 \mathrm{~mm}$ thick mica sheet of (dielectric constant $=6$ ) were inserted between the plates (a) while the voltage supply remained connected (b) after the supply was disconnected.

## - Watch Video Solution

538. A 12 pF capacitor is connected to a 50 V battery. How much electrostatic energy is stored in the capacitor?

## - Watch Video Solution

539. A $600 p F$ capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another
uncharged 600pF capacitor. What is the common potential in $V$ and energy lost in $J$ afrte reconnection?

## - Watch Video Solution

540. A charge of 8 mC is located at the origin. Calculate the work done in taking a small charge of $-2 \times 10^{-9} \mathrm{C}$ from a point $\mathrm{P}(0,0,3$ $\mathrm{cm})$ to a point $\mathrm{Q}(0,4 \mathrm{~cm}, 0)$ via a point $R(0,6 \mathrm{~cm}, 9 \mathrm{~cm})$.

## - Watch Video Solution

541. A cube of side $b$ has a charge $q$ at each of its vertices. Determine the potential and electric field due to this charge array at the center of the cube.
542. A spherical conducting shell of inner radius $r_{1}$ and outer radius $r_{2}$ has a charge Q .
(a) A charge q is placed at the center of the shell. What is the surface charge density on the inner and outer surfaces of the shell ?
(b) Is the electric field intensity inside a cavity (with no charge)
zero, even if the shell is not spherical, but has any irregular shape
? Explain.

## - Watch Video Solution

543. A long charged cylinder of linear charge density $\lambda$ is surrounded by a hollow co-axial conducting cyclinder. What is the electric field in the space between the two cylinders?
544. If one of the two electrons fo a hydrogen molecule is removed, we get a hydrogen molecule ion $\left(\mathrm{H}_{2}^{+}\right)$. In the ground state of $\mathrm{H}_{2}^{+}$, the two protons are separated roughly by $1.5 \AA$ and electron is roughly $1 \AA$ from each proton. Determine the potential energy of the system. Specify your choice of zero of potential energy.

## - Watch Video Solution

545. Two charged conducting spheres of radill $a$ and $b$ are connected to eachother by a wire. What is the ratio of electric fields at the surface of two spheres ? Use the result obtained to explain why charge density on the sharp and pointed ends of a conducter is higher than on its fatter portions ?
546. Fig shows a charge array known as an 'electric quadrupole'.

For a point on the axis of the quadrupole, obtain the dependence of potential on $r$ for $r / a \gg 1$, and contract your results with that due to an electric dipole and an electric monopole (i.e, a single charge).


## - Watch Video Solution

547. What is the area of the plates of a 2 farad parallel plate air capacitor, given that the separation between the plates is 0.5 cm ?
548. Obtain equivalent capacitance of the following net work, Fig.

For a 300V supply determine the charge and voltage across each capacitor.


## - Watch Video Solution

549. The plates of a paralllel plate capacitor have an area of $90 \mathrm{~cm}^{2}$ each and are separated by 2.5 mm . The capacitane is charged by connecting it to a 400 V supply.
(a) How much electrostatic energy is stored by the capacitor ?
(b) View this energy as stored in the electrostatic field between the plates, and obtain the energy per unit volume (u). Hence arrive at a realtion between U and the magnitude of electric field E between the plates.

## ( Watch Video Solution

550. A $4 \mu F$ capacitor is charged by a 200 V supply. It is then disconnected from the supply and is connected to another uncharged $2 \mu F$ capacitor. How much electrostatic energy of the first capacitor is disspated in the form of heat and electromagnetic radiation?

## - Watch Video Solution

551. A sperical capacitor consists of two concentric spherical conductors, held in position by suitable insulating supports. Show
that the capacitance of this spherical capacitor is given by $C=\frac{4 \pi \in_{0} r_{1} r_{2}}{r_{1}-r_{2}}$,

Where $r_{1}$ and $r_{2}$ are radill of outer and inner spheres respectively.

## - Watch Video Solution

552. A spherical capacitor has an inner sphere of radius 12 cm and an outer sphere of radius 13 cm . The outer sphere si earthed and the inner sphere is given a charge of $2.5 \mu C$. The space between the concentric spheres is filled with a liquid of dielectric constant 32 .
(a) Determine the capacitance of the capacitor. (b) What is the potential of the inner sphere?
(c) Compare the capacitance of this capacitor with that of an isolated sphere of radius 12 cm .Explain why the latter is much smaller?
553. A cylindrical capacitor has two co-axial cyclinders of length 15
cm and radil 1.5 and 1.4 cm .The outer cylinder is earthed and inner cyclinder is given a charge of $3.5 \mu \mathrm{C}$. Determine the capacitance of the system and the potential of the inner cylinder. Neglect end effects (i.e., bending of field lines at the ends.)

## - Watch Video Solution

554. A parallel plate capacitor is to be designed with a voltage rating 1 KV using a material of dielectrical constant 3 and dielectric strength about $10^{7} \mathrm{Vm}^{-1}$. [Dielectric strength is the maximum electric field a material can tolerate without break down, i.e, without starting to conduct electrically through partial ionisation. For safety, we should like the field never to exceed say
$10 \%$ of the dielectric strength]. What minimum area of the plates
is required to have a capacitance of 50 pF ?
555. In a Van de graaf type genertor a sphrical metal shell is to be a $15 \times 10^{6}$ volt electrode. The dielectric strength of the gas surrounding the elctrode is $5 \times 10^{7} \mathrm{Vm}^{-1}$. What is the minimum radius of the spherical shell required ?
[you will learn form this exercise why one cannot build an electrostatic generator using a very small shell, which requires a small charge to acquire a high potential.]

## - Watch Video Solution

556. A small sphere of radius $r_{1}$ and charge $q_{1}$ is enclosed by a spherical shell of radius $r_{2}$ and charge $q_{2}$. Show that if $q_{1}$ is positive, charge will necessilly flow from the sphere to the shell (when the two are connected by a wire) no matter what the charge $q_{2}$ on the shell is [Fig]

## ( Watch Video Solution

557. An arbitrary surface encloses a dipole. What is the electric flux through this surface ?

## - Watch Video Solution

558. A metal spherical shell has an inner radius $R_{1}$ and outer radius $R_{2}$. A charge $Q$ is placed at the center of the spherical cavity.

What will be surface charge density on (i) the inner surface, and
(ii) the outer surface?

## - Watch Video Solution

559. The dimensions of an atom are of the order of an Angstrom.

Thus there must be large electric fields between the protons and
electrons. Why, then is the electronstatic field inside a conductor zero?

## - Watch Video Solution

560. If the total charge enclosed by a surface is zero, does it imply that the electric field everywhere on the surface is zero ? Conversely, if the electric field everywhere on a surface is zero, does it imply that net charge inside is zero.

## - Watch Video Solution

561. Sketch the electric field lines for a unifomly charged hollow cylinder shown in Fig.



Side View


Top View

## - Watch Video Solution

562. What will be the total flux throguh the faces of the cube, Fig with side of length a if a charge $q$ is placed at (a) A : a corner of the cube (b) B : mid-point of an edge of the cube (c) C : center of a face of the cube (d) D : mid-point of $B$ and $C$.

## - Watch Video Solution

563. A paisa coin is made up Al.Mg alloy and weighs 0.75 g . It has a square shape and its diognal measures 17 mm . It is electrically
neutral and constants equal amounts of positive and negative charges . Treating the paisa coin made up of only Al, find the magnitude of equal number of positive and negative charges. What concluision do you draw from this magnitude?

## - Watch Video Solution

564. Two charges $q$ and $3 q$ are placed fixed on $x$-axis separated by distance ' $d$ '. Where should a third charge $2 q$ be placed such that it will not experience any force?

## - Watch Video Solution

565. Fig shows the electric field lines around three points charges

A,B,C.
(a) Which charges are positive?
(b) Which charge has the largst magnitude ? Why ?
(c) In which region or regions of the picture could be the electric field be zero? Justify your answer.
(i) near A, (ii) near B, (iii) near C, (iv) nowhere.

## ( Watch Video Solution

566. Consider a sphere of radius $R$ with charge density distributed as $\rho(R)=k r$ for $r \leq R$ and $=0$ for $r>R$.
(a) Find the electric field at all points $r$.
(b) suppose the total charge on the sphere is 2 e , where e is the electron charge. Where can two protons be embedded such that the force on each of them is zero. Assume that the introduction of
the proton does not alter the negative charge distribution.


## - Watch Video Solution

567. Two charges $-q$ each are fixed separated by distance 2d. A third charge q of mass m placed at the mid-point is displaced at the mid-point is placed slightly by $x(x \ll d)$ perpendicular to the line joining the two fixed charges as shown in Fig. Show that $q$ will
perform simple harmonic oscillarion of time period.
$T=\left[\frac{8 \pi^{3} \in_{0} m d^{3}}{q^{2}}\right]^{1 / 2}$


## - Watch Video Solution

568. Total charge $-Q$ is uniformly spread along length of a ring of radius R . A small test $+q$ of mass $m$ is kept at the center of the ring
(a) Show that the particle executes a single harmonic oscillation.
(b) Obtain its time period.


## ( Watch Video Solution

569. Can there be a potential difference between two adjacent conductors carrying the same charge ?

## - Watch Video Solution

570. Can the potential function have a maximum or minimum is
free space?
571. A test charge $q$ is made to move in the electric field of a point charge $Q$ along two different closed paths. Fig. First path has sections along and perpendicular loop of the same area as the first loop. How does the work done compare in the two cases?

572. Prove that a closed equipotenitial surface with no charge within itself must enclose an equipotential volume.

## - Watch Video Solution

573. A capacitor has some dielectric between its plates, and the capacitor is connected to a DC source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase ro remain constant.

## - Watch Video Solution

574. Prove that, if an insulated, uncharged conductor is placed near a charged conductor and no other conductors are present,
the uncharged body must be intermedicate in potential between that of the charged body and that of infinity.

## - Watch Video Solution

575. Calculate potential energy of a point charge -q placed along the axis due to a charge $+Q$ uniformly distributed along a ring of radius R. Skecth P.E. as a function of a axial distance $z$ from the center of the ring, Looking at graph, can you see what happen if $-q$ is displaced slighlty from the centre of the ring (along the axis) ?

## - Watch Video Solution

576. Calculate potential on the axis of a ring due to charge $Q$ uniformly distributed along the ring of readius $R$.
577. Two point charges of magnitude $+q$ and $-q$ are placed at ( $-d / 2,0,0$ ) and $(d / 2,0,0)$ are respectively. Find the equation of the euipotential surface where the potential is zero.

## - Watch Video Solution

578. A parallel palte capacitor is filled by a dielectric whose relative permittively varies with the applied voltage (U) as $\varepsilon=\alpha U$ where alpha $=2 V^{-1}$. A similar capacitor with no dielectric is charged to $U_{0}=78 \mathrm{~V}$. It is then is connected to the uncharged capacitor with the dielectric. Find the final voltage on the capacitors.

## - Watch Video Solution

579. A capcitor is made of two circular paltes of radius $R$ each, separated by a distance $d \ll R$. The capacitor is connected to a
constant voltage. A thin conducting disc of radius $r \ll R$ and thickness $t \ll r$ is placed at a center of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc si m.

## (D) Watch Video Solution

580. (a) In a quark model of elementary particles, a neutron is made of one up quarks [charge (2/3)e] and two down quarks [charges
$(1 / 3) e]$. As $\sum$ ettheyhavea $\triangle$ configurationwithside $\leq n>$ hofthe or derof
$10^{\wedge}(-15) \mathrm{m}$. Calculate electrostatic potential energy of neutron and compare it with its mass 939 MeV .
(b) Repeat above exercise for a proton which is made of two up
and one down quark.


## - Watch Video Solution

581. Two metal spheres, one fo radius $R$ and the other of radius $2 R$, both have same surface charge density s. They are brought in contact and seprated. What will be new surface charge densitites on them?
582. In the circuit shown in Fig, instially $K_{1}$ is closed and $K_{2}$ is open. What are the charges on each capacitor.

Then $K_{1}$ was opened and $K_{2}$ was closed (order is important). What will be the charge on each capacitor now ? $[C=1 \mu F]$

## - Watch Video Solution

583. Calculate potential on the axis of a disc of radius R due to a charge $Q$ uniformly distributed on its surface.

## - Watch Video Solution

584. In Fig, electric field is dirceted along $+X$ direction and is given by $E_{x}=5 A x+2 B$, where E is in $N C^{-1}$ and x is in meter, A and B are constants having dimenstions.

Taking
$A=10 N C^{-1} m^{-1}$ and $B=5 N C^{-1}$, calculate (i) the electric flux
through the cube and (ii) net charge enclosed within the cube.


## ( Watch Video Solution

585. A radioavtive source in the form of a metal sphere of daimeter
$10^{-3} \mathrm{~m}$ emits $\beta$-particles at a constant rate of $6.25 \times 10^{10}$ particles per second. If the source is electrically insulated, how long will it take for its potential to rise by 1.0 V , assuming that $80 \%$ of the emitted $\beta$-particles escape the socurce?

## - Watch Video Solution

586. A point particle of mass $M$ is attached to one end of a massless rigid non-conducting rod of length L. Another point particle of the same mass is attached to the other end of the rod. The two particles carry charges $+q$ and $-q$ respectively. This arrangement is held in a region of a uniform electric field $E$ such that the rod makes a small angle $\theta$ (say of about 5 degree) with the field direction, fig. Find an expression for the minimum time needed for the rod to become parrallel to the field after it is set free.


## Watch Video Solution

587. Find the capacitance of the infinite ladder between points $X$ and Y , Fig.


## - Watch Video Solution

588. Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of $30^{\circ}$ with each other.

When suspended in a liquid of density $0.8 \mathrm{gcm}^{-3}$, the angle remains the same. If density of the material of the sphere is $1.6 \mathrm{gcm}^{-3}$, the dielectric constant of the liquid is
589. A thin fixed of radius 1 metre has a positive charge $1 \times 10^{-5}$ coulomb uniformly distributed over it. A particle of mass 0.9 gm and having a negative charge of $1 \times 10^{-6}$ coulomb is placed on the axis at a distance of 1 cm from the centre of the ring. Show that the motion of the negatively charged particle is approaximately simple harmonic. Calculate the time period of oscillations.

## - Watch Video Solution

590. In a circuit shown in fig find the potentail difference between the left and right plates of each capacitor.


## - Watch Video Solution

591. In the given circuit, Fig, if the points $b$ is connected to earth and a potential of +1200 volt is given to the point $b$ is connected to earth and a potential of +1200 volt is given to the point a, calculate the charges acquired by each of the capacitors and the potentials of the point C ?
592. Two point charges $q_{1}$ and $q_{2}$, of magnitude $+10^{-8} \mathrm{C}$ and $-10^{-8} \mathrm{C}$, respectively, are placed 0.1 m apart.

Calculate the electric fields at points A, B and C shown in Fig. 1.14.


## - Watch Video Solution

1. A glass rod rubbed with slik is brought close to two uncharged metallic spheres in contact with each other, inducing charges on them..

Describe what happens when
(i) the spheres are slightly separated and
(ii) the glass rod is subsequently removed and finally
(iii) the spheres are separated far apart.

## - Watch Video Solution

2. (a) A comb run through one's dry hair attracts small bits of paper. Why? What happens if the hair is wet or if it is a rainy day? (Remember, a paper does not conduct electricity.)
(b) Ordinary rubber is an insulator. But special rubber tyres of aircraft are made slightly conducting. Why is this necessary?
(c) Vehicles carrying inflammable materials usually have metallic
ropes touching the ground during motion. Why?
(d) A bird perches on a bare high power line, and nothing happens to the bird. A man standing on the ground touches the same line and gets a fatal shock. Why?

## ( Watch Video Solution

3. Plot a graph showing the variation of coulomb force (F) versus
$\left(\frac{1}{r^{2}}\right)$, where $r$ is the distance between the two charges of each pair of charges:
$(1 \mu C, 2 \mu C)$ and $(2 \mu C-3 \mu C)$. Interpet the graphs obtained.

## - Watch Video Solution

4. In defining electric field due to a point charge, the test charge, the test charge has to be vanishingly small. How this condition can
be justified, when we know that charge less than of electron or a proton is not possible.

## - Watch Video Solution

5. Figure shows tracks of three charged particles crossing a uniform electrostatic field with same velocities along horizontal.

Give the sign of the three charges. Which particle has the highest charge to mass ratio?


## - Watch Video Solution

6. Two small identical electric dipoles $A B$ and $C D$, each of diople moment p are kept at an angle of $120^{\circ}$ as shown in Figure. What is the resultant dipole moment of this combination?

If this system is subjected to electric field $(E)$ directed along $+X$ direction, what will be the magnitude and direction of the torque acting on this ?

## D View Text Solution

7. Figures (a) and (b) show the field lines of a positive and negative point charge respectively


FIGURE
(a) Give the signs of the potential difference $V_{P}-V_{Q}, V_{B}-V_{A}$.
(b) Give the sign of the potential energy difference of a small negative charge between the points $Q$ and $P, A$ and $B$.
(c) Give the sign of the work done by the field in moving a small positive charge from $Q$ to $P$.
(d) Give the sign of the work done by the external agency in moving a small negative charge from $B$ to $A$.
(e) Does the kinetic energy of a small negative charge increase or decrease in going from $B$ to $A$ ?

## - Watch Video Solution

8. Fig. shows two identical capacitors $C_{1}$ and $C_{2}$ each of $1 \mu F$ capacitance, connected to a battery of 6V Initially,swich S is closed.

After sometime, S is left open and dielectric slabs of dielectric constant $\mathrm{K}=3$ are instered to fill compelelty the space between the plates of two capacitors. How will the (i) charge and (ii)
potential difference between the plates of the capacitors be affected after teh slabs are inserted ?


## - Watch Video Solution

## SHORT ANSWER QUESTIONS

1. Define an equipotential surface. Draw equipotential surfaces :
(i) in the case of single point charge and
(ii) in a constant electric field in Z-direction.

Why the equipotential surfaces about a single charge are not equidistant?
(iii) Can electric field exist tangential to an equipotential surface? Given reason.

## - Watch Video Solution

2. Establish realation between electric field strength and force.

## - Watch Video Solution

3. What is an equipotential surface ? Write three properties Sketch equipotential surfaces of
(i) Isolated point charge
(ii) Uniform electric field
(iii) Dipole
4. Explain electrostatic shiedling with examples.

## - Watch Video Solution

5. Show that the electric field at the surface of a charged conductor is given by $\vec{E}=\frac{\sigma}{\varepsilon_{0}} \hat{n}$, where $\sigma$ is the surface charge density and $\hat{n}$ is a unit vector normal to the surface in the outward direction.

## - Watch Video Solution

6. What is a surface density of charge ? Show that surface density of charge is different at different points of an irregular shaped conductor.

## - Watch Video Solution

7. Consider a coin, It is electrically neutral and contains equal amounts of positive and negative charge of magnitude 34.8 kC .

Suppose that these equal charges were concentrated in two point charges separated by
(i) $1 \mathrm{~cm}\left(\sim \frac{1}{2} \times\right.$ diagonal of the one paisa coin)
(ii) 100 m (~length of a long building)
(iii) $10^{6} \mathrm{~m}$ (radius of the earth). find the force on each such point charge in each of the three cases. what do you conclude from these results?

## ( Watch Video Solution

8. Figure represents a crystal unit of cesium chloride, CsCl . The cesium atoms, represented by open circles are situated at the corners of a cube of side 0.40 mm , whereas a Cl atom is situated at the centre of the cube. The Cs atoms are deficient in one
electron while the Cl atom carries an excess electron. ItBrgt (i).

What is the net electric field on the Cl atom due to eight Cs atoms?
(ii) Suppose that the Cs atom at the corner A is missing. what is the net force now on the Cl atom due to seven remaining Cs atom?


○OCs ${ }^{+} \cdot \mathrm{Cl}^{-}$
9. Five charges, $q$ each are placed at the corners of a regular pentagon of side a. (Refer the adjoining figure)
(a) (i) What will be the electric field at 0 , if the centre of the pentagon?
(ii) What will be the electric field at O if the charge from one of the corners (say A) is removed?
(iii) What will be the electric field at $O$ if the charge $q$ at $A$ is replaced by -q?
(b) How would your answer to (a) be affected if pentagon is replaced by $n$-sided regular polygon with charge $q$ at each of its corners?

1. What role does electrostatics play in a xerox copying machine?

## - Watch Video Solution

2. When your friend chews a winter green life saver in a dark room, you see a faint flash of blue light from his mouth. How?

## - Watch Video Solution

3. What role does electrostatics play in the reproduction of floweres?

## - Watch Video Solution

4. What is a defibrilator ? Explain briefly.

## VERY SHORT ANSWER QUESTIONS

1. What is the net charge on a charged capacitor ?
A. Zero
B. infinite
C. $2 q$
D. $\frac{q}{2}$

## Answer: A

- Watch Video Solution

2. If the plates of a charged capacitor be suddenly connected to each other by a wire, what will happen ?

## - Watch Video Solution

3. How many picofarads are there in a farad ?

## - Watch Video Solution

4. Consider two conducting spheres of radii $R_{1}$ and $R_{2}$ with $R_{1}>R_{2}$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whetehr the charge density of the smaller sphere is more or less than that of the larger oe.

## - Watch Video Solution

5. Do free electrons travel to region of higher potential or lower potentail?

## - Watch Video Solution

## ADVANCED PROBLEMS FOR COMPETITIONS

1. (a) A conductor having cavity C is charged as shown in Fig. What is electricfied inside the cavity ? Does the result depend upon the shape and size of the cavity?

(b) Can Gauss's law tell us exactly where teh charge is located inside the Gaussian surface?

## NCERT QUESTIONS

1. The electrostatic force on a small sphere of charge $0.4 \mu C$ due to anther small sphere of charge $-0.8 \mu \mathrm{C}$ in air 0.2 N (i) What is the distance between the two spheres? (ii) What is the force on the second sphere due to the first ?

## - Watch Video Solution

2. Check that the ratio $k e^{2} / G m_{e} m_{p}$ is dimensionless, Look up a table of Physical Constants and determine the value of this ratio.

What does the ratio signify ?
3. Check that the ratio $k e^{2} / G m_{e} m_{p}$ is dimensionless, Look up a table of Physical Constants and determine the value of this ratio.

What does the ratio signify ?

## - Watch Video Solution

4. What is the net flux of the uniform electric field of Q .15 thorugh a cube of side 20 cm oriented so that its faces are parallel to the co-ordinate planes ?

## - Watch Video Solution

5. Two tiny spheres carrying charges $1.5 \mu \mathrm{C}$ and $2.5 \mu \mathrm{C}$ are located

30 cm apart. Find the potential
(a) at the mid-point of the line joining the two charges and
(b). At a point 10 cm from this mid-point in a plane normal to the line and passing through the mid-point.

## ( Watch Video Solution

6. Show that the normal component of electrostatic field has a discontinuly form one side of a charged. Surface to another given
$\operatorname{by}\left(\overrightarrow{E_{2}}-\overrightarrow{E_{1}}\right) \cdot \hat{n}=\frac{\sigma}{\epsilon_{0}}$
where $\hat{n}$ is a unit vector normal to the surface at a point and $\sigma$ at a point and $\sigma$ is the surface charge density at that point. (The direction of $\hat{n}$ is from side 1 to side 2 ). Hence show that justy outside a conductor, the electric field $\sigma \hat{n} / \in_{0}$.
(b) Show that the tangential componet of electrostatic field is contionous from one side fo a charged surface to another.
7. In a hydrogen atom, the electron and proton are bound at a distance of about 0.53 Å:
(a) Estimate the potential energy of the system in eV, taking the zero of the potential energy at infinite separation of the electron from proton.
(b) What is the minimum work required to free the electron, given that its kinetic energy in the orbit is half the magnitude of potential energy obtained in (a)?
(c) What are the answers to (a) and (b) above if the zero of potential energy is taken at $1.06 \AA$ separation?

## - Watch Video Solution

8. Two charges -q and +q are located at points ( $0,0,-\mathrm{a}$ ) and ( 0,0 ,
a), respectively.
(a) What is the electrostatic potential at the points $(0,0, z)$ and ( $x$,
$\mathrm{y}, 0$ ) ? (b) Obtain the dependence of potential on the distance $r$ of
a point from the origin when $r / a \gg 1$.
(c) How much work is done in moving a small test charge from the point $(5,0,0)$ to ( $-7,0,0$ ) along the $x$-axis? Does the answer change if the path of the test charge between the same points is not along the $x$-axis?

## ( Watch Video Solution

9. An electrical technician requires a capacitance of $2 \mu \mathrm{~F}$ in a circuit across a potential difference of 1 kV . A large number of $1 \mu F$ capacitors are available to him each of which can withstand a potential difference of not more than 400 V . Suggest a possible arrangement that requires the minimum number of capacitors.

## - Watch Video Solution

10. Show that the force on each plate of a parallel plate capacitor has a magnitude equal to $(1 / 2) Q E$, where $Q$ is the charge on the capacitor, and $E$ is the magnitude of electric field between the plates. Explain the origin of the factor $1 / 2$.

## D Watch Video Solution

11. Answer carefully : (a) Two large conducting spheres carrying charges $Q_{1}$ and $Q_{2}$ are brought close to each other. Is the magnitude of electrostatic force between them exactly given by $\frac{Q_{1} Q_{2}}{4 \pi \in_{0} r^{2}}$ where $r$ is distance between their centers ?
(b) If Coulomb law involved $1 / r^{3}$ dependence (Instead of $1 / r^{2}$ ). would Gauss's law be still true?
(c) A small test charge is released at rest at a point in an electrostatic field configuration. Will it travel along the line of force passing through that point ?
(d) What is the work done by the field of a nucleus in a complete circualr orbits of electron ? What if the orbits is elliptical ?
(e) We know that electric field is discontinnous across the surface of a charged conductor conductor. Is electric potential also discontinous there?
(f) What meaning would you give to the capacity fo a single conductor?
(g) Guess a possible reason why water has a much greater dielectric constant $K=80$ than, say mica $(K=6)$.

## - Watch Video Solution

12. Describe schematically the equipotential surfaces corresponding to
(a) a constant electric field in the $z$-direction,
(b) a field that uniformly increases in magnitude but remains in a constant (say, z) direction,
(c) a single positive charge at the origin, and
(d) a uniform grid consisting of long equally spaced parallel charged wires in a plane.

## - Watch Video Solution

13. Answer the following:
(a) The top of the atmosphere is at about 400 kV with respect to the surface of the earth, corresponding to an electric field that decreases with altitude. Near the surface of the earth, the field is about $100 \mathrm{Vm}^{-1}$. Why then do we not get an electric shock as we step out of our house into the open? (Assume the house to be a steel cage so there is no field inside!)
(b) A man fixes outside his house one evening a two metre high insulating slab carrying on its top a large aluminium sheet of area $1 \mathrm{~m}^{2}$. Will he get an electric shock if he touches the metal sheet next morning?
(c) The discharging current in the atmosphere due to the small conductivity of air is known to be 1800 A on an average over the globe. Why then does the atmosphere not discharge itself completely in due course and become electrically neutral? In other words, what keeps the atmosphere charged?
(d) What are the forms of energy into which the electrical energy of the atmosphere is dissipated during a lightning? (Hint: The earth has an electric field of about $100 \mathrm{Vm}^{-1}$ at its surface in the downward direction, corresponding to a surface charge density
$=10^{-9} \mathrm{Cm}^{-2}$. Due to the slight conductivity of the atmosphere up
to about 50 km (beyond which it is good conductor), about +1800 C is pumped every second into the earth as a whole. The earth, however, does not get discharged since thunderstorms and lightning occurring continually all over the globe pump an equal amount of negative charge on the earth.)

## ADDITIONAL QUESTIONS

1. A paraticale of mass $m$ and charge $(-q)$ enters the region between the two charged plates initially moving along $x$-axis with speed $v_{x}$. The length of plate is $L$ and a uniform electric field E is maintained between the plates. Show that the verticale deflection of the particle at the far edge of the plate is $q E L^{2} /\left(2 m v_{x}^{2}\right)$. Compare this motion with motion of a projectille in gravitional field.

## D View Text Solution

2. Suppose that the particle in $Q .33$ is an electron projected with velocity $v_{x}=2.0 \times 10^{6} \mathrm{~ms}^{-1}$. If E between the plates separated by $0.5 \mathrm{cmis} 9.1 \times 10^{2} \mathrm{~N} / \mathrm{C}$, where will the electron strike the upper plate
$?\left(|e|=1.6 \times 10^{-19} C, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)$.

## LONG ANSWER QUESTIONS

1. Derive an expression for electric field intensity at a point due to point charge.

## - Watch Video Solution

2. (i) If two similar large plates, each of area A having surface charge densities $+\sigma$ and $-\sigma$ are separated by a distance $d$ in air,find the expression for
(a) field at points between the two plates and on outer side of the plates. Specify the direction of the field in each case.
(b) the potential difference between the plates.
(c) the capacitance of the capacitor so formed.
(ii) Two metallic spheres of radii $R$ and $2 R$ are charged so that
both of these have same surface charge density $\sigma$. If they are connected to each other with a conducting wire, in which direction will the charge flow and why?

## - Watch Video Solution

3. In 1959, Lytteton and Bondi suggest that the expansion of the Universe could be explained fi matter carried a net charge. Suppose that the Universe is made up of hydrogen atoms with a number density N , which is mainted a constant. Let the charge on the proton be , $e_{p}=-(1+q)$ e where e si the electronic charge.
(a) Find the critical value of $y$ such that expansion may start.
(b) Show that the velocity of expansion is propertional to the distance from the center.
4. Two fixed, identical conducting plates ( $\alpha$ and $\beta$ ), each of surface area S are charged to $-Q$ and $q$, respectively, where $Q>q>0$. A third indentical plate $(\gamma)$, free to move is located on the other side of the plate with charge $q$ at a distance $d$, fig. The third plate is released and collidies with the plate $\beta$. Assume the collsion is electric and the time of collision is sufficient to redistribute charge amongst $\beta$ and $\gamma$.
(a) Find the electric field acting on the plate $\gamma$ before collision.
(b) Find the charge on $\beta$ and $\gamma$ after the collision.
(c) Find the velocity of the plate $\gamma$ after the collision and at a
distance d from the plate $\beta$.


## D View Text Solution

5. Three is another useful system of units, besides the $\mathrm{SI} / \mathrm{mksA}$ system, called the cgs (centimeter-gram -second) system, Coulumb's law is given by $F=\frac{Q q}{r^{2}} \hat{r}$ where the distance $r$ is measured in $\mathrm{cm}\left(=10^{-2} \mathrm{~m}\right), \mathrm{F}$ in dynes $\left(=10^{-5} \mathrm{~N}\right)$ and the charges in electrostatic units (es units), where 1 es unit of charge

$$
=\frac{1}{[3]} \times 10^{-9} C
$$

The number [3] actually aries from the speed of light in vacumm which is now taken to be exactly given by $c=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$. An approximate value of c then is $\mathrm{c}=[3] \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(i) Show that the coulomb law in cgs units yields 1 esu of charge $=1(\text { dyne })^{1 / 2}$ cm. Obtain the dimensious of units of charge in terms of mass $M$, length $L$ and time $T$. Show that it is given in terms of fractional powers of $M$ and $L$.
(ii) Write 1 esu of charge $=x C$, where x is a dimenionless number.

Show that this gives
$\frac{1}{4 \pi \in_{0}}=\frac{10^{-9}}{x^{2}} \frac{N . m^{2}}{C^{2}}$ With $x=\frac{1}{[3]} \times 10^{-9}$, we have
$\frac{1}{4 \pi \in_{0}}=[3]^{2} \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$ or $\frac{1}{4 \pi \in_{0}}=(2.99792458)^{2} \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}$ (exactly).

## D View Text Solution

6. Find the equatio of the equipotentials for an infinite cylinder of radius $r_{0}$ carrying charge of linear density $\lambda$.

## D Watch Video Solution

7. Two charges $q_{1}$ and $q_{2}$ are placed at ( $0,0, \mathrm{~d}$ ) and ( $0,0,-\mathrm{d}$ ) respectively. Find locus of points where the potential is zero.

## - Watch Video Solution

8. Two charges $-q$ each are separated by dsitance $2 d$. A third charge +q is kept at mid-point O . find potential energy of +q as function of small distance $x$ from 0 due to -q charges. Sketch PE $\mathrm{Vs} / \mathrm{x}$ and convince yourself that the charge at 0 is in an unstable equilibrium.

## ( Watch Video Solution

## VALUE BASED QUESTIONS

1. As is known, all mater is made up of atoms/molecules. Every atom consits of a central of a central core, called the atomic nucleus, around which negatvely charged electrons revole in ciruclar orbits. Every atom is electrically neutral. Containing as many electron as the number of protons in the nucleas.

Thus, even though normally, the materails are electrically neutral,
they do contains charges, but thier charges are exactly balanced.

The vast amount of charge in an object is usually hidden as the object is usually hidden as the object is said to be electracally neutral charge. With such an equality or balance of charges the object is said to be electrically neutral or uncharged. To electrify or charge a neutral body, actully transfer to the other body. The body which gains electrons become negatively charged and the body which loses electrons becomes positivelyh charged. Further, like charges repel adn unlike charges attract.

Read the above passage and answer the following questions :
(i) Every body, whether a conductor or an insulator is electrically neutral. Is it true?
(ii) Charging lies in charge imbalance, i.e, excess charge, comment.
(iii) How do you visualize this principle being applied in our daily life?
2. Conservatios of charge is the propery by virtue of which total charge of an isolated system always remains constant or conserved. For example, when we rub two inslating bodies, A and $B$, such that $n$ electrons from $A$ transfer to $B$, then charge acquired by $A=+\neq$ and charge acquired by $B=-\neq$, where e is magnitude of charge on electron. The net charge on isolated system of bodies $A$ and $B=n e-\neq-0$, which was the charge before rubbing. Thus, it is not possible to create or destroy net charge carried by any isolated system. It also imples that charges
can be created or destroyed in equal and unlike pairs only.
(i) What is the basic cause of conservation of charge ?
(ii) Name any other fundamental property of electric charge.
(iii) At a time, can you create two like charges of magnitude $q=n e$ each ?
(iv) How is the property of conservation of charge reflected in day to day life?
3. When an electric dipole of moment $|\vec{p}|=q \times 2 a$ is held at an angle $\theta$, with the direction of uniform external electric field $\vec{E}$, a torque $\tau=p E \sin \theta$ acts on the dipole. This torque tries to align the electric dipole in the direction of the field. When $\vec{p}$ is along
$\vec{E}, \theta^{\circ}, \tau=p E \sin 0^{\circ}=z e r o$. The dipole is in stabel equilibrium. The energy possessed by the dipole by virtue of its particular position in the electric field is called potential energy of dipole.
$U=W=-p E\left(\cos \theta_{2}-\cos \theta_{1}\right)$
$\theta_{1}=90^{\circ}$ is the position of zero potential energy.
$\therefore U=W=-p E\left(\cos \theta-\cos 90^{\circ}\right)=-p E \cos \theta$.
For stable equillibrium, $\theta 0^{\circ}, \therefore U=-p E=$ minimum.
Read the above passage and answer the following questions:
(i) What is the direction of torque acting on electric dipole held at an angle with uniform external electric field ?
(ii) An electric dipole of length 10 cm having charges $\pm 6 \times 10^{-3} \mathrm{C}$, placed at $30^{\circ}$ with respect to a uniform electric field experiences a
torque of magnitude $6 \sqrt{3} N-m$. Calculate.
(a) magnitude of electric field. (b) potential energy of dipole.
(iii) What is the physical significance of this concept in our day to day life?

## ( Watch Video Solution

4. The electrostaic potential of a charged body represents the degree of electrification of the body. It detemines the direction of flow of charge between two charged bodies placed in contact with eachother. Charege always flows a body at higher potential to another body at lower potential. The flow of charge stops as soon as the potentials of the two bodies become equal.

Electrostatic potential in electrically corresponds to level in case
fo liquids, pressure in case of gases and temperature in case of heat.

Due to a point charge $q$ in air, electrostatic potentials at a
distance $r$ from the charge is $V=\frac{q}{4 \pi \epsilon_{0} r}$ The SI unit of potential is volt.

Read the above passage and answer the follwing questions:
(i) The capacity of a body A is 100 times the capacity of body B and charge on $A$ is 10 times the charge on $B$. When $A$ and $B$ are put in contact with eachother, will charge flow from $A$ to $B$ to $A$ ? Why ?
(ii) Calcualte the potential in air at a point 1 meter away from charge of $1 \mu C$.
(iii) What values of life do yo+-earn from the concept of electric potential ?

## - Watch Video Solution

5. The suface integral of electrostatic field $\vec{E}$ produced by any sources over any closed surface $S$ enclosing a volume V in vacumm, i.e., total electric flux over the closed $S$ in vacumm is $1 / \epsilon_{0}$ times
the total charge $(Q)$ contained inside S, i.e, $\phi_{E}=\oint \vec{E} \cdot \overrightarrow{d s}=\frac{Q}{\in_{0}}$

The charge inside S may be point charges or even continous charge distributions.

There is no contribution to total electric flux from the charges outside S . Further, the location at Q inside S does not affect the value of surface integral.

Read the above passage and answer the following questions :
(i) what are the SI unit and dimensions of electric flux ?
(ii) A closed surface in vacumm encloses charge $-q,+3 q$ and $+5 q$.

Another charge $+4 q$ lies outside the surface. What is total electric
flux over the surface?
(iii) A point charge $q$ lies inside a spherical of radius $r$. How will the electric flux be affected if radius of the sphere is doubled?
(iv) What values of life do you earn from the theorem?
6. A capacitor is an arrangement for storing large amounts of electric charge and hence electric energy in a small space.

The electrical capacitance of a capacitor is related to its abillity to
store electric charge. We define capacity of a conductor as the ratio of charge Q given to the conductor to the rise in its potential, V i.e., $C=Q / V$. The capacity of an isolted spherical conductor of radius $r$ is $C=4 \pi \in_{0} r$. In case of a parallel plate capacitor, $C=\frac{\in_{0} A}{d}$ where $A$ is area of insulated metal plate and d is distance between the plates. Clearly, capacity depends on size of capacitor.

When different capacitors are connected in series, capacity,
$C_{s}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}$ and when capacitors are connected in parallel, $C_{p}=C_{1}+C_{2}$

Read the above passage and answer the following questions :
(i) From $C=\frac{Q}{V}$, we find that $C$ can be increased $Q$ or decresing $V$. Do you agree ?
(ii) Capacity of a capacitor is fixed depending on its geometry and the medium used. Is it true ?
(iii) Calculate the capacity of a condenser which when connected in series with a conductor of $12 \mu \mathrm{~F}$ gives us a capacitance of $3 \mu \mathrm{~F}$.
(iv) What values of life do yo+-earn from this study?

## D View Text Solution

7. While travelling back to his residance in the car, Dr.Pathak was caught up in a thunderstrom. It become very dark. He stopped driving the car and waited for thunderstorm to stop. Suddenly, he noticed a child walking alone on the road. He asked the boy to come inside that Dr. Pathak should meet hsi parents. The parents
the boy at his residence. The boy insisted that Dr. Pathak should
meet hsi parents. The parents expressed their gratitude to Dr.
Patak for his concern for safety of the child.

Answer the following questions based on the above information :
(a) Why is it safer to sit inside a car during thunderstrom?
(b) Which two values are displayed by Dr. Pathak in his actions ?
(c) Which values are reflected in parent's respone to Dr. Pathak ?
(d) Give an example of a similar action on your part in the past from everyday life.

## D View Text Solution

## Exercise

1.1 state- Coulomb = ..... Coulomb
A. $3 \times 10^{9}$
B. $3 \times 10^{-9}$
C. $\frac{1}{3} \times 10^{9}$
D. $\frac{1}{3} \times 10^{-9}$

Answer: d

## - Watch Video Solution

2. Which of the following is not an insulator ?
A. Glass
B. rubber
C. ebonic
D. human body

Answer: d

- Watch Video Solution

3. An object is charged when it has a charge imbalance, which means the
A. Object contains no electrons
B. object contains no protons
C. object contains equal number of electrons and protons
D. objects contains unequal number of electrons and protons

## Answer: d

## - Watch Video Solution

4. The cause of charging is
A. actual transfer of protons
B. actual transfer of electrons
C. actual transfer of neutrons
D. none of the above

## Answer: b

## - Watch Video Solution

5. The cause of quantization of electric charge is
A. transfer of electrons
B. transfer of protons
C. transfer of integral number of electrons
D. none of the above

## Answer: c

6. What is not true
A. It is not possible to create or destroy net charge carried by any isolated system
B. Charges can be created or destroyed in equal and unlike pairs only
C. Proper signs have to be used while adding the charges in a system
D. Excess of electrons over protons in a body is responsible for positive charge of the body.

## Answer: d

- Watch Video Solution

7. Charge on a body which carries 200 electrons is
A. $-3.2 \times 10^{-18} C$
B. $3.2 \times 10^{-18} C$
C. $-3.2 \times 10^{-17} C$
D. $3.2 \times 10^{-17} C$

## Answer: c

## - Watch Video Solution

8. What is the value of absolute permeability of free space? Give its units.
A. $9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
B. $9 \times 10^{-9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$
C. $8.85 \times 10^{-12} C^{2} N^{-1} m^{-2}$
D. $8.85 \times 10^{-12} C^{2} \mathrm{Nm}^{-2}$

## Answer: c

## - Watch Video Solution

9. Value of charge on a body which carries 10 excess electrons is

## - Watch Video Solution

10. The charges acquired by the objects on rubbing against eachother must be and
11. was the first to show kinds of charges.

## - Watch Video Solution

12. Insulators are also called

## - Watch Video Solution

13. The value of electrostatic force constant in free space is

## - Watch Video Solution

14. A person combs his hair on a dry day. The comb causes $10^{22}$ electrons to leave the person's hair and stick to the comb.

Calculate the charge the comb carries.
15. Estimate the number of free electrons in 36 g of water and the negative charge possessed by them. Given : Avogadro's number $=6.023 \times 10^{23}$ and molecular weight of water $=18$.

## - Watch Video Solution

16. What is the total charge on 75.0 kg of electrons?

## - Watch Video Solution

17. How many mega coulombs of positive(or negative) Charge are present in 2.0 mol of neutral hydrogen gas.

## - Watch Video Solution

18. Calculate the total positive (or negative) charge on a 3.11 g copper penny. Given Avogadro's number
$=6.023 \times 10^{23}\left(\mathrm{~g}^{-1}\right) \mathrm{mol}^{-1}$, , Given Avogadro's number and atomic mass $=63.5 \mathrm{~g}$.

## - Watch Video Solution

19. A charge fo magnitude $Q$ is divided into two parts $q$ and $(Q-q)$
such that the two parts exert maximum force on each other.
Calculate the ratio $Q / q$.

## - Watch Video Solution

20. Two identical metal spheres $A$ and $B$ have equal and similar charges. They repel each other with a force 103 N , when they are placed 10 cm apart in a medium of dielectric constant 7. Determine the charge on each sphere.

## - Watch Video Solution

21. What is the Coulomb's force between two $\alpha$-particles separated by a distance of $3.2 \times 10^{-15} \mathrm{~m}$.

## - Watch Video Solution

22. What equal charges would have to be placed on earth and moon to neutralize their gravitational force of attraction?

Given that mass of earth $=10^{25} \mathrm{~kg}$ and mass of moon $=10^{23} \mathrm{~kg}$

## - Watch Video Solution

23. The electrostatics force of repulsion between two positively charged ions carrying equal charge is $3.7 \times 10^{-9} N$ when these are
separated by a distance of $5 \AA$. How many electrons are missing from each ion?

## - Watch Video Solution

24. Two small spheres each of mass ' m ' kg and charge q coulomb are suspended from a point by insulating threads each of 1 metre length, but of negliglible mass. If $\theta$ is the angle which each string makes with the verticle vertical when equilbrium has been reached, show that
$q^{2}=4 m g l^{2} \sin ^{2} \theta \tan \theta\left(4 \pi \in_{0}\right)$

## - Watch Video Solution

25. Two particles, each having a mass of 5 g and charge. $1.0 \times 10^{-7}$

C, stay in limiting equilibrium on a horizontal. table with a separation of 10 cm between them. The coefficient of friction
between each particle and the table. is the same. Find the value of this coefficient.

## - Watch Video Solution

26. Two small spheres each of mass $10^{-6} \mathrm{~kg}$ are suspended from a point by silkk threads 50 cm long. They are equally chareged and repel each other to a distance 20 cm apart. Calculate charege on each Take $g=9.8 \mathrm{~ms}^{-2}$.

## - Watch Video Solution

27. Two point charge $q_{2}=3 \times 10^{-6} \mathrm{C}$ and $q_{1}=5 \times 10^{-6} \mathrm{C}$ are located at $(3,5,1)$ and $(1,3,2) m$. Find $F_{12}$ and $F_{21}$ using vector form of Coulomb's law. Also, find their magnitude.
28. Two small charged spheres contain charge $+q_{1}$ and $+q_{2}$ respectively. A charge $d q$ is removed from sphere carrying charge $q_{1}$ and is transferred to the other. Find charge on each sphere for maximum electric force between them.

## - Watch Video Solution

29. Three point charges of $+2 \mu C$, $-3 \mu C$, and $-3 \mu C$ are kept at the vertices $A, B$, and $C$, respectively of an equilateral triangle of side 20 cm . what should be the sign and magnitude of the charge (q) to be placed at the midpoint ( $M$ ) of side $B C$ so that the charge at $A$
remains in equilibrium?


## - Watch Video Solution

30. A charges $Q$ is placed at each of the two opposite corners of a square. A charge $q$ is placed to each of the other two corners. If the resultant force on each charge q is zero, then
31. Equal charges each of $20 \mu \mathrm{C}$ are placed at $x=0,2,4,8,16 \mathrm{~cm}$ on X -axis. Find the force experienced by the charge at $x=2 \mathrm{~cm}$.

## - Watch Video Solution

32. Charges $q_{1}=1.5 m C, q_{2}=0.2 m C$ and $q_{3}=-0.5 m C$, are placed at points $A, B, C$ respectively as shown in Fig. If $r_{1}=1.2 \mathrm{~m}$ and $r_{2}=0.6 \mathrm{~m}$, calculatae magnitude of resultant force on $q_{2}$.


## - Watch Video Solution

33. Two similarly and equally charged identical metal spheres $A$ and $B$ repel each other with a force of $2 \times 10^{-5} N$. A third identical uncharged sphere $C$ is touched with $A$ and then placed at the midpoint between $A$ and $B$. Find the net electric force on $C$.

## - Watch Video Solution

34. Let us assume that charges on Earth and Sum are not neutralised and net charges are of equal magnitude and similar nature. What must be the charge on each so that coulomb force just cancels gravitational force ? This charge corresponds to how many free electrons?

Mass of sun $=2 \times 10^{30} \mathrm{~kg}$
Mass of earth $=6 \times 10^{24} \mathrm{~kg}$
35. In a certain co-ordinate system, charge, $q_{1}=-2 \times 10^{-4} \mathrm{C}$ is at $x=0, y=0$, charge $q_{2}=1 \times 10^{-3} \mathrm{C}$ is at $x=10 \mathrm{~m}$ and $y=0$ and charge $q_{3}=1 \times 10^{-4} C$ is at $x=0, y=5 \mathrm{~cm}$, Find the magnitude of resultantant force on $q_{1}$

## D Watch Video Solution

36. Two positive charges which are 0.1 m apart repel each other with a force of 18 N . If the sum of the charges be $9 \mu C$, calculate their separate values.

## - Watch Video Solution

37. Indenify $X$ in the following nuclear reactions (in the first reaction, n represents a neutron) :
(a) $-(1) H^{1}+{ }_{4} B e^{9} \rightarrow X+{ }_{o} n^{1}$,
(b) ${ }_{-}(6) C^{12}+{ }_{1} H^{1} \rightarrow X$,
(c ) ${ }_{-}(7) N^{15}+{ }_{1} H^{1} \rightarrow{ }_{2} \mathrm{He}^{4}+X$

## - Watch Video Solution

38. Two equally charged particles, held $3.2 \times 10^{-3} \mathrm{~m}$ apart, are released from rest. The initial accelerartion of the first particle is observed to be $7.0 \mathrm{~m} / \mathrm{s}^{2}$ and that of the secound to be $9.0 \mathrm{~m} / \mathrm{s}^{2}$. If the mass of the first particle is $6.3 \times 10^{-7} \mathrm{~kg}$, what are (a) the mass of the secound particle adn (b) teh magnitude of the charge of each particle ?

## - Watch Video Solution

39. The SI unit of electric field intensity is
A. $N$
B. $N / C$
C. $C / m^{2}$
D. $N / m^{2}$

## Answer: b

## - Watch Video Solution

40. Electric field due to a single charge is
A. asmmetric
B. cyclindrically symmetric
C. spherically symmetric
D. none of the above

## Answer: c

41. Electric dipole moment is
A. scaler
B. neither scaler vector
C. a vector directed from $-q \rightarrow+q$
D. a vector directed from $+q \rightarrow-q$

## Answer: c

## - Watch Video Solution

42. Electric field intensity (E) due to an electric dipole varies with distance $(r)$ of the point from the center of dipole as :
A. $E \propto \frac{1}{r}$
B. $E \propto \frac{1}{r^{4}}$
C. $E \propto \frac{1}{r^{2}}$
D. $E \propto \frac{1}{r^{3}}$

## Answer: d

## - Watch Video Solution

43. If $E_{a}$ be the electric field strength of a short dipole at a point on its axial line and $E_{e}$ that on the equatorial line at the same distance, then
A. 2
B. 3
C. 4
D. 1

## Answer: a

## - Watch Video Solution

44. Electric field due to an electric dipole is
A. spherically symmetric
B. cylindrical symmetric
C. asymmetric
D. none of the above

Answer: b
45. When an electric dipole is held at an angle in a uniform electric field, the net force F and torque $\tau$ on the dipole are
A. $F=0, \tau=0$
B. $F \neq 0, \tau \neq 0$
C. $F=0, \tau \neq 0$
D. $F \neq 0, \tau=0$

## Answer: c

## - Watch Video Solution

46. Potential energy of an electric dipole held at angle $\theta$ in a uniform electric is zero when $\theta=$
A. $0^{\circ}$
B. $90^{\circ}$
C. $180^{\circ}$
D. $360^{\circ}$

## Answer: b

## - Watch Video Solution

47. Force $\vec{F}$ acting on a test charge $q_{0}$ in a uniform electric field $\vec{E}$ is
A. $\vec{F}=q_{0} \vec{E}$
B. $\vec{F}=\frac{\vec{E}}{q_{0}}$
C. $\vec{F}=\frac{q_{0}}{}$
$\vec{E}$
D. $\vec{F}=q_{0}^{2} \vec{E}$

## Answer: a

## - Watch Video Solution

48. Electric intensity is a ...... quantity and its units are .........

## D Watch Video Solution

49. The electric lines of force are ........... as against magetic lines of force which are

## - Watch Video Solution

50. Net charge on an electric dipole is
51. Dipole moment is a $\qquad$ Quanity and its units are $\qquad$

## - Watch Video Solution

52. Field intensity due to a single charge varies inversely as of distance and field intensity due to an electric dipole varies inversely as .......... of distance of the point.

## - Watch Video Solution

53. If $E_{a}$ be the electric field strength of a short dipole at a point on its axial line and $E_{e}$ that on the equatorial line at the same distance, then

## - Watch Video Solution

54. The electric field due to an electric dipole is symmetric.

## - Watch Video Solution

55. The torque acting on an electric dipole of moment $p$ held at an angle $\theta$ with an electric field E is $\qquad$

## - Watch Video Solution

56. A small ball of paper has mass $9 \times 10^{-5} \mathrm{~kg}$ and carries a charge of $5 \mu C$. When it is held over another charged ball of paper at a distance of 2 cm above it, the two balls stay in equilibrium. What is the charge on the second hall ?

## - Watch Video Solution

57. A water droplet of radius 1 micron in Milikan oil drop appartus in first held stationary under the influence of an electric field of intensity $5.1 \times 10^{4} N C^{-1}$. How many excess electrons does it carry ? Take $e=1.6 \times 10^{-19} \mathrm{C}, \mathrm{g}=9.8 \mathrm{~ms}^{-2}$ and density of water of $=10^{3} \mathrm{kgm}^{-3}$.

## - Watch Video Solution

58. Two point charges of $+16 \mu \mathrm{C}$ and $-9 \mu \mathrm{C}$ are placed 8 cm apart in air. Determine the position of the point at which the resultant electric field is zero.

## - Watch Video Solution

59. A particle of mass $m$ and charge $q$ is thrown at a speed $u$ against a uniform electric field E . How much distance will it travel
before coming to momentary rest?

## - Watch Video Solution

60. A particle of mass $m$ and charge $q$ is released from rest in uniform electric field of intensity E. Calculate the kinetic energy it attains afect moving a distance x between the plates.

## - Watch Video Solution

61. A charged ball of mass $8.4 \times 10^{16} \mathrm{~kg}$ is found to remain suspended in a uniform electric field of $2 \times 10^{4} \mathrm{Vm}^{-1}$. Calculate the charge on the ball. Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$

## - Watch Video Solution

62. Two electric $+q$ and $+4 q$ are placed at a distance 6a apart on a horizontal plane. Find the position of the point on the line joining the two charges where the electric field is zero.

## - Watch Video Solution

63. Calculate the magnitude of the electric field which can just balance a deuteron of mass $3.2 \times 10^{-27} \mathrm{~kg}$

## ( Watch Video Solution

64. In the electric field shown in figure, the electric field lines on the left have twice the separation as that between those on the right. If the magnitudes of the fields at point $A$ is $40 N C^{-1}$, calculate the force experienced by a proton placed at point $A$. Also
find the magnitude of electric field at point $B$


## - Watch Video Solution

65. Eight identical point charges of $q$ coulomb each are placed at the corners of a cube side 0.1 m . Calculate electric field at the centre of the cube. Calculate the field at the center when one of the corner charges is removed.
66. What are the magnitude and direction of the electric field at center of the square in Fig, if ${ }^{\wedge} q=1.0 \times x 10^{\wedge}(-8) \mathrm{C}$ and $\mathrm{a}=5.0 \mathrm{~cm}$ ?


## - Watch Video Solution

67. A charge of $4 \times 10^{-9} \mathrm{C}$ is distributed uniformly over the circumference of a conducting ring of radius 0.3 m . Calculate the
field intensity at a point on the axis of the ring at 0.4 m from its centre, and also at the centre.

## - Watch Video Solution

68. Calculate the magnitude of the force, due to an electric dipole of dipole moment $3.6 \times 10^{-29} \mathrm{C}-\mathrm{m}$, on an electric 25 mm from the center of the dipole, along the dipole axis. Assume that this distance is large relative to the dipole's charge separation.

## - Watch Video Solution

69. Charge $q_{1}=+6.0 \mathrm{nC}$ is on y -axis at $\mathrm{y}=+3 \mathrm{~cm}$ and charge $q_{2}=-6.0 n C$ is on $y$-axis at $y=-3 \mathrm{~cm}$. Calculate force on a test charge $q_{0}=2 n C$ placed on X-axis at $x=4 \mathrm{~cm}$.
70. $A B C$ is an equillatreal triangle of each side 5 cm . Two charges of $\pm \frac{50}{3} \times 10^{-3} \mu C$ are placed at $A$ and $B$ respectively. Calculate magnitude and direction of resultant intensity at C .

## - Watch Video Solution

71. (i) Can two equpotential surfaces intersect each other ? Give reason.
(ii) Two charges $+q$ and $-q$ are located at points A $(0,0,-2)$ and $B(0,0,2)$ respectively. How much work will be done in moving a test charge from point $\mathrm{P}(4,0,0)$ to $(-5,0,0)$ ?

## D Watch Video Solution

72. Two charges $+30 \mu C$ and $-30 \mu C$ are placed 1 cm apart. Calculate electric field at a point on the axial line at a distance of 20 cm from
the centre of dipole.

## - Watch Video Solution

73. Two charges $+0.2 \mu \mu \mathrm{C}$ and $-0.2 \mu \mu \mathrm{C}$ are placed $10^{-6} \mathrm{~cm}$ apart.

Calculate electric field at an axial point at a distance of 10 cm from their middle point.

## - Watch Video Solution

74. An electric dipole of dipole moment $4 \times 10^{-5} \mathrm{Cm}$ is placed in a uniform electric field of $10^{-3} \mathrm{~N} / \mathrm{C}$ making an angle of $30^{\circ}$ with the direction of the field. Determine the torque exerted by the electric field on the dipole.

## - Watch Video Solution

75. An electric dipole is placed at an angle of $60^{\circ}$ with an electric field of magnitude $4 \times 10^{5} \mathrm{NC}^{-1}$, It experiencs a torque of $8 \sqrt{3} \mathrm{Nm}$. If length of dipole is 2 cm , determine the magnitude of either charge of the dipole.

## - Watch Video Solution

76. An electric dipole of length 10 cm having charges $\pm 6 \times 10^{-3} \mathrm{C}$, placed at $30^{\circ}$ with respect to a uniform electric field experiences a torque of magnitude $6 \sqrt{3} N$ - m. Calculate (i) magnitude of electric field (ii) the potential energy of dipole.

## - Watch Video Solution

77. An electric dipole of length 4 cm , when placed with its axis making an angle of $60^{\circ}$ with a uniform electric field, experiences a torque of $4 \sqrt{3} \mathrm{Nm}$. Calculate the
a. magnitude of the electric field, and
b. potential energy of the dipole, if the dipole has charges of $\pm 8 n C$

## - Watch Video Solution

78. An electric dipole consists of two opposite charges of magnitude $q=1 \times 10^{-6} C$ separated by 2.0 cm . The dipole is placed in an external field of $1 \times 10^{5} \mathrm{NC}^{-1}$. What maximum torque does the field exert on the dipole ? How much work must an external agent do to rurn the dipole end for end, starting from position of aligment $\left(\theta=0^{\circ}\right)$ ?

## - Watch Video Solution

79. An electric dipole consists of charges $+2 e$ and $-2 e$ separated by 0.78 mm . It is an electric field of strength $3.4 \times 10^{6} \mathrm{~N} / \mathrm{C}$.

Calculate the magnitude of the torque on the dipole when the dipole moment is (a) parallel to (b) perpendicular to, and (c) antiparallel to the electric field.

## - Watch Video Solution

80. Four particles each having a charge $q$, are placed on the four vertices of a regular pentagon. The distance of each corner from the centre is a. Find the electric field at the centre of the pentagon.

## - Watch Video Solution

81. A copper ball of density $8.6 \mathrm{~g} /$ amd 1 cm in diameter is immersed in oil of density $0.8 \mathrm{~g} /$. What is the charge on the ball, if
it remains just suspended in oil in electric field of intensity $3600 \mathrm{~V} / \mathrm{m}$ acting in the upward direction ?

## - Watch Video Solution

82. Two charges of $-4 \mu C$ and $+4 \mu C$ are placed at the points
$A(1,0,4)$ and $B(2,-1,5)$ location in an electric field $\vec{E}=0.20 \hat{i} V / \mathrm{cm}$
. Calculate the torque acting on the dipole.

## - Watch Video Solution

83. An infinite number of charges each equal to $q$, are placed along the X-axis at $x=1, x=2, x=4, x=8, \ldots \ldots .$. . and so on.
(i) find the electric field at a point $x=0$ due to this set up of charges.
(ii) What will be the elctric field if the above setup, the consecutive charges have opposite signs.

## - Watch Video Solution

84. A metal ball suspended from a long thread is held between the plates of a capacitor, as shown in Fig, How will the oscillations of this pendulum change, if the ball and the plates of two capacitor are charged ?


## - Watch Video Solution

85. Electrostatic potentail $V$ at point, distant $r$ from a charge $q$ varies as
A. $q / r^{2}$
B. $q^{2} / r$
C. $q / r$
D. $q^{2} / r^{2}$

## Answer: C

## - Watch Video Solution

86. Work done in carrying an electron from $A$ to $B$ lying on an equipotential surface of one volt potential is
A. 1 eV
B. 10 eV
C. 1 volt
D. Zero

## Watch Video Solution

87. The correct relation between electric intensity E and electric potential $V$ is
A. $E=-\frac{d V}{d r}$
B. $E=\frac{d V}{d r}$
C. $V=-\frac{d E}{d r}$
D. $V=\frac{d E}{d r}$

## Answer: A

## - Watch Video Solution

88. I G ev $=x$ eV, where $x$ is
A. $10^{6}$
B. $10^{3}$
C. $10^{12}$
D. $10^{9}$

## Answer: D

## - Watch Video Solution

89. The dimensional formula of electric flux is
A. $\left[M^{1} L^{2} T^{-2} A^{-1}\right]$
B. $\left[M^{-1} L^{3} T^{-3} A\right]$
C. $\left[M^{1} L^{3} T^{-3} A^{-1}\right]$
D. $\left[M^{1} L^{-3} T^{-3} A^{-1}\right]$

Answer: C

## - Watch Video Solution

90. A closed surface is vacumm encloses charges $-q$ and $+3 q$.

Another charge $-2 q$ lies outside the surface. Total electric flux over the surface is
A. zero
B. $2 q / \in_{0}$
C. $-\frac{3 q}{\in_{0}}$
D. $4 \pi / \in_{0}$

## Answer: B

91. The number of electric lines of forces rediating from a closed surface in vacumm is $1.13 \times 10^{11}$. The charge enclosed by the surface is
A. 1 C
B. $1 \mu \mathrm{C}$
C. $0.1 C$
D. $0.1 \mu \mathrm{C}$

## Answer: A

## - Watch Video Solution

92. A charge of $10 \mu C$ lies at the centre of a square. Work done in carrying a charge of $2 \mu \mathrm{C}$ from one corner of square to the diagonally opposite corner is
A. 20 J
B. 5 J
C. Zero
D. $20 \mu \mathrm{~J}$

## Answer: C

## - Watch Video Solution

93. A Uniform electric field of $10 N C^{-1}$ exists in the vertically downward direction. Find the increase in the electric potential as one goes up through a height of 50 cm .
A. 20 V
B. 120 V
C. 5 V
D. Zero

## Answer: A

## - Watch Video Solution

94. Electric potential V and electric flux $\phi$ are
A. both vectors
B. both scalars
C. V is scalar, $\phi$ is vector
D. V is vectoe, $\phi$ is scalar

## Answer: B

95. Work done by an electrostatic field in moving a given charge from one point to another ...... upon the chosen.

## - Watch Video Solution

96. Potential difference between any two points $B$ and $A$ in an electrostatic field is the amount of work done in carrying from $\qquad$ to $\qquad$

## - Watch Video Solution

97. Electric potential is a $\qquad$ Quantity and its units are

## - Watch Video Solution

98. Electrostatic forces are forces.

## Watch Video Solution

99. Electric potential on dipole axis varies inversely as .......... Of distance of point from the center of electric dipole.

## - Watch Video Solution

100. Electric potential at any point in equatorial plane of a dipole is $\qquad$

## - Watch Video Solution

101. Electric potential gradient is a ........... quantity and is numberically equal to
102. Electric flux over an area in an electric field represents the ........... crossing this area.

## - Watch Video Solution

103. Electric flux is a
quantity and its units are

## - Watch Video Solution

104. Two charges $+q$ and $-q$ are located at points
$A(0,0,-2)$ and $B(0,0,2)$ respectively. How much work will be done in moving a test charge from point $P(4,0,0) \rightarrow Q(-5,0,0)$ ?

## - Watch Video Solution

105. it requires $50 \mu \mathrm{~J}$ of work to carry a $2 \mu \mathrm{C}$ charge from a paint R
to S . What is the potential difference between these points ?
Which point is at higher potential ?

## - Watch Video Solution

106. If 100 J of work must be done to move electric charge equal tp

4C from a place where potential is -10 V to another place where
potential si V volt, find the value of V .

## - Watch Video Solution

107. If 10 J of work is to be done in moving a charge of '-200C from

A to $B$, which of the two points is at higher potential ? What is the potential difference?
108. The electric field at a point due to a point charge is $20 \mathrm{NC}^{-1}$ and electric potential at that point is $10 \mathrm{JC}^{-1}$. Calculate the distance of the point from the charge and the magnitude of the charge.

## - Watch Video Solution

109. Two point charges $q$ and $-2 q$ are kept ' $d$ ' distance apart. Find the location of the point relative to charge $q$ at which potential due to the system of charges is zero.

## - Watch Video Solution

110. To what potential we must charge an insulate sphere of radius

14 cm , so that the surface charge density is equal to $2 \mu \mathrm{Cm}^{-2}$ ?

## Watch Video Solution

111. A charge of $24 \mu C$ is given to a hollow metallic sphere of radius
0.2 m . Find the potential
(i) at the surface of sphere
(ii) at a distance of 0.1 cm from the center of sphere.

## - Watch Video Solution

112. Two charges $+10 \mu C$ and $+20 \mu C$ are placed at a. separation of 2 cm . Find the electric potential due to the. pair at the middle point of the line joining the two charges.

## - Watch Video Solution

113. Two point charges one of $+100 \mu C$ and another of $-400 \mu C$, are kept 30 cm apart. Find the point of zero potential on the line joining the two charges.

## - Watch Video Solution

114. Two point charges $4 \mu C$ and $-2 \mu C$ are separated by a distance of 1 m in air. Calculate at what point on the line joining the two charges is the electric potential zero ?

## - Watch Video Solution

115. The electric field at a point due to a point a charge is $30 N / C$, and the electric potential at that point is $15 \mathrm{~J} / \mathrm{C}$. Calcualte the distance of the point from the charge and the magnitude of the charge.

## - Watch Video Solution

116. What is the potential at the centre of a square of each side 1.0 meter, when four charges
$+1 \times 10^{-8} \mathrm{C},-2 \times 10^{-8} \mathrm{C},+3 \times 10^{-8} \mathrm{C}$ and $+2 \times 10^{-8} \mathrm{C}$ are placed
at the four corners of the square.

## - Watch Video Solution

117. A point charge of $10^{-8} \mathrm{C}$ is situated at the origin of coordinatges. Find the potential difference between the points $A(4,4,2)$ and $B(1,2,2)$.

## - Watch Video Solution

118. Twenty seven charged water droplets each with a diameter of

2 mm and a charge fo $10^{-12} \mathrm{C}$ coalesce to form a single drop.
Calculate the potential of the bigger drop.

## - Watch Video Solution

119. A charge of $20 \mu C$ produces an electric field. Two points are 10 cm and 5 cm from this charge. Find the values of potentials at these points and calculate work done to take an electron from one point to the other.

## D Watch Video Solution

120. Calculate the voltage required to balanced an oil drop carrying 10 electrons, when located between plates of a capacitor,
which are 5 mm apart. Given mass of drop $=3 \times 10^{-16} \mathrm{~kg}$, charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

## - Watch Video Solution

121. An infinite plane sheet of charge density $10^{-8} \mathrm{Cm}^{-2}$ is held in air. In this situation how far apart are two equipotenitial surfaces, whose p.d is 5 V ?

## - Watch Video Solution

122. An electric field of $20 N / C$ exists along the $x$-axis in space.

Calculate the potential difference $V_{B}-V_{A}$ where the points A and $B$ are given by
a. $A=(0,0), B=(4 m, 2 m)$
b. $A=(4 m, 2 m), B=(6 m, 5 m)$
123. An electric field $E=(20 \hat{i}+30 \hat{j}) \mathrm{N} / \mathrm{C}$ exists in the space. If thepotential at the origin is taken be zero, find the potential at (2m, 2m).

## - Watch Video Solution

124. What is potential gradient at a distance of $10^{-12} \mathrm{~m}$ from the centre of the platinum nucleas? What is the potential gradient at the surface of the nucleas ? Atomic number fo platinum is 78 and radius of platinum nucleas is $5 \times 10^{-15} \mathrm{~m}$.

## - Watch Video Solution

125. A uniform field of $2 k N / C$ is the x direction. A point charge $=3 \mu C$ initially at rest at the origin is released. What is K.E. of this
charge at $\mathrm{x}=4 \mathrm{~m}$ ? Also, calculate $V(4 m)-V(0)$.

## - Watch Video Solution

126. If the potentail in the region of space around the point $(-1 m, 2 m, 3 m)$ is given by $V=\left(10 x^{2}+5 y^{2}-3 z^{2}\right)$, calculate the three components of electric field at this point.

## - Watch Video Solution

127. Two charges of magnitude $5 n C$ and $-2 n C$ are placed at points $(2 \mathrm{~cm}, 0,0)$ and $(x \mathrm{~cm}, 0,0)$ in a region of space. Where there is no other external field. If the electrostatic potential energy of the system is $-0.5 \mu \mathrm{~J}$. What is the value of x ?
128. Two identical particles, each having a charge of $2.0 \times 10^{-4} \mathrm{C}$ and then released. What would be the speeds of the particles when the separtion becomes large?

## - Watch Video Solution

129. Two point charges $A$ and $B$ of value of $+15 \mu C$ and $+9 \mu C$ are kept 18 cm apart in air. Calculate the work done when charge $B$ is moved by 3cm towards A.

## - Watch Video Solution

130. Two electrons each moving with a velocity of $10^{6} \mathrm{~ms}^{-1}$ are released towards eachother. What will be the closest distance of approach between them ?
131. Set up arrangment of three point charges : $q,+2 q$ and $x q$ separated by equal finite distances so that electric potential energy of the system is zero. What is $x$ ?

## - Watch Video Solution

132. Three points charges of $1 C, 2 C$ and $3 C$ are placed at the corners of an equilateral triangle of side 100 cm . Find the work done to move these charges to the corners of a similar equilateral triangle of side 50 cm .

## - Watch Video Solution

133. Charges- $q, Q$, and $-q$ are placed at an equal distance on a straight liner. If the total potential energy of the system of three
charges is zero, then find the ratio $Q / q$.


## - Watch Video Solution

134. Consider a uniform electric field $E=3 \times 10^{3} \hat{i} N / C$. (a) What is the flux of this field through a square of 10 cm on a side whose plane is parallel to the yz plane ? (b) What is the flux through the same square if the normal to its plane makes a $60^{\circ}$ angle with the $x$-axis ?
135. A uniform electric field $\vec{E}=-E_{x} \hat{i} N / C$ for $x<0$ exists. A right circular cylinder of length lcm and radius rcm has its centre at the origin and its axis along X -axis. Find out the net outward flux. What is the net charge within the cyclinder ?

## - Watch Video Solution

136. A circular plane sheet of radius 10 cm is placed in a uniform electric field of $5 \times 10^{5} \mathrm{NC}^{-1}$, making an angle of $60^{\circ}$ with the field.

Calculate electric flux through the sheet.

## - Watch Video Solution

137. If the electric field is given by $\vec{E}=8 \hat{i}+4 \hat{j}+3 \hat{k} N C^{-1}$, calculate the electric flux through a surface of area $100 \mathrm{~m}^{2}$ lying in $X-Y$ plane.
138. A spherical Gaussian surface encloses a charge of $8.85 \times 10^{-8} C$ (i) Calculate the electric flux passing through the surface (ii) If the radius of Gaussian surface is doubled, how would the flux change?

## - Watch Video Solution

139. A rectangular surface of sides 10 cm and 15 cm is palaced inside a uniform electric field fo $25 \mathrm{Vm}^{-1}$, such that normal to the surface makes an angle of $60^{\circ}$ with the direction of electric field.

Find the flux of electric field through the rectangular surface.
140. If the electric field is given by $(6 \hat{i}+4 \hat{j}+4 \hat{k})$, calculate the electric flux through a surface of area 20 units lying in $Y-Z$ plane.

## - Watch Video Solution

141. The electric field in a certain region of space is $(5 \hat{i}+4 \hat{j}-\hat{k}) \times 10^{5} N / C$. Calculate electric flux due to this field over an area of $(2 \hat{i}-\hat{j}) \times 10^{-2} \mathrm{~m}^{2}$.

## - Watch Video Solution

142. In the above question, what is the electric flux passing throguh a face of the given cube?

## - Watch Video Solution

143. Five thousand lines of force enter a certain volume of space and three thousand lines emerge from it. What is the total charge in coulomb within this volume?

## - Watch Video Solution

144. A positive charge of $17.7 \mu \mathrm{C}$ is placed at the centre of a hollow sphere of radius 0.5 m . Calculate the flux density through the surface of the sphere.

## D Watch Video Solution

145. An infinite line charge produces a field of $9 \times 10^{4} \mathrm{NC}^{-1}$ at a distance of 4 cm . Calculate the linear charge density.

## - Watch Video Solution

146. A charged particle having a charge of $-2.0 \times 10^{-6} \mathrm{C}$ is placed close to a non-conducting plate having a surface charge density $4.0 \times 10^{-6} \mathrm{Cm}^{-2}$. Find the force of attraction between the particle and the plate.

## (D) Watch Video Solution

147. A long cylindrical wire carries a positive charge of linear density $2.0 \times 10^{-8} \mathrm{Cm}^{-1}$. An electron revolves around it in a circular path under the influence of the attactive electrostatic force. Find the kinetic energy of the electron. Note that it is independent of the radius.

## - Watch Video Solution

148. A large plane sheet of charge having surface charge density $5 \times 10^{-16} \mathrm{~cm}^{-2}$ lies in XY plane. Find electric flux through a circular area of radius 1 cm Given normal to the circular area makes an angle of $60^{\circ}$ with Z-axis.

## ( Watch Video Solution

149. Two long straight parallel wires carry charges $\lambda_{1}$ and lamba ${ }_{2}$ per unit length. The distance between them is d. Calculate the magnitude of force externed on the length of one due to charge on the other.

## ( Watch Video Solution

150. A particle of mass $9 \times 10^{-5} g$ is kept over a large horizontal sheet of charge density $5 \times 10^{-5} \mathrm{C} \mathrm{m}^{-2}$. What charge should be
given to the particle so that it does not fall on release ?

## - Watch Video Solution

151. $A B C D$ is a square of side $0.2 m$. Charges of $2 \times 10^{-9} \mathrm{C}, 4 \times 10^{-9} \mathrm{C}$ and $8 \times 10^{-9} \mathrm{C}$ are placed at the corners $\mathrm{A}, \mathrm{B}$ and $C$ respectively. Calculate work required to transfer a charge of $2 \times 10^{-9} C$ from corner D to centre of the square.

## - Watch Video Solution

152. A point charge $q$ moves from point $P$ to pont $S$ along the path PQRS (fig.) in a uniform electric field E pointing parallel to the poistive direction of the X -axis. The coordinates of the points $\mathrm{P}, \mathrm{Q}$, $R$ and $S$ are $(a, b, O),(2 a, O, O)(a,-b, \underline{O})$ and $(O, O, O)$ respectively. The work done by the field in the above process is given by the
expresison


## - Watch Video Solution

153. The electric field outside a charged long straight wire is given by $E=\frac{1000}{r} \mathrm{Vm}^{-1}$, and is directed outwards. What is the sign of the charge on the wire ? If two points $A$ and $B$ are situated such that $r_{A}=0.2 m$ and $r_{B}=0.4 m$, find the value of $\left(V_{B}-V_{A}\right)$.

## - Watch Video Solution

154. Electric field inside a conductor is always zero. Is this statement true of false?
A. positive
B. negative
C. constant
D. zero

## Answer: D

## - Watch Video Solution

155. Charge on a capacitor is doubled. Its capacity becomes $k$ times, where
A. $k=2$
B. $k=1$
C. $k=\frac{1}{2}$
D. $k=4$

## Answer: B

## - Watch Video Solution

156. Electrical capacity of earth is
A. $1 F$
B. $1 \mu F$
C. $711 \mu F$
D. $9 \times 10^{9} \mu F$

Answer: C
157. When air in between the plates of a capacitor is replaced by mica of dielectric constant 6, its capacity
A. remains unaffected
B. reduced to $1 / 6$ th
C. becomes 6 times
D. none of the above

## Answer: C

## - Watch Video Solution

158. When a number of capacitor are connected in series between two points, all the capacitors posses same
A. capacity
B. potential
C. charge
D. none of the above

## Answer: C

## - Watch Video Solution

159. When a number of capacitor are connected in parallel between two points, the equivalent capacitance
A. increases
B. decreases
C. remains the same
D. none of the above

## - Watch Video Solution

160. A condenser is charged to double its initial potential. The energy stored in the condenser becomes $x$ times, where $x=$
A. 2
B. 4
C. 1
D. $1 / 2$

## Answer: B

161. What is the relation between dielectric constant and electric susceptibility?
A. $k=\chi$
B. $K=1+\chi$
C. $\chi=K+1$
D. $K^{2}=(1+\chi)(1-\chi)$

## Answer: B

## - Watch Video Solution

162. Throughout the volume of the conductor, electric potential is ........ And it has the ........... As on its surface.
163. Electrostatic shielding is the phenomenon of ......... a certain region of space from $\qquad$

## - Watch Video Solution

164. A conductor is said to have a capacity of one farad, when a Raise its by $\qquad$

## - Watch Video Solution

165. When plate of a capacitor are separated by a dielectric medium of relative permitivelyK, instead of air, $\qquad$ becomes

Times.
166. When a number of capacitor are connected in series, Each capacitor .

## - Watch Video Solution

167. Capacity can be increased by connecting different capacitors

## - Watch Video Solution

168. The potential energy of a capacito is obtained of the cost of .......... Stored in the ............... Used for ........... the capacitor.

## - Watch Video Solution

169. Total energy stored in series or parallel combination of capacitor is equal to stored in

## - Watch Video Solution

170. When charges are shared between any two bodies, their becomes ........... Is really lost, but ............ does occur.

## - Watch Video Solution

171. The maximum ................. that a dielectric medium can withstand
without breaking down of $\qquad$ is called its

## - Watch Video Solution

172. $N$ drops of mercury of equal radii and possessing equal charges combine to from a big drop. Compare the charge, capacitance and potential of bigger drop with the corresponding quantities of individual drops.

## - Watch Video Solution

173. 125 drops of water each of radius 2 mm and carrying charge of $1 n C$ are made to form a bigger drop. Find the capacitance and potential of the bigger drop.

## - Watch Video Solution

174. 27 drops of same size are charged 220 V each. They coalesce to form a bigger drop. Calculate the potential of bigger drop.
175. When electrons equal to Avogadro number are transferred from one conductor to another, a potential difference of $10^{6} \mathrm{~V}$ appears between them. Calculate the capacity of the system of two conductors.

## D Watch Video Solution

176. A charged spherical conductor has a surface density of $0.07 \mathrm{Ccm}^{-2}$. When the charge is increased by $4.4 C$, the surface density changes to ${ }^{`} 0.084 \mathrm{C} \mathrm{cm}^{\wedge}(-2)$. Find the initial charge and capacitance of the spherical conductor.

## - Watch Video Solution

177. A charged spherical conductor has a surface density of $0.07 \mathrm{Ccm}^{-2}$. When the charge is increased by 4.4 C , the surface density changes to $0.084 \mathrm{Ccm}^{-2}$. Find the initial charge and capacitance of the spherical conductor.

## - Watch Video Solution

178. Two metallic conducors have net charge of $+70 p C$ and $-70 p C$, which result in a potential difference of 20 V between them. What is the capacitanace of the system ?

## - Watch Video Solution

179. Calculate the capacitance of a parallel plate capacitor having circular discs of radii $0.05 m$ each. The separation between the discs is 1 mm .

## - Watch Video Solution

180. A parallel plate air capacitor consists of two circular plates of diameter 8 cm . At what distance should the plates be held so as to have the same capacitance as that of a sphere of a diameter 20 cm ?

## - Watch Video Solution

181. Calculate the area of paper required to construct a parallel plate capacitant of $0.004 \mu F$, if the dielectric constant of paper be 2.5 and its thickness 0.025 mm .

## - Watch Video Solution

182. What distance should be two plates each of area $0.2 \times 0.1 \mathrm{~m}^{2}$ of an air capacitor be placed in order to have the same capacitance as a spherical conductor of radius ${ }^{`} 0.5 \mathrm{~m}$ ?

## - Watch Video Solution

183. The plates of a parallel-plate capacitor in vacuum are 5.00 mm apart and $2.00 \mathrm{~m}^{2}$ in area. A potential difference of $10,000 \mathrm{~V}$ is applied across the capacitor. Compute
(a) the capacitance
(b) the charge on each plate, and
(c) the magnitude of the electric field in the space between them.

## - Watch Video Solution

184. A sphere of radius 0.03 m is suspended within a hollow sphere of radius 0.05 m . If the inner sphere is charged to a potential of 1500 volt and outer sphere is earthed. Find the capacitance and the charge of the inner sphere.

## - Watch Video Solution

185. A co-axial cable used in transmission line has inner radius of 0.1 mm and outer radius of 0.6 mm . Calculate capacitnace per meter of the cable.

## D Watch Video Solution

186. The stratosphere acts as a conducting layer for the earth. If the stratosphere exends beyond 50 km from the surface of earth, then calculate the capacitance of the spherical capacitor formed
between strasphere and earth's surface. Take radius of earth of as 6400 km .

## - Watch Video Solution

187. A spherical capacitor has an outer sphere of radius 0.15 m and the inner sphere of diameter $0.2 m$ The outer sphere is earthed and the inner shere is given charge of $6 \mu C$. The space between the concentric spheres is filled with a material of dielectric constant 6 .

Calculate capacitacne and potential of inner sphere.

## - Watch Video Solution

188. A cable consisting of a wire $3 m m$ thick dielectric of relative permitively 10 . Calculate the capacitance of 1 km length of the cable.
189. Two capacitors of capacitances $3 \mu F$ and $6 \mu F$, are charged to potentials 2 V and 5 V respectively. These two charged capacitors are connected in series. Find the potential across each of the two capacitors now.

## - Watch Video Solution

190. In fig. $C_{1}=20 \mu F, C_{2}=30 \mu F$ and $C_{3}=15 \mu F$ and the insulated plate of $C_{1}$ is at a potential of 90 V , one plate of $C_{3}$ being earthed.

What is the potential difference between th plates of $C_{2}$ three capacitors being connected in series ?

## - Watch Video Solution

191. In the diagram shown find the potential difference between the points $A$ and $B$ and between the points $B$ and $C$ in the steady state.


## - Watch Video Solution

192. Two capacitors have a capacitance of $5 \mu F$ when connected in parallel and $1.2 \mu F$ when connected in series. Calculate their capacitance.
193. Connect three capacitors of $3 \mu F, 3 \mu F$ and $6 \mu F$ such that their equivalent capacitance is $5 \mu F$.
A. Series combination of $3 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ in parallel with $3 \mu \mathrm{~F}$
B. Series combination of $3 \mu \mathrm{~F}$ and $3 \mu \mathrm{~F}$ in parallel with $6 \mu \mathrm{~F}$
C. both A and B
D. can not be achieved

## Answer: A

## - Watch Video Solution

194. Find the equivalent capacitane between the points $P$ and $Q$ as
shown in Fig. Given $C=18 \mu F$ and $C_{1}=12 \mu F$


## - Watch Video Solution

195. An infinite number of identical capacitors each of capacitance $1 \mu F$ are connected $1 \mu F$ are connected as shown in Fig. Then the
equivalent capacitance between $A$ and $B$ is


## - Watch Video Solution

196. Find the capacitance of the infinite ladder between points $X$ and Y , Fig.

197. Find out the potentail difference across the plates of $1 \mu F$ capacitors in Fig.


- Watch Video Solution

198. Find the $p$. $d$ between points $A$ and $B$ of ararngement shown in Fig


## - Watch Video Solution

199. A network of four each of $12 \mu F$ capacitance is connected to a

500 V apply as shown in Fig.

(a) Equivalent capacitance of the network.
(b) Charge on each capacitor.

## - Watch Video Solution

200. The equivalent capacitance of the combination between $A$ and $B$ in the given Fig.

(i) Calculate capacitance of capacitor $C$.
(ii) Calculate charge on each capacitor if a 12 V
(iii) What will be the potential drop across each capacitor ?

## - Watch Video Solution

201. Calculate the capacitance of the capacitance of the capacitor
$C$ in Fig. The equivalent capacitance of the combination between $P$ and $Q$ is $30 \mu F$


## D Watch Video Solution

202. The capacities of three capacitors are in the ratio of 1:2:3.

Their equivalent capacity in series is greater than their equivalent capacity in series by $60 / 11 p F$. Calculate their individual capacitances.

## - Watch Video Solution

203. A combination of four identical capacitors is shoen in Fig. IF resultatn capacitance of the combination between the points $P$ and $Q$ is $1 \mu F$, calculate capacitance of each capacitor.

204. What is the capacitance of arrangement of 4 platges each of area $A$ at a distance $d$ in air in Fig.


## D Watch Video Solution

205. What is the capacitance of arrangement of 4 platges each of area $A$ at a distance $d$ in air in Fig.


## - Watch Video Solution

206. A parallel plate capacitor is filled with dielectrics as shown in

Fig. What is its capacitance ?


## - Watch Video Solution

207. Three capacitors of capacitances $2 \mu F, 3 \mu F$ and $6 \mu F$ are connected in series with a 12 V battery. All the connecting wire are disconnected, the three positive plates are connected together and the three negative plates are connected together. Find the charges on the three capacitors after the reconnection.

## - Watch Video Solution

208. Calculate the charges which will flow in sections 1 and 2 in Fig, why key $K$ is pressed.


## - Watch Video Solution

209. Calculate the equuivalent capacitances between the points $A$ and $B$ in the combination shown in Fig.


## - Watch Video Solution

210. Two capacitors of $2 \mu F$ and $3 \mu F$ are joined in series. The outer plate of second capacitor is earthed. Find out the potential and charge of the inner plate of each capacitor.
211. Calculate the equivalent capacitance between the points $A$ and $B$ in the combination shown in Fig.


## - Watch Video Solution

212. The outer cyliunders of two cylindrical capacitors of capacitance $2.2 \mathrm{mu} F$ each , are keot in contact and the inner cylinders are connected through a wire .A bettery of end 10 V is connected as shown in figure. Find the totatl charge supplied by
the bettery to the inner cylioders.


## - Watch Video Solution

213. If $C_{1}=3 p F$ and $C_{2}=2 p F$, calculate the equivalent capacitance of the network shown in Fig between points $A$ and $B$.


## - Watch Video Solution

214. Find the equialent capacitance of the combination of capacitors between the points $A$ and $B$ as shown in Fig. Also calculate the total charge that flows in the circuit, when a 100 V
battery is connected between the points $A$ and $B$.


## - Watch Video Solution

215. Two capacitors $C_{1}$ and $C_{2}$ are connected to a battery of 6 V as shown in Fig. Find the charge on each capacitor.

216. A 800 pF capacitor is charged by a 100 V battery. After sometime, the battery is disconnected. The capacitor is then connected to another $800 p F$ capacitor. What is the electrostatic energy stored ?

## - Watch Video Solution

217. Net capacitance of three identical capacitors in series is $1 \mu F$.

What will be their net capacitance in parallel ? Find the ratio of energy stored in two configurations if they are connected to the same source.
218. Fig, shows a network of five capacitors connected to a 100 V supply. Calculate the total charge and energy stored in the network.


## - Watch Video Solution

219. A parallel plate capacitor of $300 \mu \mathrm{~F}$ is charged to 200 V . If the distance between its plate is halved, what will be the potential difference between the plates and what will be the change in stored energy?

## - Watch Video Solution

220. In Fig, the energy stored in $C_{4}$ is $27 J$. Calculate the total energy in the system.


## - Watch Video Solution

221. Find the total energy stored in capacitors in the network shown in Fig.

A. $3.6 \times 10-5 \mathrm{~J}$
B. $0.6 \times 10-5 \mathrm{~J}$
C. $5.6 \times 10-5 \mathrm{~J}$
D. none of these

## Answer: A

## - Watch Video Solution

222. Find the ratio of potential difference that must be applied across the parallel and series combination of two capacitors
$C_{1}$ and $C_{2}$ with their capacitance in the ratio $1: 3$ so that energy stored in the two cases becomes the same.

## ( Watch Video Solution

223. Net capacitance of three identical capacitors in series is $1 \mu F$. What will be their net capacitance in parallel ? Find the ratio of energy stored in two configurations if they are connected to the same source.

## D Watch Video Solution

224. Three identical capacitors $C_{1}, C_{2}$ and $C_{3}$ of capacitance $6 \mu F$ each are connected to a 12 V battery as shown in Fig. Find

(i) charge on each capacitor
(ii) equivalent capacitance of the network.
(iii) energy stored in the network of capacitors.

## - Watch Video Solution

225. A $20 \mu \mathrm{~F}$ capacitors is charged by a 30 V d. c supply and then connected across an uncharged $50 \mu \mathrm{~F}$ capacitor. Calculate (i) the final potential diff. across the combinition (ii) initial and final energies.
226. Two parallel palate capacitors $X$ and $Y$ have the same area of plates and same separation between then. $X$ has air between the plates and $Y$ contains a dielectric medium of $\in_{r}=4$,


Calculate (i) capacitance of $X$ and $Y$ if equivalent capacitance fo combination is $4 \mu F$. (ii) pot diff between the plates of $X$ and $Y$. (iii)

What is the ratio of electrostatic energy stored in $X$ and $Y$ ?

## ( Watch Video Solution

227. Two capacitors of $25 \mu \mathrm{~F}$ and $100 \mu \mathrm{~F}$ are connected in series to a source of 120 V . Keeping their charges uncharged, they are separated and connected in parallel to eachother. Find out
(i) pot. Diff. between the plates of each capacitor
(ii) energy loss in the process.

## - Watch Video Solution

228. 1000 similar electrified rain drops merge together into one drop so that their total charge remains uncharged. How is the electric energy affected ?

## - Watch Video Solution

229. The two plates of a parallel plate capacitor are 4 mm apart. A slab of dielectric constant 3 and thickness 3 mm is introduced between the plates is so adujected that the capacitance of the capacitor becomes $\frac{2}{3} r d$ of its original value. What is the new distance between the plates ?
230. An electric field $E_{0}=3 \times 10^{4} \mathrm{Vm}^{-1}$ is established between the plates 0.05 m apart, of a parallel plate capacitor. After removing the charging battery, an uncharged metal plate of thickness $t=0.1 \mathrm{~m}$ is inserted between capacitor plates. Find the p.d. across the capacitor, (i) before (ii) after the indroduction of plates (iii) what would be the $p . d$ if a dielectric slab $(K=2)$ were inroduced of place of metal plate.

## - Watch Video Solution

231. The two circular plates of a parallel plate capacitor are 8 cm in diameter each of 15 mm apart. An ebonite plate 0.5 cm thick is introduced between the plates. Calculate its capacity. If the plate were of copper, what would be the new capacity ? Take $K=2.5$.
232. When a slab of inslulating material 4 mm thick is inroduced between the plates of a parallel plate capacitor, it is found that the distance between the plates has to be increased by 3.2 mm to restore the capacity to its original value. Calculate dielectric constant of the material.

## - Watch Video Solution

233. The area of parallel plates of an air capacitor is $0.2 m^{2}$ and the distance between them is 0.01 m The potential difference between the plates, the potential difference between the plates is 3000 V .

When a 0.01 m thick sheet of an insulating material is placed between the plates, the potential difference decrease to 1000 volt.

Determine (i) capacitance of capacitance before placing the sheet
(ii) charge on each plate (iii) dielectric constant of material (iv)
capacitanc after placing the insulator ( v ) absoulate permittivity of the dielectric.

## - Watch Video Solution

234. A parallel plate capacitor has a capacitance of $2 \mu F$. A slab of dielectric constant 5 is inserted between the plates and the capacitor is charged to 100 V and then isolated. (a) What is the new potential diff., if the dielectric slab is removed ? (b) How much work is required to remove teh dielectric slab ?

## - Watch Video Solution

235. A parallel plate capacitor is to be designed with a voltage rating 1 KV using a material of dielectrical constant 3 and dielectric strength about $10^{7} \mathrm{Vm}^{-1}$. [Dielectric strength is the maximum electric field a material can tolerate without break down,
i.e, without starting to conduct electrically through partial ionisation. For safety, we should like the field never to exceed say
$10 \%$ of the dielectric strength]. What minimum area of the plates is required to have a capacitance of 50 pF ?

## - Watch Video Solution

236. Fig shows a parallel plate capacitor of plate area $A$ and plate separation $d$. Its entire space is filled with three different dielectric slabs of same thickness. Find the equivalent capacitance of the
arrangment.


## D Watch Video Solution

237. A slab of material of dielectric constant $k$ has the same area as that of the plates of a parallel plate capacitor but has the thickness $d / 2$, when $d$ is the separation between the plates. Find out the expression for its capacitance when the slab is inserted between the plates of the capacitor.
238. 

Five
capacitors
of capacitances
$C_{1}=C_{5}=1 \mu F, C_{2}=C_{3}=C_{4}=2 \mu F$ are connectes as shown in
Fig. Calculate equivalent capacitance of the system between points $A$ and $B$.


## - Watch Video Solution

239. A capacitor is made of a flat plate of area $A$ and a second plate having a stair -like structure as shown in figure. The width of each
stair is $a$ and the height is $b$. Find the capacitance of the assembly.


## - Watch Video Solution

240. Find the capacitance of a system of three parallel plates, each of area A metre $^{2}$ separated by distances $d_{1}$ and $d_{2}$ metre respectively. The space between them is filled with dielectrics of relatives dielectric constants $K_{1}$ and $K_{2}$. The dielectric constant of free space is $\epsilon_{0}$.
241. An uncharged capacitor is connected to a battery. Show that half the energy supplied by the battery is lost as heat while charging the capacitor.

## - Watch Video Solution

242. Find the equivalent capacitance between the terminals $A$ and $B$ in the given Fig. Take $C=1 \mu F$.


- Watch Video Solution

243. In figure two positive charges $q_{2}$ and $q_{3}$ fixed along the $y$-axis ,exert a net electric force in the $+x$ direction on a charge $q_{1}$ fixed along the $x$-axis if a positive charge $Q$ is added at $(x, 0)$ the force on $q_{1}$

A. shall increase along the positive $x$-axis
B. shall decrease along the positive $x$-axis
C. shall point along the negative $x$-axis
D. shall increase but the direction changes because of the intersection of $Q$ with $q_{2}$ and $q_{3}$

## Answer: A

## - Watch Video Solution

244. A point positive charge is brought near an isolated conducting sphere as shown in figure the electric field is best
given by

(i)

(ii)

A. Fig (i)
B. Fig (ii)
C. Fig (iii)

## D. Fig (iv)

Answer: A

## - Watch Video Solution

245. The electric flux through the surface

A. in fig, (iv) is the largest
B. in fig, (iii) is the least
C. in fig (ii) is same as a fig (iii) but is smaller than that in Fig (iv).
D. is the same for all the figures.

## Answer: D

## - Watch Video Solution

246. five charge $q_{1}, q_{2}, q_{3}, q_{4}$ and $q_{5}$ are fixed at their positions as shown in figure.$s$ is Gaussian surface .The Gauss's law is given by
$\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{0}}$

## Gaussain surface



Which of the following statement is correct?
A. $E$ on the LHS of the above equation will have a contribution from $q_{1}, q_{5}$ and $q_{3}$ while $q$ on the RHS will have a contribution from $q_{2}$ and $q_{4}$ only
B. $E$ on the LHS of the above equation will have a contribution from all charges while $q$ on the RHS will have a contribution
from $q_{2}$ and $q_{4}$ only
C. $E$ on the LHS of the above equation will have a contribution
from all charges while $q$ on the RHS will have a contribution from $q_{1}, q_{-}(3)$ and $q_{-}(5)^{\prime}$ only
D. Both, $E$ on the LHS and $q$ on the RHS will have contribution from q_(2) and q_(4)' only

## Answer: B

## - Watch Video Solution

247. Figures shown electric field lines in which as electric dipole $\vec{p}$ is placed as shown .Which of the following statement is correct?

## $\stackrel{\rightharpoonup}{\mathrm{p}}$


A. The dipole will not not experience any force
B. The dipole will experience a force towards right.
C. The dipole will experience a force towards left.
D. The dipole will experience a force upwards

## Answer: C

## D Watch Video Solution

248. A point charge $+q$ is placed at a distance $d$ from an isolated conducting plane. The field at a point $P$ on the other side of plane
A. directed perpendicular to the plane and away from the plane
B. directed perpendicular to the plane but towards the plane
C. directed radially away from the point charge
D. directed radially towards the point charge

## Answer: A

## - Watch Video Solution

249. A hemispherical shell is uniformly charge positively the electric field at point on a diameter away from the centre is directed
A. perpendicular to the diameter
B. parallel to the diameter
C. at an angle titled towards the diameter
D. at an angle tilted away from the diameter

## Answer: A

## - Watch Video Solution

250. If $\oint_{S} E . d s=0$ Over a surface, then
A. the electric field inside the surface and on it is zero
B. the electric field inside the surface is necessarly uniform
C. the number of flux lines entering the surface must be equal to the number of flux lines leaving it
D. all charges must necessarily be outside the surface

## Answer: C::D

251. The Electric field at a point is
A. always continous
B. continous if there is no charge at that point
C. discontinous only if there is a negative charge at that point
D. discontinous if there is a charge at that point

## Answer: B::D

## ( Watch Video Solution

252. If there were only one type of charge of the universe then
A. $\oint_{S} \vec{E} \cdot \overrightarrow{d s} \neq 0$ on any surface
B. $\oint_{S} \vec{E} . \overrightarrow{d s}=0$ if the charge is outside the surface
C. $\oint_{S} \vec{E} . \overrightarrow{d s}$ could not be defined
D. $\oint_{S} \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\epsilon_{0}}$ if charges of magnitude $q$ were inside the surface

## Answer: B::D

## - Watch Video Solution

253. Consider a region inside which there are various types of charges but the total charge is zero ,.At points outside the region
A. the electric field is necessarily zero
B. the electric field is due to the dipole moment of the charge distribution only
C. the dominant electric field is $\propto \frac{1}{r^{3}}$, for large $r$, where $r$ is the distance from a origin in this region
D. the work done to move a charged particle along a closed path, away from the region, will be zero.

## Answer: C::D

## - Watch Video Solution

254. Refer to the arrangement of charges in Fig and a Gaussian surface of radius $R$ with $Q$ at the centre. Then

A. total flux through the surface of the sphere is
B. field on the surface of the sphere si $\frac{-Q}{4 \pi \in{ }_{0} R^{2}}$
C. flux through the surface of sphere due to $5 Q$ is zero.
D. field on the surface of sphere due to $-2 Q$ is same everywhere

## Answer: A::C

## - Watch Video Solution

255. A positive charge $Q$ is uniformly distributed along a circular ring of radius $R$.a small test charge $q$ is placed at the centre of the
ring .The

A. If $q>0$ and is displaced away from the centre in the plane of the ring, it will be pushed back towards the centre,
B. If $q<0$ and is displaced away from the centre in the plane of
the ring, it will, it will never return to the centre and will
continue moving till it his the ring.
C. If $q<0$, it will perform SHM for small displacement along the axis,
D. $q$ at the centre of the ring is anstable equilibrium within the plane of the ring for $q>0$.

## Answer: A::B::C

## - Watch Video Solution

256. A capacitor of $4 \mu F$ is connected as shown in the circuit. The internal resistance of the battery is $0.5 \Omega$. The amount of charge on
the capacitor plates will be

A. 0
B. $4 \mu \mathrm{C}$
C. $16 \mu \mathrm{C}$
D. $8 \mu \mathrm{C}$

Answer: D

- Watch Video Solution

257. A positively charged particle is released from rest in a uniform electric field. The electric potential energy of the charge.
A. remains a constant because the electric field a uniform
B. increases becauses the charge moves along the electric field
C. decreases because the charge moves along the electric field
D. decreases because the charge moves opposite to the electric field

## Answer: C

## - Watch Video Solution

258. Figure shows some equipotential lines distributed in space. A charged object is moved from point $A$ to point 5 .

A. The work done in Fig. (i) is the greatest
B. The work done in Fig. (ii) is least.
C. The work doen is the same in Fig. (i), Fig. (ii) and Fig. (iii)
D. The work done in Fig. (iii) is greater than Fig. (ii) but equal to

## - Watch Video Solution

259. The electrostatic potential on the surface of a charged concducting sphere is 100 V . Two statements are made in this regard
$S_{1}$ : at any inside the sphere, electric intensity is zero.
$S_{2}$ : at any point inside the sphere, the electrostatic potential is 100 V.
A. $S_{1}$ is true but $S_{2}$ is false
B. Both $S_{1}$ and $S_{2}$ are false
C. $S_{1}$ is true, $S_{2}$ is also true and $S_{1}$ is the cause of $S_{2}$
D. $S_{1}$ is true, $S_{2}$ is also true but the statement are independent

## Answer: C

## D Watch Video Solution

260. Equipotentials at a great distance from a collection of charges whose total sum is not zero are approximately
A. spheres
B. planes
C. paraboloids
D. ellipsoids

## Answer: A

## - Watch Video Solution

261. A parallel plate capacitor is made of two dielectric blocks in series. One of the blocks has thickness $d_{1}$ and dielectric constant
$K_{1}$ and the other has thickness $d_{2}$ and dielectric constant $K_{2}$ as shown in figure. This arrangement can be through as a dielectric slab of thickness $d\left(=d_{1}+d_{2}\right)$ and effective dielectric constant $K$. The $K$ is.

A. $\frac{k_{1} d_{1}+k_{2} d_{2}}{d_{1}+d_{2}}$
B. $\frac{k_{1} d_{1}+k_{2} d_{2}}{k_{1}+k_{2}}$
$k_{1} k_{2}\left(d_{1}+d_{2}\right)$
C.

$$
\left(k_{1} d_{2}+k_{2} d_{1}\right)
$$

D. $\frac{2 k_{1} k_{2}}{k_{1}+k_{2}}$

## Answer: C

262. Consider a uniform electric field in the $\hat{z}$ direction. The potential is a constant.
A. in all space
B. for any $x$ for a given $z$
C. for any $y$ for a given $z$
D. on the $x-y$ plane for a given $z$.

## Answer: B::C::D

## - Watch Video Solution

263. Equipotential surfaces
A. are closer in regions of large electric fields compared to
B. will be more crowded near sharp edges of a conductor
C. will be more crowded near regions of large charge densities
D. will always be equally spaced

## Answer: A::B::C

## - Watch Video Solution

264. The work done to move a charge along an equipotential from $A$ to $B$
A. cannot be defined as $-\int_{A}^{B} E . d l$
B. must be defined as $-\int_{A}^{B} E . d l$
C. is zero
D. Both B \& C correct

## Answer: D

## Watch Video Solution

265. In a region of constant potential
A. the electric field si uniform
B. the electric field is zero
C. there can be no charge inside the region
D. the electric field shall necessarily change if a charge is placed outside the region

## Answer: B::C

## - Watch Video Solution

266. In the circuit shown in figure, initially key $K_{1}$ is closed and key $K_{2}$ is open. Then $K_{1}$ is opened and $K_{2}$ is closed (order is
important). [Take $Q_{1}^{\prime}$ and $Q_{2}^{\prime}$ as charges on $C_{1}$ and $C_{2}$ and $V_{1}$ and $V_{2}$ as voltage respectively].


## Then

A. charge on $C_{1}$ gets redistributed such that $V_{1}=V_{2}$
B. charge on $C_{1}$ gets redistributed such that $Q_{1}{ }^{\prime}+Q_{2}{ }^{\prime}=Q$
C. charge on $C_{1}$ gets redistributed such that

$$
C_{1} V_{1}+C_{2} V_{2}=C_{1} E
$$

D. Both A \& B correct

## Answer: D

267. If a conductor has a potential $V \neq 0$ and there are no charges anywhere else outside, then
A. Their must be charges on the surface or inside itself
B. there cannot be any charge in the body of the conductor
C. there must be charges only on the surface
D. there must be charges inside the surface

## Answer: A::B

## - Watch Video Solution

268. A parallel plate capacitor is connected to a battery as shown in figure. Consider two situations :


A : Key $K$ is kept closed and plates of capacitors are moved apart using insulting handle.

B : Key $K$ is opened and plates of capacitors are moved apart using insulting handle. Choose the correct options (s).
A. In A: $Q$ remains same but $C$ changes
B. In B:V remains same but $C$ changes
C. In A : V remains same and hence $Q$ changes
D. In B: $Q$ remains same and hence $V$ changes.

## - Watch Video Solution

269. Chage $Q$ is distributed to two different metwllic spheres having radii Rand $2 R$ such that both spheres having equal surface charge densityh. Then charge on larger sphere is
A. $\frac{4 Q}{5}$
B. $\frac{Q}{5}$
C. $\frac{3 Q}{5}$
D. $\frac{5 Q}{4}$

## Answer: A

270. Force between two identical charges placed at a distance of $r$ in vacume is $F$. Now a slab of dielectric constant 4 is inserted between these two charges. If the thickness of the slab is $r / 2$, then the force between the charges will becomes
A. F
B. $\frac{3}{5} F$
C. $\frac{4}{9} F$
D. $\frac{F}{4}$

## Answer: C

## - Watch Video Solution

271. A charged ball $B$ hangs from a silk thread $S$, which makes an angle $\theta$ with a large charged conducting sheet $P$, as shown in the
figure. The surface charge density $\sigma$ of the sheet is proportional to

A. $\tan \theta$
B. $\sin \theta$
C. $\cot \theta$
D. $\cos \theta$

## - Watch Video Solution

272. Four charges equal to $-Q$ are placed at the four corners of a square and a charge q is at its center. If the system is in equilibrium the value of $q$ is
A. $-\frac{Q}{4}(1+2 \sqrt{2})$
B. $\frac{Q}{4}(1+2 \sqrt{2})$
C. $-\frac{Q}{2}(1+2 \sqrt{2})$
D. $\frac{Q}{2}(1+2 \sqrt{2})$

## Answer: B

273. Three identical spheres, each having a charge $q$ and radius $R$. are kept in such a way that each touches the other two. The magnitude of the electric force on any sphere due to the other two is
A. $\frac{1}{4 \pi \in_{0}}\left(\frac{q}{R}\right)^{2}$
B. $\frac{1}{4 \pi \in_{0}} \frac{3}{4}\left(\frac{q}{R}\right)^{2}$
C. $\frac{1}{4 \pi \in_{0}} \frac{\sqrt{3}}{4}\left(\frac{q}{R}\right)^{2}$
D. $\frac{1}{4 \pi \in_{0}} \frac{3}{2}\left(\frac{q}{R}\right)^{2}$

## Answer: C

## ( Watch Video Solution

274. A certain charge $Q$ is divided into two parts $q$ and $Q-q$, wheich are then separated by a cetain distance. What must $q$ be in
terms of $Q$ to maximum the electrostatic repulsion between the two charges?
A. $q / q^{\prime}=2$
B. $q / q^{\prime}=1$
C. $q / q^{\prime}=4$
D. $q / q^{\prime}=3$

## Answer: B

## - Watch Video Solution

275. An infinite number of charges, each of charge $1 \mu C$ are placed on the $x$-axis with co-ordinates $x=1,2,4,8 \ldots \infty$ If a charge of $1 C$ is kept at the origin, then what is the net force action on $1 C$ charge
A. 9000 N
B. 12000 N
C. 24000 N
D. 36000 N

## Answer: B

## - Watch Video Solution

276. Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of $30^{\circ}$ with each other. When suspended in a liquid of density $0.8 \mathrm{gcm}^{-3}$, the angle remains the same. If density of the material of the sphere is $1.6 \mathrm{gcm}^{-3}$, the dielectric constant of the liquid is
A. 3
B. 2
C. 1
D. 4

## Answer: B

## - Watch Video Solution

277. A uniformly charged thin spherical shell of radius $R$ carries uniform surface charge denisty of $\sigma$ per unit area. It is made of two hemispherical shells, held together by presisng them with force F (see figure). F is proportional to

A. $\frac{1}{\in_{0}} \sigma^{2} R^{2}$
B. $\frac{1}{\in_{0}} \sigma^{2} R$
C. $\frac{1}{\in_{0}} \frac{\sigma^{2}}{R^{2}}$
D.

## Answer: A

## - Watch Video Solution

278. A tiny spherical oil drop carrying a net charge $q$ is balanced in still air with a vertical uniform electric field of strength $\frac{81 \pi}{7} \times 10^{5} \mathrm{Vm}^{-1}$. When the field is switched off, the drop is observed to fall with terminal velocity $2 \times 10^{-3} \mathrm{~ms}^{-1}$. Given $g=9.8 \mathrm{~ms}^{-2}$, viscoisty of the air $=1.8 \times 10^{-5} \mathrm{Nsm}^{-2}$ and the denisty of oil $=900 \mathrm{kgm}^{-3}$, the magnitude of q is
A. $1.6 \times 10^{-19} C$
B. $3.2 \times 10^{-19} C$
C. $4.8 \times 10^{-19} C$
D. $8.0 \times 10^{-19} C$

## Answer: D

## - Watch Video Solution

279. Two small spheres of masses $M_{1}$ and $M_{2}$ are suspended by weightless insulating threads of lengths $L_{1}$ and $L_{2}$. The speres carry charges $Q_{1}$ and $Q_{2}$ respectively. The spheres are suspended such that they are in level with one another adn the threads are inclined to the verticle at angles $\theta_{1}$ and $\theta_{2}$ respectively. Which one of the following conditions is essential for $\theta_{1}=\theta_{2}$ ?
A. $M_{1} \neq M_{2}$, but $Q_{1}=Q_{2}$
B. $Q_{1}=Q_{2}$
C. $L_{1}=L_{2}$
D. $M_{1}=M_{2}$

## Answer: D

## - Watch Video Solution

280. Two identical charged spheres suspended from a common point by two mass-less strings of length $l$ are initially at a distance d ( $d \ll l$ ) apart because of their mutual repulsion. The charge begins to leak from both the spheres at a constant rate. As a result the charge approach each other with a velocity $v$. Then as a function of distance $x$ between them .
A. $v \propto x$
B. $v \propto x^{-1 / 2}$
C. $v \propto x^{-1}$
D. $v \propto x^{1 / 2}$

## Answer: B

## ( Watch Video Solution

281. Two metallic spheres of radii 1 cm and 2 cm are given charges $10^{-2} \mathrm{C}$ and $5 \times 10^{-2} \mathrm{C}$ respectively. If they are connected by a conducting wire, the final charge on the smaller sphere is
A. $2 \times 10^{-2} C$
B. $3 \times 10^{-2} \mathrm{C}$
C. $4 \times 10^{-2} \mathrm{C}$
D. $1 \times 10^{-2} C$

## Answer: B

282. Two path balls carrying eqaul chareges are suspended froom a common point by strings of equal length, the strings are rightly clamped at half the height. The equilibrium separation between the balls, now becomes :

A. $\left(\frac{2 r}{3}\right)$
B. $\left(\frac{1}{\sqrt{2}}\right)^{2}$
C. $\left(\frac{r}{\sqrt[3]{2}}\right)$
D. $\left(\frac{2 r}{\sqrt{3}}\right)$

## - Watch Video Solution

283. Two charges, each equal to q , aer kept at $x=-a$ and $x=a$ on the $x$-axis. A particle of mass $m$ and charge $q_{0}=\frac{q}{2}$ is placed at the origin. If charge $q_{0}$ is given a small displacement (ylt lt a) along the $y$-axis, the net force acting on the particle is proportional to
A. $y$
B. $\frac{1}{y}$
C. $-y$
D. $\frac{1}{y}$

Answer: A
284. Consider a uniform spherical charge distribution of radius $R_{1}$ centred at the orgin $O$. In this distribution a spherical cavity fo radius $R_{2}$, centred at $P$ with distance $O P=a=R_{1}-R_{2}$ (fig) is made.If the electric field inside the cavity at position $\vec{r}$, then the correct statement is

A. $\vec{E}$ is uniform,its magnitude is independent of $R_{2}$. But its direction depends on $\vec{R}$
B. $\vec{E}$ is uniformly, its magnitude depends on $R_{2}$, and its direction depends on $\vec{r}$
C. $\vec{E}$ is uniform,its magnitude is independent of $a$. But its direction depends on $a$
D. $\vec{E}$ is uniform and both its magnitude and direction depend on $\vec{a}$

## Answer: D

## - Watch Video Solution

285. A long cylindrical shell carries positive surface charge $\sigma$ in the upper half and negative surface charge $-\sigma$ in the lower half. The
electric field lines around the cylinder will look like figure given in:
(figures are schematic and not drawn to scale)
A.

C.

D.

Answer: A
286. Two point charges $+8 q$ and $-2 q$ are located at $x=0$ and $x=L$ respectively. The location of a point on the x axis at which the net electric field due to these two point charges is zero is
A. $2 L$
B. $L / 4$
C. 8 L
D. $4 L$

## Answer: A

## - Watch Video Solution

287. If potential (in volts) in a region is expressed as $V(x, y, z)=6 x y-y+2 y z$, the electric field (in $N / C$ ) at point $(1,1,0)$
A. $-(6 \hat{i}+9 \hat{j}+\hat{k})$
B. $-(3 \hat{i}+5 \hat{j}+3 \hat{k})$
C. $-(6 \hat{i}+5 \hat{j}+2 \hat{k})$
D. $-(2 \hat{i}+3 \hat{j}+\hat{k})$

## Answer: C

## - Watch Video Solution

288. The figure below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $-q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions,
then the correct statement(s) is(are)

A. both charges execute simple harmonic motion.
B. both charge will continue moving in the direction of their displacement.
C. charge $+q$ execute simple harmonic motion while charge $-q$ continues moving in the direction of its displacement.
D. charge $-q$ execute simple harmonic motion while charge $+q$ continues moving in the direction of its displacement.

## D Watch Video Solution

289. Poistive and negative point charges of equal magnitude are
kept at $\left(0,0, \frac{a}{2}\right)$ and $\left(0,0, \frac{-a}{2}\right)$ respectively. The work done by the electric field when another poistive point charge is moved from $(-a, 0,0)$ to $(0, a, 0)$ is
A. positive
B. negative
C. zero
D. depends on the path connecting the initial and final positions

## Answer: C

290. A thin semi-circular ring of radius $r$ has a positive charge $q$ distributed uniformly over it. The net field $\vec{E}$ at the centre O is

A. $\frac{\lambda}{2 \pi \in{ }_{0} a^{2}}$
B. $\frac{\lambda}{4 \in_{0} a}$
C. $\frac{\lambda^{2}}{2 \pi \in_{0} a}$
D. $\frac{\lambda}{2 \pi \in_{0} a}$

## Answer: D

291. Two charges $q_{1}$ and $q_{2}$ are placed 30 cm apart, as shown in the figure. A third charge $q_{3}$ is moved along the arc of a circle of radius 40 cm from $C$ to $D$. The change in the potential energy o
fthe system is $\frac{q_{3}}{4 \pi \varepsilon_{0}} k$., where $k$ is

A. $8 q_{2}$
B. $6 q_{2}$
C. $8 q_{1}$
D. $6 q_{1}$

## Answer: A

## - Watch Video Solution

292. The point charges $+q,-2 q$ and $+q$ are placed at point $(x=0, y=a, z=0),(x=0, y=0, z=0) \quad$ and $\quad(x=a, y=0, z=0)$, repectively. The magnitude and direction of the electric dipole moment vector of this charge assembly are
A. $(\sqrt{2} q a)$ along the line joining points $(x=0, y=0, z=0)$ and

$$
(x=a, y=a, z=a)
$$

B. (qa) along the line joining points $(x=-0, y=0, z=0)$ and

$$
(x=a, y=a, z=a)
$$

C. $(\sqrt{2} q a)$ along $+x$ direction.
D. $(\sqrt{2} q a)$ along $+y$ direction.

## Answer: A

## - Watch Video Solution

293. A thin conducting ring orf radius $R$ is given a chareg $+Q$, Fig.

The electric field at the centre $O$ of the ring due to the charge on the part $A K B$ of the ring is $E$. The electric field at the centre due to
the charge on part $A C D B$ of the ring is

A. $3 E$ along $K O$
B. $E$ along $O K$
C. E along $K O$
D. $3 E$ along $O K$

Answer: B
294. Let there be a spherically symmetric charge distribution with charge density varying as $\rho(r)=\rho\left(\frac{5}{4}-\frac{r}{R}\right)$ upto $r=R$, and $\rho(r)=0$ for $r>R$, where $r$ is the distance from the origin. The electric field at a distance $r(r \mid t R)$ from the origin is given by
A. $\frac{\rho_{0} r}{4 \in_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$
B. $\frac{4 \rho_{0} r}{3 \in_{0}}\left(\frac{5}{4}-\frac{r}{R}\right)$
C. $\frac{\rho_{0} r}{3 \in_{0}}\left(\frac{5}{4}-\frac{r}{R}\right)$
D. $\frac{4 \pi \rho_{0} r}{3 \epsilon_{0}}\left(\frac{5}{3}-\frac{r}{R}\right)$

## Answer: A

## ( Watch Video Solution

295. A thin semi-circular ring of radius $r$ has a positive charge $q$ distributed uniformly over it. The net field $\vec{E}$ at the centre O is

A. $-\frac{q}{4 \pi^{2} \in_{0} r^{2}} \hat{j}$
B. $-\frac{q}{2 \pi^{2} \in_{0} r^{2}} \hat{j}$
C. $\frac{q}{2 \pi^{2} \in_{0} r^{2}} \hat{j}$
D. $\frac{q}{4 \pi^{2} \in{ }_{0}{ }^{2}{ }^{2}} \hat{j}$

## Answer: C

296. Let $P(r)=\frac{Q}{\pi R^{4}} r$ be the charge density distribution for a solid sphere of radius $R$ and total charge $Q$. For a point ' $p$ ' inside the sphere at distance $r_{1}$ from the centre of the sphere, the magnitude of electric field is:
A. $\frac{Q}{4 \pi \in{ }_{0} r_{1}^{2}}$ $Q r_{1}^{2}$
B.
$\overline{4 \pi \in{ }_{0} R^{4}}$
$Q r_{1}^{2}$
C. $\overline{3 n \pi \in{ }_{0} R^{4}}$
D. zero

## Answer: C

297. Two positive charges of magnitude $q$ are placed at the ends of a side ( side 1 ) of a square of side $2 a$. Two negative charges of the same magnitude are kept at the other corners. Staring from rest , a charge $Q$ moves from the middle of side 1 to the centre of square, its kinetic energy at the centre of square is -.
A. $\frac{1}{4 \pi \in_{0}} \frac{2 q Q}{a}\left(1-\frac{1}{\sqrt{5}}\right)$
B. Zero
C. $\frac{1}{4 \pi \in_{0}} \frac{2 q Q}{a}\left(1+\frac{1}{\sqrt{5}}\right)$
D. $\frac{1}{4 \pi \in_{0}} \frac{2 q Q}{a}\left(1-\frac{2}{\sqrt{5}}\right)$

## Answer: A

## - Watch Video Solution

298. Conisder a thin spherical shell of radius $R$ with centre at the origin, carrying uniform poistive surface charge denisty. The variation of the magnitude of the electric field $|\vec{E}(r)|$ and the electric potential $V(r)$ with the distance $r$ from the centre, is best represented by which graph?
A.

B.

C.

D.

299. Charges $Q, 2 Q$ and $4 Q$ are uniformly distributed in three dielectric solid spheres 1,2 and 3 of radii $R / 2, R$ and $2 R$ respectively, as shown in figure. If magnitude of the electric fields at point $P$ at a distance $R$ from the centre of sphere 1,2 and 3 are $E_{1}, E_{2}$ and $E_{3}$ respectively, then


Sphere 1


Sphere 2


Sphere 3
A. $E_{1}>E_{2} E_{3}$
B. $E_{3}>E_{1} E_{2}$
C. $E_{2}>E_{1} E_{3}$
D. $E_{3}>E_{2} E_{1}$

Answer: C

## - Watch Video Solution

300. The electric field in a certain region is acting radially outwards and is given by $E=A r$. A charge contained in a sphere of radius ' $a$ ' centred at the origin of the field, will given by
A. $A \in{ }_{0} a^{2}$
B. $4 \pi \in{ }_{0} \mathrm{Aa}^{3}$
C. $\in{ }_{0} A a^{3}$
D. $4 \pi \in{ }_{0} A a^{2}$

## Answer: B

301. An assmebly of charges $+q,-q,+q,-q \ldots$. are at positions
$x=1 m, 2 m, 4 m, 8 m, \ldots$. And so on from origin. What is the potential at $x=0$, due to these charges?
A. $\frac{q}{4 \pi \in_{0}}$
B. $\frac{-q}{4 \pi \in_{0}}$
C. $\frac{q}{6 \pi \in_{0}}$
D. $\frac{-q}{6 \pi \in_{0}}$

## Answer: C

## - Watch Video Solution

302. A point charge $q$ is placed at the centre of a cube. What is the flux linked.
a with all the faces of the cube?
b. with each face of the cube?
c. if charge is not at the centre, then what will be the answer of parts a and b ?
A. $\frac{\pi q}{6\left(4 \pi \in_{0}\right)}$
B. $\frac{q}{6\left(4 \pi \in_{0}\right)}$
C. $\frac{2 \pi q}{6\left(4 \pi \in_{0}\right)}$
D. $\frac{4 \pi q}{6\left(4 \pi \in_{0}\right)}$

## Answer: D

## - Watch Video Solution

303. Three infinitely long charge sheets are placed as shown in figure. The electric field at point $P$ is

$Z=-a$
A. $\frac{-4 \sigma}{\epsilon_{0} \hat{k}}$
B. $\frac{4 \sigma}{\epsilon_{0} \hat{k}}$
C. $\frac{-2 \sigma}{\epsilon_{0} \hat{k}}$
D. $\frac{2 \sigma}{\epsilon_{0} \hat{k}}$

## Answer: C

- Watch Video Solution

304. A disc of radius $a / 4$ having a uniformly distributed charge $6 C$ is placed in the $x-y$ plane with its centre at $(-a / 2,0,0)$. A rod of length a carrying a uniformly distributed charge 8 C is placed on the $x$-axis from $x=a / 4$ to $x=5 a / 4$. Two point charges $-7 C$ and $3 C$ are placed at $(a / 4,-a / 4,0)$ and $(-3 a / 4,3 a / 4,0)$, respectively. Conisder a cubical surface formed by isx surfaces $x= \pm a / 2$, $y= \pm a / 2, z= \pm a / 2$. The electric flux through this cubical surface is

A. $-2 C / \in_{0}$
B. $2 C / \in_{0}$
C. $10 C / \in_{0}$
D. $12 C / \epsilon_{0}$

## Answer: A

## D Watch Video Solution

305. An insulated sphere of radius $r$ haas a uniform volume charge density $\lambda$. The electric field at a point $A$, which is at distance $r$ from its centre is given by $(R>r)$
A. Zero
B. $R \lambda / 3 \in_{0}$
C. $\frac{2 r \lambda}{3 \epsilon_{0}}$
D. $\frac{r \lambda}{3 \epsilon_{0}}$

## - Watch Video Solution

306. A thin spherical conducting shell of radius $R$ has a charge $q$.

Another charge $Q$ is placed at the centre of the shell. The electrostatic potential at a point P a distance $\frac{R}{2}$ from the centre of the shell is
A. $\frac{2 Q}{4 \pi \in{ }_{0} R}$
B. $\left(\frac{2 Q}{4 \pi \in_{0} R}\right)-\left(\frac{2 q}{4 \pi \in_{0} R}\right)$
C. $\frac{2 Q}{4 \pi \in_{0} R}+\frac{q}{4 \pi \in_{0} R}$
D. $\frac{(q+Q)^{2}}{4 \pi \in_{0} R}$

## Answer: C

307. In a region, the potential is respresented by $V(x, y, z)=6 x-8 x y-8 y+6 y z$, where $V$ is in volts and $x, y, z$ are in meters. The electric force experienced by a charge of 2 coulomb situated at point $(1,1,1)$ is
A. $6 \sqrt{5} N$
B. 30 N
C. 24 N
D. $4 \sqrt{35} N$

## Answer: D

## - Watch Video Solution

308. Assume that an electric field $\vec{E}=30 x^{2} \hat{i}$ exists in space. Then the potentail differences $V_{A}-V_{0}$ where $V_{0}$ is the potential at the origin and $V_{A}$, the potebntail at $x=2 m$ is
A. -80 V
B. 80 V
C. 120 V
D. -120 V

## Answer: A

## - Watch Video Solution

309. Two insulting plates are both uniformly charged in such a way that the potential difference between them is $V_{2}-V_{1}=20 V$. (i.e., plate 2 is at a higher potential). The plates are separated by $d=0.1 \mathrm{~m}$ and can be treated as infinity large. An electron is released from rest on the inner surface of plate 1 . What is its
speed when it hits plate $2 ?\left(e=1.6 \times 10^{-19} C, m_{e}=9.11 \times 10^{-31} \mathrm{~kg}\right)$

A. $32 \times 10^{-19} \mathrm{~m} / \mathrm{s}$
B. $2.65 \times 10^{6} \mathrm{~m} / \mathrm{s}$
C. $7.02 \times 10^{12} \mathrm{~m} / \mathrm{s}$
D. $1.87 \times 10^{6} \mathrm{~m} / \mathrm{s}$

## Answer: B

- Watch Video Solution

310. Four equal charges $Q$ are placed at the four corners of a square of each side is 'a'. Work done in removing a charge $-Q$ from its centre to infinity is
A. zero
B. $\frac{2 q^{2}}{\pi \in_{0} a}$
C. $\frac{\sqrt{2} q^{2}}{\pi \in_{0} a}$
D. $\frac{q^{2}}{2 \pi \in{ }_{0} a}$

## Answer: C

## - Watch Video Solution

311. Charges $+q$ and $-q$ are placed at points $A$ and $B$ respectively which are a distance $2 L$ apart, $C$ is the midpoint between $A$ and $B$.

The work done in moving a charge $+Q$ along the semicircle $C R D$ is

A. $\frac{q Q}{2 \pi \in{ }_{0} L}$
B. $\frac{q Q}{6 \pi \in{ }_{0} L}$
C. $\frac{-q Q}{6 \pi \in{ }_{0} L}$
D. $\frac{q Q}{4 \pi \in{ }_{0} L}$

## Answer: C

## - Watch Video Solution

312. The potential at a point $\times$ ( measured in $\mu \mathrm{m}$ ) due to some charges situated on the $x$-axis is given by
$V(x)=20 /\left(x^{2}-4\right)$ volt
A. $\frac{5}{3}$ volt/ $\mu \mathrm{m}$ and in $+x$ direction.
B. $\frac{10}{9} V / \mu m$ and in neg $x$ direction.
C. $\frac{10}{9} V / \mu m$ and in $+x$ direction
D. $\frac{5}{3} V / \mu m$ and inneg. $x$ direction.

## Answer: C

## - Watch Video Solution

313. An electric charge $10^{-3} \mu C$ is placed at the origin $(0,0)$ of $X-Y$ co-ordinate system. Two points $A$ and $B$ are situated at $(\sqrt{2}, \sqrt{2})$ and $(2,0)$ respectively. The potential difference between the points
$A$ and $B$ will be
A. 4.5 V
B. 9 V
C. zero
D. 2 V

## Answer: C

## - Watch Video Solution

314. Three concentric spherical shells have radii $a, b$ and $c(a<b<c)$ and have surface charge densities $\sigma$, - sigam and $\sigma$ respectively. If $V_{A}, V_{B}$ and $V_{C}$ denote the potentials of the three shells, then for $c=q+b$, we have
A. $V_{C}=V_{B}=V_{A}$
B. $V_{A}=V_{C} \neq V_{B}$
C. $V_{C}=V_{B} \neq V_{A}$
D. $V_{C}=V_{B} \neq V_{A}$

## Answer: B

## - Watch Video Solution

315. Which of the following statement(s) is/are correct?
A. If the electric field due to a point charge variesas $r^{-2.5}$ instead fo $r^{-2}$, then the Gauiss law will still be valid.
B. The Gauss law can be used to calculate the field distributed around on electric dipole.
C. If the electric field between two points charges is zero somewhere, then the sign of the two charges is not the same.
D. The work doen by the external force in moving a unit positive charge from point $A$ at potential $V_{A}$ to point $B$ at potential $V_{B}$ is $\left(V_{B}-V_{A}\right)$.

## Answer: D

## - Watch Video Solution

316. The electrostatic potential inside a charged spherical ball is given by $\phi=a r^{2}+b$ where $r$ is the distance from the centre and $a$, b are constants. Then the charge density inside the ball is:
A. $-6 a \in_{0} r$
B. $-24 \pi a \in_{0} r$
C. $-6 a \in_{0}$
D. $-24 \pi a \in_{0} r$

Answer: C

## - Watch Video Solution

317. Four electric charges $+q,+q,-q$ and $-q$ are placed at the corners of a square of side 2 L (see figure). The electric potential at point $A$, mid-way between the two charges $+q$ and $+q$, is

A. $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}(1+\sqrt{5})$
B. $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}\left(1+\frac{1}{\sqrt{5}}\right)$
C. $\frac{1}{4 \pi \in_{0}} \frac{2 q}{L}\left(1-\frac{1}{\sqrt{5}}\right)$
D. Zero

## Answer: C

## - Watch Video Solution

318. The electric potential $V$ at any point $x, y, z$ (all in meters) in space is given by $V=4 x^{2}$ volts. The electric field at the point ( 1 m , $0,2 m)$ is. $\qquad$ V/m.
A. 8 along positive $X$-axis
B. 16 along negative $X$-axis
C. 16 along positive $X$-axis
D. 8 along negative $X$-axis

## Answer: D

## ( Watch Video Solution

319. The diagrams below show region of equipotentials.

A. Maximum work is required to move $q$ in figurec (c ).
B. In all the four cases, the work doen is the same.
C. Minimum work is required to move $q$ in figurec (a).
D. Maximum work is required to move $q$ in figurec (b ).

## Answer: B

## - Watch Video Solution

320. Suppose the charge of a proton and an electron differ slightely. One of them is $-e$, the other is $(e+\Delta e)$. If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance $d$ (much greater than atomic size) apart is zero. Then $\Delta e$ is of the order of [Given mass of hydrogen $\left.m_{h}=1.67 \times 10^{-27} \mathrm{~kg}\right]$
A. $10^{-20} \mathrm{C}$
B. $10^{-23} \mathrm{C}$
C. $10^{-37} \mathrm{C}$
D. $10^{-47} \mathrm{C}$

## Answer: C

## (- Watch Video Solution

321. Conisder an electric field $\vec{E}=E_{0} \hat{x}$ where $E_{0}$ is a constant .

The flux through the shaded area (as shown in the figure) due to this field is

A. $2 E_{0} a^{2}$
B. $\sqrt{2} E_{0} a^{2}$
C. $E_{0} a^{2}$
D. $\frac{E_{0} a^{2}}{\sqrt{2}}$

## - Watch Video Solution

322. A charged spherical conductor of radius 10 cm has potential $V$ at a point distant 5 cm from its centre. The potential at a point distant 15 cm from the centre will be
A. 3 V
B. $\frac{3}{2} V$
C. $\frac{2}{3} V$
D. $\frac{1}{3} V$

## Answer: C

323. A hollow cylinder has a charge $q C$ within it. If $\phi$ is the electric
flux in unit of voltmeter associated with the curved surface $B$ the flux linked with the plance surface $A$ in unit of voltmeter will be

A. $\frac{\phi}{3}$
B. $\frac{q}{2 \in_{0}}$
C. $\frac{1}{2}\left(\frac{q}{\epsilon_{0}}-\phi\right)$
D. $\frac{q}{\in_{0}}-\phi$

## Answer: C

324. A cubical region of side a has its centre at the origin. It encloses three fixed point charges, $-q$ at $(0,-a / 4,0),+3 q$ at $(0,0,0)$ and $-q$ at $(0,+a / 4,0)$. Choose the correct options(s)

A. The net electric flux crossing the plane $x=+a / 2$ is equal to the net electric flux crossing the plane $x=-a / 2$
B. The net electric flux crossing the plane $y=+a / 2$ is more than the net electric flux crossing the plane $y=-a / 2$
C. The net electric flux crossing the entire region is $\frac{q}{\in_{0}}$
D. The net electric flux crossing the plane $z=+a / 2$ is equal to the net electric flux crossing the plane $z=-a / 2$

## Answer: B

## - Watch Video Solution

325. The total flux through the faces of the cube with side of
length a if a charge $q$ is placed at corner $A$ of the cube is

A. $\frac{2 q}{\in_{0}}$
B. $\frac{q}{8 \in_{0}}$
C. $\frac{q}{\in_{0}}$
D. $\frac{2 q}{2 \in_{0}} 6 a^{2}$

Answer: B

MA/aH-L Itidaa Calin+ian
326. A charge $Q$ is uniformly distributed over a long rod $A B$ of length $L$ as shown in the figure. The electric potential at the point O lying at distance $L$ from the end $A$ is

A. $\frac{Q}{2 \pi \in_{0} L}$
B. $\frac{3 Q}{4 \pi \in{ }_{0} L}$
C. $\frac{3 Q}{4 \pi \in{ }_{0} L \in 2}$
D. $\frac{Q \in 2}{4 \pi \in{ }_{0} L}$

## - Watch Video Solution

327. An electric dipole has a fixed dipole moment $\vec{p}$, which makes angle $\theta$ with respect to $x$-aixs. When subjected to an electric field $\vec{E}_{1}=\hat{E i}$, it experiences a torque $\vec{T}_{1}=\tau \hat{k}$. When subjected to another electric field $\vec{E}_{2}=\sqrt{3} E \hat{j}$ it experiences a torque $\vec{T}_{2}=-\vec{T}_{1}$. The angle $\theta$ is
A. $60^{\circ}$
B. $90^{\circ}$
C. $30^{\circ}$
D. $45^{\circ}$

## Answer: A

328. In the givven circuit, charge $Q_{2}$ on the $2 \mu F$ capacitor changes as $C$ is varied from $1 \mu F$ to $3 \mu F . Q_{2}$ as a function of ' C ' is given properly by: (figures are drawn schematically and are not to scale)


E
A.

B.


## C. <br> 

D.


## Answer: B

## - Watch Video Solution

329. A capacitance of $2 \mu F$ is required in an electrical circuit across a potential difference of 1.0 kV A large number of $1 \mu \mathrm{~F}$ capacitors are available which can withstand a potential difference of not more than 300 v .

The minimum number of capacitors required to achieve this is
B. 32
C. 2
D. 16

## Answer: B

## - Watch Video Solution

330. A parallel plate air capacitor of capacitance $C$ is connected to a cell of emFV and then disconnected from it. A dielectric slab of dielectric constant $K$, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect ?
A. The energy stored in capacitnce decreases $K$ time.
B. The change in energy stored is

$$
\frac{1}{2} C V^{2}\left(\frac{1}{K}-1\right)
$$

C. The chareg on the capacitor is not conserved
D. The potential difference between te plates decreases $K$ times

## Answer: C

## - Watch Video Solution

331. A parallel plate capacitor has a dielectric slab of dielectric constant K between its plates that covers $1 / 3$ of the area of its plates, as shown in the figure. The total capacitance of the capacitor is C while that of the portion with dielectric in between is $C_{1}$. When the capacitor is charged, the plate area covered by the dielectric gets charge $Q_{1}$ and the rest of the area gets charge $Q_{2}$.

The electric field in the dielectric is $E_{1}$ and that in the other portion is $E_{2}$. Choose the correct option/options, ignoring edge effects.

A. $\frac{E_{1}}{E_{2}}=1$
B. $\frac{E_{1}}{E_{2}}=\frac{1}{K}$
C. $\frac{Q_{1}}{Q_{2}}=\frac{3}{K}$
D. $\frac{C_{1}}{C_{2}}=\frac{3+K}{K}$

Answer: A
332. Two thin dielectric slabs of dielectric constants $K_{1}$ and $K_{2}\left(K_{1}<K_{2}\right)$ are inserted between plates of a parallel plate capacitor, as shown in the figure. The variation of electric field $E$ between the plates with distance $d$ as measured from plate $P$ is
correctly shown by


B.

C.

c
D.


## Answer: C

## - Watch Video Solution

333. A parallel plate condenser with a dielectric of dielectric constant K between the plates has a capacity C and is charged to a potential V volt. The dielectric slab is slowly removed from
between the plates and then reinserted. The net work done by the system in this process is
A. zero
B. $\frac{1}{2}(K-1) C V^{2}$
C. $\frac{C V^{2}(K-1)}{K}$
D. $(K-1) C V^{2}$

## Answer: A

## - Watch Video Solution

334. A parallel plate capacitor is made of two circular plates separated by a distance 5 mm and with a dielectric of dielectric constant 2.2 between them. When the electric field in the dielectric is $3 \times 10^{4} \mathrm{~V} / \mathrm{m}$ the charge density of the positive plate will be close to:
A. $3 \times 10^{4} \mathrm{C} / \mathrm{m}^{2}$
B. $6 \times 10^{4} \mathrm{C} / \mathrm{m}^{2}$
C. $6 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$
D. $3 \times 10^{-7} \mathrm{C} / \mathrm{m}^{2}$

## Answer: C

## - Watch Video Solution

335. Three uncharged capacitors of capacities $C_{1}, C_{2}$ and $C_{3}$ are connected as shown in the figure to one another and the potentials $V_{1}, V_{2}$ and $V_{3}$ respectively. Then the potential at $O$ will
be

A. $\frac{V_{A}+V_{B}+V_{D}}{C_{1}+C_{2}+C_{3}}$
B. $\frac{V_{A} C_{1}+V_{B} C_{2}+V_{D} C_{3}}{C_{1}+C_{2}+C_{3}}$
C. $\left(V_{A} V\right)(B)+V_{B} V_{D}+\frac{V_{D} V_{A}}{C_{1}+C_{2}+C_{3}}$
D. $\frac{V_{A} V_{B} V_{D}}{C_{1} C_{2}+C_{2} C_{3}+C_{3} C_{1}}$

## - Watch Video Solution

336. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system:
A. increases by a factor of 4
B. decreases by a factor of 2
C. remains the same
D. increases by a factor of 2

## Answer: B

## - Watch Video Solution

337. Two identical capacitors 1 and 2 are connected in series to a batery as shown in figure. Capacitor 2 contains a dielectric slab of dieletric constant $k$ as shown. $Q_{1}$ and $Q_{2}$ are the charges stored in the capacitors. Now the dielectirc slab us removed and the corresponding charges are $Q_{1}^{\prime}$ and $Q^{\prime}{ }_{2}$. Then

A. $\frac{Q^{\prime}}{Q_{1}}=\frac{K+1}{K}$
B. $\frac{Q_{2}^{\prime}}{Q_{2}}=\frac{K+1}{2}$
C. $\frac{Q_{2}^{\prime}}{Q_{2}}=\frac{K+1}{2 K}$
D. $\frac{Q_{2}^{\prime}}{Q_{2}}=\frac{K}{2}$

## - Watch Video Solution

338. A network of four capacitors of capacity equal to

$$
C_{1}=C, C_{2}=2 C, C_{3}=3 C \text { and } C_{4}=4 C \text { are connected to a battery }
$$ as shown in the figure. The ratio o fthe charges on $C_{2}$ an $C_{4}$ is


A. $4 / 7$
B. $3 / 22$
C. 7/4
D. $22 / 3$

## Answer: B

## - Watch Video Solution

339. The expression for the equivalent capacitance of the system shown in Fig. is (A is the corss-sectional area of one of the planes)

A. $\in_{0} A / 3 d$
$3 \in{ }_{0} A$
B. $\frac{d}{d}$
C. $\in_{0} A / 6 d$
D. none of the above

Answer: D
340. A fully charged capacitor has a capacitance ' C '. It is discharged through a small coil of resistance wire embedded in a thermally insulated block of specific heat capacity 's' and mass 'm'. If the temperature of the block is raised by 'DeltaT', the potential difference ' V ' across the capacitance is
A. $\frac{m s \Delta T}{C}$
B. $\sqrt{\frac{2 m s \Delta T}{C}}$
C. $\sqrt{\frac{2 m s \Delta T}{s}}$
D. $\frac{m C \Delta T}{C}$

## Answer: B

## - Watch Video Solution

341. A combination of capacitors is set up as shown in the figure. The magnitude of the electric field, due to a point charge Q (having a charge equal to the sum of the charges on the $4 \mu \mathrm{~F}$ and $9 \mu F$ capacitors), at a point distance 30 m from it, would equal:

A. $240 \mathrm{~N} / \mathrm{C}$
B. $360 \mathrm{~N} / \mathrm{C}$
C. $420 \mathrm{~N} / \mathrm{C}$
D. $480 \mathrm{~N} / \mathrm{C}$

## (- Watch Video Solution

342. parallel plate capacitor has capacitance $C$ when no dielectric between thw plates. Now a slab of dielectric constant $K$, having same thickness as the separation between the plates is introduced so as to fill one-fourth of the capacitor as shown in the figure. the new capacitance will be

A. $(K+3) \frac{C}{4}$
B. $(K+2) \frac{C}{4}$
C. $(K+1) \frac{C}{4}$
D. $\frac{K C}{4}$

## Answer: A

## - Watch Video Solution

343. The metal plate on the left in Fig, carries a charge $+q$. The metal plate on the right has a charge of $-2 q$. What charge will flow
through $S$ when it is closed if the central plate is initially neutral ?

A. zero
B. $-q$
C. $+q$
D. $-2 q$

## Answer: C

## - Watch Video Solution

344. Four equal capacitors, each of capacity $C$, are arranged as shown. The effective capacitance between $A$ and $B$ is

A. $\frac{5}{8} C$
B. $\frac{3}{5} C$
C. $\frac{5}{3} C$
D. $C$

## Answer: C

## ( Watch Video Solution

345. 

Four
capacitors
with
capacitances
$C_{1}=1 \mu F, C_{2}=1.5 \mu F, C_{3}=2.5 \mu F$ and $C_{4}=0.5 \mu F$ are connected as shown in Fig, to a 30 voltg source. The potentail difference between points $a$ and $b$ is

A. 5 V
B. 9 V
C. 10 V
D. 13 V

## Answer: D

## - Watch Video Solution

346. An infinite number of identical capacitors each of capacitance $1 \mu F$ are connected $1 \mu F$ are connected as shown in Fig. Then the
equivalent capacitance between $A$ and $B$ is

A. $1 \mu F$
B. $2 \mu \mathrm{~F}$
C. $\frac{1}{2} \mu F$
D. $\infty$

Answer: B
347. In Fig, $E=5$ volt $, r=1 \Omega, R_{2}=4 \Omega, R_{1}=R_{3}=1 \Omega$ and $C=3 \mu F$.

Then the numbercal value of the charge on each plate of the capacitor is

A. $24 \mu \mathrm{C}$
B. $12 \mu \mathrm{C}$
C. $6 \mu \mathrm{C}$
D. $3 \mu \mathrm{C}$

## - Watch Video Solution

348. The plates of a parallel plate capacitor with air as medium are separated by a distance of 8 mm . A medium of dielectric constant 2 and thickness $4 m m$ having the same area is introduced between the plates. For the capacitanace to remain the same, the distance between the plates is
A. 8 mm
B. 6 mm
C. 10 mm
D. 12 mm

## Answer: C

349. Two identical parallel plate capacitors are connected in parallel to a3 volt battery. The battery is disconnected and the two capacitors are joined in series, Fig. What is the potentail difference between $A$ and $B$ ?

A. 6 volt
B. 2 volt
C. 3 volt
D. 12 volt

## - Watch Video Solution

350. Two condensers of capacity $C_{1}$ and $C_{2}$, are connected in series to a battery as shown in Fig. The adjoining graph shows the variraton of potential in going from $a$ to $b$. Thereofore.

A. $C_{1}>C_{2}$
B. $C_{1}=C_{2}$
C. $C_{1}<C_{2}$
D. Cannot say

## - Watch Video Solution

351. Four identical capacitors are connected as shown in diagram.

When a battery of $6 V$ is connected between $A$ and $B$, the charges
stored is found to be $1.5 \mu C$. The value of $C_{1}$ is

A. $2.5 \mu \mathrm{~F}$
B. $15 \mu \mathrm{~F}$
C. $1.5 \mu \mathrm{~F}$
D. $0.1 \mu F$

## - Watch Video Solution

352. A parallel plate capacitor with air between the plates has capacitance of $9 p F$. The separation between its plates is ' d '. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $k_{1}=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $k_{2}=6$ and thickness $\frac{2 d}{3}$. Capacitance of the capacitor is now
A. $1.8 p F$
B. $45 p F$
C. $40.5 p F$
D. $20.25 p F$

## - Watch Video Solution

353. A condenser of capacity $C$ is charged to a potential difference of $V_{1}$. The plates of the condenser are then connected to an ideal inductor of inductance $L$. The current through the inductor wehnn the potential difference across the condenser reduces to $V_{2}$ is
A. $\left(\frac{C\left(V_{1}-V_{2}\right)^{2}}{L}\right)^{\frac{1}{2}}$
$\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}$
C. $\frac{C\left(V_{1}^{2}+V_{2}^{2}\right)}{L}$
D. $\left(\frac{C\left(V_{1}^{2}-V_{2}^{2}\right)}{L}\right)^{\frac{1}{2}}$

## - Watch Video Solution

354. A series combination of $n_{1}$ capacitors, each of value $C_{1}$, is charged by a source of potential difference $4 V$. When another parallel combination of $n_{2}$ capacitors, each of value $C_{2}$, is charged by a source of potential difference $V$, it has same (total) energy stored in it, as the first combination has. the value of $C_{2}$, in terms of $C_{1}$, is then
A. $\frac{2 C_{1}}{n_{1} n_{2}}$
B. $16 \frac{n_{2}}{n_{1}} C_{1}$
C. $2 \frac{n_{2}}{n_{1}} C_{1}$
D. $\frac{16 C_{1}}{n_{1} n_{2}}$

Answer: D

## - Watch Video Solution

355. A $2 \mu F$ capacitor is charged as shown in the figure. The percentage of its stored energy disispated after the switch S is turned to poistion 2 is

A. $0 \%$
B. 20 \%
C. $75 \%$

## Answer: D

## - Watch Video Solution

356. A resistor ' R ' and $2(\mu) F$ capacitor in series is connected through a switch to 200 V direct supply. A cross the capacitor is a neon bulb that lights up at 120 V . Calculate the value of R to make the bulb light up 5 s after the switch has been closed. ( $\left.\log _{10} 2.5=0.4\right)$
A. $1.7 \times 10^{5} \Omega$
B. $2.7 \times 10^{6} \Omega$
C. $3.3 \times 10^{7} \Omega$
D. $1.3 \times 10^{4} \Omega$

Answer: B

## - Watch Video Solution

357. In the given circuit, a charge of $+80 \mu C$ is given to the upper plate of the $4 \mu F$ capacitor. Then in the steady state, the charge on the upper plate of the $3 \mu F$ capacitor is

A. $+32 \mu \mathrm{C}$
B. $+40 \mu \mathrm{C}$
C. $+48 \mu C$
D. $+80 \mu \mathrm{C}$

## Answer: C

## - Watch Video Solution

358. Two capacitors $C_{1}$ and $C_{2}$ are charged to 120 V and 200 V respectively. It is found that connecting them together the potential on each one can be made zero. Then
A. $5 C_{1}=3 C_{2}$
B. $3 C_{1}=5 C_{2}$
C. $3 C_{1}+5 C_{2}=0$
D. $9 C_{1}=4 C_{2}$

## Answer: B

359. A few electric field lines for a system of two charges $Q_{1}$ and $Q_{2}$ fixed at two different points on the $x$-axis are shown in the figure. These lines suggest that

A. $\left|Q_{1}\right|>\left|Q_{2}\right|$
B. $\left|Q_{1}\right|<\left|Q_{2}\right|$
C. at finite distnance to the left of $Q_{1}$, the electric field is zero
D. at a finitie distance to the right of $Q_{2}$, the electric field is

## Answer: A::D

## - Watch Video Solution

360. Three charged particles are collinear and are in equilibrium, then
A. all the charged particles have the same polarity
B. the equilibrium in unstable
C. all the charged particles cannot have the same polarity
D. both (a) and (c ) are correct

## Answer: B::C

361. A spherical metal shell A of radius $R_{A}$ and a solid metal sphere B of radius $R_{B}\left(<R_{A}\right)$ are kept far apart and each is given charge
' $+Q^{\prime}$. Now they are connected by a thin metal wire. Then
A. $E_{A_{\in \text { side }}}=0$
B. $Q_{A}>Q_{B}$
C. $\frac{\sigma_{A}}{\sigma_{B}}=\frac{R_{B}}{R_{A}}$
D. $E_{A}$ on the surface $<E_{B}$ on surface

## Answer: A::B::C::D

## - Watch Video Solution

362. A proton and an electron are placed in a uniform electric field.
A. The magnitude of the electric forces acting on them will be equal
B. The electric forces acting on them will be unequal
C. The magnitude of their accelerations will be equal
D. Their accelrations will be equal

## Answer: A

## - Watch Video Solution

363. A point charge is brought in an electric field. The electric field at a nearby point
(i) will increase if the charge is $+v e$
(ii) will decrease if the charge is -ve
(iii) may increase if the charge is $+v e$
(iv) may decrease if the charge is -ve
A. will increase if charge is positive
B. may increase if charge is positive
C. will increase if charge is negative
D. may increase if charge is negative

## Answer: B::D

## - Watch Video Solution

364. A uniformly charged solid shpere fo radius $R$ has potential $V_{0}$ (measured with respect to $\infty$ ) on its surface. For this sphere the equipotentail surfaces with potentials $\frac{3 V_{0}}{2}, \frac{5 V_{0}}{4}, \frac{3 V_{0}}{4}$ and $\frac{V_{0}}{4}$ have radius $R_{1}, R_{2}, R_{3}$ and $R_{4}$ respecatively. Then
A. $R_{1}=0$ and $R_{2}>\left(R_{4}-R_{3}\right)$
B. $R_{1} \neq 0$ and $R_{2}>\left(R_{4}-R_{3}\right)$
C. $R_{1}=0$ and $R_{2}<\left(R_{4}-R_{3}\right)$
D. $2 R<R_{4}$

## Answer: C::D

## - Watch Video Solution

365. A positively charged thin metal ring of radius $R$ is fixed in the xy plane with its centre at the origin O. A negatively charged particle $P$ is released from rest at the point $\left(0,0, z_{0}\right)$ where $z_{0}>0$. Then the motion of $P$ is
A. Periodic for all the values of $Z_{0}$, satisfying $0<Z_{0}<\infty$
B. Simple harmonic for all the values of $Z_{0}$, satisfying $0<Z_{0} \leq R$
C. appoximately simple harmonic provided $Z_{0} \ll R$
D. such that $P$ crosses $O$ and continues to move along the negative Z-axis towards $Z=-\infty$

## Answer: A::C

## D Watch Video Solution

366. A non-conducting solid sphere of radius $R$ is uniformly charged. The magnitude of the electric filed due to the sphere at a distance $r$ from its centre
A. increases as $r$ increases for $r<R$
B. decreases as $r$ increases for $0<r<\infty$
C. decreases as $r$ increases for $R<r<\infty$
D. is discontiues at $r=R$

## - Watch Video Solution

367. Which of the following quantites do not depend on the choice of zero potential or zero potential energy?
A. Potential at a point
B. Potential difference between two point
C. Change is potential energy of a system of two charges
D. Potential energy of a system of two charges

## Answer: B::C::D

## - Watch Video Solution

368. A charge $+q$ is fixed at each of the points $x=x_{0}, x=3 x_{0}$, $x=5 x_{0}, \ldots \ldots \ldots \ldots . . . . . x=\infty$ on the $x$ axis, and a charge $-q$ is fixed at each of
the points $x=2 x_{0}, x=4 x_{0}, x=6 x_{0}, \ldots . . . . . . . . x=\infty$. Here $x_{0}$ is a positive constant. Take the electric potential at a point due to a charge $Q$ at a distance $r$ from it to be $Q /\left(4 \pi \varepsilon_{0} r\right)$.Then, the potential at the origin due to the above system of
A. 0
B. $\infty$
C. $\frac{q}{4 \pi \in{ }_{0} x_{0} \in 2}$
D. $\frac{q I N 2}{4 \pi \in{ }_{0} x_{0} \in 2}$

## Answer: D

## - Watch Video Solution

369. A parallel plate air capacitor is connected to a battery. The quantities charge, voltage, electric field and energy associated with this capacitor are given by $Q_{0}, V_{0}, E_{0}$ and $U_{0}$ respectively. A
dielectric slab is now introduced to fill the space between the plates with battery still in connection. The corresponding quantities now given by $\mathrm{Q}, \mathrm{V}, \mathrm{E}$ and U are related to the previous one as
A. $Q>Q_{0}$
B. $V>V_{0}$
C. $E>E_{0}$
D. $U>U_{0}$

## Answer: A::D

## - Watch Video Solution

370. A parallel plate capacitor of plate area A and plate separation d is charged to potential difference V and then the battery is disconnected. A slab of dielectric constant K is then inserted
between the plates of the capacitor so as to fill the space between the plates. If $\mathrm{Q}, \mathrm{E}$ and W denote respectively, the magnitude of charge on each plate, the electric field between the plates (after the slab is inserted), and work done on the system, in question, in the process of inserting the slab, then
A. $Q=\frac{\in_{0} A V}{d}$
B. $Q=\frac{\in_{0} K A V}{d}$
C. $E=\frac{V}{K d}$
D. $W=\frac{\in_{0} A V^{2}}{2 d}\left(1-\frac{1}{K}\right)$

## Answer: A::C::D

## - Watch Video Solution

371. Which of the following statement(s) is/are correct?
A. If the electric field due to a point charge variesas $r^{-2.5}$ instead fo $r^{-2}$, then the Gauiss law will still be valid.
B. The Gauss law can be used to calculate the field distributed around on electric dipole.
C. If the electric field between two points charges is zero somewhere, then the sign of the two charges is not the same.
D. Work done in moving a unit positive charge by the external
force from point $A$ at potential $V_{A}$ to point $B$ at potential $V_{B}$
is $\left(V_{B}-V_{A}\right)$

## Answer: C::D

- Watch Video Solution

372. A parallel plate capacitor is charged and the charging battery is then disconnected. If the plates of the capacitor are moved farther apart by means of insulating handles:
A. the stored energy of the capacitor increases
B. charge on capacitor increases
C. voltage of the capacitor increasess
D. the capacitance increases

## Answer: A::C

## - Watch Video Solution

373. The region between two concentric spheres of radii 'a' and 'b', respectively (see figure), have volume charge density $\rho=\frac{A}{r}$, where
$A$ is a constant and $r$ is the distance from the centre. At the centre
of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is:

A. $\frac{Q}{2 \pi a^{2}}$
B. $\frac{Q}{}$
$2 \pi\left(b^{2}-a^{2}\right)$
C. $\quad 2 Q$
$\pi\left(a^{2}-b^{2}\right)$
D. $\frac{2 Q}{\pi a^{2}}$

## Answer: A

374. Let $E_{1}(r), E_{2}(r)$ and $E_{3}(r)$ be the respectively electric field at a distance $r$ from a point charge $Q$, an infinitely long wire with constant linear charge density $\lambda$, and an infinite plane with uniform surface charge density $\sigma$. If $E_{1}\left(r_{0}\right)=E_{2}\left(r_{0}\right)=E_{3}\left(r_{0}\right)$ at a given distance $r_{0}$, then
A. $Q=4 \sigma \pi r_{0}^{2}$
B. $r_{0}=\lambda / 2 \pi \sigma$
C. $E_{1}\left(r_{0} / 2\right)=2 E_{2} /\left(r_{0} / 2\right)$
D. $E_{2}\left(r_{0} / 2\right)=4 E_{0}\left(r_{0} / 2\right)$

## Answer: C

## - Watch Video Solution

375. Six point charges are kept at the vertices of a regular hexagon of side L and centre O , as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{L^{2}}$, which of the following statements(s) is (are) correct?

A. The electric field at $O$ is 6 K along $O D$
B. The potentail at $O$ is zero
C. The potentail at all points on the line $P R$ is same
D. The potential at all points on the line $S T$ is same
376. What is the potential at the centre of a square of each side 1.0 meter, when four charges
$+1 \times 10^{-8} \mathrm{C},-2 \times 10^{-8} \mathrm{C},+3 \times 10^{-8} \mathrm{C}$ and $+2 \times 10^{-8} \mathrm{C}$ are placed at the four corners of the square.
A. $5.09 \times 10^{2} V$
B. $5.09 \times 10^{3} V$
C. 5.09 V
D. $8.23 \times 10^{2} V$

## Answer: A

377. The capacity of a condenser increases both, when $a$ conducting slab or an insulating slab is introduced between the plates of the condenser. In the former case, electric field $E=0$ inside the conductor and in the latter case, $E<E_{0}$, inside the insulator. Thus, potentai difference $V=E \times d$ decreases and hence capacity $C=Q / V$ increases.

It should be clearly understood that when a dielectric slab is introduced inbetween the plates of a charged capacitor with battery connected across the plates,
(i) Capacity $C$ increases, (ii) Potential $V$ remains constant,

Charge $Q=C V$, increases, (iv) Electric field $E$ decreases,
(v) Energy stored $U=\frac{1}{2} C V^{2}$ increases.

However, when battery across the plates of charged capacitor is put off and dielectric slab is introduced inbetween th plates of the capacitor, (i) Capacity $C$ increases,
(ii) charge $Q$ remains constant,
(iii) Potential $V=\frac{Q}{C}$ decreases, (iv) Electric field. $E=V \times d$ decreases, (v) Energy stored $U=\frac{Q^{2}}{2 C}$ decreases.

Consider a parallel plate air capacitor with area of each plate $=150 \mathrm{~cm}^{2}$ and distance between its plates $=0.8 \mathrm{~mm}$. With the help of the passage given above, choose the most appropriate for each of the following questions:

Energy stored in the capacitor, when charged to a potential difference of 1200 V is
A. $1.2 \times 10^{-4} \mathrm{~J}$
B. $1.2 \times 10^{4} \mathrm{~J}$
C. $3.6 \times 10^{-4} \mathrm{~J}$
D. $3.6 \times 10^{4} \mathrm{~J}$

## Answer: A

378. The capacity of a condenser increases both, when a conducting slab or an insulating slab is introduced between the plates of the condenser. In the former case, electric field $E=0$ inside the conductor and in the latter case, $E<E_{0}$, inside the insulator. Thus, potentai difference $V=E \times d$ decreases and hence capacity $C=Q / V$ increases.

It should be clearly understood that when a dielectric slab is introduced inbetween the plates of a charged capacitor with battery connected across the plates,
(i) Capacity $C$ increases, (ii) Potential $V$ remains constant, (iii)

Charge $Q=C V$, increases, (iv) Electric field $E$ decreases,
(v) Energy stored $U=\frac{1}{2} C V^{2}$ increases.

However, when battery across the plates of charged capacitor is
put off and dielectric slab is introduced inbetween th plates of the capacitor, (i) Capacity $C$ increases,
(ii) charge $Q$ remains constant,
(iii) Potential $V=\frac{Q}{C}$ decreases, (iv) Electric field. $E=V \times d$
decreases, (v) Energy stored $U=\frac{Q^{2}}{2 C}$ decreases.
Consider a parallel plate air capacitor with area of each plate $=150 \mathrm{~cm}^{2}$ and distance between its plates $=0.8 \mathrm{~mm}$. With the help of the passage given above, choose the most appropriate for each of the following questions :

If the air capacitor is filled with a medium of $K=3$ and then charged to the same potentail, the energy stored will be
A. $1.2 \times 10^{-4} \mathrm{~J}$
B. $3.6 \times 10^{-4} \mathrm{~J}$
C. $3.6 \times 10^{4} J$
D. $1.2 \times 10^{4} J$

## Answer: B

379. The capacity of a condenser increases both, when a conducting slab or an insulating slab is introduced between the plates of the condenser. In the former case, electric field $E=0$ inside the conductor and in the latter case, $E<E_{0}$, inside the insulator. Thus, potentai difference $V=E \times d$ decreases and hence capacity $C=Q / V$ increases.

It should be clearly understood that when a dielectric slab is introduced inbetween the plates of a charged capacitor with battery connected across the plates,
(i) Capacity $C$ increases, (ii) Potential $V$ remains constant,

Charge $Q=C V$, increases, (iv) Electric field $E$ decreases,
(v) Energy stored $U=\frac{1}{2} C V^{2}$ increases.

However, when battery across the plates of charged capacitor is put off and dielectric slab is introduced inbetween th plates of the capacitor, (i) Capacity $C$ increases,
(ii) charge $Q$ remains constant,
(iii) Potential $V=\frac{Q}{C}$ decreases, (iv) Electric field. $E=V \times d$ decreases, (v) Energy stored $U=\frac{Q^{2}}{2 C}$ decreases.

Consider a parallel plate air capacitor with area of each plate $=150 \mathrm{~cm}^{2}$ and distance between its plates $=0.8 \mathrm{~mm}$. With the help of the passage given above, choose the most appropriate for each of the following questions:

If the capacitor is charged first as an air capacitor and then filled with this dielectric energy storred will be
A. $3.6 \times 10^{-4} J$
B. $1.2 \times 10^{-4} \mathrm{~J}$
C. $4 \times 10^{-5} J$
D. $4 \times 10^{5} J$

## Answer: C

380. The capacity of a condenser increases both, when a conducting slab or an insulating slab is introduced between the plates of the condenser. In the former case, electric field $E=0$ inside the conductor and in the latter case, $E<E_{0}$, inside the insulator. Thus, potentai difference $V=E \times d$ decreases and hence capacity $C=Q / V$ increases.

It should be clearly understood that when a dielectric slab is introduced inbetween the plates of a charged capacitor with battery connected across the plates,
(i) Capacity $C$ increases, (ii) Potential $V$ remains constant, (iii)

Charge $Q=C V$, increases, (iv) Electric field $E$ decreases,
(v) Energy stored $U=\frac{1}{2} C V^{2}$ increases.

However, when battery across the plates of charged capacitor is
put off and dielectric slab is introduced inbetween th plates of the capacitor, (i) Capacity $C$ increases,
(ii) charge $Q$ remains constant,
(iii) Potential $V=\frac{Q}{C}$ decreases, (iv) Electric field. $E=V \times d$
decreases, (v) Energy stored $U=\frac{Q^{2}}{2 C}$ decreases.
Consider a parallel plate air capacitor with area of each plate $=150 \mathrm{~cm}^{2}$ and distance between its plates $=0.8 \mathrm{~mm}$. With the help of the passage given above, choose the most appropriate for each of the following questions :

What will be the potential of the capacitor when filled with dielectric after charging as air capacitor ?
A. 1200 V
B. 400 V
C. 3600 V
D. 300 V

## Answer: B

381. The capacity of a condenser increases both, when a conducting slab or an insulating slab is introduced between the plates of the condenser. In the former case, electric field $E=0$ inside the conductor and in the latter case, $E<E_{0}$, inside the insulator. Thus, potentai difference $V=E \times d$ decreases and hence capacity $C=Q / V$ increases.

It should be clearly understood that when a dielectric slab is introduced inbetween the plates of a charged capacitor with battery connected across the plates,
(i) Capacity $C$ increases, (ii) Potential $V$ remains constant, (iii)

Charge $Q=C V$, increases, (iv) Electric field $E$ decreases,
(v) Energy stored $U=\frac{1}{2} C V^{2}$ increases.

However, when battery across the plates of charged capacitor is put off and dielectric slab is introduced inbetween th plates of the capacitor, (i) Capacity $C$ increases,
(ii) charge $Q$ remains constant,
(iii) Potential $V=\frac{Q}{C}$ decreases, (iv) Electric field. $E=V \times d$ decreases, (v) Energy stored $U=\frac{Q^{2}}{2 C}$ decreases.

Consider a parallel plate air capacitor with area of each plate $=150 \mathrm{~cm}^{2}$ and distance between its plates $=0.8 \mathrm{~mm}$. With the help of the passage given above, choose the most appropriate for each of the following questions:

The air capacitor is charged to 1200 V and then filled with dielectric of $K=3$. The charge on the plates will be
A. $1.66 \times 10^{2} C$
B. $1.66 \times 10^{-10} \mathrm{C}$
C. $1.99 \times 10^{7} C$
D. $1.99 \times 10^{-7} \mathrm{C}$

## Answer: D

382. An infinity long uniform line charge distribution of charge per
unit length $\lambda$ lies parallel to the $y$-axis in the $y-z$ plane at $z=\frac{\sqrt{3}}{2}$ a (see figure). If the magnitude of the flux of the electric field through the rectangular surface ABCD lying in the $x-y$ plane with its centre at the origin is $\frac{\lambda L}{n \varepsilon_{0}}$ ( $\varepsilon_{0}=$ permittivity of free space), then the value of n is


## - Watch Video Solution

383. Two metal spheres $A$ and $B$ of different sizes are charged such that the electric potential is the same at the surface of each. Sphere $A$ has a radius three times that of sphere $B$. If $E_{A}$ and $E_{B}$ be the electric field magnitudes at the surface of each sphere, then $E_{B} / E_{A}$ is

## - Watch Video Solution

384. Two charges of values $2 \mu C$ and $-50 \mu C$ are placed at a distance of 6 cm from each other. The distance of the point (in cm ) from the bigger charge where the electric intensity will be zero is :

## - Watch Video Solution

385. A point charge $q=1 C$ and mass 1 kg is projected with speed $10 \mathrm{~m} / \mathrm{s}$ in the perpendicular direction of unifrom electric field
$E=100 \mathrm{~V} / \mathrm{m}$. The value of latus rectum of the path followed by charged particle (in meter) is :

## (D) Watch Video Solution

386. An electric dipole consists of two opposite charges each of magnitude $1 \mu C$ separated by 2 cm . The dipole is placed in an external uniform field of $10^{5} \mathrm{NC}^{-1}$ intensity. Find the
a. maximum torque exterted by the field on the dipole, and
b. work done in rotating the dipole through $180^{\circ}$ starting from the position $\theta=0^{\circ}$.

## - Watch Video Solution

387. An infinitely long solid cylinder of radius $R$ has a uniform volume charge density $\rho$. It has a spherical cavity of radius $R / 2$ with its centre on the axis of cylinder, as shown in the figure. The
magnitude of the electric field at the point $P$, which is at a distance $2 R$ form the axis of the cylinder, is given by the expression $\frac{23 r R}{16 k e_{0}}$. The value of $k$ is.

388. Eight drops fo water each having a charge of $3 \times 10^{-9} \mathrm{C}$ having surface potential $2 V$ coalesce to from a single drop. What is the surface potentail (in volt) of new drop?

## - Watch Video Solution

389. The electric lines of force of two point charges are shown in fig. What is the value of the ratio $q_{1} / q_{2}$ ?

390. The variation of potential $V$ with distance $r$ from dixed point is shown in Fig. The magnitude of electric field at, $r=2 \mathrm{~cm}$ (in volt $/ \mathrm{cm}$ ) is :


## - Watch Video Solution

391. An electric field is described as $\vec{E}=\hat{i} x+\hat{k} z$.

The potential difference $V_{A B}$ (in volt) between $A(0,0,0)$ and $B(2,2,0)$ is :
392. Two balls with charges $5 \mu \mathrm{C}$ and 10 mC are at a distance of 90 m from each other. In order to reduce the distance between them to $45 m$, the amount of work to be performed in joule is :

## ( Watch Video Solution

393. Assertion. Delectric polaristion means formation of positive and negative charges inside the dielectric.

Reason. Free electrons are formed in this process.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: c

## ( Watch Video Solution

394. Assertion. When charges are shared between any two bodies, no charge is really lost but some loss of energy does occur.

Reason. Some energy disappears in the from of heat, sparking etc.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: a

## - Watch Video Solution

395. Assertion : Insulators do no allow flow of current through them.

Reason: Insulators have no free charge carrier
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## - Watch Video Solution

396. Assertion. During charging by rubbing, the insulating material with lower work function becomes positively charged.

Reason. Electrons are negatively charged.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: b

## D Watch Video Solution

397. Assertion. If a point charge $q$ is placed in front of an infinite grounded condcuting plane surface, the point charge will experience a force.

Reason. This force is due to the induced charge on the conducting surface which is at zero potential
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## D Watch Video Solution

398. Assertion: Electrons move away from a low potential to high potential region.

Reason: Because electrons have negative charges
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: a

399. Assertion. Work done in moving any charge through any distance on an equipotential surface is zero.

Reason. An equipotential surface is very smooth.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: c

## - Watch Video Solution

400. Assertion: Work done in moving a charge between any two points in a unifrom electric field is independent of the path followed by the charge, between these points.

Reason: Electrostatic forces are non-conservative.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: c

## - Watch Video Solution

401. Assertion. A metallic shield in the form of a hollow shell, can be built to block an electric field.

Reason. In a hollow spherical shell, the electric field inside is not zero at every point.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: c

## - Watch Video Solution

402. Assertion. Farad is too big a unit of capacity.

Reason. Capacity of earth-which is the largest sphere is in microfarad.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: a

403. Assertion. Capacity of a parllel plate condenser remains unaffected on introduced a conducting or insulating slab between the plates.

Reason. In both the cases, electric field intensity between the plates increases.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: d

404. Statement-1. Charge is quantized because only intergal number of electrons can be transferred.

Statement-2. There is no possibility of transfer of transfer of some fraction of electron.
A. Statement-1. is true, Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## - Watch Video Solution

405. Statement-1. Force between two charges increases, when air separating the charges is replaced by water.

Statement-2. Medium intervenning between the charges has dielectric constant $K>1$.
A. Statement-1. is true , Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: d

## - Watch Video Solution

406. Statement-1. Force between two charges is quadupled when distance between them is halved

Statement-2. $F=\frac{1}{r^{2}}$, as per coulomb's law.
A. Statement-1. is true , Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## - Watch Video Solution

407. Statement-1. The whole charge of a body can be transferred to another body.

Statement-2. Charge cannot be transferred partially.
A. Statement-1. is true, Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: c

## (D) Watch Video Solution

408. Statement-1. The number of electrons in one coulomb is $6.25 \times 10^{18}$.

Statement-2. $q=n e$, where symbols have their usual meaning.
A. Statement-1. is true , Statement-2 is true , Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

409. Statement-1. Units of electric dipole moment are $C-m$ and unints of torque are $N-m$

Statement-2. $p=q(2 a)$ and $\tau=$ force $\times$ distance
A. Statement-1. is true , Statement-2 is true , Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## (D) Watch Video Solution

410. Assertion. When charges are shared between any two bodies, no charge is really lost but some loss of energy does occur. Reason. Some energy disappears in the from of heat, sparking etc.
A. Statement-1. is true, Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## - Watch Video Solution

411. Statement-1. The number of electric lins of force emanting
from $1 \mu C$ charge in vacumm is $1.13 \times 10^{6}$.

Statement-2. This follows from Gauss's theorem in electrostatics.
A. Statement-1. is true , Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## - Watch Video Solution

412. Statement-1. In a series combination of capacitors, charge on each capacitor is same.

Statement-2. In such a combination, charge cannot move only along one route.
A. Statement-1. is true, Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## ( Watch Video Solution

413. Statement-1. For a charged particle moving from pont $P$ to point $Q$, the net work done by an electrostatic field on the particle is independent of the path connecting point $P$ to point $Q$

Statement-2. The net work done by a conservatie force on an object moving along a closed loop is zero.
A. Statement-1. is true , Statement-2 is true, Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: b

## - Watch Video Solution

414. STATEMENT-1: For practical purposes, the earth is used as a reference at zero potencial in electrical circuits. and

STATEMENT-2: The electrical potential of a sphere of radius R with charge $Q$ uniformly distributed on the surface is given by $\frac{Q}{4 \pi \varepsilon_{0} R}$.
A. Statement-1. is true , Statement-2 is true , Statement-2 is correct explanation of Statement-1.
B. Statement-1. is true, Statement-2 is true, Statement-2 is not a correct explanation of Statement-1.
C. Statement-1. is correct and Statement-2 is false.
D. Statement-1. is false and Statement -2 is true.

## Answer: a

## - Watch Video Solution

1. Lightning is a common example of .........

## - Watch Video Solution

2. Like charge ........... each other and unlike charges ......... eachother.

## - Watch Video Solution

3. The cause of charging is $\qquad$ of electrons from To ...... .

## - Watch Video Solution

4. Electrons are transferred from the material whose ....... Is ...... to

## - Watch Video Solution

5. Charges can be created or destroyed in ........ and ........... Pairs only.

## - Watch Video Solution

6. Electric field intensity at any point is the ....... Experienced by
placed at that point.

## (D) Watch Video Solution

7. Electric field due to a single charge is

- Watch Video Solution

8. Electric potential due to a single charge is $\qquad$

## - Watch Video Solution

## PROBLEMS FOR PRACTICE

1. Four equal charges each $16 \mu \mathrm{C}$ are placed on four corners of a square of side 0.4 m . Calculate force on q is zero, how are Q and q related?

## - Watch Video Solution

2. Two identical helium filled ballons $A$ and $B$ fastended to a weight of 5 gram by threads float in equilibrium as shown in fig. Calculate the charge on each ballon, assuming that they carry equal
charges.


## - View Text Solution

3. Two charges, each of $5 \mu C$ but opposite in sign, are placed 4 cm apart. Calculate the electric field intensity of a point that is a distance 4 cm from the mid point on the axial line of the dipole.
4. Two small sphres of radius 'a' each carryig charges $+q$ and $-q$ and placed at points A and B, distance 'd' apart. Calculate the potential difference point $A$ and $B$.

## - Watch Video Solution

5. A spark passes in air when the potential gradient at the surface of charged conductor is $4 \times 10^{6} \mathrm{Vm}^{-1}$. What must be the radius of an insulated metal sphere which can be charged to a potential of $4 \times 10^{6} V$ before sparking into air ?

## - Watch Video Solution

6. A charge of $2 \times 10^{-9} \mathrm{C}$ is placed on a corner of a cube of side 1 m .

Find the electric flux passing throguh a face of the given cube?

## - Watch Video Solution

7. In the circuit shown in Fig, the enf of each battery is $E=12$ votl and the capacitances are $C_{1}=2.0 \mu F$ and $C_{2}=3.0 \mu F$. Find the charges which flow along the paths $1,2,3$ when $K$ is pressed.

8. In the circuit shown in fig, the energy stored in both capacitors is $U_{1}$. If swich $S$ is opened and a dielectric slab of constant 5 is put in free spaces of the capacitors, the energy stored is found to be $U_{2}$. Calcualte ${ }^{\mathrm{U}}$ _(1)//U_(2).


## - View Text Solution

## MULTIPLE CHOICE QUESTIONS

1. When a plastic comb is passed through dry hair, the charge acquired by the comb is
A. always negative
B. always positive
C. sometimes negative
D. none of the above

## Answer: a

## - Watch Video Solution

2. Out of glass (rod) and silk (cloth), work function of glass is
A. smaller
B. larger
C. equal
D. none of the above

## Answer: a

## - Watch Video Solution

3. At a particular point, electric field depends upon
A. source charge Q only
B. test charge $q_{0}$ only
C. both $Q$ and $q_{0}$
D. neither $Q$ nor $q_{0}$

## Answer: a

4. When two capacitors charged to different potentials are connected by a conducting wire, what is not true ?
A. charge lost by one is equal to charge gained by the other
B. potentail lost by one is equal to potentail gained by the other
C. some energy is lost
D. both the capacitor acquire a common potential

## Answer: B

## - Watch Video Solution

5. In polar molecules, the centres of positive and negative charges of the molecule do not coincide. The statement is always
A. 1
B.
C. NA
D. NA

## Answer: A

## - View Text Solution

## COMPREHENSION

1. We may define electrostatic potential at a point in an electrostatic field as the amount of work done in moving a unit positive test charge from infinity to that point against the electrostatic forces, along any path. Due to a single charge $q$, potential at a point distant $r$ from the charge is $V=\frac{q}{4 \pi \in_{0} r}$. The
potential can be positive or negative. However, it is scalar quantity. The total amount of work done in bringing various charges to their respective postions from infinelty large mutual separations gives us the electric potential energy of the system of charges. Whereas electric potentail is measured in volt, electric potential energy is measured in joule. You are given a square of each side 1.0 metre with four charges $+1 \times 10^{-8} \mathrm{C},-2 \times 10^{-8} \mathrm{C},+3 \times 10^{-8} \mathrm{C}$ and $+2 \times 10^{-8} \mathrm{C}$ placed at the four corners of the square. With the help of the passage given above, choose the most approprite alternative for each of the following questions :

Electric potentail and electric potential energy
A. both are scalars
B. both are vectors
C. electric potential is scalar and electric potential energy is
D. electric potentail is vector and electric potential energy is scalar.

## Answer: A

## - Watch Video Solution

2. We may define electrostatic potential at a point in an electrostatic field as the amount of work done in moving a unit positive test charge from infinity to that point against the electrostatic forces, along any path. Due to a single charge $q$, potential at a point distant $r$ from the charge is $V=\frac{q}{4 \pi \in_{0} r}$. The potential can be positive or negative. However, it is scalar quantity. The total amount of work done in bringing various charges to their respective postions from infinelty large mutual separations gives us the electric potential energy of the system of charges. Whereas electric potentail is measured in volt, electric potential
energy is measured in joule. You are given a square of each side 1.0 metre with four charges $+1 \times 10^{-8} \mathrm{C},-2 \times 10^{-8} \mathrm{C},+3 \times 10^{-8} \mathrm{C}$ and $+2 \times 10^{-8} \mathrm{C}$ placed at the four corners of the square. With the help of the passage given above, choose the most approprite alternative for each of the following questions :

Potential energy fo the system of four system of four charges is
A. $12.73 \times 10^{7} \mathrm{~J}$
B. $-6.4 \times 10^{7} J$
C. $12.73 \times 10^{-9} \mathrm{~J}$
D. $-12.73 \times 10^{-9} \mathrm{~J}$

## Answer: B

1. Assertion. A sphrical equipotential surface is not possible for a point charge.

Reason. A spherical equipotential surface is possible inside a spherical capacitor.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: d

## D View Text Solution

2. Assertion (A) A charge $q$ is placed on a height $h / 4$ above the centre of a square of side $b$. The fluk associated with the square is independent of side length.

Reason (R) Gauss 's law is independent of size of the Gaussian surface.
A. both, Assertion and Reason are true and the Reason is correct explanation of the Assertion.
B. both, Assertion and Reason are true, but Reason is not the correct explanation of the Asserrtion.
C. Assertion is true, but the Reason is false.
D. both, Assertion and Reason are false.

## Answer: a

