©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS

(HINGLISH)

FORCES AND LAWS OF MOTION

Solved Problems

1. What is acceleration produced by a force of

12 newton excerted on an object of mass 3 kg ?
2. What force would be needed to produce an acceleration of $4 \mathrm{~m} / \mathrm{s}^{2}$ on a ball of mass 6 kg

- Watch Video Solution

3. A force of $5 N$ gives a mass m_{1}, an acceleration of m / s^{2}, and a mass m_{2}, an acceleration of $24 m / s^{2}$. What acceleration
would it give if both the masses are tied together?
A. $5 \mathrm{~m} / \mathrm{s} 2$
B. $10 \mathrm{~m} / \mathrm{s} 2$
C. $6 \mathrm{~m} / \mathrm{s} 2$
D. NOne

Answer: C

D Watch Video Solution
4. A motorcycle is moving with a velocity of $90 \mathrm{~km} / \mathrm{h}$ and it takes 5 sec ond to stop after the brakers are applied. Calculate the force exerted by the brakers on the motorcycle if its mass alongwith the rider is 200 kg
A. -100 N
B. 500 N
C. 200 N
D. -1000 N

Answer: D

- Watch Video Solution

5. The speed- time graph of a car is given in
(figure) The car weights 1000 kg
(a) What is the distance travelled by the car in first two seconds?
(b) What is the braking force applied at the end of 5 sec onds to bring the car to a stop
within one second?

D Watch Video Solution
6. Calculate the force required to impact a car a velocity of $30 \mathrm{~m} / \mathrm{s}$, in 10 seconds. The mass of the car is 1500 kg
A. 5000 N
B. 7500 N
C. 4500 N
D. NONE

Answer: C

D Watch Video Solution
7. When two bodies A and B interact with each other, A exerts a force of $10 N$ on B,
towards east. What is the force exerted by B
on A ?

D Watch Video Solution
8. A $10 g$ bullet is short from a 5 kg gun with a velocity of $400 \mathrm{~m} / \mathrm{s}$. What is the speed of recoil of the gun?
A. $-0.8 \mathrm{~m} / \mathrm{s}$
B. $80 \mathrm{~m} / \mathrm{s}$
C. $0.4 \mathrm{~m} / \mathrm{s}$

D. $20 \mathrm{~m} / \mathrm{s}$

Answer: A

- Watch Video Solution

9. A man weighing 60 kg runs along the rails
with a velocity of $8 \mathrm{~km} / \mathrm{h}$ and jumps into a car of mass 1 quintal standing on the rails.

Calculaate the velocity with which car will start travelling along the rails.
10. A man weighing 60 kg runs along the rails with a velocity of $8 \mathrm{~km} / \mathrm{h}$ and jumps into a car of mass 1 quintal standing on the rails.

Calculaate the velocity with which car will start travelling along the rails.

D Watch Video Solution

11. The car A of mass 1500 kg , travelling at
$25 m / s$ collides with another car B of mass
1000 kg travelling at $15 \mathrm{~m} / \mathrm{s}$ in the same
direction. After collision, the velocity of car A
becomes $20 \mathrm{~m} / \mathrm{s}$. Calcualte the velocity of car B afrer collison.

D Watch Video Solution

Ncert Questions

1. Which of the following has more interia: (a)
a rubber ball and a stone of the same size?
a bicycle and a train (c) a five-repees coin and a one-rupee coin?

- Watch Video Solution

2. In the following example,try to identify the number of times the velocity of the ball changes:
"A football player kicks a football to another player of his team who kicks the football towards the goal. The goalkeeper of the opposite team collects the football and kicks it towards a player of his own team"?

Also identify the agent supplying the force in each case.

- Watch Video Solution

3. Explain why some of the leaves may get detached from a tree if we vigorously shake its branch.

- Watch Video Solution

4. Why do you fall in the forward direction
when a moving bus brakes to a stop and fall backwards when it accelerates from rest?

Watch Video Solution

5. If action is always equal to the reaction, explain how a horse can pull a cart.

- Watch Video Solution

6. Explain, why is it difficult for a fireman to hold a hose, which ejects large amount of water at a high velocity?

- Watch Video Solution

7. From a rifle of mass 4 kg , a bullet of mass

50 kg is fired with an initial velocity of $35 \mathrm{~m} / \mathrm{s}$.
Calculate the initial recoil velocity of the rifle.

- Watch Video Solution

8. Two objects of masses 100 g and 200 g are moving along the same line in the same line in
the same direction with velocities of $2 \mathrm{~m} / \mathrm{s}$ and $1 \mathrm{~m} / \mathrm{s}$, respectively. They collide and after
the collison, the first object moves at a velocity
of $1.67 \mathrm{~m} / \mathrm{s}$ in the same direction. Determine the velocity of the second object.

D Watch Video Solution

9. An object experiences a net zero external unbalanced force. Is it possible for the object to be travelling with a non-zero velocity? If yes,
state the conditions that must be placed on the magnitude and direction of the velocity. If no, provide a reason.
10. When a carpet is beaten with a stick, dust comes out of it, Explain.

D Watch Video Solution

11. Why is it advised to tie any luggage kept on
the roof of a bus with a rope?

- Watch Video Solution

12. A batsman hits a cricket ball which then rolls on a level ground. After covering a short distance, the ball comes to rest. The ball slows to a stop because (a) the batsman did not hit the ball hard enough, (b) velocity is proportional to the force exerted on the ball, (c) there is a force on the ball opposing the motion ,(d) there is no unbalanced forcr on the ball, so the ball would want to come to rest.
13. A truck starts from rest and rolls down a
hill with a constant acceleration. It travels a distance of 400 m in 20 s . Find its acceleration.

Find the force acting on it if its mass is 7 metric tonnes (Hint. 1 metric tonne=1000kg)

D Watch Video Solution

14. A stone of 1 kg is thrown with a velocity of $20 \mathrm{~ms}^{-1}$ across the frozen surface of lake and comes to rest after travelling a distance of

50 m . What is the force of friction between the stone and the ice?

D Watch Video Solution

15. A 8000 kg engine pulls a train of 5 wagons, each of 2000 kg , along a horizontal track. If the engine exerts a force of 40000 N and the track offers a frictional force of $5000 N$, then calculate:
(a) the net accelerating force, (b) the
acceleration of the train, and
(c) the force of wagon 1 on wagon 2.
A. ${ }^{`} 50000 \mathrm{~N}, 2.0 \mathrm{~m} / \mathrm{s} 2,15000 \mathrm{~N}$
B. $35000 \mathrm{~N}, 1.94 \mathrm{~m} / \mathrm{s}^{\wedge} 2,15520 \mathrm{~N}$
C. $50000 \mathrm{~N}, 2.5 \mathrm{~m} / \mathrm{s}^{\wedge} 2,9000 \mathrm{~N}$
D. NONE

Answer: B

D Watch Video Solution

16. An automobile vehcile has a mass of 1500 kg What must be the force between the vehcile and road if the vehcile is to be stopped with a negative acceleration of $1.7 \mathrm{~m} / \mathrm{s}^{2}$?

D Watch Video Solution

17. What is the momentum of an object of mass m, moving with a velocity v ?
A. $(m v)^{2}$
B. $m v^{2}$
C. $1 / 2 m v^{2}$
D. $m v$

Answer: D

- Watch Video Solution

18. Using a horizontal force $200 N$, we intend to move a wooden cabinet across a floor at constant velocity. What is the frictional force that will be exerted on the cabinet?
19. Two object, each of mass 1.5 kg , are moving
in the same straight line but in opposite directions, The velocity of each object is
$2.5 m s^{-1}$ before the collision during which they stick together. What will be the velocity of the combined object after collision?

D Watch Video Solution

20. According to the third law of motion, when we push on an object, the object pushes back on us with an equal and opposite force. If the object is a massive truck parked along the roadside, it will probably not move. A student justifies this by answering that the two opposite and equal forces cancel each other.

Comment on this logic and explain why the truck does not move.
21. A hockey ball of mass 200 g travelling at
$10 \mathrm{~m} / \mathrm{s}$ is struck by a hockey stick so as to return it along its original path with a velocity of $5 \mathrm{~m} / \mathrm{s}$. Calculate the change in momentum of the hockey ball by the force applied by the hockey stick.

D Watch Video Solution

22. A bullet of mass $10 g$ travelling horizontally
with a velocity of $150 \mathrm{~ms}^{-1}$ strikes a stationary
wooden block and come to rest in 0.03 s .

Calculate the distance of penetration of the bullet into the block. Also, Calculate the magnitude of the force exerted by the wooden block on the bullet,

- Watch Video Solution

23. An object of mass 1 kg travelling in a straight line with a velocity of $10 \mathrm{~m} / \mathrm{s}$ collides with, and sticks to, a stationary wooden block of mass 5 kg . Then, they both move off together in the same straight line. Calculate
the total momentum just before the impact and just after the impact. Also, calculate the velocity of the combined object.

D Watch Video Solution

24. An object of mass 100 kg is accelerated uniformly from a velocity of $5 m / s$ to $8 m / s$ in
$6 s$. Calculate the initial and final momentum of the object. Also, find the magnitude of the exerted on the object.
25. Akhtar, Kiran and Rahul were riding in a motorcar that was a high velocity on an expressway when an insect hit the windshield and got stuck on the windscreen. Akhtar and

Kiran started pondering over the situation.

Kiran suggested that the insect suffered a greater change in momentum as compared to
the change in momentum of the motorcar
(because the change in the velocity of the insect was much more than that of the motorcar). Akhtar said that since the motorcar
was moving with a larger velocity, it exerted a
larger force on the insect. And as a result, the insect died. Rahul while putting an entirely new explanation said that both the motorcar and the insect experienced the same force and
a change in their momentum. Comment on these suggestions.

- Watch Video Solution

26. How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls a
height of 80 cm ? Take its downward acceleration to be $10 \mathrm{~m} / \mathrm{s}^{2}$.

D Watch Video Solution

27. Two persons manage to push a motorcar of mass 1200 kg at a uniform velocity along a level
road. The same motorcar can be pushed by three persons to produce an acceleration of
$0.2 \mathrm{~m} / \mathrm{s}^{2}$. With what force does each person push the motorcar? (Assume that all persons
push the motorcar with the same muscular effort).

D Watch Video Solution

28. A hammer of mass 500 g , moving at $50 \mathrm{~m} / \mathrm{s}$, strikes a nail. The nail stops the hammer in a very short time of 0.01 s . What is the force of the nail on the hammer?

D Watch Video Solution

29. A motorcar of mass 1200 kg is moving along a straight line with a uniform velocity of $90 \mathrm{~km} / \mathrm{h}$. Its velocity is slowed down to $18 \mathrm{~km} / \mathrm{h}$ in $4 s$ by an unbalanced external force. Calculate the acceleration and change in momentum. Also, calculate the magnitude of the force required.

D Watch Video Solution

30. A car and a truck moving with the same velocity in opposite directions collide and collision lasts for $2 s$.
(i) Which vehicle experiences the greater force of impact?
(ii) Which vehicle has the smaller change in momentum?
(iii) Which one undergoes greater acceleration?
(iv) Which one is pushed farther?
(v) Which one is likely to suffer more damage?

Short Answer Questions

1. There are three solids made up of aluminum,
steel and wood, of the same shape and same
volume. Which of them would have highest
inertia?

- Watch Video Solution

2. Two balls of the same size but different matetials, rubber and iron are kept on the smooth floor of a moving train. The brakers are applied suddenly to stop the train. Will the balls start rolling? If so, in which direction?

Will they move with the same speed? Give reasons for your answers.

- Watch Video Solution

3. Two identical bullets are fired one by a light rifle and another by a heavy rifle with the same
force. Which rifle will hurt the shoulder and why?

- Watch Video Solution

4. A horse continues to apply a force in order to move a cart with a constant speed. Explain why?
5. Suppose a ball of mass m is thrown vertically upward with an initial speed v, its speed decreases continuously till it becomes
zero. Thereafter, the ball beigns to fall downward and attains the speed v again before striking the ground. It implies that the magnitude of initial and final momentums of the ball are same. Yet, it is not an example of conservation of momentum. Explain why?

- Watch Video Solution

6. Velocity versus time graph of a ball of mass

50 g rolling on a concrete floor shown in (figure) Calcualte the acceleration and frictional force of the floor on the ball.

7. A truck of mass M is moved under a force F.

If the truck is then loaded with an object equal
to the mass of the truck and the driving force is halved, then how does the acceleration change?

- Watch Video Solution

8. Two friends on roller-skates are standing $5 m$
apart facing eachother. One of them throws a ball of 2 kg towards the other, who catches it.

How will this activity affect the position of the two? Explain your answer.

D Watch Video Solution

9. Water sprinkler used for grass lawns beigns to rotate as soon as the water is supplied.

Explain the principle on which it works.

D Watch Video Solution
10. Define force.

- Watch Video Solution

11. Name the various effects of force.

D Watch Video Solution

12. Name the three types of inertia.

- Watch Video Solution

13. A person in a bus tends to fall backward, when it starts suddenly?

- Watch Video Solution

14. Why does a person in a bus tends to fall forward when it stops suddenly?

- Watch Video Solution

15. What happens to a person travelling in a bus when the bus takes a sharp turn? Give reason.

D Watch Video Solution

16. Define momentum of a body.

- Watch Video Solution

17. It is easier to stop a tennis balll than a cricket ball moving with the same speed. Why?

- Watch Video Solution

18. Why are road accidents at high speeds very much worse than accidents at low speeds?
19. Calculate momentum of a toy car of mass 300 g moving with a speed of $18 \mathrm{~km} / \mathrm{h}$.

D Watch Video Solution
20. A body of mass 30 kg has a momentum of
$150 \mathrm{kgm} / \mathrm{s}$. What is the velocity?

D Watch Video Solution
21. A ball is thrown vertically upwards. What is
its momentum at the highest point?

D Watch Video Solution
22. What is one Newton force?

- Watch Video Solution

23. What acceleration is produced by a force of
$5 N$ acting on a body of mass 20 kg ?

- Watch Video Solution

24. An unloaded truck weighing 2000 kg has a maximum acceleration of $0.4 \mathrm{~m} / \mathrm{s}^{2}$. What is
the maximum acceleration, when it carries a load of 2000 kg ?

- Watch Video Solution

25. Why is it difficult to walk on a slippery road?
26. Why does a gunman get a jerk on a firing a bullet?

- Watch Video Solution

27. State the law of conservation of liner momentum.

- Watch Video Solution

28. Name any two applications of the law of conservation of liner momentum.

- Watch Video Solution

29. It is easier to push an empty box than to
push the box full of books.Why?

D Watch Video Solution

30. When a car rounds a curve suddenly, the person inside is pushed outwards.Why?
31. A bullet thrown with a hand can be stopped eaisly, but it may kill a person when fired from a gun. Why?

- Watch Video Solution

32. Show that $k g-m s^{-1}$ and $N-s$ represent the same quantity. Which is that quantity?

Watch Video Solution

33. No force is required to move a body uniformly along a straight line. Comment.

- Watch Video Solution

34. A feather of mass $5 g$ is dropped from a height. It is observed to fall down with a constant velocity. What is the net force acting on it?
35. What is force ? What is inertia ? How is inertia measured?

D Watch Video Solution

36. Explain what is meant by momentum of a body. Is it a scalar or a vector? What are its units?

D Watch Video Solution
37. Derive the relation $F=m a$, where the symbols have their usual meanings.

D Watch Video Solution

38. Discuss briefly Gelileo's ideas about motion.

D Watch Video Solution

39. State Newton's third law of motion and principle of conservation of momentum.

- Watch Video Solution

40. Eastablish relation between inertia and mass.

- Watch Video Solution

41. Explain the use of seat belts of cars.
42. Explain why a player lowers his hands while catching a cricket ball.

D Watch Video Solution
43. Why does a gun recoil on firing? Obtain an expression for recoil velocity of gun.

D Watch Video Solution

44. A car weigh 1500 kg . Its speed time graph is
shown in (figure). Calculate the force required
at the end of 5 sec onds to bring the car to a stop within one second.

D Watch Video Solution

Long Answer Questions

1. Using second law of motion, derive the relation between force and acceleration. A
bullet of $10 g$ strikes a sand-bag at a speed of
$10^{3} \mathrm{~ms}^{-1}$ and gets embedded after travelling
5cm.Calculate
(i) the resistive force exerted by the sand on the bullet (ii) the time taken by the bullet to come to rest.

- Watch Video Solution

2. Derive the unit of force using the second
law of motion. A force of $5 N$ produces an acceleration of $8 \mathrm{~ms}^{-2}$ on a mass m_{1} and an
acceleration of $24 m s^{-2}$ on a mass m_{2}. What acceleration would the same force provide if both the masses are tied together?

D Watch Video Solution

3. What is momentum? Write its $S I$ unit.

Interpret force in term of momentum.
Represent of the following graphically
(a) momentum versus velocity when mass is
fixed.
(b) momentum versus mass when velocity is constant.

- Watch Video Solution

4. State 'Newton's three law of motion.

- Watch Video Solution

5. state Newton's first law of motion. Hence define forece and inertia.
6. State and Explain Newton s second law of motion Hence, Deduce the relation $F=m a$ Where the symbols have their usual meaning .

D Watch Video Solution

7. Give atleast four applications of Newton's second law of motion.
8. State and explain Newton's third law of motion. How will you prove it experimentally?

- Watch Video Solution

9. State and prove the principle of conservation of linear momentum Show that a gun recoils when a bullet is fired from it

D Watch Video Solution

10. Explain briefly any three applications of Newton's third law of motion.

D Watch Video Solution

Very Short Answer Questions

1. What is the SI unit of force?

2. Is force a scalar or Vector?

D Watch Video Solution

3. What are balanced forces?

D Watch Video Solution
4. Can balanced forces move a body at rest?

5. Can balanced forces stop a mooving body?

D Watch Video Solution

6. Can balanced forces change the shape and size of a body?

- Watch Video Solution

7. What are unbalanced forces?
8. When we talk of force acting on a body, do we mean unbalanced force or balanced force?

D Watch Video Solution

9. Name the unbalanced force that stops a ball rolling on the ground.

D Watch Video Solution
10. A rubber ball is pressed. Which force: balanced or unbalanced, is applied?

D Watch Video Solution

11. Name the property of bodies due to which
they resist change in their state of rest or state of uniform motion along a straight line.

D Watch Video Solution

12. On what factor does inertia of a body depend?

D Watch Video Solution
13. The masses of two objects are $2 k g$ and

20 kg . Which has greater inertia?

- Watch Video Solution

14. What is the other name for Newton's first law of motion?

D Watch Video Solution
15. When a branch of a tree is shaken, some of the fruits may fall down. Why?

D Watch Video Solution

16. What is the SI unit of displacement ?

- Watch Video Solution

17. Is momentum is scalar or vector?

D Watch Video Solution

18. What is the total momentum of the bullet and the gun before firing?

D Watch Video Solution
19. What is the total momentum of the bullet and the gun on firing?

- Watch Video Solution

20. Name the physical quantity whose unit is
$k g m s^{-1}$.

- Watch Video Solution

21. Which physical quantity corresponds to rate of change of momentum?

D Watch Video Solution

22. Mass of a body is doubled. What happens
to its acceleration under a given force?

- Watch Video Solution

23. Are action-reaction forces simultaneous?

- Watch Video Solution

24. How are action-reaction forces related in magnitude and direction?

D Watch Video Solution

25. Do action reaction forces act on the same body?
26. Do action-reaction forces produce the same magnitude of acceleration?

- Watch Video Solution

27. In collision between a heavier body and a
lighter body, which body experiences greater force?

- Watch Video Solution

28. In the above question, which body undergoes greater change in momentum?

D Watch Video Solution

29. In the above question, which body is damaged more?

D Watch Video Solution

1. When a ball is thrown upwards, its momentum first decreases and then increases.

Is conservation of linear momentum violated in this process?

D Watch Video Solution

2. A ball of mass 0.5 kg moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ rebounds after striking normally a perfectly elastic wall. Find the change in momentum of the ball. If contact time with the wall is $0.1 s$, what force is exerted by wall?
3. A force of $5 N$ changes the velocity of a body from $10 \mathrm{~ms}^{-1}$ to $20 \mathrm{~ms}^{-1}$ in 5 sec . How much force is required to bring about the same change in 2 sec ?

- Watch Video Solution

4. A rocket can move in air free space, but a jet plane cannot. Why?
5. Three identical blocks, each having a mass
M, are pushed by a force F on a frictionless table as shown in (figure) What is the acceleration of the blocks? What is net force on block A ? What force does A apply on B ?

What force does B apply on C ? show action
reaction pairs on the contact surface of the blocks.
6. A hunter has a machine gun that can fire 50 g bullet with a velocity of $150 \mathrm{~m} / \mathrm{s}$. A 60 kg tiger springs at him with a velocity of $10 \mathrm{~m} / \mathrm{s}$.

How many bullets must the hunter fire per second into the tiger in order to stop him in the track?

- Watch Video Solution

Value Based Questions

1. Honey and Sunny are two friends. Both are
financially well off. Honey is fond of driving an

SUV while Sunny enjoys driving Tata

Nano.Honey explains to Sunny the risks of driving a light vehicle and Sunny explains to

Honey the cost factor.

Read the above passage and answer the following questions:
(i) With whom do you agree, with Honey or with Sunny?
(ii) Explain why?
(iii) Which values of life do you learn from this discussion?

D Watch Video Solution

2. A body at rest continues to be at rest underless some external force force is applied to move it. Rather, the body at rest opposes
the force that tends to move it. Left to itself,
the body at rest, will never start moving. This
is well known property of inertia of rest of bodies, we study in Physics. ItRead carefully
the above passage and answer the following questions:
(i) When a bus start moving suddenly, the passengers tend to fall backward. Why?
(ii) Give one more example of inertia of rest.
(iii) What values do you inculcate in life from this study?

D Watch Video Solution

3. Impulse of a force measures the effect of the force. It is the product of force (F) and
time (t) for which the force acts.

Mathematically, impulse $=F \times t$. It is equal to change in linear momentum of the body.

For a given change in linear momentum, $F \times t=$ cons $\tan t$. If t increases, F decreases
and vice-versa. For example, a player lowers his
hands while catching a cricket ball. This would be increase t the time of catch. Therefore, F
would reduce, i.e., his hands will not get hurt badly.

Read the above passage and answer the following questions:
(i)Why is crockery wrapped in straw or papers

etc.?

(ii) Why are vehicles like scooter, car, bus, trucks provided with shockers?
(iii)What message does this paragraph give you for your day to day life?

D Watch Video Solution

4. The driver of a car travelling with velocity v on a road suddenly sees a broad wall in front of him at a distance r. He has two alternatives:
to turn sharply or a brake instantly. The
passenger who is a professor of physics, advises him to brake to avoid collision.

Read the above passage and answer the following questions:
(i) How is the suggestion from Professor of Physics justified?
(ii)Does the suggestion work really?
(iii)What value do you learn from this experience?

D Watch Video Solution

1. what is the momentum of a man of mass

75 kg when he walks with a velocity of $2 \mathrm{~m} / \mathrm{s}$?

D Watch Video Solution

2. What would be the force required to produce an acceleration of $2 m / s^{2}$ in a body of mass 12 kg ? What would be the acceleration if the force were doubled?

D Watch Video Solution

3. A man pushes a box of mass 50 kg with a
force of $80 N$. What will be the acceleration of the box? What would be the acceleration if the mass were halved?

D Watch Video Solution

4. A certain force exerted for $1.2 s$ raises the speed of an object from $1.8 m / s$ to $4.2 m / s$. Later, the same force is applied for $2 \mathrm{sec} o n d s$.

How much does the speed change in $2 s$?
5. A constant force acts on object of mass 5 kg for a duration of 2 s It increases the object's velocity from $3 m / s$ to $7 m / s$ Find the magnitude of the applied force. Now if the
force were applied for a duration of $5 s$ what would be the final velocity of object?

- Watch Video Solution

6. Which would requires a greater force:
accelerating a $2 k g$ mass at $5 \mathrm{~m} / \mathrm{s}^{2}$ or a $4 k g$ mass at $2 m / s^{2}$?

D Watch Video Solution

7. A motor car is moving with a velocity of
$108 \mathrm{~km} / \mathrm{h}$ and it takes 4 sec ond to stop after
the brakes are applied. Calculate the force exerted by the brakes on the motorcar if its mass along with the passenger is 1000 kg .
8. A force of $5 N$ gives a mass m_{1}, an acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$, and a mass m_{2}, an acceleration of $20 \mathrm{~m} / \mathrm{s}^{2}$. What acceleration would it give if both the masses were tied together?

D Watch Video Solution

9. The velocity time graph of a ball of mass $20 g$ moving along a straight line on a long table is
given in (figure) How much force does the table exert on the ball to bring it to rest?

- Watch Video Solution

10. For how long should a force of $100 N$ act on a body of mass 20 kg so that it aquires a velocity of $100 \mathrm{~m} / \mathrm{s}$?

- Watch Video Solution

11. A 150 g ball travelling at $30 \mathrm{~m} / \mathrm{s}$ strikes the plam of a player's hand and is stopped in 0.06 sec . Calculate the force exerted by the ball on the hand.

- Watch Video Solution

12. A body of mass 1 kg is kept at rest. A constant force of 6.0 N starts acting on it. Find
the time taken by the body to move through a distance of $12 m$.

D Watch Video Solution

13. A force of $4 N$ acts on a body of mass $2 k g$
for $4 s$. Assuming the body to be initially at rest, find (a) its velocity when the force stops acting (b) the distance covered in $10 s$ after the force starts acting.

D Watch Video Solution

14. A feather of mass $5 g$ is dropped from a height. It is observed to fall down with a constant velocity. What is the net force acting on it?

D Watch Video Solution

15. A bullet of mass $50 g$ is fired from a gun of mass 6 kg with a velocity of $400 \mathrm{~m} / \mathrm{s}$. Calculate the recoil velocity of the gun.
16. A machine gun fires $25 g$ bullet at the rate of 600 bullets per minutes with a speed of $200 \mathrm{~m} / \mathrm{s}$. Calculate the force required to keep the gun in position.

- Watch Video Solution

17. A boy pushes a wall with a force of $20 N$.

What is the magnitude and direction of the force experienced by the boy?
18. A bullet of mass 20 gram moving with a velocity of $300 \mathrm{~m} / \mathrm{s}$ gets embedded in a freely suspened wooden block of mass 880 gram . What is the velocity acquired by the blocks?

D Watch Video Solution

19. A girl of mass 50 kg jumps out of a rowing boat of mass 300 kg on to the bank, with a horizontal velocity of $3 \mathrm{~m} / \mathrm{s}$. With what velocity does the boat begin to move backwards ?

- Watch Video Solution

20. A truck of mass 2500 kg moving at $15 \mathrm{~m} / \mathrm{s}$ collides with a car of mass 1000 kg moving at
$5 \mathrm{~m} / \mathrm{s}$ in the opposite direction. With what velocity would the two move together?

- Watch Video Solution

21. A boy of mass 60 kg running at $3 / \mathrm{s}$ jumps on to a trolley of mass 140 kg moving with a
velocity of $1.5 \mathrm{~m} / \mathrm{s}$ in the same direction. What is their common velocity?

D Watch Video Solution

22. A bullet of mass $20 g$ is fired horizontly with
a velocity of $150 \mathrm{~ms}^{-1}$ from a pistol of maass

2 kg . What is the recoil velocity of the pistol?
A. $1.5 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $-1.5 \mathrm{~m} / \mathrm{s}$

D. $-4 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

23. A girl of mass 40 kg jumps with a horizontal
velocity of $5 \mathrm{~m} / \mathrm{s}$ onto a stationary cart with
frictionless wheels. The mass of the cart is 3 kg .

What is her velocity as the cart starts moving?

Assume that there is no external unbalanced
force working in the horizontal direction.
A. $100 / 43 \mathrm{~m} / \mathrm{s}$
B. $200 \mathrm{~m} / \mathrm{s}$
C. $200 / 43 \mathrm{~m} / \mathrm{s}$
D. NONE

Answer: C

D Watch Video Solution

24. Two hockey players of opposite teams, while trying to hit a hockey ball on the ground
collide and immediately become entangled.

Once has a mass of 60 kg , and was moving with
a velocity $5 \cdot 0 m / s$, while the other has a mass of 55 kg and was moving faster with a velocity of $6 \cdot 0 \mathrm{~m} / \mathrm{s}$ towards the first player. In
which direction and with what velocity will
they move after they become entangled?

Assume that the frictional force acting between the feet of the two players and ground is negligible.

D Watch Video Solution

Oral Testing

1. In a tug of war, the rope does not move in any direction. Why?

- Watch Video Solution

2. When the engine of a moving car is switched off, it stops after travelling some distance. Does it violate Newton's first law?

D Watch Video Solution

3. When a car rounds a curve suddenly, what happens to a person sitting inside the car?

D Watch Video Solution

4. The rate of change ofof a body......is

Proportional to theapplied. Fill in the blanks.

D Watch Video Solution

5. A cushioned bed or a sand bed is used in
the athletic event high jump. Why?

D Watch Video Solution
6. The velocity of a body is doubled. What happens to its momentum?

- Watch Video Solution

7. When the resultant of forces acting on a body is not Zero, what are they called?

D Watch Video Solution
8. Is some force required to move a body uniformly along a circle?
(D) Watch Video Solution
9. What are the units of linear momentum?

- Watch Video Solution

10. Newton's first law........force and Newton's second law gives us aof force. Fill in the blanks.

D Watch Video Solution

11. Which law tells us about the nature of force?
12. Are the force of action and reaction always equal in magnitude?

- Watch Video Solution

13. A boat is pushed away from the river bank when a sailor jumps from the boat to the bank. Why?
14. While putting out fire, the fire men have hold the hose pipe tightly. Why?

- Watch Video Solution

15. Why should a gun be held tightly against the shoulder, while firing?

- Watch Video Solution

16. Why is it difficult to walk on a slippery road?
17. What is meant by recoiling of a gun?

- Watch Video Solution

18. What is the principle of working of a rocket ?

- Watch Video Solution

19. What is the linear momentum of the rocket and escaping gases on firing?

D Watch Video Solution

20. Recoil velocity of gun is much smaller than
the velocity of bullet. Why?

D Watch Video Solution

Quiz Testing

1. (a) What are balances forces?
(b)What are unbalances forces?

- Watch Video Solution

2. (a) Which forces- balanced or unbalanced
can change the state of a body?
(b)what is measure of inertia of a body in linear motion?
3. (a) which has more inertia: a five rupee coin or a one rupee coin?
(b) You are given a rubber ball and a stone of same size. Which one has greater inertia?

- Watch Video Solution

4. (a)What is linear momentum of a heavy object at rest?
(b)what force is required to maintain uniform motion of a body along a straight lline?
5. (a)When a galloping horse stops suddenly, what happens to the riders and why?
(b)Why do some of the leaves get deatched
from a tree when we shake its branch vigorously?

- Watch Video Solution

6. (a)What wii be the percentage change in momentum of a body when both its mass and velocity are doubled?
(b)A force of 200 N is required just to move a table floor at a constant speed. What is the frictional force exerted by the floor on the table?

- Watch Video Solution

7. (a)Forces of action and reaction are always equal and opposite. Is it true?
(b)Do forces of action and reaction act on the same body or on two different bodies?
8. (a)Do the forces of action and reaction cancel eachother?
(b)Do the forces of action and reaction alwys produce accelerations of same magnitude?

D Watch Video Solution

9. (a)Forces of action and reaction are named arbitrarily. It is true?
(b)Force of reaction appears after sometime of the force of action. It is true?
10. (a)What is essential condition for the validity of the law of conservation of linear momentum?
(b)In any collision, is total energy conserved?

- Watch Video Solution

11. (a)What is the total linear momentum of a bullet and the gun on firing?
(b)Which law can account for swimming ?

D Watch Video Solution

12. (a)What is meant by an isolated system?
(b)Out of mass, speed and momentum, which quantity is same for bullet and the gun on firing?

D Watch Video Solution

Worksheet Testing

1. A hockey ball of mass 200 g travelling from west to east at $10 \mathrm{~m} / \mathrm{s}$ is struck by a hockey stick. As a result, the ball gets turned back and now has a speed of $5 \mathrm{~m} / \mathrm{s}$. If the ball and hockey stick were in contact for $0.2 s$, Calculate
(i) initial and final momentum of the ball
(ii) rate of change of momentum of the balll
(iii) force exerted by hockey stick on the ball.

- Watch Video Solution

2. A stone of mass $500 g$ is thrown with a velocity of $20 \mathrm{~ms}^{-1}$ across the frozen surface of a lake. It comes to rest after travelling a distance of $10 \cdot 1 \mathrm{~km}$. Calculate force of friction between the stone and frozen surface of lake.

D Watch Video Solution

3. A body starts from rest and rolls down a hill
with a constant acceleration. If it travels 400 m
in 20 sec onds, Calcualte the force acting on the body if its mass is 10 kg .

D Watch Video Solution

4. A force of $2 N$ gives a mass m_{1} an acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ and a mass m_{2} an acceleration of $7 m / s^{2}$. What acceleration would be produced if both the masses are tied together?

D Watch Video Solution

5. From a rifle of mass 5 kg , a bullet of mass

50 g is fired with an initial velocity of $108 \mathrm{~km} / \mathrm{h}$
. Calculate initial recoil velocity of the rifle.

- Watch Video Solution

6. Two object A and B are moving along the same straight line in opposite directions with velocities $10 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively. They collide during which they stick to each other. If mass of A is 1.5 kg and mass of B is 1 kg , what is the velocity of the combinations?

- Watch Video Solution

7. A man weighing 60 kg runs along the rails
with a velocity of $18 \mathrm{~km} / \mathrm{h}$ and jumps into a car of mass 10 quintal standing on the rails.

Calculate the velocity with which the car will start travelling on the rails .

- Watch Video Solution

8. A bullet of mass $7 g$ is fired into block weighing 7 kg , which is free to move. Calculate initial velocity of bullet if the velocity of the block with the bullet inside is $0.7 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

9. The speed time graph of a body of mass

50 kg is shown in (figure). Calculate the force acting in the body
(i)from 0 to $4 s$ (ii)from 4 to $6 s$

- Watch Video Solution

10. A body of mass 10 kg starting from rest, accelerates uniformly to a speed of $30 \mathrm{~m} / \mathrm{s}$ in 10 s . Brakes are applied and the body stops in next 5 sec onds, (figure). Calculate the accelerating force and the stopping force
11. A car of mass 1 metric ton starts from rest
and accelerates to a speed of $72 \mathrm{~km} / \mathrm{h}$ in
20 sec . It then moves with a constant velocity
for 80 sec . And is bought to rest in next 10 sec ,
(figure). Caculate the force acting on the car from (i) 0 to 20 sec (ii) 20 to 100 sec (iii) 100 to 110 sec

- Watch Video Solution

1. The law that defines force and inertia is

A. Newton's 1st law
B. Newton's 2nd law
C. Newton's 3rd law
D. none of the above.

Answer: A
2. Momentum of a body of mass $4 k g$ is
$24 \mathrm{kgms}^{-1}$ under a force of 250 N ?
A. $96 m / s$
B. $6 m / s$
C. $24.2 m / s$
D. none of the above.

Answer: B
(Watch Video Solution
3. What mass of a body can attain an acceleration of $5 m s^{-2}$ under a force of 250 N ?

A. 5 kg

B. 250 kg
C. 50 kg
D. 10 kg

Answer: C

D Watch Video Solution
4. Inertia of a body in linear motion is measured by its
A. velocity
B. momentum
C. mass
D. none of the above.

Answer: C
(D) Watch Video Solution
5. Newton's second law of motion gives us
A. definition of inertia
B. definition of force
C. measure of force
D. none of the above.

Answer: C
(Watch Video Solution
6. How do you account for the function of mud guards ?
A. inertia of rest
B. inertia of direction
C. inertia of motion
D. none of the above.

Answer: B

D Watch Video Solution
7. A body of mass 2 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is brought to rest in 5 sec . Calculate the stopping force applied.

- Watch Video Solution

8. A moving body can be stopped by a force F
in time t. How much force will be needed to
stop the body in half the time, when its momentum is doubled?

- Watch Video Solution

9. 'An unbalanced external force is needed to
initiate the motion from state of rest but no unbalanced net force is needed to sustain the uniform motion.' Read the statement made by Galileo and justify

- Watch Video Solution

10. A body at rest oppose the forces which try
to move it. What is this property called? Give at least one example.
11. Newton's first law of motion defines force and Newton's second law of motion gives us a measure of force. Comment.

D Watch Video Solution

12. The speed time graph of a ball of mass $30 g$ moving along a straight line is shown in
(figure). Calculate the opposing force that
brings the ball to rest.

- Watch Video Solution

13. (a)In 'high jump' event the athletes are made to fall on a cushioned bed. Why?
(b)What is the use of seat belts in cars?
14. State and Explain Newton s second law of motion Hence, Deduce the relation $\mathrm{F}=\mathrm{ma}$ Where the symbols have their usual meaning .

- Watch Video Solution

15. Principle of conservation of linear momentum is deduced from
A. Newton's 1st law
B. Newton's 2nd law
C. Newton's 3rd law
D. none of the above.

Answer: C

- Watch Video Solution

16. The forces of action and reaction are
A. always equal only
B. always equal and opposite

C. always equal but in same direction

D. always unequal and opposite

Answer: B

D Watch Video Solution

17. The action and reaction forces act
A. on different bodies always
B. on same body always
C. on same body sometime,

D. on different bodies, sometimes

Answer: A

D Watch Video Solution

18. The force of action and reaction
A. always cancel each other
B. never cancel
C. cancel sometimes
D. can not say

- Watch Video Solution

19. The action and reaction forces act on
A. bodies at rest only
B. bodies in uniform motion only
C. bodies in uniformly accelerated motion
D. two bodies irrespective of their positions and state of motion//rest.

Answer:

D Watch Video Solution

20. Recoil velocity of gun is
A. equal to velocity of bullet
B. much greater than velocity of bullet
C. much smaller than velocity of bullet
D. can not say
21. If action is always equal to the reaction, explain how a horse can pull a cart.

- Watch Video Solution

22. While putting out fire, the fire men have hold the hose pipe tightly. Why?
23. A bullet of mass $50 g$ is fired with an velocity of $150 \mathrm{~m} / \mathrm{s}$. If the rifle weights 3 kg . What is its recoil velocity?

- Watch Video Solution

24. A machine gun fires $25 g$ bullet at the rate of 600 bullets per minutes with a speed of $200 \mathrm{~m} / \mathrm{s}$. Calculate the force required to keep the gun in position.
25. A body of mass 1.5 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ encounters another body of mass 2.5 kg moving in opposite direction with a velocity of $16 \mathrm{~m} / \mathrm{s}$, and they stick to eachother. What is the velocity of combination?

D View Text Solution

26. A car and a truck moving with the same
velocity in opposite directions collide and
collision lasts for $2 s$.
(i) Which vehicle experiences the greater force of impact?
(ii) Which vehicle has the smaller change in momentum?
(iii) Which one undergoes greater acceleration?
(iv) Which one is pushed farther?
(v) Which one is likely to suffer more damage?

D Watch Video Solution

27. An object moves under the action of a force such that distance (s) moved by it varies directly as the cube of time taken (t). What is the nature of acceleration of the object? Is it moving under a constant force?

D Watch Video Solution

28. According to the third law of motion, when
we push on an object, the object pushes back on us with an equal and opposite force. If the
object is a massive truck parked along the roadside, it will probably not move. A student justifies this by answering that the two opposite and equal forces cancel each other.

Comment on this logic and explain why the truck does not move.

D Watch Video Solution

29. State and explain the principle of conservation of linear momentum. Establish
the same using Newton's third law of motion.

Watch Video Solution

Multiple Choice Questions

1. The forces of action and reaction are
A. always equal only
B. always opposite only
C. always equal and opposite
D. can not say

2. The forces of action and reaction act on

A. two different bodies always
B. same body
C. two different bodies sometimes
D. can not say

Answer: A

3. In walking, force of action is provided by
A. backward push on the ground by our foot
B. push of ground on our foot
C. either (a) and (b)
D. neither (a) or (b).

Answer: A

D Watch Video Solution
4. A spring balance A is suspended vertically from a rigid support. Another spring balance B is suspended from the hook of A . Now, a weight of 1 kg is suspended from hook of B

The readings of balances A and B would be
A. $\frac{1}{2} k g$ each
B. $2 k g$ each
C. 1 kg each
D. none of the above.

Answer: C
5. Walking becomes difficult, When the ground is covered with snow or sand this is because
A. ground become slippery
B. our foot can exert much smaller force in
the from of backward action
C. either (a) and (b)
D. neither (a) or (b).

Answer: B

- Watch Video Solution

6. A body of mass 1 kg is moving along a straight line with a velocity of $1 \mathrm{~m} / \mathrm{s}$. The external force acting in the body is
A. $1 N$
B. 1 dyne
C. $1 J$
D. zero

Answer: D

D Watch Video Solution

7. A body of mass $1 k g$ is moving with a
uniform speed of $1 m / s$ in a circular path of
radius $1 m$. The external force acting on the body is
A. $1 N$
B. 1 dyne
C. $1 J$
D. zero

Answer: A

D Watch Video Solution

8. In Ques.7, acceleration of the body is
A. $1 m / s$
B. $1 m / s^{2}$
C. $1 m$
D. zero

D Watch Video Solution

9. In Ques.8, the direction of acceleration is

A. away from the centre
B. along the tangent to the circle
C. towards the centre and along the radius
of the circle
D. variable

- Watch Video Solution

10. A swimmer swims due to
A. forward push of water on the swimmer
B. buoyancy of water
C. either (a) and (b)
D. neither (a) or (b).
11. A gun recoils on firing. This is due to
A. force of reaction exerted by the bullet on the gun
B. force exerted by the gun on the bullet
C. either (a) and (b)
D. neither (a) or (b).

Watch Video Solution

12. Velocity of recoil of gun is much smaller than the velocity of bullet. This is beaacuse
A. gun is much heavier than the bullet
B. gun is held tightly
C. either (a) and (b)
D. neither (a) or (b).

Answer: A
13. What is the total momentum of the bullet and the gun before firing?
A. positive
B. negative
C. zero
D. can not say

Answer: C

- Watch Video Solution

14. Total momentum of gun and bullet before
firing is
A. positive
B. negative
C. zero
D. can not say

Answer: C

D Watch Video Solution
15. A gun fires a bullet with a speed of $400 \mathrm{~m} / \mathrm{s}$
.What is recoil velocity of the gun if its mass is 200 times the mass of the bullet?
A. $4 m / s$
B. $2 m / s$
C. $8 m / s$
D. can not say

Answer: B
16. When a sailor jumps from a boat to the river bank?
A. boat is pushed away from the bank
B. boat is pushed towards the bank
C. either (a) and (b)
D. neither (a) or (b).

Answer:

17. Flying of rockets and jet planes is explained on the basis of
A. Newton's 3rd law of motion
B. principle of conservation of linear momentum
C. either (a) and (b)
D. neither (a) or (b).

Answer: C

- Watch Video Solution

18. While extinguishing fire, the fireman has
hold the hose pipe very strongly. This is because as water rushes out at a great speed
A. the hose pipe tends to move backward due to strong force of reaction
B. the hose pipe exerts huge pressure in
the forward direction
C. either (a) and (b)
D. neither (a) or (b).

D Watch Video Solution

19. When reasultant of all forces acting on a
body is zero, the forces are called
A. unbalanced forces
B. balanced force
C. neither (a) nor (b)
D. either (a) or (b)

Answer: B

D Watch Video Solution

20. A ball set roilling on the ground stops after sometime. This is due to
A. unbalanced force of friction
B. unbalance force of air resistance
C. both (a) and (b)
D. neither (a) or (b).

Answer: C

D Watch Video Solution

21. Which of the following statement is not correct for an object moving along a straight path in an accelerated motion?
A. Its speed keep changing
B. Its velocity always changes
C. It always goes away from the earth
D. A force is always acting it

Answer: C

- Watch Video Solution

22. According to the third law of motion , action and reaction
A. always act on same body
B. always act on different bodies in opposite directions
C. have same magnitude and directions

D. acts on either body at normal to each

 other
Answer: B

D Watch Video Solution

23. A goalkeeper in a game of football pulls his
hands backwards while holding the ball shot
at the goal. This enables the goalkeeper to
A. exert larger force of ball
B. reduce the force exerted by the ball on
hands
C. increae the rate of change of
momentum
D. decrease the rate of change of
momentum

Answer: B::D

D Watch Video Solution

24. The inertia of an object tends to cause the object
A. to increase its speed
B. to decrease its speed
C. to resist any change in its state of rest or motion

D. to decrease due to friction

Answer: C

25. A passenger in a moving train tosses a coin
which falls behind him. It means that motion of the train is
A. accelerated

B. uniform

C. retarted
D. along circular tracks

Answer: A

D Watch Video Solution
26. An object of mass $2 k g$ is sliding with a constant velocity of $4 m s^{-1}$ on a frictionless
horizontal table. The force required to keep the object moving with the same velocity is
A. 32 N
B. 0 N
C. 2 N
D. 8 N
27. Rocket works on the principle of

coservation of

A. mass
B. energy
C. momentum
D. velocity

Answer: C
28. A water tanker filled up to $\frac{2}{3}$ of its height is moving with a uniform speed. On sudden application of the brake, the water in the tank would
A. move backward
B. move forward
C. be unaffected
D. rise upwards

Answer: B

- Watch Video Solution

Mock Test

1. What force is required to move a body of mass 1 kg with a uniform velocity of $1 \mathrm{~m} / \mathrm{s}$?
(Watch Video Solution
2. A feather of mass 2 gram is falling vertically
downwards with a constant velocity. What is the net force acting on it?

- Watch Video Solution

3. When a heavy body collides with a lightbody, which one experience greater force?

- Watch Video Solution

4. Though action and reaction forces are always equal in magnitude, yet they may not produce acceleration of equal magnitude. Why?

D Watch Video Solution

5. A person manages to push a car of mass 800 kg with a uniform velocity along a level road. When another person joins him and pushes the car with an equal force, the
acceleration produced is $0.5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the force with which each person pushes the car.

D Watch Video Solution

6. A ball of mass $200 g$ falls from a height of

80 cm . If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, what momentum is
transferred to the floor by the ball? Assume
that the ball does not rebound.

D Watch Video Solution

7. A gun fires a shell of mass 1.5 kg with a
velocity of $150 \mathrm{~m} / \mathrm{s}$ and recoils with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. Calculate the mass of gun?

- Watch Video Solution

8. While firing, a gun man has to hold the gun tightly against his shoulder. Why?

- Watch Video Solution

9. A body at rest oppose the forces which try
to move it. What is this property called? Give at least one example.

D Watch Video Solution

10. A machine gun fires $25 g$ bullets at the rate

600 bullets per minute with a speed of $400 \mathrm{~m} / \mathrm{s}$. Calculate the force required to keep the gun position
11. A force of $2 N$ acts for $5 \sec$ onds on a particle of mass 0.5 kg initially at rest.

Calculate the distance moved by the particle in
(i) these five seconds and (ii) next 5 sec onds

D Watch Video Solution

12. A 8000 kg engine pulls a train of 5 wagons,
each of 2000 kg , along a horizontal track. If the engine exerts a force of 40000 N and the track offers a frictional force of $5000 N$, then
calculate:
(a) the net accelerating force, (b) the acceleration of the train, and
(c) the force of wagon 1 on wagon 2.

D Watch Video Solution

13. Seat belts in cars are called safety belts.

Why?
14. A person strikes a nail with a hammer of mass 500 g moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$.

The hammer comes to rest in $0.01 s$ after striking the nail. Calculate (i) force exerted by the hammer on the nail (ii) distance moved by the nail into the plank.

D Watch Video Solution

15. The speed time graph of a body of mass
$300 g$ is shown in (fugure). Calculate the force
actiong on the body.

- Watch Video Solution

16. A hunter has a machine gun that can fire

50 g bullet with a velocity of $150 \mathrm{~m} / \mathrm{s}$. A 60 kg
tiger springs at him with a velocity of $10 \mathrm{~m} / \mathrm{s}$.
How many bullets must the hunter fire per
second into the tiger in order to stop him in the track?

D Watch Video Solution

17. Two friends on roller-skates are standing
$5 m$ apart facing eachother. One of them
throws a ball of $2 k g$ towards the other, who
catches it. How will this activity affect the position of the two? Explain your answer.

D Watch Video Solution

18. It is a common experience that to initiate motion in a body at rest, force required is much greater than the force required to maintain the motion. Read the above passage and answer the following question:
(i) Do you agree with the statement?
(ii) How do you justify the statement?
(iii) What values of day to day life do you learn from this?

- Watch Video Solution

19. A bullet of $10 g$ strikes a sand bag at a speed of $10^{3} \mathrm{~m} / \mathrm{s}$ and gets enbedded after a travelling 5 cm . Calculate
(i) the resistive force exerted by sand on the bullet
(ii) the time taken by the bullet to come to rest.

- Watch Video Solution

20. Derive the relation $F=m a$, where the symbols have their usual meanings. What is one newton?

D Watch Video Solution

21. State Newton's third law of motion and principle of conservation of momentum.

D Watch Video Solution

22. A railway carriage of mass $10 g$ and $200 g$ are moving along the same line in the same direction with velocities of $2 m / s$ and $1 m / s$ respectively. They collide and after the collison, the first object moves with a velocity of $1.67 \mathrm{~m} / \mathrm{s}$ in the same direction. Determine the velocity of the second object.

D Watch Video Solution

23. Two objects of masses $100 g$ and $200 g$ are moving along the same line in the same direction with velocities of $2 m / s$ and $1 m / s$, respectively. They collide and after the collison, the first object moves at a velocity of $1.67 \mathrm{~m} / \mathrm{s}$ in the same direction. Determine the velocity of the second object.
24. (i) How much momentum will a dumb-bell of mass 10 kg transfer to the floor if it falls a
height of 80 cm ? Take its downward acceleration to be $10 \mathrm{~m} / \mathrm{s}^{2}$.
(b) A girl of mass 40 kg running at a speed of
$5 \mathrm{~m} / \mathrm{s}$ horizontally jumps onto a stationary cart with frictionless wheels. The mass of the cart is 3 kg . What is her velocity as the cart starts moving?

D Watch Video Solution

25. In a tug of war, when the rope does not move in any direcion, the net force is
A. Zero
B. low
C. high
D. can not say

Answer: A
26. When we stops pedalling a bicycle we are riding, the bicycle beigns to slow. This is because
A. We stop applying force
B. of unbalanced force of friction between
the tyres and the road
C. either (a) and (b)
D. neither (a) or (b).

Answer: B
27. The function of mud guard is based on
A. inertia of rest
B. inertia of motion
C. inertia of direction
D. none of the above.

Answer: C

- Watch Video Solution

28. The SI units of rate of change of momentum are
A. $k g-m$
B. $k g-m s$
C. $k g m s^{-1}$
D. newton

Answer: D

29. Which of the following statements is not true in respect of forces of action and reaction?
A. They are always equal
B. they are always opposite
C. They can cancel each other
D. none of these

Answer: C

D Watch Video Solution

30. The force of action and reaction cannot cancel eachother because
A. they are unequal
B. they act in same direction
C. they act upon different bodies
D. none of these

Answer: C

- Watch Video Solution

31. A body moving along a straight line is brought to rest in 2 sec by a force F_{1} and in 3 sec . By a force F_{2} the ratio F_{1} / F_{2} is
A. $2: 3$
B. 1:1
C. $3: 2$
D. 9: 4

Answer: C

D Watch Video Solution
32. The momentum of a person weighing 60 kg
walking with a velocity of $2 m / s$ is
A. $60 N-s$
B. $300 N-s$
C. $120 \mathrm{kgm} / \mathrm{s}$
D. none of these.

Answer: C
(Watch Video Solution
33. Which of the following can be explained on the basis of Newton's third law?
A. catching a cricket ball
B. high jump
C. person jumping out of speeding train
D. case of hose pipe

Answer: D

D Watch Video Solution
34. Though the force of action and reaction are equal and opposite, yet the acceleration produced by them may be of different magnitudes. Why?

- Watch Video Solution

35. A body of mass 5 kg is moving along a circle of radius $1 m$ with a uniform speed of $5 m / s$.

The external force acting on the body is
36. A body of mass 5 kg is moving along a circle of a radius $1 m$ with a uniform speed of $5 \frac{m}{s}$

What is the acceleration of body?

- Watch Video Solution

