©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS

(HINGLISH)

MOTION

Problem

1. A particle is moving in a circle of radius R.
a. What is its displacement when it covers (i)
half the circle, (ii) full circle?
b. What is its distance when it comes (i) half the the circle and (ii) full circle ?.

- Watch Video Solution

2. Ravi told his friend that his house is 1 km towards south from the main post office . Express the displacement and the distance moved by the friend from the post office, when he arrives at Ravi's house. Mention the reference point chosen by you.

- Watch Video Solution

3. A particle moves $3 m$ north, then $4 m$ east and finally $6 m$ south. Calculate the distance
travelled and the displacement.
A. $12 \mathrm{~m}, 7 \mathrm{~m}$
B. $13 \mathrm{~m}, 5 \mathrm{~m}$
C. $13 \mathrm{~m}, 13 \mathrm{~m}$
D. None of these

Answer: B
4. Suppose you walk across a room of length
$9 m$ with a velocity of one and a half kilometre per hour. Express this velocity in m / s and find the time you will take to move across the room.
A. 216 s
B. 21.6 s
C. 2.16 s
D. 1.15 s

Answer: B
5. A car travels 30 km at a uniform speed of
$40 \mathrm{~km} / \mathrm{h}$ and the next 30 km at a uniform speed of $20 \mathrm{~km} / \mathrm{h}$. Find its average speed.

A. $26.7 \mathrm{Km} / \mathrm{h}$

B. $2.67 \mathrm{Km} / \mathrm{h}$
C. $48.7 \mathrm{Km} / \mathrm{h}$
D. $267 \mathrm{Km} / \mathrm{h}$
6. A train travels at $60 \mathrm{~km} / \mathrm{h}$ for 0.50 h , at $30 \mathrm{~km} / \mathrm{h}$ for the next 0.24 h and at $70 \mathrm{~km} / \mathrm{h}$ for the next $0.71 h$. What is the average speed of the train ?
A. $60 \mathrm{~km} / \mathrm{hr}$
B. $70 \mathrm{~km} / \mathrm{hr}$
C. $80 \mathrm{~km} / \mathrm{hr}$
D. $90 \mathrm{~km} / \mathrm{hr}$

Answer: A

D Watch Video Solution

7. On a 120 km track, a train travels the first 30 km at a uniform speed of $30 \mathrm{~km} / \mathrm{h}$. How fast must the train travel the next 90 km so as to average $60 \mathrm{~km} / \mathrm{h}$ for the entire trip?
A. $60 \mathrm{~km} / \mathrm{hr}$
B. $70 \mathrm{~km} / \mathrm{hr}$
C. $80 \mathrm{~km} / \mathrm{hr}$

D. $90 \mathrm{~km} / \mathrm{hr}$

Answer: D

D Watch Video Solution

8. A scooter acquires a velocity of $36 \mathrm{~km} / \mathrm{h}$ in
$10 \sec$ onds just after the start. It takes 20
seconds to stop. Calculate the acceleration in the two cases.
9. Figure is the distance - time graph of an object . Do you think it represents a real situation ? If so , why ? If not, why not?

- Watch Video Solution

10. The graph in Figure shows the positions of a body at different times. Calculate the speed of the body as it moves from (i) A to B (ii) B
to C and (iii) C to D.

- Watch Video Solution

11. The velocity - time graph of an ascending passenger order lift is given in figure. What is the acceleration of the lift:
(i) during the first two seconds,
(ii) between 2 nd and $10 t h$ second,
(iii) during the last two seconds. .

D Watch Video Solution
12. A car increases its speed from $20 \mathrm{~km} / \mathrm{h}$ to
$50 \mathrm{~km} / \mathrm{h}$ in 10 seconds. What is its
acceleration?
A. 0.5 units
B. 0.83 units
C. 0.91 units
D. None of these

Answer: B

D Watch Video Solution
13. A moving train is brought to rest within 20
seconds by applying brakes. Find the initial
velocity, if the retardation due to brakes is
$2 m / s^{2}$.
A. $40 \mathrm{~m} / \mathrm{s}$
B. $50 \mathrm{~m} / \mathrm{s}$
C. $60 \mathrm{~m} / \mathrm{s}$
D. $70 \mathrm{~m} / \mathrm{s}$

Answer: A
14. An object undergoes an acceleration of $8 m / s^{2}$ starting from rest. Find the distance travelled in 1 second.

D Watch Video Solution

15. A body is accelerating at a constant rate of
$10 \mathrm{~m} / \mathrm{s}^{2}$. If the body starts from rest, how much distance will it cover in 2 seconds ?
16. A car acquires a velocity of $72 \mathrm{~km} / \mathrm{h}$ in 10 seconds starting from rest. Find (a) the acceleration (b) the average speed (c) the distance travelled in this time.

D Watch Video Solution

17. A cyclist goes once round a circular track of diameter 105 metre in 5 minutes. Calculate his speed.

Ncert Queations

1. An object has moved through a distance.

Can it have zero displacement ? If yes, support
your answer with an example.

- Watch Video Solution

2. A farmer moves along the boundary of a square field of side 10 m in 40 s . What will be
the magnitude of displacement of the farmer at the end of 2 minutes 20 seconds?

D Watch Video Solution

3. Which of the following is true for displacement?
(a) It cannot be zero.
(b) Its magnitude is greater than the distance travelled by the object.

D Watch Video Solution

4. Distinguish between speed and velocity.

D Watch Video Solution

5. Under what conditions (s) is the magnitude of average velocity of an object equal to its average speed ?

- Watch Video Solution

6. What does the odometer of an automobile measure?

- Watch Video Solution

7. What does the path of an object look like when it is in uniform motion?

- Watch Video Solution

8. During an experiment, a signal from a spaceship reahced the ground station in five minutes. What was the distance of the speceship from the ground station ? The signal travels at the speed of light, that is, $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

9. When will you say a body is in (i) unifrom
acceleration ? (ii) non-uniform acceleration ?
10. A bus decreases its speed from $80 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{~km} / \mathrm{h}$ in 5 s . Find the acceleration of the bus.

- Watch Video Solution

11. A train starting from a railway station and moving with uniform acceleration attains a speed $40 \mathrm{~km} / \mathrm{h}$ in 10 minutes. Find its acceleration.
12. What is the nature of the distance-time graphs for uniform and non-uniform motion of an object ?

- Watch Video Solution

13. What can you say about the motion of an
object whose distance-time graph is a straight line parallel to the time axis ?

Watch Video Solution

14. What can you say about the motion of an object whose distance-time graph is a straight line parallel to the time axis?

- Watch Video Solution

15. What is the quantity which is measured by
the area occupied below the velocity-time graph ?
16. A bus starting from rest moves with a uniform acceleration of $0.1 m / s^{2}$ for 2 minutes. Find
(a) the speed acquired, (b) th distance travelled.

D Watch Video Solution

17. A train is travelling at a speed of $90 \mathrm{~km} / \mathrm{h}$.

Brakes are applied so as to produce a uniform
acceleration of $-0.5 m / s^{2}$. Find how far the train will go before it is brought to rest.
A. 484 m
B. 250 m
C. 625 m
D. 400 m

Answer: C

D Watch Video Solution

18. A trolley, while going down an inclined
plane, has an acceleration of $2 \mathrm{~cm} / \mathrm{s}^{2}$ starting
from rest. What will be its velocity $3 s$ after the start?

- Watch Video Solution

19. A racing car has a uniform acceleration of
$4 m / s^{2}$. What distance will it cover in $10 s$ after start?
B. 500 m
C. 900 m
D. 400 m

Answer: A

D Watch Video Solution

20. A stone is thrown in a vertically upward direction with a velocity of $5 \mathrm{~m} / \mathrm{s}$. If the acceleration of the stone during its motion is
$10 \mathrm{~m} / \mathrm{s}^{2}$ in the downward direction, what will
be the height attained by the stone and how much time will take to reach there?
A. $2 \mathrm{~m}, 20 \mathrm{sec}$
B. $1.25 \mathrm{~m}, 0.5 \mathrm{sec}$
C. $12.5 \mathrm{~m}, 5 \mathrm{sec}$
D. $20 \mathrm{~m}, 2 \mathrm{sec}$

Answer: B
(Watch Video Solution

1. An athlete complete one round of a circular track of diameter 200 m in 40 s . What will be the distance covered and the displacement at the end of 2 minutes $20 s$?

D Watch Video Solution

2. Joseph jogs from one end A to other end B
of a straight 300 m road in 2 minutes 30
seconds and then turns around and jogs
$100 m$ back to point C in another 1 minute.

What are Joseph's average speeds and velocities in Jogging (a) form A to B and (b) form A to C ?

D Watch Video Solution

3. Abdul while driving to school, computes the average speed for his trip to be $20 \mathrm{kmh}^{-1}$. On his returen trip along the same route, there is less traffic and the average speed is $40 \mathrm{kmh}^{-1}$. What is the average speed for Abdul's trip ?
4. A motorboat starting from rest on a lake acceleration line at a constant rate of
$3.0 \mathrm{~m} / \mathrm{s}^{2}$ for 8.0 s . How far does the boat travel during this time ?

D Watch Video Solution

5. a driver of a car travelling at $52 \mathrm{~km} / \mathrm{h}$ applies the brakes and acceleration uniformly in the opposite direction. The car stops in $5 s$.

Another driver going at $34 \mathrm{~km} / \mathrm{h}$ in another
car applies his brakes slowly and stops in $10 s$.

On the same graph paper, plot the speed versus time graphs for the two cars. Which of the two cars travelled farther after the brakes were applied ?

D Watch Video Solution

6. Figure shows the distance-time graph of three object A, B and C. Study the graph and answer the following questions :
(a) Which of the three is travelling the fastest
(b) Are all three ever at the same point on the road ?
(c) How far has C travelld by when B passes
A ?
(d) How far has B travelled by the time it passes C ?

- Watch Video Solution

7. A ball is gently dropped from a height of 20 m . If its velocity increases uniformly at the
rate of $10 \mathrm{~m} / \mathrm{s}^{2}$, with what velocity will it strike the ground ? After what time will it strike the ground ?

(Watch Video Solution

8. The speed-time graph for a car is shown is

Figure

(a) Find how far does the car travel in the first

4 seconds. Shade the area on the graph that represents the distance travelled by the car during this period.
(b) Which part of the graph represents uniform motion of the car?

D Watch Video Solution

9. state which of the following situations are possible and give an example for each of these
(a) a body with a constant acceleration but
with zero velocity.
(b) an object moving in a certain direction with an acceleration in the perpendicular direction.

- Watch Video Solution

10. An artificial satellite is moving in a circular orbit of radius 42250 km . Calculate its speed if it takes 24 hours to revolve around the Earth.

D Watch Video Solution

Ncert Short Answer Question

1. An object has moved through a distance.

Can it have zero displacement ? If yes, support your answer with an example.

D Watch Video Solution

2. How will the equations of motion for an
object moving with a uniform velocity change ?
3. A girl walks along a straight path to drop a letter in the letterbox and comes back to her initial position. Her displacement-time graph is shown in Figure. Plot a velocity-time graph for the same.

4. A car starts from rest and moves along the x-axis with constant acceleration $5 m s^{-2}$ for 8 seconds. If it then continues with constant velocity, what distance will the car cover in 12 seconds since it started from the rest?

D Watch Video Solution

5. A motorcyclist drives from A to B with a
uniform speed of $30 \mathrm{kmh}^{-1}$ and returns back
with a speed of $20 \mathrm{kmh}^{-1}$. Find its average

speed.

D Watch Video Solution

6. The velocity-time graph shows the motion of a cyclist. Find (i) its acceleration (ii) its velocity
and (iii) the distance covered by the cyclist in

15 seconds.

D Watch Video Solution

7. A ball is thrown vertically upwards. Which of the following plots represent the speed graph
of the ball during its flight if the air resistence is not ignored?

D Watch Video Solution

Long Answer Question

1. An object is dropped from rest at a height of
$150 m$ and simultanously another object is
dropped from rest at a height 100 m . What is
the difference in their height after $2 s$ if both
the objects drop with same acceleration? How does the difference in height vary with time?

D Watch Video Solution

2. An object starting from rest travels $20 m$ in
first $2 s$ and $160 m$ in next $4 s$. What will be the
velocity after $7 s$ from the start.

D Watch Video Solution
3. An electron moving with a velocity of
$5 \times 10^{4} \mathrm{~ms}^{-1}$ enters into a uniform electirc
field and acquires a uniform acceleration of $10^{4} \mathrm{~ms}^{-2}$ in the direction of its initial motion.
(i) Calculate the time in which the electron
would acquire a velocity double of its initial velocity.
(ii) How much distance the electron would cover in this time ?

D Watch Video Solution

4. Obtain a relation for the distance travelled by an object moving with a unifrom acceleration in the interval between 4th and 5th seconds.

D Watch Video Solution

5. Two stones are thrown vertically upwards
simultaneously with their initial velocities
u_{1} and u_{2} respectively. Prove that the heights
reached by them would be in the ratio of
$u_{1}^{2}: u_{2}^{2}$ (Assume upward acceleration is $-g$ and downward acceleration to be $+g$).

D Watch Video Solution

6. What is the nature of the distance-time graphs for uniform and non-uniform motion of an object?

D Watch Video Solution

7. Draw speed-time graph for a body (i) at rest

(ii) in uniform motion (iii) in non-uniformly accelerated motion. Discuss the results briefly.

D Watch Video Solution

8. Write the three equations of uniformly acceleration motion. Give the meaning of each
symbol in them.
9. Using graphical method, derive the equations
$v=u+a t$ and $s=u t+\frac{1}{2} a t^{2}$ where symbols have their usual meanings.

D Watch Video Solution

10. Derive graphically the equation of motion
for position-velocity relation of a body moving with uniform acceleration.
11. Explain what is meant by uniform circular motion. Give at least three examples.

D Watch Video Solution

12. State velocity-time relation in uniformly accelerated motion. Use graphical method to obtain this relation.

D Watch Video Solution

1. Is dispacement a scalar quantity?
(Watch Video Solution
2. What is the SI unit of displacement ?

- Watch Video Solution

3. Is distance a vector quantity?

- Watch Video Solution

4. Can distance be negative?

- Watch Video Solution

5. Can displacement be nagetive?

- Watch Video Solution

6. An object has moved through a distance.

Can it have zero displacement ? If yes, support
your answer with an example.

D Watch Video Solution

7. Can distance be zero, even when

 displacement is not zero ?
D Watch Video Solution

8. Can displacement and distance ever be equal ?

D Watch Video Solution
9. What is SI unit of speed ? Is it same for velocity?

D Watch Video Solution

10. What is the acceleration of a body moving with uniform velocity?
11. Name the quantity that represents rate of change of displacement.

D Watch Video Solution

12. Name the quantity that represents rate of change of velocity?

- Watch Video Solution

13. The unit of acceleration in the SI system is

- Watch Video Solution

14. In additon to speed, what else should be known to predict the position of a moving body from a given starting point ?

- Watch Video Solution

15. What does the slope of a speed-time graph indicate?
16. Earth revolves around the Sun in a circular orbit with a uniform speed. Is this motion uniform or accelerated?

D Watch Video Solution

17. Is the motion of Moon around Earth uniform or acceleration?
18. An artificial satellite revolves around the Earth with a constant velocity. It's the statement true?

D Watch Video Solution
19. What remains constant in uniform circular motion ?

D Watch Video Solution
20. What changes continuously in uniform circular motion ?

D Watch Video Solution

21. What type of motion is the motion of tip of second's hand of a watch ? Is it uniform or accelerated?

D Watch Video Solution
22. A particle moves over three quarters of a circle of radius r. What is the magnitude of its displacement?

D Watch Video Solution
23. A body starts from rest. What is zero ?

D Watch Video Solution

24. A body stops after some time. What is zero
?

- Watch Video Solution

25. A body falls freely. What is constant?

Short Answer Questions

1. A particle moves in a circle of radius R. In
half the period of revolution its displacement is and distance covered is

- Watch Video Solution

2. What is locomotion?

3. What are the values of distance travelled and displacement in covering $10 m$ from P to
Q and coming back ?

D Watch Video Solution

4. Convert a speed of $36 \mathrm{~km} / \mathrm{h}$ into m / s.

5. Convert a speed of $15 \mathrm{~m} / \mathrm{s}$ into km / h.

D Watch Video Solution

6. Name the terms represented by various
symbols in the eqaution, $v=u+a t$.

D Watch Video Solution

7. What can you say about the motion of a
body if
(a) its displacement-time graph is a straight
line, with some slope.
(b) its velocity-time graph is a straight line, with some slope?

- Watch Video Solution

8. What conclusion do you draw when displacement-time graph of a body is as shown in figure ?
9. What conclusion do you draw when displacement-time graph of a body is as shwon in Figure?

- Watch Video Solution

10. If velocity-time graph of a body is as shown
in figure, what is the nature of motion ?

D Watch Video Solution
11. What can you calculate from speed-time graph of a body?

D Watch Video Solution
12. Name the two quantities, the slope of whose graphs gives (i) speed (ii) acceleration.
13. Three speed-time graphs are shown below.

(c)
(i) A ball thrown vertically upwards and
returning to the hand of the thrower ?
(ii) A body decelerating to a constant speed and accelerating.

D Watch Video Solution

14. What do the graph shown in Figure indicate?

(b)
15. What is represented by the graph in Figure
?

C
 (a)

D Watch Video Solution

Short Answer Questions

1. Define distance and displacement. Give atleast four points of distinction between them.

D Watch Video Solution

2. Define the term uniform acceleration. Give one example of uniformly accelerated motion.
3. Define the speed and velocity. What are their SI units?

- Watch Video Solution

4. Explain the terms : uniform motion and nonuniform motion with examples.
(D) Watch Video Solution
5. Derive graphically the relation $v=u+a t$,where the symbols have their usual meaning.

D Watch Video Solution

6. Using velocity time graph, establish the
relation $s=u t+\frac{1}{2} a t^{2}$, where the symbols have their usual meanings.

D Watch Video Solution

7. Use graphical method to derive the relation
$v^{2}-u^{2}=2 a s$, where the symbols have their usual meanings.

- Watch Video Solution

8. Uniform circular motion is an acceleration motion. Comment.

- Watch Video Solution

9. A stone of mass m tied to a string of length

I is rotated in a circle with the other end of the
string as the centre. The speed of the stone is
v. If the string breaks, the stone will move

D Watch Video Solution

Higher Order Thinking Skills

1. A body covered a distance of l metre along a
semicircular path. Calculate the magnitude of
displacement of the body, and the ratio of distance to displacement.

D Watch Video Solution

2. The displacement time graph for two particles A and B are straight lines inclined at 30° with time axis and at 30° to displacement axis respectively. Calcualte ratio of velocities of the two particles.
3. When two bodies move uniformly towards each other, the distance between them decreases by $8 m / s$. If both the bodies move in the same direction with the same speeds,
the distance between them increases by 4 metre per second. What are the speeds of two bodies?

- Watch Video Solution

4. Two particles are moving with constant speed v such that they are always at a
constant distance d apart and their velocities
are always equal and opposite. After what time will they return to their initial positions?

D Watch Video Solution

5. A cyclist moving on a circular track of radius
$50 m$ completes one revolution in 4 minutes.

What is the (i) average speed (ii) average velocity in one full revolution ?

D Watch Video Solution

6. A person goes to market, makes purchases
and comes back at a constant slower speed.

Draw displacement-time and velocity time graphs of the person.

D Watch Video Solution

Value Based Question

1. Rohan and his sister Saniya go to school
together in their car. Rohan drives much faster
than Saniya. Saniya tells Rohan noy to take the
risk of over speeding. She tells him that time taken to reach the school would depend upon average speed. By overspeeding for a little while, the risk involved is much greater compared to the little time saved.

Answer the following questions based on the above paragraph.
(i) Which values are displayed by Saniya ?
(ii) Is Saniya right in her statement ?
(iii) How do you define average speed?

- Watch Video Solution

2. Puja and Neha are close friends. Puja is a science graduate and Neha is a commerce graduate. Puja finds that while driving on a clear highway, Neha often exceeds the speed
limit and argues that there is no harm in doing so when the road is clear. Puja does not agree with her and tells her that with increase
in speed, stopping distance of car would increase and she would not be able to manage things if some stray cattle etc. appears suddenly on the way.

Read the above passage and answer the following question :
(i) Is Puja right in her statement?
(ii) What values are displayed by Puja in her statement?
(iii) How is stopping distance related to speed of vehicle?

D Watch Video Solution

3. A Physics teacher explains the concept of relative velocity to her students in class. She emphasises that when two bodies are moving in opposite directions, their relative velocity is
sum of the velocities of the two. And when two
bodies are moving in the same direction, their relative velocity is difference of the velocities of the two. Students are confused. The teacher
then takes two balls one red and the other
green. She says suppose red ball moves with a
velocity $5 \mathrm{~m} / \mathrm{s}$ and green ball moves with a
velocity of $4 m / s$ from a common point, and
along the same straight line. if red ball is
moving to the right and green ball is moving
to the left, then after 1 sec , red ball is at R^{\prime},
where $R R^{\prime}=5 m$ and green ball is at G^{\prime}
where $G G^{\prime}=4 m$, Figure. The distance
between the two balls after
$1 \mathrm{sec}=G^{\prime} R^{\prime} G G^{\prime}+R R^{\prime}=(4+5)=9 m$.

This is the magnitude of their realtive velocity.

If both the balls are moving to the right, as
shown in Figure. The distance between the
two
balls
after
$\sec =G^{\prime} R^{\prime}-G G^{\prime}=5-4=1 m$.

In that case, relative velocity $=1 \mathrm{~m} / \mathrm{s}$.
(a)

Read the above passage and answer the following questions :
(i) What value has the Physics teacher
displayed?
(ii) What have the students picked up ?
(iii) Give atleast one practical example of the concept.

D Watch Video Solution

4. A Physics teacher is explaining the difference between average speed and average velocity to her students.

Where average velocity
displacement
average speed $=\frac{\text { actual distance travelled }}{\text { time taken }}$

She emphasises that average speed is more relevant than average velocity, because displacement from one place to other is only theoretical, being the shortest distance between two places. Average speed is the real entity that matters, taking into account the actual time taken to travel the actual distance between the two stations.

Read the above passage and answer the following question :
(i) Do you agree with the statement of Physics teacher?
(ii) The shortest distance between Ambala to

Delhi is 200 km . A train takes $4 h r s$ and covers
a distance of 210 km in going from Ambala to
Delhi via Karnal. Another train takes $5 h r s$ and
covers 250 km distance in going from Ambala to Delhi via Saharanpur. What is the average speed of these two trains? What would be the average velocity of a train that takes 2.5 hrs to cover 200 km distance ?
(iii) What values do you learn from this discussion?

- Watch Video Solution

1. A body thrown vertically upwards reaches a maximum height h. It then returns to ground .

Calculate the distance travelled and the dispacement.

- Watch Video Solution

2. A body travels a distance of $15 m$ from A to
B and then moves a distance of 20 m at right
angles to $A B$. Calculate the total distance travelled and the displacement.

D Watch Video Solution

3. A particle is moving in a circle of diameter
$5 m$. Calculate the distance covered and the displacement when it completes 3 revolutions.

D Watch Video Solution

4. In a along distance race, the athletes were expected to take four rounds of the track such that the line of finish was same as the line of start . Suppose the length of the track was

200 m .
(a) What is the total distance to be covered by the athletes?
(b) What is the displacement of the athletes
when they touch the finish line?
(c) Is the motion of the athletes uniform or non -uniform?
(d) Is the displacement of an athlete and the
distance moved by him at the end of the race equal?

- Watch Video Solution

5. An object travels $16 m$ in $4 s$ and then another $16 m$ in $2 s$. What is the average speed of the object?

- Watch Video Solution

6. The odometer of a car reads 2000 km at the start of a trip and 2400 km at the end of the trip. If the trip took $8 h$, calculate the average speed of the car in $k m / h$ and m / s.

D Watch Video Solution

7. Usha swims in a 90 m long pool. She covers
$180 m$ in one minute by swimming from one end to the other and back along the same
length path. Find the average speed and average speed and average velocity of Usha.

D Watch Video Solution

8. Starting from a stationary position, Rahul paddles his bicycle to attain a velocity of $6 m / s$ in $30 s$. Then he applies brakes such that the velocity of bicycle comes down to $4 m / s$ in the next $5 s$. Calculate the acceleration of the bicycle in both the cases.
9. Ahmed is moving with a velocity of $120 \mathrm{~km} / \mathrm{h}$. How much distance will he cover (a) in one minute and (b) in one second?

D Watch Video Solution

10. An electric train is moving with a velocity of
$120 \mathrm{~km} / \mathrm{h}$. How much distance will it move in $30 s ?$
11. A body is moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$.

If the motion is uniform, what will be the velocity after $10 s ?$

D Watch Video Solution

12. A train travels some distance with a speed
of $30 \mathrm{~km} / \mathrm{h}$ and returns with a speed of
$45 \mathrm{~km} / \mathrm{h}$. Calculate the average speed of the train.
13. A train 100 m long moving on a straight level track passes a pole in $5 s$. Find (a) the speed of the train (b) the time it will take to cross a bridge 500 m long.

- Watch Video Solution

14. A car travels along a straight line for first half time with speed $40 \mathrm{~km} / \mathrm{h}$ and the second half time with speed $60 \mathrm{~km} / \mathrm{h}$. Find the average speed of the car.
A. 45 kmph
B. 50 kmph
C. 52.5 kmph
D. 55 kmph

Answer: B

D Watch Video Solution

15. A body starts rolling over a horizontal surface with an initial velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Due to friction, its velocity decreases at the rate of
$0.05 \mathrm{~m} / \mathrm{s}^{2}$. How much time will it take for the body to stop?

D Watch Video Solution

16. A car travelling at $36 \mathrm{~km} / \mathrm{h}$ speeds upto
$72 \mathrm{~km} / \mathrm{h}$ in 5 seconds. What is its acceleration
? If the same car stops in 20 seconds, what is the acceleration?
17. The following is the distance - time table of a moving car.
(a) Use a graph paper to plot the distance travelled by the car versus the time .
(b) What was the car travelling at the greatest speed?
(c) What is the average speed of the car?
(d) What is the speed between
11.25 am and 11.40 am ?
(e) During a part of the journey , the car was
forced to slow down to $12 \mathrm{~km} / \mathrm{h}$. At what
distance did his happen?
$\left|\begin{array}{ll}\text { Time } & \text { Distance } \\ 10.05 \mathrm{am} & 0 \mathrm{~km} \\ 10.25 \mathrm{am} & 5 \mathrm{~km} \\ 10.40 \mathrm{am} & 12 \mathrm{~km} \\ 10.50 \mathrm{am} & 22 \mathrm{~km} \\ 11.00 \mathrm{am} & 26 \mathrm{~km} \\ 11.10 \mathrm{am} & 28 \mathrm{~km} \\ 11.25 \mathrm{am} & 38 \mathrm{~km} \\ 11.40 \mathrm{am} & 42 \mathrm{~km}\end{array}\right|$

D View Text Solution

18. A body is moving uniformly with a velocity
of $5 \mathrm{~m} / \mathrm{s}$. Find graphically the distance travelled by it in $5 s$.

- Watch Video Solution

19. Study the speed time graph of a body shown in Figure. and answer the following questions:
(a) What type of motion is represented by $O A$
?
(b) What type of motion is represented by $A B$?
(c) What type of motion is represented by $B C$?
(d) Find out acceleration of the body.
(e) Find out retardation of the body.
(f) Find out the distance travelled by the body
from A to B

D Watch Video Solution

20. In the above question, calculate
(i) distance travelled from O to A.
(ii) distance travelled from B to C.
(iii) total distance travelled by the body in 16 sec.

D Watch Video Solution

21. A ship is moving at a speed of $56 \mathrm{~km} / \mathrm{h}$.

One second later, it is moving at $58 \mathrm{~km} / \mathrm{h}$.

What is its acceleration?

D Watch Video Solution

22. A scooter acquires a velocity of $36 \mathrm{~km} / \mathrm{h}$ in

10 seconds just after the start. Calculate the acceleration of the scooter.

D Watch Video Solution

23. A racing car has a uniform acceleration of
$4 m / s^{2}$. What distance will it cover in $10 s$ after
start?
24. A body starts rolling over a horizontal surface with an initial velocity of $0.5 \mathrm{~m} / \mathrm{s}$. Due to friction, its velocity decreases at the rate of
$0.05 \mathrm{~m} / \mathrm{s}^{2}$. How much time will it take for the body to stop?

D Watch Video Solution

25. A train starting from rest moves with a uniform acceleration of $0.2 \mathrm{~m} / \mathrm{s}^{2}$ for 5 minutes. Calculate the speed acquired and the distance travelled in this time.
26. A bus was moving with a speed of $54 \mathrm{~km} / \mathrm{h}$
. On applying brakes, it stopped in 8 seconds .
Calculate the acceleration and the distance travelled before stopping.

- Watch Video Solution

27. A motor cycle moving with a speed of $5 \mathrm{~m} / \mathrm{s}$ is subjected to an acceleration of
$0.2 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the speed of the motor cycle after 10 second, and the distance travelled in this time.

- Watch Video Solution

28. The brakes applied to a car produce an acceleration of $6 \mathrm{~m} / \mathrm{s}^{2}$ in the opposite direction to the motion. If the car takes $2 s$ to stop after the application of brakes, calculate the distance it travels during this time.
29. A train starting from rest attains a velocity of $72 \mathrm{~km} / \mathrm{h}$ in 5 minutes. Assuming that the acceleration is uniform , find (i) the acceleration and (ii) the distance travelled by the train for attaining this velocity .

D Watch Video Solution

30. A car accelerates uniformly from $18 \mathrm{~km} / \mathrm{h}$
to $36 \mathrm{~km} / \mathrm{h}$ in 5 second. Calculate (i) the
acceleration and (ii) the distance covered by the car in that time .

D Watch Video Solution

31. Calculate the speed of the tip of second's hand of a watch of length 1.5 cm .
A. $0.16 \mathrm{~cm} / \mathrm{s}$
B. $0.12 \mathrm{~cm} / \mathrm{s}$
C. $1 \mathrm{~cm} / \mathrm{s}$
D. None

D Watch Video Solution

32. The length of minutes hand of a clock is

5 cm . Calculate its speed.
A. $7.8 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$
B. $7 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$
C. $8.7 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$
D. None

Answer: C

- Watch Video Solution

Oral Testing

1. Can distance be zero, even when displacement is not zero ?

(D)
2. What are the units of distance and displacement?

D Watch Video Solution
3. How is speed of a body related to its velocity?

D Watch Video Solution
4. What is the general formula for acceleration
?

- Watch Video Solution

5. An object travels $10 m$ in first 2 seconds and another 10 m in next 3 seconds. What is its average speed?

D Watch Video Solution
6. Out of distance and displacement, which one is scalar and which one is vector?

D Watch Video Solution

7. An object has moved through a distance.

Can it have zero displacement ? If yes, support
your answer with an example.

D Watch Video Solution
8. A body is moving uniformly along a circle . Is
it true?

D Watch Video Solution
9. Acceleration is a scalar . Do you agree ?

- Watch Video Solution

10. Which is the correct unit of acceleration ?
$k m / h, m-s, k m / h^{2}$

- Watch Video Solution

11. The acceleration of a body is zero, what is
the nature of its distance-time graph ?

D Watch Video Solution

12. The velocity time graph of a body is a straight line parallel to the time axis. Is the body at rest?
13. From velocity time graph of bodies
A and B, what do you infer about their initial velocities?

14. What is the quantity which is measured by
the area occupied below the velocity-time graph ?

- Watch Video Solution

15. How do you obtain speed of a body from its
distance time graph ?

- Watch Video Solution

16. The distance time graph of a body is a st.
line making an angle of 30° with time axis.

What is speed ?

D Watch Video Solution

17. The velocity time graph of a body is a straight line parallel to the time axis. Is the body at rest?
18. The slope of velocity time graph for body B
is more than that for body A . Which body has
smaller acceleration ?

- Watch Video Solution

19. What type of motion is the motion of tip of second's hand of a watch ? Is it uniform or accelerated?

Quiz Testing

1. (a) Can distance travelled by an object in motion be negative?
(b) Can displacement of an object in motion be zero or negative?

D Watch Video Solution

2. (a) Between two given positions, which is
fixed : distance or displacement?
(b) Between two given positions, which may be smaller : distance or displacement?

D Watch Video Solution

3. (a) An object completes one and a half revolution in a circle of radius r. What is the distance travelled?
(b) In the above case, what is the displacement?
4. (a) Out of speed and velocity, which one is scalar and which one is vector?
(b) Units of speed and velocity are different. Is it true?

D Watch Video Solution

5. (a) Which of the following is not a unit of
velocity $m s^{-1}, \mathrm{cms}^{-1}, k m h^{-2}, k m h^{-1}$?
(b) Which of the following is unit of acceleration $\mathrm{cm}^{-1} s, \mathrm{~cm}^{-2} s, k m h^{-2}, k m h^{-1}$

- Watch Video Solution

6. (a) A car travels first 30 km at a uniform speed of $20 \mathrm{~km} / \mathrm{h}$ and next 30 km at a uniform speed of $40 \mathrm{~km} / \mathrm{h}$. What is its average speed?
(b) A scooter acquires a speed of $36 \mathrm{~km} / \mathrm{h}$ in
$10 s$. What is its acceleration?

- Watch Video Solution

7. (a) The distance time graph of a body is parallel to the time axis. What does it indicate ?
(b) The distance time graph of a body coincide with time axis. What does it indicate?

- Watch Video Solution

8. (a) A body starting from rest moves with a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. What is velocity of the body after 10 sec ?
(b) A scooter moving with a velocity of
$18 \mathrm{~km} / \mathrm{h}$ is brought to rest in 5 s by applying brakes. What is the acceleration produced ?
A. $50 \mathrm{~m} / \mathrm{s},-1$ units
B. $25 \mathrm{~m} / \mathrm{s}, 0.9$ units
C. $50 \mathrm{~m} / \mathrm{s}, 0.1$ units
D. None of these

Answer: A

D Watch Video Solution
9. (a) The distance time graph of bodies
A and B are shown in Figure. Which body is moving faster than the other ?
(b) Both, A and B do not start moving from the origin. Is it correct ?

10. (a) The distance time graph of a body makes an angle of 30° with time axis, Figure.

What is its velocity?
(b) If the same makes an angle of 30° with distance axis, Figure, what is the velocity of the body?

Watch Video Solution
11. (a) Look at the velocity time graph of two bodies A and B, Figure. which body starts from rest and which body has some initial velocity?
(b) From Figure, which body is having greater acceleration ?

- Watch Video Solution

12. (a) The velocity time graph of two bodies
are shown in Figure. Slope of the graph for body A is positive. What does it signify ?

(b) The slope of velocity time graph of body B
is negative. What does it represent ?

D Watch Video Solution

Worksheet Testing Fill In The Blanks

1. Can an object be at rest as well as in motion at the same time? Explain eith illustration.

D Watch Video Solution
2. Between initial position and final position, displacement is but distance

D Watch Video Solution
3. A train travels 10 km in every hour, yet its speed may not be uniform because

- Watch Video Solution

4. The velocity of a body may be variable even
when it travels equal distances in equal intervals of time , howsoever small , if

- Watch Video Solution

5. A body, freely falling under gravity will have

uniform

- Watch Video Solution

Worksheet Testing

1. A bus decreases its speed from $72 \mathrm{~km} / \mathrm{h}$ to
$54 \mathrm{~km} / \mathrm{h}$ in 10 s . Calculate the acceleration of the bus.
2. A train is travelling at a speed of $108 \mathrm{~km} / \mathrm{h}$.

How much distance is it travelling every second?

D Watch Video Solution

3. The average speed of a person in driving to school is $30 \mathrm{~km} / \mathrm{h}$. On the return trip along the same rout, the average speed is $25 \mathrm{~km} / \mathrm{h}$.

What is the average speed for the round trip to the school?

- Watch Video Solution

4. Alka jogs from one end A to the other end
B of a srtaight $250 m$ road in 1 minute and 4 seconds. Then turns around and jogs 50 m back to point C in 30 seconds. Calculate average speed and average velocity in jogging from (i) A to B and (ii) A to C.
5. A train starting from rest moves with a uniform acceleration of $0.2 m / s^{2}$ for 5 minutes. Calculate the speed acquired and the distance travelled in this time.
A. $60 \mathrm{~m} / \mathrm{s}, 1000 \mathrm{~m}$
B. $40 \mathrm{~m} / \mathrm{s}, 2000 \mathrm{~m}$
C. $60 \mathrm{~m} / \mathrm{s}, 9000 \mathrm{~m}$
D. NONE

Answer: C
6. A train running at $108 \mathrm{~km} / \mathrm{h}$ is brought to a
halt in 2 minutes. Calculate the retardation produced by the application of brakes. Also, calculate the distance the train travels before stopping.
A. $-0.25 \frac{m}{s^{2}}, 1800 \mathrm{~m}$
B. $-0.5 \frac{m}{s^{2}}, 1000 \mathrm{~m}$
C. $-1.25 \frac{m}{s^{2}}, 100 \mathrm{~m}$
D. NONE

Answer: A

- Watch Video Solution

7. A ball thrown vertically upwards returns to
the thrower in 20 second. Calculate the velocity with which it was thrown and the maximum height attained by the ball. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
A. $100 \mathrm{~m} / \mathrm{s}, 200 \mathrm{~m}$
B. $10 \mathrm{~m} / \mathrm{s}, 500 \mathrm{~m}$

C. $100 \mathrm{~m} / \mathrm{s}, 500 \mathrm{~m}$

D. None

Answer: C

- Watch Video Solution

8. Calculate the speed of tip of minutes hand of a clock, whose length is 7 cm .

- Watch Video Solution

9. A stone of mass $50 g$ is being rotated in a
circle of radius 50 cm with a uniform speed of
$2 m / s$. What is the acceleration of the stone?
A. 10 units
B. 9 Units
C. 12 units
D. 8 Units

Answer: D

D Watch Video Solution
10. The ditance time graph of two bodies
A and B are shown in Figure. Observer the graph carefully and answer the following questions:
(i) Do both the bodies start from the same position?
(ii) Do they have uniform speed ?
(c) Does anybody have acceleration?
(iv) What is speed of A ?
(v) What is speed of B ?
(vi) Without actual calculation, can you infer
which body is travelling faster ?

D Watch Video Solution

11. The velocity time graphs of two bodies A and B are shown in Figure. Observe these graphs carefully and answer the following
questions:
(i) From the shape of graphs, what is nature of motion of A and B
(ii) What do you infer from the slopes of the graphs ?
(iii) What are the initial velocities of A and B ?
(iv) What is acceleration of A ?
(v) What is acceleration of B ?
(vi) What distance is travelled by B before coming to rest ?
(vii) At what time will the two bodies have
equal velocity?

D Watch Video Solution

12. Draw velocity time graph of a body which is moving with some initial velocity and a

constant acceleration.

D Watch Video Solution

13. Draw distance time graph of a body moving with constant acceleration.

D Watch Video Solution

14. Draw velocity time graph of a body moving with constant retardation.
15. A body A is at rest and body B is moving with a constant velocity.

Draw (i) distance time graph of A and B
(ii) velocity time graph of A and B.

D Watch Video Solution

16. A driver of a car A travelling at $54 \mathrm{~km} / \mathrm{h}$ applies the brakes and stops the car in 4 seconds. Another driver of car B travelling at
$36 \mathrm{~km} / \mathrm{h}$ applies the brakes and stops the car in 6 seconds. Plot speed versus time graphs for the two car. which of the cars travelled farther before stopping ?

D Watch Video Solution

Formative Assesment Paper Pen Test

1. Out of distance and displacement, which one
is vector ?
A. distance
B. displacement
C. both distance and displacement
D. neither distance nor displacement

Answer: B

D Watch Video Solution

2. An object may appear to be moving to one person and the same object may appear to be at rest to another person. This statement is
A. always correct
B. always false
C. sometimes correct and sometimes false
D. cannot say.

Answer: A

D Watch Video Solution

3. A person moves through 100 m in going from A to B and travels the same distance in returning from B to A. This displacement is
A. 100 m
B. 200 m
C. $100 \sqrt{2} m$
D. zero

Answer: D

D Watch Video Solution

4. A particle is moving in a circle of diameter

10 m . The distance covered by it on completing

2 revolutions is
A. $40 m$
B. $20 m$
C. $20 \pi m$
D. zero

Answer: C

- Watch Video Solution

5. Units of uniform speed and non uniform speed are
A. $m / s, m / s^{2}$
B. $m / s, m^{2} / s$
C. $m / s, m / s$
D. $m-s, m / s$

Answer: C

D Watch Video Solution
6. Velocity of a body is variable when
A. only speed of the body changes
B. only direction of the body changes
C. both the speed and direction of the body change

D. either the speed and direction or both

change

Answer: D

D Watch Video Solution

7. $A B$ is diameter of circle of radius r. A particle

 starting from A completes two and half revolution. Calculate the distance travelled bythe particle and its displacement

- Watch Video Solution

8. Unit of time occurs twice in unit of acceleration. Why?

D Watch Video Solution

9. A train is moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$.

Calculate the distance it travel in 15 sec .

D Watch Video Solution
10. In the defination of uniform speed, what is
the significance of the words 'howsoever small the interval may be' ?

D Watch Video Solution

11. Displacement may be zero even when
distance travelled is not zero ? Is not true ? Is
the reverse also true ? Give examples.
12. A body thrown vertically upwards with a certain velocity returns to the ground. What is its displacement and distance travelled ? How are the two affected when velocity of projection is doubled?

D Watch Video Solution

13. When will you say a body is in (i) uniform acceleration ? (ii) non-uniform acceleration ?
14. (a) In uniform motion, the path of an object can be a straight line, curved line, zig zag line or even a circle. Why ?
(b) What does odometer of an automobile measure ?

D Watch Video Solution

15. (a) The time interval between transmission and reception of a signal at radar station is $30 \mu s$. What is the distance of the intercepting
plane from the station?
(b) Define uniform velocity and uniform acceleration. What are their units ?

D Watch Video Solution

Formative Assessment 1 B Oral Testing Exercise

1. The distance time graph of a body is a st.
line making an angle of 30° with time axis.

What is speed ?

Paper Pen Test

1. (a) The distance time graph of a body is parallel to the time axis. What does it indicate ?
(b) The distance time graph of a body coincide with time axis. What does it indicate?
A. in uniform motion
B. at rest
C. in uniformly accelerated motion
D. in zig zag motion.

Answer: B

D Watch Video Solution

2. The velocity time graph of a body is a straight line parallel to the time axis. Is the body at rest?
A. at rest
B. having uniform acceleration
C. having zero acceleration
D. having non uniform acceleration.

Answer: C

D Watch Video Solution

3. Which of the following graphs represent a uniformaly accelerated motion?

A.

Answer: D

- Watch Video Solution

4. Which of the following graphs represent abody at rest?

Answer: C

D Watch Video Solution

5. A body P moves with unifrom velocity and
another body Q moves with uniform
retardation. The correct velocity time graph of
the two bodies is

A.

B.
(b)
C.

(c)
D.

Answer: A
6. A body A starts from rest and moves with a uniform acceleration along a straight line.

Another body B has some initial velocity and moves with larger acceleration than that of A.

The correct velocity time graphs

A.
(a)

Answer: C

7. (a) A body starting from rest moves with a constant acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$. What is velocity of the body after 10 sec ?
(b) A scooter moving with a velocity of $18 \mathrm{~km} / h$ is brought to rest in $5 s$ by applying brakes. What is the acceleration produced ?

- Watch Video Solution

8. The distance (s) travelled by a body in time
(t) is given by $s=u t+\frac{1}{2} a t^{2}$.

How is the formula modified when
(i) body starts from rest, (ii) motion of body is uniform.

D Watch Video Solution

9. A body is thrown vertically upwards with a velocity of $98 m / s$. If $g=9.8 m / s^{2}$, when will
it reach its highest point ? What will be its maximum height ?
10. The velocity time graph of a body represented as shown in Fig. Calculate the distance by the body in 5 second.

- Watch Video Solution

11. Draw a diagram to represent the direction of motion of a body moving along a circular
path. Justify why such a motion is accelerated motion.

D Watch Video Solution

12. A body is dropped vertically from a certain height. Draw velocity time graph of the body.

- Watch Video Solution

13. The distance time graph of a body is as
shown in Figure. In which portion
(i) velocity is maximum (ii) velocity is minimum
(iii) velocity is zero?

D View Text Solution

14. The speed time graph of a body is as shown in Figure. Calculate
(i) acceleration of body, (ii) retardation of body, (iii) total distance travelled by the body.
15. Using velocity time graph, establish the relation $s=u t+\frac{1}{2} a t^{2}$, where the symbols have their usual meanings.

- Watch Video Solution

Ncert Multiple Choice

1. A particle moves in a circle of radius R. In
half the period of revolution its displacement is and distance covered is
A. Zero
B. πr
C. $2 r$
D. $2 \pi r$

Answer: (c)

D Watch Video Solution
2. A body is thrown vertically upward with
velocity u, the greatest height h to which it will rise is,
A. u / g
B. $u^{2} / 2 g$
C. u^{2} / g
D. $u / 2 g$

Answer: B

D Watch Video Solution

3. The numerical ratio of displacement to the

 distance covered is alwaysA. always less than 1
B. always equal to 1
C. always more than 1
D. equal or less than 1

Answer: D

D Watch Video Solution
4. If the displacement of an object is proportional to square of time, then the object moves with
A. uniform velocity
B. uniform acceleration
C. increasing acceleration
D. decreasing acceleration

Answer: B

- Watch Video Solution

5. From the given $v-t$ graph (Figure), it can be inferred that the object is

A. in uniform motion
B. at rest
C. in non-uniform motion

D. moving with uniform acceleration

Answer: A
6. Suppose a boy is enjoying a ride on a merry-go-round which is moving with a constant speed of $10 \mathrm{~ms}^{-1}$. It implies that the boy is
A. at rest
B. moving with no acceleration
C. in acceleration motion
D. moving with uniform velocity

Answer: C

D Watch Video Solution
7. Area under a $(v-t)$ graph represents a physical quantity which has the unit
A. m^{2}
B. m
C. m^{3}
D. $m s^{-1}$

Answer: B

D Watch Video Solution
8. Four cars A, B and C are moving on a levelled road. Their distance versus time graphs are shown in Fig. Choose the correct statement

A. Car A is fatser than Car D.
B. Car B is the slowest.

C. Car D is faster than Car C.

D. Car C is the slowest.

Answer: B

- Watch Video Solution

9. Which of the following figures represents
uniform motion of a moving object correctly ?

Answer: A
(Watch Video Solution
10. What does the slope of a velocity-time graph indicate?
A. the distance
B. the displacement
C. the acceleration
D. the speed

Answer: C

D Watch Video Solution

11. In which of the following cases of motions,
the distance moved and the magnitude of displacement are equal ?
A. If the car is moving on straight road
B. If the car is moving on circular path
C. The pendulum is moving to and for
D. The earth is moving around the Sun

Answer: A

- Watch Video Solution

1. Statement I: A body can have acceleration even if its velocity is zero at a given instant .

Statement II: A body is momentarily at rest when it reverses its direction of velocity.

D Watch Video Solution

2. Can the motion of a body be accelerated even when it is moving unifromly?
3. An object has moved through a distance.

Can it have zero displacement ? If yes, support your answer with an example.

- Watch Video Solution

4. Draw distance time graph of a body moving
with :
(i) positive acceleration
(ii) negative acceleration.

- Watch Video Solution

5. A train starting from one station accelerates
uniformly over a distance of 0.5 km , moves
with a constant speed over 35 km , retards
uniformly over the last 10 km coming to a stop
at another station 50 km away from the first station. Draw velocity distance graph of the train.

- Watch Video Solution

6. (a) The velocity time graph of two bodies are
shown in Figure. Slope of the graph for body
A is positive. What does it signify ?

(b) The slope of velocity time graph of body B is negative. What does it represent?

- Watch Video Solution

7. Explain briefly the concepts of velocity and acceleration.

D Watch Video Solution

8. How do you interpret the two graphs shwon in Figure?

(a)

(b)
9. A body is decelerating uniformly for 5 second to a constant speed and moves with this speed for 30 seconds, accelerates for 10 sec to acquire the speed it had in the beginning. Draw velocity time graph of the body.

D Watch Video Solution

10. Have you ever experienced that the train in
which you are sitting appears to move while it
is actually at rest ? If yes, explain why. What do
you learn from this experience?

D Watch Video Solution

11. A ball thrown vertically upwards with a speed of $19.6 \mathrm{~ms}^{-1}$ from the top of a tower returns to earth in $6 s$. Calculate the height of the tower.
12. On turning a corner, a motorist rushing at
$44 \mathrm{~ms}^{-1}$ finds a child on the road 100 m away.

He applies the brakes so as to stop the motorcar within $1 m$ of the child. Calculate the time required to stop.

D Watch Video Solution

13. Brakes are applied to a train travelling at
$72 \mathrm{~km} / \mathrm{h}$. After passing over 200 m , its velocity reduces to $36 \mathrm{~km} / \mathrm{h}$. At the same rate of
retardation, how much further will it go before
it is brought to rest ?

D Watch Video Solution

14. A girl moves along the boundary of a square field of side 20 m in 80 s . What will be
the magnitude of displacement at the end of $200 s$? Also calculate average velocity.

D Watch Video Solution

15. Draw velocity time graph of a body
(i) moving with a uniform retardation
moving with a variable acceleration.

D Watch Video Solution

16. Figure is the distance - time graph of an
object . Do you think it represents a real situation ? If so, why ? If not, why not?
17. What is uniform circular motion ? Show that it is an accelerated motion inspite of being uniform.

D Watch Video Solution

18. Automobiles are fitted with a device that
shows the distance travelled. Such a device is
known as an odometer. A car is driven form

Bhubneshwar to New Delhi. The difference
between the final reading and initial reading
of the odometer is 1850 km . Read the above
passage and answer the following questions :
(i) Is the displacement between Bhubneshwar and New Delhi 1850 km ?
(ii) How can you find the displacement between Bhubneshwar and New delhi ?

What is more relevant to your journey : distance or displacement ? Justify.

D Watch Video Solution

19. The speed time graph of a body is shown in

Figure. Observer the graph carefully and
answer the following :
(i) What kinds of motion are represented by
$O P, P Q$ and $Q R$?
(ii) Calculate acceleration of the body for the first 2 sec .
(iii) Calculate retardation of body from $8 s$ to
$14 s$.

20. Establish the eqaution for position time relation (i.e., $s=u t+\frac{1}{2} a t^{2}$) using velocity time graph. How is the equation modified when
(i) a body is just dropped from some height,
(ii) a body is thrown vertically upwards with some velocity?

- Watch Video Solution

21. (a) Draw distance time graph when a body
is at rest. How is the graph modified when the body is moving with a uniform velocity ?
(b) A car moving at $36 \mathrm{~km} / \mathrm{h}$ is brought to rest in 0.1 km . What is the retardation?

- Watch Video Solution

22. Use graphical method to derive the relation $v^{2}-u^{2}=2 a s$, where the symbols have their usual meanings.
23. A person goes to market, makes purchases and comes back at a constant slower speed.

Draw displacement-time and velocity time graphs of the person.

D Watch Video Solution

24. State velocity-time relation in uniformly accelerated motion. Use graphical method to obtain this relation.

Watch Video Solution

