©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CP SINGH PHYSICS (HINGLISH)

KINETIC THEORY OF GASES

Example

1. A vessel of volume $8.0 \times 10^{-3} \mathrm{~m}^{3}$ contains an ideal gas at 300 K and pressure 200 kPa . The gas is allowed to leak till the pressure falls to $125 k P a$. Calculate the amount of the gas (in moles) leaked assuming that the temperature remains constants.
2. Oxygen is filled in a closed metal jar of volume $1.0 \times 10^{-3} \mathrm{~m}^{3}$ at a pressure of $1.5 \times 10^{5} \mathrm{~Pa}$. and temperature 400 K . The jar has a small leak in it. The atmospheric pressure is $1.0 \times 10^{5} \mathrm{~Pa}$ and the atmospheric temperature is 300 K . Find the mass of the gas that leaks out by time the pressure and the temperature inside the jar equalise with the surrounding.

- Watch Video Solution

3. During an experiment, an ideal gas is found to obey an additional law $p / V^{2}=$ constant. The gas is initially at a temperature T and volume V. Find the temperature when it expands to a volume $2 V$.

- Watch Video Solution

4. The pressure of an ideal gas varies according to the law $P=P_{0}-A V^{2}$, where P_{0} and A are positive constants. Find the highest temperature that can be attained by the gas

- Watch Video Solution

5. Calculate the rms speed of nitrogen at STP (pressure $=1$ atm and temperature $=0^{0} C$. The density of nitrgoen in these conditions is $1.25 \mathrm{kgm}^{-3}$

- Watch Video Solution

6. Find $r m s$ speed of oxygen molecules at temperature $27^{\circ} C$.
7. Calculate the rms speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at NTP. Given $k_{B}=1.38 \times 10^{-23} J / K$

D Watch Video Solution

8. The average translational kinetic energy of air molecules is $0.040 \mathrm{eV}\left(1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right)$. Calculate the temperature of the air.

Boltzmann constant $K=1.38 \times 10^{-23} J K^{-1}$.

D Watch Video Solution

9. Consider a sample of oxygen at $300 K$. Find the average time taken by a molecule to travel a distance equal to the diameter of the earth.

(D) Watch Video Solution

10. At what temperature the mean speed of the molecules of hydrogen gas equals the escape speed from the earth?

D Watch Video Solution

11. At what temperature, will the rms speed of oxygen molecules be sufficient for escaping from the earth ? Take $m=2.76 \times 10^{-26} \mathrm{~kg}, k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and $v_{e}=11.2 \mathrm{~km} / \mathrm{s}$
12. Two perfect gases at absolute temperature T_{1} and T_{2} are mixed. There is no loss of energy. The masses of the molecules are m_{1} and m_{2}. The number of molecules in the gases are n_{1} and n_{2}. The temperature of the mixture is

- Watch Video Solution

13. A closed container of volume $0.02 m^{3}$ contains a mixture of neon and argon gases, at a temperature of $27^{\circ} \mathrm{C}$ and pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The total mass of the mixture is 28 g . If the molar masses of neon and argon are 20 and $40 \mathrm{gmol}^{-1}$ respectively, find the masses of the individual gasses in the container assuming them to be ideal (Universal gas constant $R=8.314 J / \mathrm{mol}-K)$.
14. A vessel of volume, $V=5.0$ litre contains $1.4 g$ of nitrogen at a temperature $T=1800 \mathrm{~K}$. Find the pressure of the gas if 30% of its molecules are dissociated into atoms at this temperature.

D Watch Video Solution

15. Two vessels A and B with rigid walls containing ideal gases.

The pressure, temperature and the volume are P_{1}, T_{1}, V in the vessel A and P_{2}, T_{2}, V in the vessel B. The vessels are now connected through a small tube. In equilibrium, pressure P and temerature T becomes same in two vessels. Find the value of P / T.

16. Two glass bulbs of equal volume are connected by a narrow tube and are filled with a gas at $0^{\circ} \mathrm{C}$ and a pressure of 76 cm of mercury. One of the bulbs is then placed in melting ice and the other is placed in a water bath maintained at $62^{\circ} \mathrm{C}$. What is the new value of the pressure inside the bulbs? The volume of the connecting tube is negligible.

D Watch Video Solution

17. Figure shows a cylindrical tube of length 30 cm which is partitioned by a tight-fitting separator.The separator is very weakly conducting and can freely slide along the tube. Ideal gases are filled in the two parts of the vessel. In the beginning, the temperature in the parts A and B are $400 K$ and $100 K$
respectively. The separator slides to a momentary equilibrium position shown in the figure. Find the final equilibrium position of the separator, reached after a long time.

- Watch Video Solution

18. A glass tube sealed at both ends is 100 cm long, It lies horizontally with the middle 10 cm containing mercury. The two ends of the tube contain air at $27^{\circ} \mathrm{C}$ and at a pressure 76 cm of mercury. The air column on one side is maintained at $0^{\circ} \mathrm{C}$ and the other side is maintained at $127^{\circ} \mathrm{C}$. Calculate the length of the air column on the cooler side. Neglect the changes in the volume of mercury and of the glass.

- Watch Video Solution

19. A uniform tube closed at one end, contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm
. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure $=75 \mathrm{~cm}$ of mercury.

D Watch Video Solution

20. An ideal gas is trapped between a mercury column and the closed-end of a narrow vertical tube of uniform base containing the column. The upper end of the tube is open to the atmosphere. The atmospheric pressure equals 76 cm of mercury. The lenghts of the mercury column and the trapped air column are 20 cm and 43 cm respectively. What will be the length of the air column when the tube is tilted slowly in a vertical plane
through an angle of 60° ? Assume the temperature to remain constant.

- Watch Video Solution

21. OSin Leg (core) dhesce ($4 \times 2-3 x$) dxxe(1 + r) areEDSet (2-2) ok(1-)?stage vaginya de

- Watch Video Solution

22. The mercury manometer consists of two unequal arms of equal cross section $1 \mathrm{~cm}^{2}$ and lengths 100 cm and 50 cm . The two open ends are sealed with air in the tube at a pressure of 80 cm
of mercury. Some amount of mercury is now introduced in the manometer through the stopcock connected to it. If mercury
rises in the shorter tube to a length 10 cm in steady state, find the length of the mercury column risen in the longer tube.

- Watch Video Solution

23. Figure shows a cylindrical tube of radius 5 cm and length

20 cm . It is closed by a tight-fitting cork. The friction coefficient between the cork and the tube is 0.20 . The tube contains an ideal gas at a pressure of 1 atm and a temperature of 300 K . The tube is slowly heated and it is found that the cork pops out when the temperature reaches $600 K$. Let $d N$ denote the magnitude of the normal contact force exerted by a small length
$d l$ of the cork along the periphery (see the figure). Assuming that the temperature of the gas is uniform at any instant, calculate $\frac{d N}{d l}$.
24. Show a vertical cylindrical vesse seperated in two parts by a frictionless piston free to move along the length of vessel. The length of the cylilender is 90 cm and the piston divides the cylinder in the ratio of 5:4. Each of the two parts of the vessel contains 0.1 mole of an ideal gas. The temoerature of the gas is 300K in each part. Calculate the mass of the piston.(figure)

D Watch Video Solution

25. A vertical hollow cyclinder of height $1.52 m$ is fitted with a movable piston of negligible mass and thickness. The lower half portion of the cyclinder contains an ideal gas and the upper half is filled with mercury. The cyclinder is initially at $300 K$. When the temperature is raised half of the mercury comes out of the cyclinder. Find the this temperature assuming the thermal
expansion of the mercury to be negligible.

- Watch Video Solution

26. Asmooth vertical tibe having two different sections, is open at both ends and equipped with two pistons of different areas.

Each piston slides within a respective tube section. The pistons are tied with an inextensible weightless string. One mole of ideal
gas is enclosed between them. The cross-section area of upper piston is $\Delta A=10 \mathrm{~cm}^{2}$ greater than that of lower one. The combined mass of two piston is equal to $M=5.0 \mathrm{~kg}$. The external pressure is $P_{0}=1.0 \mathrm{~atm}$. By how much must the gas between the pistons the heated to shift pistons through
$l=5.0 \mathrm{~cm} .\left(1 \mathrm{~atm}=1.0 \times 10^{5} \mathrm{~Pa}\right)$

27. A cubical box of side $1 m$ contains helium gas (atomic weight
4) at a pressure of $100 \mathrm{~N} / \mathrm{m}^{2}$. During an observation time of 1 sec ond, an atom travelling with the root - mean-square speed parallel to one of the edges of the cube, was found to make $500 h i t s$ with a particular wall, without any collision with other atoms. Take $R=\frac{25}{3} j / m o l-K$ and $k=1.38 \times 10^{-23} J / K$.
(a) Evaluate the temperature of the gas.
(b) Evaluate the average kinetic energy per atom.
(c) Evaluate the total mass of helium gas in the box.

- Watch Video Solution

28. One gram mole of oxygen at 27° and one atmospheric pressure is enclosed in vessel.
(i) Assuming the molecules to be moving the $V_{r m s}$, Find the
number of collisions per second which the molecules make with one square metre area of the vessel wall.
(ii) The vessel is next thermally insulated and moved with a constant speed V_{0}. It is then suddenly stopped. The process results in a rise of the temperature of the gas by $1^{\circ} \mathrm{C}$. Calculate the speed V_{0}.

- Watch Video Solution

29. Hydrogen gas is contained in a closed vessel at 1 atm (100 kPa) and 300 K .
(a) Calculate the mean speed pf the molecules.
(b) Suppose the molecules strike the wall with this speed making an average angle of 45° with it. How many molecules strike each square metre of the wall per second?
30. Assume that the temperature remains essentially constant in the upper part of the atmosphere. Obtain an expression for the variation in pressure in the upper atmosphere with height, the mean molecular weight of air is M.

- Watch Video Solution

31. A horizontal tube of length I closed at both ends contains an ideal gas of molecular weight M, The tube is rotated at a constant angular velocity ω about a vertical axis passing through an end. Assuming the temperature to be uniform and constant, show that
$p_{2}=p_{1} e^{\frac{M \omega^{2} l^{2}}{2 R T}}$,
where p_{2} and p_{1} denote the pressures at the free end and the fixed end respectively.

Exercises

1. A gas behaves more closely as an ideal gas at
A. low pressure and low temperature
B. low pressure and high temperature
C. high pressure and low temperature
D. high pressure and high temperature

Answer: B

D Watch Video Solution

2. The mass of 1 litre of helium under a pressure of 2 atm and at a temperature of $27^{\circ} \mathrm{C}$ is
A. $0.16 g$
B. $0.32 g$
C. $0.48 g$
D. 0.65 g

Answer: B

D Watch Video Solution

3. A gas is enclosed in a vessel at a pressure of 2.5 atm . Due to
leak in the vessel., after some time the pressure is reduced to $2 a t m$, temperature remaining unchanged. The percentage of gas that has leaked out is
A. 20
B. 25
C. 80
D. 75

Answer: A

- Watch Video Solution

4. The gas equation $P V / T=$ constant is true for a constant mass of an ideal gas undergoing
A. isothermal change
B. adiabatic change
C. isobaric change
D. any type of change

- Watch Video Solution

5. The density of a certain mass of a gas at $S T P$ is d. If the pressure of the gas is doubled and the temperature is made one-third of its initial value, the new density will be
A. $3 d$
B. $4.5 d$
C. $6 d$
D. $9 d$

Answer: C

6. The quantity $P V / k T$ represents
A. mass of the gas
B. kinetic energy of the gas
C. number of moles of the gas
D. number of molecules in the gas

Answer: D

- Watch Video Solution

7. If pressure of a gas contained in a closed vessel is increased by
0.4% when heated by $1^{\circ} C$, the initial temperature must be
A. 250 K
B. $250^{\circ} \mathrm{C}$
C. 2500 K
D. $25^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

8. The pressure P, volume V and temperature T of a gas in the jqar A and other gas in the jar B as at pressure $2 P$, volume $V / 4$ and temperature $2 T$, then the ratio of the number of molecules in the jar A and B will be
A. 1: 1
B. 1: 2
C. 2: 1
D. $4: 1$

- Watch Video Solution

9. A vessel contains 1 mole of O_{2} gas (relative molar mass 32) at a temperature T. The pressure of the gas is P. An identical vessel containing one mole of He gas (relative molar mass 4) at temperature 2 T has a pressure of
A. $P / 8$
B. P
C. $2 P$
D. $8 P$

Answer: C

10. The pressure of a gas kept in an isothermal container is 200 Kpa. If half the gas is removed from it, the pressure will be
A. $100 k P a$
B. $200 k P a$
C. 400 kPa
D. 800 kPa

Answer: A

D Watch Video Solution

11. The gas in a vessel is subjected to a pressure of 20 atmosphere at a temperature $27^{\circ} \mathrm{C}$. The pressure of the gas in
the vessel after one half of the gas is released from the vessel and the temperature of the remainder is raised by $50^{\circ} \mathrm{C}$ is
A. 8.5 atm
B. 10.8 atm
C. 11.7atm
D. 17 atm

Answer: C

(D) Watch Video Solution

12. Two identical cylinders at same temp contains hydrogen at
2.5 atm and oxygen at 1.5 atmosphere. If both the gases were filled in one of the cylinders, what will be the pressure?
B. 3.5 atm
C. 4.75 atm
D. 7.0 atm

Answer: B

- Watch Video Solution

13. A vessel A has volume V and a vessel B has volume $2 V$. Both contain some water which has constant volume. The pressure in the space above water is p_{a} for vessel A and p_{b} for vessel B.
A. $P_{a}=P_{b}$
B. $P_{a}=2 P_{b}$
C. $P_{b}=2 P_{a}$
D. $P_{b}=4 P_{a}$

- Watch Video Solution

14. A flask is filled with $13 g$ of an ideal gas at $27^{\circ} C$ and its temperature is raised to $52^{\circ} \mathrm{C}$. The mass of the gas that has to be released to maintain the temperature of the gas in the flask at $52^{\circ} \mathrm{C}$, the pressure remaining the same is
A. $2.5 g$
B. $2.0 g$
C. $1.5 g$
D. $1.0 g$

Answer: D

15. Air is filled in a bottle and it is corked at $35^{\circ} \mathrm{C}$. If the cork can come out at 3 atmospheric pressure, then upto what temperature should the bottle be heated to remove the cork ?
A. $325^{\circ} \mathrm{C}$
B. $851^{\circ} \mathrm{C}$
C. $651^{\circ} \mathrm{C}$
D. none of the these

Answer: C

- Watch Video Solution

16. Consider the quantity $\frac{M k T}{p V}$ of an ideal gas where M is the mass of the gas. It depends on the
A. temperature of the gas
B. volume of the gas
C. pressure of the gas
D. nature of the gas

Answer: D

- Watch Video Solution

17. Two ballons are filled, one with pure He gas and other by air, repectively. If the pressure and temperature of these ballons are same then the number of molecules per unit volume is:
A. more in the He filled balloon
B. same in both balloons
C. more in air filled balloon

- Watch Video Solution

18. Two different masses m and $3 m$ of an ideal gas are heated separately in a vessel of constant volume, the pressure P and absolute temperature T, graphs for these two cases are shown in the figure as A and B. The ratio of slopes of curves B to A is

A. $3: 1$
B. 1:3
C. 9:1
D. 1:9

Answer: A

- Watch Video Solution

19. The pressure exterted on the walls of the container by a gas is due to the fact that the gas molecules
A. lose their kinetic energy
B. stick to the walls
C. are accelerated towards the walls
D. change their momenta due to collision with the walls

- Watch Video Solution

20. At constant volume, temperature is increased. Then
A. collision on walls be less
B. number of collisions per unit time will increase
C. collisions will be in straight lines
D. collisions will not change

Answer: B

- Watch Video Solution

21. When an ideal gas undergoes an isothermal expansion, the pressure of the gas in the enclosure falls. This is due to
A. decrease in the change of momentum per collision
B. decrease in the frequency of collision
C. decrease in both the frequency of collision and the change of momentum per collision
D. decrease in neither the frequency of collision nor the change of momentum per collision

Answer: B

- Watch Video Solution

22. According to the kinetic theory of gases
(i) $P \propto v_{r m s}$
(ii) $v_{r m s} \propto T$
(iii) $v_{r m s} \propto T^{1 / 2}$
(iv) $P \propto v_{r m s}^{2}$
A. (i), (iii)
B. (ii), (iii)
C. (iii), (iv)
D. (i), (iv)

Answer: C

- Watch Video Solution

23. The pressure of an ideal gas is written as $p=\frac{2 E}{3 V}$. Here E refers to
A. translational kinetic energy
B. rotational kinetic energy
C. vibrational kinetic energy
D. total kinetic energy

Answer: A

D Watch Video Solution

24. Pressure exerted by a perfect gas equal to
A. mean K. E. per unit volume
B. half of mean $K . E$. per unit volume
C. one-third of mean $K . E$. per unit volume
D. two-third of mean K. E. per unit volume

Answer: D

- Watch Video Solution

25. At a given temperature, the pressure of an ideal gas of density ρ is proportional to
A. $\frac{1}{\rho^{2}}$
B. $\frac{1}{\rho}$
C. ρ^{2}
D. ρ

Answer: D

26. According to the kinetic theory of gases, at absolute temperature
A. water freezes
B. liquid helium freezes
C. molecular motion stops
D. liquid hydrogen freezes

Answer: C

- Watch Video Solution

27. Gas at a pressure P_{0} in contained as a vessel. If the masses of all the molecules are halved and their speeds are doubles. The
resulting pressure P will be equal to
A. $4 P_{0}$
B. $2 P_{0}$
C. P_{0}
D. $\frac{P_{0}}{2}$

Answer: B

- Watch Video Solution

28. Three containes of the same volume contain three different
gases. The masses of the molecules are m_{1}, m_{2} and m_{3} and the number of molecules in their respective containers are N_{1}, N_{2} and N_{3}. The gas pressure in the containers are P_{1}, P_{2} and P_{3} respectively. All the gases are now mixed and put in one of the containers. The pressure P of mixture will be
A. $P<\left(P_{1}+P_{2}+P_{3}\right)$
B. $P=\frac{P_{1}+P_{2}+P_{3}}{3}$
C. $P=P_{1}+P_{2}+P_{3}$
D. $P>\left(P_{1}+P_{2}+P_{3}\right)$

Answer: C

- Watch Video Solution

29. Four molecules have speeds $2 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~km} / \mathrm{s}, 4 \mathrm{~km} / \mathrm{s}$ and
$5 \mathrm{~km} / \mathrm{s}$. The rms speed of these molecules in km / s is
A. $\frac{\sqrt{27}}{2}$
B. $\sqrt{27}$
C. $2 \sqrt{27}$
D. $\sqrt{54}$

- Watch Video Solution

30. Speed of sound in a gas is v and $r m s$ velocity of the gas molecules is c. The ratio of v to c is
A. $\frac{3}{\gamma}$
B. $\frac{\gamma}{3}$
C. $\sqrt{\frac{3}{\gamma}}$
D. $\sqrt{\frac{\gamma}{3}}$

Answer: D

- Watch Video Solution

31. The mean square speed of the molecules of a gas at absolute temperature T is proportional to
A. T^{-1}
B. \sqrt{T}
C. T
D. T^{2}

Answer: C

D Watch Video Solution

32. At room temperature, the rms speed of the molecules of a certain diatomic gas is found to be $1930 \mathrm{~m} / \mathrm{s}$. The gas is
A. H_{2}
B. F_{2}
C. O_{2}
D. $C I_{2}$

Answer: A

- Watch Video Solution

33. Which of the following gases has maximum rms speed at a given temperature?
A. hydrogen
B. nitrogen
C. oxygen
D. carbon dioxide

- Watch Video Solution

34. The temperature at which the $r m s$ speed of air molecules is double of that at $S T P$ is
A. 819°
B. 819 K
C. $1092^{\circ} \mathrm{C}$
D. $1192 K$

Answer: A

- Watch Video Solution

35. The curve between absolute temperature and $v_{r m s}^{2}$ is
A.

B.

C.

D.

36. The rms speed of oxygen molecules in a gas is v. If the temperature is doubled and the oxygen molecules dissociate into oxygen atoms, the rms speed will become
A. v
B. $v \sqrt{2}$
C. $2 v$
D. $4 v$

Answer: C

- Watch Video Solution

37. A mixture of 2 moles of helium gas (
$(a \rightarrow$ micmass $)=4 a . m . u)$ and 1 mole of argon gas (
$(a \rightarrow$ micmass $)=40 a . m . u)$ is kept at 300 K in a container. The ratio of the rms speeds $\left(\frac{v_{r m s}(\text { helium })}{\left(v_{r m s}(\text { argon })\right)}\right.$ is
A. 0.32
B. 0.45
C. 2.24
D. 3.16

Answer: D

- Watch Video Solution

38. For gas at a temperature T the root-mean-square speed $v_{r m s}$, the most probable speed $v_{m p}$, and the average speed $v_{a v}$ obey the relationship

$$
\text { A. } v_{a v}>v_{r m s}>v_{m p}
$$

B. $v_{r m s}>v_{a v}>v_{m p}$
C. $v_{m p}>v_{a v}>v_{r m s}$
D. $v_{m p}>v_{r m s}>v_{a v}$

Answer: B

- Watch Video Solution

39. The root mean square velocity of hydrogen molecules at 300

K is $1930 \mathrm{~ms}^{-1}$. The rms velocity of oxygen molecules at 1200 K will be
A. $1930 \mathrm{~m} / \mathrm{s}$
B. $965 m / s$
C. $3960 \mathrm{~m} / \mathrm{s}$
D. $482.5 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

40. The root mean square velocity of the molecules in a sample of helium is $5 / 7$ th that of the molecules in a sample of hydrogen. If the temperature of hydrogen sample is $0^{\circ} C$, then the temperature of the helium sample is about
A. $0^{\circ} C$
B. $0 K$
C. $273^{\circ} \mathrm{C}$
D. $100^{\circ} \mathrm{C}$

Answer: A

41. At what temperature is the root mean square velocity of gaseous hydrogen molecules is equal to that of oxygen molecules at $47^{\circ} C$?
A. $20 k$
B. 80 K
C. -73 K
D. $3 K$

Answer: A

- Watch Video Solution

42. The molecules of a given mass of gas have a rms velocity of $200 \mathrm{~m} / \sec \mathrm{at} 127^{\circ} \mathrm{C}$ and $1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ pressure. When the
temperature is $127^{\circ} \mathrm{C}$ and pressure is $0.5 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ the rms velocity in $m / s e c$ will be
A. $\frac{100 \sqrt{2}}{3}$
B. $100 \sqrt{2}$
C. $\frac{400}{\sqrt{3}}$
D. none of the above

Answer: C

- Watch Video Solution

43. A cubical box with porous walls containing an equal number of O_{2} and H_{2} molecules is placed in a larger evacuated chamber. The entire system is maintained at constant temperature T. The ratio of $v_{r m s}$ of O_{2} molecules to that of the $v_{r m s}$ of H_{2}
molecules, found in the chamber outside the box after a short interval is
A. $\frac{1}{2 \sqrt{2}}$
B. $\frac{1}{4}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: B

D Watch Video Solution

44. Two vessels have equal volums. One of them contains hydrogen at one atmosphere and the other helium at two atmosphere. If both the samples are at the same temperature, the $r m s$ velocity of the hydrogen molecules is
A. equal to that of the helium molecules
B. twice that of the helium molecules
C. half that of the helium molecules
D. $\sqrt{2}$ times that of the helium molecules

Answer: D

- Watch Video Solution

45. The remperature at which the $r m s$ speed of hydrogen molecules is equal to escape velocity on earth surface, will be
A. $1060 K$
B. 5030 K
C. $8270 K$
D. 10063 K

- Watch Video Solution

46. Suppose a container is evacuated to leave just one molecule of a gas in it. Let v_{a} and $v_{r m s}$ represents the average speed and the rms speed of the gas.
A. $v_{a}>v_{r m s}$
B. $v_{a}<v_{r m s}$
C. $v_{a}=v_{r m s}$
D. $v_{r m s}$ is undefined

Answer: C

47. Three closed vessels A, B and C are at the same temperature T and contain gases which obey the Maxwellian distribution of velocities. Vessel A contains only O_{2}, B only N_{2} and C a mixture of equal quantities of O_{2} and N_{2}. If the average speed of the O_{2} molecules in vessel A is V_{1}, that of the N_{2} molecules in vessel B is V_{2}, the average speed of the O_{2} molecules in vessel C is (where M is the mass of an oxygen molecules)
A. $\left(V_{1}+V_{2}\right) / 2$
B. V_{1}
C. $\left(V_{1} V_{2}\right)^{1 / 2}$
D. $\sqrt{3 k T / M}$

Answer: B
48. Let $\bar{v}, v_{r m s}$ and v_{p} respectively denote the mean speed. Root mean square speed, and most probable speed of the molecules in an ideal monoatomic gas at absolute temperature T. The mass of a molecule is m. Then
A. (i),(ii)
B. (ii), (iii)
C. (iii), (iv)
D. (i), (iv)

Answer: C

- Watch Video Solution

49. The average momentum of a molecule in a sample of an ideal gas depends on
A. temperature
B. number of moles
C. volume
D. none of these

Answer: D

D Watch Video Solution

50. Keeping the number of moles, volume and temperature the same, which of the following are the same for all ideal gases?
A. $r m s$ speed of a molecule
B. density
C. pressure
D. average magnitude of momentum

Answer: C

- Watch Video Solution

51. At $0 K$, which of the following properties of a gas will be zero ?
A. Kinetic energy
B. Potential energy
C. Vibrational energy
D. Density

- Watch Video Solution

52. Which of the following quantities is zero on an average for the molecules of an ideal gas in equilibrium?
A. Kinetic energy
B. Momentum
C. Density
D. Speed

Answer: B

- Watch Video Solution

53. Which of the following parameters is the same for molecules of all gases at a given temperature?
A. Mass
B. Speed
C. Momentum
D. Kinetic energy

Answer: D

D Watch Video Solution

54. Oxygen and hydrogen are at the same temperature T. What is the ratio of kinetic energies of oxygen molecule and hydrogen molecule when oxygen is 16 times heavier than hydrogen ?
A. 16
B. 4
C. 1
D. $1 / 4$

Answer: C

- Watch Video Solution

55. The mean transitional kinetic energy of a perfect gas molecule at absolute temperature T is (k is the Boltzmann constant)
A. $\frac{1}{2} k T$
B. $k T$
C. $\frac{3}{2} k T$
D. $\frac{5}{2} k T$

Answer: C

- Watch Video Solution

56. The energy of a given sample of an ideal gas depends only on its
A. volume
B. pressure
C. density
D. temperature

Answer: D

57. A sealed container contains helium gas at $300 k$. If it is heated to 600 K , the average kinetic energy of the helium atoms
A. remains unchanged
B. is doubled
C. become $\sqrt{2}$ times
D. becomes 4 times

Answer: B

D Watch Video Solution

58. The average translational kinetic energy of O_{2} (molar mass
32) molecules at a particular temperature is 0.048 eV . The translational kinetic energy of N_{2} (molar mass 28) molecules in
(eV) at the same temperature is (JEE 1997)
(a) 0.0015 (b) 0.003 (c) 0.048 (d) 0.768
A. 0.0015
B. 0.003
C. 0.048
D. 0.763

Answer: C

D Watch Video Solution

59. Which of the following quantities is the same for all ideal monoatomic gases at the same teperature ?
(i) the K. E. of 1 mole
(ii) the $K . E$. of $1 g$
(iii) the number of molecules in 1 mole
(iv) the number of molecules in $1 g$
A. (i), (ii)
B. (ii), (iii)
C. (iii), (iv)
D. (i), (iii)

Answer: D

D Watch Video Solution

60. A gas has volume V and pressure p. The total translational kinetic energy of all the molecules of the gas is
A. $\frac{3}{2} p V$ only if the gas is monoatomic
B. $\frac{3}{p} V$ only if the gas is diatomic
C. $>\frac{3}{2} p V$ if the gas is diatomic
D. $\frac{3}{2} p V$ in all classes

Answer: D

- Watch Video Solution

61. The average translational energy and the rms speed of molecules in a sample of oxygen gas at 300 K are $6.21 \times 10^{-21} \mathrm{~J}$ and $484 m / s$, respectively. The corresponding values at 600 K are nearly (assuming ideal gas behaviour)
A. $12.42 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
B. $8.78 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}$
C. $6.21 \times 10^{-21} \mathrm{~J}, 968 \mathrm{~m} / \mathrm{s}$
D. $12.42 \times 10^{-21} \mathrm{~J}, 684 \mathrm{~m} / \mathrm{s}$

- Watch Video Solution

62. A polyatomic gas with (n) degress of freedom has a mean energy per molecule given by.
A. $\frac{n k T}{N}$
B. $\frac{n k T}{2 N}$
C. $\frac{n k T}{2}$
D. $\frac{3 k T}{2}$

Answer: C

- Watch Video Solution

63. Three perfect gases at absolute temperature T_{1}, T_{2} and T_{3} are mixed. The masses f molecules are m_{1}, m_{2} and m_{3} and the number of molecules are n_{1}, n_{2} and n_{3} respectively. Assuming no loss of energy, the final temperature of the mixture is
A. $\frac{\left(T_{1}+T_{2}+T_{3}\right)}{3}$
B. $\frac{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}{n_{1}+n_{2}+n_{3}}$
C. $\frac{n_{1} T_{1}^{2}+n_{2} T_{2}^{2}+n_{3} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$
D. $\frac{n_{1}^{2} T_{1}^{2}+n_{2}^{2} T_{2}^{2}+n_{3}^{2} T_{3}^{2}}{n_{1} T_{1}+n_{2} T_{2}+n_{3} T_{3}}$

Answer: B

- Watch Video Solution

64. Consider a mixture of oxygen and hydrogen kept at room temperature, As compared to a hydrogen molecule an oxygen
molecule hits the wall
A. with greater average speed
B. with smaller average speed
C. with greater average kinetic energy
D. with smaller average kinetic energy

Answer: B

- Watch Video Solution

65. The temperature of argon, kept in a vessel, is raised by $1^{\circ} C$ at a constant volume. The total heat supplied to the gas is a combination of translational and rotational energies. Their respective shares are
A. 60% and 40%
B. 40% and 60%
C. 50% and 50%
D. 100% and 0%

Answer: D

- Watch Video Solution

66. A vessel contains a mixture of one mole of oxygen and two moles of nitrogen at 300K. The ratio of the average rorational kinetic energy per O_{2} molecules to that per N_{2} molecules is
A. $1: 1$
B. 1:2
C. 2:1
D. depends on the momets of inertia of the two molecules

- Watch Video Solution

67. A gas mixture consists of 2 moles of oxygen and 4 moles of argon at temperature T . Neglecting all vibrational modes, the total internal energy of the system is
A. $4 R T$
B. $15 R T$
C. $9 R T$
D. $11 R T$

Answer: D

68. A gas is enclosed in a container which is then placed on a fast moving train. The temprature of the gas
A. rises
B. falls
C. remains unchanged
D. becomes unsteady

Answer: C

D Watch Video Solution

69. Mean free path of a gas molecule is
A. inversely proportional to number of molecules per unit
B. inversely proportional to diameter of the molecule
C. directly proportional to the square root of the absolute

temperature

D. independence of temperature

Answer: A

- Watch Video Solution

70. If the mean free path of atoms is doubled then the pressure of gas will become
A. $P / 4$
B. $P / 2$
C. $P / 8$
D. P

D Watch Video Solution

71. Figure shows two flasks connected to each other. The volume of the flask 1 is twice that of flask 2 . The system is filled with an ideal gas at temperature $100 K$ and $200 K$ respectively. If the mass of the gas in 1 be m then what is the mass of the gas in flask 2

A. m
B. $m / 2$
C. $m / 4$
D. $m / 8$

Answer: C

- Watch Video Solution

72. Two containers of equal volume contain the same gas at pressure P_{1} and P_{2} and absolute temperature T_{1} and T_{2}, respectively. On joining the vessels, the gas reaches a common pressure P and common temperature T. The ratio P / T is equal to
A. $\frac{p_{1}}{T_{1}}+\frac{p_{2}}{T_{2}}$
B. $\frac{1}{2}\left[\frac{p_{1}}{T_{1}}+\frac{p_{2}}{T_{2}}\right]$
C. $\frac{p_{1} T_{2}+p_{2} T_{1}}{T_{1}+T_{2}}$
D. $\frac{p_{1} T_{2}-p_{2} T_{1}}{T_{1}-T_{2}}$

Answer: C

- Watch Video Solution

73. Two idential container joined by a small pipe initially contain the same gas at pressure p_{0} and absolute temperature T_{0}. One container is now maintained at the same temperature while the other is heated to $2 T_{0}$. The common pressure of the gas
A. $\frac{3}{2} p_{0}$
B. $\frac{4}{3} p_{0}$
C. $\frac{5}{p_{0}}$
D. $2 p_{0}$

(D) Watch Video Solution

74. In the previous question let V_{0} be the volume of each container. All other details remain the same. The number of moles of gas in the container at temperature $2 T_{0}$ will be
A. $\frac{p_{0} V_{0}}{2 R T_{0}}$
B. $\frac{p_{0} V_{0}}{R T_{0}}$
C. $\frac{2 p_{0} V_{0}}{3 R T_{0}}$
D. $\frac{p_{0} V_{0}}{3 R T_{0}}$

Answer: D

75. The temperature at the bottom of a 40 cm deep lake is $12^{\circ} \mathrm{C}$ and that at the surface is $35^{\circ} \mathrm{C}$. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from the bottom to the surface. Its volume becomes (atmospheric pressure $=10 \mathrm{~m}$ of water)
A. $2.0 \mathrm{~cm}^{3}$
B. $3.2 \mathrm{~cm}^{3}$
C. 5.4 cm
D. $8.0 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

76. An air bubble doubles in radius on string from the bottom of a lake to its surface. If the atmospheric pressure is equal to that
of a column of water of height H, the depth of the lake is
A. H
B. $2 H$
C. $7 H$
D. $8 H$

Answer: C

- Watch Video Solution

77. When an air bubble of radius ' r ' rises from the bottom to the surface of a lake, its radius becomes $5 r / 4$ (the pressure of the atmosphere is equal to the $10 m$ height of water column). If the temperature is constant and the surface tension is neglected, the depth of the lake is
A. $3.53 m$
B. 6.53 m
C. $9.53 m$
D. 12.53 m

Answer: C

- Watch Video Solution

78. If pressure of CO_{2} (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is
A. $11 g$
B. $22 g$
C. $33 g$
D. $44 g$

D Watch Video Solution

79. The equation of state of gas is given $\left(P+\frac{a T^{2}}{V}\right) V^{c}=(R T+b)$ where a, b, c and R are constant. The isotherms can be represented by $P=A V^{m}-B V^{n}$, where
A and B depend only on temperature and
A. $m=-c$ and $n=-1$
B. $m=c$ and $n=1$
C. $m=-c$ and $n=1$
D. $m=c$ and $n=-1$

Answer: A

\square

