びdoubtnut

PHYSICS

BOOKS - IE IRODOV PHYSICS (HINGLISH)

OSCILLATIONS AND WAVES

Mechanical Oscillations

1. A point oscillates along the x axis according to the
law $x=a \cos (\omega t-\pi / 4)$. Draw the approximate plots
(a) of displacemetn x, velocity projection v_{x}, and acceleration projection w_{x} as functions of time t,
(b) velocity projection v_{x} and acceleration projection w_{x} as functions of the coordiniate x.

D Watch Video Solution

2. A point moves along th ex axis according to the law
$x=a \sin ^{2}(\omega t-\pi / 4)$ Find.
(a) the amplitude and period oscillations, draw the plot $x(t)$,
(b) the velocity projection v_{x} as a function of the coordination x, draw the plot $v_{x}(x)$.
3. A particle performs harmonic oscillations along the x axis about the equilibrium position $x=0$. The oscillation frequency is $\omega=4.00 \mathrm{~s}^{-1}$. At a certain moment of time the particle has a coordinate $x_{0}=25.0 \mathrm{~cm}$ and its velocity is equal to $v_{x 0}=100 \mathrm{~cm} / \mathrm{s}$.

Find the coordinate x and the velocity v_{x} of the particle $t=2.40 s$ after that moment.

- Watch Video Solution

4. Find the angular frequency and the amplitude of harmonic oscillations of a particle if at distances x_{1}
and x_{2} from the equalibrium position its velocity equald v_{1} and v_{2} respectively.

D Watch Video Solution

5. A point performs harmonic oscillations along a straight line with a period $T=0.60 \mathrm{~s}$ and amplitude $a=10.0 \mathrm{~cm}$. Find the mean velocity of the point averaged over the time interval during which it travels a distance $z / 2$, starting from
(a) the extreme position.
(b) the equilibrium position.

- Watch Video Solution

6. At the moment $t=0$ a point starts oscillating along
the x axis according to the lasw $x=a \sin \omega t t$. Find:
(a) the mean value of its velocity vector projection
$\left(: v_{x}:\right)$,
(b) the modulus of the mean velocity vector $|(: v:)|$,
(c) the mean value of the velocity modulus (:v:) averaged over $3 / 8$ of the period after the start.

D Watch Video Solution

7. A particle moves along the x axis according to the $\operatorname{law} x=a \cos \omega t$. Find the distance that the particle covers during the time interval from $t=0$ to t.
8. At the moment $t=0$ a particle starts moving along the x axis so that its velocity projection varies as $v_{x}=35 \cos \pi t c m / s$, where t is expressed in seconds.

Find the distance that this particle covers during $t=2.80 \mathrm{~s}$ after the start.

D Watch Video Solution

9. A particle performs harmonic oscillations along the x axis according to the law $x=a \cos \omega t$. Assuming the probablity P of the particle to fall withing an interval from $-a$ to $+a$ to be equal to unity, find how the
probability density $d P / d x$ depends on x. Here $d P$ denotes the probablitity of the particle falling within an interval frm x to $x+d x$. Plot $d P / d x$ as a function of x.

D Watch Video Solution

10. Using graphical means find an amplitude a of oscillations resulting from the superposition of the following oscillations of the same direction :
(a) $x_{1}=3.0 \cos (\omega t+\pi / 3), x_{2}=8.0 \sin (\omega t+\pi / 6)$,
(b)
$x_{1}=3.0 \cos \omega t, x_{2}=5.0 \cos (\omega t+\pi / 4), x_{3}=6.0 \sin \omega t$.
11. A point participates simultaneously in two harmonic oscillations of the same direction: $x_{1}=a \cos \omega t$ and $x_{2}=a \cos 2 \omega t$. Find the maximum velocity of the point.

D Watch Video Solution

12. The superposition of two harmonic oscillations of the same direction results in the oscillation of a point according to the law $x=a \cos 2.1 t \cos 50.0 t$, where t is expressed in seconds. Find the angular frequencies of the constituent oscillations and the period with which they beat.

- Watch Video Solution

13. A point A oscillates according to a certain harmonic
law in the reference frame K^{\prime} which in its turn performs harmonic oscillations relative to the reference frome K. Both oscillations occur along the same direction. When the K^{\prime} frame oscillates at the frequency 20 or 24 Hz , the beat frequency of the point
A in the K frame turns out to be equal to v. At what frequency of oscillation of the frame K^{\prime} will the beat frequency of the point A become equal to $2 v$?

D Watch Video Solution

14. A point moves in the plane $x y$ according to the law $x=a \sin \omega t, y=b \cos \omega t$, where a, b and ω are positive constants.

Find :
(a) the trajectory equation $y(x)$ of the point and the direction of its motion along this trajectory,
(b) the acceleration w of the point as a function of its radius vector r relative to the orgin of coordinates.

D Watch Video Solution

15. Find the trajectory equation $y(x)$ of a point if it moves according to the following laws :
(a) $x=a \sin \omega t, y=a \sin 2 \omega t$,
(b) $x=a \sin \omega t, y=a \cos 2 \omega t$.

D Watch Video Solution

16. A particle of mass m is located in a uni-dimensional potential field where potential energy of the particle depends on the coordinates xas: $U(x)=U_{0}(1-\cos A x), U_{0}$ and A constants.

Find the period of small oscillation that the particle performs about the equilibrium position.

- Watch Video Solution

17. Solve the foregoing problem if the potential energy has the form $U(x)=a / x^{2}-b / x$, where a and b are positive constants.

- Watch Video Solution

18. Find the period of small oscillations in a vertical
plane performed by a ball of mass $m=40 g$ fixed at
the middle of a horizontallly stretched string $l=1.0 \mathrm{~m}$
in length. The tension of the string is assumed to be constant and equal to $F=10 \mathrm{~N}$.

D Watch Video Solution

19. Determine the period of small oscillations of a mathematical pendulum, that is a ball suspended by a thread $l=20 \mathrm{~cm}$ in length, if it is located in a liquuid whose density is $\eta=3.0$ times less than that of the ball. The resistance of the liquid is to be neglected.

- Watch Video Solution

20. A ball is suspended by a thread of length I at the
point O on an incline wall as shown. The inclination of
the wall with the vertical is α.The thread is displaced
through a small angle β away from the vertical and the
ball is released. Find the period of oscillation of pendulum.

Consider both cases
a. $\alpha>\beta$
b. $\alpha<\beta$

Assuming that any impact between the wall and the ball is elastic.
21. A pendulum clock is mounted in an elevator car which starts goint up with a constant acceleration w, with $w<g$. At a height h the acceleration of the car reverses, its magnitude remaining constant. How soon after the start of the motion will the clock show the right time again ?

D Watch Video Solution

22. Calculate th eperiod of small oscillations of a hydrometer which was slightly pushed down in the vertical direction. The mass of the hydrometer is
$m=50 g$, the radius of its tube is $r=3.2 \mathrm{~mm}$, the density of the liquuid is $\rho=1.00 \mathrm{~g} / \mathrm{cm}^{3}$. The rsistance of the liquid is assumed to be negligible.

D Watch Video Solution

23. A non-deformed spring whose ends are fixed has a
stiffness $x=13 \mathrm{~N} / \mathrm{m}$. A small body of mass $m=25 g$ is attached at the point removed from one of the ends
by $\eta=1 / 3$ of the spring's ` length. Neglecting the mass of the spring, find the period of small longitudinal oscillations of the body. The force of gravity is assumed to be absent.

D Watch Video Solution

24. Determine the period of small longitudinal oscillations of a body with mass m in the system
shown in figure. The stiffness values of the springs are x_{1} and x_{2}. The friction and the masses of the springs
are negligible.

D Watch Video Solution

25. Find the period of small vertical oscillations of a body with mass m in the system illustrated in figure.

The stiffness values of the springs are x_{1} and x_{2}, their
masses are negligible.

- Watch Video Solution

26. A small body of mass m is fixed to the middle of a
stretched string of length $2 l$. In the equlibrium position the string tension is equal to T_{0}. Find the angular freqency of small oscillations of the body in
the transverse direction. The mass of the string is negligible, the gravitational field is absent.

D Watch Video Solution

27. Determine the period of oscillations of mercury of mass $m=200 g$ poured into a bent tube (figure) whose right arm forms an angle $\theta=30^{\circ}$ with vertical.

The cross-sectional area of the tube is $S=0.50 \mathrm{~cm}^{2}$.

The viscosity of mercury is to be neglected.

- Watch Video Solution

28. A uniform rod is placed on two spinning wheels as
shown in figure. The axes of the wheels are separated
by a distance $l=20 \mathrm{~cm}$, the coefficient of friction between that in this case the rod performs harmonic
oscillations. Find the period of these oscillations.

D Watch Video Solution

29. Imagine a shaft going all the way through the Earth
from pole to pole along its rotation axis. Assuming the
Earth to be a homogenous ball and neglecting the ari drag, find :
(a) the equation of motion of a body falling down into
the shaft ,
(b) how long does it take the body to reach the other end of the shaft,
(c) the velocity of the body at the Earth's centre.

D Watch Video Solution

30. Find the period of small oscillations of a mathematical pendulum of length l if its point of suspension O moves relative to the Earth's surface in an arbitrary directio with a constant acceleration w
(figure). Calculate that period if $l=21 c m, w=g / 2$, and the angle between the vectors w and g equals
beat $=120^{\circ}$.

D Watch Video Solution

31. In the arrangement shown in figure the sleeve M of
mass $m=0.20 \mathrm{~kg}$ is fixed between two identical springs whose combined stiffness is equal to $x=20 \mathrm{~N} / \mathrm{m}$. The sleeve can slide without friction over
a horizontal bar $A B$. The arrrangement rotates with a
constant angular velocity $\omega=4.4 \mathrm{rad} / \mathrm{s}$ about a vertical axis passing through the middle of the bar.

Find the period of small oscillations of the sleeve. At what values of ω will there be no oscillations of the sleeve?

32. A plank with a bar placed on it performs horizontal harmonic oscillations with amplitude $a=10 \mathrm{~cm}$. Find the coefficient of friction between the bar and the plank if the former starts sliding along the plank when the amplitude of oscillation of the plank becomes less than $T=1.0 \mathrm{~s}$.

D Watch Video Solution

33. Find the time dependece of the angle of deviation of a mathematical pendulum 80 cm in length if at the initial moment the pendulum.
(a) was deviated through the angle 3.0 and then set free without push,
(b) was in the equlibrium position and its lower end was imparted the horizontal velcoity $0.22 \mathrm{~m} / \mathrm{s}$,
(c) was deviated throught the angle 30° and its lower end was imparted the velocity $0.22 \mathrm{~m} / \mathrm{s}$ derected toward the equilibrium position.

- Watch Video Solution

34. A body A of mass $m_{1}=1 \mathrm{~kg}$ and a body B of mass
$m_{2}=4 k g$ are attached to the ends of a spring. The body A performs vertical simple harmonic oscillations of amplitude $a=1.6 \mathrm{~cm}$ and angular frequency $\omega=25 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}}$. Neglecting the mass of the spring determine the maximum and minimum values of force
the system exerts on the surface on which in rests.
$\left[\right.$ Take $\left.\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right]$

- Watch Video Solution

35. A plank with a body of mass m places on it starts moving straight up according to the law $y=a(1-\cos \omega t t)$, whee y is the displacement from the initial position, $\omega=11 s^{-1}$. Find :
(a) the time dependence of the force that the body exerts on the plank if $a=4.0 \mathrm{~cm}$, plot this dependence,
(b) the minimum amplitude of oscillation of the plank atwhich the body starts falling behind the plank,
(c) the amplitude of oscillation of the plank at which
the body springs up to a height $h=50 \mathrm{~cm}$ relative to
the initial position (at the moment $t=0$).
36. A body of mass m was suspended by a nonstretched spring, and then set fre without push. The stiffness of the spring is x. Neglecting the mass of the spring, find :
(a) the law of motion $y(t)$, whee y is displacement of the body from the equilibrium position,
(b) the maximum and minimum tensions of the spring in the process of motion.

- Watch Video Solution

37. A particle of mass m moves due to the force
$F=-\alpha m r$, where α is a positve constant,r is the
radius vector of the particle relative to the origin of
coordinates. Find the trajectory of its motion if at the initial moment $r=r_{0} i$ and the velocity $v=v_{0} j$, whee i and j are the unit vectors of the x and y axes.

D Watch Video Solution

38. A body of mass m is suspended from a spring fixed to the ceiling of an elevator car. The stiffness of the spring is x. At the moment $t=0$ the car starts going up with an acceleration w. Neglecting the mass of the spring , find the law of motion $y(t 0$ of the body relative to the elevator car if $y(0)-0$ and $y(0)=0$. Consider the following two cases :
(a) $w=$ const,
(b) $w=\alpha t$, where α is a constant.

D Watch Video Solution

39. A body of mass $m=0.50 \mathrm{~kg}$ is suspended from a rubber cord with elasticity coefficient $k=50 N / M$.

Find the maximum distance over which the body can be pulled down for the body's oscillations to remain harmonic. What is the energy of oscillation in this case
40. A body of mass m is released from a height h to a scale pan hung from a spring. The spring constant of the spring is k, the mass of the scale pan is negligible and the body does not bounce relative to the pan, then the amplitude of vibration is

D Watch Video Solution

41. Solve the foregoing problem for the case of the pan
having a mass M. Find the oscillation amplitude in this
case.
42. A particle of mass m moves in pane $x y$ due to the force varying with velocity as $F=a(\dot{y}-\dot{x} j)$, where a is a positve constant, i and j are the unit vectors of the x and y axes. At the initial moment $t=0$ the particle was located at the point $x=y=0$ and possessed a velocity v_{0} directed along the unit vector j. Find the law of motino $x(t), y(t)$ of the particle, and also the equation of its trajectory.

- Watch Video Solution

43. A pendulum is constructed as a light thin - walled sphere of radius R filled up with water and suspended at the point O from a light rigid rod (figure). The
distance between the point O and the centre of the sphere is equal to l. How many times will the small oscillations of such a pendulum change after the water freezes ? The visxosity of water and the change of its volume on freezes? The viscosity of water and the change of its volume on freezing are to be necglected.

44. Find the frequency of small oscillatinos of a thin uniform vertical rod of mass m and length l hinged at the point O (figure). The combined stiffness fo the springs is equal to x. The mass of the springs is negligible.

45. A uniform rod of mass $m=1.5 \mathrm{~kg}$ suspended by two identical threads $l=90 \mathrm{~cm}$ in length (figure) was turned through a small angle about the vertical axis passing through its middle point C. The threads deviated in the process through an angle $\alpha=5.0^{\circ}$.

Then the rod was released to start performing small oscillations.

Find:
(a) the oscillation period,
(b) the rod's oscillation energy.

- Watch Video Solution

46. An arrangedment illlustrated in figure consists of a horizontal uniform disc D of mass m and radius R and a thin $\operatorname{rod} A O$ whose torsional coefficient is equal to k.

Find the amplitude and the energy of small torsional oscillationa if at the initial momentu the disc was
deviated through an angle φ_{0} from the equilibrium position and then imparted an angular velocity φ_{0}.

- Watch Video Solution

47. A uniform rod of mass m and length l performs
small oscillations about the horizontal axis passing throughits upper end. Final the mean kinetic energy of the rod averaged over one oscillation period it at the
initial mment it was deflected from the vertical by an angle θ_{0} and then imparted an angular velocity θ_{0}.

D Watch Video Solution

48. A physical pendulum is positioned so that its
centre of gravity is above the suspension point. When
the pendulum is realsed it passes the point of stable equilibrium with an angular velocity ω. The period of small oscollations of the pendulum is
49. A physical pendulum performs small oscillations about the horizontal axis with frequency $\omega_{1}=15.0 s^{-1}$. When a small body of mass $m=50 g$ is fixed to the pendulum at a distance $l=20 \mathrm{~cm}$ below the axis, the oscillation frequency becomes equal to $\omega_{2}=10.0 \mathrm{~s}^{-1}$. Find the moment of inertia of the pendulum relative to the oscillation axis.

D Watch Video Solution

50. Two physical pendulums perform small oscillations about the same horizontal axis with frequencies ω_{1} and ω_{2}. Their moments of inertia relative to the given axis are equal to I_{1} and I_{2} respectively. In a state of
stable equilibium the pendulums were fastened rigifly together. What will be the frequency of small oscillations of the compound pendulum ?

- Watch Video Solution

51. A uniform rod of length l performs small oscillations about the horizontal axis $O O^{\prime}$ perpendicular to the rod and passing through one of its points. Find the distance the centre of inertia of the rod and the axis $O O^{\prime}$ at which the oscillation period is the shortest. What is it equal to ?
52. A thin uniform plate shaped as an equateral triangle with a height h performs smalll oscillations about the horizontal axis coinciding with one of its sides. Find the oscillation period and the reduced length of the given pendulum.

(D) Watch Video Solution

53. A smooth horizontal disc rotates about the vertical
axis O (figure) with a constant angular velocity ω. A
thin uniform rod $A B$ of length l performs small oscillation about the vertical axis A fixed to the disc at
a distance a from the axis of the disc. Find the
frequency ω_{0} of these oscillations.

- Watch Video Solution

54. Find the frequency of small oscillations of the arrangement illustrated in figure. The radius of the pulley is R, its moment of inertia relative to the rotation axis is I, the mass of the body is m, and the spring stiffness is x.The mass of the thread and the
spring is negligible, the thread does not slide over the pulley, there is no friction in the axis of the pulley

- Watch Video Solution

55. A uniform cylindrical pulley of mass M and the radius R can freely rotate about the horizontal axis O
(figure). The free end of a thread tightly wound on the pulley carries a deadweight A. At a certain angle α it
counterbalanes a point mass m fixed at the rim of the pulley. Find the frequency of small osicllations of the arrangement.

D Watch Video Solution

56. A solid sphere (radius $=R$) rolls without slipping in a cylindrical throuh(radius $=5 R$). Findthe time
period of small oscillations.

- Watch Video Solution

57. A solid uniform cylinder of mass m performs small oscillations due to the action of two springs of stiffness k each (figure). Find the period of these oscillation in the absendce of sliding.
x
58. Two cubes with masses m_{1} and m_{2} were interconnected by a weightless spring of stiffness x and placed on a smooth horizontal surface. Then the cubes were drawn closer to each other and released simultaneously. Find the natural oscillation frequency of the system.

- Watch Video Solution

59. Two balls with masses $m_{1}=1.0 \mathrm{~kg}$ and $m_{2}=2.0 \mathrm{~kg}$
are slipped on a thin smooth horizontal rod (figure).
The balls are interconnected by a light spring of
stiffness $x=24 N / m$. The left- hand ball is imparted the initial velocity $v_{1}=12 \mathrm{~cm} / \mathrm{s}$. Find :
(a) the oscillation frequency of the system in the process of motion,
(b) the energy and the amplitude of oscillations

60. Find the period of small torsional oscillational of a system consisting of two discs slipped oon a thin rod with rod with torsional coefficient k. The moments of inertia of discs relative to the rod's axis are equal to I_{1} and I_{2}.

- Watch Video Solution

61. A mock - up of a $C O_{2}$ molecule consists of three
balls interconnected by identical light springs and placed along a straight line in the state of equilibrium.

Such a system can freely perform oscillation of two
types, as shown by the arrows in figure. Knowing the masses of the atomes, find the ration of frequencies of
these oscillations

- Watch Video Solution

62. In a cylinder filled up with ideal gas end gas and closed from both ends there is a piston of mass m and
cross - sectional area S (figure).In equilibrium the piston divides the cylinder into two equal parts, each with volime V_{0}. The gas ppressure is p_{0}. The piston
was slightly displaced from the equlibrium position and released.Find the oscillation frequency, assuming the prosecces in the gas to be adiabatic and the friction negligible.

- Watch Video Solution

63. A small ball of mass $m=21 g$ suspended by a insulating thread at a height $h=12 \mathrm{~cm}$ from a large
horizontal conducting plane performs small oscillations (figure). After a charge q had been imparted to the ball, the oscillation period changed $\eta=2.0$ times. Find q.

D Watch Video Solution

64. A small magnetic needle performs small oscillations about an axis perpendicular to the magnetic induction
vector. On changing the magnetic induction the neddle's oscillation period decreases $\eta=5.0$ times.

How much and in what way was the magnetic induction changed ? The oscillation damping is assumed to be negligible.

- Watch Video Solution

65. A loop (figure) is formed by two parallel conductores connected by a solenoid with inductance
L and a conducting rod of mass m which can freely (without friction) slide over the conductors. The conductors are located in a horizontal plane in a uniform vertical magnetic field with induction B. The
distance between the conductors is equal to l. At the moment $t=0$ the rod is imparted an initial velocity v_{0} directed to the right. Find the law of its motion $x(t)$ if the electric resistance of the loop is negligible.

D Watch Video Solution

66. A coil of inductance L connects the upper ends of two vertical copper bars separated by a distance l. A
horizontal conducting connnector of mass m starts
falling with zero initial velocit along the bars without
losing contact with them. The whole system is located
in a uniform magnetic field with induction B perpendicular to the plane of the bars. Find the law of motion $x(t)$ of the connector.

- Watch Video Solution

67. A point performs dampled oscillations according to
the law $x=a_{0} e^{-\beta t} \sin \omega t$. Find:
(a) the oscillation amplitude and the velocity of the
point at the moment $t=0$,
(b) the moments of time at which the point reaches the extreme positions.

D Watch Video Solution

68. A body performes torsional oscillations according to the law $\varphi=\varphi_{0} e^{-\beta t} \cos \omega t$. Find : (a) the angular velocity $\dot{\varphi}$ and the angular acceleration $\ddot{\varphi}$ of the body ar the moment $t=0$,
(b) the moment of time at which the angular velocity becomes maximum.

- Watch Video Solution

69. A point performs damped oscillations with
frequency ω and damping coefficient β according to
the (4.1b). Find the initial amplitude a_{0} and the initial
phase α if at the moment $t=0$ the displacement of
the point and its velocity projection are equal to
(a) $x(0)=0$ and $u_{x}(0)=\dot{x_{0}}$,
(b) $x(0)=x_{0}$ and $v_{x}(0)=0$.

D Watch Video Solution

70. A point performs dampled oscillation with frequency $\omega=25 s^{-1}$. Find the damping coefficient β
if at the initial moment the velocity of the point is
equal to zero and its displacement from the
equalibrium position is $\eta=1.020$ times lesss than the amplitude at that moment.

D Watch Video Solution

71. A point performs damped oscilaltions with frequency ω and dampled coefficient β. Find the velocity amplitude of the point as a function of time t if at the moment $t=0$
(a) its displacement amplitude is equal to a_{0},
(b) the displacement of the point $x(0)=0$ and its
velocity projection $v_{x(0)=\dot{x}_{0}}$

- Watch Video Solution

72. There are two damped oscilaltions with the following period T and damping coefficients
$\beta: T_{1}=0.10 m s, \beta_{1}=100 s^{-1}$
$T_{2}=10 \mathrm{~ms}, \beta=10 \mathrm{~s}^{-1}$. Which of them decays faster ?

- Watch Video Solution

73. A mathematical pendulum oscillates in a medium
for which the logarithmic damping decrement is equal
to $\lambda_{0}=1.50$. What will be the logarithmic damping decrement if the resistance of the medium increases $n=2.00$ time? How many times has the resistance of
the medium to be increased for the oscillations to become impossible?

- Watch Video Solution

74. A deadweight suspended from a weightless spring extends it by $\Delta x=9.8 \mathrm{~cm}$. What will be the oscillation period of the dead weight when it is pushed slightly in the vertical direction ? The logarithmic damped decrement is equal to $\lambda=3.1$

- Watch Video Solution

75. Find the quality factor of the oscillator whose displacement amplitude decreases $\eta=2.0$ times every $n=110$ oscillation.
76. A particle was displaced from the equlibrium position by a distance $l=1.0 \mathrm{~cm}$ and then left along .

What is the distance that the particle covers in the process of oscillations till the complete stop, if the logarithmic damping decrement is equal to $\lambda=0.020$
?

D Watch Video Solution

77. Find the quality factor of a mathematic pendulum
$l=50 \mathrm{~cm}$ long if during the time interval $\tau=5.2 \mathrm{~min}$
its total mechanical energy decreases $\eta=4.0 .10^{4}$ times.

D Watch Video Solution

78. A uniform disc of radius $R=13 \mathrm{~cm}$ can rotate about a horizontal axis perpendicular to its plane and passing through the edge of the disc. Find the period of small oscillations of that disc if the logarithmic damping decrement is eqal to $\lambda=1.00$.

- Watch Video Solution

79. A thin uniform disc of mass m and radius R suspended by an elastic thread in the horizontal plane performs torsional oscillations in a liquid. The moment of leastic forces emerging in the thread is equal to
$N=\alpha \varphi$, where α is a constant and φ is the angle of rotation from the equilibrium position. The resistance force acting on a unit area of the disc is equal to $F_{1} \eta v$, where η is a constant and v is the velocity of the given element of the disc relative to the liquid. Find the frequency of small oscillation.

D View Text Solution

80. A disc A of radius R suspended by an elastic threat between two stationary plane (figure) performs torsional oscillations about its axis $O O^{\prime}$. The moment of inertia of the disc relative to that axis is equal to I,
the clearance between the disc and each of the planes
is equal to h, with $h \ll R$. Find the viscosity of the
gas surrounding the disc A if the oscilaltion period of
the disc equals T and the logarithmic damping
decrement, λ.

D Watch Video Solution

81. A conductor is the shape of a square frame with
side a suspended by an elastice thread is located in a uniform horizontal magnetic field with induction B. In equuilibrium the plane of the fame is parallel to the vector B (figure). Having been displaced from the
equilibrium position, the frame performs small oscillation about a vertical axis passing through its centre. The moment of inertia of the grame relative to that axis is equal to I, it electric resistance is R.

Neglecting the inductance of the frame, find the time interval after which the amplitude of the frame's deviation angle decreases $e-$ fold. $I_{m} \omega L I_{m / \omega C}^{\text {Axis }}$

- Watch Video Solution

82. A bar of mass $m=0.50 \mathrm{~kg}$ lying on a horizontal plane with a friction coefficient $k=0.10$ is attached to the wall by means of a horizontal non - deformed spring. The stiffness of the spring is equal to $x=2.45 \mathrm{~N} / \mathrm{cm}$, its mass is negligibl. The bar was displaced so that the spring was stretched by $x_{0}=3.0 \mathrm{~cm}$, and then released. Find :
(a) the period of oscillation of the bar,
(b) the total number os osciallations that the bar performs untial it stops completely.

View Text Solution

83. A ball of mass m can perform undamped harmonic
oscillations about the point $x=0$ with natural frquency, ω_{0}. At the moment $t=0$, when the ball was
in equilibrium, a force $F_{x}=F_{0} \cos \omega t$ coinciding with the x axis was applied to it. Find the law of forced oscillation $x(t)$ for that ball.

- Watch Video Solution

84. A particle of mass m can perform undamped harmonic oscillations due to an electric force with coefficient k. When the particle was in equilibrium, a permanent force F was applid to to its for τ seconds.

Find the oscillation amplitude that the particle
acquired after the action of the force ceased. Draw the approximate plot $x(t)$ of oscillations. Investigate possible cases.

- Watch Video Solution

85. A ball of mass m when suspended by a spring
stretches the latter by Δl. Due to external vertical
Iforce varying according to a harmonic law with amplitude F_{0} the ball performs forced oscillations. The logarighmic damping decrement if equal to λ.

Neglecting the mass the spring, find the angular frequency of the external force at which the
displacemetn amplitude of the ball is maximum. What is the magnitude of that amplitude?

D View Text Solution

86. The forced harmonic oscillations have equal displacement amplitude at frequencies $\omega_{1}=400 s^{-1}$ and $\omega_{2}=600 s^{-1}$. Find the resonance frequency at which the displacement amplitude is maximum.

D Watch Video Solution

87. The velocity amplitude of a particle is equal to half
the maximum value at the frequencies ω_{1} and ω_{2} of
external harmonic force.
Find:
(a) the frequency corresponding to the velocity resonance,
(b) the damping coefficient β an dthe damped oscillation frequency ω of the particle.

- View Text Solution

88. A certain resonance curve describes a mechanical oscillating system with logarithmic damping decrement $\lambda=1.60$. For this curve find the ration of the maximum displacemetn amplitude to the displacement amplitude at a very low frequency.
89. Due to the external vertical force $F_{x}=F_{0} \cos \omega t$ a body suspended by a spring performs forced steady - state oscillations according to the law $x=a \cos (\omega t-\varphi)$. Find the work performed by the force F during one oscillation period.

D Watch Video Solution

90. A ball of mass $m=50 g$ is suspended by a weightless spring with stiffness $x=20.0 \mathrm{~N} / \mathrm{m}$. Due to external vertical harmonic force with frequency $\omega=25.0 s^{-1}$ the ball performs steady - state
oscillations with amplitude $a=1.3 \mathrm{~cm}$. In this case the displacement of the ball lags in phase behind the external force by $\varphi=\frac{3}{4} \pi$. Find :
(a) the quality factor of the given oscillator,
(b) the work performed by the external force during one oscillation period.

- Watch Video Solution

91. A ball of mass m suspended by a weightless spring
can perform vertical oscillations with damping
coefficient β. The natural oscillation frequency is equal
to ω_{0}. Due to the external vertical force varying as
$F=F_{0} \cos \omega t$ the ball performs steady - state
harmonic oscillations. Find :
(a) the mean power (: P:), develocped by the force F. averaged over one oscillations perod,
(b) the frequency ω of the force F at which (: $P:$) is maximum, what is $(: P:)_{\max }$ equal to ?

- View Text Solution

92. An external harmonic force F whose frequency can
be varied, with amplitude maintained constant, acts in
a vertical direction on a ball suspended by a weightless
spring. The damping coefficient is η times less than the
natural oscillation frequency ω_{0} of the ball. How much,
in per cent, does the mean power $(: P:)$ developed
differ from the maximum mean power $(: P:)_{\max }$? Averaging is performed over one oscillation period.

- View Text Solution

93. A uniform horizontal disc fixed at its centre to an elastic vertical rod performs forced torsional oscillations dur to the moment of forces
$N_{z}=N_{m} \cos \omega t$. The oscialltions obey the law $\varphi=\varphi_{m} \cos (\omega t-\alpha)$.
(a) the work performed by friction forces acting on the disc during one oscillation period,
(b) the quality factor of the given oscillator if th
emoment of inertia of the disc relative to the axis is equal to I.

D View Text Solution

Electric Oscillations

1. If the elctron (charge of each electron $=-e$) are shifted by a small distance x, a net $+v e$ charge density (per unit area) is induced on the surface. This will result in an electric field $E=n e x / \varepsilon_{0}$ in the direction of x and a restoring force on an electron of $-\frac{n e^{2} x}{\varepsilon_{0}}$,
Thus $m \ddot{x}=-\frac{n e^{2} x}{\varepsilon_{0}}$
or $\ddot{x}+\frac{n e^{2}}{m \varepsilon_{0}} x=0$
This gives $\omega_{p}=\sqrt{\frac{n e^{2}}{m \varepsilon_{0}}}=1.645 \times 10^{16} s^{-1}$
as the plasma frequency for the problem,.

D Watch Video Solution

2. An oscillating circuit consisting of a capacitor with
capacitance C and a coil of inductance L maintans free
undamped oscillations with voltage amplitude across
the capacitor equal to V_{m}. For an arbitrary moment of
time find the relation between the current I in the circuit and the voltage V acroos the capacitor. Solve
this problem usdini Ω 's law and then the energy conservation law.

- Watch Video Solution

3. An oscillating circuit consists of a capacitor with capacitance C, a coil of inductance L with negligible resistance, and aswitch. With the switch disconnected, the capacitor was charged to a voltage V_{m} and then at the moment $t=0$ the switch was closed. Find :
(a) the current $(I(t))$ in the circuit as a function of time,
(b) the emf of self- inductance in the coil at the moments when the electric energy of the capacitor is equal to that of the current in the coil.
4. In an oscillating circuit consisting of a parallel- plate capacitor and an inductance coil with negligible active resistance the oscillations with energy W are sustained. The capacitor plates were slowly drawn aparto to increase the oscillation frequency η - fold.

What work was doen in the process ?

- Watch Video Solution

5. In an oscillating circuit shown in figure, the coil inductance is equal to $L=2.5 \mu F$. The capacitor have capacitances $C_{1}=2.0 \mu F$ and $C_{2}=3.0 \mu F$. The capacitors were charged to a voltage $V=180 \mathrm{~V}$, and then the switch $S w$ was closed. Find :
(a) the natural oscillation frequency,
(b) the peak value of the current flowing through the coil.

- View Text Solution

6. An electric circuit shown in figure has a negligibly small active resistance. The left - hand capacitor was charged to a voltage V_{0} and then at the moment $t=0$
the switch $S w$ was closed. Find the time dependence of the voltages in left and right capacitors.

- Watch Video Solution

7. An oscillating circuit consists of an inductance coil L
and a capacitor with capacitance C. The resistance of
the coil and the lead wires is negligible. The coil is
placed in a permanent magnetic filed so that the total
flux passing through all the turns of the coild is equal to Φ. At the moment $t=0$ the magnetic field was switched off. Assuiming the switching off time to be negligible compared to the natural oscillation paeriod of the cirucuit, find the circuit current as a fuction of time t

- Watch Video Solution

8. The free damped oscillations are maintained in a circuit, such that the voltage across the capacitor varies as $V=V_{m} \theta^{\beta t} \cos \omega t$, Find the moments of time when the modulus of the voltage across the capacitor reaches
(a) peak values,
(b) maximum (extremum) values.

D Watch Video Solution

9. A certain oscillating circuit consits of a capacitor
with capacitance C, a coil with inductance L and active resistance R, and a switch . When the swith was disconnected, the capacitor was charged, then the switch was closed and oscillations set in. Find the ratio of the voltage across the capacitor to its peak value at the moment immediatel after closing the switch.

- Watch Video Solution

10. A circuit with capacitance C and inductance L generates free damped oscillations with current varying with time as $I=I_{m} e^{-\beta t} \sin \omega t$. Find the voltage across the capacitor as a function of time, and in particular, at the moment $t=0$.

- Watch Video Solution

11. An oscillating circuit consist of a capacitor with
capacitance $C=4.0 \mu F$ and a coil with inductance
$L=2.0 \mu H$ and active resistance $R=10 \Omega$. Find the ration of the energy of the coil's magnetic field to that of the capacitor's electric field at the moment when the current has the maximum value .

- Watch Video Solution

12. An oscillating circuit consists of two coils connected in series whose inductances are L_{1} and L_{2} active resistances are R_{1} and R_{2}, and mutual inductance is negligible. These coils are to be replaced by one, keeping the frequency and the quality factor of the circuit constant. Find the inductance and the active resistance of such a coil.
13. How soon does the current amplitude in an oscillating circuit with quality factor $Q=5000$ decrease $\eta=2.0$ times if the oscillation frequency is $v=2.2 M H z ?$

D Watch Video Solution

14. An oscillating cirucuit consits of capacitance
$C=10 \mu F$, inductance $L=25 M h, \quad$ and active resistance $R=1.0 \Omega$. How mancy oscilaltion periods does it take for the current amplitude to decrease efold ?
15. How much (in per cen) does the free oscllation frequency ω of a circuit with quality factor $Q=5.0$ differ from the natural oscillation frequency ω_{0} of that circuit?

D Watch Video Solution

16. In a circuit shown in figure the battery emf is equal to $E=2.0 V$, its internal resistance is $r=9.0 \Omega$, the capacitance of the capacitor is $C=10 \mu F$, the coil inductance is $L=100 \mathrm{mH}$, and the resistance is
$R=100 \Omega$. At a certain momenta the switch $S w$ was disconneted.

Find the energy of oscillations in the circuit
(b) $t=0.30 s$ after the switch was disconnected,

- Watch Video Solution

17. Damped oscillations are induced in a cirucuit whose quality factor is $Q=50$ and natural oscillation frequency is $v_{0}=5.5 \mathrm{kHz}$. How soon will the energy stored in the circuit decrease $\eta=2.0$ times ?

- Watch Video Solution

18. An oscillating circuuit incorporates a leaking capacitor. Its capacitance is equal C and active resistance to R. The coil inductance is is L. The resistance of the coil and the wires is negligible. Find :
(a) the damped oscillation frequecy of such a circuit , (b) its quality factor.

D Watch Video Solution

19. Find the quality factor of a circuit with capacitance
$C=2.0 \mu F$ and inductance $L=5.0 \mathrm{mH}$ if the
maintenance of undamped oscillations in the circuit with the voltage amplitude across the capacitor being equal to $V_{m}=1.0 \mathrm{~V}$ requires a power $(: P:)=0.10 \mathrm{~mW}$. The damping of oscillations is sufficiently low

D View Text Solution

20. What mean power should be fed to an oscillating circuit with acting resistance $R=0.45 \Omega$ to maintain undamped harmonic oscillations with current amplitude $I_{m}=30 \mathrm{~mA}$?
21. An oscillating circuit consists of a capacitor with
capacitance $C=1.2 n F$ and a coil with inductance
$L=6.0 \mu H$ and active resistance $R=0.50 \Omega$. What
mean power should be fed to the circuit to maintain undamped harmonic oscillations with volage amplitude acroos the capacitor being equal to $V_{m}=10 \mathrm{~V}$?

- Watch Video Solution

22. Find the damped oscillation frequency of the circuit shown in figure. The capacitance C, inductance L, and active resistance R are supposed to be known. Find how must C, L, and R be interrelated to make

- View Text Solution

23. There are two oscillating circuits (figure) with capacitors of equal capacitances. How must inductances and active resistances of the coils be interrelated for the frequencies and damping of free oscillations in both circuits to be equal ? The mutual
inductance of coils in the left circuit is negligible.

- View Text Solution

24. A circuit consists of a capacitor with capacitance C and a coil of inductance L connected in series, as well
as a switch and a resistance equal to the critical value for this circuit. With the switch disconnected, the capacitor was charged to a voltage V_{0}, and at the
moment $t=0$, the switch was closed. Find the corrent
I in the circuit as a function of time t.What is $I_{\max }$ equal to ?

- View Text Solution

25. A coil with active resistance R and inductance L was connected at the moment $t=0$ to a source of voltage $V=V_{m} \cos \omega t$. Find the current in the coil as a function of time t.
26. A circuit consisting of a capacitor with capacitance
C and a resistance R connected in series was connected at the moment $t=0$ to a source of ac voltage $V=V_{m} \cos \omega t$. Find the current in the circuit as a function of time t.

- Watch Video Solution

27. A long one - layer solenoid tightly would of wire with resistivity ρ has n turns per unit length. The thickness of the wire insulation is negligible. The cross

- sectional radius of the solenoid is equal to a. Find
the phase difference between current and alternating voltage fed to the solenoid with frequency v.

28. A circuit consisting of a capacitor and an active resistance $R=110 \Omega$ connected in series is fed an alternating voltage with amplitude $V_{m}=110 \mathrm{~V}$. In this case the amplitude of steady - state current is equal to $I_{m}=0.50 \mathrm{~A}$. Find the phase difference between the current and the voltage fed.

- Watch Video Solution

29. Figure illustrates the simplest ripple filter. A voltage
$V=V_{0}(1+\cos \omega t)$ is fed to the left input. Find :
(a) the output voltabe $V^{\prime}(t)$,
(b)the magnitude of the product is $\eta=7.0$ times less than the direct voltage component, if $\omega=314 s^{-1}$.

D View Text Solution

30. Draw the approximate voltage vector diagrams in
the electric circuits shown in figure. a, b. The external voltage V is assumed to be alternating harmonically
with frequency ω

(a)

31. A series circuit consisting of a capacitor with capacitance $C=22 \mu F$ and a coil with active resistance $R=20 \Omega$ and iniductance $L=0.35 H$ is connected to a source of alternating voltage with amplitude $V_{m}=180 \mathrm{~V}$ and frequency $\omega=314 s^{-1}$.

Find :
(a) the current amplitude in the circuit,
(b) the phase difference between the current and the external voltage ,
(c) the amplitudes of voltage across the capacitor and the coil.
32. A series circuit consisting of a capacitor with capacitance with capacitance C, a resistance R, and a coil with inductance L and negligible active resistance is connected to an oscillator whose frequency can be varied without changing the voltag amplitude. Find the
frequency at which the voltage amplitude is maximum
(a) across the capacitor,
(b) across the coil.

- View Text Solution

33. An alternating voltage with frequency $\omega=314 s^{-1}$
and amplitude $V_{m}=180 \mathrm{~V}$ is fed to a series circuit consisting of a capacitor and a coil with active
resistor's capacitance will the voltage amplitude across
the coil be maximum ? What is this amplitude equal to
? What is the corresponding voltage amplitude across the condenser?

- View Text Solution

34. A capacitor with capacitance C whose interelectrode space is filled up with poorly conducting medium with active resistance R is connected to a source of alternating voltage $V=V_{m} \cos \omega t$. Find the time dependence of the steady - state current flowing in lead wires. The resistance of the wires is to be neglected.
35. An oscillating circuit consists of a capacitor of capacitance C and a solenoid with inductance L_{1}. The solenoid is inductively connected with a short circuited coil having an inductance L_{2} and a negligible active resistance. Their mutual inductance coefficient is eqaul to L_{12}. Find the natural frequency of the given oscillating ciruit.

- Watch Video Solution

36. Find the quality factor os an oscillating circuit connected in series to a source of alternating emf if at
resonance the voltage across the capacitor is n time that of the source.

D Watch Video Solution

37. An oscillating circuit consisting of a coil and a capacitor connected in series if fed an alternating emf, with coil inductance being chosen to provide the maximum current in the circuuit. Find the quality factor os the system, provided an n - fold increase of inductance results in an n - fold decrease of current in the circuit.
38. A series circuit consisting of a capacitor and a coil with active resistance is connected to a source of harmonic voltage whose frequency can be aried, keeping the voltage amplitdue are n times less than the resonance amplitude. Find :
(a) the resonance frequency,
(b) the quality factor of the circuit.

- View Text Solution

39. Demonstrate thatat low damping the quality factor
Q of a circuit maintaining forced oscillations is approximately equal to $\omega_{0} / \Delta \omega$, where ω_{0} is the natural oscillation frequency, $\Delta \omega$ is the width of the
resonance curve $I(\omega)$ at the " height " which is $\sqrt{2}$ times less than the resonance current amplitude.

D Watch Video Solution

40. A circuit consisting of a capacitor and a coil connected in seried if fed two alternating voltages of equal amplitudes but different frequencies. The frequency of one voltage is equal to the natural oscillation frequency $\left(\omega_{0}\right)$ of the circuit, the frequency of the other voltage is η times highter. Find the ratio of the current amplitudes $\left(I_{0} / I\right)$ generated by the two voltages if the quality factor of the system is equal
to Q. Calculate this ratio for $Q=10$ and 100 , if $\eta=1.10$.

D View Text Solution

41. It takes t_{0} hours for a direct current I_{0} to charge a
storage battery. How long will it take to charge such a battery from the mains using a half - wave rectifier, if the effective current value is also equal to I_{0} ?

D Watch Video Solution

42. Find the effective value of current if its mean value is I_{0} and its time dependence is
(a) shown in figure,
(b) $I\rceil \sin \omega t \mid$.

I

- Watch Video Solution

43. A solenoid with inductance $L=7 m H$ and active resistance $R=44 \Omega$ is first connected to a source of direct voltabe V_{0} and then to a source of sinusoidal voltage with effective value $V=V_{0}$. At what
frequency of the oscillator will be power consumed by the solenoid be $\eta=5.0$ times less than in the former case ?

D Watch Video Solution

44. A coil with inductive resistance $X_{L}=30 \Omega$ and impedance $Z=50 \Omega$ is connected to the mains with effective oltage value $V=100 \mathrm{~V}$. Find the phase difference between the current and the voltage, as well as the heat power generated in the coil.

- View Text Solution

45. A coil with inductance $L=0.70 H$ and active resistance $r=20 \Omega$ is connected in series with an inductance - free resistance R. An alternating voltage with effective value $V=220 \mathrm{~V}$ and frequency
$\omega=314 s^{-1}$ is a applied across the terminals of this circuit. At what value of the resistance R will the maximum heat power be generated in the circuit ? What is it equal to ?

- Watch Video Solution

46. A circuit consisting of a capacitor and a coil in
series is connected to the mains. Varying the
capacitance of the capacitor, the heat power
genergated in the coil was increased $n=1.7$ times.
How much (in per cent) was the value of $\cos \varphi$ changed in the process ?

- Watch Video Solution

47. A source of sinusoidal emf with constant voltage is
connected in series with an oscillating circuit with
quality factor $Q=100$. At a certain frequency of the external voltage the heat power generated in the circuit reached the maximum value. How much (in per
cent) should this frequency be shifted to decrease the power generated $n=2.0$ times ?
48. A series circuit consisting of an inductance - free resistance $R=0.16 k \Omega$ and coil with active resistance is connected to the mains with effective voltabe $V=220 \mathrm{~V}$. Find the heat power generated in the coil if the effective voltage values across the resistance R and the coil are equal to $V_{1}=80 \mathrm{~V}$ and $V_{2}=180 \mathrm{~V}$ respectively.

D Watch Video Solution

49. A coil and an inductance - free resistance
$R=25 \Omega$ are connected in parallel to the $a c 1$ mains.
Find the heat power generated in the coil provided a
current $I=0.90 A$ is drawn from the mains. The coil and the resistance R carry currents $I_{1}=0.50 A$ and $I_{2}=0.60 A$ respectively.

- Watch Video Solution

50. An alternating current of frequency $\omega=314 s^{-1}$ is
fed to a circuit consisting of a capacitor of capacitance
$C=73 \mu F$ and an active resistance $R=100 \Omega$
connected in parallel. Find the impedance of the circuit.

D Watch Video Solution

51. Draw the approcimate vector diagrams of currents in the circuits shown in figure. The voltage applied across the points A and B is assmed to be sinosoidal, the parameters of each circuit are so chosen that the total current I_{0} lags in phase behind the external voltage by an angle φ.

> (a)
52. A capacitor with capacitance $C=1.0 \mu F$ and a coil with active resitance $R=0.10 \Omega$ and inductance
$L=1.0 \mathrm{mH}$ are connected in parallel to a source of sinusoidal voltage $V=31 V$. Find :
(a) the frequency ω at which the resonance sets in,
(b) the effective value of the fed current in resonance, as well as the corresponding currents flowing through
the coil and through the capacitor.

(D) Watch Video Solution

53. A capacitor with capacitance C and a coil with
active resistance R and inductance L are connected in
parallel to a source of sinusoidal voltage of frequency
ω. Find the phase difference between the current fed to the circuit and the source voltage.

D View Text Solution

54. A circuit consists of a capacitor with capacitance C and a coil with active resistance R and inductance L connected in parallel. Find the impedane of the circuit at frequency ω of alternating voltage.

- Watch Video Solution

55. A ring of thin wire with active resistance R and inductance L rotates with constant angular velocity ω
in the external uniform magneitce field perpendicular to the rotation axis. In the process, the flux of magnetic induction of external field across the ring varies with time as $\Phi=\Phi_{0} \cos \omega t$. Demonstrate that
(a) the inductive current in the ring varies with time as
$I=I_{m} \sin (\omega t-\varphi)$, where $I_{m}={ }_{m} \Phi / \sqrt{R^{2}+\omega^{2} L^{2}}$
with $\tan \varphi=\omega L / R$,
(b) the mean mechanical is defined by the formula $P=1 / 2 \omega^{2} \Phi_{0}^{2} R /\left(R^{2}+\omega^{2} L^{2}\right)$.

D Watch Video Solution

56. A wooden core (figure) supports two coils : coil 1 with inductance L_{1} and shor - circuited coil 2 with
active resistance R and inductance L_{2}. The mutual inductance of the coils depends on the distance x between them according to the law $L_{12}(x)$. Find the mean (averaged over time) value of the interaction force between the coils when coil 1 carries an alternating current $I_{1}=I_{0} \cos \omega t$

- View Text Solution

1. How long will it take sound waves to travel a distance
l between points A and B if the air temperature between them varies linearly from T_{1} and T_{2} ? (The velocity of sound in air at temperature T is given by $v=\alpha \sqrt{T}$, where α is a constant)

D Watch Video Solution

2. A plane harmonic wave with frequency ω propagates
at a velocity v in a direction forming angles α, β, γ and
with x, y, z axes. Find the phase difference between
the oscillations at the points of medium with coordinates x_{1}, y_{1}, z_{1} and x_{2}, y_{2}, z_{2}.

D Watch Video Solution

3. A plane wave of frquency ω propagates so that a certain phase of oscillation moves along the x, y, z axes with velocities v_{1}, v_{2}, v_{3}. Respectively. Find the wave vectork, assuming the unit vetors e_{x}, e_{y}, e_{z} of the coordinate axes to be assigned.
4. A plane sound wave is travelling in a medium. In reference to a frame A, its equation is $y=a \cos$
($\omega t-k x$). Which refrence to frame B , moving with a constant velocity v in the direction of propagation of the wave, equation of the wave will be

- Watch Video Solution

5. Demonstrate that any differentiable function
$f(f+\alpha x)$, where α is a constant, provides a solution of wave equation. What is the physical meaning of the constant α ?
6. The equation of a travelling plane sound wave has
the form $y=60 \cos (1800 t-5.3 x)$, where y is in micrometres, t in seconds and x in metres. Find
(a). The ratio of the displacement amplitude with which the particle of the medium oscillate to the wavelength,
(b).the velocity oscillation ammplitude of particles of the medium and its ratio to the wave propagation velocity , (c). the particle acceleration amplitude.

D Watch Video Solution

7. A plane wave $\xi=a \cos (\omega t-k x)$ propagates in a homongeneous elastic medium, For the moment $t=0$

draw

(a) the plots of $\xi, \delta \xi / \delta t$, and $\delta \xi / \delta x$ vs x,
(b) velocity medium direction of the particle of the medium at the points where $\xi=0$, for the cases of longitudinal and transverse waves,
(c) the approximate plot of density distribution $\rho(x)$ of the medium for the case of longitudinal waves.

D Watch Video Solution

8. A plane elastic wave $\xi=a e^{-\gamma x} \cos (\omega t-k x)$, where a, γ, ω, and k are constants , propagates in a homogeneous medium. Find the phase difference between the oscillations at the points where the
particles, displacement amplitudes differ by
$\eta=1.0 \%$, if $\gamma=0.42 m^{-1}$ and the wavelength is
$\lambda=50 \mathrm{~cm}$.

D Watch Video Solution

9. Find the radius vector defining the position of a point source of spherical waves if that source is known to be located on the straight line between the points
with radius vector r_{1} and r_{2} at which the oscillation amplitudes of particls of the medium are equal to a_{1} and a_{2}. The damping of the wave is negligible, the medium is homogeneous.
10. A point isotropic source generates sound oscillations with frequency $v=1.45 \mathrm{kHz}$. At a distance $r_{0}=5.0 \mathrm{~m}$ from the source the displacement amplitude of particles of the medium is equal to the $a_{0}=50 \mu m$, and at the point A located at a distance $r=10.0 m$ from the source the displacement ampitude is $\eta=3.0$ times less than a_{0}. Find :
(a) the damping coefficient γ of the wave,
(b0 the velocity oscillation amplitude of particles of the medium at the point A.

- Watch Video Solution

11. Two plane waves propagate in a homogeneous elastic medium, one along the x axis and the other along the
$: \xi_{1}=a \cos (\omega t-k x), \xi_{2}=a \cos (\omega t-k y)$. Find the motion pattern fo particles in the plane $x y$ if both waves.
(a) are tansverse and their oscillation directions coincide,
(b) are longitudinal.

D View Text Solution

12. A plane undamped harmonic wave propagates in a medium. Find the mean space density of the total
oscillation energy ($: w:$), if at any point of the medium
the space density of the total oscillation energy becomes equal to w_{0} one - sixth of an oscillation perio after passing the displacement maximum

- View Text Solution

13. A point isotropic sound source is located on the perpendicular to the plane of a ring drawn through the centre O of the ring. The distance between the point O and the source is $l=1.00 \mathrm{~m}$, the radius of the ring is $R=5.00 \mathrm{~m}$. Find the mean energy flow across the area enclosed by the ring if at the point O
the intensity of sound is equal to $I_{0}=30 \mu \mathrm{~W} / \mathrm{m}^{2}$. The damping of the waves is negligible.

D Watch Video Solution

14. A point isotropic source with sonic power
$P=0.10 \mathrm{~W}$ is located at the centre of round hollow cylinder with radius $R=1.0 \mathrm{~m}$ and height $h=2.0 \mathrm{~m}$.

Assuming the sound to be completely absorbed by the walls of the cylinder, find the mean energy flow reachind the lateral surface of the cylinder.
15. The equation of a plane standing wave in a homogeneous elastic medium has the form $\xi=a \cos k x . \cos \omega t$. Plot :
(a) ξ and $\delta \xi / \delta x$ as functions of x at the moments
$t=0$ and $t=T / 2$, where T is the oscillation period,
(b) the distribution of density $\rho(x)$ of the medium at
the moments $t=0$ and $t=T / 2$ in the case of longitudinal oscillation ,
(c) the velocity distribution of particles of the medium at the moment $t=T / 4$, indicate the directions of
velocities at the antinodes, both for longitudinal and transverse oscillation.
16. A longitudinal standing wave $\xi a \cos k x . \cos \omega t$ is maintained in a homogeneous medium of density ρ.

Find the expressions for the space density of
(a) potential energy $w_{p}(x, t)$,
(b) kinetic energy $w_{k}(x, t)$,

Plot the space density distribution of the total energy
w in the space between the displacement nodes at the
moments $t=0$ and $t=T / 4$, where T is oscillation period.

D Watch Video Solution

17. A string 120 cm in length sustains a standing wave,
with the points of the string at which the displacement
amplitude is equal to 3.5 mm being separated by 15.0 cm . Find the maximum displacement amplitude.

To which overtone do these oscillations correspond ?

- Watch Video Solution

18. Find the ratio of the fundamental tone frequencies of two identical strings after one of them was stretched by $\eta_{1}=2.0 \%$ and the other, by $\eta_{2}=4.0 \%$
. The tension is assumed to be proportional to the elongation.

D Watch Video Solution

19. Determing in what way and how many times will the
fundamental tone frequency of a stretched wire change it its length is shortened by 35% and the tension increased by 70%.

D Watch Video Solution

20. To determine the sound propagation velocity in air by acoustic resonance technical one can use a pipe with a piston and a sonic membrane closing one of its
ends. Find the velocity of sound if the distance between the adjacent positions of the piston at which resonance is observed at a frequency $v=2000 \mathrm{~Hz}$ is
equal to $l=8.5 \mathrm{~cm}$.

D Watch Video Solution

21. A pipe of length 85 cm is closed from one end. Find the number of possible natural oscillations of air column in the pipe whose frequencies lie below 1250 Hz . The velocity of sound in air is $34 \mathrm{~m} / \mathrm{s}$.

D Watch Video Solution

22. A copper rod of length $l=50 \mathrm{~cm}$ is clamped at its midpoint. Find the number of natural longitudinal oscillations of the rod in the frequency range from 20 to 50 kHz . What are those frequencies equal to ?
23. A string of mass m is fixed at both ends. The fundamental tone oscillations are excited with circular frequency ω and maximum displacement amplitude $a_{\text {max }}$. Find :
(a) the maximum kinetic energy of the string,
(b) the mean kinetic energy of the string averaged over one oscillation period.

- Watch Video Solution

24. A standing wave $\xi=a \sin k x . \cos \omega t$ is maintained in a homogeneous rod with cross - sectional area S
and density ρ. Find the total mechanical energy confined between the sections corresponding to the adjacent displacement nodes.

- Watch Video Solution

25. A source of sonic oscillations with frequency
$v_{0}=100 \mathrm{~Hz}$ moves at right angles to the wall with a velocity $u=0.17 \mathrm{~m} / \mathrm{s}$. Two stationary receivers R_{1}
and R_{2} are located on a straight line, coinciding with
the trajectory of the source , in the following succession : $R_{1}-$ source $-R_{2}-$ wall. Which receiver
registers the beatings and what is the beat frequency?
The velocity of sound is equal to $v=340 \mathrm{~m} / \mathrm{s}$.
26. A stationary observer receives sonic oscillations
from two tuning forks one of which approaches and the other recedes with the same velocity. As this takes place, the observer hears the beats of frequency $f=2.0 H_{Z}$. Find the velocity of each tuning fork if their oscillation frequency is $f_{o}=680 H_{Z}$ and the velocity of sound in air is $v=340 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

27. A receiver and a source of sonic oscillations of frequency $v_{0}=2000 \mathrm{~Hz}$ are located on the x axid. The
source swings harmonically along that axis with a circulat frequency bandwidth registered by the stationary receiver be equal to $\Delta v=200 \mathrm{~Hz}$? The velocity of sound is equal to $v=340 \mathrm{~m} / \mathrm{s}$.

D View Text Solution

28. A source of sonic oscillations with frequency $v_{0}=1700 \mathrm{~Hz}$ and a receiver are located at the same
point. At the moment $t=0$ the source starts receding from the receiver with constant acceleration $w=10.0 \mathrm{~m} / \mathrm{s}^{2}$. Assuing the velocity of sound to be equal to $v=340 \mathrm{~m} / \mathrm{s}$, find the oscillation frequency
registered by the stationary receiver $t=10.0$ safter the start of motion.

D Watch Video Solution

29. A source of sound with natural frequency $f_{0}=1800 \mathrm{~Hz}$ moves uniformly along a straight line separated from a stationary observer by a distance $l=250 \mathrm{~m}$. The velocity of the source is equal to $\eta=0.80$ fraction of the velocity of the sound.
Q. Find the frequency of osund received by the observer at the moment when the source gets closest
to him.

Ground

- Watch Video Solution

30. A stationary source sends forth monochromatic sound. A wall approaches it with velocity $33 \mathrm{~cm} / \mathrm{s}$. The propagation velocity of sound in the medium is $c=330 \frac{\mathrm{~m}}{\mathrm{~s}}$. How much, in per cent, does the
wavelength of sound change on reflection from the wall?

D Watch Video Solution

31. A source of sonic oscillations with frequency $n=1700 \mathrm{~Hz}$ and a receiver are located on the same normal to a wall. Both the source and receiver are stationary, and the wall recedes from the source with velocity $u=6.0 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the beat frequency registered by the receiver. The velocity of sound is $v=340 \frac{\mathrm{~m}}{\mathrm{~s}}$.

D Watch Video Solution

32. Find the damping coefficient v of a sound wave if at distances $r_{1}=10 \mathrm{~m}$ and $r_{2}=20 \mathrm{~m}$ from a point isotropic source of sound the sound wave intensity values differ by a factor $\eta=4.5$.

D Watch Video Solution

33. A plane sound wave propagates along the x axis .

The damping coefficient of the wave is $\gamma=0.0230 m^{-1}$
. At the point $x=0$ the loudness level is $L=60 d B$.
Find :
(a) the loudness level at a point with coordinate
$x=50 m$,
(b) the coordinate x of the point at which the sound is not heard any more.

D Watch Video Solution

34. At a distance 20 m from a point source of sound the
loudness level is $30 d B$. Neglecting the damping, find
(a) the loundness at 10 m from the source
(b) the distance from the source at which sound is not heard.
35. An observer A located at a distance $r_{A}=5.0 m$ from a ringing tuning fork notes the sound to fade away $\tau=19 s$ later than an observer B who is located at a distance $r_{B}=50 \mathrm{~m}$ from the tuning fork. Find the damping coefficient β of oscillations of the tuning fork.

The sound velocity $v=340 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

36. A plane longitudinal harmonic wave propagates in
a medium with density ρ. The velocity of the wave propagation si v. Assuming that the density variations of the medium, induced by the propagating wave,
$\Delta \rho \ll \rho$, demonstrate that Itbr. (a) the pressure
increment in the medium $\Delta p=-\rho v^{2}(\delta \xi / \delta x)$, where $\delta \xi / \delta x$ is the relative deformation,
(b) the wave intensity is defined by Eq. (4.3i)

- View Text Solution

37. A ball of radius $R=50 \mathrm{~cm}$ is located in the way of propagation of a plane sound wave. The sonic wavelength is $\lambda=20 \mathrm{~cm}$, the frequency is $v=1700 \mathrm{~Hz}$
, the pressure oscillation amplitude in air is
$(\Delta p)_{m}=3.5 P a$. Find the mean energy flow, averaged over an oscillation period, reaching the surface of the ball.
38. A point A is located at a distance $r=1.5 m$ from a point source of sound of frequency $600 \mathrm{H}_{Z}$. The power of the source is 0.8 W . Speed of sound in air is $340 \mathrm{~m} / \mathrm{s}$ and density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$. Find at the point A,
(a) the pressure oscillation amplitude $(\Delta p)_{m}$ (b) the displacement oscillation amplitude A.

D Watch Video Solution

39. At a distance $r=100 \mathrm{~m}$ from a point isotropic source of the sound of frequency 200 Hz the loudness level is equal to $L=50 d B$. The audiblitiy threshold at this frequency corresponds to the sound intensity
$I_{0}=0.10 \mathrm{nW} / \mathrm{m}^{2}$. The damping coefficient of the sound wave is $\gamma=5.0 \cdot 1 \cdot 0^{-4} m^{-1}$. Find the sonic power of the source.

- Watch Video Solution

Electromagnetic Waves Radiation

1. An electromagnetic wave of frequency $v=3.0 \mathrm{MHz}$
passes from vacuum into a dielectric medium with permittivity $\varepsilon=4.0$. Then

D Watch Video Solution

2. A plane electromagnetic wave falls at right angles to
the surface of a plane - parallel plate of thickness l.
The plate is made of non - magentic substance whose permittivity decreases exponentially from a value ε_{10} at the front surface down to a value ε_{2} at the rear one. How lond does it take a given wave phase to travel across this plate gt

D Watch Video Solution

3. A plane electromagnetic wave of frequency $v=10 M H z$ propagates in a poorly conducting medium with conductivity $\sigma=10 \mathrm{mS} / \mathrm{m}$ and
permittivity $\varepsilon=9$. Find the ratio of amplitudes of conduction and displacement current densities.

D View Text Solution

4. A plane electromagentic wave $E=E_{m} \cos (\omega t-k r)$ propagates in vacuum. Assuming the vectors E_{m} and k to be known, find the vector H as a function of time t at the point with radius vector $r=0$.

D View Text Solution

5. A plane electromagentic wave $E=E_{m} \cos (\omega t-k r)$
where $E_{m} E_{m} e_{y}, k=k e_{x}, e_{y}$ are the unit vectors of the
x, y axes, propagates in vacuum. Find the vector H at the point with radius vector $r=x e_{x}$ at the moment (a) $t=0,(b) t=t_{0} . \quad$ Consider the case when $E_{m}=160 \mathrm{~V} / m, k=0.51 m^{-1}, x=7.7 m, \quad$ and $t_{0}=33 n s$.

- Watch Video Solution

6. A plane electromagnetic wave $E=E_{m} \cos (\omega t-k x)$
propagating in vacuum induces the emf $E_{\text {ind }}$, in a square frame with side l. The orientation of the frame is shown in figure. Find the amplitude value $\varepsilon_{\text {ind }}$, if $E_{m}=0.50 \mathrm{mV} / \mathrm{m}$, the frquency $v=5.0 \mathrm{MHz}$ and
$l=50 \mathrm{~cm}$.

- View Text Solution

7. Proceeding from Maxwell's equation shown that in the case of a plane electromagnetic wave (figure) propagating in vacuum the following relations hold :
$\frac{\delta E}{\delta t}=-c^{2} \frac{\delta B}{\delta x}, \frac{\delta B}{\delta t}-\frac{\delta E}{\delta x}$.

D View Text Solution

8. Find the mean Plynting vector (:S:) of a plane electromagnetice wave $E=E_{m} \cos (\omega t-k r)$ if the wave propagates in vacuum.
9. A plane harmonic electromagnetic wave with plane polarization propagates in vacuum. The elctric component of the wave has a strength amplitude $E_{m}=50 \mathrm{mV} / \mathrm{m}$, the frequency is $v=100 \mathrm{MHz}$. Find
(a) the efficient value of the displacement current density,
(b) the mean energy flow density averaged ove an oscillation period.

- View Text Solution

10. A ball of radius $R=50 \mathrm{~cm}$ is located in a non magnetic medium with permittivity $\varepsilon=4.0$. In that
medium a plane electromagnetic wave propagates, the
strength amplitude of whose electri component is equal to $E_{m}=200 \mathrm{~V} / \mathrm{m}$. What amount of energy reaches the ball during a time interval $t=1.0 \mathrm{~min}$?

- View Text Solution

11. A standing electromagnetic wave with electric component $E=E_{m} \cos k x . \cos \omega t$ is sustained along the x axis in vacuum. Find the magnetic component of
the wave $B(x, t)$. Draw the approximate distribution pattern of the wave's electric and magnetic components $(E$ and $B)$ at the moments $t=0$ and $t=T / 4$, where T is the oscillation period.
12. A standing electromagnetic wave
$E=E_{m} \cos k x \cdot \cos \omega t$ is sustained along the x axis in
vacuum. Find the projection of the Poyntind vector on
the x axis $S_{x}(x, t)$ and the mean value of that projection averaged over an oscillation period.

- View Text Solution

13. A parallel - plate air capacitor whose electrodes
are shaped as discs of radius $R=6.0 \mathrm{~cm}$ is connected
to a source of an alternating sinusoidal votage with
frequency $\omega=1000 s^{-1}$. Find the ratio of peak values of magnetic and electric energies within the capacitor.

D View Text Solution

14. An alternating sinusoidal current of frequency $\omega=1000 s^{-1}$ flows in the winding of a straight solenoid whose cross - sectional radius is equal to $R=6.0 \mathrm{~cm}$. Find the ratio of peak values of electric and magnetic energies within the solenoid.
15. A parellel-plate capacity whose electrodes are shaped as round disc is changed slowly. Demonstrate that the flux of the Poynting vector across the capacitor's lateral surface is equal to the increment of the capcitor's enegry per unit time. The dissipation of field at the edge is to be neglected in calculations.

- View Text Solution

16. A current I flows along a straight conductor with round cross-section. Find the flux of the Poynting vector across the lateral surface of the conductor's segment with resistance R.
17. Non-relativistic protons accelerated by a potential difference U from a round beam with current I. Find the magnitude and direction of the Poynting vector the beam at a distance r from its axis.

- View Text Solution

18. A current flowing in the winding of a long straight solenoid is increased at a sufficiently slow rate. Demonstrate that the rate at which the enrgy of the magnetic field in the solenoid increases is equal to the
flux of the Poynting vector across the lateral surface of the solenoid.

D View Text Solution

19. Fig. illustrates a segment of a double line carrying direct current whose direction in indicated by the arrows. Taking into account that the potential $\varphi_{2}>\varphi_{1}$, and making use of the Poynting vector, establish on which side (left or right) the source of the current is
located.

- View Text Solution

20. The enegry is transferred form a source of constant voltage V to a consumer by means of long straight coaxial cable with negligible active resistance. The consumed current is I. Final the enegry flux across the
cross-section of the cable. The conductive sheath is supposed to be thin.

- View Text Solution

21. A source of ac volatge $V=V_{0} \cos \omega t$ delivers enegry yo a consummer by means of along straight coaxial cable with negligible active resistance. The current in the circuit varies as $I=I_{0} \cos \omega t-\varphi$. Find the time-averaged enegry flux through the crosssection of the cable. The sheath is thin.

- View Text Solution

22. Demonstrate that at the boundary between two media the normal components of the Poynting vector are continuous, i.e. $S_{1 n}=S_{1 n}$.

- View Text Solution

23. Demonstare that a closed system of charged nonrelativistic particles with identical specific charges emits no dipole radiation.
24. Find the mean radiation power of an electorn performing harmonic oscillations with amplitude $a=0.10 \mathrm{~nm}$ and frequency $\omega=6.5 \cdot 10^{14} s^{-1}$

- View Text Solution

25. Find the radiation power developed by a nonrelativistic particle with charge e and mass m, moving along a circular orbit of radius R in the field of a stationary point charge q.
26. A particle with charge e and mass m flies with nonrelativistic velocity v at a distance b past a stationary particle with charge q. Neglecting the bending of the trajectory of the moving particle, find the enegry lost by this particle due to radiation during the total flight time.

- View Text Solution

27. A non-reletivistic proton enters a half-space along
the normal to the transverse unifrom magnetic field whose induction equals $B=1.0 T$. Find the raatio of
the enrgy lost by the proton due to radiation during its motion in the field to its initial kinetic energy.

D View Text Solution

28. A non-relativistic enegry particle moves in a transverse uniform magnetic fiel with induction B.

Find the time dependence of the particles's kinetic enegry diminshing due to radiation. How soon will its kinetic enegry decrease e-fold? Calculate this time interval for the case (a) of an electron, (b) of a proton.

- View Text Solution

29. A charged particle moves along the y axis according to the law $y=a \cos \omega t$, and the point of
observation P is located on the x axis at a distance l
from the particle $(l \gg a)$. Find the ratio of electromagnetic radiation flow densities S_{1} / S_{2} at the point P at the moments when the corrdinate of the particle $y_{1}=0$ and $y_{2}=a$. Calculate that ratio if $\omega=3 \cdot 3 \cdot 10^{6} s^{-1}$ and $l=190 \mathrm{~m}$.

- View Text Solution

30. A charged particle moves uniformaly with velocity v along a circle of radius R in the plane $x y$ (fig.) An observer is located on the x axis at a point P which is removed form the centre of the circle by a distance much exceeding R. Find:
(a) the relatiship between the observed values of the y projection of the particle's acceleration and the y corrdinate of the particle:
(b) the ratio of electromagnetic radiation flow densities S_{1} / S_{2} at the point P at the moments of time when the particle moves, form the standpoint of the observer P, toward him and away from him, as shwon in the figure.

31. An electromagnetic wave emitted by an elementary dipole propagates in vacuum so that in the far fold zone the mean value of the enrgy flow density is equal to S_{0} at the point removes from the dipole by a distance r along the perpendicualr draws to the dipole's axis. Find the mean radiation power of the dipole.

- View Text Solution

32. The mean power radiation by an elementary dipole is equal to P_{0}. Find the mean space density of energy of the electromagnetic field in vacuum in the far field
zone at the point removed from the dipole by a distance r along the perpendicular draws to the dipole's axis.

- View Text Solution

33. An electric dipole whose modulus is constant and whose moment is equal to p rotates with constant angular velocity ω about the axis draws at right angles to the axis of the dipole and passing through its midpoint. Find the power radiated by such a dipole.

- View Text Solution

34. A free electron is located in the field of a plane electromagnetic wave. Neglecting the magnetic component of the wave distrurbing its motion, find the ratio of the mean energy radiated by the oscillating electron per unit time to the mean value of the energy flow density of the incident wave.

- View Text Solution

35. A plane electromagnetic wave with frequency ω falls upon an elastically bonded electron whose natural
frequency equals ω_{0}. Neglecting the damping of oscillations, find the ratio of the mean enegry
dissipated by the electron per unit time to the mean value of the enrgy flow density of the incident wave.

D View Text Solution

36. Assuming a particle to have the form of a ball and to absorb all incient light, find the radius of a particle for which its gravitational attraction to the sun is counterbalanced by the forces that light exerts on it.

The power of light raiated by the sun equals $P=4.10^{26} W$, and the density of the particle is $\rho=1.0 \mathrm{~g} / \mathrm{cm}^{3}$.

- Watch Video Solution

