©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - PRADEEP PHYSICS

 (HINGLISH)

 (HINGLISH)}

WORK AND ENERGY

Solved Problems

1. A boy pushes a book by applying a force of

40N. Fin the work done by this force as the
book is displaced through 25 cm along the path.

D Watch Video Solution

2. A ball of mass 1 kg thrown upwards, reaches
a maximum height of 4 m . Calculate the work
done by the force of gravity during the vertical displacement. $\left(g=10 m / s^{2}\right)$.

D Watch Video Solution

3. Find the amount of work done by a labor who carrier n bricks of m kilogram each to the roof of a house h meter high by climbing a ladder.

- Watch Video Solution

4. An engine pulls a train 1 km over a level
track. Calculate the work done by the train given that the frictional resistance is $5 \times 10^{5} N$.
5. A man weighing 70 kg carries a weight of 10kg on the top of a tower 100 m high. Calculate the work done by the man. $\left(g=10 m / s^{2}\right)$

D Watch Video Solution
6. How fast should a man of mass 60 kg run so
that his kinetic energy is 750 J ?
7. Find the mass of the body which has 5 J of kinetic energy while moving at a speed of $2 m / s$.
A. $2 k g$
B. 2.5 kg
C. 3 kg

D. 3.5 kg

8. A player kicks a ball of mass 250 g at the centre of a field. The ball haves his foot with a speed of $10 \mathrm{~m} / / \mathrm{s}$ Find the work done by the player on the ball.

D Watch Video Solution

9. A body of mass 5 kg initially at rest, is subjected to a force of 20 N . What is the kinetic
energy acquired by the body at the end of half

minute?

D Watch Video Solution

10. A bullet of mass 20 g moving with a velocity of $500 \mathrm{~m} / \mathrm{s}$, strikes a free and goes out
from the other side with a velocity of $400 \mathrm{~m} / \mathrm{s}$. Calculate the work done by the bullet in joule in passing through the tree.
11. A body of mass 4 kg , is taken from a height of 5 m to a height 10 m . Find increase in potential energy.

- Watch Video Solution

12. An object of mass 1 kg is raised through a
height h. Its potentil energy increases by 1 J . Find the height h.
13. A 5 kg ball is thrown upwards with a speed
of $10 \mathrm{~m} / \mathrm{s}$. (a) Find the potential energy when
it reaches the highest point. (b) Calculate the maximum height attained by it.

D Watch Video Solution

14. A 5 kg ball is dropped from a height of 10 m .
(a) Find the initial potential energy of the ball.
(b) Find the kinetic energy, just before it reaches the ground and (c) Calculate the velocity before it reaches the ground.

- Watch Video Solution

15. A body is thrown up with a kinetic energy of 10 J . If it attains a maximum height of 5 m , find the mass of the body.

- Watch Video Solution

16. A rocket of maxx $3 \times 10^{6} \mathrm{~kg}$ takes off from a
launching pad and acquires a vertical velocity of $1 \mathrm{~km} / / \mathrm{s}$ and an altitude of 25 km . Calculate its
(a) potential energy (b) kinetic energy.
17. A boy of mass 40 kg runs up a flight of 50
steps,each of 10 cm high, in 5 s , Find the power developed by the boy,
A. 200 W
B. 300 W
C. 400 W
D. 500 W

- Watch Video Solution

18. A car of mass 2000 kg is lifted up a distance
of 30 m by a crane in 1 min . A second crane does the same job is 2 min . What is the power applied by each crane? Do the crane? Do the cranes consume the same or different amount of fuel? Neglect power dissipation against friction.
19. What should be the power of an engine required to lift 90 metric tonnes of coal per hour from a mine whose depth is 200 m ?

D Watch Video Solution

20. How much time does it take to perform

500J of work at a rate of 10W?
A. $20 s$
B. $30 s$
C. $40 s$
D. 50 s

Answer: D

D Watch Video Solution

21. Calculate the units of energy consumed by

100W electric bulb in 5 hours,

D Watch Video Solution
22. A lift is designed to carry a load of 4000 kg
through 10 floors of a building, avarage 6 m
per floor, in 10 s . Calculate the power of the lift.

D Watch Video Solution

Ncert Questions

1. A force of 7 N acts on an object. The
displacement is, say 8 m , in the direction of the
force, Let us take it that the force acts on the
object throughout the displacement. What is
the work done in this case?

D Watch Video Solution

2. When do we say that work is done?

D Watch Video Solution
3. Write an expression for the work done when
a force is acting on an object in the direction of its displacement.

- Watch Video Solution

4. Define 1 J of work.

- Watch Video Solution

5. A pair of bullocks exerts of work done on an onject when a force of 1 N displaces it by 1 m along the line of action of the force.

- Watch Video Solution

6. What is the kinetic energy of an object ?

- Watch Video Solution

7. Write an expression for kinetic energy of an object.

D Watch Video Solution

8. The kinetic energy of an object of mass m moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ is 25 J . What
will be its kinetic energy when its velocity is doubled ? What will be its kinetic energy when its velocity is increased three times ?

9. What is power?

- Watch Video Solution

10. Define 1 W of power.

D Watch Video Solution

11. A lamp consumes 1000 J of electrical energy
is 10 s . What is its power ?
12. Define avarage power.

D Watch Video Solution

13. Look at the activites listed below. Reason out whether or not work is done in the light of
your understanding of the term 'work'. (a)

Suma is swimming in a pond. (b) A donkey is
carrying a load on its back. (c) A wind -mill is
lifting water from a well. (d) A green plant is
carrying out photosynthesis. (e) An engine is
pulling a train. (f) Food grains are getting drired in the Sun. (g) A saliboat is moving due to wind energy.

D Watch Video Solution

14. An object thrown at a certain angle to the ground moves in a curved path and falls back to the ground. The intial and the final points of the path object lie on the same horizontal
line. What is the work done by the force of gravity on the object ?

D Watch Video Solution

15. A battery lights a bulb. Describe the energy changes involved in the process.

- Watch Video Solution

16. Certain force acting on a 20 kg mass
changes its velocity from $5 m / s \rightarrow 2 m / s$.
calculate the work done by the force.

D Watch Video Solution

17. A mass of 10 kg is at a point A on a table. It
is moved to a point B. If the line joining A and
B is horizontal, what is the work done on the
object by the gravitational force ? Explain your answer.
18. The potential energy of a freely falling object decreases progressively. Does this violate the law of conservation of energy ? Why?

D Watch Video Solution

19. What are the verious energy
transformations that occur when you are riding a bicycle ?
20. Does the transfer of energy take palce when you push a huge rock with all your might and fail to move it ? Where is the energy you spend going ?

- Watch Video Solution

21. A certain household has consumed 250 units of energy during a month. How much energy is this in joules ?
A. $9 \times 10^{8} J$
B. $9 \times 10^{6} J$
C. $0.9 \times 10^{6} \mathrm{~J}$
D. $0.9 \times 10^{8} \mathrm{~J}$

Answer: A

D Watch Video Solution

22. An object of mass 40 kg is raised to a height of 5 m above the ground. What is its potential energy ? If the object is allowed to
fall, find its kinetic energy when it is half - way down.

D Watch Video Solution

23. What is the work done by the force of gravity on a satellite moving round the Earth ? Justify your answer.

D Watch Video Solution

24. Can there be displacement of an object in
the absence of any force acting on it ? Think.
Discuss this question with your friends and teacher.

- Watch Video Solution

25. A person holds a bundle of hay over his
head for 30 minutes and gets tired. Has he done some work or not ? Justify your answer.
26. An electric heater is rated 1500W. How much energy does it use in 10 hours ?
A. 12 units
B. 20 units
C. 15 units
D. 10 units

Answer: C

- Watch Video Solution

27. Illustrate the law of conservation of energy
by discussing the energy changes which occur when we draw a pendulum bob to one side and allow it to oscillate. Why does the bob eventually come to rest ? What happens to its energy eventually? Is it a violation of the law of conservation of energy ? \}

D Watch Video Solution

28. An object of mass m is moving with a constant velocity v How much work should be
done on the object in order to bring the object to rest ?

- Watch Video Solution

29. Calculate the work required to be done to
stop a car of 1500 kg moving with a speed of
$60 \mathrm{~km} / \mathrm{h}$.

- Watch Video Solution

30. In each of the following, a force, F is acting on an object of mass, m. The direction of displacement is from west to east shown by the longer arrow. Observe the diagrams carefully and state whether the work done by the force is gegative, positive or zero.

(a)

D Watch Video Solution

31. Soni says that the acceleration in an object could be zero even when several forces are acting on it. Do you agree with her? Why ?

- Watch Video Solution

32. find the energy in kWh consumed in 10 hours by four devices of power 500 W each.

- Watch Video Solution

33. A freely falling object eventually stops on
reaching the ground. What happens to its kinetic energy ?

- Watch Video Solution

Short Answer Questions

1. A rocket is moving up with a velocity v if the
velocity of this rocket is suddenly tripled, what
will be the ratio of two kinetic energies ?

Watch Video Solution

2. Avinash can run with a speed of $8 \mathrm{~m} / / \mathrm{s}$ against the frictional force of 10 N , and Kapli can move with a speed of $3 \mathrm{~m} / / \mathrm{s}$ against the frictional force of 25 N . Who is more powerful and why?
A. Kapil is more powerful.
B. Avinash is more powerful.
C. Both have some power.
D. Cannot be determined

Answer: B

D Watch Video Solution

3. A boy is moving on a straight road against a frictional force of 5 N . After travelling a distance of 1.5 km , he forgot the correct path at a round about, of radius 100 m . However, he moves on the circular path for one and half cycle and then he moves forward upto 2.0 km .

Calculate the work done by him.

D Watch Video Solution
4. Can any object have mechanical energy even if it momentum is zero? Explain.

5. Can any object have mechaincal energy even

if it momentum is zero ? Exaplain.

D Watch Video Solution

6. The power of a motor pump is 2 kW . How much water per minute the pump can raise to a heiht of $10 \mathrm{~m} ?\left(\right.$ Given $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D Watch Video Solution

7. The weight of a person on a plannet A is about half that on the Earth. He can jump upto 0.4 m height on the surface of the Earth. How high can be jump on the planet A ?

D Watch Video Solution

8. The velocity of a body moving in a straight
line is increased by applying a constant force
F, for some distance in the direction of the motion. Prove that the increase in the kinetic
energy of the body is equal to the work done by the force on the body.

D Watch Video Solution

9. Is it possible that an object is in the state of accelerated motion due to external force acting on it, but no work is being done by the force. Explain it with as example.
10. A ball is dropped from a height of 10 m . If
the energy of the ball reduces by 40% after striking the ground, how much high can the ball bounce back ? $\left(g=10 m / s^{2}\right)$
A. 4 m
B. 8 m
C. 6 m
D. 5 m

Answer: C
11. If an electric iron of 1200 W is used for 30 minutes everyday, find electric energy consumed in the month of Aprill.

D Watch Video Solution

Long Answer Questions

1. A light and a heavy object have the same momentum. Find out the ratio of their kinetic
energies. Which one has a larger kinetic energy?

D Watch Video Solution

2. An automobile engine propels a 1000 kg car
(A) along a levelled road at a spedd of 36
$\mathrm{km} / / \mathrm{h}$. Find the power if the opposing
frictional force is 100 Now, suppose after travelling a distance of 200 m , this car collides
with another stationary car (B) of same mass
and comes to rest. Let its engine also stop at
the same time. Now car (B) starts moving on the same level road without getting its engine started. Find the speed of the car (B) just after the collision.

D Watch Video Solution

3. A girl having mass of 35 kg sits on a trolley of mass 5 kg . The trolley is given an initial velocity of $4 \mathrm{~m} / / \mathrm{s}$ by applying a force. The trolley comes to rest after traversig a distance of 16 m . (a) How much work is done on the
trolley? (b) How much work is done by the girl
?

D Watch Video Solution

4. Four men light a 250 kg box to a height of

1 m and hold it without raising or lowering it.
(a) How much work is done by the men in
lifting the box? (b) How much work do they do in just holding it ? (c) why do they get tired while holding it ? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
5. What is power ? How do you differentiate killowatt from kilowatt hour ? The Jog Falls in

Karnataka state are nearly 20 m high. 2000 tonnes of water falls from it in a minute.

Calculate the equivalent power if all this energy can be utilized ? $\left(g=10 m / s^{2}\right)$

- Watch Video Solution

6. How is the power related to the speed at which a body can be lifted ? How many
kilograms will a man working at the power of

100 W, be able to lift at constant speed of $1 \mathrm{~m} /$ svertically $?\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

D Watch Video Solution

7. Define watt. Express kilowatt in terms of joule per second. A 150 kg car engine develops

500 W for each kg. What force does it exert in moving the car at a speed of $20 \mathrm{~m} / / \mathrm{s}$?
8. Compare the power at which each of the following is moving upwards against the force of gravity? (giveng $=10 \mathrm{~m} / \mathrm{s}^{2}$) (i) a butterfly of mass 1.0 g that flies upward upward at a rate of $0.5 \mathrm{~m} / / \mathrm{s}$. (ii) a 250 g squirrel climbing up on a tree at a rate of $0.5 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

Very Short Answer Question

1. How is work done by a force meaured ?

- Watch Video Solution

2. When is work done by a force positive ?

- Watch Video Solution

3. When is work done by a force negative ?

- Watch Video Solution

4. When is work done by a force zero?
5. Is work a scalar quantity or a vector quantity
?

- Watch Video Solution

6. Is a person doing any work by holding a suitcase?

D Watch Video Solution
7. what are the units of work and energy?

- Watch Video Solution

8. Is energy a vector quantity ?

- Watch Video Solution

9. Name two forms of mechanical energy.

- Watch Video Solution

10. By now much will the kinetic energy of a body increase if its speed is doubled?

- Watch Video Solution

11. A body is thrown vertically upwards ? Its
velocity goes on decreasing. What happens to
its kinetic energy as its velocity becomes zero
?

D Watch Video Solution

12. Flowing water can rotate a turbine. What type of energy is used up by the turbine?

- Watch Video Solution

13. What type of energy is possessed by a cricket ball just before being caught by a fielder?

- Watch Video Solution

14. Explain by a an example that a body may possess energy when it is not in motion.

- Watch Video Solution

15. How is energy stored in a clock?

- Watch Video Solution

16. Give an example where potential energy is acquired by a body due to change of its shape.

- Watch Video Solution

17. Name the type of energy possessed by a reised hammer.

- Watch Video Solution

18. Name the type of energy possessed by a stretched rabber band.
19. A cell converts one form of energy into another. Name the two forms.

D Watch Video Solution

20. Name the device which converts electrical energy into mechanical energy.

- Watch Video Solution

21. Name a mechine that transforms muscular energy into useful mechanical work.

D Watch Video Solution

Short Answer Questions 2 Marks

1. What do the mechines need fro their working ?
2. Why do some enignes require fuels like petrol and diesel ?

- Watch Video Solution

3. How does a bullet pierce a target ?

- Watch Video Solution

4. How does the wind move the blades of a
wind- mill ?

Watch Video Solution

5. How much energy is possessed by a moving body by virtue of its motion?

D Watch Video Solution

6. What is the difference between potential energy and kinetic energy?

D Watch Video Solution

7. What is meant by the term potential energy
? Give its two examples.

- Watch Video Solution

8. A nail becomes warm when it is hammered into a plank. Explain why?

- Watch Video Solution

9. When an arrow is shot from a bow, it has
kinetic energy. From where does it get the
kinetic energy ?

D Watch Video Solution

10. What type of energy is stored in the spring of a watch?

D Watch Video Solution

Short Answer Question 3 Marks

1. What do you mean by work ? Give its scientific conception.

D Watch Video Solution

2. What is the work done by a constant force ?

When is it positive, negative or zero ?

- Watch Video Solution

3. What do you understant by the term energy
? Given its scientific conception.

- Watch Video Solution

4. How does an object possesing energy peerform work? What is the unit of energy?

D Watch Video Solution

5. Define kinetic energy. Give some examples of bodies possessing kinetic energy.

D Watch Video Solution

6. What do you mean by the term potential energy ? Give some examples of bodies possessing potential energy?

D Watch Video Solution

7. Name a few forms of energy and their transformation into each other.

D Watch Video Solution
8. What do you mean by the law of conservation of energy?

- Watch Video Solution

9. What do you mean by power of an agent ?

Give an expression for power.

D Watch Video Solution

Long Answer Question 3 Marks

1. What do you mean by kinetic energy ? Derive an expression for the kinetic energy of an object of mass m moving with velocity, v.
2. Define potential energy. Derive an expression for the potential energy of a body of mass m, at a height h above the surface of the Earth.

D Watch Video Solution

3. Prove that the energy remains constant in
case of a freely falling body.
4. why do living beings and machines need energy ?

D Watch Video Solution

2. When a constant force is applied to a body
moving with constant acceleration, is the power, of the force constant ? If not, how would force have to very with speed for the power to be constant ?

- Watch Video Solution

3. A light and a heavy body have the same kinetic energy. Which one of the two will have greater momentum ?

- Watch Video Solution

4. A light body and a heavy body have the same momentum, which of the two bodies will have greater kinetic energy ?

Watch Video Solution

5. A lorry and a car, moving with the same kinetic energy are brought to rest by application of brakes which provied equal retarding forces. Which one of them will come to rest in a shorter distance?

- Watch Video Solution

6. How do you differentiate between energy and power?

- Watch Video Solution

7. Can a body have energy without having momentum ?

D Watch Video Solution
8. Is it possible to have a situation where mechnial energy (E) - potential energy $\left(E_{p}\right)$ is negative, i.e., $\left(E-E_{p}\right)<0$?

D Watch Video Solution

Value Based Questions

1. Many people debate about whether there is
a God, or what God is. Is God and individual personality, sitting up in heaven listening to and greating out request, or is God simply all the energy that exists in the Universe, or is God simply nature or the laws of nature ?
2. In Physics, energy is an indirectly observed quantity that is often understood as the ability of a physical system to do work on other physical system. However, this must be
understood as simplified definition as we shall
come to know in higher classes that not all
energy can perform work. (a) How did the concept of energy emerge ? (b) How much electric energy is generated in a typical
lightning strike? What are the forms to which
this energy gets converted ? (c) What is the kinetic energy of a passenger seated in a
moving plane : (i) with respect to the place (ii) with respect to the Earth.

D Watch Video Solution

3. The recent horrific storm surge flooding

New Jersey and New york in US by Hurricane

Sandy was almost perfectly predicted well in advance, but was more extreme than the average person might expect from a minimal hurricane. There is a metric that quantifies the energy of a storm based on how far out
tropical - storm force winds extend from the centre, known as Integrated Kinetic Energy (IKE).
(i) What is Sandy's ranking in terms of $I K E$ among all the hurricanes witnessed so far ?
(ii) What is the $I K E$ of sandy?
(iii) How was sandy different from Hurricane Katrina ?
(iv) Which human value did Sandy generate among the people round the globe?

D Watch Video Solution

4. The global climate has always fluctuated.

Millions of years ago, some parts of the world
that are now quite warn, were covered with ice, and over recent centuries, average temperature have risen and fallen in cycles.

What is new, however, is that current and
future climate change will be caused not just
by natural events but also by activities of
human beings. Suggest three simple ways to help save our planet.

1. When is gravitational potential energy of a body positive?

- Watch Video Solution

2. What happens to their gravitational potential energy when firefighters slide fire pole?
3. The kinetic energy of a freely falling ball is not conserved. Why is this not a violation of the law of conservation of energy?

- Watch Video Solution

4. When a ball is hung from a vertical spring, it stretches the spring. As it drops, it loses gravitational potential energy, but this does not at all show up as kinetic energy. What
happens to the gravitational potential energy
?

D Watch Video Solution

5. A block of wood loses 100 J of gravitational potential energy as it slides down a ramp. If it has 90 J of kinetic energy at the bottom of the ramp, what can you conclude ?
6. Decribe the energy transformations that occur as the Earth orbits the sun in its ellipitcal orbit.

D Watch Video Solution

7. You lift a box weighing 200 N from the floor to a shelf 1.5 m above. (a) What is the maximum work done by the force you exert on
the box? (b) When would the work be greater then this maximum ?
8. Why does a saw become warm when it is used to cut a log of wood ? State the energy transformation taking place.

- Watch Video Solution

9. Find the power of an engine which lifts 90 metric tonnes of coal per hour from a depth of 200m.
10. Distinguish between energy and power.

D Watch Video Solution

11. What is the commercial unit of electric energy? Obtain the relation between this unit and the SI unit of energy.

D Watch Video Solution

12. You can decrease the kinetic energy of an
object as much as you want. You can do so by either reducing mass by half or reducing the speed by half. Which option would you pick, and why?

- Watch Video Solution

13. An automobile travelling with a speed $60 \mathrm{~km} / \mathrm{h}$, can brake to stop within a distance
of 20 m . If the car is going twice as fast i. e.,
$120 \mathrm{~km} / \mathrm{h}$, the stopping distance will be

D Watch Video Solution

14. What do you mean by power ? Derive a relation between power and velocity.

- Watch Video Solution

15. What ids gravitational potential energy ?

Obtain an expression for it in case of a body of
mass m and at a height h above the Earth's surface.

D Watch Video Solution

16. A tank of size $5 \mathrm{~m} \times 5 \mathrm{~m} \times 5 \mathrm{~m}$ is full of water and built on ground. Find the potential energy of the water in the tank.

- Watch Video Solution

17. 300 Jof work is done in slide a 2 kg block up
an inclined plane of height 10 m . 'Taking $\mathrm{g}=10$ $\mathrm{m} / / \mathrm{s}^{\wedge}(2)$, work done against friction is

- Watch Video Solution

18. Many people debate about whether there
is a God, or what God is. Is God and individual
personality, sitting up in heaven listening to
and greating out request, or is God simply all
the energy that exists in the Universe, or is God simply nature or the laws of nature?

D Watch Video Solution

19. (a) A student throws a ball vertically upward so tha it just reaches the height of
window on th second floor of a dormitory. At
the same time the ball is thrown upward, a student at the windoe drops a ball. Are the mechanical energies of the ball the same at
half the height of the window ? Exaplain (b)

What does work- energy theorem state?

D Watch Video Solution

20. Two students who weigh the same start at
the same ground floor location at the same time to go to the same classrooms on the third floor by different routes. If they arrive at different times, which student will have expended more power? Explain.
21. The concept of energy and its trnasformation is useful in explaining and predicting most natural phenomena. (a) What is the concept of energy in the context of chemistry ? (b) How do we associate energy with biology ? (c) What is the roal of energy transformations in geology ? (d) What role does energy play in life?
22. A bullet of mass 20 g moving with a velocity of $500 \mathrm{~m} / \mathrm{s}$, strikes a free and goes out
from the other side with a velocity of $400 \mathrm{~m} / \mathrm{s}$. Calculate the work done by the bullet in joule in passing through the tree.

D Watch Video Solution

23. (a) Why can we not associate a potential energy with the frictional force as we did with
the gravitational force ? (b) A uniform chain of
mass m and length I is lying on a table with
$(1 / 4)$ of its length hanging freely from the edge. Find the amount of work required to be done in dragging the chain on the table completely.

D View Text Solution

24. What is power? How do you differentiate killowatt from kilowatt hour ? The Jog Falls in

Karnataka state are nearly 20 m high. 2000 tonnes of water falls from it in a minute.

Calculate the equivalent power if all this energy can be utilized ? $\left(g=10 m / s^{2}\right)$

D Watch Video Solution

Multiple Choice Questions

1. When a body falls freely towards the earth,
then its total energy
A. Increases
B. decreases

C. remains constant

D. first increases and then decreases

Answer: C

D Watch Video Solution

2. A car is accelerated on a lavelled road and attains a velocity 4 times of its initial velocity.

In this process, the potential energy of the car
A. does not change
B. becomes twice that of initial
C. becomes 4 times that of initial
D. becomes 16 times that of initial

Answer: A

D Watch Video Solution

3. In case of negative work, the angle between
the force and displacement is
A. 0°
B. 45°
C. 90°
D. 180°

Answer: D

D Watch Video Solution

4. An iron sphere of mass 10 kg has the same
diameter as an aluminium sphere of mass 3.5
kg . Both spheres are dropped simultaneously
from a tower. When they are 10 m above the ground, they have the same
A. acceleration
B. momenta
C. potetnial energy
D. kinetic energy

Answer: A
(Watch Video Solution
5. A girl is carrying a school bag of 3 kg mass
on her back and moves 200 m on a levelled road. If the value of g be $10 \mathrm{~m} / \mathrm{s}^{2}$, the work done by the girl against the gravitational force will be :
A. $6 \times 10^{3} J$
B. 6 J
C. 0.6 J
D. zero

Answer: D
6. Which one of the following is not the unit of energy?
A. joule
B. newton metre
C. kilowatt

D. kilowatt hour

Answer: C
7. The work done on an object does not depend on the :
A. displacement
B. force applied
C. angle between force and displacement
D. initial velocity of the object

Answer: D

D Watch Video Solution
8. Water stored in a dam possesses
A. no energy
B. electrical energy
C. kinetic energy
D. potential energy

Answer: D

D Watch Video Solution
9. A body is falling from a height h. After it has
fallen a height $\frac{h}{2}$, it will possess
A. only potential energy
B. only kinetic energy
C. half potential and half kinetic energy
D. more kinetic and less potential energy

Answer: C

D Watch Video Solution

Problems For Practice

1. A force of 5 N is acting on an object. The object is displaced through 2 m in the direction of the force (Fig. 11.2). If the force acts on the object all through the displacement, then work done is $5 N \times 2 m=10 N \mathrm{~m}$ or $10 J$.

Fig. 11.2

D Watch Video Solution
2. A proter lifts a luggage of 15 kg from the ground and puts it on his head 1.5 m above the ground. Calculate the work done by him on the luggage.

- Watch Video Solution

3. Calculate the work done by a student in
lifting 0.5 kg book from the ground and keeping it ona shelf 1.5 m high.
4. A coolie carries a load of 50 kg on his head and walks on a level road upto 100 m . What is the work done by him?

D Watch Video Solution

5. A crane pulls up a car of mass 500 kg to a vertical height of 4 m . Calculate the work done by the crane.
6. A boy of mass 55 kg rus up a filight of 40 stairs, each measuring 0.15 m Calculate the work done by the boy.

- Watch Video Solution

7. An object of mass 15 kg is moving with a uniform velocity of $4 \mathrm{~m} / \mathrm{s}$. what is the kinetic energy possessed by the object ?
8. What is the work done to increase the velocity of a car from $30 \mathrm{~km} / \mathrm{h}$ to $60 \mathrm{Km} / \mathrm{h}$ if the mass of the car is 1500 kg ?

D Watch Video Solution

9. A bullet of mass 0.03 kg moving with a speed of $400 \mathrm{~m} / \mathrm{s}$ penerates 12 cm into fixed block of wood. Calculate the average force exerted by the wood on the bullet.
10. A bullet of mass 5 g travels with a speed of
$500 \mathrm{~m} / \mathrm{s}$. If it penetrates a fixed target which offers a constant resistive force of 1000 N to
the motion of the bullet, find (a) the initial kinetic energy of the bullet (b) the distance through which the bullet has penetrated.

D Watch Video Solution

11. Two bodies of equal masses move with
uniform velocities v and $3 v$ respectively. Find
the ratio of their kinetic energies.

- Watch Video Solution

12. The mass of a ball A is double the mass of another ball B. The ball a moves at half the speed of the ball. B. Calculate the ratio of the kinetic energy of A to the kinetic energy of B,

- Watch Video Solution

13. A truck weighing 5000 kg f and a cart weighing 500 kg f are moving with the same
speed. Compare their kinetic energies.

- Watch Video Solution

14. A bullet of mass 20 g is found to pass two
points 30 m apart in 4 s ? Assuming the speed to be constant, find its kinetic energy?

D Watch Video Solution

15. Find the energy possessed by an object of mass 10 kg when it is at a height of 6 m above
the ground.Given, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

- Watch Video Solution

16. An object of mass 12 kg is at a certain
height above the gorund if the potential energy of the object is 480 J find the height at which the object is withj respect to the ground Given, $g=10 \mathrm{~m} / \mathrm{s}^{2}$
17. A block of mass 30 kg is pulled up by a rope as shown in Fig. with a constant speed by applying a force of 200 N parallel to the slope.
A and B are initial and the final positions of the block. Calculate:
(a) the work done by the force in moving the block A to B,
(b) the potential energy gained by the block,
(c) account for the difference in work done the
force and the increase in potential energy of
the block.

D Watch Video Solution

18. shows a ski -jump. A skier of mass 60 kg stands at A at the top of the ski-jump. He moves from A to B and takes off for his jump at B.
(a) Calculate the change in the gravitational potential energy of the skier between A and B.
(b) If 75% of the energy in part (a) becomes
the kinetic energy at B , calculate the speed at which the skier arrives at B.

- Watch Video Solution

19. Calculate the increase in potential energy as a block of 2 kg is lifted through 2 m .

D Watch Video Solution

20. A ball of mass 1 kg is dropped from a height
of 5 m . (a) Find the kinetic of the ball just
before it reaches the ground (b) What is the speed at this instant?
21. A body of mass 5 kg falls from a height of 5 m . How much energy does it possess at any instant?

D Watch Video Solution

22. A spring is compressed by a toy cart of mass 150 g . On releasing the cart, it moves with
a speed of $0.2 \mathrm{~m} / \mathrm{s}$. Calculate the elastic potential energy of the spring.
23. Two girls each of weigth 400 N , climb up a rope through a height of 8 m . We name one of the girls A and the other B. Girl A takes 20s while B takes 50s to accomplish this task. What is the power expneded by each girl.

D Watch Video Solution

24. A boy of mass 50 kg runs up a staricase of

45 steps in 9 s . If the height of each step is
15 cm , find his power. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$
25. An electric bulb of 60 W is used for 6 h per day. Calculate the units of energy consumed in one day by the bulb.

D Watch Video Solution

26. A 60 kg person climbs stairs of total height 20 m in 2 min . Calculate the power deliverd.
27. The work done by the heart 1 j per beat.

Calculate the power of the heart if it beats 72 times/min.

- Watch Video Solution

28. A man exerts a force of 200 N in pulling a cart at a constant speed of $16 \mathrm{~m} / \mathrm{s}$ Calculate
the power spent by the man.

- Watch Video Solution

29. Calculate the power of an engine required to lift $10^{5} \mathrm{~kg}$ of coal per hour from a mine 360 m deep.

D Watch Video Solution

30. A man does 200 J of work in 10 s and a boy
does 100 J of work in 4 s . (a) who is delivering
more power? (b) Find the ratio of the power delivered by the man to that delivered by the boy.

Continuous Assessment

1. What amount of work is done in reading this book in terms of scientific definition of work?

- Watch Video Solution

2. What is the relation between a joule (J) and
a newton (N)?

- Watch Video Solution

3. What type of energy does a tarpedo in motion possess ?

D Watch Video Solution

4. which has a greater kinetic energy : a
supertanker berthed at a pier or a motor boat pulling a water skier?

- Watch Video Solution

5. Compare the kinetic energies of two idential
objects A and B when velocity of object A is twice that of object B.

D Watch Video Solution

6. A fountain of water shoots high in air. What
probvides the force that does positive work on
the water?

- Watch Video Solution

7. What is meant by kinetic energy?

- Watch Video Solution

8. What do you mean by dissipation of energy
?

D Watch Video Solution

9. What is 1 MJ ?

D Watch Video Solution
10. What is the origin of the word "kinetic"?

- Watch Video Solution

11. (a) Which quantity provides a link between
force and energy ?
(b) What is the amount of work done in trying to move a huge rock but failing to do so?

D Watch Video Solution

12. (a) What is the cause of kinetic energy possessed by a body?
(b) can kinetic energy of a body ever be negative?

D Watch Video Solution

13. (a) Compare the kinetic energies of two identical bodies, one moving north and the other moving south with same speed.
(b) What happens to the kinetic energy of an
object if its mass in doubled while its velocity

remains the same

D Watch Video Solution

14. (a) Which of the following does the most work : a force of 3 N acting through a distance of 3 m or a force of 4 N acting through a distnace of $2 m ?$
(b) How much work is done by the centripetal force?

D Watch Video Solution
15. (a) How is the energy of an object measured?
(b) What does work - energy theorem state?

D Watch Video Solution

16. When is the work done by gravity negative ?
17. What happens when a body performs work?

- Watch Video Solution

18. How can you visualize a joule of energy ?

- Watch Video Solution

19. An object has velocity toward south if a
force is directed toward the north, will the kinetic energy increase, decrease, or stay the same?
20. Two objects have different masses but the same kinetic energy. If you step them with the same retarding force, which one will stop in the shorter distance?

- Watch Video Solution

21. A person pushes a 72 kg patient on a 15 kg trolley, producing an acceleration of
$0.60 \mathrm{~m} / \mathrm{s}^{2}$ (a) How much work does the person do by pushing the patient and the trolley through a distance of 2.5 m ? Assume the trolley moves without friction. (b) How far must the person push the trolley to do 140J of work. (c) Does the work done by the person depends on the speed of the trolley?

- Watch Video Solution

22. A truck moving at $15 \mathrm{~m} / \mathrm{s}$ has KE of
$4.2 \times 10^{5} \mathrm{~J}$ (a) what is the mass of the truck?
(b) By what multiplicative factor does the kinetic energy of the truck increases if its speed is doubled?

D Watch Video Solution

23. How much work is required for a 74 Kg sprinter to acclerate from rest to $2.2 \mathrm{~m} / / \mathrm{s}$?

D Watch Video Solution
24. A woman lifts a box weighing 40 N from the
floor to a shelf 1.5 m above. (a) find the work done by the force (F) the woman exerts on the box (b) Find the work done on the box by its own weight (w) (c) Find the net work done on the box.

D Watch Video Solution

Assessment Through Paper Pen Test

1. If KE of a body increases by 300%, by what
\% will the linear momentum of the body increase?
A. 20%
B. 50%
C. 100%
D. 200%

Answer: C

D Watch Video Solution
2. If the linear momentum is increased by 50%,
then KE will be increased by :
A. 50%
B. 100%
C. 125%
D. 25%

Answer: C
(Watch Video Solution
3. Two bodies of masses m and $4 m$ are moving with equal linear momenta. The ratio of their kinetic energies is :
A. $4: 1$
B. $\sqrt{2}: 1$
C. 1:2
D. $1: 16$

Answer: A

4. A 4 kg mass and 1 kg mass are moving with equal kinetic energies. The ratio of there momentum is :
A. $1: 2$
B. 1:1
C. 2:1
D. $4: 1$

Answer: C

- Watch Video Solution

5. The KE acquired by a mass m in travelling a certain distance s, starting from rest, under the action of a constant force is directly proportional to :
A. m
B. \sqrt{m}
C. $\frac{1}{\sqrt{m}}$
D. none of these

Answer:

6. A car weighing 500 kg moving against a resistance of 500 N , accelerates from rest to $20 \mathrm{~m} / \mathrm{s}$ in $100 \mathrm{~m}\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$. The work done by the engine of the car is:
A. 1.0×10^{J}
B. $1.5 \times 10^{5} \mathrm{~J}$
C. $1.05 \times 10^{5} \mathrm{~J}$
D. the information given is insufficient

Answer: B

D Watch Video Solution

7. When a player hits a football, it moves along
the curved path (parabolic path) and then falls
to the ground What is the work done by the force of gravity on the football ?

D Watch Video Solution

8. What change should be affected in the velocity of the body to maintain same kinetic energy if its mass is increased four times ?

D Watch Video Solution

9. The Earth moving round the sun in a circular orbit is acted upon by a force and hence work must be done on the Earth by the force. Do you agree with this statement ?
10. What happens to the kinetic energy of the molecules of a substance when it is cooled ?

- Watch Video Solution

11. Why does a saw become warm when it is
used to cut a log of wood? State the energy
transformation taking place.

D Watch Video Solution
12. What do you mean by kinetic energy ?

Derive an expression for the kinetic energy of an object of mass moving with velocity, v.

D Watch Video Solution

13. The force exerted by a certain bow on an arrow decreases linearly after the arrow is relased by the archer, starting with a value $\mathrm{F}=$ 275 N when the bow is fully drawn and decrasing to $F=0$ as the arror leaves the bow string. The tail of the arrow moves a distance
of 0.5 m as the arrow is shot. Find theh final
speed of the arrow, which has a mass of $3 \times 10^{-2} \mathrm{~kg}$.

- Watch Video Solution

14. Tarzan, who weighs 875 N , swings from a vine through the jungle. How much work is done by the vine as he drops, through a vertical distance of 4 m ?

D Watch Video Solution

15. The sign of work done by a force is important to understant. State carefully if the following quantities are positive or negative.
(a) Work done by a man in lifting a bucket out of a well by means of a rope tied to the bucket.
(b) Work done by the gravitational force in the
above case. (c) Work done by friction on a
body sliding down an inclined plane. (d) Work done by an applied froce on a body moving on a rough horizontal plane with uniform velocity.
(e) Work done by the resistive force of air on a vibrating pendulum in bringing it to rest.

- Watch Video Solution

16. A rod of mass m and length l is lying on a horizontal table. Work done in making it stand on one end will be
A. $m g l$
B. $m g l / 2$
C. $m g l / 4$
D. $2 m g l$
17. A ball of mass 50 g is thrown upwards. It
rises to a maximum height of 100 m . At what height its KE is reduced to 70% ?
A. 30 m
B. 40 m
C. 60 m
D. 70 m
18. A body of mass 2 kg is projected vertically
upwards with a speed of $3 \mathrm{~m} / \mathrm{s}$. The maximum
gravitational potential energy of the body is :
A. 18 J
B. 4.5 J
C. 9 J
D. 2.25 J
19. A body of mass m, accelerates uniformly from rest to V_{1} in time t_{1}. The instantaneous power delivered to the body as a function of time t is.

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \frac{m v^{2}}{T^{2}} t \\
& \text { B. } \frac{1}{2} \frac{m v^{2}}{T^{2}} t^{2} \\
& \text { C. } \frac{m v^{2}}{T^{2}} t \\
& \text { D. } \frac{m v^{2}}{T^{2}} t^{2}
\end{aligned}
$$

Answer:

D Watch Video Solution

20. At sea level, a nitrogen molecule in air has
an average translational kinetic energy of
$6.2 \times 10^{-21} \mathrm{~J}$. it mass is $4.7 \times 10^{-26} \mathrm{~kg}$. If
the molecule shoots up straight without resistance, it will rise to a height of :
A. 1.35 km
B. 13.5 km
C. 135 km

D. 1350 km

Answer: B

D Watch Video Solution

21. The power of a water pump is 2 kW . If $g=10 \mathrm{~m} / \mathrm{s}^{2}$, the amount of water it can raise in 1 min to a height of 10 m is :

A. 2000 litre

B. 1000 litre

C. 100 litre

D. 1200 litre

Answer: D

D Watch Video Solution

22. Two idential objects made of iron and wood, are allowed to fall from the same height on a heap of sand. It is found that the iron object penetrates more in the wooden object.

Which of the two objects has more potential energy ?

D Watch Video Solution

23. What kind of energy transformation take place in an electric fan and a loudspeaker?

- Watch Video Solution

24. State the energy transformation taking place when a boy is riding a bicycle.
25. A spring which is kept comprassed by tying
its ends together is allowed to be dissolved in an acid. What happens to the potnetial energy of the spring ?

- Watch Video Solution

26. An aeroplane's velocity is doubled, What happens to kinetic energy ? Is the law of
conservation of energy obeyed?

- Watch Video Solution

27. Represent graphically the variation of
kinetic energy $\left(E_{k}\right)$, potential energy $\left(E_{k}\right)$ and total energy (E) of a body falling freely
from a height h . At what height is $E_{p}=E_{k}$?

D Watch Video Solution

28. A skier starts from rest at the top of a ski slope and skis downhill. Find the skier's speed after her elevation decreases by 10m, assuming no work is done by friction or air resistance.

D Watch Video Solution

29. Water is pumped out of a well 10 m deep by means of a pump rated at 10 kW . Find the
efficiency of the motor if 4200 kg of water is pumped out every minute. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

D Watch Video Solution

30. Explain the difference between work, energy and power. Give their expression and the units in which these are measured.

D Watch Video Solution

1. What are the other names of potential energy?

D Watch Video Solution

2. What is the cause of elastic potential energy of a body?

- Watch Video Solution

3. What is the gravitational potential energy of

a body of mass m at a height h ?

- Watch Video Solution

4. Is gravitational potential energy of an object path dependent?
5. How is nuclear energy converted into electrical energy?

D Watch Video Solution
6. What measures the speed at which work is done?
(D) Watch Video Solution
7. What is the other name of power?

- Watch Video Solution

8. What is the relation between a watt (W) and
a joule (J) ?

- Watch Video Solution

9. How is horse power (hp) related to a watt (W) ?

10. What is meant by the abbreviation BOTU ?

- Watch Video Solution

li Quiz Testing

1. (a) What are the verious types of potential
energy ? (b) What type of energy is stored in a dam?
2. (a) What is the gravitational potential energy of an object on Earth due to ? (b) At which point in the swing of an ideal simple pendulum (ignoring friction) is the gravitational potential energy the maximum ?

- Watch Video Solution

3. (a) Under what conditions energy is conserved ? (b) What is the only restriction to the principle of conservation of energy ?
4. (a) How is light energy converted into chemical energy ? (b) How is light energy into electic energy?

- Watch Video Solution

5. (a) What is mechanical energy ? (b) What is electromagnetic energy?

D Watch Video Solution

1. What would have happened if nature had not allowed the transformation of energy ?

- Watch Video Solution

2. When gravity is the only force doing work on a body, what can we say about its energy ?

- Watch Video Solution

3. What happens to the total energy of a star that undergoes a supernove explosion?

D Watch Video Solution

4. What does the gravitational potential energy imply?

D Watch Video Solution

5. When a person does work, what determines
his sence of fatigue : total work done or the
rate at which he works ?

- Watch Video Solution

6. What is the implication of negative potential energy of a body ?

D Watch Video Solution

7. Compute the mechanical power provided by
the internal forces within the body of a person
of mass 80 kg who runs up a flight of stairs rising a vertical distance of 3 m in 3 s .

D Watch Video Solution

8. What quantity does the area of the graph represent ? What is the magnitude of this quantity ?

9. What is the change in gravitational potentia energy of a 50 kg person whon climbs a flight of staris with a height of 3 m and a horizontal extent of 5 m ?

D Watch Video Solution

10. A compact car travelling at $27 m / s$ on a
level highway experiences a frictional force of 300 N due to air resistance and the friction of types with the road. What is the horse power of the engine of the car?

Watch Video Solution

